Kim, Si-hyun; Kwon, Oh-yun; Yi, Chung-hwi; Cynn, Heon-seock; Ha, Sung-min; Park, Kyue-nam
2014-01-01
Limited hip flexion may lead to a poor lumbopelvic motion during seated active hip flexion in people with low-back pain (LBP). The purpose of this study was to compare lumbopelvic motion during seated hip flexion between subjects with and without LBP accompanying limited hip flexion. Fifteen patients with LBP accompanying limited hip flexion and 16 healthy subjects were recruited. The subjects performed seated hip flexion with the dominant leg three times. A three-dimensional motion-analysis system was used to measure lumbopelvic motion during seated hip flexion. During seated active hip flexion, the angle of hip flexion was significantly lower in patients with LBP accompanying limited hip flexion (17.4 ± 4.4 in the LBP group, 20.8 ± 2.6 in the healthy group; t = 2.63, p = 0.014). The angle of the lumbar flexion (4.8 ± 2.2 in the LBP group, 2.6 ± 2.0 in the healthy group; t = -2.96, p = 0.006) and posterior pelvic tilting (5.0 ± 2.6 in the LBP group, 2.9 ± 2.0 in the healthy group; t = 2.48 p = 0.019), however, were significantly greater in patients with this condition. The results of this study suggest that limited hip flexion in LBP can contribute to excessive lumbar flexion and posterior pelvic tilting during hip flexion in the sitting position. Further studies are required to confirm whether improving the hip flexion range of motion can reduce excessive lumbar flexion in patients with LBP accompanying limited hip flexion.
Isometric hip-rotator torque production at varying degrees of hip flexion.
Johnson, Sam; Hoffman, Mark
2010-02-01
Hip torque production is associated with certain knee injuries. The hip rotators change function depending on hip angle. To compare hip-rotator torque production between 3 angles of hip flexion, limbs, and sexes. Descriptive. University sports medicine research laboratory. 15 men and 15 women, 19-39 y. Three 6-s maximal isometric contractions of the hip external and internal rotators at 10 degrees, 40 degrees, and 90 degrees of hip flexion on both legs. Average torque normalized to body mass. Internal-rotation torque was greatest at 90 degrees of hip flexion, followed by 40 degrees of hip flexion and finally 10 degrees of hip flexion. External-rotation torque was not different based on hip flexion. The nondominant leg's external rotators were stronger than the dominant leg's, but the reverse was true for internal rotators. Finally, the men had more overall rotator torque. Hip-rotation torque production varies between flexion angle, leg, and sex. Clinicians treating lower extremity problems need to be aware of these differences.
The effect of hip positioning on the projected femoral neck-shaft angle: a modeling study.
Bhashyam, Abhiram R; Rodriguez, Edward K; Appleton, Paul; Wixted, John J
2018-04-03
The femoral neck-shaft angle (NSA) is used to restore normal hip geometry during hip fracture repair. Femoral rotation is known to affect NSA measurement, but the effect of hip flexion-extension is unknown. The goals of this study were to determine and test mathematical models of the relationship between hip flexion-extension, femoral rotation and NSA. We hypothesized that hip flexion-extension and femoral rotation would result in NSA measurement error. Two mathematical models were developed to predict NSA in varying degrees of hip flexion-extension and femoral rotation. The predictions of the equations were tested in vitro using a model that varied hip flexion-extension while keeping rotation constant, and vice versa. The NSA was measured from an AP radiograph obtained with a C-arm. Attributable measurement error based on hip positioning was calculated from the models. The predictions of the model correlated well with the experimental data (correlation coefficient = 0.82 - 0.90). A wide range of patient positioning was found to result in less than 5-10 degree error in the measurement of NSA. Hip flexion-extension and femoral rotation had a synergistic effect in measurement error of the NSA. Measurement error was minimized when hip flexion-extension was within 10 degrees of neutral. This study demonstrates that hip flexion-extension and femoral rotation significantly affect the measurement of the NSA. To avoid inadvertently fixing the proximal femur in varus or valgus, the hip should be positioned within 10 degrees of neutral flexion-extension with respect to the C-arm to minimize positional measurement error. N/A, basic science study.
Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop
2015-01-01
Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.
Leppänen, Mari; Pasanen, Kati; Krosshaug, Tron; Kannus, Pekka; Vasankari, Tommi; Kujala, Urho M.; Bahr, Roald; Perttunen, Jarmo; Parkkari, Jari
2017-01-01
Background: Stiff landings with less knee flexion and high vertical ground-reaction forces have been shown to be associated with an increased risk of anterior cruciate ligament (ACL) injury. The literature on the association between other sagittal plane measures and the risk of ACL injuries with a prospective study design is lacking. Purpose: To investigate the relationship between selected sagittal plane hip, knee, and ankle biomechanics and the risk of ACL injury in young female team-sport athletes. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 171 female basketball and floorball athletes (age range, 12-21 years) participated in a vertical drop jump test using 3-dimensional motion analysis. All new ACL injuries, as well as match and training exposure data, were recorded for 1 to 3 years. Biomechanical variables, including hip and ankle flexion at initial contact (IC), hip and ankle ranges of motion (ROMs), and peak external knee and hip flexion moments, were selected for analysis. Cox regression models were used to calculate hazard ratios (HRs) with 95% CIs. The combined sensitivity and specificity of significant test variables were assessed using a receiver operating characteristic (ROC) curve analysis. Results: A total of 15 noncontact ACL injuries were recorded during follow-up (0.2 injuries/1000 player-hours). Of the variables investigated, landing with less hip flexion ROM (HR for each 10° increase in hip ROM, 0.61 [95% CI, 0.38-0.99]; P < .05) and a greater knee flexion moment (HR for each 10-N·m increase in knee moment, 1.21 [95% CI, 1.04-1.40]; P = .01) was significantly associated with an increased risk of ACL injury. Hip flexion at IC, ankle flexion at IC, ankle flexion ROM, and peak external hip flexion moment were not significantly associated with the risk of ACL injury. ROC curve analysis for significant variables showed an area under the curve of 0.6, indicating a poor combined sensitivity and specificity of the test. Conclusion: Landing with less hip flexion ROM and a greater peak external knee flexion moment was associated with an increased risk of ACL injury in young female team-sport players. Studies with larger populations are needed to confirm these findings and to determine the role of ankle flexion ROM as a risk factor for ACL injury. Increasing knee and hip flexion ROMs to produce soft landings might reduce knee loading and risk of ACL injury in young female athletes. PMID:29318174
Knikou, Maria; Kay, Elizabeth; Schmit, Brian D.
2007-01-01
Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning–test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients. PMID:17543951
Mellin, G
1988-06-01
Mobility of hips and lumbar spine were measured in 301 men and 175 women who were in employment but suffered from chronic or recurrent low-back pain. The degree of low-back pain (LBP) was assessed with a questionnaire. Hip flexion, extension, internal rotation, and hamstring flexibility in the men, and hip flexion and extension in the women had statistically significant negative correlations with LBP. Among the correlations between hip and lumbar spinal mobility, hip flexion and extension with lumbar rotation were strongest.
ACUTE EFFECTS OF DIFFERENT ANTERIOR THIGH SELF-MASSAGE ON HIP RANGE-OF-MOTION IN TRAINED MEN.
Monteiro, Estêvão Rios; Vigotsky, Andrew D; Novaes, Jefferson da Silva; Škarabot, Jakob
2018-02-01
Self-massage is a ubiquitous intervention similar to massage, but performed by the recipient him- or herself rather than by a therapist, most often using a tool (e.g., foam roller, roller massager). Self-massage has been found to have a wide range of effects. It is particularly known for increasing flexibility acutely, although not always. The variability of the results in previous studies may potentially be a function of the tool used. Recent findings also suggest that self-massage exerts global effects. Therefore, increased flexibility should be expected in the areas adjacent to the ones treated. To investigate the acute effects of foam rolling and rolling massage of anterior thigh on hip range-of-motion (ROM) - i.e., hip extension and hip flexion - in trained men. Eighteen recreationally active, resistance trained males visited the lab on two occasions over a 4-day period separated by at least a day. Each session included two baseline ROM measures of passive hip flexion and extension taken in a randomized fashion. Recording of baseline measures was followed by the intervention of the day, which was either foam rolling or rolling massage of the anterior thigh as per randomization. Immediately post intervention, passive hip flexion and hip extension ROM were reassessed. In order to assess the time course of improvements in ROM, hip flexion and hip extension ROM were reevaluated at 10, 20, and 30 minutes post-intervention. Hip flexion and hip extension ROM increased immediately following both interventions (foam rolling or roller massager) and remained increased for 30 minutes post intervention. Foam rolling was statistically superior in improving hip flexion and hip extension ROM immediately post intervention. However, immediately post-intervention was the only time point that measurements exceeded the minimum detectable change for both interventions. Both foam rolling and rolling massage appear to be effective interventions for improving hip flexion and extension ROM when applied to the anterior thigh, but the observed effects are transient in nature. 2b.
Nicodemo, Alberto; Arrigoni, Chiara; Bersano, Andrea; Massè, Alessandro
2014-01-01
Congenital, traumatic, or extrinsic causes can lead people to paraplegia; some of these are potentially; reversible and others are not. Paraplegia can couse hip flexion contracture and, consequently, pressure sores, scoliosis, and hyperlordosis; lumbar and groin pain are strictly correlated. Scientific literature contains many studies about children hip flexion related to neurological diseases, mainly caused by cerebral palsy; only few papers focus on this complication in adults. In this study we report our experience on surgical treatment of adult hip flexion contracture due to neurological diseases; we have tried to outline an algorithm to choose the best treatment avoiding useless or too aggressive therapies. We present 5 cases of adult hips flexion due to neurological conditions treated following our algorithm. At 1-year-follow-up all patients had a good clinical outcome in terms of hip range of motion, pain and recovery of walking if possible. In conclusion we think that this algorithm could be a good guideline to treat these complex cases even if we need to treat more patients to confirm this theory. We believe also that postoperation physiotherapy it is useful in hip motility preservation, improvement of muscular function, and walking ability recovery when possible. PMID:24707293
Nicodemo, Alberto; Arrigoni, Chiara; Bersano, Andrea; Massè, Alessandro
2014-01-01
Congenital, traumatic, or extrinsic causes can lead people to paraplegia; some of these are potentially; reversible and others are not. Paraplegia can couse hip flexion contracture and, consequently, pressure sores, scoliosis, and hyperlordosis; lumbar and groin pain are strictly correlated. Scientific literature contains many studies about children hip flexion related to neurological diseases, mainly caused by cerebral palsy; only few papers focus on this complication in adults. In this study we report our experience on surgical treatment of adult hip flexion contracture due to neurological diseases; we have tried to outline an algorithm to choose the best treatment avoiding useless or too aggressive therapies. We present 5 cases of adult hips flexion due to neurological conditions treated following our algorithm. At 1-year-follow-up all patients had a good clinical outcome in terms of hip range of motion, pain and recovery of walking if possible. In conclusion we think that this algorithm could be a good guideline to treat these complex cases even if we need to treat more patients to confirm this theory. We believe also that postoperation physiotherapy it is useful in hip motility preservation, improvement of muscular function, and walking ability recovery when possible.
The effect of spinal manipulation on imbalances in leg strength.
Chilibeck, Philip D; Cornish, Stephen M; Schulte, Al; Jantz, Nathan; Magnus, Charlene R A; Schwanbeck, Shane; Juurlink, Bernhard H J
2011-09-01
We hypothesized that spinal manipulation (SM) would reduce strength imbalances between legs. Using an un-blinded randomized design, 28 males and 21 females (54 ± 19y) with at least a 15% difference in isometric strength between legs for hip flexion, extension, abduction, or knee flexion were randomized to treatment or placebo (mock spinal manipulation). Strength of the stronger and weaker legs for hip flexion, extension, abduction, and/or knee flexion was assessed before and after the intervention. SM reduced the relative strength difference between legs for knee flexion (mean ± SD 57 ± 53 to 5 ± 14%) and hip flexion (24 ± 12 to 11 ± 15%) compared to placebo (34 ± 29 to 24 ± 36%, and 20 ± 18 to 22 ± 26%, respectively) (p = 0.05). SM also improved strength in the weak leg for hip abduction (104 ± 43 to 116 ± 43 Nm) compared to placebo (84 ± 24 to 85 ± 31 Nm) (p = 0.03). This study suggests that spinal manipulation may reduce imbalances in strength between legs for knee and hip flexion.
Hip and knee effects after implantation of a drop foot stimulator.
Yao, Daiwei; Lahner, Matthias; Jakubowitz, Eike; Thomann, Anna; Ettinger, Sarah; Noll, Yvonne; Stukenborg-Colsman, Christina; Daniilidis, Kiriakos
2017-01-01
An active ankle dorsiflexion is essential for a proper gait pattern. If there is a failure of the foot lifting, considerable impairments occur. The therapeutic effect of an implantable peroneus nerve stimulator (iPNS) for the ankle dorsiflexion is already approved by recent studies. However, possible affection for knee and hip motion after implantation of an iPNS is not well described. The objective of this retrospective study was to examine with a patient cohort whether the use of iPNS induces a lower-extremity flexion withdrawal response in the form of an increased knee and hip flexion during swing phase. Eighteen subjects (12 m/6 w) treated with an iPNS (ActiGait®, Otto Bock, Duderstadt, Germany) were examined in knee and hip motion by gait analysis with motion capture system (Vicon Motion System Ltd®, Oxford, UK) and Plug-in-Gait model after a mean follow up from 12.5 months. The data were evaluated and compared in activated and deactivated iPNS. Only little changes could be documented, as a slight average improvement in peak knee flexion during stand phase from 1.0° to 2.5° and peak hip flexion in stance from 3.1° to 2.1° In contrast, peak knee flexion during swing appeared similar (25.3° to 25.7°) same as peak hip flexion during swing. In comparison with the healthy extremity, a more symmetric course of the knee flexion during stand phase could be shown. No statistical significant improvements or changes in hip and knee joint could be shown in this study. Only a more symmetric knee flexion during stand phase and a less hip flexion during stand phase might be hints for a positive affection of iPNS for knee and hip joint. It seems that the positive effect of iPNS is only based on the improvement in ankle dorsiflexion according to the recent literature.
Overuse Injury Assessment Model
2005-03-01
superficialis Hip (Pelvis) Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus Extension Semitendinosus, semimembranosus...Plantar flexion Gastrocnemius, soleus, tibialis posterior, peroneous muscles, Foot flexor muscles Spine Flexion Rectus abdominis, oblique muscles Extension...digitorum superficialis Hip Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus, adductor magnus, adductor longus
Muscle Strength Imbalance in the Hip Joint Caused by Fast Movements
NASA Astrophysics Data System (ADS)
Pontaga, I.
2003-07-01
Eleven male sportsmen at the age of 24.3 ± 4.5 were examined. Their hip joint flexors and extensors were tested by an "REV-9000" Technogym dynamometer system during isokinetic movements at angular velocities of 100 (low) and 200 (high) °/s. The range of hip joint movements was from 30 (in flexion) to 130° (in extension). Torque values and their ratios for hip flexors and extensors at different angular positions were obtained and compared. It is shown that, at high speeds, the flexion movement significantly raises ( p < 0.001) the torque ratios of flexors and extensors in flexion positions of the hip (50 and 60°). These ratios approximately twofold exceed their values at moderate velocities. The weakness of hip joint extensors in extreme flexion positions of the hip may cause injury of this group of muscles at fast movements.
Rafn, Bolette S; Tang, Lars; Nielsen, Martin P; Branci, Sonia; Hölmich, Per; Thorborg, Kristian
2016-05-01
To investigate whether self-reported pain during hip strength testing correlates to a large degree with hip muscle strength in soccer players with long-standing unilateral hip and groin pain. Cross-sectional study. Clinical assessments at Sports Orthopaedic Research Center-Copenhagen (SORC-C), Arthroscopic Centre Amager, Copenhagen University Hospital, Denmark. Twenty-four male soccer players with unilateral long-standing hip and groin pain. The soccer players performed 5 reliable hip muscle strength tests (isometric hip flexion, adduction, abduction, isometric hip flexion-modified Thomas test, and eccentric hip adduction). Muscle strength was measured with a hand-held dynamometer, and the players rated the pain during testing on a numerical rating scale (0-10). In 4 tests (isometric hip adduction, abduction, flexion, and eccentric adduction), no significant correlations were found between pain during testing and hip muscle strength (Spearman rho = -0.28 to 0.06, P = 0.09-0.39). Isometric hip flexion (modified Thomas test position) showed a moderate negative correlation between pain and hip muscle strength (Spearman rho = -0.44, P = 0.016). Self-reported pain during testing does not seem to correlate with the majority of hip muscle strength tests used in soccer players with long-standing hip and groin pain.
Gilleard, W; Smith, T
2007-02-01
Effects of obesity on trunk forward flexion motion in sitting and standing, and postural adaptations and hip joint moment for a standing work task. Cross-sectional comparison of obese and normal weight groups. Ten obese subjects (waist girth 121.2+/-16.8 cm, body mass index (BMI) 38.9+/-6.6 kg m(-2)) and 10 age- and height-matched normal weight subjects (waist girth 79.6+/-6.4 cm, BMI 21.7+/-1.5 kg m(-2)). Trunk motion during seated and standing forward flexion, and trunk posture, hip joint moment and hip-to-bench distance during a simulated standing work task were recorded. Forward flexion motion of the thoracic segment and thoracolumbar spine was decreased for the obese group with no change in pelvic segment and hip joint motion. Obese subjects showed a more flexed trunk posture and increased hip joint moment and hip-to-bench distance for a simulated standing work task. Decreased range of forward flexion motion, differing effects within the trunk, altered posture during a standing work task and concomitant increases in hip joint moment give insight into the aetiology of functional decrements and musculoskeletal pain seen in obesity.
The Effects of Psoas Major and Lumbar Lordosis on Hip Flexion and Sprint Performance
ERIC Educational Resources Information Center
Copaver, Karine; Hertogh, Claude; Hue, Olivier
2012-01-01
In this study, we analyzed the correlations between hip flexion power, sprint performance, lumbar lordosis (LL) and the cross-sectional area (CSA) of the psoas muscle (PM). Ten young adults performed two sprint tests and isokinetic tests to determine hip flexion power. Magnetic resonance imaging was used to determine LL and PM CSA. There were…
What is the impingement-free range of motion of the asymptomatic hip in young adult males?
Larkin, Brian; van Holsbeeck, Marnix; Koueiter, Denise; Zaltz, Ira
2015-04-01
Femoroacetabular impingement is a recognized cause of chondrolabral injury. Although surgical treatment for impingement seeks to improve range of motion, there are very little normative data on dynamic impingement-free hip range of motion (ROM) in asymptomatic people. Hip ultrasound demonstrates labral anatomy and femoral morphology and, when used dynamically, can assist in measuring range of motion. The purposes of this study were (1) to measure impingement-free hip ROM until labral deflection is observed; and (2) to measure the maximum degree of sagittal plane hip flexion when further flexion is limited by structural femoroacetabular abutment. Forty asymptomatic adult male volunteers (80 hips) between the ages of 21 and 35 years underwent bilateral static and dynamic hip ultrasound examination. Femoral morphology was characterized and midsagittal flexion passive ROM was measured at two points: (1) at the initiation of labral deformation; and (2) at maximum flexion when the femur impinged on the acetabular rim. The mean age of the subjects was 28 ± 3 years and the mean body mass index was 25 ± 4 kg/m(2). Mean impingement-free hip passive flexion measured from full extension to initial labral deflection was 68° ± 17° (95% confidence interval [CI], 65-72). Mean maximum midsagittal passive flexion, measured at the time of bony impingement, was 96° ± 6° (95% CI, 95-98). Using dynamic ultrasound, we found that passive ROM in the asymptomatic hip was much less than the motion reported in previous studies. Measuring ROM using ultrasound is more accurate because it allows anatomic confirmation of terminal hip motion. Surgical procedures used to treat femoroacetabular impingement are designed to restore or increase hip ROM and their results should be evaluated in light of precise normative data. This study suggests that normal passive impingement-free femoroacetabular flexion in the young adult male is approximately 95°.
Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
Elson, Matthew S; Berkowitz, Ari
2016-03-02
The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.
Large strengthening effect of a hip-flexor training programme: a randomized controlled trial.
Thorborg, Kristian; Bandholm, Thomas; Zebis, Mette; Andersen, Lars Louis; Jensen, Jesper; Hölmich, Per
2016-07-01
To investigate the effect on hip-flexion strength of a 6-week hip-flexor training programme using elastic bands as resistance. We hypothesized that the training group, compared to a control group, would increase their hip-flexion strength more. Thirty-three healthy subjects (45 % females), 24(5) years of age, were included in a randomized controlled trial and allocated to heavy strength training of the hip-flexor muscles or to control (no strength training). Strength training of the hip-flexors (dominant leg) was performed three times 10 min per week for 6 weeks. The strength training group progressed from 15 repetition maximum (RM) (week 1) to 8 RM (week 6). Isometric hip-flexion strength (primary outcome) was measured by a blinded assessor using a reliable test procedure. In the strength training group, the isometric hip-flexion strength of the trained leg increased by 17 %, (p < 0.001). The between-group difference in hip-flexion strength change in the trained leg (dominant leg, training group) versus the non-trained leg (dominant leg, control group) was significantly different from baseline to follow-up, corresponding to a mean change of 0.34 (95 % CI 0.17-0.52) Nm/kg, in favour of the strength training group (p < 0.001). Simple hip-flexor strength training using elastic bands as external loading, for only 6 weeks, substantially improves hip-flexor muscle strength. This simple exercise programme seems promising for future prevention and treatment of acute and longstanding hip-flexor injuries, such as acute rectus femoris injuries and longstanding iliopsoas-related pain and impingement. I.
Yıldırım, M S; Ozyurek, S; Tosun, Oç; Uzer, S; Gelecek, N
2016-03-01
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m(-2)) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial-final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial-final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.
Ozyurek, S; Tosun, OÇ; Uzer, S; Gelecek, N
2016-01-01
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m-2) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial–final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial–final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness. PMID:26929476
Contribution of the Pubofemoral Ligament to Hip Stability: A Biomechanical Study.
Martin, Hal D; Khoury, Anthony N; Schröder, Ricardo; Johnson, Eric; Gómez-Hoyos, Juan; Campos, Salvador; Palmer, Ian J
2017-02-01
To determine the isolated function of the pubofemoral ligament of the hip capsule and its contribution to hip stability in external/internal rotational motion during flexion greater than 30° and abduction. Thirteen hips from 7 fresh-frozen pelvis-to-toe cadavers were skeletonized from the lumbar spine to the distal femur with the capsular ligaments intact. Computed tomographic imaging was performed to ensure no occult pathological state existed, and assess bony anatomy. Specimens were placed on a surgical table in supine position with lower extremities resting on a custom-designed polyvinylchloride frame. Hip internal and external rotation was measured with the hip placed into a combination of the following motions: 30°, 60°, 110° hip flexion and 0°, 20°, 40° abduction. Testing positions were randomized. The pubofemoral ligament was released and measurements were repeated, followed by releasing the ligamentum teres. Analysis of the 2,106 measurements recorded demonstrates the pubofemoral ligament as a main controller of hip internal rotation during hip flexion beyond 30° and abduction. Hip internal rotation was increased up to 438.9% (P < .001) when the pubofemoral ligament was released and 412.9% (P < .001) when both the pubofemoral and teres ligament were released, compared with the native state. The hypothesis of the pubofemoral ligament as one of the contributing factors of anterior inferior hip stability by controlling external rotation of the hip in flexion beyond 30° and abduction was disproved. The pubofemoral ligament maintains a key function in limiting internal rotation in the position of increasing hip flexion beyond 30° and abduction. This cadaveric study concludes previous attempts at understanding the anatomical and biomechanical function of the capsular ligaments and their role in hip stability. The present study contributes to the understanding of hip stability and biomechanical function of the pubofemoral ligament. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
The influence of muscles on knee flexion during the swing phase of gait.
Piazza, S J; Delp, S L
1996-06-01
Although the movement of the leg during swing phase is often compared to the unforced motion of a compound pendulum, the muscles of the leg are active during swing and presumably influence its motion. To examine the roles of muscles in determining swing phase knee flexion, we developed a muscle-actuated forward dynamic simulation of the swing phase of normal gait. Joint angles and angular velocities at toe-off were derived from experimental measurements, as were pelvis motions and muscle excitations. Joint angles and joint moments resulting from the simulation corresponded to experimental measurements made during normal gait. Muscular joint moments and initial joint angular velocities were altered to determine the effects of each upon peak knee flexion in swing phase. As expected, the simulation demonstrated that either increasing knee extension moment or decreasing toe-off knee flexion velocity decreased peak knee flexion. Decreasing hip flexion moment or increasing toe-off hip flexion velocity also caused substantial decreases in peak knee flexion. The rectus femoris muscle played an important role in regulating knee flexion; removal of the rectus femoris actuator from the model resulted in hyperflexion of the knee, whereas an increase in the excitation input to the rectus femoris actuator reduced knee flexion. These findings confirm that reduced knee flexion during the swing phase (stiff-knee gait) may be caused by overactivity of the rectus femoris. The simulations also suggest that weakened hip flexors and stance phase factors that determine the angular velocities of the knee and hip at toe-off may be responsible for decreased knee flexion during swing phase.
The Effects of Fatigue and Local Carriage on Musculoskeletal Injury Mechanisms
2012-09-01
the mean and SD of the pelvis, hip, knee , and ankle angles at heel contact and stance of walking. Table 5 shows the mean and SD of the hip, knee , and...22.9 (8.6) Hip flexion at heel contact (deg) 32.1 (4.3) 28.2 (10.4) 45.4 (5.2) 40.6 (10.9) Knee flexion at heel contact (deg) -2.5 (3.1...1.1 (4.5) 3.9 (3.2) 4.7 (4.9) Maximum knee flexion at stance (deg) 19.0 (2.8) 20.7 (4.4) 24.6 (4.5) 25.0 (5.3) Ankle dorsi-flexion at heel
Curran, Máire; O'Sullivan, Leonard; O'Sullivan, Peter; Dankaerts, Wim; O'Sullivan, Kieran
2015-11-01
This paper systematically reviews the effect of chair backrests and reducing seated hip flexion on low back discomfort (LBD) and trunk muscle activation. Prolonged sitting commonly exacerbates low back pain (LBP). Several modifications to seated posture and chair design have been recommended, including using chairs with backrests and chairs that reduce hip flexion. Electronic databases were searched by two independent assessors. Part 1 of this review includes 26 studies comparing the effect of sitting with at least two different hip angles. In Part 2, seven studies that compared the effect of sitting with and without a backrest were eligible. Study quality was assessed using the PEDro scale. Significant confounding variables and a relatively small number of randomized controlled trials (RCTs) involving people with LBP complicates analysis of the results. There was moderate evidence that chair backrests reduce paraspinal muscle activation, and limited evidence that chair backrests reduce LBD. There was no evidence that chairs involving less hip flexion reduce LBP or LBD, or consistently alter trunk muscle activation. However, participants in several studies subjectively preferred the modified chairs involving less hip flexion. The limited evidence to support the use of chairs involving less seated hip flexion, or the effect of a backrest, is consistent with the limited evidence that other isolated chair design features can reduce LBP. LBP management is likely to require consideration of several factors in addition to sitting position. Larger RCTs involving people with LBP are required. © 2015, Human Factors and Ergonomics Society.
Miyamoto, N; Hirata, K; Kanehisa, H
2017-01-01
The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of movements of lower limbs in non-professional ballet dancers: hip abduction and flexion
2011-01-01
Background The literature indicated that the majority of professional ballet dancers present static and active dynamic range of motion difference between left and right lower limbs, however, no previous study focused this difference in non-professional ballet dancers. In this study we aimed to evaluate active movements of the hip in non-professional classical dancers. Methods We evaluated 10 non professional ballet dancers (16-23 years old). We measured the active range of motion and flexibility through Well Banks. We compared active range of motion between left and right sides (hip flexion and abduction) and performed correlation between active movements and flexibility. Results There was a small difference between the right and left sides of the hip in relation to the movements of flexion and abduction, which suggest the dominant side of the subjects, however, there was no statistical significance. Bank of Wells test revealed statistical difference only between the 1st and the 3rd measurement. There was no correlation between the movements of the hip (abduction and flexion, right and left sides) with the three test measurements of the bank of Wells. Conclusion There is no imbalance between the sides of the hip with respect to active abduction and flexion movements in non-professional ballet dancers. PMID:21819566
Young, Aaron J.; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P.
2017-01-01
A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait. PMID:28337434
Young, Aaron J; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P
2017-01-01
A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait.
Kinematic classification of iliotibial band syndrome in runners.
Grau, S; Krauss, I; Maiwald, C; Axmann, D; Horstmann, T; Best, R
2011-04-01
Several inconsistent causative biomechanical factors are considered to be crucial in the occurrence of iliotibial band syndrome (ITBS). The focus of this study was on assessing differences in the kinematic characteristics between healthy runners [control group (CO)] and runners with ITBS in order to recommend treatment strategies to deal with this injury. Three-dimensional kinematics of barefoot running was used in the biomechanical setup. Both groups were matched with respect to gender, height and weight. After determining drop outs, the final population comprised 36 subjects (26 male and 10 female): 18 CO and 18 ITBS (13 male and five female, each). Kinematic evaluations indicate less hip adduction and frontal range of motion at the hip joint in runners with ITBS. Furthermore, maximum hip flexion velocity and maximum knee flexion velocity were lower in runners with ITBS. Lack of joint coordination, expressed as earlier hip flexion and a tendency toward earlier knee flexion, was found to be another discriminating variable in subjects with ITBS compared with CO subjects. We assume that an increase in range of motion at the hip joint, stretching of the hip abductors, as well as stretching the hamstrings, calf muscles and hip flexors will help treat ITBS. © 2009 John Wiley & Sons A/S.
Azevedo, Daniel Camara; Paiva, Edson Barreto; Lopes, Alexia Moura Abuhid; Santos, Henrique de Oliveira; Carneiro, Ricardo Luiz; Rodrigues, André Soares; de Andrade, Marco Antonio Percope; Novais, Eduardo N; Van Dillen, Linda R
2016-11-01
Study Design Cross-sectional, case-control design. Background Pelvic movement has been considered a possible discriminating parameter associated with femoroacetabular impingement (FAI) symptom onset. Decreased pelvic rotation has been found during squatting in people with FAI when compared to people with healthy hips. However, it is possible that changes in pelvic movement may occur in other hip conditions because of pain and may not be specific to FAI. Objectives To compare sagittal pelvic rotation during hip flexion and in sitting between people with FAI and people with other symptomatic hip conditions. Methods Thirty people with symptomatic FAI, 30 people with other symptomatic hip conditions, and 20 people with healthy hips participated in the study. Sagittal pelvic rotation was calculated based on measures of pelvic alignment in standing, hip flexion to 45° and 90°, and sitting. Results There were significant differences in sagittal pelvic rotation among the 3 groups in all conditions (P<.05). Post hoc analyses revealed that participants in the symptomatic FAI group had less pelvic rotation during hip flexion to 45° and 90° compared to participants in the other symptomatic hip conditions group and the hip-healthy group (mean difference, 1.2°-1.9°). In sitting, participants in the other symptomatic hip conditions group had less posterior pelvic rotation compared to those in the hip-healthy group (mean difference, 3.9°). Conclusion People with symptomatic FAI have less posterior pelvic rotation during hip flexion when compared to people with other symptomatic hip conditions and those with healthy hips. Level of Evidence Diagnosis, level 4. J Orthop Sports Phys Ther 2016;46(11):957-964. Epub 29 Sep 2016. doi:10.2519/jospt.2016.6713.
Jung, Hungu; Yamasaki, Masahiro
2016-12-08
Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly focusing on hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs as well as knee extension and flexion strength.
Jacobsen, Julie S; Nielsen, Dennis B; Sørensen, Henrik; Søballe, Kjeld; Mechlenburg, Inger
2014-01-01
Background and purpose — Hip dysplasia can be treated with periacetabular osteotomy (PAO). We compared joint angles and joint moments during walking and running in young adults with hip dysplasia prior to and 6 and 12 months after PAO with those in healthy controls. Patients and methods — Joint kinematics and kinetics were recorded using a 3-D motion capture system. The pre- and postoperative gait characteristics quantified as the peak hip extension angle and the peak joint moment of hip flexion were compared in 23 patients with hip dysplasia (18–53 years old). Similarly, the gait patterns of the patients were compared with those of 32 controls (18–54 years old). Results — During walking, the peak hip extension angle and the peak hip flexion moment were significantly smaller at baseline in the patients than in the healthy controls. The peak hip flexion moment increased 6 and 12 months after PAO relative to baseline during walking, and 6 months after PAO relative to baseline during running. For running, the improvement did not reach statistical significance at 12 months. In addition, the peak hip extension angle during walking increased 12 months after PAO, though not statistically significantly. There were no statistically significant differences in peak hip extension angle and peak hip flexion moment between the patients and the healthy controls after 12 months. Interpretation — Walking and running characteristics improved after PAO in patients with symptomatic hip dysplasia, although gait modifications were still present 12 months postoperatively. PMID:25191933
Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.
Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H
2015-01-01
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.
Brown, T N; O'Donovan, M; Hasselquist, L; Corner, B; Schiffman, J M
2016-01-01
Fifteen military personnel performed 30-cm drop landings to quantify how body borne load (light, ∼6 kg, medium, ∼20 kg, and heavy, ∼40 kg) impacts lower limb kinematics and knee joint energy absorption during landing, and determine whether greater lower limb flexion increases energy absorption while landing with load. Participants decreased peak hip (P = 0.002), and knee flexion (P = 0.007) posture, but did not increase hip (P = 0.796), knee (P = 0.427) or ankle (P = 0.161) energy absorption, despite exhibiting greater peak hip (P = 0.003) and knee (P = 0.001) flexion, and ankle (P = 0.003) dorsiflexion angular impulse when landing with additional load. Yet, when landing with the light and medium loads, greater hip (R(2) = 0.500, P = 0.003 and R(2) = 0.314, P = 0.030) and knee (R(2) = 0.431, P = 0.008 and R(2) = 0.342, P = 0.022) flexion posture predicted larger knee joint energy absorption. Thus, military training that promotes hip and knee flexion, and subsequently greater energy absorption during landing, may potentially reduce risk of musculoskeletal injury and optimize soldier performance. Published by Elsevier Ltd.
Seymore, Kayla D; Cameron, Sarah E; Kaplan, Jonathan T; Ramsay, John W; Brown, Tyler N
2017-12-08
This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p < .001) and hip flexion moment (p = .027), and increased PS knee external rotation angle (p = .034). During the unanticipated cut, participants increased PS hip (p = .040) and knee flexion angle (p < .001), and decreased PS hip adduction (p = .001), and knee abduction (p = .005) and external rotation (p = .026) moments. Adding body borne load produces lower limb biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reliability of handheld dynamometry in assessment of hip strength in adult male football players.
Fulcher, Mark L; Hanna, Chris M; Raina Elley, C
2010-01-01
The aim of this study was to evaluate the intra- and interrater reliability of handheld dynamometry (HHD) for measuring hip muscle strength in a sample of 30 healthy semi-professional adult male football players. The reliability of HHD had not been assessed in athletes who were likely to be stronger than populations tested previously. Maximal isometric strength of resisted hip flexion and adduction were measured. Mean strength ranged from 51.5 kg for dominant hip flexion to 26.7 kg for hip adduction at 90 degrees of hip flexion. Intrarater reliability intraclass correlation coefficients (ICCs) ranged from 0.70 to 0.89. ICCs for interrater reliability ranged from 0.66 to 0.87. As expected, muscle strength in this group of athletes was significantly higher than that of populations in which HHD reliability has been assessed. Despite this, muscle strength testing of hip flexor and adductor muscles can be performed with good to excellent intra- and interrater reliability in this population. Copyright (c) 2009. Published by Elsevier Ltd.
Sánchez-Zuriaga, Daniel; López-Pascual, Juan; Garrido-Jaén, David; García-Mas, Maria Amparo
2015-02-01
The purpose of this study was to determine the patterns of lumbopelvic motion and erector spinae (ES) activity during trunk flexion-extension movements and to compare these patterns between patients with recurrent low back pain (LBP) in their pain-free periods and matched asymptomatic subjects. Thirty subjects participated (15 patients with disc herniation and recurrent LBP in their pain-free periods and 15 asymptomatic control subjects). A 3-dimensional videophotogrammetric system and surface electromyography (EMG) were used to record the angular displacements of the lumbar spine and hip in the sagittal plane and the EMG activity of the ES during standardized trunk flexion-extension cycles. Variables were maximum ranges of spine and hip flexion; percentages of maximum lumbar and hip flexion at the start and end of ES relaxation; average percentages of EMG activity during flexion, relaxation, and extension; and flexion-extension ratio of myoelectrical activity. Recurrent LBP patients during their pain-free period showed significantly greater ES activation both in flexion and extension, with a higher flexion-extension ratio than controls. Maximum ranges of lumbar and hip flexion showed no differences between controls and patients, although patients spent less time with their lumbar spine maximally flexed. This study showed that reduced maximum ranges of motion and absence of ES flexion-relaxation phenomenon were not useful to identify LBP patients in the absence of acute pain. However, these patients showed subtle alterations of their lumbopelvic motion and ES activity patterns, which may have important clinical implications. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Descriptive profile of hip range of motion in elite tennis players.
Moreno-Pérez, Victor; Ayala, Francisco; Fernandez-Fernandez, Jaime; Vera-Garcia, Francisco J
2016-05-01
To describe the range of motion (ROM) profile (flexion, extension, abduction, internal and external rotation) of the hip in elite tennis players; and (b) to analyse if there are sex-related differences in the hip ROM. Cohort study. Controlled laboratory environment. 81 male and 28 female tennis players completed this study. Descriptive measures of passive hip flexion, extension and abduction, and internal and external active and passive hip rotation ROM were taken. Magnitude-based inferences on differences between sex (males vs. females) and hip (dominant vs. non-dominant) were made by standardising differences. No clinically meaningful bilateral and sex-related differences in any of the hip ROM measures. In addition, it was found that both males and females had restricted mobility measures on hip flexion (<80°), extension (<0°) and abduction (<40°). Furthermore, the 30% of males also presented restricted active and passive hip internal rotation ROM values (<25°). Finally, both males and females had normal mobility measures of hip external rotation ROM (active [>25°] and passive [35°]) Asymmetric hip joint ROM measures found during clinical examination and screening may indicate abnormalities and the need of rehabilitation (e.g., flexibility training). In addition, clinicians should include specific exercises (e.g., stretching) in their conditioning, prevention and rehabilitation programmes aiming to avoid restricted mobility of hip flexion (males = 74°; females = 78°), extension (males = -1.5; females = -0.4), abduction (males = 35°; females = 34°) and internal rotation (males = 30°; females = 35) that might be generated as a consequence of playing tennis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Body size and lower limb posture during walking in humans.
Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír
2017-01-01
We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints.
Martin, Hal D; Kelly, Bryan T; Leunig, Michael; Philippon, Marc J; Clohisy, John C; Martin, RobRoy L; Sekiya, Jon K; Pietrobon, Ricardo; Mohtadi, Nicholas G; Sampson, Thomas G; Safran, Marc R
2010-02-01
The purpose of this study was to systematically evaluate the technique and tests used in the physical examination of the adult hip performed by multiple clinicians who regularly treat patients with hip problems and identify common physical examination patterns. The subjects included 5 men and 6 women with a mean age (+/-SD) of 29.8 +/- 9.4 years. They underwent physical examination of the hip by 6 hip specialists with a strong interest in hip-related problems. All examiners were blind to patient radiographs and diagnoses. Patient examinations were video recorded and reviewed. It was determined that 18 tests were most frequently performed (>or=40%) by the examiners, 3 standing, 11 supine, 3 lateral, and 1 prone. Of the most frequently performed tests, 10 were performed more than 50% of the time. The tests performed in the supine position were as follows: flexion range of motion (ROM) (percentage of use, 98%), flexion internal rotation ROM (98%), flexion external rotation ROM (86%), passive supine rotation test (76%), flexion/adduction/internal rotation test (70%), straight leg raise against resistance test (61%), and flexion/abduction/external rotation test (52%). The tests performed in the standing position were the gait test (86%) and the single-leg stance phase test (77%). The 1 test in the prone position was the femoral anteversion test (58%). There are variations in the testing that hip specialists perform to examine and evaluate their patients, but there is enough commonality to form the basis to recommend a battery of physical examination maneuvers that should be considered for use in evaluating the hip. Patients presenting with groin, abdominal, back, and/or hip pain need to have a basic examination to ensure that the hip is not overlooked. A comprehensive physical examination of the hip will benefit the patient and the physician and serve as the foundation for future multicenter clinical studies. (c) 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A; Vanrenterghem, Jos; Verschueren, Sabine
2016-01-01
The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.
Mohta, Medha; Agarwal, Deepti; Sethi, AK
2011-01-01
Needle-through-needle combined spinal–epidural (CSE) may cause significant delay in patient positioning resulting in settling down of spinal anaesthetic and unacceptably low block level. Bilateral hip flexion has been shown to extend the spinal block by flattening lumbar lordosis. However, patients with lower limb fractures cannot flex their injured limb. This study was conducted to find out if unilateral hip flexion could extend the level of spinal anaesthesia following a prolonged CSE technique. Fifty American Society of Anesthesiologists (ASA) I/II males with unilateral femur fracture were randomly allocated to Control or Flexion groups. Needle-through-needle CSE was performed in the sitting position at L2-3 interspace and 2.6 ml 0.5% hyperbaric bupivacaine injected intrathecally. Patients were made supine 4 min after the spinal injection or later if epidural placement took longer. The Control group patients (n=25) lay supine with legs straight, whereas the Flexion group patients (n=25) had their uninjured hip and knee flexed for 5 min. Levels of sensory and motor blocks and time to epidural drug requirement were recorded. There was no significant difference in sensory levels at different time-points; maximum sensory and motor blocks; times to achieve maximum blocks; and time to epidural drug requirement in two groups. However, four patients in the Control group in contrast to none in the Flexion group required epidural drug before start of surgery. Moreover, in the Control group four patients took longer than 30 min to achieve maximum sensory block. To conclude, unilateral hip flexion did not extend the spinal anaesthetic level; however, further studies are required to explore the potential benefits of this technique. PMID:21808396
Huo, Ming; Wang, Hongzhao; Ge, Meng; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi
2013-11-01
[Purpose] The aim of this study was to investigate the change in electromechanical reaction times (EMG-RT) of hip flexion of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 39 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 16 subjects (7 males, 9 females), and the PNF group consisted of 23 subjects (10 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the EMG-RT, the premotor time (PMT) and the motor time (MT) during hip flexion movement before and after the intervention in both groups. [Results] There were no significant differences among the results of the PNF group. For the NJF group, there were significant differences in PMT and EMG-RT after NJF treatment. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on electromechanical reaction times of hip flexion.
Huo, Ming; Wang, Hongzhao; Ge, Meng; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi
2013-01-01
[Purpose] The aim of this study was to investigate the change in electromechanical reaction times (EMG-RT) of hip flexion of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 39 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 16 subjects (7 males, 9 females), and the PNF group consisted of 23 subjects (10 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the EMG-RT, the premotor time (PMT) and the motor time (MT) during hip flexion movement before and after the intervention in both groups. [Results] There were no significant differences among the results of the PNF group. For the NJF group, there were significant differences in PMT and EMG-RT after NJF treatment. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on electromechanical reaction times of hip flexion. PMID:24396211
Effect of hip and knee position on nerve conduction in the common fibular nerve.
Broadhurst, Peter Kaas; Robinson, Lawrence R
2017-09-01
The aim of this study was to measure the influence that hip and knee position have on routine fibular motor nerve conduction studies. Healthy subjects under age 40 were recruited (n = 24) to have fibular nerve conduction studies completed in various positions, using hip extension-knee extension as a control. A mean increase in conduction velocity of 2.5 m/s across the knee (P = 0.020) was seen during hip flexion compared with hip extension. A mean decrease in velocity of 1.6 m/s through the leg segment (P = 0.016) was seen during knee flexion compared with knee extension. This study shows that the optimal position of the leg during fibular nerve studies is with the hip in flexion and knee in extension, to more accurately reflect nerve length for velocity calculations. This may have implications for other peripheral nerves with respect to proximal joint position affecting calculated velocity. Muscle Nerve 56: 519-521, 2017. © 2017 Wiley Periodicals, Inc.
Squat exercise to estimate knee megaprosthesis rehabilitation: a pilot study
Lovecchio, Nicola; Zago, Matteo; Sciumè, Luciana; Lopresti, Maurizio; Sforza, Chiarella
2015-01-01
[Purpose] This study evaluated a specific rehabilitation protocol using a half squat after total knee reconstruction with distal femur megaprosthesis and tibial allograft-prosthesis composite. [Subject and Methods] Squat execution was recorded by a three-dimensional system before and after a specific rehabilitation program on a 28-year-old patient. Squat duration, body center of mass trajectory, and vertical range of motion were determined. Step width and joint angles and symmetry (hip flexion, extension, and rotation, knee flexion, and ankle dorsal and plantar flexion) were estimated. Knee and hip joint symmetry was computed using a bilateral cyclogram technique. [Results] After rehabilitation, the squat duration was longer (75%), step width was similar, and vertical displacement was higher. Hip flexion increased by over 20%, and ankle dorsiflexion diminished by 14%. The knee had the highest symmetry gain (4.1–3.4%). Angle-angle plot subtended areas decreased from 108° to 40°2 (hip) and from 204° to 85°2 (knee), showing improvement in movement symmetry. [Conclusion] We concluded that the squat is an effective multifactorial exercise to estimate rehabilitation outcomes after megaprosthesis, also considering that compressive and shear forces are minimal up to 60–70° of knee flexion. PMID:26311992
Mechanical Characteristics of Reflex Durign Upright Posture in Paralyzed Subjects
NASA Astrophysics Data System (ADS)
Kim, Yongchul; Youm, Youngil; Lee, Bumsuk; Kim, Youngho; Choi, Hyeonki
The characteristics of flexor reflexes have been investigated in the previous studies with human subjects who were seated or supine position. However, researchers did not describe how the spinal circuits are used in different hip angles for paralyzed subjects, such as the standing position with walker or cane. In upright posture the compatibility between a flexor reflex of leg and body balance is a special problem for lower limb injured subjects. Therefore, the purpose of this study was to investigate the effects of hip angle change on the flexor reflex evoked in standing paralyzed subjects supported by walker. In this study, six spinal cord injured and four stroke subjects were recruited through the inpatient physical therapy clinics of Korea national rehabilitation hospital. A single axis electronic goniometer was mounted on the lateral side of the hip joint of the impaired limb to record movements in the sagittal plane at this joint. The electronic goniometer was connected to a data acquisition system, through amplifiers to a computer. Since subject' posture influenced characteristics of the flexion reflex response, the subjects were supported in an upright posture by the help of parallelogram walder. Two series of tests were performed on each leg. The first series of the tests investigated the influence of hip angle during stationary standing posture on flexion reflex response. The hip angle was adjusted by the foot plate. The second examined the effect of the voluntary action of subject on swing motion during the gait. The electrically induced flexion reflex simultaneously produced the flexion of the hip, knee and dorsiflexion of the ankle enabling the swing phase of walking. Form the experimental results we observed that the reflex response of hip joint was largerwith the hip in the extended position than in the flexed position during standing posture. Under voluntary movement on flexion reflex during gaint, the peak hip angle induced by stimulation was increased in spinal cord injury and stroke patients by subject' voluntary movement.
Pollard, Christine D.; Sigward, Susan M.; Powers, Christopher M.
2009-01-01
Background It has been proposed that female athletes who limit knee and hip flexion during athletic tasks rely more on the passive restraints in the frontal plane to deceleration their body center of mass. This biomechanical pattern is thought to increase the risk for anterior cruciate ligament injury. To date, the relationship between sagittal plane kinematics and frontal plane knee motion and moments has not been explored. Methods Subjects consisted of fifty-eight female club soccer players (age range: 11 to 20 years) with no history of knee injury. Kinematics, ground reaction forces, and surface electromyography were collected while each subject performed a drop landing task. Subjects were divided into two groups based on combined sagittal plane knee and hip flexion angles during the deceleration phase of landing (high flexion and low flexion). Findings Subjects in the low flexion group demonstrated increased knee valgus angles (P = 0.02, effect size 0.27), increased knee adductor moments (P = 0.03, effect size 0.24), decreased energy absorption at the knee and hip (P = 0.02, effect size 0.25; and P< 0.001, effect size 0.59), and increased vastus lateralis EMG when compared to subjects in the high flexion group (P = 0.005, effect size 0.35). Interpretation Female athletes with limited sagittal plane motion during landing exhibit a biomechanical profile that may put these individuals at greater risk for anterior cruciate ligament injury. PMID:19913961
Harnroongroj, T; Asavamongkolkul, A; Chareancholvanich, K
2000-05-01
Open reduction of the displaced T-shaped acetabular fracture has a problem of accuracy of the fracture reduction. This study was carried out to demonstrate that the reconstruction of the pelvic brim by approaching the pubo-acetabular fragment plays a role in the accuracy of the reduction of displaced T-shaped acetabular fractures. From 1975 to 1990, a retrospective study was carried out of 22 patients who sustained a displaced T-shaped acetabular fracture. The patients were operated on by open reduction and internal fixation of the ischio-acetabular fragment to the posterior column without restoration of the pelvic brim. Radiographs of the pelvis were reviewed. The result showed that there was displacement of the pubo-acetabular fragment including the medial wall in all cases. As the result of this study, a prospective study between 1990 and 1997 was carried out of 15 patients who sustained displaced T-shaped acetabular fractures including 3 cases with medial displacement of the femoral head. The pubo-acetabular fragment was anatomically reduced and fixed to the anterior column of the acetabulumn as the first approach to restore a disrupted pelvic brim. There, patterns of the acetabular fracture were subsequently re-evaluated especially the ischio-acetabular fragment including the position of the femoral head by using an intraoperative portable X-ray technique. The stability of the hip joint was assessed by hip flexion. The intraoperative radiograph appearances of the ischio-acetabular fragment were visually confirmed by a second surgical exposure. The results showed that the intraoperative radiographs gave spontaneous reduction of the ischio-acetabular fragment in all patients except one. There was a reduction of the displaced femoral head into the hip socket in the three patients. The hip joints were stable in all patients. The second surgical exposure showed that there was good spontaneous reduction of the ischio-acetabular fragment to the posterior column by ligamentotaxis in 14 patients. Therefore, it is not necessary to address the ischio-acetabular fragment. In the exceptional case, the ischio-acetabular fragment was displaced as a free bone which could not be reduced by ligamentotaxis. However, reduction and internal fixation of the ischio-acetabular fragment to the posterior column for complete re-application of the hip joint onto the pelvic ring of this case was facilitated. Postoperative 2 year and 5 year follow-up showed that the fracture had healed without heterotrophic ossification or premature osteoarthrosis of the hip joint. The exceptional case had a broken plate at the anterior column of the acetabulum. Hip function was evaluated clinically using Merle D' Aubigne's hip score. All patients had a "very good score". The study showed that reconstruction of the pelvic brim by anatomical reduction and fixation of the pubo-acetabular fragment to the anterior column plays an important role in the accuracy of fracture reduction of a displaced T-shaped acetabular fracture.
Brown, Tyler N; O'Donovan, Meghan; Hasselquist, Leif; Corner, Brian; Schiffman, Jeffrey M
2014-11-07
This study quantified how body borne load impacts hip and knee biomechanics during anticipated and unanticipated single-leg cutting maneuvers. Fifteen male military personnel performed a series of single-leg cutting maneuvers with three different load configurations (light, ~6 kg, medium, ~20 kg, and heavy, ~40 kg). Subject-based means of the specific lower limb biomechanical variables were submitted to repeated measures ANOVA to test the main and interaction effects of body borne load and movement type. With body borne load, stance time (P<0.001) increased, while larger hip (P=0.027) and knee flexion (P=0.004), and hip adduction (P<0.001) moments, and decreased hip (P=0.002) and knee flexion (P<0.001), and hip adduction (P=0.003) postures were evident. Further, the hip (P<0.001) and ankle (P=0.024) increased energy absorption, while the knee (P=0.020) increased energy generation with body borne load. During the unanticipated maneuvers, the hip (P=0.009) and knee (P=0.032) increased energy generation, and peak hip flexion moment (P=0.002) increased relative to the anticipated movements. With the body borne load, participants adopted biomechanical patterns that decreased their locomotive ability including larger moments and reduced flexion postures of the lower limb. During the single-leg cut, participants used greater energy absorption from the large, proximal muscles of the hip and greater energy generation from the knee with the addition of load. Participant's performance when carrying a range of loads was not compromised by anticipation, as they did not exhibit the hip and knee kinetic and kinematic adaptations previously demonstrated when reacting to an unplanned stimulus. Published by Elsevier Ltd.
The effect of soft tissue release of the hips on walking in myelomeningocele.
Correll, J; Gabler, C
2000-06-01
Walking and standing capacity in myelomeningocele is highly dependent on the level of the neurological lesion. Deformities, mainly flexion deformities, of the hip can severely interfere with mobility. In a retrospective study, undertaken in our hospital, we evaluated the role of soft tissue release of the hip in patients with hip flexion contractures. A special surgical technique was performed in 55 hips. The results show a good effect on verticalization, even if the hip joints cannot be extended actively. A subluxated or dislocated hip did not influence the final outcome. During the mean follow-up of approximately 4 years, only a slight recurrence of the former deformity was observed. Most of the patients obtained great advantage from the operation.
Body size and lower limb posture during walking in humans
Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír
2017-01-01
We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints. PMID:28192522
de Oliveira Silva, Danilo; Barton, Christian John; Pazzinatto, Marcella Ferraz; Briani, Ronaldo Valdir; de Azevedo, Fábio Mícolis
2016-06-01
Several hypotheses have been proposed to explain the pathomechanisms underlying patellofemoral pain (PFP). Concurrent evaluation of lower limb mechanics in the same PFP population is needed to determine which may be more important to target during rehabilitation. This study aimed to investigate possible differences in rearfoot eversion, hip adduction, and knee flexion during stair ascent; the relationship between these variables; and the discriminatory capability of each in identifying females with PFP. Thirty-six females with PFP and 31 asymptomatic controls underwent three-dimensional kinematic analyses during stair ascent. Between-group comparisons were made for peak rearfoot eversion, hip adduction, and knee flexion. Pearson's correlation coefficients were calculated to evaluate relationships among these parameters. Receiver operating characteristic curves were applied to identify the discriminatory capability of each. Females with PFP ascended stairs with reduced peak knee flexion, greater peak hip adduction and peak rearfoot eversion. Peak hip adduction (>10.6°; sensitivity=67%, specificity=77%) discriminated females with PFP more effectively than rearfoot eversion (>5.0°; sensitivity=58%, specificity=67%). Reduced peak hip adduction was found to be associated with reduced peak knee flexion (r=0.54, p=0.002) in females with PFP. These findings indicate that proximal, local, and distal kinematics should be considered in PFP management, but proximally targeted interventions may be most important. The relationship of reduced knee flexion with reduced hip adduction also indicates a possible compensatory strategy to reduce patellofemoral joint stress, and this may need to be addressed during rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
Dembia, Christopher L; Silder, Amy; Uchida, Thomas K; Hicks, Jennifer L; Delp, Scott L
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads
Silder, Amy; Uchida, Thomas K.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work. PMID:28700630
Access to pedestrian roads, daily activities, and physical performance of adolescents.
Sjolie, A N
2000-08-01
A cross-sectional study using a questionnaire and physical tests was performed. To study how access to pedestrian roads and daily activities are related to low back strength, low back mobility, and hip mobility in adolescents. Although many authorities express concern about the passive lifestyle of adolescents, little is known about associations between daily activities and physical performance. This study compared 38 youths in a community lacking access to pedestrian roads with 50 youths in nearby area providing excellent access to pedestrian roads. A standardized questionnaire was used to obtain data about pedestrian roads, school journeys, and activities from the local authorities and the pupils. Low back strength was tested as static endurance strength, low back mobility by modified Schober techniques, and hip mobility by goniometer. For statistical analyses, a P value of 0.05 or less determined significance. In the area using school buses, the pupils had less low back extension, less hamstring flexibility, and less hip abduction, flexion, and extension than pupils in the area with pedestrian roads. Multivariate analyses showed no associations between walking or bicycling to school and anatomic function, but regular walking or bicycling to leisure-time activities associated positively with low back strength, low back extension, hip flexion, and extension. Distance by school bus associated negatively with hip abduction, hip flexion, hip extension, and hamstring flexibility (P<0.001). Time spent on television or computer associated negatively but insignificantly with low back strength, hamstring flexibility, hip abduction, and flexion (P<0.1). The results indicate that access to pedestrian roads and other lifestyle factors are associated with physical performance.
Thorborg, Kristian; Bandholm, Thomas; Hölmich, Per
2013-03-01
In football, ice-hockey, and track and field, injuries have been predicted, and hip- and knee-strength deficits quantified using hand-held dynamometry (HHD). However, systematic bias exists when testers of different sex and strength perform the measurements. Belt-fixation of the dynamometer may resolve this. The aim of the present study was therefore to examine the inter-tester reliability concerning strength assessments of isometric hip abduction, adduction, flexion, extension and knee-flexion strength, using HHD with external belt-fixation. Twenty-one healthy athletes (6 women), 30 (8.6) (mean (SD)) years of age, were included. Two physiotherapy students (1 female and 1 male) performed all the measurements after careful instruction and procedure training. Isometric hip abduction, adduction, flexion, extension, and knee-flexion strength were tested. The tester-order and hip-action order were randomised. No systematic between-tester differences (bias) were observed for any of the hip or knee actions. The intra-class correlation coefficients (ICC 2.1) ranged from 0.76 to 0.95. Furthermore, standard errors of measurement in per cent (SEM %) ranged from 5 to 11 %, and minimal detectable change in per cent (MDC %) from 14 to 29 % for the different hip and knee actions. The present study shows that isometric hip- and knee-strength measurements have acceptable inter-tester reliability at the group level, when testing strong individuals, using HHD with belt-fixation. This procedure is therefore perfectly suited for the evaluation and monitoring of strong athletes with hip, groin and hamstring injuries, some of the most common and troublesome injuries in sports. Diagnostic, Level III.
Pinto, Brendan L; Beaudette, Shawn M; Brown, Stephen H M
2018-05-14
Given the appropriate cues, kinematic factors associated with low back injury risk and pain, such as spine flexion, can be avoided. Recent research has demonstrated the potential for tactile sensory information to change movement. In this study an athletic strapping tape was applied bilaterally along the lumbar extensor muscles to provide continuous tactile feedback information during a repeated lifting and lowering task. The presence of the tape resulted in a statistically significant reduction in lumbar spine flexion when compared to a baseline condition in which no tape was present. This reduction was further increased with the explicit instruction to pay attention to the sensations elicited by the tape. In both cases, the reduction in lumbar spine flexion was compensated for by increases in hip and knee flexion. When the tape was then removed and participants were instructed to continue lifting as if it was still present, the reduction in lumbar flexion and increases in hip and knee flexion were retained. Thus this study provides evidence that tactile cues can provide vital feedback information that can cue human lumbar spine movement to reduce kinematic factors associated with injury risk and pain. Copyright © 2018 Elsevier B.V. All rights reserved.
Ogata, Yuta; Anan, Masaya; Takahashi, Makoto; Takeda, Takuya; Tanimoto, Kenji; Sawada, Tomonori; Shinkoda, Koichi
The purpose of this study was to investigate between movement patterns of trunk extension from full unloaded flexion and lifting techniques, which could provide valuable information to physical therapists, doctors of chiropractic, and other manual therapists. A within-participant study design was used. Whole-body kinematic and kinetic data during lifting and full trunk flexion were collected from 16 healthy male participants using a 3-dimensional motion analysis system (Vicon Motion Systems). To evaluate the relationships of joint movement between lifting and full trunk flexion, Pearson correlation coefficients were calculated. There was no significant correlation between the amount of change in the lumbar extension angle during the first half of the lifting trials and lumbar movement during unloaded trunk flexion and extension. However, the amount of change in the lumbar extension angle during lifting was significantly negatively correlated with hip movement during unloaded trunk flexion and extension (P < .05). The findings that the maximum hip flexion angle during full trunk flexion had a greater influence on kinematics of lumbar-hip complex during lifting provides new insight into human movement during lifting. All study participants were healthy men; thus, findings are limited to this group. Copyright © 2018. Published by Elsevier Inc.
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
Fox, Melanie D; Delp, Scott L
2010-05-28
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. Copyright 2010 Elsevier Ltd. All rights reserved.
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds
Fox, Melanie D.; Delp, Scott L.
2010-01-01
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. PMID:20236644
Guess, Trent M; Razu, Swithin; Jahandar, Amirhossein; Skubic, Marjorie; Huo, Zhiyu
2017-04-01
The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.
Tsai, Liang-Ching; Ko, Yi-An; Hammond, Kyle E; Xerogeanes, John W; Warren, Gordon L; Powers, Christopher M
2017-12-01
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10-15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg -1 ; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg -1 ; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.
Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A.; Vanrenterghem, Jos; Verschueren, Sabine
2016-01-01
Purpose The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Methods Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. Results The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). Conclusion This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase. PMID:27101130
Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks
Lewis, Cara L.; Foch, Eric; Luko, Marc M.; Loverro, Kari L.; Khuu, Anne
2015-01-01
The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16cm and 24cm). The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r) between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003), but more hip external rotation and knee abduction (p ≤ 0.030), than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24cm step down task (p ≤ 0.029). While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001). Angles at the knee and hip had a moderate to excellent correlation (r = 0.51–0.98), but less consistently so at the pelvis and trunk (r = 0.21–0.96). The differences in movement patterns between the single leg squat and the step down should be considered when selecting a single leg task for evaluation or treatment. The high correlation of knee and hip angles between the three tasks indicates that similar information about knee and hip kinematics was gained from each of these tasks, while pelvis and trunk angles were less well predicted. PMID:25955321
Variability of ischiofemoral space dimensions with changes in hip flexion: an MRI study.
Johnson, Adam C; Hollman, John H; Howe, Benjamin M; Finnoff, Jonathan T
2017-01-01
The primary aim of this study was to determine if ischiofemoral space (IFS) dimensions vary with changes in hip flexion as a result of placing a bolster behind the knees during magnetic resonance imaging (MRI). A secondary aim was to determine if IFS dimensions vary between supine and prone hip neutral positions. The study employed a prospective design. Sports medicine center within a tertiary care institution. Five male and five female adult subjects (age mean = 29.2, range = 23-35; body mass index [BMI] mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. An axial, T1-weighted MRI sequence of the pelvis was obtained of each subject in a supine position with their hips in neutral and flexed positions, and in a prone position with their hips in neutral position. Supine hip flexion was induced by placing a standard, 9-cm-diameter MRI knee bolster under the subject's knees. The order of image acquisition (supine hip neutral, supine hip flexed, prone hip neutral) was randomized. The IFS dimensions were then measured on a separate workstation. The investigator performing the IFS measurements was blinded to the subject position for each image. The main outcome measurements were the IFS dimensions acquired with MRI. The mean IFS dimensions in the prone position were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). In the supine hip neutral position, the IFS dimensions were 25.1 (SD 5.6) mm. The mean difference between the two positions of 3.15 (3.6) mm was statistically significant (95 % CI of the difference = 1.4 to 4.8 mm, t 19 = 3.911, p = .001). The mean IFS dimensions in the hip flexed position were 36.9 (SD 5.7) mm. The mean difference between the two supine positions of 11.8 (4.1) mm was statistically significant (95 % CI of the difference = 9.9 to 13.7 mm, t 19 = 12.716, p < .001). Our findings demonstrate that the IFS measurements obtained with MRI are dependent upon patient positioning with respect to hip flexion and supine versus prone positions. This finding has implications when evaluating for ischiofemoral impingement, an entity resulting in hip and/or buttock pain secondary to impingement of the quadratus femoris muscle within a pathologically narrowed IFS. One will need to account for patient hip flexion and supine versus prone positioning when evaluating individuals with suspected ischiofemoral impingement.
Neuromuscular adaptations induced by adjacent joint training.
Ema, R; Saito, I; Akagi, R
2018-03-01
Effects of resistance training are well known to be specific to tasks that are involved during training. However, it remains unclear whether neuromuscular adaptations are induced after adjacent joint training. This study examined the effects of hip flexion training on maximal and explosive knee extension strength and neuromuscular performance of the rectus femoris (RF, hip flexor, and knee extensor) compared with the effects of knee extension training. Thirty-seven untrained young men were randomly assigned to hip flexion training, knee extension training, or a control group. Participants in the training groups completed 4 weeks of isometric hip flexion or knee extension training. Standardized differences in the mean change between the training groups and control group were interpreted as an effect size, and the substantial effect was assumed to be ≥0.20 of the between-participant standard deviation at baseline. Both types of training resulted in substantial increases in maximal (hip flexion training group: 6.2% ± 10.1%, effect size = 0.25; knee extension training group: 20.8% ± 9.9%, effect size = 1.11) and explosive isometric knee extension torques and muscle thickness of the RF in the proximal and distal regions. Improvements in strength were accompanied by substantial enhancements in voluntary activation, which was determined using the twitch interpolation technique and RF activation. Differences in training effects on explosive torques and neural variables between the two training groups were trivial. Our findings indicate that hip flexion training results in substantial neuromuscular adaptations during knee extensions similar to those induced by knee extension training. © 2017 The Authors. Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.
Evaluation of factors that affect hip moment impulse during gait: A systematic review.
Inai, Takuma; Takabayashi, Tomoya; Edama, Mutsuaki; Kubo, Masayoshi
2018-03-01
Decreasing the daily cumulative hip moments in the frontal and sagittal planes may lower the risk of hip osteoarthritis. Therefore, it may be important to evaluate factors that affect hip moment impulse during gait. It is unclear what factors affect hip moment impulse during gait. This systematic review aimed to evaluate different factors that affect hip moment impulse during gait in healthy adults and patients with hip osteoarthritis. Four databases (Scopus, ScienceDirect, PubMed, and PEDro) were searched up to August 2017 to identify studies that examined hip moment impulse during gait. Data extracted for analysis included the sample size, age, height, body mass, type of intervention, and main findings. After screening, 10 of the 975 studies identified were included in our analysis. Several factors, including a rocker bottom shoe, FitFlop™ sandals, ankle push-off, posture, stride length, body-weight unloading, a rollator, walking poles, and a knee brace, were reviewed. The main findings were as follows: increasing ankle push-off decreased both the hip flexion and extension moment impulses; body-weight unloading decreased both the hip extension and adduction moment impulses; the FitFlop™ sandal increased the sum of the hip flexion and extension moment impulses; long strides increased the hip extension moment impulse; and the use of a knee brace increased hip flexion moment impulse. Of note, none of the eligible studies included patients with hip osteoarthritis. The hip moment impulses can be modified by person-specific factors (ankle push-off and long strides) and external factors (body-weight unloading and use of the FitFlop™ sandals and a knee brace). Effects on the progression of hip osteoarthritis remain to be evaluated. Copyright © 2018 Elsevier B.V. All rights reserved.
Impaired hip muscle strength in patients with femoroacetabular impingement syndrome.
Kierkegaard, Signe; Mechlenburg, Inger; Lund, Bent; Søballe, Kjeld; Dalgas, Ulrik
2017-12-01
Patients with femoroacetabular impingement (FAI) experience hip pain as well as decreased function and lowered quality of life. The aim was to compare maximal isometric and isokinetic muscle strength (MVC) during hip flexion and extension and rate of force development (RFD) during extension between patients with FAI and a matched reference group. Secondary, the aim was to compare patient hips and subgroups defined by gender and age as well as to investigate associations between hip muscle strength and self-reported outcomes. Design Cross-sectional, comparative study Methods Sixty patients (36±9 years, 63% females) and 30 age and gender matched reference persons underwent MVC tests in an isokinetic dynamometer. During hip flexion and extension, patients' affected hip showed a strength deficit of 15-21% (p<0.001) and 10-25% (p<0.03) compared with reference MVC, respectively. The affected hip of the patients was significantly weaker than their contralateral hip. RFD was significantly decreased for both patient hips compared to the reference group (p<0.05). While age had less effect on MVC, female patients were more affected than male patients. Self-reported measures were associated with isometric hip muscle strength. Patients with FAI demonstrate decreased hip flexion and extension strength when compared to (1) reference persons and (2) their contralateral hip. There seems to be a gender specific affection which should be investigated further and addressed when planning training protocols. Furthermore, self-reported measures were associated with isometric muscle strength, which underlines the clinical importance of the reduced muscle strength. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Range of Hip Joint Motion Is Correlated With MRI-Verified Cam Deformity in Adolescent Elite Skiers
Agnvall, Cecilia; Swärd Aminoff, Anna; Todd, Carl; Jonasson, Pall; Thoreson, Olof; Swärd, Leif; Karlsson, Jon; Baranto, Adad
2017-01-01
Background: Radiologically verified cam-type femoroacetabular impingement (FAI) has been shown to correlate with reduced internal rotation, reduced passive hip flexion, and a positive anterior impingement test. Purpose: To validate how a clinical examination of the hip joint correlates with magnetic resonance imaging (MRI)–verified cam deformity in adolescents. Study Design: Cross-sectional study; Level of evidence, 3. Methods: The sample group consisted of 102 adolescents with the mean age 17.7 ± 1.4 years. The hip joints were examined using MRI for measurements of the presence of cam (α-angle ≥55°) and clinically for range of motion (ROM) in both supine and sitting positions. The participants were divided into a cam and a noncam group based on the results of the MRI examination. Passive hip flexion, internal rotation, anterior impingement, and the FABER (flexion, abduction, and external rotation) test were used to test both hips in the supine position. With the participant sitting, the internal/external rotation of the hip joint was measured in 3 different positions of the pelvis (neutral, maximum anteversion, and retroversion) and lumbar spine (neutral, maximum extension, and flexion). Results: Differences were found between the cam and noncam groups in terms of the anterior impingement test (right, P = .010; left, P = .006), passive supine hip flexion (right: mean, 5°; cam, 117°; noncam, 122° [P = .05]; and left: mean, 8.5°; cam, 116°; noncam, 124.5° [P = .001]), supine internal rotation (right: mean, 4.9°; cam, 24°; noncam, 29° [P = .022]; and left: mean, 4.8°; cam, 26°; noncam, 31° [P = .028]), sitting internal rotation with the pelvis and lumbar spine in neutral (right: mean, 7.95°; cam, 29°; noncam, 37° [P = .001]; and left: mean, 6.5°; cam, 31.5°; noncam, 38° [P = .006]), maximum anteversion of the pelvis and extension of the lumbar spine (right: mean, 5.2°; cam, 20°; noncam, 25° [P = .004]; and left: mean, 5.85°; cam, 20.5; noncam, 26.4° [P = .004]), and maximum retroversion of the pelvis and flexion of the spine (right: mean, 8.4°; cam, 32.5°; noncam, 41° [P = .001]; and left: mean, 6.2°; cam, 36°; noncam, 42.3° [P = .012]). The cam group had reduced ROM compared with the noncam group in all clinical ROM measures. Conclusion: The presence of cam deformity on MRI correlates with reduced internal rotation in the supine and sitting positions, passive supine hip flexion, and the impingement test in adolescents. PMID:28695136
Zügner, Roland; Tranberg, Roy; Lisovskaja, Vera; Shareghi, Bita; Kärrholm, Johan
2017-07-01
We simultaneously examined 14 patients with OTS and dynamic radiostereometric analysis (RSA) to evaluate the accuracy of both skin- and a cluster-marker models. The mean differences between the OTS and RSA system in hip flexion, abduction, and rotation varied up to 9.5° for the skin-marker and up to 11.3° for the cluster-marker models, respectively. Both models tended to underestimate the amount of flexion and abduction, but a significant systematic difference between the marker and RSA evaluations could only be established for recordings of hip abduction using cluster markers (p = 0.04). The intra-class correlation coefficient (ICC) was 0.7 or higher during flexion for both models and during abduction using skin markers, but decreased to 0.5-0.6 when abduction motion was studied with cluster markers. During active hip rotation, the two marker models tended to deviate from the RSA recordings in different ways with poor correlations at the end of the motion (ICC ≤0.4). During active hip motions soft tissue displacements occasionally induced considerable differences when compared to skeletal motions. The best correlation between RSA recordings and the skin- and cluster-marker model was found for studies of hip flexion and abduction with the skin-marker model. Studies of hip abduction with use of cluster markers were associated with a constant underestimation of the motion. Recordings of skeletal motions with use of skin or cluster markers during hip rotation were associated with high mean errors amounting up to about 10° at certain positions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1515-1522, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Park, Rachel J; Tsao, Henry; Claus, Andrew; Cresswell, Andrew G; Hodges, Paul W
2013-02-01
Cross-sectional controlled laboratory study. To investigate the function of discrete regions of psoas major (PM) and quadratus lumborum (QL) with changes in spinal curvature and hip position. Anatomically discrete regions of PM and QL may have differential function on the lumbar spine, based on anatomical and biomechanical differences in their moment arms between fascicles within each muscle. Fine-wire electrodes were inserted with ultrasound guidance into PM fascicles arising from the transverse process (PM-t) and vertebral body (PM-v) and anterior (QL-a) and posterior (QL-p) layers of QL. Recordings were made on 9 healthy participants, who performed 7 tasks with maximal voluntary efforts and adopted 3 sitting postures that involved different spinal curvatures and hip angles. Activity of PM-t was greater during trunk extension than flexion, whereas activity of PM-v was greater during hip flexion than trunk efforts. Activity of QL-p was greater during trunk extension and lateral flexion, whereas QL-a showed greater activity during lateral flexion. During sitting tasks, PM-t was more active when sitting with a short lordosis than a flat (less extended) lumbar spine posture, whereas PM-v was similarly active in both sitting postures. Activity of PM-t was more affected by changes in position of the lumbar spine than the hip, whereas PM-v was more actively involved in the movement of the hip rather than that of the lumbar spine. Moreover, from its anatomy, PM-t has a combined potential to extend/lordose the lumbar spine and flex the hip, at least in a flexed-hip position.
McGovern, Andrew; Dude, Christopher; Munkley, Daniel; Martin, Thomas; Wallace, David; Feinn, Richard; Dione, Donald; Garbalosa, Juan C
2015-12-01
Despite the recent emphasis on injury prevention, anterior cruciate ligament (ACL) injury rates remain high. This study aimed to ascertain the effects of prolonged activity on lower limb kinematics during a self-selected cutting maneuver. Angular kinematics were recorded during an agility test performed until the completion time was greater than the mean plus one SD of baseline trials. Cut type was identified and the hip and knee angles at 33 ms post heel strike were determined. A linear mixed effects model assessed the effects of cut type, gender, and activity status on the hip and knee angles. Males performed sidestep cuts more frequently than females. Females increased the incidence of sidestep cuts after prolonged activity. At the hip, a gender-cut type interaction existed for the transverse (p=0.001) and sagittal (p=0.11) planes. Females showed more internal rotation during sidestep and more external rotation and less flexion during crossover cuts. For the frontal plane, a gender-activity status interaction (p = 0.032) was due to no change within females but greater hip adduction during prolonged activity within males. With prolonged activity, both genders displayed less hip (p=0.29) and knee (p=0.009) flexion and more knee (p=0.001) adduction. Females displayed less hip and knee flexion than men (p=0.001). Sidestep may be more risky than crossover cuts. Both genders place themselves in at-risk postures with prolonged activity due to less hip and knee flexion. Copyright © 2015 Elsevier B.V. All rights reserved.
Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury
Onushko, Tanya; Hyngstrom, Allison
2013-01-01
Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI. PMID:23615544
The effect of trunk flexion on lower-limb kinetics of able-bodied gait.
Kluger, David; Major, Matthew J; Fatone, Stefania; Gard, Steven A
2014-02-01
Able-bodied individuals spontaneously adopt crouch gait when walking with induced anterior trunk flexion, but the effect of this adaptation on lower-limb kinetics is unknown. Sustained forward trunk displacement during walking can greatly alter body center-of-mass location and necessitate a motor control response to maintain upright balance. Understanding this response may provide insight into the biomechanical demands on the lower-limb joints of spinal pathology that alter trunk alignment (e.g., flatback). The purpose of this study was to determine the effect of sustained trunk flexion on lower-limb kinetics in able-bodied gait, facilitating understanding of the effects of spinal pathologies. Subjects walked with three postures: 0° (normal upright), 25±7°, and 50±7° trunk flexion. With increased trunk flexion, decreased peak ankle plantar flexor moments were observed with increased energy absorption during stance. Sustained knee flexion during mid- and terminal stance decreased knee flexor moments, but energy absorption/generation remained unchanged across postures. Increased trunk flexion placed significant demand on the hip extensors, thus increasing peak hip extensor moments and energy generation. The direct relationship between trunk flexion and energy absorption/generation at the ankle and hip, respectively, suggest increased muscular demand during gait. These findings on able-bodied subjects might shed light on muscular demands associated with individuals having pathology-induced positive sagittal spine balance. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, Juseung; Park, Minchul
2016-09-01
[Purpose] This study compared abdominal and hip extensor muscle activity during a bridge exercise with various knee joint angles. [Subjects and Methods] Twenty-two healthy male subjects performed a bridge exercise in which the knee joint angle was altered. While subjects performed the bridge exercise, external oblique, internal oblique, gluteus maximus, and semitendinosus muscle activity was measured using electromyography. [Results] The bilateral external and internal oblique muscle activity was significantly higher at 0° knee flexion compared to 120°, 90°, and 60°. The bilateral gluteus maximus muscle activity was significantly different at 0° of knee flexion compared to 120°, 90°, and 60°. The ipsilateral semitendinosus muscle activity was significantly increased at 90° and 60° of knee flexion compared to 120°, and significantly decreased at 0° knee flexion compared with 120°, 90°, and 60°. The contralateral semitendinosus muscle activity was significantly higher at 60° of knee flexion than at 120°, and significantly higher at 0° of knee flexion than at 120°, 90°, and 60°. [Conclusion] Bridge exercises performed with knee flexion less than 90° may be used to train the ipsilateral semitendinosus. Furthermore, bridge exercise performed with one leg may be used to train abdominal and hip extensor muscles.
Cho, Misuk
2015-06-01
[Purpose] This study aimed to identify correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students. [Subjects] Thirty female university students were enrolled and their pelvic positions and differences in lower extremity joint angles were measured. [Methods] Pelvic position, pelvic torsion, and pelvic rotation were assessed using the BackMapper. In addition, motion analysis was performed to derive differences between left and right flexion, abduction, and external rotation ranges of hip joints; flexion, abduction, and external rotation ranges of knee joints; and dorsiflexion, inversion, and abduction ranges of ankle joints, according to X, Y, and Z-axes. [Results] Pelvic position was found to be positively correlated with differences between left and right hip flexion (r=0.51), hip abduction (r=0.62), knee flexion (r=0.45), knee abduction (r=0.42), and ankle inversion (r=0.38). In addition, the difference between left and right hip abduction showed a positive correlation with difference between left and right ankle dorsiflexion (r=0.64). Moreover, differences between left and right knee flexion exhibited positive correlations with differences between left and right knee abduction (r=0.41) and ankle inversion (r=0.45). [Conclusion] Bilateral pelvic tilt angles are important as they lead to bilateral differences in lower extremity joint angles during walking.
Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump.
Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori
2017-03-01
[Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue protocol, which was performed using a bike ergometer. Lower extremity kinematic data were acquired using a three-dimensional motion analysis system. The ratio of each variable (%), for the pre-fatigue to post-fatigue protocols, were calculated to compare differences between each group. [Results] Peak hip and knee flexion angular velocities increased significantly in the fatigue group compared with the control group. Furthermore, hip flexion angular velocity increased significantly between each group at 40 milliseconds after initial ground contact. [Conclusion] Fatigue reduced the ability to attenuate impact by increasing angular velocities in the direction of hip and knee flexion during landings. These findings indicate a requirement to evaluate movement quality over time by measuring hip and knee flexion angular velocities in landings during fatigue conditions.
Begalle, Rebecca L; Walsh, Meghan C; McGrath, Melanie L; Boling, Michelle C; Blackburn, J Troy; Padua, Darin A
2015-08-01
The ankle, knee, and hip joints work together in the sagittal plane to absorb landing forces. Reduced sagittal plane motion at the ankle may alter landing strategies at the knee and hip, potentially increasing injury risk; however, no studies have examined the kinematic relationships between the joints during jump landings. Healthy adults (N = 30; 15 male, 15 female) performed jump landings onto a force plate while three-dimensional kinematic data were collected. Joint displacement values were calculated during the loading phase as the difference between peak and initial contact angles. No relationship existed between ankle dorsiflexion displacement during landing and three-dimensional knee and hip displacements. However, less ankle dorsiflexion displacement was associated with landing at initial ground contact with larger hip flexion, hip internal rotation, knee flexion, knee varus, and smaller plantar flexion angles. Findings of the current study suggest that restrictions in ankle motion during landing may contribute to contacting the ground in a more flexed position but continuing through little additional motion to absorb the landing. Transverse plane hip and frontal plane knee positioning may also occur, which are known to increase the risk of lower extremity injury.
Stroke-Related Changes in Neuromuscular Fatigue of the Hip Flexors and Functional Implications
Hyngstrom, Allison S.; Onushko, Tanya; Heitz, Robert P.; Rutkowski, Anthony; Hunter, Sandra K.; Schmit, Brian D.
2014-01-01
Objective To compare stroke-related changes in hip-flexor neuromuscular fatigue of the paretic leg during a sustained, isometric sub-maximal contraction with the non-paretic leg and controls, and correlate fatigue with clinical measures of function. Design Hip torques were measured during a fatiguing hip-flexion contraction at 20% of the hip flexion maximal voluntary contraction (MVC) in the paretic and non-paretic legs of 13 people with chronic stroke and 10 age-matched controls. In addition, participants with stroke performed a fatiguing contraction of the paretic leg at the absolute torque equivalent to 20% MVC of the non-paretic leg and were tested for self-selected walking speed (Ten-Meter Walk Test) and balance (Berg). Results When matching the non-paretic target torque, the paretic hip flexors had a shorter time to task failure compared with the non-paretic leg and controls (p<0.05). Time to failure of the paretic leg was inversely correlated with the reduction of hip flexion MVC torque. Self-selected walking speed was correlated with declines in torque and steadiness. Berg-Balance scores were inversely correlated with the force fluctuation amplitude. Conclusions Fatigue and precision of contraction are correlated with walking function and balance post stroke. PMID:22157434
Signorelli, Cecilia; Lopomo, Nicola; Bonanzinga, Tommaso; Marcheggiani Muccioli, Giulio Maria; Safran, Marc R; Marcacci, Maurilio; Zaffagnini, Stefano
2013-02-01
Different approaches have been proposed to diagnose femoroacetabular impingement (FAI) condition and hip instability. It is still debatable which test is the most effective to make a correct diagnosis. The true mechanics of the hip during particular physical examination manoeuvres is unknown. Eight fresh frozen hips were passively taken through 3 different commonly used positions for FAI diagnosis and hip instability: 90° Flexion-Adduction-Internal Rotation, Hyperextension-Adduction-External Rotation and Hyperextension-Neutral-External Rotation. Kinematics and anatomical data were acquired by an optoelectronic system. The contact areas between acetabulum and femoral head were analysed to determine whether these tests are able to localize regions of the hip that may give patients pain. In the hip positions where the femur was in Hyperextension-External Rotation, the contact area was mainly concentrated in the posterosuperior area of the acetabulum, while during 90° Flexion-Adduction-Internal Rotation position, there was a wider distribution of contact, not specific to the anterolateral acetabulum. The results confirm the ability of the Hyperextension-External Rotation tests to particularly analyse the posterior region of the acetabulum. Placing the hip in 90° of Flexion-Adduction-Internal Rotation allows for testing a wider zone of the acetabulum and is not specific to abutment of the femoral head-neck region against the anterolateral acetabulum.
Levine, Iris C; Minty, Lauren E; Laing, Andrew C
2015-03-01
Fall-related hip injuries are a concern for the growing population of older adults. Evidence suggests that soft tissue overlying the greater trochanter attenuates the forces transmitted to the proximal femur during an impact, reducing mechanical risk of hip fracture. However, there is limited information about the factors that influence trochanteric soft tissue thickness. The current study used ultrasonography and electromyography to determine whether trochanteric soft tissue thickness could be quantified reproducibly and whether it was influenced by: (1) gender; (2) hip postures associated with potential falling configurations in the sagittal plane (from 30° of extension to 60° of flexion, at 15° intervals), combined adduction-flexion, and combined adduction-extension; and (3) activation levels of the tensor fascia lata (TFL) and gluteus medius (GM) muscles. Our results demonstrated that soft tissue thickness can be measured reliably in nine hip postures and three muscle activation conditions (for all conditions, ICC >0.98). Mean (SD) thickness in quiet stance was 2.52 cm. Thickness was 27.0% lower for males than females during quiet stance. It was 16.4% greater at maximum flexion than quiet standing, 27.2% greater at maximum extension, and 12.5% greater during combined adduction-flexion. However, there was no significant difference between combined adduction-extension and quiet standing. Thickness was not affected by changes in muscle activity. Forces applied to the femoral neck during a lateral fall decrease as trochanteric soft tissue thickness increases; gender and postural configuration at impact could influence the loads applied to the proximal femur (and thus hip fracture risk) during falls on the hip. © 2014 Wiley Periodicals, Inc.
Markström, Jonas L; Tengman, Eva; Häger, Charlotte K
2018-02-01
Little is known regarding movement strategies in the long term following injury of the anterior cruciate ligament (ACL), and even less about comparisons of reconstructed and deficient knees in relation to healthy controls. The present purpose was to compare trunk, hip, and knee kinematics during a one-leg vertical hop (VH) ~20 years post-ACL injury between persons treated with surgery and physiotherapy (ACL R ), solely physiotherapy (ACL PT ), and controls (CTRL). Between-leg kinematic differences within groups were also investigated. Sixty-six persons who suffered unilateral ACL injury on average 23 ± 2 years ago (32 ACL R , 34 ACL PT ) and 33 controls performed the VH. Peak trunk, hip, and knee angles during Take-off and Landing phases recorded with a 3D motion capture system were analysed with multivariate statistics. Significant group effects during both Take-off and Landing were found, with ACL PT differing from CTRL in Take-off with a combination of less knee flexion and knee internal rotation, and from both ACL R and CTRL in Landing with less hip and knee flexion, knee internal rotation, and greater hip adduction. ACL R also presented different kinematics to ACL PT and CTRL in Take-off with a combination of greater trunk flexion, hip flexion, hip internal rotation, and less knee abduction, and in Landing with greater trunk flexion and hip internal rotation. Further, different kinematics and hop height were found between legs within groups in both Take-off and Landing for both ACL groups, but not for CTRL. Different kinematics for the injured leg for both ACL groups compared to CTRL and between treatment groups, as well as between legs within treatment groups, indicate long-term consequences of injury. Compensatory mechanisms for knee protection seem to prevail over time irrespective of initial treatment, possibly increasing the risk of re-injury and triggering the development of osteoarthritis. Detailed investigation of movement strategies during the VH provides important information and a more comprehensive evaluation of knee function than merely hop height. More attention should also be given to the trunk and hip in clinics when evaluating movement strategies after ACL injury. Prospective cohort study, Level II.
Brief communication: Hip joint mobility in free-ranging rhesus macaques
Hammond, Ashley S.; Johnson, Victoria P.; Higham, James P.
2016-01-01
Objectives We aimed to test for differences in hip joint range of motion (ROM) between captive and free-ranging rhesus macaques (Macaca mulatta), particularly for hip joint abduction, which previous studies of captive macaques have found to be lower than predicted. Materials and Methods Hip ROM was assessed following standard joint measurement methodology in anesthetized adult free-ranging rhesus macaques (n=39) from Cayo Santiago, and compared to published ROM data from captive rhesus macaques (n=16) (Hammond 2014a, American Journal of Physical Anthropology). Significant differences between populations were detected using one-way analysis of variance (p<0.05). Results In a sample of pooled sexes and ages, free-ranging macaques are capable of increased hip abduction, flexion, and internal rotation compared to captive individuals. These differences in joint excursion resulted in free-ranging individuals having significantly increased ROM for hip adduction-abduction, rotation, flexion-extension, and the distance spanned by the knee during hip abduction. When looking at data for a smaller sample of age-matched males, fewer ROM differences are significant, but free-ranging males have significantly increased hip abduction, internal rotation, range of flexion-extension, and distance spanned by the knee during hip abduction compared to captive males of similar age. Discussion Our results suggest that a spatially restrictive environment results in decreased hip mobility in cage-confined animals and ultimately limits the potential limb postures in captive macaques. These results have implications for selection of animal samples in model validation studies, as well as laboratory animal husbandry practices. PMID:27731892
Marchese, Victoria G; Spearing, Elena; Callaway, Lulie; Rai, Shesh N; Zhang, Lijun; Hinds, Pamela S; Carlson, Claire A; Neel, Michael D; Rao, Bhaskar N; Ginsberg, Jill
2006-01-01
The study was designed to examine relationships between range of motion (ROM), functional mobility, and quality of life (QL) in patients with lower-extremity sarcoma (LES) after limb-sparing surgery Sixty-eight patients with LES (age, 10-26 years) participated. The patients performed hip flexion, hip extension, knee flexion, and knee extension, Timed Up and Down Stairs (TUDS), Timed Up and Go (TUG), nine-minute run-walk (9-min), and completed the QL measure, Short-Form-36 version two (SF-36v2). Significant correlations (p < 0.01) were found between hip extension and SF-36v2 physical component scale (PCS; r = 0.33), TUDS (r = -0.32), TUG (r = -0.33); hip flexion and TUDS (r = -0.31), TUG (r = -0.39), 9-min (r = 0.44); knee flexion and TUDS (r = -0.52), TUG (r = -0.40), 9-min (r = 0.37); SF-36v2 PCS and TUDS (r = -0.56), TUG (r = -0.51), 9-min (r = 0.60). ROM correlates with functional mobility and QL in patients with LES after limb-sparing surgery. ROM exercises are important component of a physical therapy program for children and adolescents with LES.
Beselga, Carlos; Neto, Francisco; Alburquerque-Sendín, Francisco; Hall, Toby; Oliveira-Campelo, Natália
2016-04-01
Mobilization with movement (MWM) has been shown to reduce pain, increase range of motion (ROM) and physical function in a range of different musculoskeletal disorders. Despite this evidence, there is a lack of studies evaluating the effects of MWM for hip osteoarthritis (OA). To determine the immediate effects of MWM on pain, ROM and functional performance in patients with hip OA. Randomized controlled trial with immediate follow-up. Forty consenting patients (mean age 78 ± 6 years; 54% female) satisfied the eligibility criteria. All participants completed the study. Two forms of MWM techniques (n = 20) or a simulated MWM (sham) (n = 20) were applied. pain recorded by numerical rating scale (NRS). hip flexion and internal rotation ROM, and physical performance (timed up and go, sit to stand, and 40 m self placed walk test) were assessed before and after the intervention. For the MWM group, pain decreased by 2 points on the NRS, hip flexion increased by 12.2°, internal rotation by 4.4°, and functional tests were also improved with clinically relevant effects following the MWM. There were no significant changes in the sham group for any outcome variable. Pain, hip flexion ROM and physical performance immediately improved after the application of MWM in elderly patients suffering hip OA. The observed immediate changes were of clinical relevance. Future studies are required to determine the long-term effects of this intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects.
Tafazzoli, F; Lamontagne, M
1996-01-01
The purpose of this study was to measure and compare the passive elastic moment, the stiffness and the damping coefficient of the hip joint, as functions of the hip and knee joint angles in men with and without low-back pain. Two conventional tests, the straight-leg-raising test and the trunk forward flexion, were also performed and compared between these subjects. The passive elastic moment was measured using an isokinetic device in the passive mode. This device raised the lower limb from the horizontal position to the straight-leg-raising angle at a slow and constant angular velocity. A custom-made splint connected with the lever arm of the isokinetic device maintained the knee in extension and the ankle in the neutral position. The damping coefficient of the hip joint was measured for 0, 15, 45, 60, 75 and 90% of straight leg raising angle of each subject, using the suspension method based on small oscillation theory. To ensure that muscles were inactive during the passive hip moment tests, muscle activity was monitored with surface EMG. The stiffness was computed as the ratio of the change in passive elastic moment to the change in the hip angle. The passive elastic moment, the stiffness and the normalized trunk flexion were significantly different between the two groups respectively. There was, however, no difference between the two groups in the results of straight-leg-raise and damping coefficient of the hip. The passive elastic moment was a nonlinear function of the hip flexion angle and showed large intersubject differences, especially as the joint limit was approached. The damping coefficient was a polynomial function of the hip flexion angle. The measured variables were analysed using a discriminant function and it was shown that the two groups were clearly discriminable in a meaningful manner.
Test-retest reliability of cardinal plane isokinetic hip torque and EMG.
Claiborne, Tina L; Timmons, Mark K; Pincivero, Danny M
2009-10-01
The objective of the present study was to establish test-retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC - 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range=0.81-0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range=0.49-0.79). The majority of the EMG sampled muscles (n=12 and n=11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC=0.81-0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major finding revealed high and moderate levels of between-day reliability of isokinetic hip peak torque and prime mover EMG. It is recommended that the day-to-day variability estimates concomitant with acceptable levels of reliability be considered when attempting to objectify intervention effects on hip muscle performance.
Lower-extremity isokinetic strength profiling in professional rugby league and rugby union.
Brown, Scott R; Brughelli, Matt; Griffiths, Peter C; Cronin, John B
2014-03-01
While several studies have documented isokinetic knee strength in junior and senior rugby league players, investigations of isokinetic knee and hip strength in professional rugby union players are limited. The purpose of this study was to provide lower-extremity strength profiles and compare isokinetic knee and hip strength of professional rugby league and rugby union players. 32 professional rugby league and 25 professional rugby union players. Cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque and strength ratios of the dominant and nondominant legs during seated knee-extension/ flexion and supine hip-extension/flexion actions at 60°/s. Forwards from both codes were taller and heavier and had a higher body-mass index than the backs of each code. Rugby union forwards produced significantly (P < .05) greater peak torque during knee flexion in the dominant and nondominant legs (ES = 1.81 and 2.02) compared with rugby league forwards. Rugby league backs produced significantly greater hip-extension peak torque in the dominant and nondominant legs (ES = 0.83 and 0.77) compared with rugby union backs. There were no significant differences in hamstring-to-quadriceps ratios between code, position, or leg. Rugby union forwards and backs produced significantly greater knee-flexion-to-hip-extension ratios in the dominant and nondominant legs (ES = 1.49-2.26) than rugby union players. It seems that the joint torque profiles of players from rugby league and union codes differ, which may be attributed to the different demands of each code.
Strength deficit of knee flexors is dependent on hip position in adults with chronic hemiparesis.
Michaelsen, Stella M; Ovando, Angélica C; Bortolotti, Adriano; Bandini, Bruno
2013-01-01
The extent to which muscle length affects force production in paretic lower limb muscles after stroke in comparison to controls has not been established. To investigate knee flexor strength deficits dependent on hip joint position in adults with hemiparesis and compare with healthy controls. a cross-sectional study with ten subjects with chronic (63±40 months) hemiparesis with mild to moderate lower limb paresis (Fugl-Meyer score 26±3) and 10 neurologically healthy controls. Isometric knee flexion strength with the hip positioned at 90° and 0° of flexion was assessed randomly on the paretic and non-paretic side of hemiparetic subjects and healthy controls. Subjects were asked to perform a maximal isometric contraction sustained for four seconds and measured by a dynamometer. The ratio of knee flexor strength between these two hip positions was calculated: Hip 0°/Hip 90°. Also, locomotor capacity was evaluated by the timed up and go test and by walking velocity over 10 meters. In subjects with hemiparesis, absolute knee flexion torque decreased (p<0.001) with the hip in extension (at 0°). The ratio of knee flexor torque Hip 0°/Hip 90° on the paretic side in hemiparetics was lower than in controls (p=0.02). Weakness dependent on joint position is more significant in the paretic lower limb of adults with hemiparesis when compared to controls. More attention should be given to lower limb muscle strengthening exercises in individuals with stroke, with emphasis on the strengthening exercises in positions in which the muscle is shortened.
A dental stool with chest support reduces lower back muscle activation.
Tran, Viet; Turner, Reid; MacFadden, Andrew; Cornish, Stephen M; Esliger, Dale; Komiyama, Kunio; Chilibeck, Philip D
2016-09-01
Activation of back musculature during work tasks leads to fatigue and potential injury. This is especially prevalent in dentists who perform much of their work from a seated position. We examined the use of an ergonomic dental stool with mid-sternum chest support for reducing lower back muscle activation. Electromyography of lower back extensors was assessed from 30 dental students for 20 s during three conditions in random order: (a) sitting upright at 90° of hip flexion on a standard stool, (b) leaning forward at 80° of hip flexion on a standard stool, and (c) leaning forward at 80° of hip flexion while sitting on an ergonomic stool. Muscular activity of the back extensors was reduced when using the ergonomic stool compared to the standard stool, by 33-50% (p < 0.01). This suggests a potential musculoskeletal benefit with use of a dental stool with mid-sternum chest support.
Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
This work presents a framework for selection of subject-specific quasi-stiffness of hip orthoses and exoskeletons, and other devices that are intended to emulate the biological performance of this joint during walking. The hip joint exhibits linear moment-angular excursion behavior in both the extension and flexion stages of the resilient loading-unloading phase that consists of terminal stance and initial swing phases. Here, we establish statistical models that can closely estimate the slope of linear fits to the moment-angle graph of the hip in this phase, termed as the quasi-stiffness of the hip. Employing an inverse dynamics analysis, we identify a series of parameters that can capture the nearly linear hip quasi-stiffnesses in the resilient loading phase. We then employ regression analysis on experimental moment-angle data of 216 gait trials across 26 human adults walking over a wide range of gait speeds (0.75–2.63 m/s) to obtain a set of general-form statistical models that estimate the hip quasi-stiffnesses using body weight and height, gait speed, and hip excursion. We show that the general-form models can closely estimate the hip quasi-stiffness in the extension (R2 = 92%) and flexion portions (R2 = 89%) of the resilient loading phase of the gait. We further simplify the general-form models and present a set of stature-based models that can estimate the hip quasi-stiffness for the preferred gait speed using only body weight and height with an average error of 27% for the extension stage and 37% for the flexion stage. PMID:24349136
Effect of Posture on Hip Angles and Moments during Gait
Lewis, Cara L.; Sahrmann, Shirley A.
2014-01-01
Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. PMID:25262565
Effect of posture on hip angles and moments during gait.
Lewis, Cara L; Sahrmann, Shirley A
2015-02-01
Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Herrington, Lee; Bendix, Katie; Cornwell, Catherine; Fielden, Nicola; Hankey, Karen
2008-08-01
The purpose of the study was to assess the effect of structural differentiation or sensitising manoeuvres on responses of normal subjects to standard neurodynamic tests of straight leg raise (SLR) and slump test. Eighty-eight (39 males and 49 females) asymptomatic subjects were examined (aged 18-39 mean age 21.9+/-4.1 years). Knee flexion angle was measured using a goniometer during the slump test in two conditions cervical flexion and extension. Hip flexion angle was measured using a goniometer during SLR test in two conditions; ankle dorsi-flexion and neutral. The change in knee flexion, following addition of the structural differentiating manoeuvre to the slump test, was a significant increase in knee flexion angle for both males (change in knee angle; 6.6+/-4.7 degrees /18.7+/-17.5%, p<0.01) and females (change in knee angle 5.4+/-5.8 degrees /17.6+/-23.7%, p<0.01), though showed no difference between sides (p>0.05). During the SLR test, a significant reduction in hip flexion occurred following structural differentiation for both groups (change in hip angle; males = 9.5+/-8.3 degrees /21.5+/-18.8%, p<0.01; females = 15.2+/-9.5 degrees /25.9+/-13.9%, p<0.01), though showed no difference between sides (p>0.05). Structural differentiating manoeuvres have a significant effect on test response in terms of range of movement even in normal asymptomatic individuals. These responses should be taken into account during the assessment clinical reasoning process.
Optimal sagittal motion axis for trunk extension and flexion tests in chronic low back trouble.
Rantanen, P; Nykvist, F
2000-11-01
To find the optimal height for sagittal motion axis for trunk strength test in chronic low back trouble. Cross-sectional study. The strength of trunk muscles of low back pain patients is decreased. The measured strength depends on the height of the sagittal motion axis but the differences between patients and controls are not known. 114 (67 female) patients with chronic low back trouble are classified according to Quebec Task Force, 50 (31 female) patients with rheumatic disorder, but without low back trouble, and 33 (22 female) healthy controls, no appreciable physical differences but clear differences in Oswestry score. Isometric trunk extension-flexion test with different heights for the pelvic fulcrum. Force decreased in extension, increased in flexion, and torque increased both in flexion and extension in every group (P<0.001) as the fulcrum was moved caudally. The male controls were stronger than patients with low back trouble (P<0.01). The female controls were stronger only if the fulcrum was set at the hip joint level (P<0.05). There were no differences between patients with rheumatic disorder and low back trouble, except in extension if the fulcrum was at the hip joint level (P<0.02). The rotation axis in trunk extension-flexion strength test should be set at the level of the hip joint. Trunk muscle weakness is a common sign of different rheumatic disorders. Proper setting of sagittal motion axis and concomitant measurement of trunk and hip extensor or flexor muscles increases the specificity of the strength test for low back trouble.
Crosnier, Emilie A; Keogh, Patrick S; Miles, Anthony W
2016-08-01
The hip joint is subjected to cyclic loading and motion during activities of daily living and this can induce micromotions at the bone-implant interface of cementless total hip replacements. Initial stability has been identified as a crucial factor to achieve osseointegration and long-term survival. Whilst fixation of femoral stems achieves good clinical results, the fixation of acetabular components remains a challenge. In vitro methods assessing cup stability keep the hip joint in a fixed position, overlooking the effect of hip motion. The effect of hip motion on cup micromotion using a hip motion simulator replicating hip flexion-extension and a six degrees of freedom measurement system was investigated. The results show an increase in cup micromotion under dynamic hip motion compared to Static Flexion. This highlights the need to incorporate hip motion and measure all degrees of freedom when assessing cup micromotion. In addition, comparison of two press-fit acetabular cups with different surface coatings suggested similar stability between the two cups. This new method provides a basis for a more representative protocol for future pre-clinical evaluation of different cup designs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Hanna, Chris M; Fulcher, Mark L; Elley, C Raina; Moyes, Simon A
2010-05-01
Chronic groin pain is a common problem in association football players. Normative values for the strength of hip muscles, measured in an accurate and accessible manner, are needed to gauge strength and inform return to play decisions in this group. The purpose of this study was to define normative values of hip muscle strength using handheld dynamometry. A series of reliable clinical tests that are commonly used when making return to sport decisions in athletes with chronic adductor related groin pain have been selected. One hundred and twenty adult male association football players, free from injury, were recruited. Isometric strength of the hip flexors and adductor muscles was measured using a handheld dynamometer. Mean age was 24.9 years (SD 5.9). Eighty participants (67%) had experienced groin pain in the past. Mean strength for dominant leg hip flexion was 47.3 kg (95% confidence interval 45.6-49.0), non-dominant leg hip flexion was 42.5 kg (41.1-43.9), adduction at 0 degrees hip flexion was 35.6 kg (34.1-37.1), adduction at 45 degrees was 32.0 kg (30.9-33.1), and adduction at 90 degrees was 25.5 kg (24.4-26.5). This study establishes reference ranges and predictive equations for maximal isometric contraction strength of the hip muscles in non-injured adult male association football players. This information will assist assessment and management of an athlete's return to play following injury. 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Acute Lower Extremity Running Kinematics After a Hamstring Stretch
Davis Hammonds, Autumn L.; Laudner, Kevin G.; McCaw, Steve; McLoda, Todd A.
2012-01-01
Context: Limited passive hamstring flexibility might affect kinematics, performance, and injury risk during running. Pre-activity static straight-leg raise stretching often is used to gain passive hamstring flexibility. Objective: To investigate the acute effects of a single session of passive hamstring stretching on pelvic, hip, and knee kinematics during the swing phase of running. Design: Randomized controlled clinical trial. Setting: Biomechanics research laboratory. Patients or Other Participants: Thirty-four male (age = 21.2 ± 1.4 years) and female (age = 21.3±2.0 years) recreational athletes. Intervention(s): Participants performed treadmill running pretests and posttests at 70% of their age-predicted maximum heart rate. Pelvis, hip, and knee joint angles during the swing phase of 5 consecutive gait cycles were collected using a motion analysis system. Right and left hamstrings of the intervention group participants were passively stretched 3 times for 30 seconds in random order immediately after the pretest. Control group participants performed no stretching or movement between running sessions. Main Outcome Measure(s): Six 2-way analyses of variance to determine joint angle differences between groups at maximum hip flexion and maximum knee extension with an α level of .008. Results: Flexibility increased between pretest and post-test in all participants (F1,30 = 80.61, P<.001). Anterior pelvic tilt (F1,30 = 0.73, P=.40), hip flexion (F1,30 = 2.44, P=.13), and knee extension (F1,30 = 0.06, P=.80) at maximum hip flexion were similar between groups throughout testing. Anterior pelvic tilt (F1,30 = 0.69, P=.41), hip flexion (F1,30 = 0.23, P=.64), and knee extension (F1,30 = 3.38, P=.62) at maximum knee extension were similar between groups throughout testing. Men demonstrated greater anterior pelvic tilt than women at maximum knee extension (F1,30 = 13.62, P=.001). Conclusions: A single session of 3 straight-leg raise hamstring stretches did not change pelvis, hip, or knee running kinematics. PMID:22488225
Neuromuscular performance in the hip joint of elderly fallers and non-fallers.
Morcelli, Mary Hellen; LaRoche, Dain Patrick; Crozara, Luciano Fernandes; Marques, Nise Ribeiro; Hallal, Camilla Zamfolini; Rossi, Denise Martineli; Gonçalves, Mauro; Navega, Marcelo Tavella
2016-06-01
Low strength and neuromuscular activation of the lower limbs have been associated with falls making it an important predictor of functional status in the elderly. To compare the rate of neuromuscular activation, rate of torque development, peak torque and reaction time between young and elderly fallers and non-fallers for hip flexion and extension. We evaluated 44 elderly people who were divided into two groups: elderly fallers (n = 20) and elderly non-fallers (n = 24); and 18 young people. The subjects performed three isometric hip flexion and extension contractions. Electromyography data were collected for the rectus femoris, gluteus maximus and biceps femoris muscles. The elderly had 49 % lower peak torque and 68 % lower rate of torque development for hip extension, 28 % lower rate of neuromuscular activation for gluteus maximus and 38 % lower rate of neuromuscular activation for biceps femoris than the young (p < 0.05). Furthermore, the elderly had 42 % lower peak torque and 62 % lower rate of torque development for hip flexion and 48 % lower rate of neuromuscular for rectus femoris than the young (p < 0.05). The elderly fallers showed consistent trend toward a lower rate of torque development than elderly non-fallers for hip extension at 50 ms (29 %, p = 0.298, d = 0.76) and 100 ms (26 %, p = 0.452, d = 0.68).The motor time was 30 % slower for gluteus maximus, 42 % slower for rectus femoris and 50 % slower for biceps femoris in the elderly than in the young. Impaired capacity of the elderly, especially fallers, may be explained by neural and morphological aspects of the muscles. The process of senescence affects the muscle function of the hip flexion and extension, and falls may be related to lower rate of torque development and slower motor time of biceps femoris.
Frank, Barnett; Bell, David R; Norcross, Marc F; Blackburn, J Troy; Goerger, Benjamin M; Padua, Darin A
2013-11-01
Excessive trunk motion and deficits in neuromuscular control (NMC) of the lumbopelvic hip complex are risk factors for anterior cruciate ligament (ACL) injury. However, the relationship between trunk motion, NMC of the lumbopelvic hip complex, and triplanar knee loads during a sidestep cutting task has not been examined. To determine if there is an association between multiplanar trunk motion, NMC of the lumbopelvic hip complex, and triplanar knee loads with ACL injury during a sidestep cutting task. Descriptive laboratory study. The hip and knee biomechanics and trunk motion of 30 participants (15 male, 15 female) were analyzed during a sidestep cutting task using an optoelectric camera system interfaced to a force plate. Trunk and lower extremity biomechanics were calculated from the kinematic and ground-reaction force data during the first 50% of the stance time during the cutting task. Pearson product moment correlation coefficients were calculated between trunk and lower extremity biomechanics. Multiple linear regression analyses were carried out to determine the amount of variance in triplanar knee loading explained by trunk motion and hip moments. A greater internal knee varus moment (mean, 0.11 ± 0.12 N·m/kg*m) was associated with less transverse-plane trunk rotation away from the stance limb (mean, 20.25° ± 4.42°; r = -0.46, P = .011) and a greater internal hip adduction moment (mean, 0.33 ± 0.25 N·m/kg*m; r = 0.83, P < .05). A greater internal knee external rotation moment (mean, 0.11 ± 0.08 N·m/kg*m) was associated with a greater forward trunk flexion (mean, 7.62° ± 5.28°; r = 0.42, P = .020) and a greater hip internal rotation moment (mean, 0.15 ± 0.16 N·m/kg*m; r = 0.59, P = .001). Trunk rotation and hip adduction moment explained 81% (P < .05) of the variance in knee varus moment. Trunk flexion and hip internal rotation moment explained 48% (P < .05) of the variance in knee external rotation moment. Limited trunk rotation displacement toward the new direction of travel and hip adduction moment are associated with an increased internal knee varus moment, while a combined increase in trunk flexion displacement and hip internal rotation moment is associated with a higher internal knee external rotation moment. Prevention interventions for ACL injury should encourage trunk rotation toward the new direction of travel and limit excessive trunk flexion while adjusting frontal- and transverse-plane hip NMC.
NOT ALL SINGLE LEG SQUATS ARE EQUAL: A BIOMECHANICAL COMPARISON OF THREE VARIATIONS.
Khuu, Anne; Foch, Eric; Lewis, Cara L
2016-04-01
The single leg squat (SLS) is a functional task used by practitioners to evaluate and treat multiple pathologies of the lower extremity. Variations of the SLS may have different neuromuscular and biomechanical demands. The effect of altering the non-stance leg position during the SLS on trunk, pelvic, and lower extremity mechanics has not been reported. The purpose of this study was to compare trunk, pelvic, hip, knee, and ankle kinematics and hip, knee, and ankle kinetics of three variations of the SLS using different non-stance leg positions: SLS-Front, SLS-Middle, and SLS-Back. Sixteen healthy women performed the three SLS tasks while data were collected using a motion capture system and force plates. Joint mechanics in the sagittal, frontal, and transverse planes were compared for the SLS tasks using a separate repeated-measures analysis of variance (ANOVA) for each variable at two analysis points: peak knee flexion (PKF) and 60 ° of knee flexion (60KF). Different non-stance leg positions during the SLS resulted in distinct movement patterns and moments at the trunk, pelvis, and lower extremity. At PKF, SLS-Back exhibited the greatest kinematic differences (p < 0.05) from SLS-Front and SLS-Middle with greater ipsilateral trunk flexion, pelvic anterior tilt and drop, hip flexion and adduction, and external rotation as well as less knee flexion and abduction. SLS-Back also showed the greatest kinetic differences (p < 0.05) from SLS-Front and SLS-Middle with greater hip external rotator moment and knee extensor moment as well as less hip extensor moment and knee adductor moment at PKF. At 60KF, the findings were similar except at the knee. The mechanics of the trunk, pelvis, and lower extremity during the SLS were affected by the position of the non-stance leg in healthy females. Practitioners can use these findings to distinguish between SLS variations and to select the appropriate SLS for assessment and rehabilitation. 3.
Jackson, Timothy J; Peterson, Alexander B; Akeda, Masaki; Estess, Allyson; McGarry, Michelle H; Adamson, Gregory J; Lee, Thay Q
2016-03-01
A capsular shift procedure has been described for the treatment of hip instability; however, the biomechanical effects of such a shift are unknown. To create a cadaveric model of hip capsule laxity and evaluate the biomechanical effects of a capsular shift used to treat hip instability on this model. Controlled laboratory study. Eight cadaveric hips with an average age of 58.5 years were tested with a custom hip testing system in 6 conditions: intact, vented, instability, capsulotomy, side-to-side repair, and capsular shift. To create the hip model, the capsule was stretched in extension under 35 N·m of torque for 1 hour in neutral rotation. Measurements included internal and external rotation with 1.5 N·m of torque at 5 positions: 5° of extension and 0°, 15°, 30°, and 45° of flexion for each of the above conditions. The degree of maximum extension with 5 N·m of torque and the amount of femoral distraction with 40 N and 80 N of force were measured. Statistical analysis was performed by use of repeated-measures analysis of variance with Tukey post hoc analysis. The instability state significantly increased internal rotation at all flexion angles and increased distraction compared with the intact state. The capsulotomy condition resulted in significantly increased external rotation and internal rotation at all positions, increased distraction, and maximum extension compared with the intact state. The side-to-side repair condition restored internal rotation back to the instability state but not to the intact state at 5° of extension and 0° of flexion. The capsular shift state significantly decreased internal rotation compared with the instability state at 5° of extension and 0° and 15° of flexion. The capsular shift and side-to-side repair conditions had similar effects on external rotation at all flexion-extension positions. The capsular shift state decreased distraction and maximum extension compared with the instability state, but the side-to-side repair state did not. The hip capsular instability model was shown to have significantly greater total range of motion, external rotation, and extension compared with the intact condition. The greatest effects of capsular shift are seen with internal rotation, maximum extension, and distraction, with minimal effect on external rotation compared with the side-to side repair state. The biomechanical effects of the capsular shift procedure indicate that it can be used to treat hip capsular laxity by decreasing extension and distraction with minimal effect on external rotation. © 2015 The Author(s).
Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.
Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J
2018-06-01
Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).
Miki, Hidenobu; Sugano, Nobuhiko; Hagio, Keisuke; Nishii, Takashi; Kawakami, Hideo; Kakimoto, Akihiro; Nakamura, Nobuo; Yoshikawa, Hideki
2004-04-01
In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.
McCurdy, Kevin; Walker, John; Armstrong, Rusty; Langford, George
2014-09-01
The purpose of this study was to compare the relationship between several measures of single-joint, isometric, eccentric, and squat strength and unilateral and bilateral landing mechanics at the hip and knee in women. Twenty six healthy female subjects with previous athletic experience (height, 165.1 ± 7.01 cm; mass, 60.91 ± 7.14 kg; age, 20.9 ± 1.62 years) participated in this study. Hip and knee mechanics were measured using the MotionMonitor capture system (Innovative Sports Training, Inc.) with 3-dimensional electromagnetic sensors during bilateral (60 cm) and unilateral drop jumps (30 cm). On a separate day, isometric hip extension, external rotation, and abduction strength (lbs) were measured using a handheld dynamometer (Hoggan Health Industries, Inc.). Eccentric and isometric knee strength were measured on the Biodex IV Isokinetic Dynamometer (Biodex Medical Systems, Inc.). Free weight was used to measure the bilateral squat and a modified single-leg squat. The strongest correlations were found between squat strength and knee valgus (-0.77 ≤ r ≤ -0.83) and hip adduction (-0.5 ≤ r ≤ -0.65). After controlling for squat strength, hip external rotation strength and unilateral knee valgus (-0.41), hip abduction strength and bilateral knee valgus (-0.43), and knee flexion strength and bilateral hip adduction (-0.57) remained significant. Eccentric knee flexion strength and unilateral knee internal rotation was the only significant correlation for eccentric strength (-0.40). Squat strength seems to be the best predictor of knee valgus and was consistently related to hip adduction. Isometric and eccentric measures demonstrated few significant correlations with hip and knee excursion while demonstrating a low-to-moderate relationship. Hip and knee flexion and rotation do not seem to be related to strength. Squat strength should receive consideration during risk assessment for noncontact knee injury.
Leijendekkers, Ruud A; Marra, Marco A; Kolk, Sjoerd; van Bon, Geert; Schreurs, B Wim; Weerdesteyn, Vivian; Verdonschot, Nico
2018-01-01
Untreated unilateral developmental dysplasia of the hip (DDH) results in asymmetry of gait and hip strength and may lead to early osteoarthritis, which is commonly treated with a total hip arthroplasty (THA). There is limited knowledge about the obtained symmetry of gait and hip strength after the THA. The objectives of this cross-sectional study were to: a) identify asymmetries between the operated and non-operated side in kinematics, kinetics and hip strength, b) analyze if increased walking speed changed the level of asymmetry in patients c) compare these results with those of healthy subjects. Women (18-70 year) with unilateral DDH who had undergone unilateral THA were eligible for inclusion. Vicon gait analysis system was used to collect frontal and sagittal plane kinematic and kinetic parameters of the hip joint, pelvis and trunk during walking at comfortable walking speed and increased walking speed. Furthermore, hip abductor and extensor muscle strength was measured. Six patients and eight healthy subjects were included. In the patients, modest asymmetries in lower limb kinematics and kinetics were present during gait, but trunk lateral flexion asymmetry was evident. Patients' trunk lateral flexion also differed compared to healthy subjects. Walking speed did not significantly influence the level of asymmetry. The hip abduction strength asymmetry of 23% was not statistically significant, but the muscle strength of both sides were significantly weaker than those of healthy subjects. In patients with a DDH treated with an IBG THA modest asymmetries in gait kinematics and kinetics were present, with the exception of a substantial asymmetry of the trunk lateral flexion. Increased walking speed did not result in increased asymmetries in gait kinematics and kinetics. Hip muscle strength was symmetrical in patients, but significantly weaker than in healthy subjects. Trunk kinematics should be included as an outcome measure to assess the biomechanical benefits of the THA surgery after DDH.
Lopes, Thiago Jambo Alves; Simic, Milena; Myer, Gregory D; Ford, Kevin R; Hewett, Timothy E; Pappas, Evangelos
2018-05-01
Anterior cruciate ligament (ACL) tear is a common injury in sports and often occurs during landing from a jump. To synthesize the evidence on the effects of injury prevention programs (IPPs) on landing biomechanics as they relate to the ligament, quadriceps, trunk, and leg dominance theories associated with ACL injury risk. Meta-analysis. Six electronic databases were searched for studies that investigated the effect of IPPs on landing task biomechanics. Prospective studies that reported landing biomechanics at baseline and post-IPP were included. Results from trunk, hip, and knee kinematics and kinetics related to the ACL injury theories were extracted, and meta-analyses were performed when possible. The criteria were met by 28 studies with a total of 466 participants. Most studies evaluated young females, bilateral landing tasks, and recreational athletes, while most variables were related to the ligament and quadriceps dominance theories. An important predictor of ACL injury, peak knee abduction moment, decreased ( P = .01) after the IPPs while other variables related to the ligament dominance theory did not change. Regarding the quadriceps dominance theory, after the IPPs, angles of hip flexion at initial contact ( P = .009), peak hip flexion ( P = .002), and peak knee flexion ( P = .007) increased, while knee flexion at initial contact did not change ( P = .18). Moreover, peak knee flexion moment decreased ( P = .005) and peak vertical ground-reaction force did not change ( P = .10). The exercises used in IPPs might have the potential to improve landing task biomechanics related to the quadriceps dominance theory, especially increasing peak knee and hip flexion angles. Importantly, peak knee abduction moment decreased, which indicates that IPPs influence a desired movement strategy to help athletes overcome dangerous ligament dominance loads arising from lack of frontal plane control during dynamic tasks. The lack of findings for some biomechanical variables suggests that future IPPs may be enhanced by targeting participants' baseline profile deficits, highlighting the need to deliver an individualized and task-specific IPP.
Core strength and lower extremity alignment during single leg squats.
Willson, John D; Ireland, Mary Lloyd; Davis, Irene
2006-05-01
Muscles of the trunk, hip, and knee influence the orientation of the lower extremity during weight bearing activities. The purpose of this study was threefold: first, to compare the orientation of the lower extremity during a single leg (SL) squat among male and female athletes; second, to compare the strength of muscle groups in the trunk, hips, and knees between these individuals; and third, to evaluate the association between trunk, hip, and knee strength and the orientation of the knee joint during this activity. Twenty-four male and 22 female athletes participated in this study. Peak isometric torque was determined for the following muscle actions: trunk flexion, extension, and lateral flexion, hip abduction and external rotation, and knee flexion and extension. The frontal plane projection angle (FPPA) of the knee during a 45 degrees SL squat was determined using photo editing software. Males and females moved in opposite directions during the SL squat test (F(1,42) = 5.05, P = 0.03). Females typically moved toward more extreme FPPA during SL squats (P = 0.056), while males tended to move toward more neutral alignment (P = 0.066). Females also generated less torque in all muscle groups, with the exception of trunk extension. The projection angle of the knee during the SL squat test was most closely associated with hip external rotation strength. Using instruments suitable for a clinical setting, females were found to have greater FPPA and generally decreased trunk, hip, and knee isometric torque. Hip external rotation strength was most closely associated with the frontal plane projection angle.
Charlton, Jesse M; Hammond, Connor A; Cochrane, Christopher K; Hatfield, Gillian L; Hunt, Michael A
2017-06-01
Barbell back squats are a popular exercise for developing lower extremity strength and power. However, this exercise has potential injury risks, particularly to the lumbar spine, pelvis, and hip joint. Previous literature suggests heel wedges as a means of favorably adjusting trunk and pelvis kinematics with the intention of reducing such injury risks. Yet no direct biomechanical research exists to support these recommendations. Therefore, the purpose of this study was to examine the effects of heel wedges compared with barefoot on minimally loaded barbell back squats. Fourteen trained male participants performed a barbell back squat in bare feet or with their feet raised bilaterally with a 2.5-cm wooden block while 3-dimensional kinematics, kinetics, and electromyograms were collected. The heel wedge condition elicited significantly less forward trunk flexion angles at peak knee flexion, and peak external hip joint moments (p ≤ 0.05) compared with barefoot conditions. However, no significant differences were observed between conditions for trunk and pelvis angle differences at peak knee flexion (p > 0.05). Lastly, no peak or root mean square differences in muscle activity were elicited between conditions (p > 0.05). Our results lend support for the suggestions provided in literature aimed at using heel wedges as a means of reducing excessive forward trunk flexion. However, the maintenance of a neutral spine, another important safety factor, is not affected by the use of heel wedges. Therefore, heel wedges may be a viable modification for reduction of excessive forward trunk flexion but not for reduction in relative trunk-pelvis flexion during barbell back squats.
Tate, Jeremiah; Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin
2017-06-01
Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Controlled Laboratory Study; Cross-sectional. Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants' height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=<.01) and landed with greater hip adduction (9.0 º vs. 0.8 º, p=<.01) compared with their healthy counterparts. In the ACL group, Pearson's r demonstrated a moderate and indirect relationship ( r =-.62, p=.03) between hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved ( r =.62) and uninvolved limb ( r =.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. The results suggest that hip extensors may play a role in minimizing hip adduction in the involved limb while the hip abductors seem to play a role in facilitating hip flexion during the landing phase of a single leg hop for both limbs following ACL reconstruction. Researchers and clinicians alike should consider the importance of the hip extensors in playing a more prominent role in contributing to frontal plane motion. Level 2a.
Hip capsular thickness correlates with range of motion limitations in femoroacetabular impingement.
Zhang, Kailai; de Sa, Darren; Yu, Hang; Choudur, Hema Nalini; Simunovic, Nicole; Ayeni, Olufemi Rolland
2018-03-24
Femoroacetabular impingement (FAI) is a clinical entity of the hip causing derangements in range of motion, pain, gait, and function. Computer-assisted modeling and clinical studies suggest that patients with FAI have increased capsular thickness compared to those without.A retrospective chart review was performed to assess relationships between capsular thickness, hip range of motion, and demographic factors in patients with FAI. Local Research Ethics Board approval was obtained to extract electronic medical records for 188 patients at a single institution who had undergone hip arthroscopy. Procedures were performed from 2009 to 2017 by a single, fellowship-trained, board-certified sports medicine orthopaedic surgeon. Inclusion criteria were preoperative hip range of motion testing, positive clinical impingement testing, and magnetic resonance imaging (MRI) of the affected hip. Patient demographics, hip range of motion, and time to surgery were recorded. MRIs were reviewed by a board-certified musculoskeletal radiologist blinded to clinical data. Maximum thickness of the anterior hip capsule was measured in axial, axial oblique, and sagittal oblique sequences. Anterior capsular thickness was also measured at the level of the femoral head-neck junction in axial sequences (axial midline). Axial midline capsular thickness was negatively correlated with hip flexion (r = - 0.196, p = 0.0042) and internal rotation (r = - 0.143, p = 0.0278). Significant differences were seen between genders in axial midline thickness (5.3 ± 1.4 mm males/4.8 ± 1.3 mm females, p = 0.0079), flexion (113° ± 18° males/120° ± 17° females, p = 0.0029), and internal rotation (23° ± 13° males/29° ± 12° females, p = 0.0155). Significant differences also existed between side affected in flexion (116° ± 17° right/119° ± 17° left, p = 0.0396) and internal rotation (26° ± 12° right/29° ± 13° left, p = 0.0029). Positive correlation was observed between axial oblique capsular thickness and flexion (r = 0.2345) (p = 0.0229). Increased anterior hip capsular thickness at the femoral head-neck correlates with limitations in hip range of motion in FAI. The strength of this relationship may be affected between pathologies, genders, and affected side. Pathologic thickening of the hip capsule may contribute to restricted hip mobility on clinical examination, and elucidation of this relationship may provide guidance into capsular management during hip arthroscopy. 4, retrospective case series.
Bertocci, G; Smalley, C; Brown, N; Bialczak, K; Carroll, D
2018-02-01
To compare pelvic limb joint kinematics and temporal gait characteristics during land-based and aquatic-based treadmill walking in dogs that have undergone surgical stabilisation for cranial cruciate ligament deficiency. Client-owned dogs with surgically stabilised stifles following cranial cruciate ligament deficiency performed three walking trials consisting of three consecutive gait cycles on an aquatic treadmill under four water levels. Hip, stifle and hock range of motion; peak extension; and peak flexion were assessed for the affected limb at each water level. Gait cycle time and stance phase percentage were also determined. Ten client-owned dogs of varying breeds were evaluated at a mean of 55·2 days postoperatively. Aquatic treadmill water level influenced pelvic limb kinematics and temporal gait outcomes. Increased stifle joint flexion was observed as treadmill water level increased, peaking when the water level was at the hip. Similarly, hip flexion increased at the hip water level. Stifle range of motion was greatest at stifle and hip water levels. Stance phase percentage was significantly decreased when water level was at the hip. Aquatic treadmill walking has become a common rehabilitation modality following surgical stabilisation of cranial cruciate ligament deficiency. However, evidence-based best practice guidelines to enhance stifle kinematics do not exist. Our findings suggest that rehabilitation utilising a water level at or above the stifle will achieve the best stifle kinematics following surgical stifle stabilisation. © 2017 British Small Animal Veterinary Association.
Kinematic adaptations during running: effects of footwear, surface, and duration.
Hardin, Elizabeth C; van den Bogert, Antonie J; Hamill, Joseph
2004-05-01
Repetitive impacts encountered during locomotion may be modified by footwear and/or surface. Changes in kinematics may occur either as a direct response to altered mechanical conditions or over time as active adaptations. : To investigate how midsole hardness, surface stiffness, and running duration influence running kinematics. In the first of two experiments, 12 males ran at metabolic steady state under six conditions; combinations of midsole hardness (40 Shore A, 70 Shore A), and surface stiffness (100 kN x m, 200 kN x m, and 350 kN x m). In the second experiment, 10 males ran for 30 min on a 12% downhill grade. In both experiments, subjects ran at 3.4 m x s on a treadmill while 2-D hip, knee, and ankle kinematics were determined using high-speed videography (200 Hz). Oxygen cost and heart rate data were also collected. Kinematic adaptations to midsole, surface, and running time were studied. Stance time, stride cycle time, and maximal knee flexion were invariant across conditions in each experiment. Increased midsole hardness resulted in greater peak ankle dorsiflexion velocity (P = 0.0005). Increased surface stiffness resulted in decreased hip and knee flexion at contact, reduced maximal hip flexion, and increased peak angular velocities of the hip, knee, and ankle. Over time, hip flexion at contact decreased, plantarflexion at toe-off increased, and peak dorsiflexion and plantarflexion velocity increased. Lower-extremity kinematics adapted to increased midsole hardness, surface stiffness, and running duration. Changes in limb posture at impact were interpreted as active adaptations that compensate for passive mechanical effects. The adaptations appeared to have the goal of minimizing metabolic cost at the expense of increased exposure to impact shock.
Weakening iliopsoas muscle in healthy adults may induce stiff knee pattern.
Akalan, N Ekin; Kuchimov, Shavkat; Apti, Adnan; Temelli, Yener; Nene, Anand
2016-12-01
The goal of the present study was to investigate the relationship between iliopsoas muscle group weakness and related hip joint velocity reduction and stiff-knee gait (SKG) during walking in healthy individuals. A load of 5% of each individual's body weight was placed on non-dominant thigh of 15 neurologically intact, able-bodied participants (average age: 22.4 ± 0.81 years). For 33 min (135 s × 13 repetitions × 5 s rest), a passive stretch (PS) was applied with the load in place until hip flexor muscle strength dropped from 5/5 to 3+/5 according to manual muscle test. All participants underwent gait analysis before and after PS to compare sagittal plane hip, knee, and ankle kinematics and kinetics and temporo-spatial parameters. Paired t-test was used to compare pre- and post-stretch findings and Pearson correlation coefficient (r) was calculated to determine strength of correlation between SKG parameters and gait parameters of interest (p < 0.05). Reduced hip flexion velocity (mean: 21.5%; p = 0.005) was a contributor to SKG, decreasing peak knee flexion (PKF) (-20%; p = 0.0008), total knee range (-18.9%; p = 0.003), and range of knee flexion between toe-off and PKF (-26.7%; p = 0.001), and shortening duration between toe-off to PKF (-16.3%; p = 0.0005). These findings verify that any treatment protocol that slows hip flexion during gait by weakening iliopsoas muscle may have great potential to produce SKG pattern combined with reduced gait velocity. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Effects of different resistance training frequencies on flexibility in older women
Carneiro, Nelson H; Ribeiro, Alex S; Nascimento, Matheus A; Gobbo, Luís A; Schoenfeld, Brad J; Achour Júnior, Abdallah; Gobbi, Sebastião; Oliveira, Arli R; Cyrino, Edilson S
2015-01-01
Objective The main purpose of the investigation reported here was to analyze the effect of resistance training (RT) performed at different weekly frequencies on flexibility in older women. Participants and methods Fifty-three older women (≥60 years old) were randomly assigned to perform RT either two (n=28; group “G2x”), or three (n=25; group “G3x”) times per week. The RT program comprised eight exercises in which the participants performed one set of 10–15 repetitions maximum for a period of 12 weeks. Anthropometric, body-composition, and flexibility measurements were made at baseline and post-study. The flexibility measurements were obtained by a fleximeter. Results A significant group-by-time interaction (P<0.01) was observed for frontal hip flexion, in which G3x showed a higher increase than G2x (+12.8% and +3.0%, respectively). Both groups increased flexibility in cervical extension (G2x=+19.1%, G3x=+20.0%), right hip flexion (G2x=+14.6%, G3x=+15.9%), and left hip flexion (G2x=+25.7%, G3x=+19.2%), with no statistical difference between groups. No statistically significant differences were noted for the increase in skeletal muscle mass between training three versus two times a week (+7.4% vs +4.4%, respectively). Conclusion Twelve weeks of RT improves the flexibility of different joint movements in older women, and the higher frequency induces greater increases for frontal hip flexion. PMID:25767380
Repeated Kicking Actions in Karate: Effect on Technical Execution in Elite Practitioners.
Quinzi, Federico; Camomilla, Valentina; Di Mario, Alberto; Felici, Francesco; Sbriccoli, Paola
2016-04-01
Training in martial arts is commonly performed by repeating a technical action continuously for a given number of times. This study aimed to investigate if the repetition of the task alters the proper technical execution, limiting the training efficacy for the technical evaluation during competition. This aim was pursued analyzing lower-limb kinematics and muscle activation during repeated roundhouse kicks. Six junior karate practitioners performed continuously 20 repetitions of the kick. Hip and knee kinematics and sEMG of vastus lateralis, biceps (BF), and rectus femoris were recorded. For each repetition, hip abduction-adduction and flexion-extension and knee flexion-extension peak angular displacements and velocities, agonist and antagonist muscle activation were computed. Moreover, to monitor for the presence of myoelectric fatigue, if any, the median frequency of the sEMG was computed. All variables were normalized with respect to their individual maximum observed during the sequence of kicks. Linear regressions were fitted to each normalized parameter to test its relationship with the repetition number. Linear-regression analysis showed that, during the sequence, the athletes modified their technique: Knee flexion, BF median frequency, hip abduction, knee-extension angular velocity, and BF antagonist activation significantly decreased. Conversely, hip flexion increased significantly. Since karate combat competitions require proper technical execution, training protocols combining severe fatigue and technical actions should be carefully proposed because of technique adaptations. Moreover, trainers and karate masters should consider including specific strength exercises for the BF and more generally for knee flexors.
Ipsilateral hip abductor weakness after inversion ankle sprain.
Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria
2006-01-01
Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.
Effect of Dry Needling on Thigh Muscle Strength and Hip Flexion in Elite Soccer Players.
Haser, Christian; Stöggl, Thomas; Kriner, Monika; Mikoleit, Jörg; Wolfahrt, Bernd; Scherr, Johannes; Halle, Martin; Pfab, Florian
2017-02-01
Increase in muscle force, endurance, and flexibility is desired in elite athletes to improve performance and to avoid injuries, but it is often hindered by the occurrence of myofascial trigger points. Dry needling (DN) has been shown effective in eliminating myofascial trigger points. This randomized controlled study in 30 elite youth soccer players of a professional soccer Bundesliga Club investigated the effects of four weekly sessions of DN plus water pressure massage on thigh muscle force and range of motion of hip flexion. A group receiving placebo laser plus water pressure massage and a group with no intervention served as controls. Data were collected at baseline (M1), treatment end (M2), and 4 wk follow-up (M3). Furthermore, a 5-month muscle injury follow-up was performed. DN showed significant improvement of muscular endurance of knee extensors at M2 (P = 0.039) and M3 (P = 0.008) compared with M1 (M1:294.6 ± 15.4 N·m·s, M2:311 ± 25 N·m·s; M3:316.0 ± 28.6 N·m·s) and knee flexors at M2 compared with M1 (M1:163.5 ± 10.9 N·m·s, M2:188.5 ± 16.3 N·m·s) as well as hip flexion (M1: 81.5° ± 3.3°, M2:89.8° ± 2.8°; M3:91.8° ± 3.8°). Compared with placebo (3.8° ± 3.8°) and control (1.4° ± 2.9°), DN (10.3° ± 3.5°) showed a significant (P = 0.01 and P = 0.0002) effect at M3 compared with M1 on hip flexion; compared with nontreatment control (-10 ± 11.9 N·m), DN (5.2 ± 10.2 N·m) also significantly (P = 0.049) improved maximum force of knee extensors at M3 compared with M1. During the rest of the season, muscle injuries were less frequent in the DN group compared with the control group. DN showed a significant effect on muscular endurance and hip flexion range of motion that persisted 4 wk posttreatment. Compared with placebo, it showed a significant effect on hip flexion that persisted 4 wk posttreatment, and compared with nonintervention control, it showed a significant effect on maximum force of knee extensors 4 wk posttreatment in elite soccer players.
Bevilaqua-Grossi, Débora; Monteiro-Pedro, Vanessa; de Vasconcelos, Rodrigo Antunes; Arakaki, Juliano Coelho; Bérzin, Fausto
2006-01-01
Study design Controlled laboratory study. Objectives The purposes of this paper were to investigate (d) whether vastus medialis obliquus (VMO), vastus lateralis longus (VLL) and vastus lateralis obliquus (VLO) EMG activity can be influenced by hip abduction performed by healthy subjects. Background Some clinicians contraindicate hip abduction for patellofemoral patients (with) based on the premise that hip abduction could facilitate the VLL muscle activation leading to a VLL and VMO imbalance Methods and measures Twenty-one clinically healthy subjects were involved in the study, 10 women and 11 men (aged X = 23.3 ± 2.9). The EMG signals were collected using a computerized EMG VIKING II, with 8 channels and three pairs of surface electrodes. EMG activity was obtained from MVIC knee extension at 90° of flexion in a seated position and MVIC hip abduction at 0° and 30° with patients in side-lying position with the knee in full extension. The data were normalized in the MVIC knee extension at 50° of flexion in a seated position, and were submitted to ANOVA test with subsequent application of the Bonferroni multiple comparisons analysis test. The level of significance was defined as p ≤ 0.05. Results The VLO muscle demonstrated a similar pattern to the VMO muscle showing higher EMG activity in MVIC knee extension at 90° of flexion compared with MVIC hip abduction at 0° and 30° of abduction for male (p < 0.0007) and MVIC hip abduction at 0° of abduction for female subjects (p < 0.02196). There were no statistically significant differences in the VLL EMG activity among the three sets of exercises tested. Conclusion The results showed that no selective EMG activation was observed when comparison was made between the VMO, VLL and VLO muscles while performing MVIC hip abduction at 0° and 30° of abduction and MVIC knee extension at 90° of flexion in both male and female subjects. Our findings demonstrate that hip abduction do not facilitated VLL and VLO activity in relation to the VMO, however, this study included only healthy subjects performing maximum voluntary isometric contraction contractions, therefore much remains to be discovered by future research PMID:16817971
Lorenzetti, Silvio; Gülay, Turgut; Stoop, Mirjam; List, Renate; Gerber, Hans; Schellenberg, Florian; Stüssi, Edgar
2012-10-01
The aim of this study was to compare the angles and corresponding moments in the knee and hip during squats. Twenty subjects performed restricted and unrestricted squats with barbell loads that were 0, ¼, and ½ their body weight. The experimental setup consisted of a motion capture system and 2 force plates. The moments were calculated using inverse dynamics. During the unrestricted squats, the maximum moments in the knee were significantly higher, and those in the hip were significantly lower than during restricted squats. At the lowest position, the maximum knee flexion angles were approximately 86° for the restricted and approximately 106° for the unrestricted techniques, whereas the maximum hip flexion angle was between 95° and 100°. The higher moments in the hip during restricted squats suggest a higher load of the lower back. Athletes who aim to strengthen their quadriceps should consider unrestricted squats because of the larger knee load and smaller back load.
Passive moment about the hip in straight leg raising.
Lee, R Y; Munn, J
2000-06-01
The purpose of this examine is to study the load-deformation characteristics of the hip in straight leg raising. An experimental study in which passive moment about the hip was determined as a function of hip angle. Straight leg raising is widely employed in clinical examination, and there is little information on its mechanical characteristics. Fourteen healthy volunteers were recruited for this study. Three trials of straight leg raise tests were performed while subjects lay supine on a plinth that was fitted with load cells. An electrogoniometer was employed to measure hip flexion during the test. Resistive moment at the hip was determined using a dynamic biomechanical model. The present experimental method was shown to be highly reliable. The moment-angle curves of all subjects were shown to follow an exponential function. Stiffness and strain energy of posterior hip tissues could be derived from the moment-angle curves. Evaluation of such elastic properties is clinically important as they may be altered with injuries of the tissues. Clinically, contracture of hamstring muscles and other posterior hip tissues is evaluated by measuring the available range of hip flexion in straight leg raising. However, this does not provide any information on the elastic properties of the tissues. The present study reports a reliable method of evaluating such properties.
Relationship between ankle range of motion and Biodex Balance System in females and males.
Sung, Eun-Sook; Kim, Jung-Hyun
2018-02-01
This study examined whether there are differences between range of motion (ROM) and balance in lower extremities according to gender. A total of 31 male and 28 female students measured plantar flexion (PF), dorsiflexion, inversion (IV), eversion (EV), hip flexion (HF), hip internal rotation (HIR), and hip external rotation (HER) and tested on the Biodex Balance System. ROM of PF and HF were significantly high the female group and ROMs of IV, EV, HIR, and HER were significantly higher the male group than in the female group. Low ROM of PF may be more negative related to overall balance, especially, back balance in males; therefore, it is necessary to assess and plan the training program for PF ROM in male students.
Baschung Pfister, Pierrette; Sterkele, Iris; Maurer, Britta; de Bie, Rob A.; Knols, Ruud H.
2018-01-01
Manual muscle testing (MMT) and hand-held dynamometry (HHD) are commonly used in people with inflammatory myopathy (IM), but their clinimetric properties have not yet been sufficiently studied. To evaluate the reliability and validity of MMT and HHD, maximum isometric strength was measured in eight muscle groups across three measurement events. To evaluate reliability of HHD, intra-class correlation coefficients (ICC), the standard error of measurements (SEM) and smallest detectable changes (SDC) were calculated. To measure reliability of MMT linear Cohen`s Kappa was computed for single muscle groups and ICC for total score. Additionally, correlations between MMT8 and HHD were evaluated with Spearman Correlation Coefficients. Fifty people with myositis (56±14 years, 76% female) were included in the study. Intra-and interrater reliability of HHD yielded excellent ICCs (0.75–0.97) for all muscle groups, except for interrater reliability of ankle extension (0.61). The corresponding SEMs% ranged from 8 to 28% and the SDCs% from 23 to 65%. MMT8 total score revealed excellent intra-and interrater reliability (ICC>0.9). Intrarater reliability of single muscle groups was substantial for shoulder and hip abduction, elbow and neck flexion, and hip extension (0.64–0.69); moderate for wrist (0.53) and knee extension (0.49) and fair for ankle extension (0.35). Interrater reliability was moderate for neck flexion (0.54) and hip abduction (0.44); fair for shoulder abduction, elbow flexion, wrist and ankle extension (0.20–0.33); and slight for knee extension (0.08). Correlations between the two tests were low for wrist, knee, ankle, and hip extension; moderate for elbow flexion, neck flexion and hip abduction; and good for shoulder abduction. In conclusion, the MMT8 total score is a reliable assessment to consider general muscle weakness in people with myositis but not for single muscle groups. In contrast, our results confirm that HHD can be recommended to evaluate strength of single muscle groups. PMID:29596450
How joint torques affect hamstring injury risk in sprinting swing-stance transition.
Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu
2015-02-01
The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.
The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion.
Lempke, Landon; Wilkinson, Rebecca; Murray, Caitlin; Stanek, Justin
2018-05-22
Clinical Scenario: Stretching is applied for the purposes of injury prevention, increasing joint range of motion (ROM), and increasing muscle extensibility. Many researchers have investigated various methods and techniques to determine the most effective way to increase joint ROM and muscle extensibility. Despite the numerous studies conducted, controversy still remains within clinical practice and the literature regarding the best methods and techniques for stretching. Focused Clinical Question: Is proprioceptive neuromuscular facilitation (PNF) stretching more effective than static stretching for increasing hamstring muscle extensibility through increased hip ROM or increased knee extension angle (KEA) in a physically active population? Summary of Key Findings: Five studies met the inclusion criteria and were included. All 5 studies were randomized control trials examining mobility of the hamstring group. The studies measured hamstring ROM in a variety of ways. Three studies measured active KEA, 1 study measured passive KEA, and 1 study measured hip ROM via the single-leg raise test. Of the 5 studies, 1 study found greater improvements using PNF over static stretching for increasing hip flexion, and the remaining 4 studies found no significant difference between PNF stretching and static stretching in increasing muscle extensibility, active KEA, or hip ROM. Clinical Bottom Line: PNF stretching was not demonstrated to be more effective at increasing hamstring extensibility compared to static stretching. The literature reviewed suggests both are effective methods for increasing hip-flexion ROM. Strength of Recommendation: Using level 2 evidence and higher, the results show both static and PNF stretching effectively increase ROM; however, one does not appear to be more effective than the other.
How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition
SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU
2015-01-01
ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288
Comparison between static stretching and the Pilates method on the flexibility of older women.
Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida
2016-10-01
Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin
2017-01-01
Background Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Study Design Controlled Laboratory Study; Cross-sectional Methods Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants’ height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Results Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=<.01) and landed with greater hip adduction (9.0 º vs. 0.8 º, p=<.01) compared with their healthy counterparts. In the ACL group, Pearson's r demonstrated a moderate and indirect relationship (r=-.62, p=.03) between hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved (r=.62) and uninvolved limb (r=.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. Conclusion The results suggest that hip extensors may play a role in minimizing hip adduction in the involved limb while the hip abductors seem to play a role in facilitating hip flexion during the landing phase of a single leg hop for both limbs following ACL reconstruction. Researchers and clinicians alike should consider the importance of the hip extensors in playing a more prominent role in contributing to frontal plane motion. Levels of Evidence Level 2a PMID:28593088
Hammond, Connor A; Hatfield, Gillian L; Gilbart, Michael K; Garland, S Jayne; Hunt, Michael A
2017-02-01
Femoroacetabular impingement is a pathomechanical hip condition leading to pain and impaired physical function. It has been shown that those with femoroacetabular impingement exhibit altered gait characteristics during level walking and stair climbing, and decreased muscle force production during isometric muscle contractions. However, no studies to-date have looked at trunk kinematics or muscle activation during dynamic movements such as stair climbing in this patient population. The purpose of this study was to compare biomechanical outcomes (trunk and lower limb kinematics as well as lower limb kinetics and muscle activation) during stair climbing in those with and without symptomatic femoroacetabular impingement. Trunk, hip, knee and ankle kinematics, as well as hip, knee and ankle kinetics and muscle activity of nine lower limb muscles were collected during stair climbing for 20 people with clinical and radiographic femoroacetabular impingement and compared to 20 age- and sex-matched pain-free individuals. Those with femoroacetabular impingement ascended the stairs slower (effect size=0.82), had significantly increased peak trunk forward flexion angles (effect size=0.99) and external hip flexion moments (effect size=0.94) and had decreased peak external knee flexion moments (effect size=0.90) compared to the control group. Findings from this study indicate that while those with and without femoroacetabular impingement exhibit many biomechanical similarities when ascending stairs, differences in trunk forward flexion and joint kinetics indicate some important differences. Further longitudinal research is required to elucidate the cause of these differences as well as the clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Larsen, P; Elsoe, R; Graven-Nielsen, T; Laessoe, U; Rasmussen, S
2015-12-01
To examine the long-term outcome after intramedullary nailing of femoral diaphysial fractures measured as disease-specific patient reported function, walking ability, muscle strength, pain and quality of life (QOL). Cross-sectional study. Retrospective review and follow-up with clinical examination of 48 patients treated with intramedullary nailing after femoral shaft fracture between 2007 and 2010. The patients underwent a clinical examination and assessment of walking ability, maximal muscle strength during knee flexion and extension and hip abduction. Hip disability and Osteoarthritis Outcome Score (HOOS) and questionnaire evaluating QOL (Eq5D-5L) were completed by patients. Fourty-eight patients agreed to participate. Mean time for follow-up was 4.7 years. The mean HOOS scores were 84.9 (Pain), 86.6 (ADL), 85.0 (Symptoms), 72.6 (QOL), and 69.1 (Sport). The mean muscle strength of knee flexion with the injured leg (226.0 N) was significantly lower then knee flexion with the non-injured leg (259.5 N, P < 0.0001). Likewise for knee extension (335.2 vs 406.4 N, P < 0.001) and hip abduction (129.2 vs 156.0 N, P < 0.001). Significant association between HOOS and an increase in the difference in muscle strength were observed as well as between worse HOOS outcome and increasing body mass index. This study showed that decreased muscle strength for knee flexion, knee extension and hip abduction was associated with worse long-term functional outcome measured with a disease-specific questionnaire (HOOS) after intramedullary nailing of femoral shaft fracture.
Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain
Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria
2006-01-01
Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098
Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Ishida, Tomoya; Kobayashi, Takumi; Samukawa, Mina; Saito, Hiroshi; Takeda, Naoki
2014-11-01
To compare the kinematics of lower limb joints between individuals with and without chronic ankle instability (CAI) during cross-turn and -cutting movements. Cross-sectional study. Motion analysis laboratory. Twelve subjects with CAI and twelve healthy controls. Hip flexion, adduction, and internal rotation, knee flexion, and ankle dorsiflexion and inversion angles were calculated in the 200 ms before initial ground contact and from initial ground contact to toe-off (stance phase) in a cross-turn movement during gait and a cross-cutting movement from a forward jump, and compared across the two groups. In the cross-cutting movement, the CAI group exhibited greater hip and knee flexion than the control group during the stance phase, and more hip abduction during the period before initial contact and the stance phase. In the cross-turn movement the joint kinematics were similar in the two groups. CAI subjects exhibited an altered pattern of the proximal joint kinematics during a cross-cutting movement. It is important for clinicians to assess the function of the hip and knee as well as the ankle, and to incorporate coordination training for the entire lower limb into rehabilitation after lateral ankle sprains. Copyright © 2013 Elsevier Ltd. All rights reserved.
Trigsted, Stephanie M; Post, Eric G; Bell, David R
2017-05-01
To determine possible differences in single-hop kinematics and kinetics in females with anterior cruciate ligament reconstruction compared to healthy controls. A second purpose was to make comparisons between the healthy and reconstructed limbs. Subjects were grouped based on surgical status (33 ACLR patients and 31 healthy controls). 3D motion capture synchronized with force plates was used to capture the landing phase of three successful trials of single hop for distance during a single data collection session. Peak values during the loading phase were analysed. Subjects additionally completed three successful trials of the triple hop for distance Tegner activity scale and International Knee Document Committee 2000 (IKDC). Controls demonstrated greater peak knee flexion and greater internal knee extension moment and hip extension moment than ACLR subjects. Within the ACLR group, the healthy limb exhibited greater peak knee flexion, hip flexion, hip extension moment, single hop and triple hops for distance and normalized quadriceps strength. Patients who undergo anterior cruciate ligament reconstruction land in a more extended posture when compared to healthy controls and compared to their healthy limb. III.
Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn
2018-05-23
Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.
Instruction and jump-landing kinematics in college-aged female athletes over time.
Etnoyer, Jena; Cortes, Nelson; Ringleb, Stacie I; Van Lunen, Bonnie L; Onate, James A
2013-01-01
Instruction can be used to alter the biomechanical movement patterns associated with anterior cruciate ligament (ACL) injuries. To determine the effects of instruction through combination (self and expert) feedback or self-feedback on lower extremity kinematics during the box-drop-jump task, running-stop-jump task, and sidestep-cutting maneuver over time in college-aged female athletes. Randomized controlled clinical trial. Laboratory. Forty-three physically active women (age = 21.47 ± 1.55 years, height = 1.65 ± 0.08 m, mass = 63.78 ± 12.00 kg) with no history of ACL or lower extremity injuries or surgery in the 2 months before the study were assigned randomly to 3 groups: self-feedback (SE), combination feedback (CB), or control (CT). Participants performed a box-drop-jump task for the pretest and then received feedback about their landing mechanics. After the intervention, they performed an immediate posttest of the box-drop-jump task and a running-stop-jump transfer test. Participants returned 1 month later for a retention test of each task and a sidestep-cutting maneuver. Kinematic data were collected with an 8-camera system sampled at 500 Hz. The independent variables were feedback group (3), test time (3), and task (3). The dependent variables were knee- and hip-flexion, knee-valgus, and hip- abduction kinematics at initial contact and at peak knee flexion. For the box-drop-jump task, knee- and hip-flexion angles at initial contact were greater at the posttest than at the retention test (P < .001). At peak knee flexion, hip flexion was greater at the posttest than at the pretest (P = .003) and was greater at the retention test than at the pretest (P = .04); knee valgus was greater at the retention test than at the pretest (P = .03) and posttest (P = .02). Peak knee flexion was greater for the CB than the SE group (P = .03) during the box-drop-jump task at posttest. For the running-stop-jump task at the posttest, the CB group had greater peak knee flexion than the SE and CT (P ≤ .05). Our results suggest that feedback involving a combination of self-feedback and expert video feedback with oral instruction effectively improved lower extremity kinematics during jump-landing tasks.
Instruction and Jump-Landing Kinematics in College-Aged Female Athletes Over Time
Etnoyer, Jena; Cortes, Nelson; Ringleb, Stacie I.; Van Lunen, Bonnie L.; Onate, James A.
2013-01-01
Context: Instruction can be used to alter the biomechanical movement patterns associated with anterior cruciate ligament (ACL) injuries. Objective: To determine the effects of instruction through combination (self and expert) feedback or self-feedback on lower extremity kinematics during the box–drop-jump task, running–stop-jump task, and sidestep-cutting maneuver over time in college-aged female athletes. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: Forty-three physically active women (age = 21.47 ± 1.55 years, height = 1.65 ± 0.08 m, mass = 63.78 ± 12.00 kg) with no history of ACL or lower extremity injuries or surgery in the 2 months before the study were assigned randomly to 3 groups: self-feedback (SE), combination feedback (CB), or control (CT). Intervention(s): Participants performed a box–drop-jump task for the pretest and then received feedback about their landing mechanics. After the intervention, they performed an immediate posttest of the box–drop-jump task and a running–stop-jump transfer test. Participants returned 1 month later for a retention test of each task and a sidestep-cutting maneuver. Kinematic data were collected with an 8-camera system sampled at 500 Hz. Main Outcome Measure(s): The independent variables were feedback group (3), test time (3), and task (3). The dependent variables were knee- and hip-flexion, knee-valgus, and hip- abduction kinematics at initial contact and at peak knee flexion. Results: For the box–drop-jump task, knee- and hip-flexion angles at initial contact were greater at the posttest than at the retention test (P < .001). At peak knee flexion, hip flexion was greater at the posttest than at the pretest (P = .003) and was greater at the retention test than at the pretest (P = .04); knee valgus was greater at the retention test than at the pretest (P = .03) and posttest (P = .02). Peak knee flexion was greater for the CB than the SE group (P = .03) during the box–drop-jump task at posttest. For the running–stop-jump task at the posttest, the CB group had greater peak knee flexion than the SE and CT (P ≤ .05). Conclusions: Our results suggest that feedback involving a combination of self-feedback and expert video feedback with oral instruction effectively improved lower extremity kinematics during jump-landing tasks. PMID:23672380
Almeida, Gabriel Peixoto Leão; das Neves Rodrigues, Helena Larissa; de Freitas, Bruno Wesley; de Paula Lima, Pedro Olavo
2017-12-01
Study Design Cross-sectional study. Background The Hip Stability Isometric Test (HipSIT) evaluates the strength of the hip posterolateral stabilizers in a position that favors greater activation of the gluteus maximus and gluteus medius and lower activation of the tensor fascia lata. Objectives To check the validity and reliability of the HipSIT and to evaluate the HipSIT in women with patellofemoral pain (PFP). Methods The HipSIT was evaluated with a handheld dynamometer. During testing, the participants were sidelying, with their legs positioned at 45° of hip flexion and 90° of knee flexion. Participants were instructed to raise the knee of the upper leg while keeping the upper and lower heels in contact. To establish reliability and validity, 49 women were tested with the HipSIT by 2 different evaluators on day 1, and then again 7 days later. The strength of the hip extensors, abductors, and external rotators was also evaluated. Twenty women with unilateral PFP were also evaluated. Results The HipSIT has excellent intrarater and interrater reliability. The standard error of measurement was 0.01 kgf/kg, and the minimal detectable change was 0.036 kgf/kg. The HipSIT showed good validity in isolated hip abduction, external rotation, and extension (P<.01). Women with PFP showed a 10% deficit in the HipSIT results for the symptomatic limb (P = .01). Conclusion The HipSIT showed excellent interrater and intrarater reliability, moderate to good validity in women, and was able to identify strength deficits in women with PFP. J Orthop Sports Phys Ther 2017;47(12):906-913. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7274.
Eitzen, Ingrid; Fernandes, Linda; Nordsletten, Lars; Risberg, May Arna
2012-12-20
Existent biomechanical studies on hip osteoarthritic gait have primarily focused on the end stage of disease. Consequently, there is no clear consensus on which specific gait parameters are of most relevance for hip osteoarthritis patients with mild to moderate symptoms. The purpose of this study was to explore sagittal plane gait characteristics during the stance phase of gait in hip osteoarthritis patients not eligible for hip replacement surgery. First, compared to healthy controls, and second, when categorized into two subgroups of radiographic severity defined from a minimal joint space of ≤/>2 mm. Sagittal plane kinematics and kinetics of the hip, knee and ankle joint were calculated for total joint excursion throughout the stance phase, as well as from the specific events initial contact, midstance, peak hip extension and toe-off following 3D gait analysis. In addition, the Western Ontario and McMaster Universities Osteoarthritis Index, passive hip range of motion, and isokinetic muscle strength of hip and knee flexion and extension were included as secondary outcomes. Data were checked for normality and differences evaluated with the independent Student's t-test, Welch's t-test and the independent Mann-Whitney U-test. A binary logistic regression model was used in order to control for velocity in key variables. Fourty-eight hip osteoarthritis patients and 22 controls were included in the final material. The patients walked significantly slower than the controls (p=0.002), revealed significantly reduced joint excursions of the hip (p<0.001) and knee (p=0.011), and a reduced hip flexion moment at midstance and peak hip extension (p<0.001). Differences were primarily manifested during the latter 50% of stance, and were persistent when controlling for velocity. Subgroup analyses of patients with minimal joint space ≤/>2 mm suggested that the observed deviations were more pronounced in patients with greater radiographic severity. The biomechanical differences were, however, not reflected in self-reported symptoms or function. Reduced gait velocity, reduced sagittal plane joint excursion, and a reduced hip flexion moment in the late stance phase of gait were found to be evident already in hip osteoarthritis patients with mild to moderate symptoms, not eligible for total hip replacement. Consequently, these variables should be considered as key features in studies regarding hip osteoarthritic gait at all stages of disease. Subgroup analyses of patients with different levels of radiographic OA further generated the hypothesis that the observed characteristics were more pronounced in patients with a minimal joint space ≤2 mm.
Hip strength and range of motion: Normal values from a professional football league.
Mosler, Andrea B; Crossley, Kay M; Thorborg, Kristian; Whiteley, Rod J; Weir, Adam; Serner, Andreas; Hölmich, Per
2017-04-01
To determine the normal profiles for hip strength and range of motion (ROM) in a professional football league in Qatar, and examine the effect of leg dominance, age, past history of injury, and ethnicity on these profiles. Cross-sectional cohort study. Participants included 394 asymptomatic, male professional football players, aged 18-40 years. Strength was measured using a hand held dynamometer with an eccentric test in side-lying for hip adduction and abduction, and the squeeze test in supine with 45° hip flexion. Range of motion measures included: hip internal and external rotation in 90° flexion, hip IR in prone, bent knee fall out and hip abduction in side-lying. Demographic information was collected and the effect on the profiles was analysed using linear mixed models with repeated measures. Strength values (mean±SD) were: adduction=3.0±0.6Nm/kg, abduction=2.6±0.4Nm/kg, adduction/abduction ratio=1.2±0.2, Squeeze test=3.6±0.8N/kg. Range of motion values: internal rotation in flexion=32±8°, external rotation=38±8°, internal rotation in prone=38±8°, bent knee fall out=13±4.4cm, abduction in side-lying=50±7.3°. Leg dominance had no clinically relevant effect on these profiles. Multivariate analysis demonstrated that age had a minor influence on squeeze strength (-0.03N/kg/year), external rotation (-0.30°/year) and abduction range (-0.19°/year) but past history of injury, and ethnicity did not. Normal values are documented for hip strength and range of motion that can be used as reference profiles in the clinical assessment, screening, and management of professional football players. Leg dominance, recent past injury history and ethnicity do not need to be accounted for when using these profiles for comparison purposes. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Kinematic determinants of weapon velocity during the fencing lunge in experienced épée fencers.
Bottoms, Lindsay; Greenhalgh, Andrew; Sinclair, Jonathan
2013-01-01
The lunge is the most common attack in fencing, however there is currently a paucity of published research investigating the kinematics of this movement. The aim of this study was to investigate if kinematics measured during the épée fencing lunge had a significant effect on sword velocity at touch and whether there were any key movement tactics that produced the maximum velocity. Lower extremity kinematic data were obtained from fourteen right handed club épée fencers using a 3D motion capture system as they completed simulated lunges. A forward stepwise multiple linear regression was performed on the data. The overall regression model yielded an Adj R2 of 0.74, p ≤ 0.01. The results show that the rear lower extremity's knee range of motion, peak hip flexion and the fore lower extremity's peak hip flexion all in the sagittal plane were significant predictors of sword velocity. The results indicate that flexion of the rear extremity's knee is an important predictor, suggesting that the fencer sits low in their stance to produce power during the lunge. Furthermore it would appear that the magnitude of peak flexion of the fore extremity's hip was a significant indicator of sword velocity suggesting movement of fore limbs should also be considered in lunge performance.
Lower limb strength in sports-active transtibial amputees.
Nolan, Lee
2009-09-01
The aim of this study was to compare hip strength in sports-active transtibial (TT) amputees, sedentary TT amputees and sports-active non-amputees. Three 'active' (exercising recreationally at least three times per week) TT amputees, four 'inactive' or sedentary TT amputees and nine 'active' able-bodied persons (AB) underwent concentric and eccentric hip flexion and extension strength testing on both limbs on an isokinetic dynamometer at 60 and 120 degrees /s. Little strength asymmetry was noted between the limbs of the active TT amputees (8% and 14% at 60 and 120 degrees /s, respectively), their residual limb being slightly stronger. Inactive TT amputees demonstrated up to 49% strength asymmetry, their intact limb being the stronger. Active TT amputees demonstrated greater peak hip torques (Nm/kg) for all conditions and speeds compared to inactive TT amputees. Peak hip torques (Nm/kg), were greater in the active TT amputees' residual limb compared to AB. While inactive TT amputees and AB had similar flexion/extension ratios, active TT amputees exhibited a lower ratio indicating overdeveloped hip extensors with respect to their hip flexors. It is not known whether this is due to the demands of sport or exercise with a prosthetic limb, or remaining residual thigh atrophy.
Unconstrained tripolar hip implants: effect on hip stability.
Guyen, Olivier; Chen, Qing Shan; Bejui-Hugues, Jacques; Berry, Daniel J; An, Kai-Nan
2007-02-01
Tripolar implants were developed to treat unstable total hip arthroplasties. However, there is limited confirmation that they achieve this purpose despite their increasing use. Because they have a larger effective head size, these implants are expected to increase range of motion to impingement and improve stability in situations at risk for impingement compared with conventional implants. We assessed the range of motion to impingement using a tripolar implant mounted to an automated hip simulator using 22.2-mm and 28-mm femoral head sizes. The 22 and 28-mm tripolar implants provided increases of 30.5 degrees in flexion, 15.4 degrees in adduction, and 22.4 degrees in external rotation compared with the conventional 22.2-mm femoral head diameter implant. At the critical position of 90 degrees hip flexion, there was an increase of 45.2 degrees in internal rotation. At 0 degrees and 30 degrees external rotation, extension increases were 18.8 degrees and 7.8 degrees, respectively. Bony impingement was the limiting factor. Tripolar implants increased the arc of motion before impingement in positions at risk for dislocation and are expected to provide greater stability.
Whyte, Enda F; Richter, Chris; OʼConnor, Siobhan; Moran, Kieran A
2018-06-01
Whyte, EF, Richter, C, O'Connor, S, and Moran, KA. Investigation of the effects of high-intensity, intermittent exercise and unanticipation on trunk and lower limb biomechanics during a side-cutting maneuver using statistical parametric mapping. J Strength Cond Res 32(6): 1583-1593, 2018-Anterior cruciate ligament (ACL) injuries frequently occur during side-cutting maneuvers when fatigued or reacting to the sporting environment. Trunk and hip biomechanics are proposed to influence ACL loading during these activities. However, the effects of fatigue and unanticipation on the biomechanics of the kinetic chain may be limited by traditional discrete point analysis. We recruited 28 male, varsity, Gaelic footballers (21.7 ± 2.2 years; 178.7 ± 14.6 m; 81.8 ± 11.4 kg) to perform anticipated and unanticipated side-cutting maneuvers before and after a high-intensity, intermittent exercise protocol (HIIP). Statistical parametric mapping (repeated-measures analysis of varience) identified differences in phases of trunk and stance leg biomechanics during weight acceptance. Unanticipation resulted in less trunk flexion (p < 0.001) and greater side flexion away from the direction of cut (p < 0.001). This led to smaller (internal) knee flexor and greater (internal) knee extensor (p = 0.002-0.007), hip adductor (p = 0.005), and hip external rotator (p = 0.007) moments. The HIIP resulted in increased trunk flexion (p < 0.001) and side flexion away from the direction of cut (p = 0.038), resulting in smaller (internal) knee extensor moments (p = 0.006). One interaction effect was noted demonstrating greater hip extensor moments in the unanticipated condition post-HIIP (p = 0.025). Results demonstrate that unanticipation resulted in trunk kinematics considered an ACL injury risk factor. A subsequent increase in frontal and transverse plane hip loading and sagittal plane knee loading was observed, which may increase ACL strain. Conversely, HIIP-induced trunk kinematic alterations resulted in reduced sagittal plane knee and subsequent ACL loading. Therefore, adequate hip and knee control is important during unanticipated side-cutting maneuvers.
Sung, Paul S
2013-06-01
Low back pain (LBP) is one of the most common symptoms reported in adults. However, the contribution of postural control on the lumbar spine and hips during squatting has not been carefully investigated in individuals with LBP. The aim of this study was to compare three-dimensional kinematic changes of the lumbar spine and hips between subjects with and without idiopathic chronic LBP during squatting activities. In total, 30 subjects enrolled in the study (15 control subjects and 15 subjects with idiopathic chronic LBP). All participants were asked to perform squatting activities five times repeatedly while holding a load of 2kg in a basket. The outcome measures included the Oswestry Disability Index (ODI) and kinematic angular displacement for the hips and lumbar spine. The LBP group demonstrated increased range of motion (ROM) in flexion of the dominant (T=-2.14, p=0.03) and non-dominant (T=-2.11, p=0.03) hips during squatting. The lumbar spine flexion ROM significantly decreased (T=2.20, p=0.03). The kinematic changes demonstrated interactions with region×group (F=5.56, p=0.02), plane×group (F=4.36, p=0.04), and region×plane (F=2292.47, p=0.001). The ODI level demonstrated significant interaction on combined effects of body region and plane (F=4.91, p=0.03). Therefore, the LBP group utilized a compensation strategy to increase hip flexion with a stiffened lumbar spine in the sagittal plane during squatting. This compensatory kinematic strategy could apply to clinical management used to enhance lumbar spine flexibility in subjects with idiopathic chronic LBP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling initial contact dynamics during ambulation with dynamic simulation.
Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F
2007-04-01
Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward dynamic simulations, given kinetic inputs. Future applications include predicting muscle forces and decomposing external kinetics.
Kim, Jae-Woong; Kwon, Moon-Seok; Yenuga, Sree Sushma; Kwon, Young-Hoooo
2010-06-01
The study purpose was to investigate the effects of target distance on pivot hip, trunk, pelvis, and kicking leg movements in Taekwondo roundhouse kick. Twelve male black-belt holders executed roundhouse kicks for three target distances (Normal, Short, and Long). Linear displacements of the pivot hip and orientation angles of the pelvis, trunk, right thigh, and right shank were obtained through a three-dimensional video motion analysis. Select displacements, distances, peak orientation angles, and angle ranges were compared among the conditions using one-way repeated measure ANOVA (p < 0.05). Several orientation angle variables (posterior tilt range, peak right-tilted position, peak right-rotated position, peak left-rotated position, and left rotation range of the pelvis; peak hyperextended position and peak right-flexed position of the trunk; peak flexed position, flexion range and peak internal-rotated position of the hip) as well as the linear displacements of the pivot hip and the reach significantly changed in response to different target distances. It was concluded that the adjustment to different target distances was mainly accomplished through the pivot hip displacements, hip flexion, and pelvis left rotation. Target distance mainly affected the reach control function of the pelvis and the linear balance function of the trunk.
Invariant hip moment pattern while walking with a robotic hip exoskeleton
Lewis, Cara L.; Ferris, Daniel P.
2011-01-01
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995
A successful backward step correlates with hip flexion moment of supporting limb in elderly people.
Takeuchi, Yahiko
2018-01-01
The objective of this study was to determine the positional relationship between the center of mass (COM) and the center of pressure (COP) at the time of step landing, and to examine their relationship with the joint moments exerted by the supporting limb, with regard to factors of the successful backward step response. The study population comprised 8 community-dwelling elderly people that were observed to take successive multi steps after the landing of a backward stepping. Using a motion capture system and force plate, we measured the COM, COP and COM-COP deviation distance on landing during backward stepping. In addition, we measured the moment of the supporting limb joint during backward stepping. The multi-step data were compared with data from instances when only one step was taken (single-step). Variables that differed significantly between the single- and multi-step data were used as objective variables and the joint moments of the supporting limb were used as explanatory variables in single regression analyses. The COM-COP deviation in the anteroposterior was significantly larger in the single-step. A regression analysis with COM-COP deviation as the objective variable obtained a significant regression equation in the hip flexion moment (R2 = 0.74). The hip flexion moment of supporting limb was shown to be a significant explanatory variable in both the PS and SS phases for the relationship with COM-COP distance. This study found that to create an appropriate backward step response after an external disturbance (i.e. the ability to stop after 1 step), posterior braking of the COM by a hip flexion moment are important during the single-limbed standing phase.
Sex differences in lower extremity biomechanics during single leg landings.
Schmitz, Randy J; Kulas, Anthony S; Perrin, David H; Riemann, Bryan L; Shultz, Sandra J
2007-07-01
Females have an increased incident rate of anterior cruciate ligament tears compared to males. Biomechanical strategies to decelerate the body in the vertical direction have been implicated as a contributing cause. This study determined if females would exhibit single leg landing strategies characterized by decreased amounts of hip, knee, and ankle flexion resulting in greater vertical ground reaction forces and altered energy absorption patterns when compared to males. Recreationally active males (N=14) and females (N=14), completed five single leg landings from a 0.3m height onto a force platform while three-dimensional kinematics and kinetics were simultaneously collected. Compared to males, females exhibited (1) less total hip and knee flexion displacements (40% and 64% of males, respectively, P<0.05) and less time to peak hip and knee flexion (48% and 78% of males, respectively, P<0.05), (2) 9% greater peak vertical ground reaction forces (P<0.05), (3) less total lower body energy absorption (76% of males, P<0.05), and (4) 11% greater relative energy absorption at the ankle (P<0.05). Females in this study appear to adopt a single leg landing style using less hip and knee flexion, absorbing less total lower body energy with more relative energy at the ankle resulting in a landing style that can be described as stiff. This may potentially cause increased demands on non-contractile components of the lower extremity. Preventative training programs designed to prevent knee injury may benefit from the biomechanical description of sex-specific landing methods demonstrated by females in this study by focusing on the promotion of more reliance on using the contractile components to absorb impact energy during landings.
Abnormal hip physical examination findings in asymptomatic female soccer athletes
Hunt, Devyani; Rho, Monica; Yemm, Ted; Fong, Kathryn; Brophy, Robert H.
2016-01-01
Purpose Examination of the hip provides information regarding risk for pre-arthritic hip disorders, knee injuries, and low back pain. The purpose of this study was to report a hip screening examination of asymptomatic female soccer athletes and to test the hypothesis that these findings vary by competition experience. Methods Asymptomatic females from a youth soccer club, a college, and a professional team were evaluated. Passive hip range of motion, hip abduction strength, and hip provocative tests were assessed. Data were compared for the grade/middle school, high school, college, and professional athletes. Results One hundred and seventy-two athletes with a mean age of 16.7 ± 5 years (range 10–30) participated. Professional athletes had less flexion (HF) for both hips (p < 0.0001) and less internal rotation (IR) for the preferred kicking leg (p < 0.05) compared to all other groups. Grade/middle school athletes had more external rotation in both hips as compared to all other groups (p < 0.0001). For the preferred kicking leg, collegiate athletes had less hip abduction strength as compared to other groups (p < 0.01). Positive provocative hip tests were found in 22 % of all players and 36 % of the professionals. In professionals, a positive provocative test was associated with ipsilateral decreased HF (p = 0.04). Conclusion Asymptomatic elite female soccer athletes with the most competition experience had less bilateral hip flexion and preferred kicking leg IR than less-experienced athletes. Positive provocative hip tests were found in 22 % of athletes. Future studies are needed to show whether these findings link to risk for intra-articular hip or lumbar spine and knee disorders. Level of evidence III. PMID:24150125
Position-Specific Hip and Knee Kinematics in NCAA Football Athletes
Deneweth, Jessica M.; Pomeroy, Shannon M.; Russell, Jason R.; McLean, Scott G.; Zernicke, Ronald F.; Bedi, Asheesh; Goulet, Grant C.
2014-01-01
Background: Femoroacetabular impingement is a debilitating hip condition commonly affecting athletes playing American football. The condition is associated with reduced hip range of motion; however, little is known about the range-of-motion demands of football athletes. This knowledge is critical to effective management of this condition. Purpose: To (1) develop a normative database of game-like hip and knee kinematics used by football athletes and (2) analyze kinematic data by playing position. The hypothesis was that kinematics would be similar between running backs and defensive backs and between wide receivers and quarterbacks, and that linemen would perform the activities with the most erect lower limb posture. Study Design: Descriptive laboratory study. Methods: Forty National Collegiate Athletic Association (NCAA) football athletes, representing 5 playing positions (quarterback, defensive back, running back, wide receiver, offensive lineman), executed game-like maneuvers while lower body kinematics were recorded via optical motion capture. Passive hip range of motion at 90° of hip flexion was assessed using a goniometer. Passive range of motion, athlete physical dimensions, hip function, and hip and knee rotations were submitted to 1-way analysis of variance to test for differences between playing positions. Correlations between maximal hip and knee kinematics and maximal hip kinematics and passive range of motion were also computed. Results: Hip and knee kinematics were similar across positions. Significant differences arose with linemen, who used lower maximal knee flexion (mean ± SD, 45.04° ± 7.27°) compared with running backs (61.20° ± 6.07°; P < .001) and wide receivers (54.67° ± 6.97°; P = .048) during the cut. No significant differences were found among positions for hip passive range of motion (overall means: 102° ± 15° [flexion]; 25° ± 9° [internal rotation]; 25° ± 8° [external rotation]). Several maximal hip measures were found to negatively correlate with maximal knee kinematics. Conclusion: A normative database of hip and knee kinematics utilized by football athletes was developed. Position-specific analyses revealed that linemen use smaller joint motions when executing dynamic tasks but do not demonstrate passive range of motion deficits compared with other positions. Clinical Relevance: Knowledge of requisite game-like hip and knee ranges of motion is critical for developing goals for nonoperative or surgical recovery of hip and knee range of motion in the symptomatic athlete. These data help to identify playing positions that require remedial hip-related strength and conditioning protocols. Negative correlations between hip and knee kinematics indicated that constrained hip motion, as seen in linemen, could promote injurious motions at the knee. PMID:26535334
Lewis, Cara L; Loverro, Kari L; Khuu, Anne
2018-04-01
Study Design Controlled laboratory study, case-control design. Background Despite recognition that femoroacetabular impingement syndrome (FAIS) is a movement-related disorder, few studies have examined dynamic unilateral tasks in individuals with FAIS. Objectives To determine whether movements of the pelvis and lower extremities in individuals with FAIS differ from those in individuals without hip pain during a single-leg step-down, and to analyze kinematic differences between male and female participants within groups. Methods Individuals with FAIS and individuals without hip pain performed a single-leg step-down while kinematic data were collected. Kinematics were evaluated at 60° of knee flexion. A linear regression analysis assessed the main effects of group, sex, and side, and the interaction of sex by group. Results Twenty individuals with FAIS and 40 individuals without hip pain participated. Individuals with FAIS performed the step-down with greater hip flexion (4.9°; 95% confidence interval [CI]: 0.5°, 9.2°) and anterior pelvic tilt (4.1°; 95% CI: 0.9°, 7.3°) than individuals without hip pain. Across groups, female participants performed the task with more hip flexion (6.1°; 95% CI: 1.7°, 10.4°), hip adduction (4.8°; 95% CI: 2.2°, 7.4°), anterior pelvic tilt (5.8°; 95% CI: 2.6°, 9.0°), pelvic drop (1.4°; 95% CI: 0.3°, 2.5°), and thigh adduction (2.7°; 95% CI: 1.3°, 4.2°) than male participants. Conclusion The results of this study suggest that individuals with FAIS have alterations in pelvic motion during a dynamic unilateral task. The noted altered movement patterns in the FAIS group may contribute to the development of hip pain and may be due to impairments that are modifiable through rehabilitation. J Orthop Sports Phys Ther 2018;48(4):270-279. Epub 6 Mar 2018. doi:10.2519/jospt.2018.7794.
Kang, Sun-Young; Jeon, Hye-Seon; Kwon, Ohyun; Cynn, Heon-Seock; Choi, Boram
2013-08-01
The direction of fiber alignment within a muscle is known to influence the effectiveness of muscle contraction. However, most of the commonly used clinical gluteus maximus (GM) exercises do not consider the direction of fiber alignment within the muscle. Therefore, the purpose of this study was to investigate the influence of hip abduction position on the EMG (electromyography) amplitude and onset time of the GM and hamstrings (HAM) during prone hip extension with knee flexion (PHEKF) exercise. Surface EMG signals were recorded from the GM and HAM during PHEKF exercise in three hip abduction positions: 0°, 15°, and 30°. Thirty healthy subjects voluntarily participated in this study. The results show that GM EMG amplitude was greatest in the 30° hip abduction position, followed by 15° and then 0° hip abduction during PHEKF exercise. On the other hand, the HAM EMG amplitude at 0° hip abduction was significantly greater than at 15° and 30° hip abduction. Additionally, GM EMG onset firing was delayed relative to that of the HAM at 0° hip abduction. On the contrary, the GM EMG onset occurred earlier than the HAM in the 15° and 30° hip abduction positions. These findings indicate that performing PHEKF exercise in the 30° hip abduction position may be recommended as an effective way to facilitate the GM muscle activity and advance the firing time of the GM muscle in asymptomatic individuals. This finding provides preliminary evidence that GM EMG amplitude and onset time can be modified by the degree of hip abduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Anderson, Dennis E; Madigan, Michael L
2014-03-21
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hartmann, M.; Kreuzpointner, F.; Haefner, R.; Michels, H.; Schwirtz, A.; Haas, J. P.
2010-01-01
Juvenile idiopathic arthritis (JIA) patients (n = 36) with symmetrical polyarticular joint involvement of the lower extremities and healthy controls (n = 20) were compared concerning differences in kinematic, kinetic, and spatio-temporal parameters with 3D gait analysis. The aims of this study were to quantify the differences in gait between JIA patients and healthy controls and to provide data for more detailed sport activities recommendations. JIA-patients showed reduced walking speed and step length, strongly anterior tilted pelvis, reduced maximum hip extension, reduced knee extension during single support phase and reduced plantar flexion in push off. Additionally the roll-off procedure of the foot was slightly decelerated. The reduced push off motion in the ankle was confirmed by lower peaks in ankle moment and power. The gait of JIA-patients can be explained as a crouch-like gait with hyperflexion in hip and knee joints and less plantar flexion in the ankle. A preventive mobility workout would be recommendable to reduce these restrictions in the future. Advisable are sports with emphasis on extension in hip, knee, and ankle plantar flexion. PMID:20862334
Acetabular cartilage defects cause altered hip and knee joint coordination variability during gait.
Samaan, Michael A; Teng, Hsiang-Ling; Kumar, Deepak; Lee, Sonia; Link, Thomas M; Majumdar, Sharmila; Souza, Richard B
2015-12-01
Patients with acetabular cartilage defects reported increased pain and disability compared to those without acetabular cartilage defects. The specific effects of acetabular cartilage defects on lower extremity coordination patterns are unclear. The purpose of this study was to determine hip and knee joint coordination variability during gait in those with and without acetabular cartilage defects. A combined approach, consisting of a semi-quantitative MRI-based quantification method and vector coding, was used to assess hip and knee joint coordination variability during gait in those with and without acetabular cartilage lesions. The coordination variability of the hip flexion-extension/knee rotation, hip abduction-adduction/knee rotation, and hip rotation/knee rotation joint couplings were reduced in the acetabular lesion group compared to the control group during loading response of the gait cycle. The lesion group demonstrated increased variability in the hip flexion-extension/knee rotation and hip abduction-adduction/knee rotation joint couplings, compared to the control group, during the terminal stance/pre-swing phase of gait. Reduced variability during loading response in the lesion group may suggest reduced movement strategies and a possible compensation mechanism for lower extremity instability during this phase of the gait cycle. During terminal stance/pre-swing, a larger variability in the lesion group may suggest increased movement strategies and represent a compensation or pain avoidance mechanism caused by the load applied to the hip joint. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suzuki, Hidetomo; Omori, Go; Uematsu, Daisuke; Nishino, Katsutoshi; Endo, Naoto
2015-10-01
A smaller knee flexion angle and larger knee valgus angle during weight-bearing activities have been identified as risk factors for non-contact anterior cruciate ligament (ACL) injuries. To prevent such injuries, attention has been focused on the role of hip strength in knee motion control. However, gender differences in the relationship between hip strength and knee kinematics during weight-bearing activities in the frontal plane have not been evaluated. The purpose of this study was to determine the influence of hip strength on knee kinematics in both genders during a single-legged landing task in the frontal plane. The hypotheses were that 1) subjects with a greater hip strength would demonstrate larger knee flexion and smaller knee valgus and internal rotation angles and 2) no gender differences would exist during the single-legged landing task. Forty-three Japanese collegiate basketball players (20 males, 23 females) participated in this study. Three-dimensional motion analysis was used to evaluate knee kinematics during a single-legged medial drop landing (SML). A hand-held dynamometer was used to assess hip extensor (HEXT), abductor (HAB), and external rotator (in two positions: seated position [SHER] and prone [PHER]) isometric strength. Spearman rank correlation coefficients (ρ) were determined for correlations between hip strength and knee kinematics at initial contact (IC) and peak (PK) during SML (p < 0.05). Negative correlations were observed between the knee valgus angle at IC and HEXT (ρ = -0.48, p = 0.02), HAB (ρ = -0.46, p = 0.03) and PHER (ρ = -0.44, p = 0.04) strength in females. In addition, a significant positive correlation was observed between the knee flexion angle at PK and HEXT strength (ρ = 0.61, p = 0.004) in males. Significant correlations between hip strength and knee kinematics during SML were observed in both genders. Hip strength may, therefore, play an important role in knee motion control during sports activities, suggesting that increased hip strength may help to prevent non-contact ACL injuries in athletes of both genders. Moreover, gender-specific programs may be needed to control abnormal knee motion, as the influence of hip strength on knee kinematics may differ based on gender. 3.
Ramos, Renato M; da Costa, Ronaldo C; Oliveira, Andre L A; Kodigudla, Manoj K; Goel, Vijay K
2015-08-06
Previous studies in humans have reported that the dimensions of the intervertebral foramina change significantly with movement of the spine. Cervical spondylomyelopathy (CSM) in dogs is characterized by dynamic and static compressions of the neural components, leading to variable degrees of neurologic deficits and neck pain. Studies suggest that intervertebral foraminal stenosis has implications in the pathogenesis of CSM. The dimensions of the cervical intervertebral foramina may significantly change during neck movements. This could have implication in the pathogenesis of CSM and other diseases associated with radiculopathy such as intervertebral disc disease. The purpose of this study was to quantify the morphological changes in the intervertebral foramina of dogs during flexion, extension, traction, and compression of the canine cervical vertebral column. All vertebral columns were examined with magnetic resonance imaging prior to biomechanic testing. Eight normal vertebral columns were placed in Group 1 and eight vertebral columns with intervertebral disc degeneration or/and protrusion were assigned to Group 2. Molds of the left and right intervertebral foramina from C4-5, C5-6 and C6-7 were taken during all positions and loading modes. Molds were frozen and vertical (height) and horizontal (width) dimensions of the foramina were measured. Comparisons were made between neutral to flexion and extension, flexion to extension, and traction to compression in neutral position. Extension decreased all the foraminal dimensions significantly, whereas flexion increased all the foraminal dimensions significantly. Compression decreased all the foraminal dimensions significantly, and traction increased the foraminal height, but did not significantly change the foraminal width. No differences in measurements were seen between groups. Our results show movement-related changes in the dimensions of the intervertebral foramina, with significant foraminal narrowing in extension and compression.
The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks
2011-01-01
The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308
Biological risk indicators for recurrent non-specific low back pain in adolescents.
Jones, M A; Stratton, G; Reilly, T; Unnithan, V B
2005-03-01
A matched case-control study was carried out to evaluate biological risk indicators for recurrent non-specific low back pain in adolescents. Adolescents with recurrent non-specific low back pain (symptomatic; n = 28; mean (SD) age 14.9 (0.7) years) and matched controls (asymptomatic; n = 28; age 14.9 (0.7) years) with no history of non-specific low back pain participated. Measures of stature, mass, sitting height, sexual maturity (Tanner self assessment), lateral flexion of the spine, lumbar sagittal plane mobility (modified Schober), hip range of motion (Leighton flexometer), back and hamstring flexibility (sit and reach), and trunk muscle endurance (number of sit ups) were performed using standardised procedures with established reliability. Backward stepwise logistic regression analysis was performed, with the presence/absence of recurrent low back pain as the dependent variable and the biological measures as the independent variables. Hip range of motion, trunk muscle endurance, lumbar sagittal plane mobility, and lateral flexion of the spine were identified as significant risk indicators of recurrent low back pain (p<0.05). Follow up analysis indicated that symptomatic subjects had significantly reduced lateral flexion of the spine, lumbar sagittal plane mobility, and trunk muscle endurance (p<0.05). Hip range of motion, abdominal muscle endurance, lumbar flexibility, and lateral flexion of the spine were risk indicators for recurrent non-specific low back pain in a group of adolescents. These risk indicators identify the potential for exercise as a primary or secondary prevention method.
Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running.
Teng, Hsiang-Ling; Powers, Christopher M
2016-07-01
Diminished hip-muscle performance has been proposed to contribute to various knee injuries. To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Descriptive laboratory study. Musculoskeletal biomechanical laboratory. A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = -0.39, P = .01). All the correlations remained after adjusting for sex. Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee.
Whiteside, David; Deneweth, Jessica M; Bedi, Asheesh; Zernicke, Ronald F; Goulet, Grant C
2015-07-01
Femoroacetabular impingement (FAI) is particularly prevalent in ice hockey. The butterfly goalie technique is thought to involve extreme ranges of hip motion that may predispose goaltenders to FAI. To quantify hip mechanics during 3 common goaltender movements and interpret their relevance to the development of FAI. Descriptive laboratory study. Fourteen collegiate and professional goaltenders performed skating, butterfly save, and recovery movements on the ice. Hip mechanics were compared across the 3 movements. The butterfly did not exhibit the greatest range of hip motion in any of the 3 planes. Internal rotation was the only hip motion that appeared close to terminal in this study. When subjects decelerated during skating—shaving the blade of their skate across the surface of the ice—the magnitude of peak hip internal rotation was 54% greater than in the butterfly and 265% greater than in the recovery. No movement involved levels of concomitant flexion, adduction, and internal rotation that resembled the traditional impingement (FADIR) test. The magnitude of internal rotation was the most extreme planar hip motion (relative to end-range) recorded in this study (namely during decelerating) and appeared to differentiate this cohort from other athletic populations. Consequently, repetitive end-range hip internal rotation may be the primary precursor to symptomatic FAI in hockey goaltenders and provides the most plausible account for the high incidence of FAI in these athletes. Resection techniques should, therefore, focus on enhancing internal rotation in goaltenders, compared with flexion and adduction. While the butterfly posture can require significant levels of hip motion, recovering from a save and, in particular, decelerating during skating are also demanding on goaltenders' hip joints. Therefore, it appears critical to consider and accommodate a variety of sport-specific hip postures to comprehensively diagnose, treat, and rehabilitate FAI. © 2015 The Author(s).
Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running
Teng, Hsiang-Ling; Powers, Christopher M.
2016-01-01
Context: Diminished hip-muscle performance has been proposed to contribute to various knee injuries. Objective: To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Design: Descriptive laboratory study. Setting: Musculoskeletal biomechanical laboratory. Patients or Other Participants: A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Main Outcome Measure(s): Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Results: Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = −0.39, P = .01). All the correlations remained after adjusting for sex. Conclusions: Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee. PMID:27513169
The Evoked Potential. An Experimental Method for Biomechanical Analysis of Brain and Spinal Injury
1980-01-01
Newtons produced marked changes in blood pressure, heart rate and distraction of the cervical spinal column with minimal ligamentous disruption...pathologic distraction and pathologic flexion of the thoracic ver- tebral column (8). Cerebral responses were lost within two minutes aftex complete...However, the immediate flexion and distraction responses were not altered. These findings suggest that mechanical trauma alters the spinal cord evoked
Invariant hip moment pattern while walking with a robotic hip exoskeleton.
Lewis, Cara L; Ferris, Daniel P
2011-03-15
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Coppack, Russell J; Bilzon, James L; Wills, Andrew K; McCurdie, Ian M; Partridge, Laura K; Nicol, Alastair M; Bennett, Alexander N
2016-01-01
Background There are no studies describing the clinical outcomes of a residential, multidisciplinary team (MDT) rehabilitation intervention for patients with prearthritic hip pain. The aim of this cohort study was to describe the functional and physical outcomes of multidisciplinary residential rehabilitation for UK military personnel with prearthritic hip pain. Methods Participants (N=40) with a mean age of 33 years referred to a specialist residential rehabilitation centre completed a comprehensive multidisciplinary residential intervention. The main outcome measures were mean pain, physical function (modified shuttle test (MST) and Y-balance test), hip range of motion (HROM) and a patient-reported outcome measure (The Copenhagen Hip and Groin Outcome Score, HAGOS). All scores for symptomatic hips were taken at baseline and post-treatment. Results There were improvements in the Y-balance test and HROM following rehabilitation. There were significant improvements in mean difference (T1-to-T2) for Y-balance scores (15.8 cm, 95% CI 10.7 to 20.9, p<0.001), HROM (6.5° increase in hip flexion, 95% CI 4.6 to 9.4, p<0.001) and hip internal rotation (4.6°, 95% CI 2.7 to 6.6, p<0.001). Scores for HAGOS, pain, MST and functional activity assessment showed no improvement. Conclusions Among UK military personnel with prearthritic hip pain, MDT residential rehabilitation resulted in improvements in a functional Y-balance test, hip flexion and internal rotation. The study suggests short-term benefits across some outcomes for the current UK military approach to MDT residential rehabilitation. PMID:27900174
Coppack, Russell J; Bilzon, James L; Wills, Andrew K; McCurdie, Ian M; Partridge, Laura K; Nicol, Alastair M; Bennett, Alexander N
2016-01-01
There are no studies describing the clinical outcomes of a residential, multidisciplinary team (MDT) rehabilitation intervention for patients with prearthritic hip pain. The aim of this cohort study was to describe the functional and physical outcomes of multidisciplinary residential rehabilitation for UK military personnel with prearthritic hip pain. Participants (N=40) with a mean age of 33 years referred to a specialist residential rehabilitation centre completed a comprehensive multidisciplinary residential intervention. The main outcome measures were mean pain, physical function (modified shuttle test (MST) and Y-balance test), hip range of motion (HROM) and a patient-reported outcome measure (The Copenhagen Hip and Groin Outcome Score, HAGOS). All scores for symptomatic hips were taken at baseline and post-treatment. There were improvements in the Y-balance test and HROM following rehabilitation. There were significant improvements in mean difference (T1-to-T2) for Y-balance scores (15.8 cm, 95% CI 10.7 to 20.9, p<0.001), HROM (6.5° increase in hip flexion, 95% CI 4.6 to 9.4, p<0.001) and hip internal rotation (4.6°, 95% CI 2.7 to 6.6, p<0.001). Scores for HAGOS, pain, MST and functional activity assessment showed no improvement. Among UK military personnel with prearthritic hip pain, MDT residential rehabilitation resulted in improvements in a functional Y-balance test, hip flexion and internal rotation. The study suggests short-term benefits across some outcomes for the current UK military approach to MDT residential rehabilitation.
Ishikawa, Yoshinori; Miyakoshi, Naohisa; Hongo, Michio; Kasukawa, Yuji; Kudo, Daisuke; Shimada, Yoichi
2017-03-01
Spinal deformities can affect quality of life (QOL) and risk of falling, but no studies have explored the relationships of spinal mobility and sagittal alignment of spine and the lower extremities simultaneously. Purpose of this study is to clarify the relationship of those postural parameters to QOL and risk of falling. The study evaluated 110 subjects (41 men, 69 women; mean age, 73 years). Upright and flexion and extension angles for thoracic kyphosis, lumbar lordosis, and spinal inclination were evaluated with SpinalMouse ® . Total-body inclination and hip and knee flexion angles in upright position were measured from lateral photographs. Subjects were divided into Fallers (n=23, 21%) and Non-fallers (n=87, 79%) based on past history of falls. QOL was assessed using the Short Form 36 Health Survey (SF-36 ® ). Age, total-body inclination, spinal inclination upright and in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and knee flexion correlated significantly with the SF-36. Multiple regression analysis revealed total-body inclination and knee flexion to have the most significant relationships with the SF-36. SF-36, total-body inclination, spinal inclination in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and hip and knee flexion angles differed significantly between Fallers and Non-fallers (P<0.05 for all). Multivariate logistic regression analyses revealed lumbar lordosis in extension to be a significant predictor of falling (P=0.038). Forward-stooped posture and knee-flexion deformity could be important indicator of lower QOL. Moreover, limited extension in the lumbar spine could be a useful screening examination for fall prevention in the elderly. Copyright © 2017 Elsevier B.V. All rights reserved.
Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon
2013-01-01
There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η(2)=0.40 and p=0.035, partial η(2)=0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= -0.59, p=0.04), hip flexion angle (r= -0.74, p=0.006), and trunk flexion angle (r= -0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= -0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= -0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury.
Hölzer, Andreas; Schröder, Christian; Woiczinski, Matthias; Sadoghi, Patrick; Müller, Peter E; Jansson, Volkmar
2012-02-02
The joint fluid mechanics and transport of wear particles in the prosthetic hip joint were analyzed for subluxation and flexion motion using computational fluid dynamics (CFD). The entire joint space including a moving capsule boundary was considered. It was found that particles suspended in the joint space are drawn into the joint gap between prosthesis cup and head during subluxation, which was also documented by Lundberg et al. (2007; Journal of Biomechanics 40, 1676-1685), however, wear particles remain in the joint gap. Wear particles leave the joint gap during flexion and can finally migrate to the proximal boundaries including the acetabular bone, where the particle deposition can cause osteolysis according to the established literature. Thus, the present study supports the theory of polyethylene wear particle induced osteolysis of the acetabular bone as a major factor in the loosening of hip prosthesis cups. Copyright © 2011 Elsevier Ltd. All rights reserved.
Joint angles of the ankle, knee, and hip and loading conditions during split squats.
Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio
2014-06-01
The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.
Kubota, So; Inaba, Yutaka; Kobayashi, Naomi; Choe, Hyonmin; Tezuka, Taro; Saito, Tomoyuki
2017-10-16
While cam resection is essential to achieve a good clinical result with respect to femoroacetabular impingement (FAI), it is unclear whether it should also be performed in cases of borderline developmental dysplasia of the hip (DDH) with a cam deformity. The aim of this study was to evaluate improvements in range of motion (ROM) in cases of cam-type FAI and borderline DDH after virtual osteochondroplasty using a computer impingement simulation. Thirty-eight symptomatic hips in 31 patients (11male and 20 female) diagnosed with cam-type FAI or borderline DDH were analyzed. There were divided into a cam-type FAI group (cam-FAI group: 15 hips), borderline DDH without cam group (DDH W/O cam group: 12 hips), and borderline DDH with cam group (DDH W/ cam group: 11 hips). The bony impingement point on the femoral head-neck junction at 90° flexion and maximum internal rotation of the hip joint was identified using ZedHip® software. Virtual osteochondroplasty of the impingement point was then performed in all cases. The maximum flexion angle and maximum internal rotation angle at 90° flexion were measured before and after virtual osteochondroplasty at two resection ranges (i.e., slight and sufficient). The mean improvement in the internal rotation angle in the DDH W/ cam group after slight resection was significantly greater than that in the DDH W/O cam group (P = 0.046). Furthermore, the mean improvement in the internal rotation angle in the DDH W/ cam and cam-FAI groups after sufficient resection was significantly greater than that in the DDH W/O cam group (DDH W/ cam vs DDH W/O cam: P = 0.002, cam-FAI vs DDH W/O cam: P = 0.043). Virtual osteochondroplasty resulted in a significant improvement in internal rotation angle in DDH W/ cam group but not in DDH W/O cam group. Thus, borderline DDH cases with cam deformity may be better to consider performing osteochondroplasty.
Bagwell, Jennifer J; Snibbe, Jason; Gerhardt, Michael; Powers, Christopher M
2016-01-01
Previous studies have indicated that hip and pelvis kinematics may be altered during functional tasks in persons with femoroacetabular impingement. The purpose of this study was to compare hip and pelvis kinematics and kinetics during a deep squat task between persons with cam femoroacetabular impingement and pain-free controls. Fifteen persons with cam femoroacetabular impingement and 15 persons without cam femoroacetabular impingement performed a deep squat task. Peak hip flexion, abduction, and internal rotation, and mean hip extensor, adductor, and external rotator moments were quantified. Independent t-tests (α<0.05) were used to evaluate between group differences. Compared to the control group, persons with cam femoroacetabular impingement demonstrated decreased peak hip internal rotation (15.2° (SD 9.5°) vs. 9.4° (SD 7.8°); P=0.041) and decreased mean hip extensor moments (0.56 (SD 0.12) Nm/kg vs. 0.45 (SD 0.15) Nm/kg; P=0.018). In addition persons in the cam femoroacetabular impingement group demonstrated decreased posterior pelvis tilt during squat descent compared to the control group, resulting in a more anteriorly tilted pelvis at the time peak hip flexion (12.5° (SD 17.1°) vs. 23.0° (SD 12.4°); P=0.024). The decreased hip internal rotation observed in persons with cam femoroacetabular impingement may be the result of bony impingement. Furthermore, the decrease in posterior pelvis tilt may contribute to impingement by further approximating the femoral head-neck junction with the acetabulum. Additionally, decreased hip extensor moments suggest that diminished hip extensor muscle activity may contribute to decreased posterior pelvis tilt. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pelvic posture and kinematics in femoroacetabular impingement: a systematic review.
Pierannunzii, Luca
2017-09-01
Pelvic posture and kinematics influence acetabular orientation and are therefore expected to be involved in the pathomechanics of femoroacetabular impingement (FAI). This systematic review aims to determine whether FAI patients show pelvic postures or patterns of motion contributing to impingement or, conversely, develop compensatory postures and patterns of motion preventing it. PubMed/MEDLINE, Embase, Google Scholar and the Cochrane Library were systematically searched to find all the studies that measured pelvic positional and/or kinematic data in humans (patients or cadaveric specimens) affected by FAI. Twelve items were selected and grouped according to the main field of investigation. No quantitative data synthesis was allowed due to methodological heterogeneity. Pelvic posture and kinematics seem to play a relevant role in FAI. The patients, especially if symptomatic, show a paradoxical lack of pelvic back tilt in standing hip flexions, i.e., in squatting, that enhances femoroacetabular engagement. Such an aberrant pattern might depend on a lower pelvic incidence. On the contrary, active hip flexion in decubitus elicits a compensatory, more pronounced back tilt to facilitate hip flexion without impingement. Stair climbing shows a compensatory pattern of augmented pelvic axial rotation and augmented peak forward tilt to reduce painful hip motions, namely internal rotation and extension. In FAI patients, pelvic posture and kinematics are sometimes an expression of compensatory mechanisms developed to reduce pain and discomfort, and sometimes an expression of paradoxical responses that further enhance the impingement pathomechanism. IV.
Hanten, W P; Chandler, S D
1994-09-01
Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.
LOWER EXTREMITY KINEMATICS IN RUNNING ATHLETES WITH AND WITHOUT A HISTORY OF MEDIAL SHIN PAIN
Reiman, Michael P.
2012-01-01
Purpose/Background: Medial shin pain (MSP) is a common complaint that may stop an athlete from running. No previous study has identified deficits in pelvic, hip or knee motion as potential contributing factors to MSP. The purpose of this study was to investigate the differences in kinematics during running between uninjured athletes and those with MSP. Secondary analyses investigated differences in limbs between groups and differences between sexes. Methods: This case-control study investigated fourteen runners aged 18–40 years old with a history of unilateral MSP and fourteen runner controls. Three dimensional lower quarter kinematics were captured as runners ran on a treadmill. Specifically, peak hip internal rotation (IR), frontal plane pelvic tilt (PT) excursion, and knee flexion were examined. Results: Groups were similar in age, mass, height, and training mileage. Subjects with a history of MSP demonstrated significantly greater frontal plane PT (P = 0.002, Effect size = 0.55) and peak hip IR (P = 0.004, Effect size = 0.51); and less knee flexion (P = 0.02, Effect size = 0.46) than the control group. No significant difference was found in kinematics of the MSP group during their involved side stance phase as compared to their non-involved side. Conclusions: Runners with MSP displayed greater PT excursion, peak hip IR, and decreased knee flexion while running as compared to a control group. These results should help guide treatment for the running athlete that experiences MSP. Level of Evidence: 3b PMID:22893855
Lower extremity kinematics in running athletes with and without a history of medial shin pain.
Loudon, Janice K; Reiman, Michael P
2012-08-01
Medial shin pain (MSP) is a common complaint that may stop an athlete from running. No previous study has identified deficits in pelvic, hip or knee motion as potential contributing factors to MSP. The purpose of this study was to investigate the differences in kinematics during running between uninjured athletes and those with MSP. Secondary analyses investigated differences in limbs between groups and differences between sexes. This case-control study investigated fourteen runners aged 18-40 years old with a history of unilateral MSP and fourteen runner controls. Three dimensional lower quarter kinematics were captured as runners ran on a treadmill. Specifically, peak hip internal rotation (IR), frontal plane pelvic tilt (PT) excursion, and knee flexion were examined. Groups were similar in age, mass, height, and training mileage. Subjects with a history of MSP demonstrated significantly greater frontal plane PT (P = 0.002, Effect size = 0.55) and peak hip IR (P = 0.004, Effect size = 0.51); and less knee flexion (P = 0.02, Effect size = 0.46) than the control group. No significant difference was found in kinematics of the MSP group during their involved side stance phase as compared to their non-involved side. Runners with MSP displayed greater PT excursion, peak hip IR, and decreased knee flexion while running as compared to a control group. These results should help guide treatment for the running athlete that experiences MSP. 3b.
Prather, Heidi; Cheng, Abby; Steger-May, Karen; Maheshwari, Vaibhav; Van Dillen, Linda
2017-03-01
Study Design Prospective cohort study, cross-sectional design. Background The hip-spine syndrome is described in patients with known arthritis of the hip. This study describes the hip examination findings of people presenting with low back pain (LBP). Objectives To (1) report examination findings of the hip in patients with LBP and (2) compare pain and function in patients with positive hip examination findings to those in patients without positive hip examination findings. Methods An examination and validated questionnaires of spine and hip pain and function were completed. Pain and function scores were compared between patients with and without positive hip findings. Results Consecutive patients (68 women, 33 men) with a mean age of 47.6 years (range, 18.4-79.8 years) participated. On physical examination, 81 (80%) had reduced hip flexion; 76 (75%) had reduced hip internal rotation; and 25 (25%) had 1, 32 (32%) had 2, and 23 (23%) had 3 positive provocative hip tests. Patients with reduced hip flexion had worse LBP-related (mean modified Oswestry Disability Index, 35.3 versus 25.6; P = .04) and hip-related function (mean modified Harris Hip Score, 66.0 versus 82.0; P = .03). Patients with reduced hip internal rotation had worse LBP-related function (mean Roland-Morris questionnaire, 12.4 versus 8.2; P = .003). A positive provocative hip test was coupled with more intense pain (median, 9 versus 7; P = .05) and worse LBP-related (mean Roland-Morris questionnaire, 12.1 versus 8.5; P = .02) and hip-related function (mean modified Harris Hip Score, 65.8 versus 89.7; P = .005). Conclusion Physical examination findings indicating hip dysfunction are common in patients presenting with LBP. Patients with LBP and positive hip examination findings have more pain and worse function compared to patients with LBP but without positive hip examination findings. Level of Evidence Symptom prevalence, level 1b. J Orthop Sports Phys Ther 2017;47(3):163-172. Epub 3 Feb 2017. doi:10.2519/jospt.2017.6567.
Lower-limb kinematics of single-leg squat performance in young adults.
Horan, Sean A; Watson, Steven L; Carty, Christopher P; Sartori, Massimo; Weeks, Benjamin K
2014-01-01
To determine the kinematic parameters that characterize good and poor single-leg squat (SLS) performance. A total of 22 healthy young adults free from musculoskeletal impairment were recruited for testing. For each SLS, both two-dimensional video and three-dimensional motion analysis data were collected. Pelvis, hip, and knee angles were calculated using a reliable and validated lower-limb (LL) biomechanical model. Two-dimensional video clips of SLSs were blindly assessed in random order by eight musculoskeletal physiotherapists using a 10-point ordinal scale. To facilitate between-group comparisons, SLS performances were stratified by tertiles corresponding to poor, intermediate, and good SLS performance. Mean ratings of SLS performance assessed by physiotherapists were 8.3 (SD 0.5), 6.8 (SD 0.7), and 4.0 (SD 0.8) for good, intermediate, and poor squats, respectively. Three-dimensional analysis revealed that people whose SLS performance was assessed as poor exhibited increased hip adduction, reduced knee flexion, and increased medio-lateral displacement of the knee joint centre compared to those whose SLS performance was assessed as good (p≤0.05). Overall, poor SLS performance is characterized by inadequate knee flexion and excessive frontal plane motion of the knee and hip. Future investigations of SLS performance should consider standardizing knee flexion angle to illuminate other influential kinematic parameters.
Hip impingement: identifying and treating a common cause of hip pain.
Kuhlman, Geoffrey S; Domb, Benjamin G
2009-12-15
Femoroacetabular impingement, also known as hip impingement, is the abutment of the acetabular rim and the proximal femur. Hip impingement is increasingly recognized as a common etiology of hip pain in athletes, adolescents, and adults. It injures the labrum and articular cartilage, and can lead to osteoarthritis of the hip if left untreated. Patients with hip impingement often report anterolateral hip pain. Common aggravating activities include prolonged sitting, leaning forward, getting in or out of a car, and pivoting in sports. The use of flexion, adduction, and internal rotation of the supine hip typically reproduces the pain. Radiography, magnetic resonance arthrography, and injection of local anesthetic into the hip joint confirm the diagnosis. Pain may improve with physical therapy. Treatment often requires arthroscopy, which typically allows patients to resume premorbid physical activities. An important goal of arthroscopy is preservation of the hip joint. Whether arthroscopic treatment prevents or delays osteoarthritis of the hip is unknown.
Clinical Presentation of Patients with Symptomatic Anterior Hip Impingement
Knaus, Evan R.; Hunt, Devyani M.; Lesher, John M.; Harris-Hayes, Marcie; Prather, Heidi
2009-01-01
Femoroacetabular impingement (FAI) is considered a cause of labrochondral disease and secondary osteoarthritis. Nevertheless, the clinical syndrome associated with FAI is not fully characterized. We determined the clinical history, functional status, activity status, and physical examination findings that characterize FAI. We prospectively evaluated 51 patients (52 hips) with symptomatic FAI. Evaluation of the clinical history, physical exam, and previous treatments was performed. Patients completed demographic and validated hip questionnaires (Baecke et al., SF-12, Modified Harris hip, and UCLA activity score). The average patient age was 35 years and 57% were male. Symptom onset was commonly insidious (65%) and activity-related. Pain occurred predominantly in the groin (83%). The mean time from symptom onset to definitive diagnosis was 3.1 years. Patients were evaluated by an average 4.2 healthcare providers prior to diagnosis and inaccurate diagnoses were common. Thirteen percent had unsuccessful surgery at another anatomic site. On exam, 88% of the hips were painful with the anterior impingement test. Hip flexion and internal rotation in flexion were limited to an average 97° and 9°, respectively. The patients were relatively active, yet demonstrated restrictions of function and overall health. These data may facilitate diagnosis of this disorder. Level of Evidence: Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:19130160
Chamorro, Claudio; Armijo-Olivo, Susan; De la Fuente, Carlos; Fuentes, Javiera; Javier Chirosa, Luis
2017-01-01
Abstract The purpose of the study is to establish absolute reliability and concurrent validity between hand-held dynamometers (HHDs) and isokinetic dynamometers (IDs) in lower extremity peak torque assessment. Medline, Embase, CINAHL databases were searched for studies related to psychometric properties in muscle dynamometry. Studies considering standard error of measurement SEM (%) or limit of agreement LOA (%) expressed as percentage of the mean, were considered to establish absolute reliability while studies using intra-class correlation coefficient (ICC) were considered to establish concurrent validity between dynamometers. In total, 17 studies were included in the meta-analysis. The COSMIN checklist classified them between fair and poor. Using HHDs, knee extension LOA (%) was 33.59%, 95% confidence interval (CI) 23.91 to 43.26 and ankle plantar flexion LOA (%) was 48.87%, CI 35.19 to 62.56. Using IDs, hip adduction and extension; knee flexion and extension; and ankle dorsiflexion showed LOA (%) under 15%. Lower hip, knee, and ankle LOA (%) were obtained using an ID compared to HHD. ICC between devices ranged between 0.62, CI (0.37 to 0.87) for ankle dorsiflexion to 0.94, IC (0.91to 0.98) for hip adduction. Very high correlation were found for hip adductors and hip flexors and moderate correlations for knee flexors/extensors and ankle plantar/dorsiflexors. PMID:29071305
Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C
2017-09-07
Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.
Tayashiki, Kota; Hirata, Kosuke; Ishida, Kiraku; Kanehisa, Hiroaki; Miyamoto, Naokazu
2017-06-01
Muscle size of the hamstring and gluteus maximus (GM) as well as intra-abdominal pressure (IAP) are considered as factors affecting the torque development during hip extension. This study examined the associations of torque development during maximal voluntary isometric hip extension with IAP and muscle size of the hamstring and GM. Anatomical cross-sectional area (ACSA) of the hamstring and thickness of GM were determined in 20 healthy young males using an ultrasonography apparatus (Experiment 1). Torque and IAP were simultaneously measured while subjects performed maximal voluntary isometric hip extension. The IAP was measured using a pressure transducer placed in the rectum and determined at the time at which the developed torque reached to the maximal. In Experiment 2, torque and IAP were measured during maximal voluntary isometric hip flexion in 18 healthy young males. The maximal hip extension torque was significantly correlated with the IAP (r = 0.504, P = 0.024), not with the ACSA of the hamstring (r = 0.307, P = 0.188) or the thickness of GM (r = 0.405, P = 0.076). The relationship was still significant even when the ACSA of the hamstring and the thickness of GM were adjusted statistically (r = 0.486, P = 0.041). The maximal hip flexion torque was not significantly correlated with the IAP (r = -0.118, P = 0.642). The current results suggest that IAP can contribute independently of the muscle size of the agonists to maximal voluntary hip extension torque.
Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola
2018-01-01
We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human–robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons. PMID:29491830
Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola
2018-01-01
We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human-robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons.
Tanaka, Takamasa; Terada, Norihiko; Fujikawa, Yoshiki; Fujimoto, Takushi
2016-01-01
Isolated adrenocorticotropic hormone deficiency (IAD) is a rare disorder with diverse clinical presentations. A 79-year-old man was bedridden for six months due to flexion contractures of the bilateral hips and knees, along with hyponatremia. He was diagnosed with IAD based on the results of endocrine tests. After one month of corticosteroid replacement, he recovered and was able to stand up by himself. Although flexion contracture is a rare symptom of IAD, steroid replacement therapy may be effective, even for seemingly irreversibly bedridden elderly patients. In bedridden elderly patients with flexion contractures, we should consider and look for any signs of adrenal insufficiency. PMID:27746435
Tanaka, Takamasa; Terada, Norihiko; Fujikawa, Yoshiki; Fujimoto, Takushi
Isolated adrenocorticotropic hormone deficiency (IAD) is a rare disorder with diverse clinical presentations. A 79-year-old man was bedridden for six months due to flexion contractures of the bilateral hips and knees, along with hyponatremia. He was diagnosed with IAD based on the results of endocrine tests. After one month of corticosteroid replacement, he recovered and was able to stand up by himself. Although flexion contracture is a rare symptom of IAD, steroid replacement therapy may be effective, even for seemingly irreversibly bedridden elderly patients. In bedridden elderly patients with flexion contractures, we should consider and look for any signs of adrenal insufficiency.
ERIC Educational Resources Information Center
Zebas, Carole J.
This study focuses on changes occurring in selected mechanical components of high school girls performing the standing broad jump, and collects data pertaining to the effects of monetary reward and videotape feedback upon the following components: (a) distance jumped, (b) maximum angle of knee flexion, (c) maximum angle of hip flexion, (d) hip…
Braddom, R L; Leadbetter, M G
1989-04-01
This case reports the use of a tissue expander to facilitate the surgical closure of a decubitus ulcer in a spinal cord injured quadriplegic. The patient is a 42-year-old man with chronic nonhealing of a right ischial pressure ulcer. It had required a flap rotation and partial ischiectomy in the remote past that had been problem-free for many years. The patient subsequently required the placement of a new flap, but insufficient tissue was available to close the wound with the hip in 90 degrees of flexion. Closing the wound with the hip in extension merely led to breakdown when the hip was put in the 90 degrees of flexion required for the sitting position. The problem was solved by using a tissue expander to increase the available soft tissue. A tissue expander was inserted and gradually expanded over a period of weeks by injecting it with fluid. It was then removed, and the expanded tissue that had grown over it allowed closure of the wound without tension on the tissues with the hip in flexion. The patient subsequently returned to the sitting position and his work as a computer programmer. Tissue expanders are commonly used in breast reconstruction, but have found many other uses in plastic surgery over the last decade. It is felt that tissue expansion techniques should not be the primary surgery treatment of decubitus ulcers, but can be used in difficult cases like this one to provide additional tissue.
Lawrenson, Peter; Grimaldi, Alison; Crossley, Kay; Hodges, Paul; Vicenzino, Bill; Semciw, Adam Ivan
2017-05-01
The iliocapsularis muscle of the anterior hip may play an important role in hip function, but no electromyographic (EMG) recordings have been made. This muscle provides the most substantial muscular attachment to the anterior hip capsule and is hypothesised to have a dynamic role to limit capsular impingement and to augment joint stability. Current understanding of the function of iliocapsularis is based on limited cadaveric and radiographic studies. Located deep over the hip joint it would require intramuscular fine-wire EMG to evaluate its activity directly with limited cross-talk from overlying muscles. The primary aim of this study was to describe a new technique for insertion of intramuscular EMG electrodes into iliocapsularis and to report its activation during different directions of hip maximum voluntary isometric contraction (MVIC). Fifteen healthy volunteers (10M, mean age (SD) 22 (2) years) who were free from hip pain were recruited for electrode insertion and to perform MVIC's in six directions at 0° and three directions at 90° of hip flexion. Intramuscular electrodes were successfully inserted into the iliocapsularis muscle with guidance from real-time ultrasound imaging. The greatest muscle activity occurred during resisted hip flexion at 90° (Median (IQR); 100.0 (1.2) % MVIC) and lowest activity during hip extension, 0° (0.5 (0.3) % MVIC). These findings have implications for our understanding of iliocapsularis' functional role. This paper provides the first report of intramuscular electrode insertion into iliocapsularis with guided technical instructions for future EMG investigations in other populations and tasks. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Gallagher, Kaitlin M; Callaghan, Jack P
2016-09-01
While alternating standing position on a sloped surface has proven successful at reducing low back pain during standing, the purpose of this study was to evaluate standing solely on a declining surface to isolate the influence of the postural change. Seventeen participants performed two 75-min prolonged standing occupational simulations- level ground and declining surface. Fifty-three percent of participants (9/17) were categorized as pain developers during the level ground standing condition. For these same pain developers, their average maximum pain scores were 58% lower during sloped standing. All participants showed greater hip flexion, trunk-to-thigh angle flexion, and posterior translation of the trunk center of gravity when standing on the sloped surface. These postural changes could cause the muscles crossing the hip posteriorly to increase passive stiffness and assist with stabilizing the pelvis. This study stresses the importance of hip kinematics, not just lumbar spine posture, in reducing prolonged standing induced low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Kim, Dae-Hyeok; Yang, Seung-Tae; Tack, Gye-Rae
2016-01-01
[Purpose] In this study, a program was developed for leg-strengthening exercises and balance assessment using Microsoft Kinect. [Subjects and Methods] The program consists of three leg-strengthening exercises (knee flexion, hip flexion, and hip extension) and the one-leg standing test (OLST). The program recognizes the correct exercise posture by comparison with the range of motion of the hip and knee joints and provides a number of correct action examples to improve training. The program measures the duration of the OLST and presents this as the balance-age. The accuracy of the program was analyzed using the data of five male adults. [Results] In terms of the motion recognition accuracy, the sensitivity and specificity were 95.3% and 100%, respectively. For the balance assessment, the time measured using the existing method with a stopwatch had an absolute error of 0.37 sec. [Conclusion] The developed program can be used to enable users to conduct leg-strengthening exercises and balance assessments at home.
Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549
Ceca, Diego; Elvira, Laura; Guzmán, José F; Pablos, Ana
2017-01-01
Fibromyalgia (FM) is a disease with symptoms that significantly limit the life of affected patients. Earlier studies have shown that the application of self-myofascial release provides benefits in variables such as fatigue, range of motion (ROM) or perceived muscle pain in a healthy population. Despite this, the self-myofascial release technique has not yet been used in people with FM. This study aimed to find out the benefits of applying a self-myofascial release program on health-related quality of life in people with FM. Sixty-six participants with FM were randomized into two groups, intervention (N.=33) and control (N.=33). The intervention group (IG) participated in the self-myofascial release program for twenty weeks. The study assessed the impact of a self-myofascial release program on cervical spine, shoulder and hip ROM and self-reported disease impact. Two measurements were performed, one at baseline (preintervention) and one postintervention. Two-way mixed-effect (between-within) ANOVA was used for the statistical analysis. Significant changes (P<0.05) were achieved between the two measurements and between groups for final Fibromyalgia Impact Questionnaire (FIQ-S) Score and for five of its seven subscales, including: days per week feeling good, pain intensity, fatigue, stiffness and depression/sadness, as well as all the ROM variables evaluated (neck flexion, neck extension, lateral neck flexion and rotation (bilateral), shoulder flexion and abduction and hip abduction) excluding hip flexion. The application of a self-myofascial release program can improve the health-related quality of life of people with FM, provided that regular, structured practice is carried out.
Profiling Isokinetic Strength by Leg Preference and Position in Rugby Union Athletes.
Brown, Scott R; Brughelli, Matt; Bridgeman, Lee A
2016-05-01
Muscle imbalances aid in the identification of athletes at risk for lower-extremity injury. Little is known regarding the influence that leg preference or playing position may have on lower-extremity muscle strength and asymmetry. To investigate lower-extremity strength profiles in rugby union athletes and compare isokinetic knee- and hip-strength variables between legs and positions. Thirty male academy rugby union athletes, separated into forwards (n = 15) and backs (n = 15), participated in this cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque, angle of peak torque, and strength ratios of the preferred and nonpreferred legs during seated knee extension/flexion and supine hip extension/flexion at 60°/s. Backs were older (ES = 1.6) but smaller in stature (ES = -0.47) and body mass (ES = -1.3) than the forwards. The nonpreferred leg was weaker than the preferred leg for forwards during extension (ES = -0.37) and flexion (ES = -0.21) actions and for backs during extension (ES = -0.28) actions. Backs were weaker at the knee than forwards in the preferred leg during extension (ES = -0.50) and flexion (ES = -0.66) actions. No differences were observed in strength ratios between legs or positions. Backs produced peak torque at longer muscle lengths in both legs at the knee (ES = -0.93 to -0.94) and hip (ES = -0.84 to -1.17) than the forwards. In this sample of male academy rugby union athletes, the preferred leg and forwards displayed superior strength compared with the nonpreferred leg and backs. These findings highlight the importance of individualized athletic assessments to detect crucial strength differences in male rugby union athletes.
Lateral trunk lean and medializing the knee as gait strategies for knee osteoarthritis.
Gerbrands, T A; Pisters, M F; Theeven, P J R; Verschueren, S; Vanwanseele, B
2017-01-01
To determine (1) if Medial Thrust or Trunk Lean reduces the knee adduction moment (EKAM) the most during gait in patients with medial knee osteoarthritis, (2) if the best overall strategy is the most effective for each patient and (3) if these strategies affect ankle and hip kinetics. Thirty patients with symptomatic medial knee osteoarthritis underwent 3-dimensional gait analysis. Participants received verbal instructions on two gait strategies (Trunk Lean and Medial Thrust) in randomized order after comfortable walking was recorded. The peaks and impulse of the EKAM and strategy-specific kinematic and kinetic variables were calculated for all conditions. Early stance EKAM peak was significantly reduced during Medial Thrust (-29%). During Trunk Lean, early and late stance EKAM peak and EKAM impulse reduced significantly (38%, 21% and -25%, respectively). In 79% of the subjects, the Trunk Lean condition was significantly more effective in reducing EKAM peak than Medial Thrust. Peak ankle dorsi and plantar flexion, knee flexion and hip extension and adduction moments were not significantly increased. Medial Thrust and Trunk Lean reduced the EKAM during gait in patients with knee osteoarthritis. Individual selection of the most effective gait modification strategy seems vital to optimally reduce dynamic knee loading during gait. No detrimental effects on external ankle and hip moments or knee flexion moments were found for these conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Altered visual focus on sensorimotor control in people with chronic ankle instability.
Terada, Masafumi; Ball, Lindsay M; Pietrosimone, Brian G; Gribble, Phillip A
2016-01-01
The purpose of this investigation was to examine the effects of the combination of chronic ankle instability (CAI) and altered visual focus on strategies for dynamic stability during a drop-jump task. Nineteen participants with self-reported CAI and 19 healthy participants performed a drop-jump task in looking-up and looking-down conditions. For the looking-up condition, participants looked up and read a random number that flashed on a computer monitor. For the looking-down condition, participants focused their vision on the force plate. Sagittal- and frontal-plane kinematics in the hip, knee and ankle were calculated at the time points of 100 ms pre-initial foot contact to ground and at IC. The resultant vector time to stabilisation was calculated with ground reaction force data. The CAI group demonstrated less hip flexion at the point of 100 ms pre-initial contact (P < 0.01), and less hip flexion (P = 0.03) and knee flexion at initial contact (P = 0.047) compared to controls. No differences in kinematics or dynamic stability were observed in either looking-up or looking-down conditions (P > 0.05). Altered visual focus did not influence movement patterns during the drop-jump task, but the presence of CAI did. The current data suggests that centrally mediated changes associated with CAI may lead to global alterations in the sensorimotor control.
Influence of trunk posture on lower extremity energetics during running.
Teng, Hsiang-Ling; Powers, Christopher M
2015-03-01
This study aimed to examine the influence of sagittal plane trunk posture on lower extremity energetics during running. Forty asymptomatic recreational runners (20 males and 20 females) ran overground at a speed of 3.4 m·s(-1). Sagittal plane trunk kinematics and lower extremity kinematics and energetics during the stance phase of running were computed. Subjects were dichotomized into high flexion (HF) and low flexion (LF) groups on the basis of the mean trunk flexion angle. The mean (±SD) trunk flexion angles of the HF and LF groups were 10.8° ± 2.2° and 3.6° ± 2.8°, respectively. When compared with the LF group, the HF group demonstrated significantly higher hip extensor energy generation (0.12 ± 0.06 vs 0.05 ± 0.04 J·kg(-1), P < 0.001) and lower knee extensor energy absorption (0.60 ± 0.14 vs 0.74 ± 0.09 J·kg(-1), P = 0.001) and generation (0.30 ± 0.05 vs 0.34 ± 0.06 J·kg(-1), P = 0.02). There was no significant group difference for the ankle plantarflexor energy absorption or generation (P > 0.05). Sagittal plane trunk flexion has a significant influence on hip and knee energetics during running. Increasing forward trunk lean during running may be used as a strategy to reduce knee loading without increasing the biomechanical demand at the ankle plantarflexors.
Schwabe, P; Märdian, S; Perka, C; Schaser, K-D
2016-04-01
Reconstruction/stable fixation of the acetabular columns to create an adequate periacetabular requirement for the implantation of a revision cup. Displaced/nondisplaced fractures with involvement of the posterior column. Resulting instability of the cup in an adequate bone stock situation. Periprosthetic acetabulum fractures with inadequate bone stock. Extended periacetabular defects with loss of anchorage options. Isolated periprosthetic fractures of the anterior column. Septic loosening. Dorsal approach. Dislocation of hip. Mechanical testing of inlaying acetabular cup. With unstable cup situation explantation of the cup, fracture fixation of acetabulum with dorsal double plate osteosynthesis along the posterior column. Cup revision. Hip joint reposition. Early mobilization; partial weight bearing for 12 weeks. Thrombosis prophylaxis. Clinical and radiological follow-ups. Periprosthetic acetabular fracture in 17 patients with 9 fractures after primary total hip replacement (THR), 8 after revision THR. Fractures: 12 due to trauma, 5 spontaneously; 7 anterior column fractures, 5 transverse fractures, 4 posterior column fractures, 1 two column fracture after hemiendoprosthesis. 5 type 1 fractures and 12 type 2 fractures. Operatively treated cases (10/17) received 3 reinforcement ring, 2 pedestal cup, 1 standard revision cup, cup-1 cage construct, 1 ventral plate osteosynthesis, 1 dorsal plate osteosynthesis, and 1 dorsal plate osteosynthesis plus cup revision (10-month Harris Hip Score 78 points). Radiological follow-up for 10 patients: consolidation of fractures without dislocation and a fixed acetabular cup. No revision surgeries during follow-up; 2 hip dislocations, 1 transient sciatic nerve palsy.
Outcomes of hip resurfacing in a professional dancer: a case report.
Dunleavy, Kim
2012-02-01
A new surgical option (hip resurfacing arthroplasty) is now available for younger patients with hip osteoarthritis. A more aggressive rehabilitation program than the typical total hip arthroplasty protocol is needed for active individuals. This case report describes interventions used to maximize function in a 46-year-old professional dancer after hip resurfacing with a progressive therapeutic exercise program. Exercise choices were selected to address dance-specific requirements while respecting healing of the posterior capsular incision. Strengthening focused on hip abduction, extension, and external rotation. Precautions included avoiding gluteal stretching until 6 months. Pelvic alignment and weight-bearing distribution were emphasized. The patient was able to return to rehearsal by 7 months, at which time strength was equivalent to the unaffected leg. Range of motion reached unaffected side values at week 8 for internal rotation, week 11 for extension, week 13 for adduction, and week 28 for flexion. External rotation and abduction were still limited at 1 year, which influenced pelvic alignment with resultant pain on the unaffected side. Functional and impairment outcomes are presented with timelines to provide a basis for postoperative benchmarks for active clients after hip resurfacing. Although this case report presents a dance-specific program, exercise progressions for other active individuals may benefit from similar exercise intensity and sports-specific focus. Future rehabilitation programs should take into account possible flexion and external rotation range limitations and the need for gluteal muscle strengthening along with symmetry and pelvic alignment correction. Long-term studies investigating intensity of rehabilitation are warranted for patients intending to participate in higher level athletic activity.
Influence of maturation on instep kick biomechanics in female soccer athletes.
Lyle, Mark A; Sigward, Susan M; Tsai, Liang-Ching; Pollard, Christine D; Powers, Christopher M
2011-10-01
The purpose of this study was to compare kicking biomechanics between young female soccer players at two different stages of physical maturation and to identify biomechanical predictors of peak foot velocity. Swing and stance limb kinematics and kinetics were recorded from 20 female soccer players (10 prepubertal, 10 postpubertal) while kicking a soccer ball using an angled two-step approach. Peak foot velocity as well as hip and knee kinematics and kinetics were compared between groups using independent-samples t-tests. Pearson correlation coefficients and stepwise multiple regression were used to identify predictors of peak foot velocity. Peak foot velocity and the peak swing limb net hip flexor moment was significantly greater in the postpubertal group when compared with the prepubertal group (13.4 vs 11.6 m·s(-1), P = 0.003; 1.22 vs 1.07 N·m·kg(-1)·m(-1), P = 0.03). Peak stance limb hip and knee extensor moments were not different between groups. Although the peak swing limb hip and knee flexion angles were similar between groups, the postpubertal group demonstrated significantly less peak stance limb hip and knee flexion angles when compared with the prepubertal group (P < 0.001 and P = 0.045). Using a linear regression model, swing limb peak hip flexor moment and peak swing limb hip extension range of motion combined to explain 65% of the variance in peak foot velocity. Despite a difference in stance limb kinematics, similar swing limb kinematics between groups indicates that the prepubertal female athletes kicked with a mature swing limb kick pattern. The ability to generate a large hip flexor moment of the swing limb seems to be an important factor for improving kicking performance in young female soccer players.
Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults.
Kulmala, J-P; Korhonen, M T; Kuitunen, S; Suominen, H; Heinonen, A; Mikkola, A; Avela, J
2017-09-01
This study investigated the whole body frontal plane mechanics among young (26 ± 6 years), early old (61 ± 5 years), and old (78 ± 4 years) adults during walking, running, and sprinting. The age-groups had similar walking (1.6 m/s) and running (4.0 m/s) speeds, but different maximal sprinting speed (young 9.3 m/s, early old 7.9 m/s, and old 6.6 m/s). Surprisingly, although the old group exerted much lower vertical ground reaction force during running and sprinting, the hip frontal plane moment did not differ between the age-groups. Kinematic analysis demonstrated increased hip adduction and pelvis drop, as well as reduced trunk lateral flexion among old adults, especially during sprinting. These alterations in the hip and pelvis motions may reflect insufficient force production of hip abductors to stabilize the pelvis during single-limb support, while limited trunk lateral flexion may enhance control of the mediolateral balance. On the other hand, larger trunk side-to-side movement among the young and early old adults may provide a mechanism to prevent the increase of the hip frontal moment despite greater vertical ground reaction force. This, in turn, can assist hip abductors to maintain stability of the pelvis during sprinting while allowing powerful force generation by a large adductor muscle group. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
38 CFR 4.66 - Sacroiliac joint.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accompanied by limitation of flexion and extension of the hip. Traumatism is a rare cause of disability in... paralysis attributable to disease affecting the lumbar vertebrae and the intervertebral disc. ...
38 CFR 4.66 - Sacroiliac joint.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accompanied by limitation of flexion and extension of the hip. Traumatism is a rare cause of disability in... paralysis attributable to disease affecting the lumbar vertebrae and the intervertebral disc. ...
38 CFR 4.66 - Sacroiliac joint.
Code of Federal Regulations, 2012 CFR
2012-07-01
... accompanied by limitation of flexion and extension of the hip. Traumatism is a rare cause of disability in... paralysis attributable to disease affecting the lumbar vertebrae and the intervertebral disc. ...
38 CFR 4.66 - Sacroiliac joint.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accompanied by limitation of flexion and extension of the hip. Traumatism is a rare cause of disability in... paralysis attributable to disease affecting the lumbar vertebrae and the intervertebral disc. ...
38 CFR 4.66 - Sacroiliac joint.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accompanied by limitation of flexion and extension of the hip. Traumatism is a rare cause of disability in... paralysis attributable to disease affecting the lumbar vertebrae and the intervertebral disc. ...
Mobilisation of the thoracic spine in the management of spondylolisthesis.
Mohanty, P P; Pattnaik, Monalisa
2016-07-01
Segmental instability due to lumbar spondylolisthesis is a potential cause of chronic low back pain. Hypomobility of the spine results in compensatory segmental hypermobility of the segment above or below restricted segments. Therefore, the aim of the study is to determine the effects of mobilisation of the hypomobile upper thoracic spine along with conventional flexion exercises and stretching of short hip flexors on the degree of slippage and the functions of the persons with lumbar spondylolisthesis. All patients with spondylolisthesis were randomly assigned into two groups: Group I - Experimental group, treated with mobilisation of the thoracic spine along with the conventional physiotherapy and Group II - Conventional group, treated with conventional stretching, strengthening, and lumbar flexion exercise programme. The experimental group treated with mobilisation of the thoracic spine shows a significant reduction in the percentage of vertebral slip from pre-treatment to post-treatment measurements. Low back pain due to spondylolisthesis may be benefited by mobilisation of the thoracic spine along with stretching of short hip flexors, piriformis, lumbar flexion range of motion exercises, core strengthening exercises, etc. Copyright © 2016 Elsevier Ltd. All rights reserved.
Planetary Suit Hip Bearing Model for Predicting Design vs. Performance
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar
2011-01-01
Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective, the suited performance trends were comparable between the model and the suited subjects. With the three off-nominal bearing configurations compared to the nominal bearing configurations, human subjects showed decreases in hip flexion of 64%, 6%, and 13% and in hip abduction of 59%, 2%, and 20%. Likewise the solid model showed decreases in hip flexion of 58%, 1%, and 25% and in hip abduction of 56%, 0%, and 30%, under the same condition changes from the nominal configuration. Differences seen between the model predictions and the human subject performance data could be attributed to the model lacking dynamic elements and performing kinematic analysis only, the level of fit of the subjects with the suit, the levels of the subject s suit experience.
Movement Strategies among Groups of Chronic Ankle Instability, Coper, and Control.
Son, S Jun; Kim, Hyunsoo; Seeley, Matthew K; Hopkins, J Ty
2017-08-01
Comprehensive evaluation of movement strategies during functional movement is a difficult undertaking. Because of this challenge, studied movements have been oversimplified. Furthermore, evaluating movement strategies at only a discrete time point(s) provide limited insight into how movement strategies may change or adapt in chronic ankle instability (CAI) patients. This study aimed to identify abnormal movement strategies in individuals with a history of ankle sprain injury during a sports maneuver compared with healthy controls. Sixty-six participants, consisting of 22 CAI patients, 22 ankle sprain copers, and 22 healthy controls, participated in this study. Functional profiles of lower extremity kinematics, kinetics, and EMG activation from initial contact (0% of stance) to toe-off (100% of stance) were collected and analyzed during a jump landing/cutting task using a functional data analysis approach. Compared with copers, CAI patients displayed landing positions of less plantarflexion, less inversion, more knee flexion, more hip flexion, and less hip abduction during the first 25% of stance. However, restricted dorsiflexion angle was observed in both CAI patients and copers relative to controls during the midlanding to mid-side-cutting phase when the ankle and knee reached its peak range of motion (e.g., dorsiflexion and knee flexion). Reduced EMG activation of tibialis anterior, peroneus longus, medial gastrocnemius, and gluteus medius may be due to altered kinematics that reduce muscular demands on the involved muscles. CAI patients displayed altered movement strategies, perhaps in an attempt to avoid perceived positions of risk. Although sagittal joint positions seemed to increase the external torque on the knee and hip extensors, frontal joint positions appeared to reduce the muscular demands on evertor and hip abductor muscles.
Bussey, Melanie D; Milosavljevic, Stephan
2015-01-01
The purpose of the study was to examine the muscle activity and hip-spine kinematics in a group of individuals diagnosed with posterior pelvic girdle pain and confirmed postural muscle delay during a repeated fast hip flexion task. Twenty-four (12 pain and 12 control) age and sex matched participants performed a repeated fast hip flexion task to auditory signal. Surface EMG activity in the external and internal oblique, the multifidus, the gluteus maximus and biceps femoris in the stance-limb was examined for onset timing and EMG integral. Sagittal plane hip (swing limb) and spine kinematics were examined for group and side differences over the repeated trials. While the pain group lacked significant feedforward muscle activity they displayed higher muscle activity at movement onset in the biceps femoris bilaterally (p<0.05) as well as the external oblique (p<0.05) during motion of the symptomatic side. Furthermore, the pain group experienced asymmetrical spinal range of motion with increased motion on the contralateral side (p<0.001) and reduced flexion velocity on the symptomatic side (p<0.001). The findings support previous hypotheses regarding the effect of increased biceps activity on pelvic control during lumbo-pelvic rotation. Further, there appears to be a symptom led strategy for bracing the innominate through opposing tension in the biceps and external oblique during movement of the painful side. Such asymmetrical pelvic girdle bracing may be a strategy to increase the stability of the pelvis in light of the failed load transfer mechanism. Putatively, this strategy may increase the mechanical stress on the sacroiliac joint exacerbating pain complaints. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M
2016-03-01
To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P < 0.05). There was no significant difference between treatment groups (P = 0.90), but a significant difference was found for both the PF (P = 0.04) and DF (P = 0.01) groups when compared with the control group. Our findings indicate that both stretching the hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.
Landry, Scott C; McKean, Kelly A; Hubley-Kozey, Cheryl L; Stanish, William D; Deluzio, Kevin J
2007-11-01
Female athletes are 2 to 8 times more likely than male athletes to injure the anterior cruciate ligament during a non-contact athletic maneuver. Identifying anterior cruciate ligament injury risk factors in female athletes may help with the development of preventive training programs aimed at reducing injury rates. Differences between genders in lower limb kinematics, kinetics, and neuromuscular patterns will be identified in an adolescent soccer population during an unanticipated side-cut maneuver. Controlled laboratory study. Forty-two elite adolescent soccer players (21 male and 21 female) performed an unanticipated side-cut maneuver, with the 3-dimensional kinematic, kinetic, and electromyographic lower limb data being analyzed using principal component analysis. The female athletes had higher gastrocnemius activity, normalized to maximal voluntary isometric contractions, and a mediolateral gastrocnemius activation imbalance that was not present in the male athletes during early stance to midstance of the side-cut. Female athletes demonstrated greater rectus femoris muscle activity throughout stance, and the only hamstring difference identified was a mediolateral activation imbalance in male athletes only. Female athletes performed the side-cut with less hip flexion and more hip external rotation and also generated a smaller hip flexion moment compared with the male athletes. This is the first study to identify gender-related differences in gastrocnemius muscle activity during an unanticipated cutting maneuver. The increased and imbalanced gastrocnemius muscle activity, combined with increased rectus femoris muscle activity and reduced hip flexion angles and moments in female subjects, may all have important contributing roles in the higher noncontact ACL injury rates observed in female athletes.
Awad, Louis N; Bae, Jaehyun; Kudzia, Pawel; Long, Andrew; Hendron, Kathryn; Holt, Kenneth G; OʼDonnell, Kathleen; Ellis, Terry D; Walsh, Conor J
2017-10-01
The aim of the study was to evaluate the effects on common poststroke gait compensations of a soft wearable robot (exosuit) designed to assist the paretic limb during hemiparetic walking. A single-session study of eight individuals in the chronic phase of stroke recovery was conducted. Two testing conditions were compared: walking with the exosuit powered versus walking with the exosuit unpowered. Each condition was 8 minutes in duration. Compared with walking with the exosuit unpowered, walking with the exosuit powered resulted in reductions in hip hiking (27 [6%], P = 0.004) and circumduction (20 [5%], P = 0.004). A relationship between changes in knee flexion and changes in hip hiking was observed (Pearson r = -0.913, P < 0.001). Similarly, multivariate regression revealed that changes in knee flexion (β = -0.912, P = 0.007), but not ankle dorsiflexion (β = -0.194, P = 0.341), independently predicted changes in hip hiking (R = 0.87, F(2, 4) = 13.48, P = 0.017). Exosuit assistance of the paretic limb during walking produces immediate changes in the kinematic strategy used to advance the paretic limb. Future work is necessary to determine how exosuit-induced reductions in paretic hip hiking and circumduction during gait training could be leveraged to facilitate more normal walking behavior during unassisted walking.
Louw, Maryke; Deary, Clare
2014-02-01
The aim of this literature review was to identify the biomechanical variables involved in the aetiology of iliotibial band syndrome (ITBS) in distance runners. An electronic search was conducted using the terms "iliotibial band" and "iliotibial tract". The results showed that runners with a history of ITBS appear to display decreased rear foot eversion, tibial internal rotation and hip adduction angles at heel strike while having greater maximum internal rotation angles at the knee and decreased total abduction and adduction range of motion at the hip during stance phase. They further appear to experience greater invertor moments at their feet, decreased abduction and flexion velocities at their hips and to reach maximum hip flexion angles earlier than healthy controls. Maximum normalised braking forces seem to be decreased in these athletes. The literature is inconclusive with regards to muscle strength deficits in runners with a history of ITBS. Prospective research suggested that greater internal rotation at the knee joint and increased adduction angles of the hip may play a role in the aetiology of ITBS and that the strain rate in the iliotibial bands of these runners may be increased compared to healthy controls. A clear biomechanical cause for ITBS could not be devised due to the lack of prospective research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Different methods of treatment related to the bilateral occurrence of Perthes' disease.
Futami, T; Suzuki, S
1997-11-01
We treated 98 consecutive patients with Perthes' disease by a unilateral brace in external rotation, flexion and abduction and a further consecutive 110 by a bilateral cast with the hips in internal rotation and abduction. During treatment in the unilateral brace, six (6.1%) hips on the opposite side developed evidence of Perthes' disease and one developed this after the brace had been removed. In children managed in bilateral casts, no contralateral Perthes' disease was seen. Adequate containment of the femoral head may prevent subsequent changes in the opposite hip.
Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F
2017-11-01
Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6.6, P=0.21) and TFL (69.5±61.7 vs. 65.9±51.3, P=0.50). Flexors showed no difference between hip flexion/abduction/lateral rotation performed in supine or sitting position: TFL (70.6±45.9 vs. 61.6±45.8, P=0.22) and S (101.1±67.9 vs. 72.6±44.6, P=0.21). The most effective tests to assess EMG signal during MVC were for the hip abductors: hip abduction performed in lateral decubitus (36.7% for GMax, 76.7% for GMed), and for hip flexors: hip flexion/abduction/lateral rotation performed in supine decubitus (50% for TFL, 76.7% for S). The study hypothesis was not confirmed, since hip joint positioning and the learning curve on an MVC test did not affect EMG signal during MVC of GMax, GMed, TFL and S muscles. Therefore, a single session and one specific test is enough to assess MVC in hip abductors (abduction in lateral decubitus) and flexors (hip flexion/abduction/lateral rotation in supine position). This method could be applied to assess muscle function after THA, and particularly to compare different approaches. III, case-matched study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Fatigue-induced changes in decline running.
Mizrahi, J; Verbitsky, O; Isakov, E
2001-03-01
Study the relation between muscle fatigue during eccentric muscle contractions and kinematics of the legs in downhill running. Decline running on a treadmill was used to acquire data on shock accelerations, muscle activity and kinematics, for comparison with level running. In downhill running, local muscle fatigue is the cause of morphological muscle damage which leads to reduced attenuation of shock accelerations. Fourteen subjects ran on a treadmill above level-running anaerobic threshold speed for 30 min, in level and -4 degrees decline running. The following were monitored: metabolic fatigue by means of respiratory parameters; muscle fatigue of the quadriceps by means of elevation in myoelectric activity; and kinematic parameters including knee and ankle angles and hip vertical excursion by means of computerized videography. Data on shock transmission reported in previous studies were also used. Quadriceps fatigue develops in parallel to an increasing vertical excursion of the hip in the stance phase of running, enabled by larger dorsi flexion of the ankle rather than by increased flexion of the knee. The decrease in shock attenuation can be attributed to quadriceps muscle fatigue in parallel to increased vertical excursion of the hips.
The collision forces and lower-extremity inter-joint coordination during running.
Wang, Li-I; Gu, Chin-Yi; Wang, I-Lin; Siao, Sheng-Wun; Chen, Szu-Ting
2018-06-01
The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2015-02-01
Laboratory analyses of chronic ankle instability populations during gait have elucidated a number of anomalous movement patterns. No current research exists analysing these movement patterns in a group in the acute phase of lateral ankle sprain (LAS) injury. It is possible that participants with an acute LAS display movement patterns continuous with their chronically impaired counterparts. Sixty eight participants with acute LAS and nineteen non-injured participants completed five gait trials. 3D lower extremity temporal kinematic and kinetic data were collected from 200 ms pre- to 200 ms post-heel strike (period 1) and from 200 ms pre- to 200 ms post-toe off (period 2). During period 1, the LAS group displayed increased knee flexion with increased net extensor pattern at the knee joint, increased ankle inversion with a greater inversion moment, and reduced ankle plantar flexion, compared to the non-injured control group. During period 2, the LAS group displayed decreased hip extension with a decrease in the flexor moment at the hip, and decreased ankle plantar flexion with a decrease in the net plantar flexion moment, compared to the non-injured control group. These results indicate that participants with acute LAS display coordination strategies which may play a role in the onset of chronicity or recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Relationship between agility and lower limb muscle strength, targeting university badminton players.
Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki
2018-02-01
[Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.
Gait dynamics in Pisa syndrome and Camptocormia: The role of stride length and hip kinematics.
Tramonti, C; Di Martino, S; Unti, E; Frosini, D; Bonuccelli, U; Rossi, B; Ceravolo, R; Chisari, C
2017-09-01
This is an observational cross-sectional study evaluating gait dynamics in patients with Parkinson's Disease (PD) and severe postural deformities, PD without axial deviations and healthy subjects. Ten PS individuals with Pisa syndrome (PS) and nine subjects with Camptocormia (CC) performed 3-D Gait Analysis and were evaluated with walking and balance scales. Correlations with clinical and functional scales were investigated. Spatio-temporal and kinematic data were compared to ten PD subjects without postural deformities (PP) and ten healthy matched individuals (CG). Data obtained showed decreased walking velocity, stride and step length in PP, PS and CC groups compared to controls. The correlation analysis showed that stride and step length were associated with reduced functional abilities and disease severity in PS and CC groups. Kinematic data revealed marked reduction in range of movements (ROMs) at all lower-extremity joints in PS group. While, in CC group the main differences were pronounced in hip and knee joints. PS and CC groups presented a more pronounced reduction in hip articular excursion compared to PP subjects, revealing an increased hip flexion pattern during gait cycle. Moreover, the increased hip and knee flexion pattern adversely affected functional performance during walking tests. Results obtained provide evidence that step length, along with stride length, can be proposed as simple and clear indicators of disease severity and reduced functional abilities. The reduction of ROMs at hip joint represented an important mechanism contributing to decreased walking velocity, balance impairment and reduced gait performance in PD patients with postural deformities. Copyright © 2017 Elsevier B.V. All rights reserved.
Howe, A; Campbell, A; Ng, L; Hall, T; Hopper, D
2015-08-01
The purpose of this study was to compare the effects of Mulligan's tape (MT) and kinesio tape (KT) with no tape (NT) on hip and knee kinematics and kinetics during running. Twenty-nine female recreational runners performed a series of 'run-throughs' along a 10-m runway under the three taping conditions. Two force plates and a 14-camera Vicon motion analysis system (Oxford Metrics, Inc., Oxford, UK) captured kinematic and kinetic data for each dependent variable from ground contact to toe off. Comparisons of each dependent variable under three taping conditions were assessed through Statistical Package for the Social Sciences (SPSS; SPSS, Inc., Chicago, Illinois, USA; P-value < 0.01) using repeated measure analyses of variance. For each dependent variable with a P-value < 0.01, repeated measures with pairwise comparisons and Bonferroni adjustment were conducted to compare the three taping conditions. MT induced a significant reduction in anterior and posterior hip forces, knee flexion angular velocity, knee extensor moments, and hip flexion and extension moments compared with NT and KT (P = 0.001). There was no difference in hip or knee, kinematics or kinetics, between KT and NT (P = 1.000). MT appears to influence hip and knee biomechanics during running in an asymptomatic sample, whereas KT appeared to be biomechanically not different from NT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shen, Francis H; Samartzis, Dino
2007-07-01
A case report. To report the successful nonoperative management of a patient with progressive ankylosing spondylitis who sustained a three-column flexion-distraction injury of the upper thoracic spine with an intact sternal-rib complex, thereby emphasizing the existence and clinical relevance of the fourth-column concept in such patients. Three-column injuries of the cervical and lumbar spine are typically unstable and require surgical stabilization. Patients with ankylosing spondylitis are at an increase risk to sustain three-column injuries of the spine due to their progressive inflammatory disease, a state that renders the spine brittle and alters its biomechanical function. A fourth-column model of the thoracic spine has been proposed and incorporates the sternal-rib complex; however, such a model has rarely been addressed in the literature and its role regarding three-column upper thoracic spine injury with an intact sternal-rib complex in patients with ankylosing spondylitis is unknown. METHODS.: A 68-year-old white man with ankylosing spondylitis and Pickwickian body habitus sustained a three-column flexion-distraction injury at T5 following a ground-level fall. The patient complained of midthoracic back pain; however, he was neurologically intact and ambulated without aids. Because of the patient's numerous active medical issues that substantially increased his perioperative risks combined with symptomatic improvement of his pain, the patient refused surgical stabilization. In addition, because of the patient's body habitus and pulmonary issues, external brace immobilization was not tolerated. At 17 months of follow-up, the patient remained neurologically intact, ambulated well, his midthoracic back pain had subsided, and no progressive kyphosis was noted. This case confirms the existence and clinical relevance of the fourth column of the thoracic spine and its role in providing added spinal stability in the patient with ankylosing spondylitis. As such, it is still possible to achieve a favorable clinical outcome in a select subpopulation of patients with ankylosing spondylitis that sustain three-column flexion-distraction injuries who are neurologically intact and are not candidates for surgical stabilization.
Molnar, Julia L; Pierce, Stephanie E; Hutchinson, John R
2014-03-01
Despite their semi-aquatic mode of life, modern crocodylians use a wide range of terrestrial locomotor behaviours, including asymmetrical gaits otherwise only found in mammals. The key to these diverse abilities may lie in the axial skeleton. Correlations between vertebral morphology and both intervertebral joint stiffness and locomotor behaviour have been found in other animals, but the vertebral mechanics of crocodylians have not yet been experimentally and quantitatively tested. We measured the passive mechanics and morphology of the thoracolumbar vertebral column in Crocodylus niloticus in order to validate a method to infer intervertebral joint stiffness based on morphology. Passive stiffness of eight thoracic and lumbar joints was tested in dorsal extension, ventral flexion and mediolateral flexion using cadaveric specimens. Fifteen measurements that we deemed to be potential correlates of stiffness were taken from each vertebra and statistically tested for correlation with joint stiffness. We found that the vertebral column of C. niloticus is stiffer in dorsoventral flexion than in lateral flexion and, in contrast to that of many mammals, shows an increase in joint stiffness in the lumbar region. Our findings suggest that the role of the axial column in crocodylian locomotion may be functionally different from that in mammals, even during analogous gaits. A moderate proportion of variation in joint stiffness (R(2)=0.279-0.520) was predicted by centrum width and height, neural spine angle and lamina width. These results support the possible utility of some vertebral morphometrics in predicting mechanical properties of the vertebral column in crocodiles, which also should be useful for forming functional hypotheses of axial motion during locomotion in extinct archosaurs.
Farkas, Gary J; Schlink, Bryan R; Fogg, Louis F; Foucher, Kharma C; Wimmer, Markus A; Shakoor, Najia
2018-05-01
Little is known about the loading patterns in unilateral hip osteoarthritis (OA) and their relationship to radiographic severity and pain. We aimed to examine the loading patterns at the hips of those with unilateral symptomatic hip OA and identify associations between radiographic severity and pain with loading alterations. Sixty-one subjects with symptomatic unilateral hip OA underwent gait analyses and evaluation for radiographic severity (Kellgren-Lawrence [KL]-grade) and pain (visual analogue scale) at bilateral hips. Hip OA subjects had greater range of motion and higher hip flexion, adduction, internal and external rotation moments at the contralateral, asymptomatic hip compared to the ipsilateral hip ( p < 0.05). Correlations were noted between increasing KL-grade and increasing asymmetry of contralateral to ipsilateral hip loading ( p < 0.05). There were no relationships with pain and loading asymmetry. Unilateral symptomatic hip OA subjects demonstrate asymmetry in loading between the hips, with relatively greater loads at the contralateral hip. These loading asymmetries were directly related to the radiographic severity of symptomatic hip OA and not with pain. Additional research is needed to determine the role of gait asymmetries in disease progression.
Gastrocnemius myoelectric control of a robotic hip exoskeleton.
Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Yan, Tingfang; Cortese, Mario; Giovacchini, Francesco; Cempini, Marco; Pasquini, Guido; Micera, Silvestro; Vitiello, Nicola
2015-01-01
In this paper we present a novel EMG-based assistive control strategy for lower-limb exoskeletons. An active pelvis orthosis (APO) generates torque profiles for the hip flexion motion assistance, according to the Gastrocnemius Medialis EMG signal. The strategy has been tested on one healthy subject: experimental results show that the user is able to reduce his muscular activation when the assistance is switched on with respect to the free walking condition.
Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A
2007-01-01
Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.
Impact of 10-weeks of yoga practice on flexibility and balance of college athletes
Polsgrove, M Jay; Eggleston, Brandon M; Lockyer, Roch J
2016-01-01
Background: With clearer evidence of its benefits, coaches, and athletes may better see that yoga has a role in optimizing performance. Aims: To determine the impact of yoga on male college athletes (N = 26). Methods: Over a 10-week period, a yoga group (YG) of athletes (n = 14) took part in biweekly yoga sessions; while a nonyoga group (NYG) of athletes (n = 12) took part in no additional yoga activity. Performance measures were obtained immediately before and after this period. Measurements of flexibility and balance, included: Sit-reach (SR), shoulder flexibility (SF), and stork stand (SS); dynamic measurements consisted of joint angles (JA) measured during the performance of three distinct yoga positions (downward dog [DD]; right foot lunge [RFL]; chair [C]). Results: Significant gains were observed in the YG for flexibility (SR, P = 0.01; SF, P = 0.03), and balance (SS, P = 0.05). No significant differences were observed in the NYG for flexibility and balance. Significantly, greater JA were observed in the YG for: RFL (dorsiflexion, l-ankle; P = 0.04), DD (extension, r-knee, P = 0.04; r-hip; P = 0.01; flexion, r-shoulder; P = 0.01) and C (flexion, r-knee; P = 0.01). Significant JA differences were observed in the NYG for: DD (flexion, r-knee, P = 0.01: r-hip, P = 0.05; r-shoulder, P = 0.03) and C (flexion r-knee, P = 0.01; extension, r-shoulder; P = 0.05). A between group comparison revealed the significant differences for: RFL (l-ankle; P = 0.01), DD (r-knee, P = 0.01; r-hip; P = 0.01), and C (r-shoulder, P = 0.02). Conclusions: Results suggest that a regular yoga practice may increase the flexibility and balance as well as whole body measures of male college athletes and therefore, may enhance athletic performances that require these characteristics. PMID:26865768
Pfile, Kate R.; Hart, Joseph M.; Herman, Daniel C.; Hertel, Jay; Kerrigan, D. Casey; Ingersoll, Christopher D.
2013-01-01
Context: Anterior cruciate ligament (ACL) injuries are common in female athletes and are related to poor neuromuscular control. Comprehensive neuromuscular training has been shown to improve biomechanics; however, we do not know which component of neuromuscular training is most responsible for the changes. Objective: To assess the efficacy of either a 4-week core stability program or plyometric program in altering lower extremity and trunk biomechanics during a drop vertical jump (DVJ). Design: Cohort study. Setting: High school athletic fields and motion analysis laboratory. Patients or Other Participants: Twenty-three high school female athletes (age = 14.8 ± 0.8 years, height = 1.7 ± 0.07 m, mass = 57.7 ± 8.5 kg). Intervention(s): Independent variables were group (core stability, plyometric, control) and time (pretest, posttest). Participants performed 5 DVJs at pretest and posttest. Intervention participants engaged in a 4-week core stability or plyometric program. Main Outcome Measure(s): Dependent variables were 3-dimensional hip, knee, and trunk kinetics and kinematics during the landing phase of a DVJ. We calculated the group means and associated 95% confidence intervals for the first 25% of landing. Cohen d effect sizes with 95% confidence intervals were calculated for all differences. Results: We found within-group differences for lower extremity biomechanics for both intervention groups (P ≤ .05). The plyometric group decreased the knee-flexion and knee internal-rotation angles and the knee-flexion and knee-abduction moments. The core stability group decreased the knee-flexion and knee internal-rotation angles and the hip-flexion and hip internal-rotation moments. The control group decreased the knee external-rotation moment. All kinetic changes had a strong effect size (Cohen d > 0.80). Conclusions: Both programs resulted in biomechanical changes, suggesting that both types of exercises are warranted for ACL injury prevention and should be implemented by trained professionals. PMID:23768121
Martín-Gonzalo, Juan Andrés; Rodríguez-Andonaegui, Irene; López-López, Javier; Pascual-Pascual, Samuel Ignacio
2018-01-01
The Hereditary Spastic Paraplegias (HSP) are a group of heterogeneous disorders with a wide spectrum of underlying neural pathology, and hence HSP patients express a variety of gait abnormalities. Classification of these phenotypes may help in monitoring disease progression and personalizing therapies. This is currently managed by measuring values of some kinematic and spatio-temporal parameters at certain moments during the gait cycle, either in the doctor´s surgery room or after very precise measurements produced by instrumental gait analysis (IGA). These methods, however, do not provide information about the whole structure of the gait cycle. Classification of the similarities among time series of IGA measured values of sagittal joint positions throughout the whole gait cycle can be achieved by hierarchical clustering analysis based on multivariate dynamic time warping (DTW). Random forests can estimate which are the most important isolated parameters to predict the classification revealed by DTW, since clinicians need to refer to them in their daily practice. We acquired time series of pelvic, hip, knee, ankle and forefoot sagittal angular positions from 26 HSP and 33 healthy children with an optokinetic IGA system. DTW revealed six gait patterns with different degrees of impairment of walking speed, cadence and gait cycle distribution and related with patient’s age, sex, GMFCS stage, concurrence of polyneuropathy and abnormal visual evoked potentials or corpus callosum. The most important parameters to differentiate patterns were mean pelvic tilt and hip flexion at initial contact. Longer time of support, decreased values of hip extension and increased knee flexion at initial contact can differentiate the mildest, near to normal HSP gait phenotype and the normal healthy one. Increased values of knee flexion at initial contact and delayed peak of knee flexion are important factors to distinguish GMFCS stages I from II-III and concurrence of polyneuropathy. PMID:29518090
Koutras, Georgios; Bernard, Manfred; Terzidis, Ioannis P; Papadopoulos, Pericles; Georgoulis, Anastasios; Pappas, Evangelos
2016-07-01
Hamstrings grafts are commonly used in ACL reconstruction, however, the effect of graft harvesting on knee flexion strength has not been longitudinally evaluated in functional positions. We hypothesized that greater deficits in knee flexion strength exist in the prone compared to the seated position and these deficits remain as rehabilitation progresses. Case series. Forty-two consecutive patients who underwent ACL reconstruction with a hamstrings graft were followed prospectively for 9 months. Isokinetic knee flexion strength at a slow and a fast speed were collected at 3, 4, 6, and 9 months in two different positions: conventional (seated) and functional (0° of hip flexion). Peak torque knee flexion deficits were higher in the prone position compared to the seated position by an average of 6.5% at 60°/s and 9.1% at 180°/s (p<0.001). Measuring knee flexion strength in prone demonstrates higher deficits than in the conventional seated position. Most athletes would not be cleared to return to sports even at 9 months after surgery with this method. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Hwang, Jongseok; Shin, Yongil; Park, Ji-Ho; Cha, Young Joo; You, Joshua Sung H
2018-04-07
The robotic-assisted gait training (RAGT) system has gained recognition as an innovative, effective paradigm to improve functional ambulation and activities of daily living in spinal cord injury and stroke. However, the effects of the Walkbot robotic-assisted gait training system with a specialized hip-knee-ankle actuator have never been examined in the paraplegia and quadriplegia population. The aim of this study was to determine the long-term effects of Walkbot training on clinical for hips and knee stiffness in individuals with paraplegia or quadriplegia. Nine adults with subacute or chronic paraplegia resulting from spinal cord injury or quadriplegia resulting from cerebral vascular accident (CVA) and/or hypoxia underwent progressive conventional gait retraining combined with the Walkbot RAGT for 5 days/week over an average of 43 sessions for 8 weeks. Clinical outcomes were measured with the Functional Ambulation Category (FAC), Modified Rankin Scale (MRS), Korean version of the Modified Barthel Index (K-MBI), Modified Ashworth Scale (MAS). Kinetic and kinematic data were collected via a built-in Walkbot program. Wilcoxon signed-rank tests showed significant positive intervention effects on K-MBI, maximal hip flexion and extension, maximal knee flexion, active torque in the knee joint, resistive torque, and stiffness in the hip joint (P < 0.05). These findings suggest that the Walkbot RAGT was effective for improving knee and hip kinematics and the active knee joint moment while decreasing hip resistive force. These improvements were associated with functional recovery in gait, balance, mobility and daily activities. These findings suggest that the Walkbot RAGT was effective for improving knee and hip kinematics and the active knee joint moment while decreasing hip resistive force. This is the first clinical evidence for intensive, long-term effects of the Walkbot RAGT on active or resistive moments and stiffness associated with spasticity and functional mobility in individuals with subacute or chronic paraplegia or quadriplegia who had reached a plateau in motor recovery after conventional therapy.
Adolescent Body Size and Flexibility
ERIC Educational Resources Information Center
Krahenbuhl, Gary S.; Martin, Stephen L.
1977-01-01
Research suggests that differences in body surface area that occur during adolescence are significantly negatively related to knee, hip, and shoulder flexion-extension range, with flexibility decreasing as body surface area increases, with the relationship strongest for the knee. (MJB)
Effect of walking on sand on gait kinematics in individuals with multiple sclerosis.
van den Berg, Maayken E L; Barr, Christopher J; McLoughlin, James V; Crotty, Maria
2017-08-01
Walking in the real-world involves negotiating challenging or uneven surfaces, including sand. This can be challenging for people with Multiple Sclerosis (PWMS) due to motor deficits affecting the lower extremities. The study objective was to characterise kinematic gait adaptations made by PWMS when walking on sand and describe any immediate post-adaptation effects. 17 PWMS (mean age 51.4 ± 5.5, Disease Steps 2.4 ± 1.0), and 14 age-and gender matched healthy adults (HA) took part in a case-control study. 3D gait analysis was conducted using an eight-camera Vicon motion capture system. Each participant completed walking trials over level ground (baseline), sand (gait adaptation response), and again level ground (post-adaptation). Spatiotemporal data and kinematic data for the hip knee and ankle were recorded. At baseline PWMS showed significantly less total lower limb flexion (p<0.05) compared to HA. PWMS adapted to walking on sand by significantly increasing hip and knee flexion and ankle dorsiflexion (p<0.05) during swing, resulting in an overall 23° greater total lower limb flexion (p<0.05), reaching values within normal range. During the return to level ground walking values of temporal-spatial and kinematic parameters returned towards baseline values. PWMS adapted to walking on sand by increasing lower limb flexion during swing, and returned to their gait pattern to near baseline levels, in a manner similar to but with values not equalling HA. Further work is required to determine whether this mode of walking has potential to act as a gait retraining strategy to increase flexion of the lower limb. Copyright © 2017 Elsevier B.V. All rights reserved.
Cui, Daping; Zhao, Dewei
2011-03-01
To provide the objective basis for the evaluation of the operative results of vascularized greater trochanter bone flap in treating osteonecrosis of the femoral head (ONFH) by three-dimensional gait analysis. Between March 2006 and March 2007, 35 patients with ONFH were treated with vascularized greater trochanter bone flap, and gait analysis was made by using three-dimensional gait analysis system before operation and at 1, 2 years after operation. There were 23 males and 12 females, aged 21-52 years (mean, 35.2 years), including 8 cases of steroid-induced, 7 cases of traumatic, 6 cases of alcoholic, and 14 cases of idiopathic ONFH. The left side was involved in 15 cases, and right side in 20 cases. According to Association Research Circulation Osseous (ARCO) classification, all patients were diagnosed as having femoral-head necrosis at stage III. Preoperative Harris hip functional score (HHS) was 56.2 +/- 5.6. The disease duration was 1.5-18.6 years (mean, 5.2 years). All incisions healed at stage I without early postoperative complications of deep vein thrombosis and infections of incision. Thirty-five patients were followed up 2-3 years with an average of 2.5 years. At 2 years after operation, the HHS score was 85.8 +/- 4.1, showing significant difference when compared with the preoperative score (t = 23.200, P = 0.000). Before operation, patients showed a hip muscles gait, short gait, reduce pain gait, and the pathological gaits significantly improved at 1 year after operation. At 1 year and 2 years after operation, step frequency, pace, step length and hip flexion, hip extension, knee flexion, ankle flexion were significantly improved (P < 0.01). Acceleration-time curves showed that negative wave and spinous wave at acceleration-stance phase of front feet and hind feet in affected limb were obviously reduced at 1 year and 2 years after operation. Postoperative petronas wave appeared at swing phase; the preoperative situation was three normal phase waves. These results suggest that three-dimensional gait analysis before and after vascularized greater trochanter for ONFH can evaluate precisely hip vitodynamics variation.
Development of an Integrated Countermeasure Device for Use in Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Streeper, Tim; Cavanagh, Peter R.; Hanson, Andrea M.; Carpenter, Dana; Saeed, Isra; Kornak, John; Frassetto, Lynda; Grodsinsky, Carlos; Funk, Justin; Lee, Stuart M. C.;
2010-01-01
Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance-training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4+/-9.0 years, 69.5+/-15.4Kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO2peak and 1RM. Results: VO2peak and 1RM improved after 6-weeks, with additional improvements after 12 weeks (1.95+/-0.5, 2.28+/-0.5, 2.47+/-0.6 LY/min and 131.2+/-63.9,182.8+/-75.0, 207.0+/-75.0 Kg) for baseline, 6 weeks, and 12 weeks respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3+/-39.5, 76.8+/-39.2 and 55.7+/-21.7 N-m vs. 86.1+/-37.3, 85.1+/-34.3 and 62.1+/-26.4 N-m respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip.
Preseason Adductor Squeeze Strength in 303 Spanish Male Soccer Athletes: A Cross-sectional Study
Esteve, Ernest; Rathleff, Michael Skovdal; Vicens-Bordas, Jordi; Clausen, Mikkel Bek; Hölmich, Per; Sala, Lluís; Thorborg, Kristian
2018-01-01
Background: Hip adductor muscle weakness and a history of groin injury both have been identified as strong risk factors for sustaining a new groin injury. Current groin pain and age have been associated with hip adductor strength. These factors could be related, but this has never been investigated. Purpose: To investigate whether soccer athletes with past-season groin pain and with different durations of past-season groin pain had lower preseason hip adductor squeeze strength compared with those without past-season groin pain. We also investigated whether differences in preseason hip adductor squeeze strength in relation to past-season groin pain and duration were influenced by current groin pain and age. Study Design: Cross-sectional study; Level of evidence, 3. Methods: In total, 303 male soccer athletes (mean age, 23 ± 4 years; mean weight, 74.0 ± 7.9 kg; mean height, 178.1 ± 6.3 cm) were included in this study. Self-reported data regarding current groin pain, past-season groin pain, and duration were collected. Hip adductor squeeze strength was obtained using 2 different reliable testing procedures: (1) the short-lever (resistance placed between the knees, feet at the examination bed, and 45° of hip flexion) and (2) the long-lever (resistance placed between the ankles and 0° of hip flexion) squeeze tests. Results: There was no difference between those with (n = 123) and without (n = 180) past-season groin pain for hip adductor squeeze strength when adjusting for current groin pain and age. However, athletes with past-season groin pain lasting longer than 6 weeks (n = 27) showed 11.5% and 15.3% lower values on the short-lever (P = .006) and long-lever (P < .001) hip adductor squeeze strength tests, respectively, compared with those without past-season groin pain. Conclusion: Male soccer athletes with past-season groin pain lasting longer than 6 weeks are likely to begin the next season with a high-risk groin injury profile, including a history of groin pain and hip adduction weakness. PMID:29349093
Xue, Qian-Li; Beamer, Brock A.; Chaves, Paulo H.M.; Guralnik, Jack M.; Fried, Linda P.
2010-01-01
OBJECTIVES To assess the relationship between rate of change in muscle strength and all-cause mortality. DESIGN A prospective observational study of the causes and course of physical disability. SETTING Twelve contiguous ZIP code areas in Baltimore, Maryland. PARTICIPANTS Three hundred and seven community-dwelling women aged 70–79 years at study baseline. MEASUREMENTS The outcome is all-cause mortality (1994–2009); predictors include up to seven repeated measurements of handgrip, knee extension, and hip flexion strength, with a median follow-up time of 9 years. Demographic factors, body mass index, smoking status, number of chronic diseases, depressive symptoms, physical activity, Interlukin-6, and albumin were assessed at baseline and included as confounders. The associations between declining muscle strength and mortality were assessed using a joint longitudinal and survival model.. RESULTS Grip and hip strength declined an average of 1.10 and 1.31 kg per year between age 70 and 75and 0.50 and 0.39 kg/year thereafter, respectively; knee strength declined at a constant rate of 0.57 kg/year. Faster rates of decline in grip and hip strength, but not knee strength, independently predicted of mortality after accounting for their baseline levels and potential confounders (Hazard Ratio (HR)=1.33 (95% confidence interval (CI)=1.06–1.67), 1.14 (CI=0.91–1.41), and 2.62 (CI=1.43–4.78) for every 0.5 standard deviation increase in rate of decline in grip, knee, and hip strength, respectively. CONCLUSION Monitoring the rate of decline in grip and hip flexion strength in addition to the absolute levels may greatly improve the identification of women most at risk of dying. PMID:21054287
Noehren, Brian; Davis, Irene; Hamill, Joseph
2007-11-01
Iliotibial band syndrome is the leading cause of lateral knee pain in runners. Despite its high prevalence, little is known about the biomechanics that lead to this syndrome. The purpose of this study was to prospectively compare lower extremity kinematics and kinetics between a group of female runners who develop iliotibial band syndrome compared to healthy controls. It was hypothesized that runners who develop iliotibial band syndrome will exhibit greater peak hip adduction, knee internal rotation, rearfoot eversion and no difference in knee flexion at heel strike. Additionally, the iliotibial band syndrome group were expected to have greater hip abduction, knee external rotation, and rearfoot inversion moments. A group of healthy female recreational runners underwent an instrumented gait analysis and were then followed for two years. Eighteen runners developed iliotibial band syndrome. Their initial running mechanics were compared to a group of age and mileage matched controls with no history of knee or hip pain. Comparisons of peak hip, knee, rearfoot angles and moments were made during the stance phase of running. Variables of interest were averaged over the five running trials, and then averaged across groups. The iliotibial band syndrome group exhibited significantly greater hip adduction and knee internal rotation. However, rearfoot eversion and knee flexion were similar between groups. There were no differences in moments between groups. The development of iliotibial band syndrome appears to be related to increased peak hip adduction and knee internal rotation. These combined motions may increase iliotibial band strain causing it to compress against the lateral femoral condyle. These data suggest that treatment interventions should focus on controlling these secondary plane movements through strengthening, stretching and neuromuscular re-education.
A case of stiff-person syndrome due to secondary adrenal insufficiency.
Mizuno, Yuri; Yamaguchi, Hiroo; Uehara, Taira; Yamashita, Kenichiro; Yamasaki, Ryo; Kira, Jun-Ichi
2017-06-28
We report a case of flexion contractures in a patient's legs secondary to postpartum hypopituitarism. A 56-year-old woman presented with a 3-year history of worsening flexion contractures of the hips and knees. On admission, her hips and knees could not be extended, and she had muscle stiffness and tenderness to palpation of the lower extremities. We first suspected stiff-person syndrome or Isaacs' syndrome because of her muscle stiffness. However, multiple hormones did not respond to stimulation tests, and an MRI of the brain showed atrophy of the pituitary gland with an empty sella. A subsequent interview revealed that she had suffered a severe hemorrhage while delivering her third child. She was diagnosed with panhypopituitarism and started on cortisol replacement therapy. After 1 week of treatment with hydrocortisone (10 mg/day), her symptoms quickly improved. We then added 75 μg/day of thyroid hormone. During the course of her treatment, autoantibodies against VGKC complex were found to be weakly positive. However, we considered the antibodies to be unrelated to her disease, because her symptoms improved markedly with low-dose steroid treatment. There are a few reports describing flexion contractures of the legs in patients with primary and secondary adrenal insufficiency. As these symptoms are similar to those seen in stiff-person syndrome, adrenal and pituitary insufficiency should be taken into account to achieve the correct diagnosis and treatment in patients with flexion contractures and muscle stiffness.
Zeller, Brian L; McCrory, Jean L; Kibler, W Ben; Uhl, Timothy L
2003-01-01
Numerous factors have been identified as potentially increasing the risk of anterior cruciate ligament injury in the female athlete. However, differences between the sexes in lower extremity coordination, particularly hip control, are only minimally understood. There is no difference in kinematic or electromyographic data during the single-legged squat between men and women. Descriptive comparison study. We kinematically and electromyographically analyzed the single-legged squat in 18 intercollegiate athletes (9 male, 9 female). Subjects performed five single-legged squats on their dominant leg, lowering themselves as far as possible and then returning to a standing position without losing balance. Women demonstrated significantly more ankle dorsiflexion, ankle pronation, hip adduction, hip flexion, hip external rotation, and less trunk lateral flexion than men. These factors were associated with a decreased ability of the women to maintain a varus knee position during the squat as compared with the men. Analysis of all eight tested muscles demonstrated that women had greater muscle activation compared with men. When each muscle was analyzed separately, the rectus femoris muscle activation was found to be statistically greater in women in both the area under the linear envelope and maximal activation data. Under a physiologic load in a position commonly assumed in sports, women tend to position their entire lower extremity and activate muscles in a manner that could increase strain on the anterior cruciate ligament.
Xu, Yi; Hou, Qinghua; Wang, Chuhuai; Sellers, Andrew J; Simpson, Travis; Bennett, Bradford C; Russell, Shawn D
2017-01-01
Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. 28 healthy university students (22 females and 6 males) were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. In the early stance phase, the knee extension moment (MK1), the first peak absorbed joint power at the knee joint (PK1), and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2), second peak extension knee moment (MK3), hip flexors absorbed power (PH2), hip flexors generated power (PH3), second peak absorbed power by knee flexors (PK2), and second peak anterior-posterior component of joint force at the hip (APFH2), knee (APFK2), and ankle (APFA2). These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.
Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.
Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P
2015-08-01
Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22.1%; nondominant, 11.3%), and unilateral equivocal fatigue in the pronators (dominant, 18.8%; nondominant, 15.2%) and grip (dominant, 11.4%; nondominant, 6.6%). The mean (±SD) pitch velocity was 49 ± 4 mph, with a small loss of velocity from the first to last inning pitched (3.4% ± 5.0%, P < .01). Fast-pitch softball pitching resulted in profound bilateral fatigue in the hip and scapular muscles, with more selective fatigue in the shoulder and arm muscles. These findings emphasize the importance of strength in the proximal musculature to provide a stable platform for the arm to propel the ball. © 2015 The Author(s).
Yamazaki, J; Muneta, T; Ju, Y J; Sekiya, I
2010-01-01
Seventy to eighty percent of all anterior cruciate ligament (ACL) injuries are due to non-contact injury mechanisms. It has been reported that the majority of injuries due to single leg landing come from valgus positioning of the lower leg. Preventing valgus positioning during single leg landing is expected to help reduce the number of ACL injuries. We found that many ACL-deficient patients cannot perform stable single leg squatting. Therefore, we performed 3D motion analysis of the single-legged half squat for ACL-injured patients to evaluate its significance as a risk factor for ACL injuries. We evaluated the relative angles between the body, thigh, and lower leg using an electromagnetic device during single leg half squatting performed by 63 ACL-injured patients (32 males, 31 females) the day before ACL reconstruction and by 26 healthy control subjects with no knee problems. The uninjured leg of ACL-injured male subjects demonstrated significantly less external knee rotation than that of the dominant leg of the male control. The uninjured leg of ACL-injured female subjects demonstrated significantly more external hip rotation and knee flexion and less hip flexion than that of the dominant leg of the female control. Comparing injured and uninjured legs, the injured leg of male subjects demonstrated significantly less external knee and hip rotation, less knee flexion, and more knee varus than that of the uninjured leg of male subjects. The injured leg of female subjects demonstrated more knee varus than that of the uninjured leg of female subjects. Regarding gender differences, female subjects demonstrated significantly more external hip rotation and knee valgus than male subjects did in both the injured and uninjured legs (P < 0.05). The current kinematic study exhibited biomechanical characteristics of female ACL-injured subjects compared with that of control groups. Kinematic correction during single leg half squat would reduce ACL reinjury in female ACL-injured subjects.
Changes in lower extremity biomechanics due to a short-term fatigue protocol.
Cortes, Nelson; Greska, Eric; Kollock, Roger; Ambegaonkar, Jatin; Onate, James A
2013-01-01
Noncontact anterior cruciate ligament injury has been reported to occur during the later stages of a game when fatigue is most likely present. Few researchers have focused on progressive changes in lower extremity biomechanics that occur throughout fatiguing. To evaluate the effects of a sequential fatigue protocol on lower extremity biomechanics during a sidestep-cutting task (SS). Controlled laboratory study. Laboratory. Eighteen uninjured female collegiate soccer players (age = 19.2 ± 0.9 years, height = 1.66 ± 0.5 m, mass = 61.6 ± 5.1 kg) volunteered. The independent variable was fatigue level, with 3 levels (prefatigue, 50% fatigue, and 100% fatigue). Using 3-dimensional motion capture, we assessed lower extremity biomechanics during the SS. Participants alternated between a fatigue protocol that solicited different muscle groups and mimicked actual sport situations and unanticipated SS trials. The process was repeated until fatigue was attained. Dependent variables were hip- and knee-flexion and abduction angles and internal moments measured at initial contact and peak stance and defined as measures obtained between 0% and 50% of stance phase. Knee-flexion angle decreased from prefatigue (-17° ± 5°) to 50% fatigue (-16° ± 6°) and to 100% fatigue (-14° ± 4°) (F2,34 = 5.112, P = .004). Knee flexion at peak stance increased from prefatigue (-52.9° ± 5.6°) to 50% fatigue (-56.1° ± 7.2°) but decreased from 50% to 100% fatigue (-50.5° ± 7.1°) (F2,34 = 8.282, P = 001). Knee-adduction moment at peak stance increased from prefatigue (0.49 ± 0.23 Nm/kgm) to 50% fatigue (0.55 ± 0.25 Nm/kgm) but decreased from 50% to 100% fatigue (0.37 ± 0.24) (F2,34 = 3.755, P = 03). Hip-flexion angle increased from prefatigue (45.4° ± 10.9°) to 50% fatigue (46.2° ± 11.2°) but decreased from 50% to 100% fatigue (40.9° ± 11.3°) (F2,34 = 6.542, P = .004). Hip flexion at peak stance increased from prefatigue (49.8° ± 9.9°) to 50% fatigue (52.9° ± 12.1°) but decreased from 50% to 100% fatigue (46.3° ± 12.9°) (F2,34 = 8.639, P = 001). Hip-abduction angle at initial contact decreased from prefatigue (-13.8° ± 6.6°) to 50% fatigue (-9.1° ± 6.5°) and to 100% fatigue (-7.8° ± 6.5°) (F2,34 = 11.228, P < .001). Hip-adduction moment decreased from prefatigue (0.14 ± 0.13 Nm/kgm) to 50% fatigue (0.08 ± 0.13 Nm/kgm) and to 100% fatigue (0.06 ± 0.05 Nm/kg) (F2,34 = 5.767, P = .007). The detrimental effects of fatigue on sagittal and frontal mechanics of the hip and knee were visible at 50% of the participants' maximal fatigue and became more marked at 100% fatigue. Anterior cruciate ligament injury-prevention programs should emphasize feedback on proper mechanics throughout an entire practice and not only at the beginning of practice.
Changes in Lower Extremity Biomechanics Due to a Short-Term Fatigue Protocol
Cortes, Nelson; Greska, Eric; Kollock, Roger; Ambegaonkar, Jatin; Onate, James A.
2013-01-01
Context: Noncontact anterior cruciate ligament injury has been reported to occur during the later stages of a game when fatigue is most likely present. Few researchers have focused on progressive changes in lower extremity biomechanics that occur throughout fatiguing. Objective: To evaluate the effects of a sequential fatigue protocol on lower extremity biomechanics during a sidestep-cutting task (SS). Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Eighteen uninjured female collegiate soccer players (age = 19.2 ± 0.9 years, height = 1.66 ± 0.5 m, mass = 61.6 ± 5.1 kg) volunteered. Intervention(s): The independent variable was fatigue level, with 3 levels (prefatigue, 50% fatigue, and 100% fatigue). Using 3-dimensional motion capture, we assessed lower extremity biomechanics during the SS. Participants alternated between a fatigue protocol that solicited different muscle groups and mimicked actual sport situations and unanticipated SS trials. The process was repeated until fatigue was attained. Main Outcome Measure(s): Dependent variables were hip- and knee-flexion and abduction angles and internal moments measured at initial contact and peak stance and defined as measures obtained between 0% and 50% of stance phase. Results: Knee-flexion angle decreased from prefatigue (−17° ± 5°) to 50% fatigue (−16° ± 6°) and to 100% fatigue (−14° ± 4°) (F2,34 = 5.112, P = .004). Knee flexion at peak stance increased from prefatigue (−52.9° ± 5.6°) to 50% fatigue (−56.1° ± 7.2°) but decreased from 50% to 100% fatigue (−50.5° ± 7.1°) (F2,34 = 8.282, P = 001). Knee-adduction moment at peak stance increased from prefatigue (0.49 ± 0.23 Nm/kgm) to 50% fatigue (0.55 ± 0.25 Nm/kgm) but decreased from 50% to 100% fatigue (0.37 ± 0.24) (F2,34 = 3.755, P = 03). Hip-flexion angle increased from prefatigue (45.4° ± 10.9°) to 50% fatigue (46.2° ± 11.2°) but decreased from 50% to 100% fatigue (40.9° ± 11.3°) (F2,34 = 6.542, P = .004). Hip flexion at peak stance increased from prefatigue (49.8° ± 9.9°) to 50% fatigue (52.9° ± 12.1°) but decreased from 50% to 100% fatigue (46.3° ± 12.9°) (F2,34 = 8.639, P = 001). Hip-abduction angle at initial contact decreased from prefatigue (−13.8° ± 6.6°) to 50% fatigue (−9.1° ± 6.5°) and to 100% fatigue (−7.8° ± 6.5°) (F2,34 = 11.228, P < .001). Hip-adduction moment decreased from prefatigue (0.14 ± 0.13 Nm/kgm) to 50% fatigue (0.08 ± 0.13 Nm/kgm) and to 100% fatigue (0.06 ± 0.05 Nm/kg) (F2,34 = 5.767, P = .007). Conclusions: The detrimental effects of fatigue on sagittal and frontal mechanics of the hip and knee were visible at 50% of the participants' maximal fatigue and became more marked at 100% fatigue. Anterior cruciate ligament injury-prevention programs should emphasize feedback on proper mechanics throughout an entire practice and not only at the beginning of practice. PMID:23675789
Hip abductor function and lower extremity landing kinematics: sex differences.
Jacobs, Cale A; Uhl, Timothy L; Mattacola, Carl G; Shapiro, Robert; Rayens, William S
2007-01-01
Rapid deceleration during sporting activities, such as landing from a jump, has been identified as a common mechanism of acute knee injury. Research into the role of potential sex differences in hip abductor function with lower extremity kinematics when landing from a jump is limited. To evaluate sex differences in hip abductor function in relation to lower extremity landing kinematics. 2 x 2 mixed-model factorial design using a between-subjects factor (sex) and a repeated factor (test). University laboratory. A sample of convenience consisting of 30 healthy adults (15 women, 15 men) with no history of lower extremity surgery and no lower extremity injuries within 6 months of testing. Landing kinematics were assessed as subjects performed 3 pre-exercise landing trials that required them to hop from 2 legs and land on a single leg. Isometric peak torque (PT) of the hip abductors was measured, followed by an endurance test during which subjects maintained 50% of their PT to the limits of endurance. After a 15-minute rest period, subjects completed a 30-second bout of isometric hip abduction, from which we calculated the percentage of endurance capacity (%E). Immediately after exercise, subjects completed 3 postexercise landing trials. PT, %E, and peak joint displacement (PJD) of the hip and knee in all 3 planes of motion. Women demonstrated lower PT values (5.8 +/- 1.2% normalized to body weight and height) than did their male counterparts (7.2 +/- 1.5% normalized to body weight and height, P = .009). However, no sex differences were seen in %E. Women also demonstrated larger knee valgus PJD (7.26 degrees +/- 6.61 degrees) than did men (3.29 degrees +/- 3.54 degrees, P = .04). Women's PT was moderately correlated with hip flexion, adduction, and knee valgus PJD; however, PT did not significantly correlate with men's landing kinematics. Regardless of sex, hip flexion (P = .002) and hip adduction (P = .001) were significantly increased following the 30-second bout of exercise. Women demonstrated lower hip abductor PT and increased knee valgus PJD when landing from a jump, potentially increasing the risk of acute knee injury. Furthermore, correlations between hip abductor strength and landing kinematics were generally larger for women than for men, suggesting that hip abductor strength may play a more important role in neuromuscular control of the knee for women.
Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc
2016-01-01
Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p < 0.05), no differences between the two stretching groups were observed (p > 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.
dos Reis, Amir Curcio; Correa, João Carlos Ferrari; Bley, André Serra; Rabelo, Nayra Deise dos Anjos; Fukuda, Thiago Yukio; Lucareli, Paulo Roberto Garcia
2015-10-01
Cross-sectional study. To compare the biomechanical strategies of the trunk and lower extremity during the transition period between the first and second hop of a single-leg triple hop test in women with and without patellofemoral pain (PFP). Recent literature has shown that PFP is associated with biomechanical impairments of the lower extremities. A number of studies have analyzed the position of the trunk and lower extremities for functional activities such as walking, squatting, jumping, and the step-down test. However, studies on more challenging activities, such as the single-leg triple hop test, may be more representative of sports requiring jumping movements. Women between 18 and 35 years of age (control group, n = 20; PFP group, n = 20) participated in the study. Three-dimensional kinematic and kinetic data were collected during the transition period between the first and second hops while participants performed the single-leg triple hop test. Compared to the control group, women with PFP exhibited greater (P<.05) anterior and ipsilateral trunk lean, contralateral pelvic drop, hip internal rotation and adduction, and ankle eversion, while exhibiting less hip and knee flexion. A significant difference (P<.05) in time to peak joint angle was also found between groups for all the variables analyzed, except anterior pelvic tilt and hip flexion. In addition, women with PFP exhibited greater (P<.05) hip and knee abductor internal moments. Compared to the control group, women with PFP exhibited altered trunk, pelvis, hip, knee, and ankle kinematics and kinetics.
Flexion relaxation of the hamstring muscles during lumbar-pelvic rhythm.
Sihvonen, T
1997-05-01
This study investigated the simultaneous activity of back muscles and hamstring muscles during sagittal forward body flexion and extension in healthy persons. The study was cross-sectional. A descriptive study of paraspinal and hamstring muscle activity in normal persons during lumbar-pelvic rhythm. A university hospital. Forty healthy volunteers (21 men, 19 women, ages 17 to 48 years), all without back pain or other pain syndromes. Surface electromyography (EMG) was used to follow activities in the back and the hamstring muscles. With movement sensors, real lumbar flexion was separated from simultaneous pelvic motion by monitoring the components of motion with a two-inclinometer method continuously from the initial upright posture into full flexion. All signals were sampled during real-time monitoring for off-line analyses. Back muscle activity ceased (ie, flexion relaxation [FR] occurred) at lumbar flexion with a mean of 79 degrees. Hamstring activity lasted longer and EMG activity ceased in the hamstrings when nearly full lumbar flexion (97%) was reached. After this point total flexion and pelvic flexion continued further, so that the last part of lumbar flexion and the last part of pelvic flexion happened without back muscle activity or hamstring bracing, respectively. FR of the back muscles during body flexion has been well established and its clinical significance in low back pain has been confirmed. In this study, it was shown for the first time that the hip extensors (ie, hamstring muscles) relax during forward flexion but with different timing. FR in hamstrings is not dependent on or coupled firmly with back muscle behavior in spinal disorders and the lumbar pelvic rhythm can be locally and only partially disturbed.
Hip Kinematics During a Stop-Jump Task in Patients With Chronic Ankle Instability
Brown, Cathleen N.; Padua, Darin A.; Marshall, Stephen W.; Guskiewicz, Kevin M.
2011-01-01
Context: Chronic ankle instability (CAI) commonly develops after lateral ankle sprain. Movement pattern differences at proximal joints may play a role in instability. Objective: To determine whether people with mechanical ankle instability (MAI) or functional ankle instability (FAI) exhibited different hip kinematics and kinetics during a stop-jump task compared with “copers.” Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Sixty-three recreational athletes, 21 (11 men, 10 women) per group, matched for sex, age, height, mass, and limb dominance. All participants reported a history of a moderate to severe ankle sprain. The participants with MAI and FAI reported 2 or more episodes of giving way at the ankle in the last year and decreased functional ability; copers did not. The MAI group demonstrated clinically positive anterior drawer and talar tilt tests, whereas the FAI group and copers did not. Intervention(s): Participants performed a maximum-speed approach run and a 2-legged stop jump followed by a maximum vertical jump. Main Outcome Measure(s): An electromagnetic tracking device synchronized with a force plate collected data during the stance phase of a 2-legged stop jump. Hip motion was measured from initial contact to takeoff into the vertical jump. Group differences in hip kinematics and kinetics were assessed. Results: The MAI group demonstrated greater hip flexion at initial contact and at maximum (P = .029 and P = .017, respectively) and greater hip external rotation at maximum (P = .035) than the coper group. The MAI group also demonstrated greater hip flexion displacement than both the FAI (P = .050) and coper groups (P = .006). No differences were noted between the FAI and coper groups in hip kinematic variables or among any of the groups in ground reaction force variables. Conclusions: The MAI group demonstrated different hip kinematics than the FAI and coper groups. Proximal joint motion may be affected by ankle joint function and laxity, and clinicians may need to assess proximal joints after repeated ankle sprains. PMID:22488131
NASA Astrophysics Data System (ADS)
Musumeci, Alfredo; Pranovi, Giulia; Masiero, Stefano
2018-05-01
Nowadays, some spa centers are suitable for providing rehabilitative and preventive treatment in association with traditional spa therapy. This study aims to evaluate the feasibility and the effectiveness of an intensive rehabilitation program after hip arthroplasty in an Italian spa center. Early after total hip arthroplasty for severe osteoarthritis (≤ 10 days after the intervention), 12 consecutive patients (5 males and 7 females) aged between 50 and 85 years were enrolled for this study. All the patients performed a 2-week thermal multimodal rehabilitation program, which consisted of education and physical rehabilitative measures. Patients had 2-h and half/day session of land-based and hydrokinesitherapy (aquatic therapy) consisted in active and passive joint mobilization, respiratory and functional re-education exercises, gait and balance training, resistance exercise, and power training mainly for the upper limb associated to physical therapy modalities (electrotherapy and low-level laser therapy). An educational program was performed to both patients and families. Both before and after the rehabilitation treatment, patients underwent clinical evaluation, hip flexion/abduction range of motion, and Numeric Pain Rating Scale. Harris Hip Score (HHS) and SF-12 questionnaires (physical—PCS-12—and mental health component—MCS-12) were also administered. After the 2-week thermal spa treatment, hip flexion/abduction improved significantly (p < 0.05), but there was no statistically significant reduction in pain (p = 0.350). The HHS score improved significantly from 62.6 ± 12.8 to 82.15 ± 12.7 (p < 0.05), and the PCS-12 score from 36.37 ± 8.4 to 43.61 ± 8.95 (p < 0.05). There was no adverse event during spa treatment. After total hip arthroplasty, patients who underwent an intensive post-acute multimodal rehabilitation program showed an improvement in motor and functional recovery and a positive impact on quality of life. Therefore, we believe that the thermal setting is a suitable place for providing intensive rehabilitative treatment in orthopedic musculoskeletal disability.
Spanyer, Jonathon M; Beaumont, Christopher M; Yerasimides, Jonathan G
2017-02-01
Anterior column deficiency of the pelvis may pose a serious threat to the stability of the acetabular component after total hip arthroplasty and, thus, jeopardize the overall success of the procedure. After Institutional Review Board approval, a retrospective review was undertaken to identify all patients undergoing revision total hip arthroplasty with anterior column augmentation through an extended direct anterior approach. Demographics and surgical details were collected, and subjects were followed for a 2-year minimum period to measure patient outcomes and to evaluate for the stability of construct fixation. A novel surgical procedure description was provided and supplemented with an illustrative case example. At 2 years post augmentation, patients had favorable functional outcomes with radiologic evidence of stable fixation. Proximal extension of the direct anterior approach to the hip can facilitate anterior column access and augmentation to improve stability of the hip reconstruction. This treatment may be an alternative to spanning constructs such as cup-cage constructs and custom implants, affording the potential for long-term biologic fixation. Further investigation into this technique is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
McClure, P W; Esola, M; Schreier, R; Siegler, S
1997-03-01
This study analyzed two groups of individuals during return to an upright position (extension) from a forward, bent position. Group 1 (n = 12) included individuals with no history of low back pain who were currently asymptomatic, and group 2 (n = 12) included individuals with no history of low back pain. To determine the amount and pattern of lumbar spine and hip motion that occur as an individual rises from a forward, flexed position, to determine if differences exist in this measurement between individuals with and without a history of low back pain, and to determine if hamstring length is related to the pattern of motion. Reports of interaction between lumbar spine and hip movement vary for forward bending and extension. Differences may be a result of variations in measurement methods, loading conditions, or the pathology present, such as low back pain. A three-dimensional optoelectric motion analysis system was used to measure the amount and velocity of lumbar spine and hip motion during extension. Each participant in the study performed three trials of a complete flexion-extension cycle at a self-selected speed. The data for the extension portion of the cycle were averaged and used for statistical analysis. Hamstring length also was determined using two clinical tests, the passive straight-leg raise and the active knee-extension tests. The pattern of movement was described by calculating lumbar to hip extension ratios for each 25% interval of total extension. Individuals with a history of low back pain tended to move from the lumbar spine earlier than those with no history of low back pain, especially in the initial 25% of the extension motion. For all participants, mean lumbar to hip extension ratios were 0.26 for 0-25% of extension, 0.61 for 25-50%, 0.81 for 50-75%, and 2.3 for 75-100%. The lumbar to hip ratios were different in each 25% interval, demonstrating that the hips had a greater contribution to early extension, with the lumbar spine contribution increasing in the middle intervals and becoming the primary source of motion in the final interval. When lumbar to hip extension ratios were compared with corresponding intervals of flexion, three of four were positively correlated to flexion ratios, demonstrating a reversible lumbopelvic rhythm. Although participants with a history of low back pain had significantly tighter hamstrings than participants with no history of low back pain, hamstring length was not correlated with any of the kinematic characteristics during extension. Participants who were currently asymptomatic but had a history of low back pain moved in a manner similar to that of participants with no history of low back pain except that they demonstrated greater lumbar motion and velocity during the initial phase of extension. This may have been the result of low back pain or a contributing factor in recurrent low back pain.
Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E
2013-02-01
We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.
Strength, speed and power characteristics of elite rugby league players.
de Lacey, James; Brughelli, Matt E; McGuigan, Michael R; Hansen, Keir T
2014-08-01
The purpose of this article was to compare strength, speed, and power characteristics between playing position (forwards and backs) in elite rugby league players. A total of 39 first team players (height, 183.8 ± 5.95 cm; body mass, 100.3 ± 10.7 kg; age, 24 ± 3 years) from a National Rugby League club participated in this study. Testing included 10-, 40-m sprint times, sprint mechanics on an instrumented nonmotorized treadmill, and concentric isokinetic hip and knee extension and flexion. Backs, observed to have significantly (p ≤ 0.05) lighter body mass (effect size [ES] = 0.98), were significantly faster (10-m ES = 1.26; 40-m ES = 1.61) and produced significantly greater relative horizontal force and power (ES = 0.87 and 1.04) compared with forwards. However, no significant differences were found between forwards and backs during relative isokinetic knee extension, knee flexion, relative isokinetic hip extension, flexion, prowler sprints, sprint velocity, contact time, or flight time. The findings demonstrate that backs have similar relative strength in comparison with forwards, but run faster overground and produce significantly greater relative horizontal force and power when sprinting on a nonmotorized instrumented treadmill. Developing force and power in the horizontal direction may be beneficial for improving sprint performance in professional rugby league players.
Mechanical role of the posterior column components in the cervical spine.
Hartman, Robert A; Tisherman, Robert E; Wang, Cheng; Bell, Kevin M; Lee, Joon Y; Sowa, Gwendolyn A; Kang, James D
2016-07-01
To quantify the mechanical role of posterior column components in human cervical spine segments. Twelve C6-7 segments were subjected to resection of (1) suprasinous/interspinous ligaments (SSL/ISL), (2) ligamenta flavum (LF), (3) facet capsules, and (4) facets. A robot-based testing system performed repeated flexibility testing of flexion-extension (FE), axial rotation (AR), and lateral bending (LB) to 2.5Nm and replayed kinematics from intact flexibility tests for each state. Range-of-motion, stiffness, moment resistance and resultant forces were calculated. The LF contributes largely to moment resistance, particularly in flexion. Facet joints were primary contributors to AR and LB mechanics. Moment/force responses were more sensitive and precise than kinematic outcomes. The LF is mechanically important in the cervical spine; its injury could negatively impact load distribution. Damage to facets in a flexion injury could lead to AR or LB hypermobility. Quantifying the contribution of spinal structures to moment resistance is a sensitive, precise process for characterizing structural mechanics.
Gait alterations to effectively reduce hip contact forces.
Wesseling, Mariska; de Groote, Friedl; Meyer, Christophe; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse
2015-07-01
Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R(2) = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R(2) = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A Review of the Biomechanical Differences Between the High-Bar and Low-Bar Back-Squat.
Glassbrook, Daniel J; Helms, Eric R; Brown, Scott R; Storey, Adam G
2017-09-01
Glassbrook, DJ, Helms, ER, Brown, SR, and Storey, AG. A review of the biomechanical differences between the high-bar and low-bar back-squat. J Strength Cond Res 31(9): 2618-2634, 2017-The back-squat is a common exercise in strength and conditioning for a variety of sports. It is widely regarded as a fundamental movement to increase and measure lower-body and trunk function, as well as an effective injury rehabilitation exercise. There are typically 2 different bar positions used when performing the back-squat: the traditional "high-bar" back-squat (HBBS) and the "low-bar" back-squat (LBBS). Different movement strategies are used to ensure that the center of mass remains in the base of support for balance during the execution of these lifts. These movement strategies manifest as differences in (a) joint angles, (b) vertical ground reaction forces, and (c) the activity of key muscles. This review showed that the HBBS is characterized by greater knee flexion, lesser hip flexion, a more upright torso, and a deeper squat. The LBBS is characterized by greater hip flexion and, therefore, a greater forward lean. However, there are limited differences in vertical ground reaction forces between the HBBS and LBBS. The LBBS can also be characterized by a greater muscle activity of the erector spinae, adductors, and gluteal muscles, whereas the HBBS can be characterized by greater quadriceps muscle activity. Practitioners seeking to develop the posterior-chain hip musculature (i.e., gluteal, hamstring, and erector muscle groups) may seek to use the LBBS. In comparison, those seeking to replicate movements with a more upright torso and contribution from the quadriceps may rather seek to use the HBBS in training.
Kimura, Yuka; Ishibashi, Yasuyuki; Tsuda, Eiichi; Yamamoto, Yuji; Hayashi, Yoshimitsu; Sato, Shuichi
2012-03-01
In badminton, knees opposite to the racket-hand side received anterior cruciate ligament (ACL) injuries during single-leg landing after overhead stroke. Most of them occurred in the backhand-side of the rear court. Comparing lower limb biomechanics during single-leg landing after overhead stroke between the forehand-side and backhand-side court may help explain the different injury rates depending on court position. The knee kinematics and kinetics during single-leg landing after overhead stroke following back-stepping were different between the forehand-side and backhand-side court. Controlled laboratory study. Hip, knee and ankle joint kinematic and knee kinetic data were collected for 17 right-handed female college badminton players using a 3-dimensional motion analysis system. Subjects performed single-left-legged landing after an overhead stroke following left and right back-stepping. The kinematic and kinetic data of the left lower extremities during landing were measured and compared between left and right back-steps. Hip flexion and abduction and knee valgus at the initial contact, hip and knee flexion and knee valgus at the maximum knee flexion and the maximum knee valgus moment were significantly larger for the left back-step than the right back-step (p<0.05). Significant differences in joint kinematics and kinetics of the lower extremity during single-leg landing after overhead stroke were observed between different back-step directions. Increased knee valgus angle and moment following back-stepping to the backhand-side might be related to the higher incidence of ACL injury during single-leg landing after overhead stroke.
Potvin, Brigitte M; Shourijeh, Mohammad S; Smale, Kenneth B; Benoit, Daniel L
2017-09-06
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p<0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom. Copyright © 2017 Elsevier Ltd. All rights reserved.
Haddas, Ram; Hooper, Troy; James, C Roger; Sizer, Phillip S
2016-12-01
Volitional preemptive abdominal contraction (VPAC) during dynamic activities may alter trunk motion, but the role of the core musculature in positioning the trunk during landing tasks is unclear. To determine whether volitional core-muscle activation incorporated during a drop vertical jump alters lower extremity kinematics and kinetics, as well as trunk and lower extremity muscle activity at different landing heights. Controlled laboratory study. Clinical biomechanics laboratory. Thirty-two young healthy adults, consisting of 17 men (age = 25.24 ± 2.88 years, height = 1.85 ± 0.06 m, mass = 89.68 ± 16.80 kg) and 15 women (age = 23.93 ± 1.33 years, height = 1.67 ± 0.08 m, mass = 89.68 ± 5.28 kg). Core-muscle activation using VPAC. We collected 3-dimensional ankle, knee, and hip motions, moments, and powers; ground reaction forces; and trunk and lower extremity muscle activity during 0.30- and 0.50-m drop vertical-jump landings. During landing from a 0.30-m height, VPAC performance increased external oblique and semitendinosis activity, knee flexion, and knee internal rotation and decreased knee-abduction moment and knee-energy absorption. During the 0.50-m landing, the VPAC increased external oblique and semitendinosis activity, knee flexion, and hip flexion and decreased ankle inversion and hip-energy absorption. The VPAC performance during landing may protect the anterior cruciate ligament during different landing phases from different heights, creating a protective advantage just before ground contact and after the impact phase. Incorporating VPAC during high injury-risk activities may enhance pelvic stability, improve lower extremity positioning and sensorimotor control, and reduce anterior cruciate ligament injury risk while protecting the lumbar spine.
Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Grugni, Graziano; Camerota, Filippo; Celletti, Claudia; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo
2011-01-01
This study aimed to quantify and compare the gait pattern in Ehlers-Danlos (EDS) and Prader-Willi syndrome (PWS) patients to provide data for developing evidence-based rehabilitation strategies. Twenty EDS and 19 PWS adult patients were evaluated with an optoelectronic system and force platforms for measuring kinematic and kinetic parameters during walking. The results were compared with those obtained in a group of 20 normal-weight controls (CG). The results showed that PWS patients walked with longer stance duration and reduced velocity than EDS, close to CG. Both EDS and PWS showed reduced anterior step length than CG. EDS kinematics evidenced a physiological position at proximal joints (pelvis and hip joint) while some deficits were displayed at knee (reduced flexion in swing phase) and ankle level (plantar flexed position in stance and reduced dorsal flexion in swing). PWS showed a forward tilted pelvis in the sagittal plane, excessive hip flexion during the whole gait cycle and an increased hip movement in the frontal plane. Their knees were flexed at initial contact with reduced range of motion while ankle joints showed a plantar flexed position during stance. No differences were found in terms of ankle kinetics and joint stiffness. Our data showed that EDS and PWS patients were characterized by a different gait strategy: PWS showed functional limitations at every level of the lower limb joints, whereas in EDS limitations, greater than PWS, were reported mainly at the distal joints. PWS patients should be encouraged to walk for its positive impact on muscle mass and strength and energy balance. For EDS patients the rehabilitation program should be focused on ankle strategy improvement. Copyright © 2011 Elsevier Ltd. All rights reserved.
Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril
2015-02-01
Cross-sectional study of lumbopelvic muscle activation during rapid limb movements in chronic low back pain (CLBP) patients and healthy controls. Controversy exists over whether bilateral anticipatory activation of the deep abdominal muscles represents a normal motor control strategy prior to all rapid limb movements, or if this is simply a task-specific strategy appropriate for only certain movement conditions. To assess the onset timing of the transversus abdominis/internal oblique muscles (TrA/IO) during two rapid limb movement tasks with different postural demands - bilateral shoulder flexion in standing, unilateral hip extension in prone lying - as well as differences between CLBP and controls. Twelve CLBP and 13 controls performed the two tasks in response to an auditory cue. Surface EMG was acquired bilaterally from five muscles, including TrA/IO. In both groups, 50% of bilateral shoulder flexion trials showed bilateral anticipatory TrA/IO activation. This was rare, however, in unilateral hip extension for which only the TrA/IO contralateral to the moving leg showed anticipatory activation. The only significant difference in lumbo-pelvic muscle onset timing between CLBP and controls was a delay in semitendinosus activation during bilateral shoulder flexion in standing. Our data suggest that bilateral anticipatory TrA/IO activation is a task-specific motor control strategy, appropriate for only certain rapid limb movement conditions. Furthermore, the presence of altered semitendinosus onset timing in the CLBP group during bilateral shoulder flexion may be reflective of other possible lumbo-pelvic motor control alterations among this population. Copyright © 2014 Elsevier B.V. All rights reserved.
Lichtenstein, M J; Dhanda, R; Cornell, J E; Escalante, A; Hazuda, H P
2000-06-01
Elders often present to health care providers with multiple inter-related conditions that determine an individual's ability to function. The disablement process provides a generalized sociomedical framework for investigating the complex pathways from chronic disease to disability. At each stage of the main pathway, associations may exist among primary physical factors and modifying variables that ultimately have downstream effects on the progression toward disability. The purpose of the present analysis is to examine the inter-relationships between a cohesive set of variables primarily at the level of impairment that may affect hip and knee flexion range of motion (ROM). The San Antonio Longitudinal Study of Aging enrolled 833 community dwelling Mexican (MA) and European American (EA) elders aged 64-78 years between 1992 and 1996. Of these, 647 had complete data from both a home-based and performance-based battery of assessments for these analyses. Concerning impairments, hip ROM was measured using an inclinometer, and knee ROM using a goniometer. Pain location and intensity were assessed using the McGill Pain Questionnaire. Peripheral vascular disease was assessed using doppler brachial and ankle systolic blood pressures. Ankle and knee reflexes, and vibratory sensation were assessed by a standardized neurological examination. As to diseases, diabetes was assessed using a combination of blood glucose levels and self-report, and arthritis by self-report. Concerning modifying variables, height and weight were directly measured and used to calculate BMI. Activity level was assessed with the Minnesota Leisure Time Questionnaire. Analgesic use was assessed by direct observation of medications taken within the past two weeks. We used structural equation modeling to test associations between the variables that were specified a priori. These analyses demonstrate the central role of BMI as a determinant of hip and knee flexion ROM. For an increase in level of BMI, the coefficients [SEM] for changes in levels of hip and knee ROM were -0.38 [0.05] and -0.26 [0.05], respectively. A higher BMI resulted in lower hip and knee ROM. BMI was also directly associated with prevalent diabetes (0.10 [0.05]) and arthritis (0.17 [0.05]). However, after adjustment for BMI, diabetes and arthritis did not have direct independent associations with either hip or knee ROM. BMI was also indirectly associated with knee, but not hip, ROM through paths including lower-leg pain, pain intensity, and neurosensory impairments. Diabetes had an indirect association with hip, but not knee ROM, through a path including peripheral vascular disease. In conclusion, BMI is a primary direct determinant of hip and knee ROM. The paths by which diabetes and arthritis lead to physical disability may be mediated, in part, at the level of impairment by BMI's association with joint range of motion. Interventions designed to decrease the impact of diabetes and arthritis on disability should track changes in BMI and joint ROM to measure the paths that account for the intervention's success. The observed associations suggest that interventions targeted to decrease BMI itself may lead to improved function in part through improved joint ROM.
Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla
2014-01-01
Objective To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Methods Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25–67) and conventional physiotherapy with a mean age of 49 years (range: 43–59). Both groups were submitted to a twelve-week program of two sessions weekly. Results After the intervention, significant improvements were observed regarding the Lequesne index (p-value = 0.0217), Oswestry Disability Index (p-value = 0.0112), range of motion of trunk extension (p-value = 0.0320), trunk flexion muscle strength (p-value = 0.0459), hip extension and abduction muscle strength (p-value = 0.0062 and p-value = 0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Conclusion Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. PMID:25818817
Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla
2015-01-01
To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25-67) and conventional physiotherapy with a mean age of 49 years (range: 43-59). Both groups were submitted to a twelve-week program of two sessions weekly. After the intervention, significant improvements were observed regarding the Lequesne index (p-value=0.0217), Oswestry Disability Index (p-value=0.0112), range of motion of trunk extension (p-value=0.0320), trunk flexion muscle strength (p-value=0.0459), hip extension and abduction muscle strength (p-value=0.0062 and p-value=0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.
Hébert-Losier, Kim; Schelin, Lina; Tengman, Eva; Strong, Andrew; Häger, Charlotte K
2018-03-01
Anterior cruciate ligament (ACL) ruptures may lead to knee dysfunctions later in life. Single-leg tasks are often evaluated, but bilateral movements may also be compromised. Our aim was to use curve analyses to examine double-leg drop-jump kinematics in ACL-reconstructed, ACL-deficient, and healthy-knee cohorts. Subjects with unilateral ACL ruptures treated more than two decades ago (17-28years) conservatively with physiotherapy (ACL PT , n=26) or in combination with reconstructive surgery (ACL R , n=28) and healthy-knee controls (n=25) performed 40-cm drop-jumps. Three-dimensional knee, hip, and trunk kinematics were analyzed during Rebound, Flight, and Landing phases. Curves were time-normalized and compared between groups (injured and non-injured legs of ACL PT and ACL R vs. non-dominant and dominant legs of controls) and within groups (between legs) using functional analysis of variance methods. Compared to controls, ACL groups exhibited less knee and hip flexion on both legs during Rebound and greater knee external rotation on their injured leg at the start of Rebound and Landing. ACL R also showed less trunk flexion during Rebound. Between-leg differences were observed in ACL R only, with the injured leg more internally rotated at the hip. Overall, kinematic curves were similar between ACL R and ACL PT . However, compared to controls, deviations spanned a greater proportion of the drop-jump movement at the hip in ACL R and at the knee in ACL PT . Trunk and bilateral leg kinematics during double-leg drop-jumps are still compromised long after ACL-rupture care, independent of treatment. Curve analyses indicate the presence of distinct compensatory mechanisms in ACL PT and ACL R compared to controls. Copyright © 2018 Elsevier B.V. All rights reserved.
Quinzi, Federico; Camomilla, Valentina; Felici, Francesco; Di Mario, Alberto; Sbriccoli, Paola
2013-02-01
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kristianslund, Eirik; Krosshaug, Tron; Mok, Kam-Ming; McLean, Scott; van den Bogert, Antonie J
2014-01-03
Joint moments help us understand joint loading and muscle function during movement. However, the interpretation depends on the choice of reference frame, but the different reference frames have not been compared in dynamic, high-impact sporting movements. We have compared the magnitude and the resulting ranking of hip and knee joint moments expressed in the laboratory coordinate system, the local system of the distal segment and projected or decomposed to the Joint Coordinate System (JCS) axes. Hip and knee joint moments of drop jumps and sidestep cutting in 70 elite female handball players were calculated based on recordings from an eight-camera 240 Hz system and two force platforms and expressed with the four methods. The greatest variations in magnitude between conditions were seen for drop jump hip internal rotation (range: 0.31-0.71 Nm/kg) and sidestep cutting knee flexion (2.87-3.39 Nm/kg) and hip internal rotation (0.87-2.36 Nm/kg) and knee internal rotation (0.10-0.40 Nm/kg) moments. The rank correlations were highest between conditions for flexion moments (0.88-1.00) and sidestep cutting abduction moments (0.71-0.98). The rank correlations ranged from 0.64 to 0.73 for drop jump knee abduction moments and between -0.17 and 0.67 for hip and knee internal rotation moments. Expression of joint moments in different reference systems affects the magnitude and ranking of athletes. This lack of consistency may complicate the comparison and combination of results. Projection to the JCS is the only method where joint moments correspond to muscle and ligament loading. More widespread adoption of this convention could facilitate comparison of studies and ease the interpretation of results. © 2013 Elsevier Ltd. All rights reserved.
Model for Predicting the Performance of Planetary Suit Hip Bearing Designs
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar
2012-01-01
Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance
Farrokhi, Shawn; Pollard, Christine D; Souza, Richard B; Chen, Yu-Jen; Reischl, Stephen; Powers, Christopher M
2008-07-01
Experimental laboratory study. To examine how a change in trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Altering the position of the trunk during the forward lunge exercise is thought to affect the muscular actions of the lead lower extremity. However, no studies have compared the biomechanical differences between the traditional forward lunge and its variations. Ten healthy adults (5 males, 5 females; mean age +/- SD, 26.7 +/- 3.2 years) participated. Lower extremity kinematics, kinetics, and surface electromyographic (EMG) data were obtained while subjects performed 3 lunge exercises: normal lunge with the trunk erect (NL), lunge with the trunk forward (LTF), and lunge with trunk extension (LTE). A 1-way analysis of variance with repeated measures was used to compare lower extremity kinematics, joint impulse (area under the moment-time curve), and normalized EMG (highest 1-second window of activity for selected lower extremity muscles) among the 3 lunge conditions. During the LTF condition, significant increases were noted in peak hip flexion angle, hip extensor and ankle plantar flexor impulse, as well as gluteus maximus and biceps femoris EMG (P<.015) when compared to the NL condition. During the LTE condition, a significant increase was noted in peak ankle dorsiflexion and a significant decrease was noted in peak hip flexion angle (P<.015) compared to the NL condition. Performing a lunge with the trunk forward increased the hip extensor impulse and the recruitment of the hip extensors. In contrast, performing a forward lunge with the trunk extended did not alter joint impulse or activation of the lower extremity musculature. Therapy, level 5.
Ekelem, Andrew; Goldfarb, Michael
2018-01-01
Spasticity is a common comorbidity associated with spinal cord injury (SCI). Robotic exoskeletons have recently emerged to facilitate legged mobility in people with motor complete SCI. Involuntary muscle activity attributed to spasticity, however, can prevent such individuals from using an exoskeleton. Specifically, although most exoskeleton technologies can accommodate low to moderate spasticity, the presence of moderate to severe spasticity can significantly impair gait kinematics when using an exoskeleton. In an effort to potentially enable individuals with moderate to severe spasticity to use exoskeletons more effectively, this study investigates the use of common peroneal stimulation in conjunction with exoskeleton gait assistance. The electrical stimulation is timed with the exoskeleton swing phase, and is intended to acutely suppress extensor spasticity through recruitment of the flexion withdrawal reflex (i.e., while the stimulation is activated) to enable improved exoskeletal walking. In order to examine the potential efficacy of this approach, two SCI subjects with severe extensor spasticity (i.e., modified Ashworth ratings of three to four) walked in an exoskeleton with and without supplemental stimulation while knee and hip motion was measured during swing phase. Stimulation was alternated on and off every ten steps to eliminate transient therapeutic effects, enabling the acute effects of stimulation to be isolated. These experiments indicated that common peroneal stimulation on average increased peak hip flexion during the swing phase of walking by 21.1° (236%) and peak knee flexion by 14.4° (56%). Additionally, use of the stimulation decreased the swing phase RMS motor current by 228 mA (15%) at the hip motors and 734 mA (38%) at the knee motors, indicating improved kinematics were achieved with reduced effort from the exoskeleton. Walking with the exoskeleton did not have a significant effect on modified Ashworth scores, indicating the common peroneal stimulation has only acute effects on suppressing extensor tone and aiding flexion. This preliminary data indicates that such supplemental stimulation may be used to improve the quality of movement provided by exoskeletons for persons with severe extensor spasticity in the lower limb.
Ekelem, Andrew; Goldfarb, Michael
2018-01-01
Spasticity is a common comorbidity associated with spinal cord injury (SCI). Robotic exoskeletons have recently emerged to facilitate legged mobility in people with motor complete SCI. Involuntary muscle activity attributed to spasticity, however, can prevent such individuals from using an exoskeleton. Specifically, although most exoskeleton technologies can accommodate low to moderate spasticity, the presence of moderate to severe spasticity can significantly impair gait kinematics when using an exoskeleton. In an effort to potentially enable individuals with moderate to severe spasticity to use exoskeletons more effectively, this study investigates the use of common peroneal stimulation in conjunction with exoskeleton gait assistance. The electrical stimulation is timed with the exoskeleton swing phase, and is intended to acutely suppress extensor spasticity through recruitment of the flexion withdrawal reflex (i.e., while the stimulation is activated) to enable improved exoskeletal walking. In order to examine the potential efficacy of this approach, two SCI subjects with severe extensor spasticity (i.e., modified Ashworth ratings of three to four) walked in an exoskeleton with and without supplemental stimulation while knee and hip motion was measured during swing phase. Stimulation was alternated on and off every ten steps to eliminate transient therapeutic effects, enabling the acute effects of stimulation to be isolated. These experiments indicated that common peroneal stimulation on average increased peak hip flexion during the swing phase of walking by 21.1° (236%) and peak knee flexion by 14.4° (56%). Additionally, use of the stimulation decreased the swing phase RMS motor current by 228 mA (15%) at the hip motors and 734 mA (38%) at the knee motors, indicating improved kinematics were achieved with reduced effort from the exoskeleton. Walking with the exoskeleton did not have a significant effect on modified Ashworth scores, indicating the common peroneal stimulation has only acute effects on suppressing extensor tone and aiding flexion. This preliminary data indicates that such supplemental stimulation may be used to improve the quality of movement provided by exoskeletons for persons with severe extensor spasticity in the lower limb. PMID:29910710
Lower Extremity Kinematics Differed Between a Controlled Drop-Jump and Volleyball-Takeoffs.
Beardt, Bradley S; McCollum, Myranda R; Hinshaw, Taylour J; Layer, Jacob S; Wilson, Margaret A; Zhu, Qin; Dai, Boyi
2018-04-03
Previous studies utilizing jump-landing biomechanics to predict anterior cruciate ligament injuries have shown inconsistent findings. The purpose of this study was to quantify the differences and correlations in jump-landing kinematics between a drop-jump, a controlled volleyball-takeoff, and a simulated-game volleyball-takeoff. Seventeen female volleyball players performed these three tasks on a volleyball court while three-dimensional kinematic data were collected by three calibrated camcorders. Participants demonstrated significantly increased jump height, shorter stance time, increased time differences in initial contact between two feet, increased knee and hip flexion at initial contact and decreased peak knee and hip flexion for both left and right legs, and decreased knee-ankle distance ratio at the lowest height of mid-hip for the two volleyball-takeoffs compared with the drop-jump (p < 0.05, Cohen's dz ≥ 0.8). Significant correlations were observed for all variables between the two volleyball-takeoffs (p < 0.05, ρ ≥ 0.6), but were not for most variables between the drop-jump and two volleyball-takeoffs. Controlled drop-jump kinematics may not represent jump-landing kinematics exhibited during volleyball competition. Jump-landing mechanics during sports-specific tasks may better represent those exhibited during sports competition and their associated risk of ACL injury compared with the drop-jump.
Eltoukhy, Moataz; Kelly, Adam; Kim, Chang-Young; Jun, Hyung-Pil; Campbell, Richard; Kuenze, Christopher
2016-01-01
Cost effective, quantifiable assessment of lower extremity movement represents potential improvement over standard tools for evaluation of injury risk. Ten healthy participants completed three trials of a drop jump, overhead squat, and single leg squat task. Peak hip and knee kinematics were assessed using an 8 camera BTS Smart 7000DX motion analysis system and the Microsoft Kinect® camera system. The agreement and consistency between both uncorrected and correct Kinect kinematic variables and the BTS camera system were assessed using interclass correlations coefficients. Peak sagittal plane kinematics measured using the Microsoft Kinect® camera system explained a significant amount of variance [Range(hip) = 43.5-62.8%; Range(knee) = 67.5-89.6%] in peak kinematics measured using the BTS camera system. Across tasks, peak knee flexion angle and peak hip flexion were found to be consistent and in agreement when the Microsoft Kinect® camera system was directly compared to the BTS camera system but these values were improved following application of a corrective factor. The Microsoft Kinect® may not be an appropriate surrogate for traditional motion analysis technology, but it may have potential applications as a real-time feedback tool in pathological or high injury risk populations.
Pelvic rotation torque during fast-pitch softball hitting under three ball height conditions.
Iino, Yoichi; Fukushima, Atsushi; Kojima, Takeji
2014-08-01
The purpose of this study was to investigate the relevance of hip joint angles to the production of the pelvic rotation torque in fast-pitch softball hitting and to examine the effect of ball height on this production. Thirteen advanced female softball players hit stationary balls at three different heights: high, middle, and low. The pelvic rotation torque, defined as the torque acting on the pelvis through the hip joints about the pelvic superior-inferior axis, was determined from the kinematic and force plate data using inverse dynamics. Irrespective of the ball heights, the rear hip extension, rear hip external rotation, front hip adduction, and front hip flexion torques contributed to the production of pelvic rotation torque. Although the contributions of the adduction and external rotation torques at each hip joint were significantly different among the ball heights, the contributions of the front and rear hip joint torques were similar among the three ball heights owing to cancelation of the two torque components. The timings of the peaks of the hip joint torque components were significantly different, suggesting that softball hitters may need to adjust the timings of the torque exertions fairly precisely to rotate the upper body effectively.
Development of an integrated countermeasure device for use in long-duration spaceflight
NASA Astrophysics Data System (ADS)
Streeper, T.; Cavanagh, P. R.; Hanson, A. M.; Carpenter, R. D.; Saeed, I.; Kornak, J.; Frassetto, L.; Grodsinsky, C.; Funk, J.; Lee, S. M. C.; Spiering, B. A.; Bloomberg, J.; Mulavara, A.; Sibonga, J.; Lang, T.
2011-06-01
Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4±9.0 years, 69.5±15.4 kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. All training was conducted with the subject in orthostasis. When configured for spaceflight, subjects will be fixed to the device via a vest with loop attachments secured to subject load devices. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO 2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO 2peak and 1RM. Results: VO 2peak and 1RM improved after 6 weeks, with additional improvements after 12 weeks (1.95±0.5, 2.28±0.5, 2.47±0.6 L min -1, and 131.2±63.9,182.8±75.0, 207.0±75.0 kg) for baseline, 6 weeks, and 12 weeks, respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3±39.5, 76.8±39.2, and 55.7±21.7 N m vs. 86.1±37.3, 85.1±34.3, and 62.1±26.4 N m, respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip.
Frank, Barnett S.; Gilsdorf, Christine M.; Goerger, Benjamin M.; Prentice, William E.; Padua, Darin A.
2014-01-01
Background: Females with history of anterior cruciate ligament (ACL) injury and subsequent ligament reconstruction are at high risk for future ACL injury. Fatigue may influence the increased risk of future injury in females by altering lower extremity biomechanics and postural control. Hypothesis: Fatigue will promote lower extremity biomechanics and postural control deficits associated with ACL injury. Study Design: Descriptive laboratory study. Methods: Fourteen physically active females with ACL reconstruction (mean age, 19.64 ± 1.5 years; mean height, 163.52 ± 6.18 cm; mean mass, 62.6 ± 13.97 kg) volunteered for this study. Postural control and lower extremity biomechanics were assessed in the surgical limb during single-leg balance and jump-landing tasks before and after a fatigue protocol. Main outcome measures were 3-dimensional hip and knee joint angles at initial contact, peak angles, joint angular displacements and peak net joint moments, anterior tibial shear force, and vertical ground reaction force during the first 50% of the loading phase of the jump-landing task. During the single-leg stance task, the main outcome measure was center of pressure sway speed. Results: Initial contact hip flexion angle decreased (t = −2.82, P = 0.01; prefatigue, 40.98° ± 9.79°; postfatigue, 36.75° ± 8.61°) from pre- to postfatigue. Hip flexion displacement (t = 2.23, P = 0.04; prefatigue, 45.19° ± 14.1°; postfatigue, 47.48° ± 14.21°) and center of pressure sway speed (t = 3.95, P < 0.05; prefatigue, 5.18 ± 0.96 cm/s; postfatigue, 6.20 ± 1.72 cm/s) increased from pre- to postfatigue. There was a trending increase in hip flexion moment (t = 2.14, P = 0.05; prefatigue, 1.66 ± 0.68 Nm/kg/m; postfatigue, 1.91 ± 0.62 Nm/kg/m) from pre- to postfatigue. Conclusion: Fatigue may induce lower extremity biomechanics and postural control deficits that may be associated with ACL injury in physically active females with ACL reconstruction. Clinical Relevance: Rehabilitation and maintenance programs should incorporate activities that aim to improve muscular endurance and improve the neuromuscular system’s tolerance to fatiguing exercise in efforts to maintain stability and safe landing technique during subsequent physical activity. PMID:24982701
Aldridge Whitehead, Jennifer M; Wolf, Erik J; Scoville, Charles R; Wilken, Jason M
2014-10-01
Stair ascent can be difficult for individuals with transfemoral amputation because of the loss of knee function. Most individuals with transfemoral amputation use either a step-to-step (nonreciprocal, advancing one stair at a time) or skip-step strategy (nonreciprocal, advancing two stairs at a time), rather than a step-over-step (reciprocal) strategy, because step-to-step and skip-step allow the leading intact limb to do the majority of work. A new microprocessor-controlled knee (Ottobock X2(®)) uses flexion/extension resistance to allow step-over-step stair ascent. We compared self-selected stair ascent strategies between conventional and X2(®) prosthetic knees, examined between-limb differences, and differentiated stair ascent mechanics between X2(®) users and individuals without amputation. We also determined which factors are associated with differences in knee position during initial contact and swing within X2(®) users. Fourteen individuals with transfemoral amputation participated in stair ascent sessions while using conventional and X2(®) knees. Ten individuals without amputation also completed a stair ascent session. Lower-extremity stair ascent joint angles, moment, and powers and ground reaction forces were calculated using inverse dynamics during self-selected strategy and cadence and controlled cadence using a step-over-step strategy. One individual with amputation self-selected a step-over-step strategy while using a conventional knee, while 10 individuals self-selected a step-over-step strategy while using X2(®) knees. Individuals with amputation used greater prosthetic knee flexion during initial contact (32.5°, p = 0.003) and swing (68.2°, p = 0.001) with higher intersubject variability while using X2(®) knees compared to conventional knees (initial contact: 1.6°, swing: 6.2°). The increased prosthetic knee flexion while using X2(®) knees normalized knee kinematics to individuals without amputation during swing (88.4°, p = 0.179) but not during initial contact (65.7°, p = 0.002). Prosthetic knee flexion during initial contact and swing were positively correlated with prosthetic limb hip power during pull-up (r = 0.641, p = 0.046) and push-up/early swing (r = 0.993, p < 0.001), respectively. Participants with transfemoral amputation were more likely to self-select a step-over-step strategy similar to individuals without amputation while using X2(®) knees than conventional prostheses. Additionally, the increased prosthetic knee flexion used with X2(®) knees placed large power demands on the hip during pull-up and push-up/early swing. A modified strategy that uses less knee flexion can be used to allow step-over-step ascent in individuals with less hip strength.
Two Different Fatigue Protocols and Lower Extremity Motion Patterns During a Stop-Jump Task
Quammen, David; Cortes, Nelson; Van Lunen, Bonnie L.; Lucci, Shawn; Ringleb, Stacie I.; Onate, James
2012-01-01
Context: Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes. Objective: To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: A convenience sample of 15 female soccer players (age = 19.2 ±0.8 years, height = 1.67±0.05m, mass = 61.7 + 8.1 kg) without injury participated. Intervention(s): Five successful trials of a running–stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V˙o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V˙o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue). Main Outcome Measure(s): Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue. Results: Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ±0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P=.03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°±9.5°) (F1,14 = 16.229, P=.001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°±8.4°) than prefatigue (50.4°±10.3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (−35.9°±6.5°) than prefatigue (−38.8°±5.03°) (F1,14 = 11.537, P=.001). Conclusions: Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes. PMID:22488228
O'Sullivan, Peter B; Mitchell, Tim; Bulich, Paul; Waller, Rob; Holte, Johan
2006-11-01
This preliminary cross-sectional study was undertaken to determine if there were measurable relationships between posture, back muscle endurance and low back pain (LBP) in industrial workers with a reported history of flexion strain injury and flexion pain provocation. Clinical reports state that subjects with flexion pain disorders of the lumbar spine commonly adopt passive flexed postures such as slump sitting and present with associated dysfunction of the spinal postural stabilising musculature. However, to date there is little empirical evidence to support that patients with back pain, posture their spines differently than pain-free subjects. Subjects included 21 healthy industrial workers and 24 industrial workers with flexion-provoked LBP. Lifestyle information, lumbo-pelvic posture in sitting, standing and lifting, and back muscle endurance were measured. LBP subjects had significantly reduced back muscle endurance (P < 0.01). LBP subjects sat with less hip flexion, (P = 0.05), suggesting increased posterior pelvic tilt in sitting. LBP subjects postured their spines significantly closer to their end of range lumbar flexion in 'usual' sitting than the healthy controls (P < 0.05). Correlations between increased time spent sitting, physical inactivity and poorer back muscle endurance were also identified. There were no significant differences found between the groups for the standing and lifting posture measures. These preliminary results support that a relationship may exist between flexed spinal postures, reduced back muscle endurance, physical inactivity and LBP in subjects with a history of flexion injury and pain.
Zeni, Joseph; Pozzi, Federico; Abujaber, Sumayah; Miller, Laura
2014-01-01
Patients with hip osteoarthritis demonstrate limited range of motion, muscle weakness and altered biomechanics; however, few studies have evaluated the relationships between physical impairments and movement asymmetries. The purpose of this study was to identify the physical impairments related to movement abnormalities in patients awaiting total hip arthroplasty. We hypothesized that muscle weakness and pain would be related to greater movement asymmetries. Fifty-six subjects who were awaiting total hip arthroplasty were enrolled. Pain was assessed using a 0 to 10 scale, range of motion was assessed with the Harris Hip Score and isometric hip abductor strength was tested using a hand-held dynamometer. Trunk, pelvis and hip angles and moments in the frontal and sagittal planes were measured during walking using three dimensional motion analysis. During gait, subjects had 3.49 degrees less peak hip flexion and 8.82 degrees less extension angles (p<0.001) and had 0.03 Nm/k*m less hip abduction moment on the affected side (p=0.043). Weaker hip muscles were related to greater pelvis (r=−0.291) and trunk (r=−0.332) rotations in the frontal plane. These findings suggest that hip weakness drives abnormal movement patterns at the pelvis and trunk in patients with hip osteoarthritis to a greater degree than hip pain. PMID:25492583
Compressive tibiofemoral force during crouch gait.
Steele, Katherine M; Demers, Matthew S; Schwartz, Michael H; Delp, Scott L
2012-04-01
Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. Copyright © 2011 Elsevier B.V. All rights reserved.
d'Elia, Nicolò; Vanetti, Federica; Cempini, Marco; Pasquini, Guido; Parri, Andrea; Rabuffetti, Marco; Ferrarin, Maurizio; Molino Lova, Raffaele; Vitiello, Nicola
2017-04-14
In human-centered robotics, exoskeletons are becoming relevant for addressing needs in the healthcare and industrial domains. Owing to their close interaction with the user, the safety and ergonomics of these systems are critical design features that require systematic evaluation methodologies. Proper transfer of mechanical power requires optimal tuning of the kinematic coupling between the robotic and anatomical joint rotation axes. We present the methods and results of an experimental evaluation of the physical interaction with an active pelvis orthosis (APO). This device was designed to effectively assist in hip flexion-extension during locomotion with a minimum impact on the physiological human kinematics, owing to a set of passive degrees of freedom for self-alignment of the human and robotic hip flexion-extension axes. Five healthy volunteers walked on a treadmill at different speeds without and with the APO under different levels of assistance. The user-APO physical interaction was evaluated in terms of: (i) the deviation of human lower-limb joint kinematics when wearing the APO with respect to the physiological behavior (i.e., without the APO); (ii) relative displacements between the APO orthotic shells and the corresponding body segments; and (iii) the discrepancy between the kinematics of the APO and the wearer's hip joints. The results show: (i) negligible interference of the APO in human kinematics under all the experimented conditions; (ii) small (i.e., < 1 cm) relative displacements between the APO cuffs and the corresponding body segments (called stability); and (iii) significant increment in the human-robot kinematics discrepancy at the hip flexion-extension joint associated with speed and assistance level increase. APO mechanics and actuation have negligible interference in human locomotion. Human kinematics was not affected by the APO under all tested conditions. In addition, under all tested conditions, there was no relevant relative displacement between the orthotic cuffs and the corresponding anatomical segments. Hence, the physical human-robot coupling is reliable. These facts prove that the adopted mechanical design of passive degrees of freedom allows an effective human-robot kinematic coupling. We believe that this analysis may be useful for the definition of evaluation metrics for the ergonomics assessment of wearable robots.
Noncircular Chainrings Do Not Influence Maximum Cycling Power.
Leong, Chee-Hoi; Elmer, Steven J; Martin, James C
2017-12-01
Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc = 1.13; HIGH ecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGH ecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGH ecc . Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.
Mehta, Saurabh; Szturm, Tony; El-Gabalawy, Hani S.
2011-01-01
ABSTRACT Purpose: The objective of this study was to examine the effects of intra-articular corticosteroid injection (ICI) on ipsilateral knee flexion/extension, ankle dorsiflexion/plantarflexion (DF/PF), and hip abduction/adduction (abd/add) during stance phase in people with an acute exacerbation of rheumatoid arthritis (RA) of the knee joint. The study also assessed the effects of ICI on spatiotemporal parameters of gait and functional status in this group. Methods: Nine people with an exacerbation of RA of the knee were recruited. Kinematic and spatiotemporal gait parameters were obtained for each participant. Knee-related functional status was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Spatiotemporal gait parameters and joint angles (knee flexion, ankle DF/PF, hip abd/add) of the affected side were compared pre- and post-ICI. Results: Data for eight people were available for analysis. Median values for knee flexion and ankle PF increased significantly following ICI. Gait parameters of cadence, velocity, bilateral stride length, bilateral step length, step width, double-support percentage, and step time on the affected side also showed improvement. Pain and knee-related functional status as measured by the KOOS showed improvement. Conclusions: This study demonstrated a beneficial short-term effect of ICI on knee-joint movements, gait parameters, and knee-related functional status in people with acute exacerbation of RA of the knee. PMID:22942516
Multijoint kinetic chain analysis of knee extension during the soccer instep kick.
Naito, Kozo; Fukui, Yosuke; Maruyama, Takeo
2010-04-01
Although previous studies have shown that motion-dependent interactions between adjacent segments play an important role in producing knee extension during the soccer instep kick, detailed knowledge about the mechanisms underlying those interactions is lacking. The present study aimed to develop a 3-D dynamical model for the multijoint kinetic chain of the instep kick in order to quantify the contributions of the causal dynamical factors to the production of maximum angular velocity during knee extension. Nine collegiate soccer players volunteered to participate in the experiment and performed instep kicking movements while 3-D positional data and the ground reaction force were measured. A dynamical model was developed in the form of a linked system containing 8 segments and 18 joint rotations, and the knee extension/flexion motion was decomposed into causal factors related to muscular moment, gyroscopic moment, centrifugal force, Coriolis force, gravity, proximal endpoint linear acceleration, and external force-dependent terms. The rapid knee extension during instep kicking was found to result almost entirely from kicking leg centrifugal force, trunk rotation muscular moment, kicking leg Coriolis force, and trunk rotation gyroscopic-dependent components. Based on the finding that rapid knee extension during instep kicking stems from multiple dynamical factors, it is suggested that the multijoint kinetic chain analysis used in the present study is more useful for achieving a detailed understanding of the cause of rapid kicking leg movement than the previously used 2-D, two-segment kinetic chain model. The present results also indicated that the centrifugal effect due to the kicking hip flexion angular velocity contributed substantially to the generation of a rapid knee extension, suggesting that the adjustment between the kicking hip flexion angular velocity and the leg configuration (knee flexion angle) is more important for effective instep kicking than other joint kinematics.
Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard
2017-02-01
Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.
Omorczyk, Jarosław; Nosiadek, Leszek; Ambroży, Tadeusz; Nosiadek, Andrzej
2015-01-01
The main aim of this study was to verify the usefulness of selected simple methods of recording and fast biomechanical analysis performed by judges of artistic gymnastics in assessing a gymnast's movement technique. The study participants comprised six artistic gymnastics judges, who assessed back handsprings using two methods: a real-time observation method and a frame-by-frame video analysis method. They also determined flexion angles of knee and hip joints using the computer program. In the case of the real-time observation method, the judges gave a total of 5.8 error points with an arithmetic mean of 0.16 points for the flexion of the knee joints. In the high-speed video analysis method, the total amounted to 8.6 error points and the mean value amounted to 0.24 error points. For the excessive flexion of hip joints, the sum of the error values was 2.2 error points and the arithmetic mean was 0.06 error points during real-time observation. The sum obtained using frame-by-frame analysis method equaled 10.8 and the mean equaled 0.30 error points. Error values obtained through the frame-by-frame video analysis of movement technique were higher than those obtained through the real-time observation method. The judges were able to indicate the number of the frame in which the maximal joint flexion occurred with good accuracy. Using the real-time observation method as well as the high-speed video analysis performed without determining the exact angle for assessing movement technique were found to be insufficient tools for improving the quality of judging.
Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer
2015-09-01
We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.
Cushman, Daniel; Rho, Monica E
2015-07-01
Case report. Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. Therapy, level 4.
CUSHMAN, DANIEL; RHO, MONICA E.
2015-01-01
STUDY DESIGN Case report. BACKGROUND Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. CASE DESCRIPTION The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. OUTCOMES The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. DISCUSSION We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. LEVEL OF EVIDENCE Therapy, level 4. PMID:25996362
Sasaki, Shogo; Koga, Hideyuki; Krosshaug, Tron; Kaneko, Satoshi; Fukubayashi, Toru
2015-01-01
The strengths of interpersonal dyads formed by the attacker and defender in one-on-one situations are crucial for performance in team ball sports such as soccer. The purpose of this study was to analyze the kinematics of one-on-one defensive movements in soccer competitions, and determine the relationships between lower limb kinematics and the center of mass translation during cutting actions. Six defensive scenes in which a player was responding to an offender’s dribble attack were selected for analysis. To reconstruct the three-dimensional kinematics of the players, we used a photogrammetric model-based image-matching technique. The hip and knee kinematics were calculated from the matched skeleton model. In addition, the center of mass height was expressed as a ratio of each participant’s body height. The relationships between the center of mass height and the kinematics were determined by the Pearson’s product-moment correlation coefficient. The normalized center of mass height at initial contact was correlated with the vertical center of mass displacement (r = 0.832, p = 0.040) and hip flexion angle at initial contact (r = −0.823, p = 0.044). This suggests that the lower center of mass at initial contact is an important factor to reduce the downwards vertical center of mass translation during defensive cutting actions, and that this is executed primarily through hip flexion. It is therefore recommended that players land with an adequately flexed hip at initial contact during one-on-one cutting actions to minimize the vertical center of mass excursion. PMID:26240644
Musumeci, Alfredo; Pranovi, Giulia; Masiero, Stefano
2018-05-11
Nowadays, some spa centers are suitable for providing rehabilitative and preventive treatment in association with traditional spa therapy. This study aims to evaluate the feasibility and the effectiveness of an intensive rehabilitation program after hip arthroplasty in an Italian spa center. Early after total hip arthroplasty for severe osteoarthritis (≤ 10 days after the intervention), 12 consecutive patients (5 males and 7 females) aged between 50 and 85 years were enrolled for this study. All the patients performed a 2-week thermal multimodal rehabilitation program, which consisted of education and physical rehabilitative measures. Patients had 2-h and half/day session of land-based and hydrokinesitherapy (aquatic therapy) consisted in active and passive joint mobilization, respiratory and functional re-education exercises, gait and balance training, resistance exercise, and power training mainly for the upper limb associated to physical therapy modalities (electrotherapy and low-level laser therapy). An educational program was performed to both patients and families. Both before and after the rehabilitation treatment, patients underwent clinical evaluation, hip flexion/abduction range of motion, and Numeric Pain Rating Scale. Harris Hip Score (HHS) and SF-12 questionnaires (physical-PCS-12-and mental health component-MCS-12) were also administered. After the 2-week thermal spa treatment, hip flexion/abduction improved significantly (p < 0.05), but there was no statistically significant reduction in pain (p = 0.350). The HHS score improved significantly from 62.6 ± 12.8 to 82.15 ± 12.7 (p < 0.05), and the PCS-12 score from 36.37 ± 8.4 to 43.61 ± 8.95 (p < 0.05). There was no adverse event during spa treatment. After total hip arthroplasty, patients who underwent an intensive post-acute multimodal rehabilitation program showed an improvement in motor and functional recovery and a positive impact on quality of life. Therefore, we believe that the thermal setting is a suitable place for providing intensive rehabilitative treatment in orthopedic musculoskeletal disability.
Clinical application of the modified medially-mounted motor-driven hip gear joint for paraplegics.
Sonoda, S; Imahori, R; Saitoh, E; Tomita, Y; Domen, K; Chino, N
2000-04-15
This paper describes a motor-driven orthosis for paraplegics which has been developed. This orthosis is composed of a medially-mounted motor-driven hip joint and bilateral knee-ankle-foot orthosis. With the gear mechanism, the virtual axis of the hip joint of this orthosis is almost as high as the anatomical hip joint. A paraplegic patient with an injury level of T10/11 walked using bilateral lofstrand crutches and this new orthosis with or without the motor system. The motor is initiated by pushing a button attached at the edge of the grab of the crutches. Faster cadence and speed and smaller rotation angle of the trunk was obtained in motor walking compared with non-motor walking. The patient did not feel fearful of falling. The benefit of motor orthosis is that it can be used even in patients with lower motor lesions and that it provides stable regulation of hip flexion movement in spastic patients. In conclusion, this motor orthosis will enhance paraplegic walking.
Tateuchi, Hiroshige; Koyama, Yumiko; Akiyama, Haruhiko; Goto, Koji; So, Kazutaka; Kuroda, Yutaka; Ichihashi, Noriaki
2016-09-01
A decline in physical function associated with secondary hip osteoarthritis (OA) may be caused by both radiographic and clinical factors; however, the underlying mechanism remains unclear. The purpose of this study was to determine how joint degeneration, hip morphology, pain, hip range of motion (ROM), and hip muscle strength relate to one-leg standing (OLS) and gait in patients with mild-to-moderate secondary hip osteoarthritis. Fifty-five female patients (ages 22-65 years) with mild-to-moderate hip OA secondary to hip dysplasia were consecutively enrolled. Balance during OLS and three-dimensional hip angle changes while maintaining the OLS and at foot-off of the raised leg were measured. Gait speed and peak three-dimensional hip joint angles during gait were also measured. The associations between dependent variables (balance, gait speed, and hip kinematic changes) and independent variables (age, body mass index, pain, joint degeneration, hip morphologic abnormality, passive hip ROM, and hip muscle strength) were determined. While lower hip muscle strength was associated with hip kinematic changes such as flexion and internal rotation while maintaining OLS, decreased acetabular head index (AHI) and increased pain were associated with hip extension and abduction at foot-off in OLS. Decreased passive hip ROM was associated with decreased peak hip angles (extension, adduction, and external and internal rotation) during gait, although increased pain and decreased hip extension muscle strength were associated with slower gait speed. In this study of patients with secondary hip OA, AHI, pain, and hip impairments were associated with OLS and gait independently from age and radiographic degeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Cant, Joachim; Pitance, Laurent; Feipel, Véronique
2017-01-01
Previous studies have reported strength deficit in hip abduction, extension and external rotation in females with patellofemoral pain (PFP) when compared with healthy control; however, there is conflicting evidence for a decrease in hip muscle endurance. Therefore, it seems important to evaluate hip muscle endurance in females with PFP. Moreover, trunk extensor and ankle plantar flexor endurance have not yet been evaluate in females with PFP. To compare hip abductor, trunk extensor and ankle plantar flexor endurance between females with and without PFP. Twenty females with PFP (mean age, 21.1 years) and 76 healthy females (mean age, 20.5 years) were recruited. Subject performed three endurance clinical tests: (1) The hip abductor isometric endurance test, (2) The Sorensen test and (3) The heel rise test. Group differences were assessed using an independent t tests, or Mann-Whitney U tests for non-normally distributed data. Subjects with PFP exhibited significantly lower hip abductor, trunk extensor and ankle plantar flexor endurance than healthy controls. On average, subjects with PFP had deficits of 16% in hip abduction, 14% in trunk extension and 26% in ankle plantar flexion. Females with PFP exhibited diminished hip abductor, trunk extensor and ankle plantar flexor endurance compared to healthy controls.
van Arkel, R. J.; Amis, A. A.; Cobb, J. P.; Jeffers, J. R. T.
2015-01-01
In this in vitro study of the hip joint we examined which soft tissues act as primary and secondary passive rotational restraints when the hip joint is functionally loaded. A total of nine cadaveric left hips were mounted in a testing rig that allowed the application of forces, torques and rotations in all six degrees of freedom. The hip was rotated throughout a complete range of movement (ROM) and the contributions of the iliofemoral (medial and lateral arms), pubofemoral and ischiofemoral ligaments and the ligamentum teres to rotational restraint was determined by resecting a ligament and measuring the reduced torque required to achieve the same angular position as before resection. The contribution from the acetabular labrum was also measured. Each of the capsular ligaments acted as the primary hip rotation restraint somewhere within the complete ROM, and the ligamentum teres acted as a secondary restraint in high flexion, adduction and external rotation. The iliofemoral lateral arm and the ischiofemoral ligaments were primary restraints in two-thirds of the positions tested. Appreciation of the importance of these structures in preventing excessive hip rotation and subsequent impingement/instability may be relevant for surgeons undertaking both hip joint preserving surgery and hip arthroplasty. Cite this article: Bone Joint J 2015; 97-B:484–91. PMID:25820886
Lumbosacral agenesis. Three cases of reconstruction using Cotrel-Dubousset or L-rod instrumentation.
Dumont, C E; Damsin, J P; Forin, V; Carlioz, H
1993-07-01
Three patients with lumbosacral agenesis underwent surgery to lock the lumbopelvic instability. All three patients had an unstable sitting position and a kyphotic bearing that impaired intestinal transit or hampered further colostomy or ureterostomy. Luque instrumentation with iliac fixation performed according to Galveston was used in one patient. Cotrel-Dubousset instrumentation was used for the two other patients. Autografts plus allografts provided sufficient bone for fusion without requiring lower leg amputations. Increased hip flexion was obtained after pelvic stabilization, but knee flexion contracture remained the same. All patients showed improved intestinal transit or decreased urinary infections, and two patients attained a stable sitting position without aid.
[Which rehabilitation for which low back pain?].
Poiraudeau, S; Lefèvre-Colau, M M; Mayoux-Benhamou, M A; Revel, M
2000-10-15
Many rehabilitation technics for low back pain are available. Their aims are short time pain decrease, muscular strengthening in flexion or extension, increased hip and lumbar spine mobility, improved lumbar and pelvic proprioceptive sensibility, improved general fitness. During the past ten years, studies meeting widely accepted validity and applicability for therapeutic trials have addressed the clinical efficacy of rehabilitation in low back pain patients. Most studies assessing the back school approach have found no benefit. Spinal extension and flexion programs have yielded short-time improvements, without difference between the two methods. There is now strong evidence that functional restoration programs provide long-term benefits including better social and occupational outcomes.
Intra-limb coordination in karate kicking: Effect of impacting or not impacting a target.
Quinzi, Federico; Sbriccoli, Paola; Alderson, Jacqueline; Di Mario, Alberto; Camomilla, Valentina
2014-02-01
This study aimed to investigate the kicking limb coordinative patterns adopted by karate practitioners (karateka) when impacting (IRK), or not impacting (NIRK) a target during a roundhouse kick. Six karateka performed three repetitions of both kicks while kicking limb kinematics were recorded using a stereophotogrammetric system. Intra-limb coordination was quantified for hip and knee flexion-extension from toe-off to kick completion, using the Continuous relative phase (CRP). Across the same time interval, thigh and shank angular momentum about the vertical axis of the body was calculated. For all trials, across all participants, CRP curve peaks and maximum and minimum angular momentum were determined. A RM-ANOVA was performed to test for differences between kicking conditions. The CRP analysis highlighted, during the central portion of both kicks, a delayed flexion of the hip with respect to the knee. Conversely, during the terminal portion of the CRP curves, the NIRK is performed with a more in-phase action, caused by a higher hip angular displacement. The NIRK is characterized by a lower angular momentum which may enhance control of the striking limb. It would seem that the issue of no impact appears to be solved through the control of all segments of the kicking limb, in contrast to the primary control of the lower leg only observed during the IRK. Copyright © 2013 Elsevier B.V. All rights reserved.
Functional phases and angular momentum characteristics of Tkatchev and Kovacs.
Irwin, Gareth; Exell, Timothy A; Manning, Michelle L; Kerwin, David G
2017-03-01
Understanding the technical requirements and underlying biomechanics of complex release and re-grasp skills on high bar allows coaches and scientists to develop safe and effective training programmes. The aim of this study was to examine the differences in the functional phases between the Tkatchev and Kovacs skills and to explain how the angular momentum demands are addressed. Images of 18 gymnasts performing 10 Tkatchevs and 8 Kovacs at the Olympic Games were recorded (50 Hz), digitised and reconstructed (3D Direct Linear Transformation). Orientation of the functional phase action, defined by the rapid flexion to extension of the shoulders and extension to flexion of the hips as the performer passed through the lower vertical, along with shoulder and hip angular kinematics, angular momentum and key release parameters (body angle, mass centre velocity and angular momentum about the mass centre and bar) were compared between skills. Expected differences in the release parameters of angle, angular momentum and velocity were observed and the specific mechanical requirement of each skill were highlighted. Whilst there were no differences in joint kinematics, hip and shoulder functional phase were significantly earlier in the circle for the Tkatchev. These findings highlight the importance of the orientation of the functional phase in the preceding giant swing and provide coaches with further understanding of the critical timing in this key phase.
Influence of training on the biokinematics in trotting Andalusian horses.
Cano, M R; Miró, F; Diz, A M; Agüera, E; Galisteo, A M
2000-11-01
The aim of this study was to determine the influence of a 10-month training programme on the linear, temporal and angular characteristics of the fore and hind limbs at the trot in the Andalusian horse, using standard computer-aided videography. Sixteen male Andalusian horses were observed before and after training. Six strides were randomly selected for analysis in each horse and linear, temporal and angular parameters were calculated for fore and hind limbs. The training programme used here produced significant changes in kinematic parameters, such as shortening of stride length, and increase in swing duration and a decrease in hind limb stance percentage. No significant differences were recorded in the angular values for the forelimb joints. In trained horses, the more proximal joints of the hind limb, especially the hip and stifle, had a greater flexion while the fetlock showed a smaller extension angle. At the beginning of the swing phase, hip and stifle joints presented angles that were significantly more flexed. When the hind limbs came into contact with the ground, all the joints presented greater flexion after training.
Beach, Tyson A C; Stankovic, Tatjana; Carnegie, Danielle R; Micay, Rachel; Frost, David M
2018-02-01
"Use your legs" is commonly perceived as sound advice to prevent lifting-related low-back pain and injuries, but there is limited evidence that this directive attenuates the concomitant biomechanical risk factors. Body segment kinematic data were collected from 12 men and 12 women who performed a laboratory lifting/lowering task after being provided with different verbal instructions. The main finding was that instructing participants to lift "without rounding your lower back" had a greater effect on the amount of spine flexion they exhibited when lifting/lowering than instructing them to lift "with your legs instead of your back" and "bend your knees and hips". It was concluded that if using verbal instructions to discourage spine flexion when lifting, the instructions should be spine- rather than leg-focused. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conservative management of femoroacetabular impingement (FAI) in the long distance runner.
Loudon, Janice K; Reiman, Michael P
2014-05-01
Femoroacetabular impingement (FAI) is one cause of anterior hip pain that may occur in a long distance runner. By definition FAI is due to bony abutment of the femoral neck and the acetabulum. This occurs primarily with end-ranges of hip flexion and adduction. An understanding of running mechanics and performing a thorough examination will help the clinician provide an appropriate intervention for these athletes. A course of conservative treatment that includes patient education, manual therapy and strengthening should be tried prior to surgical management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bazett-Jones, David M; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E
2017-05-01
Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both. To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP. Crossover study. University research laboratory. Seventeen participants (10 men, 7 women) with PFP. Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets. Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05. Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: -13.97° ± 6.41°, posttest: -12.84° ± 6.45°; P = .003). Peak hip-extension (pretest: -2.31 ± 0.46) and hip-abduction (pretest: -2.02 ± 0.35) moments decreased after both the TENS (extension: -2.15 ± 0.48 Nm/kg, P = .015; abduction: -1.91 ± 0.33 Nm/kg, P = .015) and RSLS (extension: -2.18 ± 0.52 Nm/kg, P = .003; abduction: -1.87 ± 0.36 Nm/kg, P = .039) protocols. This study presents a novel and effective method of increasing pain in persons with PFP. Functionally increased pain after RSLS coincides with reduced hip-extensor muscle strength and decreased plantar-flexion angle during running. The TENS treatment decreased pain during running in those with PFP but failed to influence strength. Hip moments were reduced by both protocols, which may demonstrate that acute increases or decreases in pain cause runners to change their mechanics.
Is midsole thickness a key parameter for the running pattern?
Chambon, Nicolas; Delattre, Nicolas; Guéguen, Nils; Berton, Eric; Rao, Guillaume
2014-01-01
Many studies have highlighted differences in foot strike pattern comparing habitually shod runners who ran barefoot and with running shoes. Barefoot running results in a flatter foot landing and in a decreased vertical ground reaction force compared to shod running. The aim of this study was to investigate one possible parameter influencing running pattern: the midsole thickness. Fifteen participants ran overground at 3.3 ms(-1) barefoot and with five shoes of different midsole thickness (0 mm, 2 mm, 4 mm, 8 mm, 16 mm) with no difference of height between rearfoot and forefoot. Impact magnitude was evaluated using transient peak of vertical ground reaction force, loading rate, tibial acceleration peak and rate. Hip, knee and ankle flexion angles were computed at touch-down and during stance phase (range of motion and maximum values). External net joint moments and stiffness for hip, knee and ankle joints were also observed as well as global leg stiffness. No significant effect of midsole thickness was observed on ground reaction force and tibial acceleration. However, the contact time increased with midsole thickness. Barefoot running compared to shod running induced ankle in plantar flexion at touch-down, higher ankle dorsiflexion and lower knee flexion during stance phase. These adjustments are suspected to explain the absence of difference on ground reaction force and tibial acceleration. This study showed that the presence of very thin footwear upper and sole was sufficient to significantly influence the running pattern. Copyright © 2014 Elsevier B.V. All rights reserved.
Martínez-Ochoa, María José; Fernández-Domínguez, Juan Carlos; Morales-Asencio, Jose Miguel; González-Iglesias, Javier; Ricard, François; Oliva-Pascual-Vaca, Ángel
2018-05-21
To assess the effect of an osteopathic abdominal manual intervention (AMI) on pressure pain thresholds (PPTs), mobility, hip flexibility, and posture in women with chronic functional constipation. Randomized, double-blind placebo-controlled trial. Subjects were recruited for the study by referral from different gastroenterology outpatient clinics in the city of Madrid (Spain). Sixty-two patients suffering from chronic functional constipation according to the guidelines of the Congress of Rome III. The experimental group (n = 31) received an osteopathic AMI, and the control group (n = 31) received a sham procedure. PPTs at different levels, including vertebral levels C7, T3, T10, T11, and T12, trunk flexion range of motion (ROM), hip flexibility, and posture, were measured before and immediately after the intervention. A comparison between the difference between the pre- and postintervention values using the Student's t test for independent samples or nonparametric U-Mann-Whitney test depending on the distribution normality of the analyzed variables was perfomed. In the intergroup comparison, statistically significant differences were found in PPT at T11 (p = 0.011) and T12 (p = 0.001) and also in the trunk flexion ROM (p < 0.05). Moreover, women showed no adverse effects with acceptable pain tolerance to the intervention. The application of an osteopathic AMI is well tolerated and improves pain sensitivity in areas related to intestinal innervation, as well as lumbar flexion.
Effect of a physical training program using the Pilates method on flexibility in elderly subjects.
Geremia, Jeam Marcel; Iskiewicz, Matheus Magalhães; Marschner, Rafael Aguiar; Lehnen, Tatiana Ederich; Lehnen, Alexandre Machado
2015-12-01
The adaptations of the human body resulting from the aging process especially loss of flexibility can increase the risk of falls and the risk of developing other health conditions. Exercise training, in particular the Pilates exercise method, has become an important form of physical activity that minimizes the deleterious effects of aging on flexibility. Few studies have evaluated the effect of this training method on body flexibility among elderly. We aimed to evaluate the effects of physical training using the Pilates method on body flexibility of elderly individuals. Eighteen elderly women and two elderly men (aged 70 ± 4 years) followed a 10-week Pilates training program. Individuals were recruited from the local community via open invitations. At study entry, none of them had limited mobility (walking requiring the use of walkers or canes). Furthermore, those with neurologic, muscular, or psychiatric disorders as well as those using an assistive device for ambulation were excluded secondary to limited participation. Flexibility assessment tests (flexion, extension, right and left tilt, and right and left rotation of the cervical and thoracolumbar spine; flexion, extension, abduction, and lateral and medial right and left rotation of the glenohumeral joint; flexion, extension, abduction, adduction, and lateral and medial rotation of the right and left hip; and flexion of the right and left knee) were performed by a blinded evaluator using a flexometer before and after the training period. All assessments were carried out at the same time of day. There was an observed increase in flexion (22.86%; p < 0.001), extension (10.49%; p < 0.036), and rotation to the left side (20.45%; p < 0.019) of the cervical spine; flexion (16.45%; p < 0.001), extension (23.74%; p = 0.006), lateral bending right (39.52%; p < 0.001) and left (38.02%; p < 0.001), and right rotation (24.85%; p < 0.001) and left (24.24%; p < 0.001) of the thoracolumbar spine; flexion (right--8.80%, p = 0.034; left--7.03%, p = 0.050), abduction (right--20.69%, p < 0.001; left--16.26%, p = 0.005), and external rotation (right--116.07% and left--143%; p < 0.001 for both directions) of the glenohumeral joint; flexion (right--15.83%, p = 0.050; left--9.55%, p = 0.047) of the hips; and bending (right--14.20%, p = 0.006; left--15.20%, p = 0.017) the knees. The joint with the greatest magnitude of improvement was the thoracolumbar spine. Thus, this type of training may minimize the deleterious effects of aging and may improve the functionality of elderly individuals, which would reduce the likelihood of accidents (especially falls).
Williams, D S Blaise; Welch, Lee M
2015-01-01
Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.
Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Rouhana, Stephen W; Prasad, Priya
2008-11-01
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions.
Williams III, D. S. Blaise; Welch, Lee M.
2015-01-01
ABSTRACT Background: Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners. PMID:26537812
Moment-rotation responses of the human lumbosacral spinal column.
Guan, Yabo; Yoganandan, Narayan; Moore, Jason; Pintar, Frank A; Zhang, Jiangyue; Maiman, Dennis J; Laud, Purushottam
2007-01-01
The objective of this study was to test the hypothesis that the human lumbosacral joint behaves differently from L1-L5 joints and provides primary moment-rotation responses under pure moment flexion and extension and left and right lateral bending on a level-by-level basis. In addition, range of motion (ROM) and stiffness data were extracted from the moment-rotation responses. Ten T12-S1 column specimens with ages ranging from 27 to 68 years (mean: 50.6+/-13.2) were tested at a load level of 4.0 N m. Nonlinear flexion and extension and left and right lateral bending moment-rotation responses at each spinal level are reported in the form of a logarithmic function. The mean ROM was the greatest at the L5-S1 level under flexion (7.37+/-3.69 degrees) and extension (4.62+/-2.56 degrees) and at the L3-L4 level under lateral bending (4.04+/-1.11 degrees). The mean ROM was the least at the L1-L2 level under flexion (2.42+/-0.90 degrees), L2-L3 level under extension (1.58+/-0.63 degrees), and L1-L2 level under lateral bending (2.50+/-0.75 degrees). The present study proved the hypothesis that L5-S1 motions are significantly greater than L1-L5 motions under flexion and extension loadings, but the hypothesis was found to be untrue under the lateral bending mode. These experimental data are useful in the improved validation of FE models, which will increase the confidence of stress analysis and other modeling applications.
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-01-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients. PMID:29545679
Cadenas-Sánchez, Cristina; Arellano, Raúl; Taladriz, Sonia; López-Contreras, Gracia
2016-01-01
The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P < 0.05). Support phase duration was higher at forward walking than backward walking (61.2 vs. 59.0%). At initial contact, we showed that during forward walking, the ankle and hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P < 0.001). At final stance, the knee and hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: -12.2 vs. -14.5º; P < 0.001). The knee angle showed more flexion at forward walking (134.0º) than backward walking (173.1º) (P < 0.001). In conclusion, these results show how forward and backward walking in water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation.
Benn, Matthew L; Pizzari, Tania; Rath, Leanne; Tucker, Kylie; Semciw, Adam I
2018-05-01
Cadaveric studies indicate that adductor magnus is structurally partitioned into at least two regions. The aim of this study was to investigate the direction-specific actions of proximal and distal portions of adductor magnus, and in doing so determine if these segments have distinct functional roles. Fine-wire EMG electrodes were inserted into two portions of adductor magnus of 12 healthy young adults. Muscle activity was recorded during maximum voluntary isometric contractions (MVICs) across eight tests (hip flexion/extension, internal/external rotation, abduction, and adduction at 0°, 45°, and 90° hip flexion). Median activity within each action (normalized to peak) was compared between segments using repeated measures nonparametric tests (α = 0.05). An effect size (ES = z-score/√sample size) was calculated to determine the magnitude of difference between muscle segments. The relative contribution of each muscle segment differed significantly during internal rotation (P < 0.001; ES = 0.88) and external rotation (P = 0.003, ES = 0.79). The distal portion was most active during extension [median (interquartile range); 100(0)% MVIC)] and internal rotation [58(34)% MVIC]. The proximal portion was most active during extension [100(49)% MVIC] and adduction [59(64)%MVIC], with low level activity during external rotation [15(41)%MVIC]. This study suggests that adductor magnus has at least two functionally unique regions. Differences were most evident during rotation. The different direction-specific actions may imply that each segment performs separate roles in hip stability and movement. These findings may have implications on injury prevention and rehabilitation for adductor-related groin injuries, hamstring strain injury, and hip pathology. Clin. Anat. 31:535-543, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Orishimo, Karl F; McHugh, Malachy P
2015-03-01
The purposes of this study were to document relative activation intensities of the hamstrings and gluteus maximus during 4 eccentric hamstring strengthening exercises and to assess the effects of a short-term strengthening program comprised of these exercises on knee flexor strength and the length-tension relationship. Twelve healthy subjects participated in this study. Electromyographic (EMG) activities from the biceps femoris, semitendinosus, and gluteus maximus were recorded as subjects performed (a) standing hip extension with elastic resistance, (b) trunk flexion in single limb stance (diver), (c) standing split (glider), and (d) supine sliding bridge (slider). Baseline isometric knee flexor strength was measured at 90, 70, 50, and 30° of flexion at the knee with the subject seated and the hip flexed to 50° from horizontal. After completing the 4-week training program, strength tests were repeated. Repeated-measures analysis of variance were used to compare EMG activity between muscles and to assess angle-specific strength improvements. Hamstring activity exceeded gluteus maximus activity for resisted hip extension, glider, and slider exercises (p < 0.001) but not for the diver (p = 0.087). Hamstring activation was greatest during the slider and resisted hip extension and lowest during the glider and the diver. Knee flexor strength improved by 9.0% (p = 0.005) but was not angle specific (training by angle p = 0.874). The short-term home training program effectively targeted the hamstrings and resulted in strength gains that were similar at short and long muscle lengths. These data demonstrate that hamstring strength can be improved using eccentrically biased unilateral exercises without the use of weights or other equipments.
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-02-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.
Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile.
Hewett, Timothy E; Ford, Kevin R; Xu, Yingying Y; Khoury, Jane; Myer, Gregory D
2017-07-01
The effects of targeted neuromuscular training (TNMT) on movement biomechanics associated with the risk of anterior cruciate ligament (ACL) injuries are currently unknown. Purpose/Hypotheses: To determine the effectiveness of TNMT specifically designed to increase trunk control and hip strength. The hypotheses were that (1) TNMT would decrease biomechanical and neuromuscular factors related to an increased ACL injury risk and (2) TNMT would decrease these biomechanical and neuromuscular factors to a greater extent in athletes identified as being at a high risk for future ACL injuries. Controlled laboratory study. Female athletes who participated in jumping, cutting, and pivoting sports underwent 3-dimensional biomechanical testing before the season and after completing TNMT. During testing, athletes performed 3 different types of tasks: (1) drop vertical jump, (2) single-leg drop, and (3) single-leg cross drop. Analysis of covariance was used to examine the treatment effects of TNMT designed to enhance core and hip strength on biomechanical and neuromuscular characteristics. Differences were also evaluated by risk profile. Differences were considered statistically significant at P < .05. TNMT significantly increased hip external rotation moments and moment impulses, increased peak trunk flexion, and decreased peak trunk extension. Athletes with a high risk before the intervention (risk profile III) had a more significant treatment effect of TNMT than low-risk groups (risk profiles I and II). TNMT significantly improved proximal biomechanics, including increased hip external rotation moments and moment impulses, increased peak trunk flexion, and decreased peak trunk extension. TNMT that focuses exclusively on proximal leg and trunk risk factors is not, however, adequate to induce significant changes in frontal-plane knee loading. Biomechanical changes varied across the risk profile groups, with higher risk groups exhibiting greater improvements in their biomechanics.
Esola, M A; McClure, P W; Fitzgerald, G K; Siegler, S
1996-01-01
This study analyzed two groups of subjects during forward bending. Group 1 (n = 20) contained subjects with a history of low back pain and Group 2 (n = 21) included subjects without a history of low back pain. The purposes of this study were to establish the amount and pattern of lumbar spine and hip motion during forward bending, and determine differences in motion in subjects with and without a history of low back pain. Reported values for lumbar spine motion during forward bending vary from 23.9 degrees to 60 degrees and hip motion during forward bending ranges from 26 degrees to 66 degrees. There has been no direct study of both lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain to establish differences in total amounts or pattern of lumbar spine and hip motion during forward bending. A three-dimensional optoelectric motion analysis system was used to measure the amount and velocity of lumbar spine and hip motion during forward bending. Each subject performed three trials of forward bending that were averaged and used for statistical analysis. Hamstring flexibility was also assessed by two clinical tests, the passive straight leg raising and active knee extension tests. Mean total forward bending for all subjects was 111 degrees: 41.6 degrees from the lumbar spine and 69.4 degrees from the hips. There were no group differences for total amounts of lumbar spine and hip motion or velocity during forward bending. The pattern of motion was described by calculating lumbar-to-hip flexion ratios for early (0-30 degrees), middle (30-60 degrees), and late (60-90 degrees) forward bending. For all subjects, mean lumbar-to-hip ratios for early, middle, and late forward bending were 1.9, 0.9, and 0.4, respectively. Therefore, the lumbar spine had a greater contribution to early forward bending, the lumbar spine and hips contributed almost equally to middle forward bending, and the hips had a greater contribution to late forward bending. A t test revealed a difference between groups for the pattern of motion. Group 1 tended to move more at their lumbar spine during early forward bending and had a significantly lower lumbar-to-hip flexion ratio during middle forward bending (P < 0.01). Hamstring flexibility was strongly correlated to motion in subjects with a history of low back pain, but not in healthy subjects. The results provide quantitative data to guide clinical assessment of forward bending motion. Results also suggest that although people with a history of low back pain have amounts of lumbar spine and hip motion during forward bending similar to those of healthy subjects, the pattern of motion is different. It may be desirable to teach patients with a history of low back pain to use more hip motion during early forward bending, and hamstring stretching may be helpful for encouraging earlier hip motion.
Gender differences exist in the hip joint moments of healthy older walkers.
Boyer, Katherine A; Beaupre, Gary S; Andriacchi, Thomas P
2008-12-05
Gender differences in the incidence of symptomatic hip osteoarthritis (OA), changes in hip cartilage volume and hip joint space and rates hip arthroplasty of older people are reported in the literature. As the rate of progression of OA is in part mechanically modulated it is possible that this gender bias may be related to inherent differences (if they exist) in walking mechanics between older males and females. The purpose of this study was to examine potential mechanisms for gender differences in hip joint mechanics during walking by testing the hypotheses that females would exhibit higher hip flexion, adduction and internal rotation moments but not significantly greater normalized ground reaction forces (GRFs). Forty-two healthy subjects (21 male, 21 female), ages 50-79yr were recruited for gait analysis. In support of the hypotheses, greater external hip adduction and internal rotation along with hip extension moments were found for females compared to males after normalizing for body size for all self-selected walking speeds. Differences in walking style (kinematics) were the main determinants in the joint kinetic differences as no differences in the normalized GRFs were found. As external joint moments are surrogate measures of the joint contact forces, the results of this study suggest the hip joint stress for the female population is higher compared to male population. This is in favor of a hypothesis that the increased joint contact stress in a female population could contribute to a greater joint degeneration at the hip in females as compared with males.
Martin, RobRoy L; Irrgang, James J; Sekiya, Jon K
2008-09-01
One purpose of this study was to determine whether signs and symptoms could identify when a majority of the hip pain was originating from intra-articular sources in potential arthroscopic surgery candidates. The second purpose was to quantify pain reduction after an anesthetic intra-articular injection in those with potential labral pathology. Subjects with hip pain being evaluated by an orthopaedic surgeon specializing in hip arthroscopy were prospectively enrolled in the study. Clinical examination results were recorded. Sensitivity, specificity, and likelihood ratios were calculated to determine their accuracy in identifying those who would have greater than 50% pain relief from those with 50% pain relief or less. We enrolled 105 subjects in this study. An anesthetic intra-articular injection was performed in 49 potential candidates for arthroscopic surgery (47%). The mean age in these 49 subjects was 42 years (SD, 15 years; range, 18 to 68 years), with 25 men (51%) and 24 women (49%). According to magnetic resonance imaging (MRI) arthrogram, 18 individuals had a definite labral tear, 29 had a possible tear, and 2 had no labral tears. In those with definite tears or possible tears, 39% (n = 7) and 45% (n = 13), respectively, did not achieve a greater than 50% reduction of pain. Groin pain, clicking, pinching pain with sitting, lateral thigh pain, flexion abduction external rotation test, flexion-internal rotation-adduction test, and trochanteric tenderness were not useful in identifying those with greater than 50% pain relief from those with 50% relief or less. The symptoms and signs investigated in this study did not accurately or consistently identify subjects with primary intra-articular pain sources. Furthermore, candidates for hip arthroscopy with a labral tear identified on MRI arthrogram had varied responses to anesthetic intra-articular injection. Therefore all labral tears identified on MRI arthrogram may not be a major contributor to patients' pain complaints, and medical personnel should look for other causes of pain. Level III, diagnostic study of nonconsecutive patients (without consistently applied gold standard).
A feedback inclusive neuromuscular training program alters frontal plane kinematics.
Greska, Eric K; Cortes, Nelson; Van Lunen, Bonnie L; Oñate, James A
2012-06-01
Anterior cruciate ligament (ACL) neuromuscular training programs have demonstrated beneficial effects in reducing ACL injuries, yet further evaluation of their effects on biomechanical measures across a sports team season is required to elucidate the specific factors that are modifiable. The purpose of this study was to evaluate the effects of a 10-week off-season neuromuscular training program on lower extremity kinematics. Twelve Division I female soccer players (age: 19.2 ± 0.8 years, height: 1.67 ± 0.1 m, weight: 60.2 ± 6.5 kg) performed unanticipated dynamic trials of a running stop-jump task pretraining and posttraining. Data collection was performed using an 8-camera Vicon system (Los Angeles, CA, USA) and 2 Bertec (Columbus, OH, USA) force plates. The 10-week training program consisted of resistance training 2 times per week and field training, consisting of plyometric, agility, and speed drills, 2 times per week. Repeated measures analyses of variance (ANOVAs) were used to assess the differences between pretraining and posttraining kinetics and kinematics of the hip, knee, and ankle at initial contact (IC), peak knee flexion (PKF), and peak stance. Repeated measures ANOVAs were also used to assess isometric strength differences pretraining and posttraining. The alpha level was set at 0.05 a priori. The training program demonstrated significant increases in left hip extension, left and right hip flexion, and right hip adduction isometric strength. At IC, knee abduction angle moved from an abducted to an adducted position (-1.48 ± 3.65° to 1.46 ± 3.86°, p = 0.007), and hip abduction angle increased (-6.05 ± 4.63° to -10.34 ± 6.83°, p = 0.007). Hip abduction angle at PKF increased (-2.23 ± 3.40° to 6.01 ± 3.82°, p = 0.002). The maximum knee extension moment achieved at peak stance increased from pretraining to posttraining (2.02 ± 0.32 to 2.38 ± 0.75 N·m·kg⁻¹, p = 0.027). The neuromuscular training program demonstrated a potential positive effect in altering mechanics that influence the risk of incurring an ACL injury.
Knikou, Maria; Chaudhuri, Debjani; Kay, Elizabeth; Schmit, Brian D.
2006-01-01
The aim of this study was to establish the contribution of hip-mediated sensory feedback to spinal interneuronal circuits during dynamic conditions in people with incomplete spinal cord injury (SCI). Specifically, we investigated the effects of synergistic and antagonistic group I afferents on the soleus H-reflex during imposed sinusoidal hip movements. The soleus H-reflex was conditioned by stimulating the common peroneal nerve (CPN) at short (2, 3, and 4 ms) and long (80, 100, and 120 ms) conditioning test (C-T) intervals to assess the reciprocal and pre-synaptic inhibition of the soleus H-reflex, respectively. The soleus H-reflex was also conditioned by medial gastrocnemius (MG) nerve stimulation at C-T intervals ranging from 4 to 7 ms to assess changes in autogenic Ib inhibition during hip movement. Sinusoidal hip movements were imposed to the right hip joint at 0.2 Hz by the Biodex system while subjects were supine. The effects of sinusoidal hip movement on five leg muscles along with hip, knee, and ankle joint torques were also established during sensorimotor conditioning of the reflex. Phase-dependent modulation of antagonistic and synergistic muscle afferents was present during hip movement, with the reciprocal, pre-synaptic, and Ib inhibition to be significantly reduced during hip extension and reinforced during hip flexion. Reflexive muscle and joint torque responses – induced by the hip movement – were entrained to specific phases of hip movement. This study provides evidence that hip-mediated input acts as a controlling signal of pre- and post-alpha motoneuronal control of the soleus H-reflex. The expression of these spinal interneuronal circuits during imposed sinusoidal hip movements is discussed with respect to motor recovery in humans after SCI. PMID:16782072
Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.
Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam
2014-07-01
Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.
Mentiplay, Benjamin F; Hasanki, Ksaniel; Perraton, Luke G; Pua, Yong-Hao; Charlton, Paula C; Clark, Ross A
2018-03-01
The Microsoft Xbox One Kinect™ (Kinect V2) contains a depth camera that can be used to manually identify anatomical landmark positions in three-dimensions independent of the standard skeletal tracking, and therefore has potential for low-cost, time-efficient three-dimensional movement analysis (3DMA). This study examined inter-session reliability and concurrent validity of the Kinect V2 for the assessment of coronal and sagittal plane kinematics for the trunk, hip and knee during single leg squats (SLS) and drop vertical jumps (DVJ). Thirty young, healthy participants (age = 23 ± 5yrs, male/female = 15/15) performed a SLS and DVJ protocol that was recorded concurrently by the Kinect V2 and 3DMA during two sessions, one week apart. The Kinect V2 demonstrated good to excellent reliability for all SLS and DVJ variables (ICC ≥ 0.73). Concurrent validity ranged from poor to excellent (ICC = 0.02 to 0.98) during the SLS task, although trunk, hip and knee flexion and two-dimensional measures of knee abduction and frontal plane projection angle all demonstrated good to excellent validity (ICC ≥ 0.80). Concurrent validity for the DVJ task was typically worse, with only two variables exceeding ICC = 0.75 (trunk and hip flexion). These findings indicate that the Kinect V2 may have potential for large-scale screening for ACL injury risk, however future prospective research is required.
de Morais Filho, Mauro César; Kawamura, Cátia Myuki; Andrade, Paula Horta; Dos Santos, Márcia Belas; Pickel, Marina Rigolin; Neto, Raul Bolliger
2009-11-01
The purpose of this study was to describe the patterns of pelvic rotational asymmetry in the transverse plane and identify the possible factors related to this problem. One thousand and forty-five patients with cerebral palsy (CP) and complete documentation in the gait laboratory were reviewed in a retrospective study. Pelvic asymmetry in the transverse plane was observed in 52.7% of the patients; and to identify the possible causes of pelvic retraction, clinical (Thomas test, popliteal angle, and gastrocnemius tightness) and dynamic parameters (mean rotation of the hip in stance, minimum hip flexion, minimum knee flexion, and peak ankle dorsiflexion) were evaluated. The association between these parameters and pelvic retraction was assessed statistically. The results showed that 75.7% of patients with asymmetric pattern of the pelvis had clinical diagnosis of diplegic spastic CP. Among the patients with asymmetrical CP, the most common pattern was pelvic retraction on the affected side. The relationship between pelvic retraction and internal hip rotation was stronger in patients with asymmetrical diplegic CP than in those with hemiplegic (P<0.001) or symmetrical diplegic CP (P = 0.014). All of the patients exhibited a significant association among clinical parameters (Thomas test, popliteal angle, and gastrocnemius tightness) and pelvic retraction. In conclusion, pelvic retraction seems to be a multifactorial problem, and the etiology can change according to topographic classification, which must be taken into account during the decision-making process in patients with CP.
Barker, Karen L; Newman, Meredith A; Hughes, Tamsin; Sackley, Cath; Pandit, Hemant; Kiran, Amit; Murray, David W
2013-09-01
To identify if a tailored rehabilitation programme is more effective than standard practice at improving function in patients undergoing metal-on-metal hip resurfacing arthroplasty. Randomized controlled trial. Specialist orthopaedic hospital. 80 men with a median age of 56 years. Tailored post-operative physiotherapy programme compared with standard physiotherapy. Primary outcome - Oxford Hip Score (OHS), Secondary outcomes: Hip disability and Osteoarthritis Outcome Score (HOOS), EuroQol (EQ-5D-3L) and UCLA activity score. Hip range of motion, hip muscle strength and patient selected goals were also assessed. At one year the mean (SD) Oxford Hip Score of the intervention group was higher, 45.1 (5.3), than the control group, 39.6 (8.8). This was supported by a linear regression model, which detected a 5.8 unit change in Oxford Hip Score (p < 0.001), effect size 0.76. There was a statistically significant increase in Hip disability and Osteoarthritis Outcome Score of 12.4% (p < 0.0005), effect size 0.76; UCLA activity score differed by 0.66 points (p < 0.019), effect size 0.43; EQ 5D showed an improvement of 0.85 (p < 0.0005), effect size 0.76. A total of 80% (32 of 40) of the intervention group fully met their self-selected goal compared with 55% (22 of 40) of the control group. Hip range of motion increased significantly; hip flexion by a mean difference 17.9 degrees (p < 0.0005), hip extension by 5.7 degrees (p < 0.004) and abduction by 4 degrees (p < 0.05). Muscle strength improved more in the intervention group but was not statistically significant. A tailored physiotherapy programme improved self-reported functional outcomes and hip range of motion in patients undergoing hip resurfacing.
Kinematics and Kinetics of Squat and Deadlift Exercises with Varying Stance Widths
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.
2011-01-01
The primary motion of squat and deadlift exercise involves flexion and extension of the hips, knees, and ankles, but each exercise can be performed with variations in stance width. These variations may result in differing kinematics and ground reaction forces (GRF), which may in turn affect joint loading. PURPOSE: The purpose of this investigation was to compare ankle, knee, and hip kinematics and kinetics of normal squat (NS), wide-stance squat (WS), normal deadlift (ND), and sumo deadlift (SD). We hypothesized that hip joint kinematics and work at each joint would differ between exercise variations. METHODS: Six subjects (3 m/3 f; 70.0 plus or minus 13.7 kg; 168 plus or minus 9.9 cm) performed each lift in normal gravity on the ground-based version of the Advanced Resistive Exercise Device (ARED) used on the International Space Station. The ARED provided resistance with a combination vacuum tube/flywheel mechanism designed to replicate the gravitational and inertial forces of free weights. Subjects completed each lift with their 10-repetition maximum load. Kinematic data were collected at 250 Hz by a 12-camera motion-capture system (Smart-D, BTS Bioengineering, Milan, Italy), and GRF data were collected at 1000 Hz with independent force platforms for each leg (Model 9261, Kistler Instruments AG, Winterhur, Switzerland). All data were captured simultaneously on a single workstation. The right leg of a single lift for each motion was analyzed. Modeling software (OpenSim 2.2.0, Simbios, Palo Alto, CA) determined joint kinematics and net positive and negative work at each lower extremity joint. Total work was found as the sum of work across all joints and was normalized by system mass. Effect sizes and their 95% confidence intervals were computed between conditions. RESULTS: Peak GRF were similar for each lift. There were no differences between conditions in hip flexion range of motion (ROM). For hip adduction ROM, there were no differences between the NS, WS, and SD. However, hip adduction ROM was greater during the NS and SD than during the ND. Hip rotation ROM was greater during the WS than during the NS and SD, and was greater during the SD than during the ND. For knee and ankle flexion ROM, the ND, WS, and SD were not different, but ROM was greater during the NS than the ND and greater during the WS than the SD. Total eccentric work was greater during the WS than the SD. Otherwise, there were no differences in eccentric or concentric work between conditions. CONCLUSIONS: Although squat and deadlift exercises consist of similar motions, there are kinematic differences between them that depend on stance width. Total eccentric and concentric work are similar for different lifts, but differing kinematics may require activation of different musculature for each variation. With respect to each condition, in the ND the ROM of each joint tended to be less, and the WS tended to trade knee motion for hip motion. PRACTICAL APPLICATIONS: Knowledge of differences in kinematics and kinetics between different squat and deadlift variations is important for coaches and rehabilitation personnel to understand when prescribing exercise. Our results suggest that each variation of the squat and deadlift should be considered a separate exercise that may induce different long-term training effects.
Bazett-Jones, David M.; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E.
2017-01-01
Context: Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both. Objective: To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP. Design: Crossover study. Setting: University research laboratory. Patients or Other Participants: Seventeen participants (10 men, 7 women) with PFP. Intervention(s): Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets. Main Outcome Measure(s): Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05. Results: Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: −13.97° ± 6.41°, posttest: −12.84° ± 6.45°; P = .003). Peak hip-extension (pretest: −2.31 ± 0.46) and hip-abduction (pretest: −2.02 ± 0.35) moments decreased after both the TENS (extension: −2.15 ± 0.48 Nm/kg, P = .015; abduction: −1.91 ± 0.33 Nm/kg, P = .015) and RSLS (extension: −2.18 ± 0.52 Nm/kg, P = .003; abduction: −1.87 ± 0.36 Nm/kg, P = .039) protocols. Conclusions: This study presents a novel and effective method of increasing pain in persons with PFP. Functionally increased pain after RSLS coincides with reduced hip-extensor muscle strength and decreased plantar-flexion angle during running. The TENS treatment decreased pain during running in those with PFP but failed to influence strength. Hip moments were reduced by both protocols, which may demonstrate that acute increases or decreases in pain cause runners to change their mechanics. PMID:28388232
Lessi, Giovanna Camparis; Dos Santos, Ana Flávia; Batista, Luis Fylipe; de Oliveira, Gabriela Clemente; Serrão, Fábio Viadanna
2017-02-01
Muscle fatigue is associated with biomechanical changes that may lead to anterior cruciate ligament (ACL) injuries. Alterations in trunk and pelvis kinematics may also be involved in ACL injury. Although some studies have compared the effects of muscle fatigue on lower limb kinematics between men and women, little is known about its effects on pelvis and trunk kinematics. The aim of the study was to compare the effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation between men and women during landing. The participants included forty healthy subjects. We performed kinematic analysis of the trunk, pelvis, hip and knee and muscle activation analysis of the gluteal muscles, vastus lateralis and biceps femoris, during a single-leg landing before and after fatigue. Men had greater trunk flexion than women after fatigue. After fatigue, a decrease in peak knee flexion and an increase in Gmax and BF activation were observed. The increase in the trunk flexion can decrease the anterior tibiofemoral shear force resulted from the lower knee flexion angle, thereby decreasing the stress on the ACL. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Shephard, Roy J.; And Others
1990-01-01
This study examined head rotation, shoulder extension and rotation, ankle plantar and dorsiflexion, hip flexion, and sit and reach (SR) in 80 adults, aged 45-75, to identify flexibility factors. No single measurement indicates loss of flexibility at all joints, but SR tests are found to be more reliable than others. (SM)
Design and control of the MINDWALKER exoskeleton.
Wang, Shiqian; Wang, Letian; Meijneke, Cory; van Asseldonk, Edwin; Hoellinger, Thomas; Cheron, Guy; Ivanenko, Yuri; La Scaleia, Valentina; Sylos-Labini, Francesca; Molinari, Marco; Tamburella, Federica; Pisotta, Iolanda; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Nevatia, Yashodhan; Hauffe, Ralf; Zanow, Frank; van der Kooij, Herman
2015-03-01
Powered exoskeletons can empower paraplegics to stand and walk. Actively controlled hip ab/adduction (HAA) is needed for weight shift and for lateral foot placement to support dynamic balance control and to counteract disturbances in the frontal plane. Here, we describe the design, control, and preliminary evaluation of a novel exoskeleton, MINDWALKER. Besides powered hip flexion/extension and knee flexion/extension, it also has powered HAA. Each of the powered joints has a series elastic actuator, which can deliver 100 Nm torque and 1 kW power. A finite-state machine based controller provides gait assistance in both the sagittal and frontal planes. State transitions, such as stepping, can be triggered by the displacement of the Center of Mass (CoM). A novel step-width adaptation algorithm was proposed to stabilize lateral balance. We tested this exoskeleton on both healthy subjects and paraplegics. Experimental results showed that all users could successfully trigger steps by CoM displacement. The step-width adaptation algorithm could actively counteract disturbances, such as pushes. With the current implementations, stable walking without crutches has been achieved for healthy subjects but not yet for SCI paraplegics. More research and development is needed to improve the gait stability.
Zhang, J F; Yang, C J; Wu, T; Li, J H; Xu, Z S; Chen, Y
2009-11-01
Legg-Calvé-Perthes disease (LCPD) is a significant problem in healthcare because it so commonly affects young adults and immature athletes, primarily gymnasts. In this paper, a two-degree-of-freedom (2-DOF) hip exoskeleton device was developed for study on an immature animal model of exercise-induced LCPD. The exoskeleton device can reproduce the repetitive actions and forceful centrality impingements on the coxafemoral head that occur in sports such as gymnastics and acrobatics. It initiated a new method rather than the traditional medical or physiological operation method to establish an animal model of LCPD and allowed for the development and testing of new treatments. Ten immature New Zealand white rabbits were selected for the experiment. Their right legs were driven to achieve repetitive extension/ flexion and abduction/adduction beyond the normal range of motion, with centrality impingements at the maximum flexion position, while their left legs were kept in the initial healthy status and acted as the comparing reference. Four weeks later, the basic symptoms of early LCPD of the femoral head appeared. The results of X-ray, magnetic resonance imaging (MRI), gross anatomy observation, and H-E section also revealed it.
Effects of volitional spine stabilization on lifting task in recurrent low back pain population.
Haddas, Ram; Yang, James; Lieberman, Isador
2016-09-01
To examine the influence of volitional preemptive abdominal contraction (VPAC) and recurrent low back pain (rLBP) on trunk mechanics and neuromuscular control during a symmetric lifting task. A 2 × 2 crossover mixed design was used to examine the effects of VPAC and group. Thirty-seven healthy individuals and 32 rLBP individuals performed symmetric box lifting trials with and without VPAC to a 1-m height table 3D trunk, pelvis, and hip joint angle and electromyographic magnitude variables were obtained. Selected variables were analyzed using ANOVA. The VPAC induced differences in joint kinematics and muscle activity in rLBP and healthy subjects during symmetric lifting. A significant two-way interaction effect was observed for the semitendinosus activity. The VPAC increased external oblique muscle activity, reduced erector spinae and multifidus muscles activity, and induced greater trunk flexion angle, greater trunk side flexion angle, and greater hip flexion angle, and decreased pelvis obliquity angle in both groups. In addition, the rLBP subjects presented with a reduced external oblique and gluteus maximus muscle activity, greater erector spinae and multifidus muscles activity, and greater pelvis posterior tilt angle. Our results provide evidence that a VPAC strategy performed during symmetric lifting may potentially reduce exposure to biomechanical factors that can contribute to lumbar spine injury. The hamstring muscles may play an important role in achieving pelvic balance during the lifting maneuver. Incorporating the VPAC during dynamic stressful activities appears to help improve sensorimotor control and facilitate positioning of the lower extremities and the pelvis, while protecting the lumbar spine.
Stephensen, D; Drechsler, W; Winter, M; Scott, O
2009-03-01
Quality of life for children with haemophilia has improved since the introduction of prophylaxis. The frequency of joint haemorrhages has reduced, but the consequences of reduced bleeding on the biomechanical parameters of walking are not well understood. This study explored the differences in sagittal plane biomechanics of walking between a control group (Group 1) of normal age-matched children and children with haemophilia (Group 2) with a target ankle joint. A motion capture system and two force platforms were used to collect sagittal plane kinematic, kinetic and temporal-spatial data during walking of 14 age-matched normal children and 14 children with haemophilia aged 7-13 years. Group differences in maximum and minimum flexion/extension angles and moments of the hip, knee and ankle joints, ground reaction forces and temporal-spatial gait cycle parameters were analysed using one-way anova. Significant changes (P < 0.05) in kinematic and kinetic parameters but not temporal-spatial parameters were found in children with haemophilia; greater flexion angles and external moments of force at the knee, greater ankle plantarflexion external moments and lower hip flexion external moments. These results suggest that early biomechanical changes are present in young haemophilic children with a history of a target ankle joint and imply that lower limb joint function is more impaired than current clinical evaluations indicate. Protocols and quantitative data on the biomechanical gait pattern of children with haemophilia reported in this study provide a baseline to evaluate lower limb joint function and clinical progression.
Effects of fatigue on kinematics and kinetics during overground running: a systematic review.
Winter, Sara; Gordon, Susan; Watt, Kerrianne
2017-06-01
Understanding kinematic and kinetic changes with fatigue during running is important to assess changes that may influence performance and injury. The aim of this systematic review was to identify, critique and summarize literature about the effects of fatigue on kinematics and kinetics during a fatiguing overground run and present the reported influence on performance and injury. An electronic search was conducted of MEDLINE, SPORTDiscus, CINAHL and PubMed databases. Two reviewers assessed articles for inclusion, and evaluated the quality of articles included using a modified version of the Downs and Black Quality Index. A total of twelve articles were identified for review. The mean quality assessment score was seven out of a possible 12. Kinematic and kinetic changes reported to affect performance included decreased speed, step or stride frequency and length, increased trunk flexion, lower leg position at heel strike, mediolateral acceleration, changes in hip and knee ranges, and decreased stride regularity, heel lift, maximum knee rotation and backward ankle velocity. Alterations reported to increase risk of injury included decreased step frequency, increased upper body rotation and lower leg position at heel strike, and decreased knee flexion during stance. Reduced risk of injury has been linked to decreased step length and hip ranges, and increased trunk flexion. This review found limited evidence regarding changes in kinematic and kinetic during a fatiguing run in relation to performance and injury. Higher quality studies are warranted, with a larger sample of homogenous runners, and type of run carefully selected to provide quality information for runners, coaches and clinicians.
Arthroscopic findings of a diagnostic dilemma- hip pathology with normal imaging.
Buikstra, Joel Glenn; Fary, Camdon; Tran, Phong
2017-03-21
Patients with groin, hip and pelvic pain but normal findings on MRI and minimal changes on x-ray can be a diagnostic problem. This paper looks at the arthroscopic findings of patients who have had hip pain and a positive response to an intra-articular anaesthetic but have non-contributory imaging. We hypothesized that standard MRI's were missing significant pathology and if there was a response to intra-articular local anaesthesia, pathology found during arthroscopy was likely. A retrospective review of all hip arthroscopies performed from March 2011 to January 2015 by two orthopaedic surgeons specializing in hip arthroscopy was conducted to identify patients with clinically suspected intra-articular hip pathology despite a normal MRI report and X-ray. Clinical suspicion of intra-articular hip pathology was confirmed with a positive response to a fluoroscopically guided intra-articular injection of local anaesthetic and corticosteroid. Pathologic findings were collated from the standardised operative notes. Fifty-three hip arthroscopies performed in 51 patients met the inclusion criteria from a total of 1348 hip arthroscopies performed over a 46-month period. All but one of the 53 (98%) hips had arthroscopically confirmed pathology. Mean patient age was 32.5 years [15 to 67 years] with 40 (78%) females and 11 (22%) males. 92.5% of the hips (49/53) were FADIR (flexion, adduction and internal rotation) positive on clinical examination, giving this test a positive predictive value of 98% (95% CI: 89.31 to 99.67%) for intra-articular pathology. In patients with a normal MRI without contrast and a positive response (relief of pain) to an intra-articular injection that failed conservative management, there is a 98% chance of intra-articular hip pathology being discovered on hip arthroscopy.
Miyake, Tamon; Kobayashi, Yo; Fujie, Masakatsu G; Sugano, Shigeki
2017-07-01
Gait training robots are useful for changing gait patterns and decreasing risk of trip. Previous research has reported that decreasing duration of the assistance or guidance of the robot is beneficial for efficient gait training. Although robotic intermittent control method for assisting joint motion has been established, the effect of the robot intervention timing on change of toe clearance is unclear. In this paper, we tested different timings of applying torque to the knee, employing the intermittent control of a gait training robot to increase toe clearance throughout the swing phase. We focused on knee flexion motion and designed a gait training robot that can apply flexion torque to the knee with a wire-driven system. We used a method of timing detecting for the robot conducting torque control based on information from the hip, knee, and ankle angles to establish a non-time dependent parameter that can be used to adapt to gait change, such as gait speed. We carried out an experiment in which the conditions were four time points: starting the swing phase, lifting the foot, maintaining knee flexion, and finishing knee flexion. The results show that applying flexion torque to the knee at the time point when people start lifting their toe is effective for increasing toe clearance in the whole swing phase.
Catelli, Danilo S; Kowalski, Erik; Beaulé, Paul E; Lamontagne, Mario
2017-10-01
Total hip arthroplasty (THA) using dual-mobility (DM) design permits larger hip range of motion. However, it is unclear how it benefits the patients during activities of daily living. The purpose was to compare kinematic variables of the operated limb between THA patients using either DM or single-bearing (SB) implants during a squat task. Twenty-four THA patients were randomly assigned to either a DM or SB implant and matched to 12 healthy controls (CTRLs). They underwent 3-dimensional squat motion analysis before and 9 months after surgery. Sagittal and frontal plane angles of the pelvis and the hip were analyzed using statistical parametric mapping. Paired analyses compared presurgery and postsurgery squat depth. Peak sagittal pelvis angle of DM was closer to normal compared with that of SB. Both implant groups had similar hip angle patterns and magnitude but significantly lower than the CTRLs. SB reached a much large hip abduction compared with the other groups. Both surgical groups had significantly worst squat depth than the CTRLs. Neither THA implant groups were able to return pelvis and hip kinematics to the level of CTRLs. The deficit of DM implants at the pelvis combined with the poorer functional scores should caution clinicians to use this implant design in active patients. SB design causes a larger hip abduction to reach their maximum squat depth. Post-THA rehabilitation should focus on improving joint range of motion and strength. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic Simulation and Analysis of Human Walking Mechanism
NASA Astrophysics Data System (ADS)
Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.
2017-01-01
Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.
Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W; Sedrakyan, A
2014-09-09
To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. After assessment of 10,557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15,384 implants in 13,164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes. National registries reported two to 12 year follow-up for revision occurrence related to more than 200,000 of these implants. Reported comparative data with well established alternative devices (over 1,200,000 implants) did not show improved device survival. Moreover, we found higher revision occurrence associated with modular femoral necks (hazard ratio 1.9) and ceramic-on-ceramic bearings (hazard ratio 1.0-1.6) in hip replacement and with high flexion knee implants (hazard ratio 1.0-1.8). We did not find convincing high quality evidence supporting the use of five substantial, well known, and already implemented device innovations in orthopaedics. Moreover, existing devices may be safer to use in total hip or knee replacement. Improved regulation and professional society oversight are necessary to prevent patients from being further exposed to these and future innovations introduced without proper evidence of improved clinical efficacy and safety. © Nieuwenhuijse et al 2014.
Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W
2014-01-01
Objective To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Design Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. Data sources PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. Study selection The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. Results After assessment of 10 557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15 384 implants in 13 164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes. National registries reported two to 12 year follow-up for revision occurrence related to more than 200 000 of these implants. Reported comparative data with well established alternative devices (over 1 200 000 implants) did not show improved device survival. Moreover, we found higher revision occurrence associated with modular femoral necks (hazard ratio 1.9) and ceramic-on-ceramic bearings (hazard ratio 1.0-1.6) in hip replacement and with high flexion knee implants (hazard ratio 1.0-1.8). Conclusion We did not find convincing high quality evidence supporting the use of five substantial, well known, and already implemented device innovations in orthopaedics. Moreover, existing devices may be safer to use in total hip or knee replacement. Improved regulation and professional society oversight are necessary to prevent patients from being further exposed to these and future innovations introduced without proper evidence of improved clinical efficacy and safety. PMID:25208953
Estébanez-de-Miguel, Elena; Fortún-Agud, María; Jimenez-Del-Barrio, Sandra; Caudevilla-Polo, Santos; Bueno-Gracia, Elena; Tricás-Moreno, José Miguel
2018-05-29
Manual therapy has been shown to increase range of motion (ROM) in hip osteoarthritis (OA). However, the optimal intensity of force during joint mobilization is not known. To compare the effectiveness of high, medium and low mobilization forces for increasing range of motion (ROM) in patients with hip OA and to analyze the effect size of the mobilization. Randomized controlled trial. Sixty patients with unilateral hip OA were randomized to three groups: low, medium or high force mobilization group. Participants received three treatment sessions of long-axis distraction mobilization (LADM) in open packed position and distraction forces were measured at each treatment. Primary outcomes: passive hip ROM assessed before and after each session. pain recorded with Western Ontario and McMaster Universities (WOMAC) pain subscale before and after the three treatment sessions. Hip ROM increased significantly (p < 0.05) in the high-force mobilization group (flexion: 10.6°, extension: 8.0°, abduction:6.4°, adduction: 3.3°, external rotation: 5.6°, internal rotation: 7.6°). These improvements in hip ROM were statistically significant (p < 0.05) compared to the low-force group. There were no significant changes in the low-force and medium-force groups for hip ROM. No significant differences in hip pain were found between treatment groups. A high force LADM in open packed position significantly increased hip ROM in all planes of motion compared to a medium or low force mobilization in patients with hip OA. A specific intensity of force mobilization appears to be necessary for increasing ROM in hip OA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gluteal tendinopathy and hip osteoarthritis: Different pathologies, different hip biomechanics.
Allison, Kim; Hall, Michelle; Hodges, Paul W; Wrigley, Tim V; Vicenzino, Bill; Pua, Yong-Hao; Metcalf, Ben; Grimaldi, Alison; Bennell, Kim L
2018-03-01
Gluteal tendinopathy (GT) and hip osteoarthritis (OA) are the most common causes of hip pain and associated disability in older adults. Pain and altered walking biomechanics are common to both conditions. This study aimed to compare three-dimensional walking biomechanics between individuals with unilateral, symptomatic GT and HOA. Sixty individuals with symptomatic unilateral GT confirmed by magnetic-resonance-imaging and 73 individuals with symptomatic unilateral HOA (Kellgren-Lawrence Grade ≥ 2) underwent three-dimensional gait analysis. Maximum and minimum values of the external sagittal hip moment, the first peak, second peak and mid-stance minimum of the hip adduction moment (HAM), sagittal plane hip excursion and hip joint angles, pelvic obliquity and trunk lean, at the three HAM time points during stance phase of walking were compared between groups. Compared to individuals with HOA, those with GT exhibited a greater hip peak extension moment (P < 0.001) and greater HAM throughout the stance phase of walking (P = 0.01-P < 0.001), greater hip adduction (P < 0.001) and internal rotation (P < 0.01-P < 0.001) angles and lower hip flexion angles and excursion (P = 0.02 - P < 0.001). Individuals with HOA exhibited a greater forward trunk lean (P ≤ 0.001) throughout stance, and greater ipsilateral trunk lean in the frontal plane (P < 0.001) than those with GT. Despite presence of pain in both conditions, hip kinematics and kinetics differ between individuals with symptomatic unilateral GT and those with symptomatic unilateral HOA. These condition-specific impairments may be targets for optimization of management of HOA and GT. Copyright © 2018 Elsevier B.V. All rights reserved.
Hammoud, Sommer; Bedi, Asheesh; Voos, James E; Mauro, Craig S; Kelly, Bryan T
2014-03-01
In active individuals with femoroacetabular impingement (FAI), the resultant reduction in functional range of motion leads to high impaction loads at terminal ranges. These increased forces result in compensatory effects on bony and soft tissue structures within the hip joint and hemipelvis. An algorithm is useful in evaluating athletes with pre-arthritic, mechanical hip pain and associated compensatory disorders. A literature search was performed by a review of PubMed articles published from 1976 to 2013. Level 4. Increased stresses across the bony hemipelvis result when athletes with FAI attempt to achieve supraphysiologic, terminal ranges of motion (ROM) through the hip joint required for athletic competition. This can manifest as pain within the pubic joint (osteitis pubis), sacroiliac joint, and lumbosacral spine. Subclinical posterior hip instability may result when attempts to increase hip flexion and internal rotation are not compensated for by increased motion through the hemipelvis. Prominence of the anterior inferior iliac spine (AIIS) at the level of the acetabular rim can result in impingement of the anterior hip joint capsule or iliocapsularis muscle origin against the femoral head-neck junction, resulting in a distinct form of mechanical hip impingement (AIIS subspine impingement). Iliopsoas impingement (IPI) has also been described as an etiology for anterior hip pain. IPI results in a typical 3-o'clock labral tear as well as an inflamed capsule in close proximity to the overlying iliopsoas tendon. Injury in athletic pubalgia occurs during high-energy twisting activities in which abnormal hip ROM and resultant pelvic motion lead to shearing across the pubic symphysis. Failure to recognize and address concomitant compensatory injury patterns associated with intra-articular hip pathology can result in significant disability and persistent symptoms in athletes with pre-arthritic, mechanical hip pain. B.
Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M
2013-07-01
This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Surgical hip dislocation for treatment of cam femoroacetabular impingement.
Chaudhary, Milind M; Chaudhary, Ishani M; Vikas, K N; KoKo, Aung; Zaw, Than; Siddhartha, A
2015-01-01
Cam femoroacetabular impingement is caused by a misshapen femoral head with a reduced head neck offset, commonly in the anterolateral quadrant. Friction in flexion, adduction and internal rotation causes limitation of the hip movements and pain progressively leading to labral and chondral damage and osteoarthritis. Surgical hip dislocation described by Ganz permits full exposure of the hip without damaging its blood supply. An osteochondroplasty removes the bump at the femoral head neck junction to recreate the offset for impingement free movement. Sixteen patients underwent surgery with surgical hip dislocation for the treatment of cam femoroacetabular impingement by open osteochondroplasty over last 6 years. Eight patients suffered from sequelae of avascular necrosis (AVN). Three had a painful dysplastic hip. Two had sequelae of Perthes disease. Three had combined cam and pincer impingement caused by retroversion of acetabulum. All patients were operated by the trochanteric flip osteotomy with attachments of gluteus medius and vastus lateralis, dissection was between the piriformis and gluteus minimus preserving the external rotators. Z-shaped capsular incision and dislocation of the hip was done in external rotation. Three cases also had subtrochanteric osteotomy. Two cases of AVN also had an intraarticular femoral head reshaping osteotomy. Goals of treatment were achieved in all patients. No AVN was detected after a 6 month followup. There were no trochanteric nonunions. Hip range of motion improved in all and Harris hip score improved significantly in 15 of 16 cases. Mean alpha angle reduced from 86.13° (range 66°-108°) to 46.35° (range 39°-58°). Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term.
EMG of the hip adductor muscles in six clinical examination tests.
Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J
2012-08-01
To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p < 0.01). EMG activation was highest in Hips 0 or Hips 45 for adductor magnus, adductor longus and gracilis. EMG activation for pectineus was highest in Hips 90. Injury history was a significant factor in the EMG output for the adductor longus (p < 0.05), pectineus (p < 0.01) and gracilis (p < 0.01) but not adductor magnus. For force data, clinical test type was a significant factor (p < 0.01) with Hips 0 being significantly stronger than Hips 45, Hips 90 and Side lay. BMI (body mass index) was a significant factor (p < 0.01) for producing a higher force. All other factors had no significant effect on the force outputs. Hip adduction strength assessment is best measured at hips 0 (which produced most force) or 45° flexion (which generally gave the highest EMG output). Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
Ashkani, O; Maleki, A; Jamshidi, N
2017-03-01
Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.
Harry, John R; Freedman Silvernail, Julia; Mercer, John A; Dufek, Janet S
2017-12-01
Although impact phase differences between vertical jump landings (VJL) and step-off landings (STL) may be related to task-specific pre-contact strategies, pre-contact mechanics are rarely examined. Thus, pre-contact kinematics and vertical ground reaction force (vGRF) impulse were examined between VJL and STL. Ten health adults (20.9 ± 1.6 yrs; 167.8 ± 4.2 cm; 68.5 ± 7.15 kg) performed 15 VJL and 15 STL from equal heights. Limb (lead; trail) by task (VJL; STL) ANOVAs (α = 0.05) compared hip, knee, and ankle joint angles 150 ms pre-contact, 100 ms pre-contact, 50 ms pre-contact, and at ground contact. Joint angular displacement was also evaluated between 150 ms pre-contact and ground contact. vGRF impulse was compared during the loading (ground contact to peak vGRF) and attenuation (peak vGRF to end of impact) phases. Greater hip flexion angles occurred during STL versus VJL at each event except 150 ms pre-contact (p ≤ .004). Trail limb knee flexion angles were greater at each event when compared to the lead limb during STL (p ≤ .019). Greater trail limb knee flexion angles occurred during STL versus VJL at all four events (p ≤ .018), while greater plantarflexion angles occurred at all four events during VJL versus STL (p ≤ .034). During STL, greater trail limb plantarflexion angles were detected at each event versus the lead limb (p < .001). Lesser hip, lead and trail limb knee displacement occurred during STL versus VJL (p < .05). Greater vGRF impulse was detected during the loading phase of VJL (<.001), while greater vGRF impulse occurred during the attenuation phase of STL (p = .025). These tasks are characterized by distinct pre-contact kinematic strategies and post-contact kinetics. The task utilized in practice should reflect the requirements of the population of interest. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimentally induced cam impingement in the sheep hip.
Siebenrock, Klaus A; Fiechter, Ruth; Tannast, Moritz; Mamisch, Tallal C; von Rechenberg, Brigitte
2013-04-01
Sheep hips have a natural non-spherical femoral head similar to a cam-type deformity in human beings. By performing an intertrochanteric varus osteotomy, cam-type femoro-acetabular impingement (FAI) during flexion can be created. We tested the hypotheses that macroscopic lesions of the articular cartilage and an increased Mankin score (MS) can be reproduced by an experimentally induced cam-type FAI in this ovine in vivo model. Furthermore, we hypothesized that the MS increases with longer ambulatory periods. Sixteen sheep underwent unilateral intertrochanteric varus osteotomy of the hip with the non-operated hip as a control. Four sheep were sacrificed after 14, 22, 30, and 38-weeks postoperatively. We evaluated macroscopic chondrolabral alterations, and recorded the MS, based on histochemical staining, for each ambulatory period. A significantly higher prevalence of macroscopic chondrolabral lesions was found in the impingement zone of the operated hips. The MS was significantly higher in the acetabular/femoral cartilage of the operated hips. Furthermore, these scores increased as the length of the ambulatory period increased. Cam-type FAI can be induced in an ovine in vivo model. Localized chondrolabral degeneration of the hip, similar to that seen in humans (Tannast et al., Clin Orthop Relat Res 2008; 466: 273-280; Beck et al., J Bone Joint Surg Br 2005; 87: 1012-1018), can be reproduced. This experimental sheep model can be used to study cam-type FAI. Copyright © 2012 Orthopaedic Research Society.
No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.
Gibson, W; Campbell, A; Allison, G
2013-09-01
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.
Sex Differences in Proximal Control of the Knee Joint
Mendiguchia, Jurdan; Ford, Kevin R.; Quatman, Carmen E.; Alentorn-Geli, Eduard; Hewett, Timothy E.
2014-01-01
Following the onset of maturation, female athletes have a significantly higher risk for anterior cruciate ligament (ACL) injury compared with male athletes. While multiple sex differences in lower-extremity neuromuscular control and biomechanics have been identified as potential risk factors for ACL injury in females, the majority of these studies have focused specifically on the knee joint. However, increasing evidence in the literature indicates that lumbopelvic (core) control may have a large effect on knee-joint control and injury risk. This review examines the published evidence on the contributions of the trunk and hip to knee-joint control. Specifically, the sex differences in potential proximal controllers of the knee as risk factors for ACL injury are identified and discussed. Sex differences in trunk and hip biomechanics have been identified in all planes of motion (sagittal, coronal and transverse). Essentially, female athletes show greater lateral trunk displacement, altered trunk and hip flexion angles, greater ranges of trunk motion, and increased hip adduction and internal rotation during sport manoeuvres, compared with their male counterparts. These differences may increase the risk of ACL injury among female athletes. Prevention programmes targeted towards trunk and hip neuromuscular control may decrease the risk for ACL injuries. PMID:21688868
Trochantoplasty for Total Hip Arthroplasty in Patients With Coxa Vara Deformity.
Yoo, Jun-Il; Parvizi, Javad; Song, Ji-Ung; Ha, Yong-Chan; Lee, Young-Kyun; Koo, Kyung-Hoi
2017-07-01
In total hip arthroplasty (THA) of hips with coxa vara, the femoral stems might be inserted in a varus alignment. To avoid varus insertion, we designed a technique, which we termed "trochantoplasty." In this procedure, the medial half of the greater trochanter was removed during THA. We evaluated 30 patients (31 hips) who had coxa vara deformity and underwent THA using trochantoplasty at the mean follow-up of 5 years (range, 3-9 years). All stems were inserted in the neutral position. One Vancouver type 1 periprosthetic femoral fracture occurred after a fall at postoperative 2 months. At the latest follow-up, the mean power of abductor was 4.3 (range, 3-5). Four patients had moderate limp whereas 26 patients had slight limp. The abduction at 90° flexion ranged from 15° to 45° (mean, 35°). There was no revision. All prostheses had bone-ingrown stability without any detectable wear or osteolysis. The mean Harris hip score was improved from 66.9 to 89.4 points. Trochantoplasty can be used to avoid varus insertion of the femoral stem while performing THA in patients with coxa vara deformity without compromising the abductor mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.
Gait strategy in genetically obese patients: a 7-year follow up.
Cimolin, V; Vismara, L; Galli, M; Grugni, G; Cau, N; Capodaglio, P
2014-07-01
The aim of this study was to quantitatively evaluate the change in gait and body weight in the long term in patients with Prader-Willi Syndrome (PWS). Eight adults with PWS were evaluated at baseline and after 7 years. During this period patient participated an in- and out-patient rehabilitation programs including nutritional and adapted physical activity interventions. Two different control groups were included: the first group included 14 non-genetically obese patients (OCG: obese control group) and the second group included 10 age-matched healthy individuals (HCG: healthy control group). All groups were quantitatively assessed during walking with 3D-GA. The results at the 7-year follow-up revealed significant weight loss in the PWS group and spatial-temporal changes in gait parameters (velocity, step length and cadence). With regard to the hip joint, there were significant changes in terms of hip position, which is less flexed. Knee flexion-extension showed a reduction of flexion in swing phase and of its excursion. No changes of the ankle position were evident. As for ankle kinetics, we observed in the second session higher values for the peak of ankle power in terminal stance in comparison to the first session. No changes were found in terms of ankle kinetics. The findings demonstrated improvements associated to long-term weight loss, especially in terms of spatial-temporal parameters and at hip level. Our results back the call for early weight loss interventions during childhood, which would allow the development of motor patterns under normal body weight conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jung, Taeyou; Lee, Dokyeong; Charalambous, Charalambos; Vrongistinos, Konstantinos
2010-01-01
Jung T, Lee D, Charalambous C, Vrongistinos K. The influence of applying additional weight to the affected leg on gait patterns during aquatic treadmill walking in people poststroke. To investigate how the application of additional weights to the affected leg influences gait patterns of people poststroke during aquatic treadmill walking. Comparative gait analysis. University-based aquatic therapy center. Community-dwelling volunteers (n=22) with chronic hemiparesis caused by stroke. Not applicable. Spatiotemporal and kinematic gait parameters. The use of an ankle weight showed an increase in the stance phase percentage of gait cycle (3%, P=.015) when compared with no weight. However, the difference was not significant after a Bonferroni adjustment was applied for a more stringent statistical analysis. No significant differences were found in cadence and stride length. The use of an ankle weight showed a significant decrease of the peak hip flexion (7.9%, P=.001) of the affected limb as compared with no weight condition. This decrease was marked as the reduction of unwanted limb flotation because people poststroke typically show excessive hip flexion of the paretic leg in the late swing phase followed by fluctuating hip movements during aquatic treadmill walking. The frontal and transverse plane hip motions did not show any significant differences but displayed a trend of a decrease in the peak hip abduction during the swing phase with additional weights. The use of additional weight did not alter sagittal plane kinematics of the knee and ankle joints. The use of applied weight on the affected limb can reduce unwanted limb flotation on the paretic side during aquatic treadmill walking. It can also assist the stance stability by increasing the stance phase percentage closer to 60% of gait cycle. Both findings can contribute to the development of more efficient motor patterns in gait training for people poststroke. The use of a cuff weight does not seem to reduce the limb circumduction during aquatic treadmill walking. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Umehara, Jun; Ikezoe, Tome; Nishishita, Satoru; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Fujita, Kosuke; Ichihashi, Noriaki
2015-12-01
Decreased flexibility of the tensor fasciae latae is one factor that causes iliotibial band syndrome. Stretching has been used to improve flexibility or tightness of the muscle. However, no studies have investigated the effective stretching position for the tensor fasciae latae using an index to quantify muscle elongation in vivo. The aim of this study was to investigate the effects of hip rotation and knee angle on tensor fasciae latae elongation during stretching in vivo using ultrasonic shear wave elastography. Twenty healthy men participated in this study. The shear elastic modulus of the tensor fasciae latae was calculated using ultrasonic shear wave elastography. Stretching was performed at maximal hip adduction and maximal hip extension in 12 different positions with three hip rotation conditions (neutral, internal, and external rotations) and four knee angles (0°, 45°, 90°, and 135°). Two-way analysis of variance showed a significant main effect for knee angle, but not for hip rotation. The post-hoc test for knee angle indicated that the shear elastic modulus at 90° and 135° were significantly greater than those at 0° and 45°. Our results suggest that adding hip rotation to the stretching position with hip adduction and extension may have less effect on tensor fasciae latae elongation, and that stretching at >90° of knee flexion may effectively elongate the tensor fasciae latae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Test-Retest Reliability of Innovated Strength Tests for Hip Muscles
Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat
2013-01-01
The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550
Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J
2006-04-01
A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.
Manual therapy intervention for a patient with a total hip arthroplasty revision.
Howard, Paul D; Levitsky, Beth
2007-12-01
Case report. A 73-year-old active woman with a total hip arthroplasty, who later had revision surgery, developed left hip and buttock pain 2 years after the revision surgery, subsequent to lifting her foot while seated. This movement was performed so that her spouse could assist her in putting on her sock and shoe. During the first physical therapy session, the patient exhibited a forward-flexed trunk posture and difficulty weight bearing on the involved lower limb. The patient was successfully treated with manual therapy techniques and a home exercise program. The manual therapy techniques included long-axis hip distraction, lateral hip distraction, posterior-to-anterior hip joint mobilization, and a contract-relax proprioceptive neuromuscular facilitation technique. The patient's home program consisted of long-axis hip distraction, performed by her spouse, and standing lower limb pendular movements into flexion and extension. Pain scale ratings, posture and gait observations, strength, range of motion, and return to functional activities served as outcome measures. After 1 physical therapy visit, in which manual therapy techniques were utilized, the patient had a significant decrease in hip symptoms. The patient and spouse were compliant with the home exercise program and continued with physical therapy for 3 more visits, and the patient ultimately became symptom free. The patient returned to all previous activities, including household chores, cooking, and a walking program. The patient was contacted at 6 months, 1 year, and 4 years, and reported no recurrences of hip or buttock symptoms. Manual therapy techniques and home exercises described in this case report were apparently effective in eliminating symptoms and returning this patient, who had total hip arthroplasty and revision surgery 2 years earlier, to all previous functional activities after a dressing incident produced hip and buttock symptoms.
Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten
2016-01-01
The Gait Deviation Index summarizes overall gait 'quality', based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait 'quality' and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the 'Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Patients with the strongest hip abductor and hip flexor muscles had the best gait 'quality'. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait 'quality'. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait 'quality' in patients with primary hip OA.
Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten
2016-01-01
Background The Gait Deviation Index summarizes overall gait ‘quality’, based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait ‘quality’ and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Method Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the ‘Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Results Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Conclusion Patients with the strongest hip abductor and hip flexor muscles had the best gait ‘quality’. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait ‘quality’. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait ‘quality’ in patients with primary hip OA. PMID:27065007
Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.
Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat
2016-06-01
To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
A mathematical model of hiking positions in a sailing dinghy.
Putnam, C A
1979-01-01
A mathematical model of the human body designed to calculate the resultant muscle torques required at the hip and knee joints for specific hiking techniques is presented. Data for the model were obtained from ten male subjects who adopted three basic positions: Position 1 with the knees located at the inside edge of the sidedeck, Position 2 with the knees at the middle of the sidedeck, and Position 3 with the knees at the outside edge of the sidedeck. Each resultant muscle torque was expressed as a percentage of each subject's maximum voluntary hip flexion or knee extension torque. It was found that where Positions 1 and 2 were equally effective in keeping the boat upright, Position 2 was superior to Position 1 in regard to the per cent of maximum muscle torque required. The superiority of Position 2 over Position 3 depended on the individual's relative muscle strength at the hip and knee joints. The stronger the hip flexors with respect to the knee estensors, the more desirable was Position 2 and vice versa.
The association between asymmetric hip mobility and neck pain in young adults.
Lee, Hsin-Yi; Wang, Jung-Der; Wang, Jung-Er; Chang, Hsiao-Lan; He, Yang-Chien; Chu, Mei-Mang; Chen, Li-Fei
2013-01-01
The objective of this cross-sectional observational study was to determine whether asymmetric hip mobility was associated with neck pain in young adults. Three hundred twenty-seven freshmen students were recruited from an urban university and underwent the Patrick's flexion, abduction, external rotation, extension (FABERE) test for comparison of the functional mobility of bilateral hip joints during the health examination. A logistic regression model was constructed to determine whether the asymmetry measured by the Patrick's FABERE test was associated with neck pain after adjusting for factors of sex and exercise habits. The frequency of asymmetric results of the Patrick's FABERE test among the students who reported neck pain was significantly higher than that of those without neck pain (54.2% vs 26.5%; P < .001). After adjusting for the above confounders, the odds ratio of asymmetric results of a Patrick's FABERE test was 2.99 (95% confidence interval, 1.57-5.72; P < .001). Imbalanced mobility of the hip joints might be associated with an increased incidence of neck pain. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Effect of increased pushoff during gait on hip joint forces
Lewis, Cara L.; Garibay, Erin J.
2014-01-01
Anterior acetabular labral tears and anterior hip pain may result from high anteriorly directed forces from the femur on the acetabulum. While providing more pushoff is known to decrease sagittal plane hip moments, it is unknown if this gait modification also decreases hip joint forces. The purpose of this study was to determine if increasing pushoff decreases hip joint forces. Nine healthy subjects walked on an instrumented force treadmill at 1.25 m/s under two walking conditions. For the natural condition, subjects were instructed to walk as they normally would. For the increased pushoff condition, subjects were instructed to “push more with your foot when you walk”. We collected motion data of markers placed on the subjects’ trunk and lower extremities to capture trunk and leg kinematics and ground reaction force data to determine joint moments. Data were processed in Visual 3D to produce the inverse kinematics and model scaling files. In OpenSim, the generic gait model (Gait2392) was scaled to the subject, and hip joint forces were calculated for the femur on the acetabulum after computing the muscle activations necessary to reproduce the experimental data. The instruction to “push more with your foot when you walk” reduced the maximum hip flexion and extension moment compared to the natural condition. The average reduction in the hip joint forces was 12.5%, 3.2% and 9.6% in the anterior, superior and medial directions respectively and 2.3% for the net resultant force. Increasing pushoff may be an effective gait modification for people with anterior hip pain. PMID:25468661
Effect of increased pushoff during gait on hip joint forces.
Lewis, Cara L; Garibay, Erin J
2015-01-02
Anterior acetabular labral tears and anterior hip pain may result from high anteriorly directed forces from the femur on the acetabulum. While providing more pushoff is known to decrease sagittal plane hip moments, it is unknown if this gait modification also decreases hip joint forces. The purpose of this study was to determine if increasing pushoff decreases hip joint forces. Nine healthy subjects walked on an instrumented force treadmill at 1.25 m/s under two walking conditions. For the natural condition, subjects were instructed to walk as they normally would. For the increased pushoff condition, subjects were instructed to "push more with your foot when you walk". We collected motion data of markers placed on the subjects' trunk and lower extremities to capture trunk and leg kinematics and ground reaction force data to determine joint moments. Data were processed in Visual3D to produce the inverse kinematics and model scaling files. In OpenSim, the generic gait model (Gait2392) was scaled to the subject, and hip joint forces were calculated for the femur on the acetabulum after computing the muscle activations necessary to reproduce the experimental data. The instruction to "push more with your foot when you walk" reduced the maximum hip flexion and extension moment compared to the natural condition. The average reduction in the hip joint forces were 12.5%, 3.2% and 9.6% in the anterior, superior and medial directions respectively and 2.3% for the net resultant force. Increasing pushoff may be an effective gait modification for people with anterior hip pain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien
2018-01-03
Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative gait analysis in parkin disease: Possible role of dystonia.
Castagna, Anna; Frittoli, Serena; Ferrarin, Maurizio; Del Sorbo, Francesca; Romito, Luigi M; Elia, Antonio E; Albanese, Alberto
2016-11-01
Parkin disease (PARK2, OMIM 602544) is an autosomal-recessive early-onset parkinsonism characterized by an early occurrence of lower limb dystonia. The aim of this study was to analyze spatiotemporal, kinematic, and kinetic gait parameters in patients with parkin disease in the OFF and ON conditions compared to healthy age-matched controls. Fifteen patients with parkin disease and 15 healthy age-matched controls were studied in a gait analysis laboratory with an integrated optoelectronic system. Spatiotemporal, kinematic, and kinetic gait parameters at a self-selected speed were recorded in the OFF and ON conditions. A jerk index was computed to quantify the possible reduction of smoothness of joint movements. Compared to controls, parkin patients had, either in the OFF or in the ON conditions, significant reduction of walking velocity, increased step width, and decreased percentage of double support. Kinematic analysis in both conditions showed: increased ankle dorsiflexion and knee flexion at the initial contact; maximal flexion and increased range of motion in mid stance; increased hip flexion and max extension in stance at pelvis; and increased mean tilt antiversion. Kinetics showed increased hip and knee power generation in stance in either condition. The jerk index was increased at all joints both in OFF and ON. There were no correlations between individual gait parameters and clinical ratings. Parkin patients have an abnormal gait pattern that does not vary between the OFF and the ON conditions. Variations recorded with instrumented analysis are more evident for kinematic than kinetic parameters at lower limbs. Severity of dystonia does not correlate with any individual kinematic parameter. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Ali, Nicholas; Andersen, Michael Skipper; Rasmussen, John; Robertson, D Gordon E; Rouhi, Gholamreza
2014-01-01
The central tenet of this study was to develop, validate and apply various individualised 3D musculoskeletal models of the human body for application to single-leg landings over increasing vertical heights and horizontal distances. While contributing to an understanding of whether gender differences explain the higher rate of non-contact anterior cruciate ligament (ACL) injuries among females, this study also correlated various musculoskeletal variables significantly impacted by gender, height and/or distance and their interactions with two ACL injury-risk predictor variables; peak vertical ground reaction force (VGRF) and peak proximal tibia anterior shear force (PTASF). Kinematic, kinetic and electromyography data of three male and three female subjects were measured. Results revealed no significant gender differences in the musculoskeletal variables tested except peak VGRF (p = 0.039) and hip axial compressive force (p = 0.032). The quadriceps and the gastrocnemius muscle forces had significant correlations with peak PTASF (r = 0.85, p < 0.05 and r = - 0.88, p < 0.05, respectively). Furthermore, hamstring muscle force was significantly correlated with peak VGRF (r = - 0.90, p < 0.05). The ankle flexion angle was significantly correlated with peak PTASF (r = - 0.82, p < 0.05). Our findings indicate that compared to males, females did not exhibit significantly different muscle forces, or ankle, knee and hip flexion angles during single-leg landings that would explain the gender bias in non-contact ACL injury rate. Our results also suggest that higher quadriceps muscle force increases the risk, while higher hamstring and gastrocnemius muscle forces as well as ankle flexion angle reduce the risk of non-contact ACL injury.
Patellofemoral joint contact forces during activities with high knee flexion.
Trepczynski, Adam; Kutzner, Ines; Kornaropoulos, Evgenios; Taylor, William R; Duda, Georg N; Bergmann, Georg; Heller, Markus O
2012-03-01
The patellofemoral (PF) joint plays an essential role in knee function, but little is known about the in vivo loading conditions at the joint. We hypothesized that the forces at the PF joint exceed the tibiofemoral (TF) forces during activities with high knee flexion. Motion analysis was performed in two patients with telemetric knee implants during walking, stair climbing, sit-to-stand, and squat. TF and PF forces were calculated using a musculoskeletal model, which was validated against the simultaneously measured in vivo TF forces, with mean errors of 10% and 21% for the two subjects. The in vivo peak TF forces of 2.9-3.4 bodyweight (BW) varied little across activities, while the peak PF forces showed significant variability, ranging from less than 1 BW during walking to more than 3 BW during high flexion activities, exceeding the TF forces. Together with previous in vivo measurements at the hip and knee, the PF forces determined here provide evidence that peak forces across these joints reach values of around 3 BW during high flexion activities, also suggesting that the in vivo loading conditions at the knee can only be fully understood if the forces at the TF and the PF joints are considered together. Copyright © 2011 Orthopaedic Research Society.
ERIC Educational Resources Information Center
Mier, Constance M.
2011-01-01
The accuracy of video analysis of the passive straight-leg raise test (PSLR) and the validity of the sit-and-reach test (SR) were tested in 60 men and women. Computer software measured static hip-joint flexion accurately. High within-session reliability of the PSLR was demonstrated (R greater than 0.97). Test-retest (separate days) reliability for…
Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong
2015-01-01
Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.
Ng, Leo; Rosalie, Simon M; Sherry, Dorianne; Loh, Wei Bing; Sjurseth, Andreas M; Iyengar, Shrikant; Wild, Catherine Y
2018-03-01
Research has revealed that field hockey drag flickers have greater odds of hip and lumbar injuries compared to non-drag flickers (DF). This study aimed to compare the biomechanics of a field hockey hit and a specialised field hockey drag flick. Eighteen male and seven female specialised hockey DF performed a hit and a drag flick in a motion analysis laboratory with an 18-camera three-dimensional motion analysis system and a calibrated multichannel force platform to examine differences in lower limb and lumbar kinematics and kinetics. Results revealed that drag flicks were performed with more of a forward lunge on the left lower limb resulting in significantly greater left ankle dorsiflexion, knee, hip and lumbar flexion (Ps<0.001) compared to a hit. Drag flicks were also performed with significantly greater lateral flexion (P < 0.002) and rotation of the lumbar spine (P < 0.006) compared to a hit. Differences in kinematics lead to greater shear, compression and tensile forces in multiple left lower limb and lumbar joints in the drag flick compared to the hit (P < 0.05). The biomechanical differences in drag flicks compared to a hit may have ramifications with respect to injury in field hockey drag flickers.
Age and sex influences on running mechanics and coordination variability.
Boyer, Katherine A; Freedman Silvernail, Julia; Hamill, Joseph
2017-11-01
The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s -1 . A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex-age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh-shank transverse plane couple but greater coordination variability for the shank rotation-foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.
Vidotto, Laís Silva; Bigliassi, Marcelo; Alencar, Tatiane Romanini Rodrigues; Silva, Thaísa Maria Santos; Probst, Vanessa Suziane
2015-07-01
To compare the acute effects of a standardized physiotherapy protocol versus a typical non-standardized physiotherapy protocol on pain and performance of patients undergoing alveolar bone graft (ABG). Sixteen patients (9 males; 12 [11-13] years) with cleft lip and palate undergoing ABG were allocated into two groups: (1) experimental group--EG (standardized physiotherapy protocol); and (2) control group--CG (typical, non-standardized physiotherapy treatment). Range of motion, muscle strength, gait speed, and pain level were assessed prior to surgical intervention (PRE), as well as on the first, second, and third post-operative days (1st, 2nd, and 3rd PO, respectively). Recovery with respect to range of motion of hip flexion was more pronounced in the EG (64.6 ± 11.0°) in comparison to the CG (48.5 ± 17.7° on the 3rd PO; p < 0.05). In addition, less pain was observed in the EG (0 [0-0.2] versus 2 [0.7-3] in the CG on the 3rd PO; p < 0.05). A standardized physiotherapy protocol appears to be better than a non-standardized physiotherapy protocol for acute improvement of range of motion of hip flexion and for reducing pain in patients undergoing ABG.
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking
Lerner, Zachary F.; Browning, Raymond C.
2016-01-01
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1 m•s−1 in 10 obese and 10 healthy-weight 8–12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r2=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r2=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r2=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41 N and 48 N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child’s increased risk of hip pain and pathology. PMID:27040390
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.
Lerner, Zachary F; Browning, Raymond C
2016-06-14
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1ms(-1) in 10 obese and 10 healthy-weight 8-12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r(2)=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r(2)=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r(2)=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41N and 48N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child׳s increased risk of hip pain and pathology. Published by Elsevier Ltd.
Kivlan, Benjamin R; Carcia, Christopher R; Christoforetti, John J; Martin, RobRoy L
2016-08-01
Dancers commonly experience anterior hip pain caused by femoroacetabular impingement (FAI) that interrupts training and performance in dance. A paucity of literature exists to guide appropriate evaluation and management of FAI among dancers. The purpose of this study was to determine if dancers with clinical signs of FAI have differences in hip range of motion, strength, and hop test performance compared to healthy dancers. Quasi-experimental, cohort comparison. Fifteen dancers aged between 18- 21 years with clinical signs of FAI that included anterior hip pain and provocative impingement tests were compared to 13 age-matched dancers for passive hip joint range of motion, isometric hip strength, and performance of the medial triple hop, lateral triple hop, and cross-over hop tests. No statistically significant differences in range of motion were noted for flexion (Healthy = 145° + 7°; FAI = 147° + 10°; p=0.59), internal rotation (Healthy = 63° + 7°; FAI = 61° + 11°; p=0.50), and external rotation (Healthy = 37° + 9°; FAI = 34° + 12°; p=0.68) between the two groups. Hip extension strength was significantly less in the dancers with FAI (224 + 55 Newtons) compared to the healthy group (293 ± 58 Newtons; F(1,26) = 10.2; p=0.004). No statistically significant differences were noted for flexion, internal rotation, external rotation, abduction, or adduction isometric strength. The medial triple hop test was significantly less in the FAI group (354 ± 43 cm) compared to the healthy group (410 ± 50 cm; F(1,26) = 10.3; p = 0.004). Similar results were observed for the lateral hop test, as the FAI group (294 ± 38 cm) performed worse than the healthy controls (344 ± 54cm; F(1,26) = 7.8; p = 0.01). There was no statistically significant difference between the FAI group (2.7 ± 0.92 seconds) and the healthy group (2.5 ± 0.75 seconds) on the crossover hop test. Dancers with FAI have less strength of the hip extensors and perform worse during medial and lateral hop triple tests compared to healthy dancers. Clinicians may use this information to assist in screening of dancers with complaints of hip pain and to measure their progress for return to dance. 3B, non-consectutive cohort study.
Carcia, Christopher R.; Christoforetti, John J.; Martin, RobRoy L.
2016-01-01
ABSTRACT Background Dancers commonly experience anterior hip pain caused by femoroacetabular impingement (FAI) that interrupts training and performance in dance. A paucity of literature exists to guide appropriate evaluation and management of FAI among dancers. Purpose The purpose of this study was to determine if dancers with clinical signs of FAI have differences in hip range of motion, strength, and hop test performance compared to healthy dancers. Study Design Quasi-experimental, cohort comparison. Methods Fifteen dancers aged between 18- 21 years with clinical signs of FAI that included anterior hip pain and provocative impingement tests were compared to 13 age-matched dancers for passive hip joint range of motion, isometric hip strength, and performance of the medial triple hop, lateral triple hop, and cross-over hop tests. Results No statistically significant differences in range of motion were noted for flexion (Healthy = 145° + 7°; FAI = 147° + 10°; p=0.59), internal rotation (Healthy = 63° + 7°; FAI = 61° + 11°; p=0.50), and external rotation (Healthy = 37° + 9°; FAI = 34° + 12°; p=0.68) between the two groups. Hip extension strength was significantly less in the dancers with FAI (224 + 55 Newtons) compared to the healthy group (293 ± 58 Newtons; F(1,26) = 10.2; p=0.004). No statistically significant differences were noted for flexion, internal rotation, external rotation, abduction, or adduction isometric strength. The medial triple hop test was significantly less in the FAI group (354 ± 43 cm) compared to the healthy group (410 ± 50 cm; F(1,26) = 10.3; p = 0.004). Similar results were observed for the lateral hop test, as the FAI group (294 ± 38 cm) performed worse than the healthy controls (344 ± 54cm; F(1,26) = 7.8; p = 0.01). There was no statistically significant difference between the FAI group (2.7 ± 0.92 seconds) and the healthy group (2.5 ± 0.75 seconds) on the crossover hop test. Conclusion Dancers with FAI have less strength of the hip extensors and perform worse during medial and lateral hop triple tests compared to healthy dancers. Clinicians may use this information to assist in screening of dancers with complaints of hip pain and to measure their progress for return to dance. Level of Evidence 3B, non-consectutive cohort study PMID:27525177
Malezic, M; Hesse, S
1995-03-01
Restoration of standing and of gait by functional electrical stimulation in clinically complete paraplegic patients was modified in the course of treatment and in the stimulation parameters. By substituting an initial cyclic muscle strengthening with an active stimulated standing, four patients with T3-11 lesions started walking with electrical stimulation in 10-17 days. They walked without ankle-foot orthoses. With a satisfactory stride length of 0.75-0.97 m, their gait velocity ranged from very slow to that of a leisurely healthy gait. Already established stimulation of the quadriceps muscles for standing and of the peroneal nerves for lower limb flexion during the swing phase of gait was applied. Diminished limb flexion after several weeks was restored by an increase of the stimulation frequency of the peroneal nerve from 20 to 60 Hz. EMG and kinesiological measurements displayed an improved direct response of the ankle as well as of the reflex mediated hip, knee and ankle flexion response. At the same time stimulation frequency was reduced to 16 Hz for the quadriceps muscles in order to reduce fatigue.
Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders
2016-11-01
The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.
Video Feedback and 2-Dimensional Landing Kinematics in Elite Female Handball Players.
Benjaminse, Anne; Postma, Wytze; Janssen, Ina; Otten, Egbert
2017-11-01
In team handball, an anterior cruciate ligament injury often occurs during landing after a jump shot. Many intervention programs try to reduce the injury rate by instructing athletes to land more safely. Video is an effective way to provide feedback, but little is known about its influence on landing technique in sport-specific situations. To test the effectiveness of a video-overlay feedback method on landing technique in elite handball players. Controlled laboratory study. Laboratory. A total of 16 elite female handball players assigned to a control group (n = 8; age = 17.61 ± 1.34 years, height = 1.73 ± 0.06 m, mass = 69.55 ± 4.29 kg) or video group (n = 8; age = 17.81 ± 0.86 years, height = 1.71 ± 0.03 m, mass = 64.28 ± 6.29 kg). Both groups performed jump shots in a pretest, 2 training sessions, and a posttest. The video group received video feedback of an expert model with an overlay of their own jump shots in training sessions 1 and 2, whereas the control group did not. We measured ankle, knee, and hip angles in the sagittal plane at initial contact and peak flexion; range of motion; and Landing Error Scoring System (LESS) scores. One 2 × 4 repeated-measures analysis of variance was conducted to analyze the group, time, and interaction effects of all kinematic outcome measures and the LESS score. The video group improved knee and hip flexion at initial contact and peak flexion and range of motion. In addition, the group's average peak ankle flexion (12.0° at pretest to 21.8° at posttest) and LESS score (8.1 pretest to 4.0 posttest) improved. When we considered performance variables, no differences between groups were found in shot accuracy or vertical jump height, whereas horizontal jump distance in the video group increased over time. Overlay visual feedback is an effective method for improving landing kinematics during a sport-specific jump shot. Further research is warranted to determine the long-term effects and transfer to training and game situations.
Tateuchi, Hiroshige; Wada, Osamu; Ichihashi, Noriaki
2011-06-01
Understanding the kinematic chain from foot to thorax will provide a better basis for assessment of malalignment of the body. The purpose of this study was to investigate the effects of induced calcaneal eversion on the kinematics of the hip, pelvis and thorax in three dimensions under unilateral weight-bearing. Twenty-eight healthy males were requested to stand on one leg under three conditions: normal (standing directly on the floor), and on wedges producing 5° and 10° calcaneal eversion. Recorded kinematic parameters included the angles of the hip joint, pelvis, and thorax in three dimensions. Eversion induced by wedges produced significant increases in hip flexion, hip medial rotation, pelvic anterior tilt, and thoracic lateral tilt and axial rotation to the standing side. In the frontal plane, pelvic lateral tilt to the standing side was decreased in 5° eversion condition compared with normal condition; conversely, it was increased in 10° eversion condition compared with 5° eversion condition. Arch height was negatively correlated with change in thoracic axial rotation to standing side from the normal to 10° eversion (r=-.528, p<.01). We concluded that induced calcaneal eversion affects the three-dimensional kinematics of the thorax through the hip joint and the pelvis. Copyright © 2011 Elsevier B.V. All rights reserved.
Imura, Akiko; Iino, Yoichi
2017-03-01
The purpose of this study was to investigate the effect of hip external rotation (turnout) on lower limb kinetics during vertical jumps by classical ballet dancers. Vertical jumps in a turnout (TJ) and a neutral hip position (NJ) performed by 12 classical female ballet dancers were analysed through motion capture, recording of the ground reaction forces, and inverse dynamics analysis. At push-off, the lower trunk leaned forward 18.2° and 20.1° in the TJ and NJ, respectively. The dancers jumped lower in the TJ than in the NJ. The knee extensor and hip abductor torques were smaller, whereas the hip external rotator torque was larger in the TJ than in the NJ. The work done by the hip joint moments in the sagittal plane was 0.28 J/(Body mass*Height) and 0.33 J/(Body mass*Height) in the TJ and NJ, respectively. The joint work done by the lower limbs were not different between the two jumps. These differences resulted from different planes in which the lower limb flexion-extension occurred, i.e. in the sagittal or frontal plane. This would prevent the forward lean of the trunk by decreasing the hip joint work in the sagittal plane and reduce the knee extensor torque in the jump.
Endoscopic treatment of snapping hips, iliotibial band, and iliopsoas tendon.
Ilizaliturri, Victor M; Camacho-Galindo, Javier
2010-06-01
Indications for endoscopic surgery of the hip have expanded recently. The technique has found a clear indication in the management of snapping hip syndromes, both external snapping hip and internal snapping hip. Even though the snapping hips (external and internal) share a common name, they are very different in origin. The external snapping hip is produced by the iliotibial band snapping over the prominence of the greater trochanter during flexion and extension. Indication for surgical treatment is painful snapping with failure of conservative treatment. The endoscopic technique is designed to release the iliotibial band producing a diamond shape defect on the iliotibial band lateral to the greater trochanter. The defect allows the greater trochanter to move freely without snapping. The greater trochanteric bursa is resected through the defect and the abductor tendons inspected. This procedure is performed without traction and usually only the peritrochanteric space is accessed. If necessary, hip arthroscopy can also be performed. There is limited literature regarding the results of endoscopic treatment for the external snapping hip syndrome, but early reports are encouraging. The internal snapping hip syndrome is produced by the iliopsoas tendon snapping over the iliopectineal eminence or the femoral head. The snapping phenomenon usually occurs with extension of the hip from a flexed position of more than 90 degree. Two different endoscopic techniques have been described to treat this condition. Iliopsoas tendon release at the level of the hip joint, with this technique the iliopsoas bursa is accessed through an anterior hip capsulotomy and is frequently referred to as a transcapsular release. The second technique is a release at the insertion of the iliopsoas tendon on the lesser trochanter, with this technique the iliospaos bursa is accessed directly. In every report the iliopsoas tendon release has been combined with arthroscopy of the hip joint. It has been documented that more than half of the patients with internal snapping hip syndrome have intra-articular hip pathology. The results of endoscopic release of the iliopsoas tendon in the treatment of internal snapping hip syndrome are encouraging and seem to be better than those reported for open procedures.
Can hip and knee kinematics be improved by eliminating thigh markers?
Schulz, Brian W.; Kimmel, Wendy L.
2017-01-01
Background Marker sets developed for gait analysis are often applied to more dynamic tasks with little or no validation, despite known complications of soft tissue artifact. Methods This study presents a comparison of hip and knee kinematics as calculated by five concurrently-worn tracking marker sets during eight different tasks. The first three marker sets were based on Helen Hayes but used 1) proximal thigh wands, 2) distal thigh wands, and 3) patellar markers instead of thigh wands. The remaining two marker sets used rigid clusters on the 4) thighs and shanks and 5) only shanks. Pelvis and foot segments were shared by all marker sets. The first three tasks were maximal femoral rotations using different knee and hip positions to quantify the ability of each marker set to capture this motion. The remaining five tasks were walking, walking a 1m radius circle, running, jumping, and lunging. Findings In general, few and small differences in knee and hip flexion-extension were observed between marker sets, while many and large differences in adduction-abduction and external-internal rotations were observed. The shank-only tracking marker set was capable of detecting the greatest hip external-internal rotation, yet only did so during dynamic tasks where greater hip axial motions would be expected. All data are available as supplementary material. Interpretation Marker set selection is critical to non-sagittal hip and knee motions. The shank-only tracking marker set presented here is a viable alternative that may improve knee and hip kinematics by eliminating errors from thigh soft tissue artifact. PMID:20493599
Psoas abscess masquerading as a prosthetic hip infection: A case report.
Atif, Muhammad; Malik, Azeem Tariq; Noordin, Shahryar
2018-01-01
Psoas abscess is an unusual condition and is defined as a collection of pus in the iliopsoas compartment. Due to the unique anatomy of psoas muscle it forms a conduit for spread of infection from upper part of body to hip joint in neglected cases. A 67year old lady presented with left groin pain for three weeks. She underwent an uncemented unipolar hemiarthoplasty eight years back. Currently, she developed fever and was unable to do any active left hip range of motion. Passive motion of the left hip was restricted to 30° flexion, no internal rotation, 5° external rotation, and 10° abduction. Lab workup showed raised serum infective markers and radiographs of pelvis were normal with no evidence of any radiolucency. Ultrasound guided aspiration of left hip joint showed E coli. Arthrotomy revealed clear fluid in hip joint but pus was drained at psoas insertion. Later on, culture reported presence of E. coli and biopsy confirmed psoas abscess. Postoperatively CT scan abdomen showed pyelonephritis. Antibiotics were given for three months. Twenty months later, she remains asymptomatic without evidence of infection with normal gait. Psoas abscess is a rare clinical entity that may mimic symptoms of a primary prosthetic hip infection. Treatment outcomes are directly related to early detection with adequate dissection of the psoas muscle up to sites of attachment and complete eradication of infection. This case highlights importance of thorough initial clinical examination, lab workup and radiological assessment to rule out rare causes of hip joint pain. Copyright © 2017. Published by Elsevier Ltd.
Uphill walking: Biomechanical demand on the lower extremities of obese adolescents.
Strutzenberger, Gerda; Alexander, Nathalie; Bamboschek, Dominik; Claas, Elisabeth; Langhof, Helmut; Schwameder, Hermann
2017-05-01
The number of obesity prevalence in adolescents is still increasing. Obesity treatment programs typically include physical activity with walking being recommended as appropriate activity, but limited information exists on the demand uphill walking places on the joint loading and power of obese adolescents. Therefore, the purpose of this study was to investigate the effect of different inclinations on step characteristics, sagittal and frontal joint angles, joint moments and joint power of obese adolescents in comparison to their normal-weight peers. Eleven obese (14.5±1.41 years, BMI: 31.1±3.5kg/m 2 ) and eleven normal-weight adolescents (14.3±1.86 years, BMI: 19.0±1.7kg/m 2 ) walked with 1.11m/s on a ramp with two imbedded force plates (AMTI, 1000Hz) at three inclinations (level, 6°, 12°). Kinematic data were collected via an infrared-camera motion system (Vicon, 250Hz). The two-way (inclination, group) ANOVA indicated a significant effect of inclination on almost all variables analysed, with the hip joint being the most affected by inclination, followed by the knee and ankle joint. The obese participants additionally spent less time in swing phase, walked with an increased knee flexion and valgus angle and an increased peak hip flexion and adduction moment. Hip joint power of obese adolescents was especially in the steepest inclination significantly increased compared to their normal-weight peers. Obese adolescents demonstrate increased joint loading compared to their normal-weight peers and in combination with a musculoskeletal malalignment they might be prone to an increased overuse injury risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania
2012-08-01
Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.
Aminaka, Naoko; Gribble, Phillip A
2008-01-01
Patellar taping has been a part of intervention for treatment of patellofemoral pain syndrome (PFPS). However, research on the efficacy of patellar taping on lower extremity kinematics and dynamic postural control is limited. To evaluate the effects of patellar taping on sagittal-plane hip and knee kinematics, reach distance, and perceived pain level during the Star Excursion Balance Test (SEBT) in individuals with and without PFPS. Repeated-measures design with 2 within-subjects factors and 1 between-subjects factor. The University of Toledo Athletic Training Research Laboratory. Twenty participants with PFPS and 20 healthy participants between the ages of 18 and 29 years. The participants performed 3 reaches of the SEBT in the anterior direction under tape and no-tape conditions on both legs. The participants' hip and knee sagittal-plane kinematics were measured using the electromagnetic tracking system. Reach distance was recorded by hand and was normalized by dividing the distance by the participants' leg length (%MAXD). After each taping condition on each leg, the participants rated the perceived pain level using the 10-cm visual analog scale. The participants with PFPS had a reduction in pain level with patellar tape application compared with the no-tape condition (P = .005). Additionally, participants with PFPS demonstrated increased %MAXD under the tape condition compared with the no-tape condition, whereas the healthy participants demonstrated decreased %MAXD with tape versus no tape (P = .028). No statistically significant differences were noted in hip flexion and knee flexion angles. Although patellar taping seemed to reduce pain and improve SEBT performance of participants with PFPS, the exact mechanisms of these phenomena cannot be explained in this study. Further research is warranted to investigate the effect of patellar taping on neuromuscular control during dynamic postural control.
Injuries in Female Dancers Aged 8 to 16 Years
Steinberg, Nili; Siev-Ner, Itzhak; Peleg, Smadar; Dar, Gali; Masharawi, Youssef; Zeev, Aviva; Hershkovitz, Israel
2013-01-01
Context Most studies of injured dancers have been carried out on professional adult dancers; data on young, nonprofessional injured dancers are sparse. Objective To identify the types of injuries sustained by recreational dancers and to examine their association with age, joint range of motion, body structure, age at menarche, presence of anatomic anomalies, and physical burden (ie, practice hours en pointe). Design Descriptive epidemiology study. Setting The Israel Performing Arts Medicine Center, Tel Aviv. Patients or Other Participants A total of 569 injured female dancers, aged 8 to 16 years. Main Outcome Measure(s) Dependent variables were 61 types of current injuries that were later classified into 4 major categories: knee injuries, foot and ankle tendinopathy, back injuries, and other injuries. Independent variables were age, joint range of motion, body size and shape, age at menarche, anatomic anomalies, and dance discipline (eg, hours of practice per week en pointe). Results At least 1 previous injury had been sustained by 42.4% of the dancers. The most common injuries involved the knee (40.4%), followed by other injuries (23.4%). The relative frequency of back injuries and tendinopathy decreased with age, whereas knee injuries increased. Types of injuries were significantly associated with ankle plantar flexion, hip external rotation, hip abduction, and knee flexion. Multinomial regression analysis revealed only 3 predictive variables (with other as baseline), all for back injury: scoliosis, age, and hip external rotation. Conclusions Joint range of motion and scoliosis may signal the potential for future injury. Young dancers (less than 10 years of age) should not be exposed to overload (especially of the back) or extensive stretching exercises. PMID:23672333
Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models.
Plüss, Michael; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio
2018-01-01
Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations.
Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models
Plüss, Michael; Schellenberg, Florian
2018-01-01
Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations. PMID:29796082
Dai, Yifei; Cross, Michael B; Angibaud, Laurent D; Hamad, Cyril; Jung, Amaury; Jenny, Jean-Yves
2018-02-23
Posterior tibial slope (PTS) for cruciate-retaining (CR) total knee arthroplasty (TKA) is usually pre-determined by the surgeon. Limited information is available comparing different choices of PTS on the kinematics of the CR TKA, independent of the balancing of the extension gap. This study hypothesized that with the same balanced extension gap, the choice of PTS significantly impacts the intraoperatively measured kinematics of CR TKA. Navigated CR TKAs were performed on seven fresh-frozen cadavers with healthy knees and intact posterior cruciate ligament (PCL). A custom designed tibial baseplate was implanted to allow in situ modification of the PTS, which altered the flexion gap but maintained the extension gap. Knee kinematics were measured by performing passive range of motion (ROM) tests from full extension to 120° of flexion on the intact knee and CR TKAs with four different PTSs (1°, 4°, 7°, and 10°). The measured kinematics were compared across test conditions to assess the impact of PTS. With a consistent extension gap, the change of PTS had significant impact on the anteroposterior (AP) kinematics of the CR TKA knees in mid-flexion range (45°-90°), but not so much for the high-flexion range (90°-120°). No considerable impacts were found on internal/external (I/E) rotation and hip-knee-ankle (HKA) angle. However, the findings on the individual basis suggested the impact of PTS on I/E rotation and HKA angle may be patient-specific. The data suggested that the choice of PTS had the greatest impact on the mid-flexion AP translation among the intraoperatively measured kinematics. This impact may be considered while making surgical decisions in the context of AP kinematics. When using a tibial component designed with "center" pivoting PTS, a surgeon may be able to fine tune the PTS to achieve proper mid-flexion AP stability.
Mayes, Susan; Ferris, April-Rose; Smith, Peter; Garnham, Andrew; Cook, Jill
2016-07-01
To compare the prevalence of acetabular labral tear in male and female professional ballet dancers with age-matched and sex-matched sporting participants and to determine the relationship to clinical findings and cartilage defects. Case-control study. Clinical and radiology practices. Forty-nine (98 hips) male and female professional ballet dancers (current and retired) with median age 30 years (range: 19-64 years) and 49 (98 hips) age-matched and sex-matched sporting participants. Group (ballet or sports), sex, age, hip cartilage defects, history of hip pain, Hip and Groin Outcome Score, passive hip internal rotation (IR), and external rotation range of movement (ROM). Labral tear identified with 3T magnetic resonance imaging (MRI). Labral tears were identified in 51% of all 196 hips. The prevalence did not differ significantly between the ballet and sporting participants (P = 0.41) or between sexes (P = 0.34). Labral tear was not significantly associated with clinical measures, such as pain and function scores or rotation ROM (P > 0.01 for all). Pain provocation test using IR at 90° of hip flexion had excellent specificity [96%, 95% confidence intervals (CIs), 0.77%-0.998%] but poor sensitivity (50%, 95% CI, 0.26%-0.74%) for identifying labral tear in participants reporting hip pain. Older age and cartilage defect presence were independently associated with an increased risk of labral tear (both P < 0.001). The prevalence of labral tear in male and female professional ballet dancers was similar to a sporting population. Labral tears were not associated with clinical findings but were related to cartilage defects, independent of aging. Caution is required when interpreting MRI findings as labral tear may not be the source of the ballet dancer's symptoms.
Hammoud, Sommer; Bedi, Asheesh; Voos, James E.; Mauro, Craig S.; Kelly, Bryan T.
2014-01-01
Context: In active individuals with femoroacetabular impingement (FAI), the resultant reduction in functional range of motion leads to high impaction loads at terminal ranges. These increased forces result in compensatory effects on bony and soft tissue structures within the hip joint and hemipelvis. An algorithm is useful in evaluating athletes with pre-arthritic, mechanical hip pain and associated compensatory disorders. Evidence Acquisition: A literature search was performed by a review of PubMed articles published from 1976 to 2013. Level of Evidence: Level 4. Results: Increased stresses across the bony hemipelvis result when athletes with FAI attempt to achieve supraphysiologic, terminal ranges of motion (ROM) through the hip joint required for athletic competition. This can manifest as pain within the pubic joint (osteitis pubis), sacroiliac joint, and lumbosacral spine. Subclinical posterior hip instability may result when attempts to increase hip flexion and internal rotation are not compensated for by increased motion through the hemipelvis. Prominence of the anterior inferior iliac spine (AIIS) at the level of the acetabular rim can result in impingement of the anterior hip joint capsule or iliocapsularis muscle origin against the femoral head-neck junction, resulting in a distinct form of mechanical hip impingement (AIIS subspine impingement). Iliopsoas impingement (IPI) has also been described as an etiology for anterior hip pain. IPI results in a typical 3-o’clock labral tear as well as an inflamed capsule in close proximity to the overlying iliopsoas tendon. Injury in athletic pubalgia occurs during high-energy twisting activities in which abnormal hip ROM and resultant pelvic motion lead to shearing across the pubic symphysis. Conclusion: Failure to recognize and address concomitant compensatory injury patterns associated with intra-articular hip pathology can result in significant disability and persistent symptoms in athletes with pre-arthritic, mechanical hip pain. Strength-of-Recommendation Taxonomy (SORT): B PMID:24587859
Kemp, Joanne L; Risberg, May Arna; Schache, Anthony G; Makdissi, Michael; Pritchard, Michael G; Crossley, Kay M
2016-11-01
Study Design Cross-sectional study. Background Functional task performance in patients with chondrolabral pathology following hip arthroscopy is unknown. Objectives To investigate in people with chondrolabral pathology following hip arthroscopy (1) the bilateral differences in functional task performance compared to controls, (2) the association of hip muscle strength with functional task performance, and (3) the association of functional task performance scores with good outcome, as measured by International Hip Outcome Tool score. Methods Seventy-one patients who had unilateral hip arthroscopy for hip pain and 60 controls were recruited. Patient-reported outcomes included the 4 subscales of the International Hip Outcome Tool. Hip muscle strength measures included abduction, adduction, extension, flexion, external rotation, and internal rotation. Functional tasks assessed included the single hop test, the side bridge test, and the single-leg rise test. For aim 1, analyses of covariance tests were used. For aim 2, stepwise multiple linear regression analyses were used. For aim 3, receiver operating characteristic curve analyses were used. Results Compared to controls, the chondrolabral pathology group had significantly worse performance on both legs for each of the functional tasks (P<.001). Greater hip abduction strength was moderately associated with better performance on functional tasks in the chondrolabral pathology group (adjusted R 2 range, 0.197-0.407; P<.001). Cutoff values associated with good outcome were 0.37 (hop distance/height) for the single hop, 16 repetitions for the single-leg rise, and 34 seconds for the side bridge test. Conclusion Patients with hip chondrolabral pathology had reduced functional task performance bilaterally 12 to 24 months after unilateral hip arthroscopy when compared to controls. Level of Evidence Therapy/symptom prevalence, level 3b. J Orthop Sports Phys Ther 2016;46(11):947-956. doi:10.2519/jospt.2016.6577.
Surgical hip dislocation for treatment of cam femoroacetabular impingement
Chaudhary, Milind M; Chaudhary, Ishani M; Vikas, KN; KoKo, Aung; Zaw, Than; Siddhartha, A
2015-01-01
Background: Cam femoroacetabular impingement is caused by a misshapen femoral head with a reduced head neck offset, commonly in the anterolateral quadrant. Friction in flexion, adduction and internal rotation causes limitation of the hip movements and pain progressively leading to labral and chondral damage and osteoarthritis. Surgical hip dislocation described by Ganz permits full exposure of the hip without damaging its blood supply. An osteochondroplasty removes the bump at the femoral head neck junction to recreate the offset for impingement free movement. Materials and Methods: Sixteen patients underwent surgery with surgical hip dislocation for the treatment of cam femoroacetabular impingement by open osteochondroplasty over last 6 years. Eight patients suffered from sequelae of avascular necrosis (AVN). Three had a painful dysplastic hip. Two had sequelae of Perthes disease. Three had combined cam and pincer impingement caused by retroversion of acetabulum. All patients were operated by the trochanteric flip osteotomy with attachments of gluteus medius and vastus lateralis, dissection was between the piriformis and gluteus minimus preserving the external rotators. Z-shaped capsular incision and dislocation of the hip was done in external rotation. Three cases also had subtrochanteric osteotomy. Two cases of AVN also had an intraarticular femoral head reshaping osteotomy. Results: Goals of treatment were achieved in all patients. No AVN was detected after a 6 month followup. There were no trochanteric nonunions. Hip range of motion improved in all and Harris hip score improved significantly in 15 of 16 cases. Mean alpha angle reduced from 86.13° (range 66°–108°) to 46.35° (range 39°–58°). Conclusion: Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term. PMID:26538754
Study of Wearable Knee Assistive Instruments for Walk Rehabilitation
NASA Astrophysics Data System (ADS)
Zhu, Yong; Nakamura, Masahiro; Ito, Noritaka; Fujimoto, Hiroshi; Horikuchi, Kenichi; Wakabayashi, Shojiro; Takahashi, Rei; Terada, Hidetsugu; Haro, Hirotaka
A wearable Knee Assistive Instrument for the walk rehabilitation was newly developed. Especially, this system aimed at supporting the rehabilitation for the post-TKA (Total Knee Arthroplasty) which is a popular surgery for aging people. This system consisted of an assisting mechanism for the knee joint, a hip joint support system and a foot pressure sensor system. The driving system of this robot consisted of a CPU board which generated the walking pattern, a Li-ion battery, DC motors with motor drivers, contact sensors to detect the state of foot and potentiometers to detect the hip joint angle. The control method was proposed to reproduce complex motion of knee joint as much as possible, and to increase hip or knee flexion angle. Especially, this method used the timing that heel left from the floor. This method included that the lower limb was raised to prevent a subject's fall. Also, the prototype of knee assisting system was tested. It was confirmed that the assisting system is useful.
Mladenović, Marko; Micić, Ivan; Andjelković, Zoran; Mladenović, Desimir; Stojiljković, Predrag
2015-12-01
Minimal bone changes in the acetabulum and/or proximal femur, through mechanism known as femoroacetabular impingement, during flexion, adduction and internal rotation lead to early contact between femoral head-neck junction and acetabular brim, in anterosuperior region. Each additional pathological substrate which further decreases specified clearance provokes earlier onset of femoroacetabular impingement symptoms. We presented a 20-year-old male patient with groin pain, limping, positive impingement test, radiological signs of mixed form of femoroacetabular impingement and unrecognized chronic hypertrophic synovitis with earlier development of clinical hip symptoms than it has been expected. Open surgery of the left hip was done. Two years after the surgery, patient was asymptomatic, painless, and free of motion, with stable x-rays. Hypertrophic synovial tissue further reduces the distance between the femoral head-neck junction and the acetabulum, leading to the earlier onset of femoroacetabular impingement symptoms. Surgical treatment is the method of choice.
Enocson, Anders; Blomfeldt, Richard
2014-06-01
To investigate the clinical and radiologic outcomes in elderly patients suffering from an acetabular fracture operated with an acute primary acetabular reinforcement ring, autologous bone graft, and a total hip arthroplasty (THA). Prospective cohort study. Tertiary care university hospital. Fifteen elderly patients (7 women) with a mean age of 76 years and a displaced acetabular fracture after a low-energy trauma were included. The fractures involved the anterior column, but no patients with associated both column fractures were included. All the patients were able to walk independently before the fracture occurred. Primary operation with a Burch-Schneider reinforcement ring, autologous bone graft, and a THA. The patients were reviewed at 4, 12, 24, and 48 months after the fracture occurred. The outcome assessments included complications, reoperations, activity of daily living function, functional scores (Harris hip score and short musculoskeletal function assessment), health-related quality of life [EuroQol (EQ-5D) index score], and radiologic evaluation. There were no prosthetic dislocations, periprosthetic fractures, deep infections, or other adverse events. There were no radiologic signs of loosening of the reinforcement ring or the prosthesis components at any of the follow up sessions, and the autologous bone graft was well incorporated in all the patients at the final follow-up. At 48 months, the mean Harris hip score was 88, the mean short musculoskeletal function assessment dysfunction score was 30, the bother score was 25, and the mean EQ-5D index score was 0.65. All the patients were able to walk independently at the final follow-up. Treatment of displaced anterior column, anterior column posterior hemitransverse and transverse acetabular fractures in elderly patients using a primary reinforcement ring, autologous bone graft, and a THA seems to be a safe option with good functional and radiologic outcomes. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Sohn, Young Bae; Park, Sung Won; Kim, Se-Hwa; Cho, Sung-Yoon; Ji, Sun-Tae; Kwon, Eun Kyung; Han, Sun Ju; Oh, Se Jung; Park, Yong Jae; Ko, Ah-Ra; Paik, Kyung-Hoon; Lee, Jeehun; Lee, Dong Hwan; Jin, Dong-Kyu
2012-05-01
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome, OMIM #253200) is a rare disorder involving multiple organs and manifested particularly by severe skeletal abnormalities. Bone marrow transplantation (BMT) improves cardiopulmonary function and facial features, but has limited success in ameliorating skeletal abnormalities and short stature. Here, we report the outcome of enzyme replacement therapy (ERT) with recombinant human arylsulfatase-B (ASB, Naglazyme, BioMarin, Novato, CA) in an MPS VI patient who received BMT 10 years prior to ERT induction. Administration of weekly Naglazyme for 18 months was effective in improving range of motion in several joints [shoulders (improvement of flexion (Right/Left): 40°/55°; improvement of extension 30°/40°; improvement of abduction 10°/10°), elbows (improvement of flexion 25°/25°; improvement of extension 10°/15°), hips (improvement of flexion 25°/10°), and knees (improvement of flexion 45°/40°; improvement of extension 50°/60°)]. Improvement in the outcome of the 12-min walk test (70% increase) and 3-min stair-climbing test (29% increase) was also noted after ERT. Because ERT improved clinical features in an MPS VI patient who had undergone prior BMT, the role of ERT post successful BMT in MPS VI needs further investigation. Copyright © 2012 Wiley Periodicals, Inc.
Lower Limb Kinematics and Metabolic Cost During Elliptical Exercises and Treadmill Running.
Chester, Stephanie; Zucker-Levin, Audrey; Melcher, Daniel A; Peel, Shelby A; Bloomer, Richard J; Paquette, Max R
2016-04-01
The purpose of this study was to compare knee and hip joint kinematics previously associated with anterior knee pain and metabolic cost among conditions including treadmill running (TR), standard elliptical (SE), and lateral elliptical (LE) in healthy runners. Joint kinematics and metabolic parameters of 16 runners were collected during all 3 modalities using motion capture and a metabolic system, respectively. Sagittal knee range of motion (ROM) was greater in LE (P < .001) and SE (P < .001) compared with TR. Frontal and transverse plane hip ROM were greater in LE compared with SE (P < .001) and TR (P < .001). Contralateral pelvic drop ROM was smaller in SE compared with TR (P = .002) and LE (P = .005). Similar oxygen consumption was found during LE and TR (P = .39), but LE (P < .001) and TR (P < .001) required greater oxygen consumption than SE. Although LE yields similar metabolic cost to TR and produces hip kinematics that may help strengthen hip abductors, greater knee flexion and abduction during LE may increase symptoms in runners with anterior knee pain. The findings suggest that research on the implications of elliptical exercise for injured runners is needed.
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-12-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-01-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592
Bańkosz, Ziemowit; Winiarski, Sławomir
2018-01-01
The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands – after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and “heavy” topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force –”heavy” topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke. Key points The aim of this study was to calculate correlations between racket velocity and the angular velocities of individual joints and for variants of topspin forehand and backhand strokes in table tennis. A novel model was used to estimate range of motion (specially developed placement protocol for upper body markers and identification of a ball-racket contact using an acoustic sensor attached to the racket). In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint were correlated with racket velocity. Correlations between racket velocity and the angular velocities of playing- and non-playing-side hip extension and ankle flexion were found in topspin forehands. In topspin backhands abduction of the arm had the greatest impact on the racket speed. The results can be used directly to improve training of table tennis techniques, especially topspin strokes. PMID:29769835
2013-01-01
Study Design: Case Report. Background and Purpose: Myofascial trigger points (MTrPs) are widely accepted by clinicians and researchers as a primary source of regional neuromusculoskeletal pain. Trigger point dry needling (TrP‐DN) is an invasive procedure that involves stimulation of MTrPs using an monofilament needle. The purpose of this case report is to report the outcomes of TrP‐DN and intramuscular electrical stimulation (IES) as a primary treatment intervention in a subject with chronic low back pain. Case Description: The subject was a 30‐year‐old female, active duty military, who was referred to physical therapy for low back and right posterolateral hip pain. She noticed symptoms after suffering a lumbar flexion injury while picking up a barbell during weight training. Physical examination demonstrated findings that supported the diagnosis of lumbar segmental instability with a right hip stability dysfunction. Objective findings included a multi‐segmental flexion movement pattern dysfunction and MTrPs in the right gluteus maximus and gluteus medius muscles with deep palpation. The subject was treated with TrP‐DN and IES for a total of two visits. Bilateral L3 and L5 multifidus and right gluteus maximus and medius muscles were treated, along with implementing a home exercise program consisting of core stability exercises. Outcomes: The subject reported no existing pain and disability on the Numerical Pain Rating Scale and Oswestry Disability Questionnaire and a large perceived change in recovery on the Global Rating of Change at final follow‐up. Physical examination was normal, demonstrating no observed impairments or functional limitations, including normal multi‐segmental flexion and no MTrPs with deep palpation. Discussion: The subject was able to return to full military active duty without any physical limitations and resumed pre‐injury activity levels, including the ability to resume all activities without pain. There is much promise regarding the use of TrP‐DN with IES intervention for the treatment of lumbar and/or hip stability dysfunction. Future research is recommended to determine if TrP‐DN intervention, with and without IES, is effective for other body regions and long‐term subject outcomes. Level of Evidence: Level 4. PMID:23593553
Feng, Dong-Xu; Zhang, Kun; Zhang, Yu-Min; Nian, Yue-Wen; Zhang, Jun; Kang, Xiao-Min; Wu, Shu-Fang; Zhu, Yang-Jun
2016-08-01
Total hip arthroplasty is a reliable therapeutic intervention in patients with ankylosing spondylitis, in whom the aims of surgery are to reduce pain, restore hip function and improve quality of life. The current study is a retrospective analysis of the clinical and radiographic findings in a consecutive series of patients with hip ankylosis associated with severe ankylosing spondylitis who underwent bilateral primary total hip arthroplasty using non-cemented components. From June 2008 to May 2012, total hip arthroplasty was performed on 34 hips in 17 patients with bilateral ankylosis caused by ankylosing spondylitis. The study patients included 13 men and 4 women with a mean age of 24.2 years. The mean duration of disease was 8.3 years and the average duration of hip involvement was 7.6 years. All patients had severe hip pain and dysfunction with bilateral bony ankylosis and no range of motion preoperatively and all underwent bilateral cementless total hip arthroplasty performed by a single surgeon. Joint pain, range of motion (ROM), and Harris hip scores were assessed to evaluate the postoperative results. At a mean follow-up of 31.7 months, all patients had experienced significant clinical improvement in function, ROM, posture and ambulation. At the final follow-up, the mean postoperative flexion ROM was 134.4° compared with 0° preoperatively. Similar improvements were seen in hip abduction, adduction, internal rotation and external rotation. Postoperatively, 23 hips were completely pain-free, six had only occasional discomfort, three mild to moderate pain and two severe pain. The average Harris Hip Score improved from 23.7 preoperatively to 65.8 postoperatively. No stems had loosened at the final follow-up in any patient, nor had any revision surgery been required. Bilateral severe hip ankylosis in patients with ankylosing spondylitis can be treated with cementless bilateral synchronous total hip arthroplasty, which can greatly improve hip joint function and relieve pain without significant complications. Provided the overall physical condition of a patient and their economic situation make surgery a feasible option and the surgeon is experienced, this treatment is a worthwhile surgical intervention for bilateral hip bony ankylosis. However, the technically demanding nature of the procedure and potential pre- and post-operative problems should not be underestimated. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Mostaed, Maria F; Werner, David M; Barrios, Joaquin A
2018-02-01
The lateral step-down test is an established clinical evaluation tool to assess quality of movement in patients with knee disorders. However, this test has not been investigated in individuals after anterior cruciate ligament reconstruction (ACLR) in association with quantitative 3D motion analysis. The purpose of this study was to determine the strength of association between visually-assessed quality of movement during the lateral step-down test and 3D lower limb kinematics in patients with history of ACLR. A second purpose was to compare kinematics between subgroups based on the presence or absence of faulty alignments during the task. The final purpose was to compare visually-assessed quality of movement scores between box heights during lateral step-down testing. Twenty subjects at least one year status post-ACLR (18 females, age of 24.5 ± 4.6 years and body mass index of 23.4 ± 2.3 kg/m 2 ) performed the lateral step-down test unilaterally on the surgical limb atop four and six inch boxes. A board-certified orthopedic physical therapist scored overall quality of movement during the lateral step-down test using established criteria during 2D video playback. Lower limb kinematics were simultaneously collected using 3D motion capture. An alpha level of 0.05 was used for all statistical treatments. Overall 2D quality of movement score significantly correlated (r =0.47-0.57) with 3D hip adduction and hip internal rotation across box heights. Across box heights, the presence of faulty pelvic alignment differentiated a subgroup exhibiting less peak knee flexion, and the presence of faulty knee alignment differentiated a subgroup exhibiting greater peak hip adduction. The six inch box elicited worse quality of movement compared to the four inch box. These results suggest that visually-assessed quality of movement is associated with several kinematic variables after ACLR. 2D movement deviations at the pelvis appear to consistently relate to less knee flexion, and 2D deviations at the knee appear to suggest greater hip adduction. Generally, poorer quality of movement was observed for the six inch box height. Clinically, these data suggest that interventions targeting hip abductor and knee extensor strength and neuromuscular control may be useful in the presence of poor quality of movement during lateral step-down testing. 2b.
Lower Extremity Kinematics During a Drop Jump in Individuals With Patellar Tendinopathy
Rosen, Adam B.; Ko, Jupil; Simpson, Kathy J.; Kim, Seock-Ho; Brown, Cathleen N.
2015-01-01
Background: Patellar tendinopathy (PT) is a common degenerative condition in physically active populations. Knowledge regarding the biomechanics of landing in populations with symptomatic PT is limited, but altered mechanics may play a role in the development or perpetuation of PT. Purpose: To identify whether study participants with PT exhibited different landing kinematics compared with healthy controls. Study Design: Controlled laboratory study. Methods: Sixty recreationally active participants took part in this study; 30 had current signs and symptoms of PT, including self-reported pain within the patellar tendon during loading activities for at least 3 months and ≤80 on the Victorian Institute of Sport Assessment Scale–Patella (VISA-P). Thirty healthy participants with no history of PT or other knee joint pathology were matched by sex, age, height, and weight. Participants completed 5 trials of a 40-cm, 2-legged drop jump followed immediately by a 50% maximum vertical jump. Dependent variables of interest included hip, knee, and ankle joint angles at initial ground contact, peak angles, and maximum angular displacements during the landing phase in 3 planes. Independent-samples t tests (P ≤ .05) were utilized to compare the joint angles and angular displacements between PT and control participants. Results: Individuals with PT displayed significantly decreased peak hip (PT, 59.2° ± 14.6°; control, 67.2° ± 13.9°; P = .03) and knee flexion angles (PT, 74.8° ± 13.2°; control, 82.5° ± 9.0°; P = .01) compared with control subjects. The PT group displayed decreased maximum angular displacement in the sagittal plane at the hip (PT, 49.3° ± 10.8°; control, 55.2° ± 11.4°; P = .04) and knee (PT, 71.6° ± 8.4°; control, 79.7° ± 8.3°; P < .001) compared with the control group. Conclusion: Participants with PT displayed decreased maximum flexion and angular displacement in the sagittal plane, at both the knee and the hip. The altered movement patterns in those with PT may be perpetuating symptoms associated with PT and could be due to the contributions of the rectus femoris during dynamic movement. Clinical Relevance: Based on kinematic alterations in symptomatic participants, rehabilitation efforts may benefit from focusing on both the knee and the hip to treat symptoms associated with PT. PMID:26665034
Lenton, Gavin; Aisbett, Brad; Neesham-Smith, Daniel; Carvajal, Alvaro; Netto, Kevin
2016-06-01
Musculoskeletal injuries are reported as burdening the military. An identified risk factor for injury is carrying heavy loads; however, soldiers are also required to wear their load as body armour. To investigate the effects of body armour on trunk and hip kinematics during military-specific manual handling tasks, 16 males completed 3 tasks while wearing each of 4 body armour conditions plus a control. Three-dimensional motion analysis captured and quantified all kinematic data. Average trunk flexion for the weightiest armour type was higher compared with control during the carry component of the ammunition box lift (p < 0.001) and sandbag lift tasks (p < 0.001). Trunk rotation ROM was lower for all armour types compared with control during the ammunition box place component (p < 0.001). The altered kinematics with body armour occurred independent of armour design. In order to optimise armour design, manufacturers need to work with end-users to explore how armour configurations interact with range of personal and situational factors in operationally relevant environments. Practitioner Summary: Musculoskeletal injuries are reported as burdening the military and may relate to body armour wear. Body armour increased trunk flexion and reduced trunk rotation during military-specific lifting and carrying tasks. The altered kinematics may contribute to injury risk, but more research is required.
Koehler-McNicholas, Sara R.; Lipschutz, Robert D.; Gard, Steven A.
2017-01-01
Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (ANT), subjects significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, subjects also decreased the rate at which they loaded their prosthesis, decreased their step length, increased their trunk flexion, and maintained their limb in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, no significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee-joint control. PMID:28355034
Koehler-McNicholas, Sara R; Lipschutz, Robert D; Gard, Steven A
2016-01-01
Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (i.e., the ANT condition), participants significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, participants also decreased the rate at which they loaded their prosthesis, decreased their affected-side step length, increased their trunk flexion, and maintained their prosthesis in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, comparatively few significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee joint control.
Locomotive biomechanics in persons with chronic ankle instability and lateral ankle sprain copers.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2016-07-01
To compare the locomotive biomechanics of participants with chronic ankle instability (CAI) to those of lateral ankle sprain (LAS) copers. Cross-sectional study. Twenty-eight participants with CAI and 42 LAS copers each performed 5 self-selected paced gait trials. 3-D lower extremity temporal kinematic and kinetic data were collected for these participants from 200ms pre- to 200ms post-heel strike (period 1) and from 200ms pre- to 200ms post-toe off (period 2). The CAI group displayed increased hip flexion bilaterally during period 1 compared to LAS copers. During period 2, CAI participants exhibited reduced hip extension bilaterally, increased knee flexion bilaterally and increased ankle inversion on the 'involved' limb. They also displayed a bilateral decrease in the flexor moment pattern at the knee. Considering that all of the features which distinguished CAI participants from LAS copers were also evident in our previously published research (within 2-weeks following acute first-time LAS); these findings establish a potential link between these features and long-term outcome following first-time LAS. Clinicians must be cognizant of the capacity for these movement and motor control impairments to cascade proximally from the injured joint up the kinetic chain and recognise the value that gait re-training may have in rehabilitation planning to prevent CAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Impact of an implanted neuroprosthesis on community ambulation in incomplete SCI.
Lombardo, Lisa M; Kobetic, Rudolf; Pinault, Gilles; Foglyano, Kevin M; Bailey, Stephanie N; Selkirk, Stephen; Triolo, Ronald J
2018-03-01
Test the effect of a multi-joint control with implanted electrical stimulation on walking after spinal cord injury (SCI). Single subject research design with repeated measures. Hospital-based biomechanics laboratory and user assessment of community use. Female with C6 AIS C SCI 30 years post injury. Lower extremity muscle activation with an implanted pulse generator and gait training. Walking speed, maximum distance, oxygen consumption, upper extremity (UE) forces, kinematics and self-assessment of technology. Short distance walking speed at one-year follow up with or without stimulation was not significantly different from baseline. However, average walking speed was significantly faster (0.22 m/s) with stimulation over longer distances than volitional walking (0.12 m/s). In addition, there was a 413% increase in walking distance from 95 m volitionally to 488 m with stimulation while oxygen consumption and maximum upper extremity forces decreased by 22 and 16%, respectively. Stimulation also produced significant (P ≤ 0.001) improvements in peak hip and knee flexion, ankle angle at foot off and at mid-swing. An implanted neuroprosthesis enabled a subject with incomplete SCI to walk longer distances with improved hip and knee flexion and ankle dorsiflexion resulting in decreased oxygen consumption and UE support. Further research is required to determine the robustness, generalizability and functional implications of implanted neuroprostheses for community ambulation after incomplete SCI.
Determinants of the half-turn with the ball in sub-elite youth soccer players.
Zago, Matteo; Codari, Marina; Grilli, Massimo; Bellistri, Giuseppe; Lovecchio, Nicola; Sforza, Chiarella
2016-06-01
We explored the biomechanics of the 180° change-of-direction with the ball (half-turn) in soccer. We aimed at identifying movement strategies which enhance the players' half-turning performance, by characterising technique kinematics and understanding the structure of biomechanical and anthropometrics variables. Ten Under-13 sub-elite male players were recorded with an optoelectronic motion analyser while performing a 5-m straight dribbling followed by a half-turn with the sole. Joints kinematics differences between faster and slower trials were found in support-side hip rotation, driving-side hip adduction, trunk flexion and rotation, and arms abduction. To unveil the data-set structure, a principal component (PC) analysis and a stepwise linear discriminant analysis were performed using 30 biomechanical parameters and four anthropometric variables for each trial. Seven retained PCs explained 79% of the overall variability, featuring combinations of original variables that help in understanding the factors facilitating fast half-turns: keeping short steps, minimising lateral and forward body movements, and centre-of-mass lowering, even with ample lower limbs ranges of motion (RoM); abducting the upper limbs while limiting trunk flexion and pelvic inclination RoM. Balance and task-constrained exercises may be proposed to improve this technique. Moreover, a quantitative knowledge of the movement structure could give coaches objective insights to better instruct young players.
Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot
Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton; ...
2016-11-23
This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuatedmore » bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.« less
Bańkosz, Ziemowit; Winiarski, Sławomir
2018-06-01
The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands - after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and "heavy" topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force -"heavy" topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke.
Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton
This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuatedmore » bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.« less
Ishizawa, A; Hayashi, S; Nasu, H; Abe, H; Rodríguez-Vázquez, J F; Murakami, G
2013-02-01
Birds and reptiles always carry a long and thick artery accompanying the sciatic nerve (i.e., the sciatic artery), whereas mammals do not. We attempted to demonstrate a difference in courses of the nerve and artery in fetuses in relation with the hip joint posture. Eight mid-term human fetuses (15-18 weeks), five mouse fetuses (E18) and five chick embryos (11 days after incubation) were examined histologically. Thin feeding arteries in the sciatic nerve were consistently observed in human fetuses in spite of the long, inferiorly curved course of the nerve around the ischium. The tissue around the human sciatic nerve was not so tight because of the medial and inferior shift of the nerve away from the hip joint. The fetal hip joint position differed among the species, being highly flexed in humans and almost at right angle flexion in mice and chicks. Because of deep adduction of the hip joint in the mouse, the knee was located near the midline of the body. The mouse sciatic nerve ran through the tight tissue along the head of the femur, whereas the chick nerve ran through the loose space even in the gluteal region. In birds, evolution of the pelvis including the hip joint without adduction seemed to make the arterial development possible. In mammals, highly flexed or adducted hip joint seemed to be one of the disturbing factors against development of the long and thick artery. A slight change in posture may cause significant arterial variation.
Pathological findings in patients with low anterior inferior iliac spine impingement.
Amar, Eyal; Warschawski, Yaniv; Sharfman, Zachary T; Martin, Hal David; Safran, Marc R; Rath, Ehud
2016-07-01
Femoroacetabular impingement (FAI) has been well described in recent years as one of the major causes of hip pain potentially leading to acetabular labral tears and cartilage damage, which may in turn lead to the development of early degenerative changes. More recently, extra-articular patterns of impingement such as the anterior inferior iliac spine (AIIS)/subspine hip impingement have gained focus as a cause of hip pain and limitation in terminal hip flexion and internal rotation. The purpose of this study was to evaluate the prevalence of low AIIS in patients undergoing hip arthroscopy and to characterize the concomitant intra-articular lesions. Between November 2011 and April 2013, 100 consecutive patients underwent hip arthroscopy for various diagnoses by a single surgeon. After intra-operative diagnosis of low AIIS was made, a comprehensive review of the patients' records, preoperative radiographs, and intra-operative findings was conducted to document the existence and location of labral and chondral lesions. Twenty-one (21 %) patients had low AIIS. There were 13 males (mean age 38.4 years) and eight females (mean age 35.5 years). Eight patients had pre-operative radiographic evidence of low AIIS. All patients had a labral tear anteriorly, at the level of the AIIS; 17 had chondrolabral disruption and 17 had chondral lesions in zone two (antero-superior); and four patients had lesion in zones two and three. Low AIIS is a common intra-operative finding in hip arthroscopy patients. Characteristic labral and chondral lesions are routinely found in a predictable location that effaces the low AIIS. Level of Evidence-Level IV, Case Series.
Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints.
Kipp, Kristof; Redden, Josh; Sabick, Michelle B; Harris, Chad
2012-07-01
The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.
Femoral head-neck junction deformity is related to osteoarthritis of the hip.
Barros, Hilton José Melo; Camanho, Gilberto Luis; Bernabé, Antônio Carlos; Rodrigues, Marcelo Bordalo; Leme, Luiz Eugênio Garcez
2010-07-01
Primary or idiopathic osteoarthritis (OA) of the hip has increasingly been attributed to the presence of presumably minor femoral or acetabular deformities that are not routinely identified. The alpha angle reflects one such deformity of the femoral neck and reflects a risk for femoroacetabular impingement, which in turn reportedly is associated with OA. If impingement is in fact associated with OA, then one might expect the mean alpha angle to be greater in patients with presumed idiopathic hip OA. We therefore compared the alpha angle among a group of elderly patients with idiopathic OA with that in a control group of elderly individuals without OA. We measured the alpha angles in 50 individuals (72 hips) with a mean age of 70 years (range, 60-84 years) with apparently idiopathic OA and compared their angles with those from a control group of 56 individuals without OA. The alpha angle was measured by means of radiographs of their hips using the Dunn view at 45 degrees flexion. The patients with OA had a greater percentage with abnormal alpha angles than did the normal subjects: 82% versus 30%, respectively. The mean alpha angle in the group with OA was larger than in the control subjects: 66.4 masculine (range, 28 degrees -108 degrees ) versus 48.1 masculine (range, 34 degrees -68 degrees ). Hips with presumably idiopathic OA had more abnormalities at the femoral head-neck junction than did the control hips without OA and may relate to the risk of OA developing. Level II, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.
Influence of evolution on cam deformity and its impact on biomechanics of the human hip joint.
Anwander, Helen; Beck, Martin; Büchler, Lorenz
2018-02-05
Anatomy and biomechanics of the human hip joint are a consequence of the evolution of permanent bipedal gait. Habitat and behaviour have an impact on hip morphology and significant differences are present even within the same biological family. The forces acting upon the hip joint are mainly a function of gravitation and strength of the muscles. Acetabular and femoral anatomy ensure an inherently stable hip with a wide range of motion. The femoral head in first human ancestors with upright gait was spherical (coxa rotunda). Coxa rotunda is also seen in close human relatives (great apes) and remains the predominant anatomy of present-day humans. High impact sport during adolescence with open physis however can activate an underlying genetic predisposition for reinforcement of the femoral neck, causing an epiphyseal extension and the formation of an osseous asphericity at the antero-superior femoral neck (cam deformity). The morphology of cam deformity is similar to the aspherical hips of quadrupeds (coxa recta), with the difference that in quadrupeds the asphericity is posterior. It has been postulated that this is due to the fact that humans bear weight on the extended leg, while quadrupeds bear weight at 90-100° flexion. The asphericity alters the biomechanical properties of the joint and as it is forced into the acetabulum leading to secondary cartilage damage. It is considered a risk factor for later development of osteoarthritis of the hip. Clinically this presents as reduced range of motion, which can be an indicator for the structural deformity of the hip. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Hip Strength in Patients with Quadriceps Strength Deficits after ACL Reconstruction.
Bell, David R; Trigsted, Stephanie M; Post, Eric G; Walden, Courtney E
2016-10-01
Quadriceps strength deficits persist for years after anterior cruciate ligament (ACL) reconstruction, and patients with these deficits often shift torque demands away from the knee extensors to the hip during functional tasks. However, it is not clear how quadriceps strength deficits may affect hip strength. Therefore, the purpose of this study was to investigate differences in lower extremity strength in individuals with ACL reconstruction with differing levels of quadriceps strength asymmetry. Isometric strength was recorded bilaterally in 135 participants (73 control and 62 with unilateral ACL reconstruction, time from surgery = 30.9 ± 17.6 months) from the knee extensors and flexors, hip extensors and abductors, and hip internal and external rotator muscle groups. Symmetry indices (limb symmetry index (LSI)) were created based on quadriceps strength, and subjects with ACL reconstruction were subdivided (high quadriceps (LSI ≥ 90%), n = 37; low quadriceps (LSI < 85%), n = 18). Individual group (control vs high quadriceps vs low quadriceps) by limb (reconstructed/nondominant vs healthy/dominant) repeated-measures ANOVA was used to compare strength (%BW) for each of the six joint motions of interest (knee extensors/flexors, hip abductors/extensors/external, and internal rotators) while controlling for time from surgery. An interaction was observed for quadriceps strength (P < 0.001), and the reconstructed limb in the low quadriceps group was weaker than all other limbs. A main effect for group was observed with the low quadriceps group having greater hip extension (P = 0.007) strength in both limbs compared with the other groups. Knee flexion strength was weaker in the reconstructed limb of the high quadriceps group (P = 0.047) compared with all other groups and limbs. Individuals with ACL reconstruction and involved limb quadriceps weakness have greater hip extension strength in both limbs compared with patients with bilateral strength symmetry and controls.
Hando, Ben R; Gill, Norman W; Walker, Michael J; Garber, Mathew
2012-01-01
Objectives: Describe short- and long-term outcomes observed in individuals with hip osteoarthritis (OA) treated with a pre-selected, standardized set of best-evidence manual therapy and therapeutic exercise interventions. Methods: Fifteen consecutive subjects (9 males, 6 females; mean age: 52±7.5 years) with unilateral hip OA received an identical protocol of manual therapy and therapeutic exercise interventions. Subjects attended 10 treatment sessions over an 8-week period for manual therapy interventions and performed the therapeutic exercise as a home program. Results: Baseline to 8-week follow-up outcomes were as follows: Harris Hip Scale (HHS) scores improved from 60.3(±10.4) to 80.7(±10.5), Numerical Pain Rating Scale (NPRS) scores improved from 4.3(±1.9) to 2.0(±1.9), hip flexion range of motion (ROM) improved from 99 degrees (±10.6) to 127 degrees (±6.3) and hip internal rotation ROM improved from 19 degrees (±9.1) to 31 degrees (±11.5). Improvements in HHS, NPRS, and hip ROM measures reached statistical significance (P<0.05) at 8-weeks and remained significant at the 29-week follow-up. Mean changes in NPRS and HHS scores exceeded the minimal clinically important difference (MCID) at 8-weeks and for the HHS scores alone at 29 weeks. The 8 and 29 week mean Global Rating of Change scores were 5.1(±1.4) and 2.1(±4.2), respectively. Improved outcomes observed following a pre-selected, standardized treatment protocol were similar to those observed in previous studies involving impairment-based manual therapy and therapeutic exercise for hip OA. Future studies might directly compare the two approaches. Discussion: PMID:24179327
Hando, Ben R; Gill, Norman W; Walker, Michael J; Garber, Mathew
2012-11-01
Describe short- and long-term outcomes observed in individuals with hip osteoarthritis (OA) treated with a pre-selected, standardized set of best-evidence manual therapy and therapeutic exercise interventions. Fifteen consecutive subjects (9 males, 6 females; mean age: 52±7.5 years) with unilateral hip OA received an identical protocol of manual therapy and therapeutic exercise interventions. Subjects attended 10 treatment sessions over an 8-week period for manual therapy interventions and performed the therapeutic exercise as a home program. Baseline to 8-week follow-up outcomes were as follows: Harris Hip Scale (HHS) scores improved from 60.3(±10.4) to 80.7(±10.5), Numerical Pain Rating Scale (NPRS) scores improved from 4.3(±1.9) to 2.0(±1.9), hip flexion range of motion (ROM) improved from 99 degrees (±10.6) to 127 degrees (±6.3) and hip internal rotation ROM improved from 19 degrees (±9.1) to 31 degrees (±11.5). Improvements in HHS, NPRS, and hip ROM measures reached statistical significance (P<0.05) at 8-weeks and remained significant at the 29-week follow-up. Mean changes in NPRS and HHS scores exceeded the minimal clinically important difference (MCID) at 8-weeks and for the HHS scores alone at 29 weeks. The 8 and 29 week mean Global Rating of Change scores were 5.1(±1.4) and 2.1(±4.2), respectively. Improved outcomes observed following a pre-selected, standardized treatment protocol were similar to those observed in previous studies involving impairment-based manual therapy and therapeutic exercise for hip OA. Future studies might directly compare the two approaches.
Patient Needs for an Ambulant Dislocation Alert System Following Total Hip Arthroplasty.
Huis In't Veld, Rianne; Peters, Anil; Vollenbroek-Hutten, Miriam; Hermens, Hermie; van den Hoven, Carmen
2018-05-01
One of the major complications in total hip arthroplasty (THA) is dislocation of the prosthesis. To prevent early dislocation, patients are instructed with movement restrictions. The first goal in this development is to obtain insight in the movement restrictions that are reported to have low levels of self-efficacy during activities of daily life. The second goal is to reveal the design needs for an ambulant hip dislocation alert system (HipDas) and the third goal is to explore its usability among patients. Patient-centered experiences with THA were explored by the use of a questionnaire and a semistructured focus group. The questionnaire was administered among n = 32 THA patients at 1 week preoperative and at 3 and 6 weeks postoperative. The questions addressed self-efficacy, performance and effort expectancy, and usefulness and social influence. The focus group consisted of patient journeys and scenario composition. The usability of a prototype version of the HipDas system was evaluated (n = 5). Flexion of the hip >90°, bending over while sitting in a chair, and sleeping in a supine position are the restrictions that have the lowest self-efficacy. The majority of patients (>86.6%) believe that a future HipDas is useful. Focus group outcomes suggest there is a gradual decrease in the threshold for feedback. The system is preferably used in the first 6 weeks after surgery and appeared to be usable and highly clinically relevant. HipDas is considered an interesting concept that can accelerate functional recovery of patients following THA by providing support on how to properly apply postoperative movement restrictions to prevent a dislocation.
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
Psoas tunnel perforation—an unreported complication of hip arthroscopy
Degen, Ryan M.; O’Sullivan, Eilish; Sink, Ernest L.; Kelly, Bryan T.
2015-01-01
The utilization of hip arthroscopy is rapidly increasing due to improved arthroscopic techniques and training, better recognition of pathology responsible for non-arthritic hip pain and an increasing desire for minimally invasive procedures. With increasing rates of arthroscopy, associated complications are also being recognized. We present a series of six patients who experienced psoas tunnel perforation during anchor insertion from the distal anterolateral portal during labral repair. All patients underwent prior hip arthroscopy and labral repair and presented with persistent symptoms at least partly attributable to magnetic resonance imaging (MRI)-documented psoas tunnel perforation. Their clinical records, operative notes and intra-operative photographs were reviewed. All patients presented with persistent pain, both with an anterior impingement test and resisted hip flexion. MRI imaging demonstrated medial cortical perforation with anchors visualized in the psoas tunnel, adjacent to the iliopsoas muscle. Four patients have undergone revision hip arthroscopy, whereas two have undergone periacetabular osteotomies. All patients had prominent anchors in the psoas tunnel removed at the time of surgery, with varying degrees of concomitant pathology appropriately treated during the revision procedure. Care must be utilized during medial anchor placement to avoid psoas tunnel perforation. Although this complication alone was not the sole cause for revision in each case, it may have contributed to their poor outcome and should be avoided in future cases. This can be accomplished by using a smaller anchor, inserting the anchor from the mid-anterior portal and checking the drill hole with a nitinol wire prior to anchor insertion. PMID:27011849
Romero-Franco, Natalia; Jiménez-Reyes, Pedro; Montaño-Munuera, Juan A
2017-11-01
Lower limb isometric strength is a key parameter to monitor the training process or recognise muscle weakness and injury risk. However, valid and reliable methods to evaluate it often require high-cost tools. The aim of this study was to analyse the concurrent validity and reliability of a low-cost digital dynamometer for measuring isometric strength in lower limb. Eleven physically active and healthy participants performed maximal isometric strength for: flexion and extension of ankle, flexion and extension of knee, flexion, extension, adduction, abduction, internal and external rotation of hip. Data obtained by the digital dynamometer were compared with the isokinetic dynamometer to examine its concurrent validity. Data obtained by the digital dynamometer from 2 different evaluators and 2 different sessions were compared to examine its inter-rater and intra-rater reliability. Intra-class correlation (ICC) for validity was excellent in every movement (ICC > 0.9). Intra and inter-tester reliability was excellent for all the movements assessed (ICC > 0.75). The low-cost digital dynamometer demonstrated strong concurrent validity and excellent intra and inter-tester reliability for assessing isometric strength in the main lower limb movements.
Reinking, Mark F.; Austin, Tricia M.; Richter, Randy R.; Krieger, Mary M.
2016-01-01
Context: Medial tibial stress syndrome (MTSS) is a common condition in active individuals and presents as diffuse pain along the posteromedial border of the tibia. Objective: To use cross-sectional, case-control, and cohort studies to identify significant MTSS risk factors. Data Sources: Bibliographic databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE, EBM Reviews, PEDRo), grey literature, electronic search of full text of journals, manual review of reference lists, and automatically executed PubMed MTSS searches were utilized. All searches were conducted between 2011 and 2015. Study Selection: Inclusion criteria were determined a priori and included original research with participants’ pain diffuse, located in the posterior medial tibial region, and activity related. Study Design: Systematic review with meta-analysis. Level of evidence: Level 4. Data Extraction: Titles and abstracts were reviewed to eliminate citations that did not meet the criteria for inclusion. Study characteristics identified a priori were extracted for data analysis. Statistical heterogeneity was examined using the I2 index and Cochran Q test, and a random-effects model was used to calculate the meta-analysis when 2 or more studies examined a risk factor. Two authors independently assessed study quality. Results: Eighty-three articles met the inclusion criteria, and 22 articles included risk factor data. Of the 27 risk factors that were in 2 or more studies, 5 risk factors showed a significant pooled effect and low statistical heterogeneity, including female sex (odds ratio [OR], 2.35; CI, 1.58-3.50), increased weight (standardized mean difference [SMD], 0.24; CI, 0.03-0.45), higher navicular drop (SMD, 0.44; CI, 0.21-0.67), previous running injury (OR, 2.18; CI, 1.00-4.72), and greater hip external rotation with the hip in flexion (SMD, 0.44; CI, 0.23-0.65). The remaining risk factors had a nonsignificant pooled effect or significant pooled effect with high statistical heterogeneity. Conclusion: Female sex, increased weight, higher navicular drop, previous running injury, and greater hip external rotation with the hip in flexion are risk factors for the development of MTSS. PMID:27729482
Tran, Andrew A; Gatewood, Corey; Harris, Alex H S; Thompson, Julie A; Dragoo, Jason L
2016-12-01
Identification of biomechanical risk factors associated with anterior cruciate ligament (ACL) injury can facilitate injury prevention. The purpose of this study is to investigate the effects of three foot landing positions, "toe-in", "toe-out" and "neutral", on biomechanical risk factors for ACL injury in males and females. The authors hypothesize that 1) relative to neutral, the toe-in position increases the biomechanical risk factors for ACL injury, 2) the toe-out position decreases these biomechanical risk factors, and 3) compared to males, females demonstrate greater changes in lower extremity biomechanics with changes in foot landing position. Motion capture data on ten male and ten female volunteers aged 20-30 years (26.4 ± 2.50) were collected during double-leg jump landing activities. Subjects were asked to land on force plates and target one of three pre-templated foot landing positions: 0° ("neutral"), 30° internal rotation ("toe-in"), and 30° external rotation ("toe-out") along the axis of the anatomical sagittal plane. A mixed-effects ANOVA and pairwise Tukey post-hoc comparison were used to detect differences in kinematic and kinetic variables associated with biomechanical risk factors of ACL injury between the three foot landing positions. Relative to neutral, landing in the toe-in position increased peak hip adduction, knee internal rotation angles and moments (p < 0.01), and peak knee abduction angle (p < 0.001). Landing in the toe-in position also decreased peak hip flexion angle (p < 0.001) and knee flexion angle (p = 0.023). Landing in the toe-out position decreased peak hip adduction, knee abduction, and knee internal rotation angles (all p < 0.001). Male sex was associated with a smaller increase in hip adduction moment (p = 0.043) and knee internal rotation moment (p = 0.032) with toe-in landing position compared with female sex. Toe-in landing position exacerbates biomechanical risk factors associated with ACL injury, while toe-out landing position decreases these factors.
Frontal plane landing mechanics in high-arched compared with low-arched female athletes.
Powell, Douglas W; Hanson, Nicholas J; Long, Benjamin; Williams, D S Blaise
2012-09-01
To examine ground reaction forces (GRFs); frontal plane hip, knee, and ankle joint angles; and moments in high-arched (HA) and low-arched (LA) athletes during landing. Experimental study. Controlled research laboratory. Twenty healthy female recreational athletes (10 HA and 10 LA). Athletes performed 5 barefoot drop landings from a height of 30 cm. Frontal plane ankle, knee, and hip joint angles (in degrees) at initial contact, peak vertical GRF, and peak knee flexion; peak ankle, knee, and hip joint moments in the frontal plane. Vertical GRF profiles were similar between HA and LA athletes (P = 0.78). The HA athletes exhibited significantly smaller peak ankle inversion angles than the LA athletes (P = 0.01) at initial contact. At peak vertical GRF, HA athletes had significantly greater peak knee (P = 0.01) and hip abduction angles than LA athletes (P = 0.02). There were no significant differences between HA and LA athletes in peak joint moments (hip: P = 0.68; knee: P = 0.71; ankle: P = 0.15). These findings demonstrate that foot type is associated with altered landing mechanics, which may underlie lower extremity injuries. The ankle-driven strategy previously reported in female athletes suggests that foot function may have a greater relationship with lower extremity injury than that in male athletes. Future research should address the interaction of foot type and gender during landing tasks.
Hu, Hua; Xiong, Chang-Yuan; Han, Guo-Wu
2012-07-01
To study the changes of displacement and stress in the model of lumbar pelvic and proximal femur during lumbar rotatory manipulation. The date of lumbar pelvic and proximal femur CT scan by Mimics 10.01 software was established a lumbar pelvic and proximal femur geometric model, then the model was modified with Geomagic 9, at last the modified model was imported into hypermesh 10 and meshed with tetrahedron, at the same time,add disc and ligaments. According to the principle of lumbar rotatory manipulation,the lumbar rotatory manipulation were decomposed. The mechanical parameters assigned into the three-dimensional finite element model. The changes of displacement and stress in the model of lunbar pelvic and proximal femur under the four conditions were calculated with Abaqus model of Hypermesh 10. 1) Under the same condition,the displacement order of lumbar was L1>L2>L3>L5 L5, anterior column > middle column > posterior column. 2) Under the different conditions, the displacement order of lumbar,case 3>case 1>case 4>case 2. 3) Under the same conditions, the displacement order of lumbar inter-vertebral disc from L1,2 to L5S1 was L1,2>L2,3>L3,4>L4,5>L5S1, as for the same inter-vertebral disc, the order was: second quadrant>third quadrant>first quadrant>fourth quadrant. 4) Under the different conditions,the displacement order of the inter-vertebral disc was L1,2>L2,3>L3,4>L4,5>L5S1, but to same inter-vertebral disc: case 3>case 4>case 1 >case 2. 5) There were apparent displacement and stress concentration in pelvis and hip during the manipulation. 1) The principles of lumbar rotation manipulation closely related to the relative displacement caused by rotation of various parts of lumbar pelvic and proximal femur model; 2) During the process of lumbar rotatory manipulation, the angle of lateral bending and flexion can not be randomly increased; 3) During the process of lumbar rotatory manipulation, all the conditions of lumbar pelvic and proximal femur must be considered to determine indications and contraindications.
Sheppard, P S; Stevenson, J M; Graham, R B
2016-05-01
The objective of the present study was to determine if there is a sex-based difference in lifting technique across increasing-load conditions. Eleven male and 14 female participants (n = 25) with no previous history of low back disorder participated in the study. Participants completed freestyle, symmetric lifts of a box with handles from the floor to a table positioned at 50% of their height for five trials under three load conditions (10%, 20%, and 30% of their individual maximum isometric back strength). Joint kinematic data for the ankle, knee, hip, and lumbar and thoracic spine were collected using a two-camera Optotrak motion capture system. Joint angles were calculated using a three-dimensional Euler rotation sequence. Principal component analysis (PCA) and single component reconstruction were applied to assess differences in lifting technique across the entire waveforms. Thirty-two PCs were retained from the five joints and three axes in accordance with the 90% trace criterion. Repeated-measures ANOVA with a mixed design revealed no significant effect of sex for any of the PCs. This is contrary to previous research that used discrete points on the lifting curve to analyze sex-based differences, but agrees with more recent research using more complex analysis techniques. There was a significant effect of load on lifting technique for five PCs of the lower limb (PC1 of ankle flexion, knee flexion, and knee adduction, as well as PC2 and PC3 of hip flexion) (p < 0.005). However, there was no significant effect of load on the thoracic and lumbar spine. It was concluded that when load is standardized to individual back strength characteristics, males and females adopted a similar lifting technique. In addition, as load increased male and female participants changed their lifting technique in a similar manner. Copyright © 2016. Published by Elsevier Ltd.
Calatayud, Joaquin; Casaña, Jose; Ezzatvar, Yasmin; Jakobsen, Markus D; Sundstrup, Emil; Andersen, Lars L
2017-09-01
The benefits of preoperative training programmes compared with alternative treatment are unclear. The purpose of this study was to evaluate the effectiveness of a high-intensity preoperative resistance training programme in patients waiting for total knee arthroplasty (TKA). Forty-four subjects (7 men, 37 women) scheduled for unilateral TKA for osteoarthritis (OA) during 2014 participated in this randomized controlled trial. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the Physical Functioning Scale of the Short Form-36 questionnaire (SF-36), a 10-cm visual analogue scale (VAS), isometric knee flexion, isometric knee extension, isometric hip abduction, active knee range of motion and functional tasks (Timed Up and Go test and Stair ascent-descent test) were assessed at 8 weeks before surgery (T1), after 8 weeks of training (T2), 1 month after TKA (T3) and finally 3 months after TKA (T4). The intervention group completed an 8-week training programme 3 days per week prior to surgery. Isometric knee flexion, isometric hip abduction, VAS, WOMAC, ROM extension and flexion and all the functional assessments were greater for the intervention group at T2, T3 and T4, whereas isometric knee extension was greater for this group at T2 and T4 compared with control. The present study supports the use of preoperative training in end-stage OA patients to improve early postoperative outcomes. High-intensity strength training during the preoperative period reduces pain and improves lower limb muscle strength, ROM and functional task performance before surgery, resulting in a reduced length of stay at the hospital and a faster physical and functional recovery after TKA. The present training programme can be used by specialists to speed up recovery after TKA. I.
Prather, H; Harris-Hayes, M; Hunt, D; Steger-May, K; Mathew, V; Clohisy, JC
2012-01-01
Objective The objectives of this study are the following: 1) report passive hip ROM in asymptomatic young adults, 2) report the intra-tester and inter-tester reliability of hip ROM measurements among testers of multiple disciplines, 3) report the results of provocative hip tests and tester agreement. Design descriptive epidemiology study Setting tertiary university Participants Twenty-eight young adult volunteers without musculoskeletal symptoms, history of disorder or surgery involving the lumbar spine or lower extremities were enrolled and completed the study. Methods Asymptomatic young adult volunteers completed questionnaires and were examined by two blinded examiners during a single session. The testers were physical therapists and physicians. Hip range of motion and provocative tests were completed by both examiners on each hip. Main Outcome Measurements Inter and intra-rater reliability for ROM and agreement for provocative tests was determined. Results Twenty-eight asymptomatic adults with mean age 31 years old (range 18–51 years) and mean modified Harris Hip Score of 99.5 ± 1.5 and UCLA Activity score of 8.8 ± 1.2 completed the study. Intra-rater agreement was excellent for all hip range of motion measurements, with intraclass correlation coefficients (ICCs) ranging from 0.76 to 0.97 with similar agreement if the examiner was a physical therapist or a physician. Excellent inter-rater reliability was found for hip flexion ICC 0.87 (95% CI 0.78 to 0.92), supine internal rotation ICC 0.75 (95% CI 0.60 to 0.84) and prone internal rotation ICC 0.79 (95% CI 0.66 to 0.87). The least reliable measurements were supine hip abduction (ICC 0.34) and supine external rotation (ICC 0.18). Agreement between examiners ranged from 96–100% for provocative hip tests which included the hip impingement, resisted straight leg raise, FABER/Patrick’s and log roll tests. Conclusions Specific hip ROM measures show excellent inter-rater reliability and provocative hip tests show good agreement among multiple examiners and medical disciplines. Further studies are needed to assess the utilization of these measurements and tests as a part of a hip screening examination to assess for young adults at risk intra-articular hip disorders prior to the onset of degenerative changes. PMID:20970757
2015-05-01
changes have been historically seen with the heavier approach march load between 21 kg and 33 kg (Schiffman et al., 2006, and Harman et al., 1999) or...the heaviest emergency approach march load greater than 32 kg (Attwells et al., 2006, and Harman et al., 1999). Increasing ballistic protection...vital to maintaining upright posture while walking ( Harman et al., 1999). Alterations made lower in the kinematic chain, such as the hip flexion
2009-09-24
flexion angle, decreased vertical ground-reaction force , and increased hip internal rotation angle during the jump -landing task. Additionally, decreased...was to determine the biomechanical risk factors for PFPS. The specific factors examined were lower extremity kinematics and kinetics during a jump ...ACL Injury [ JUMP -ACL] study) in which baseline data are collected for participants at all 3 service academies (USNA, United States Air Force Academy
Rubenson, Jonas; Lloyd, David G; Besier, Thor F; Heliams, Denham B; Fournier, Paul A
2007-07-01
Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the biomechanics and motor control of avian bipedalism.
Reconstruction of equilibrium trajectories during whole-body movements.
Domen, K; Latash, M L; Zatsiorsky, V M
1999-03-01
The framework of the equilibrium-point hypothesis was used to reconstruct equilibrium trajectories (ETs) of the ankle, hip and body center of mass during quick voluntary hip flexions ('Japanese courtesy bow') by standing subjects. Different spring loads applied to the subject's back were used to introduce smooth perturbations that are necessary to reconstruct ETs based on a series of trials at the same task. Time patterns of muscle torques were calculated using inverse dynamics techniques. A second-order linear model was employed to calculate the instantaneous position of the spring-like joint or center of mass characteristic at different times during the movement. ETs of the joints and of the center of mass had significantly different shapes from the actual trajectories. Integral measures of electromyographic bursts of activity in postural muscles demonstrated a relation to muscle length corresponding to the equilibrium-point hypothesis.
The anteromedial approach to the psoas tendon in patients with cerebral palsy
Poonnoose, Pradeep M.; Palocaren, Thomas
2007-01-01
Purpose Release of the psoas tendon for flexion deformity of the hip in children with cerebral palsy has traditionally been performed at the pelvic brim, lateral to the neurovascular bundle, or at its insertion into the lesser trochanter. As the psoas tendon is lateral to the pectineus, the traditional exposure of the tendon through an approach medial to the pectineus is limited by the extent to which the pectineus can be retracted proximally. Technical note We describe the use of the anteromedial approach used for the developmentally dislocated hip to expose the psoas tendon between the pectineus and the neurovascular bundle. This provides a much better visualisation of the tendon as it crosses the superior pubic ramus to its insertion. The use of this approach has not been described in cerebral palsy. PMID:19308518
Usefulness of Arthroscopic Treatment of Painful Hip after Acetabular Fracture or Hip Dislocation.
Hwang, Jung-Taek; Lee, Woo-Yong; Kang, Chan; Hwang, Deuk-Soo; Kim, Dong-Yeol; Zheng, Long
2015-12-01
Painful hip following hip dislocation or acetabular fracture can be an important signal for early degeneration and progression to osteoarthritis due to intraarticular pathology. However, there is limited literature discussing the use of arthroscopy for the treatment of painful hip. The purpose of this retrospective study was to analyze the effectiveness and benefit of arthroscopic treatment for patients with a painful hip after major trauma. From July 2003 to February 2013, we reviewed 13 patients who underwent arthroscopic treatment after acetabular fracture or hip dislocation and were followed up for a minimum of 2 postoperative years. The degree of osteoarthritis based on the Tonnis classification pre- and postoperatively at final follow-up was determined. Clinical outcomes were evaluated using visual analogue scale for pain (VAS) and modified Harris hip score (MHHS), and range of motion (ROM) of the hip pre- and postoperatively at final follow-up. There were nine male and four female patients with a mean age at surgery of 28 years (range, 20 to 50 years). The mean follow-up period of the patients was 59.8 months (range, 24 to 115 months), and the mean interval between initial trauma and arthroscopic treatment was 40.8 months (range, 1 to 144 months). At the final follow-up, VAS and MHHS improved significantly from 6.3 and 53.4 to 3.0 and 88.3, respectively (p = 0.002 and p < 0.001, respectively). However, there were no significant differences in hip flexion, abduction, adduction, external rotation, and internal rotation as minor improvements from 113.1°, 38.5°, 28.5°, 36.5°, and 22.7° to 118.5°, 39.0°, 29.2°, 38.9°, and 26.5° were observed, respectively (p = 0.070, p = 0.414, p = 0.317, p = 0.084, and p = 0.136, respectively). None of the patients exhibited progression of osteoarthritis of the hip at the final follow-up. Arthroscopic treatment after acetabular fracture or hip dislocation is effective and delays the progression of traumatic osteoarthritis.
Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.
Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae
2015-11-01
The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.
Stance controlled knee flexion improves stimulation driven walking after spinal cord injury
2013-01-01
Background Functional neuromuscular stimulation (FNS) restores walking function after paralysis from spinal cord injury via electrical activation of muscles in a coordinated fashion. Combining FNS with a controllable orthosis to create a hybrid neuroprosthesis (HNP) has the potential to extend walking distance and time by mechanically locking the knee joint during stance to allow knee extensor muscle to rest with stimulation turned off. Recent efforts have focused on creating advanced HNPs which couple joint motion (e.g., hip and knee or knee and ankle) to improve joint coordination during swing phase while maintaining a stiff-leg during stance phase. Methods The goal of this study was to investigate the effects of incorporating stance controlled knee flexion during loading response and pre-swing phases on restored gait. Knee control in the HNP was achieved by a specially designed variable impedance knee mechanism (VIKM). One subject with a T7 level spinal cord injury was enrolled and served as his own control in examining two techniques to restore level over-ground walking: FNS-only (which retained a stiff knee during stance) and VIKM-HNP (which allowed controlled knee motion during stance). The stimulation pattern driving the walking motion remained the same for both techniques; the only difference was that knee extensor stimulation was constant during stance with FNS-only and modulated together with the VIKM to control knee motion during stance with VIKM-HNP. Results Stance phase knee angle was more natural during VIKM-HNP gait while knee hyperextension persisted during stiff-legged FNS-only walking. During loading response phase, vertical ground reaction force was less impulsive and instantaneous gait speed was increased with VIKM-HNP, suggesting that knee flexion assisted in weight transfer to the leading limb. Enhanced knee flexion during pre-swing phase also aided flexion during swing, especially when response to stimulation was compromised. Conclusions These results show the potential advantages of incorporating stance controlled knee flexion into a hybrid neuroprosthesis for walking. The addition of such control to FNS driven walking could also enable non-level walking tasks such as uneven terrain, slope navigation and stair descent where controlled knee flexion during weight bearing is critical. PMID:23826711
HIP AND GLENOHUMERAL PASSIVE RANGE OF MOTION IN COLLEGIATE SOFTBALL PLAYERS
Plummer, Hillary; Brambeck, Allison
2016-01-01
Background and Purpose Range of motion deficits at the hip and glenohumeral joint (GHJ) may contribute to the incidence of injury in softball players. With injury in softball players on the rise, softball related studies in the literature are important. The purpose of this study was to examine hip and GHJ passive range of motion (PROM) patterns in collegiate softball players. Hypothesis It was hypothesized that the position players would exhibit significantly different PROM patterns than pitchers. Additionally, position players would exhibit significantly different side-to-side differences in PROM for both the hip and GHJ compared to pitchers. Study Design Prospective cohort study. Methods Forty-nine collegiate softball players (19.63 ± 1.15 years; 170.88 ± 8.08 cm; 72.96 ± 19.41 kg) participated. Passive hip and GHJ internal (IR) and external rotation (ER) measures were assessed. Glenohumeral PROM was measured with the participants supine with the arm abducted to 90 °. The measurements were recorded when the scapula began to move or a firm capsular end-feel was achieved. The hip was positioned in 90 ° of flexion and passively rotated until a capsular end-feel was achieved. Total PROM was calculated by taking the sum of IR and ER for both the hip and GHJ. Results No significant side-to-side PROM differences were observed in pitchers, at the GHJ or hip joint. Position players throwing side hip IR was significantly greater than the non-throwing side hip (p = 0.002). The non-throwing side hip had significantly greater ER compared to the throwing side hip (p = 0.002). When examining side-to-side differences at the GHJ, IR was significantly greater in the non-throwing shoulder (p = 0.047). No significant differences in total range of motion of the hip and GHJ were observed. Conclusion In the current study, position players displayed side-to-side differences in hip and GHJ IR PROM while no statistically significant differences were observed in the softball pitchers. The findings of the current study add to the body of literature related to PROM in throwing athletes, additionally these are the first hip IR and ER PROM data presented in softball players. Level of Evidence Level 3 PMID:27757286
[Kinematics of the healthy and arthritic hip joint during walking. A study of 136 subjects].
Dujardin, F; Aucouturier, T; Bocquet, G; Duparc, F; Weber, J; Thomine, J M
1998-11-01
The study aimed to analyze the spatiotemporal parameters and 3-dimensional pelvic and hip kinematic components during gait in two groups: patients with a primitive osteoarthritis of the hip and control normal subjects. The study included 51 patients, ranged from 42 to 81 years, and 86 normal subjects. Gait analysis was performed using the optoelectronic system VICON with 5 cameras in free-speed conditions. Functional grading of the patients was assessed by Lequesne's score. Thickness of the hip cartilage was measured on pelvis AP radiograph. A preliminary study was performed to measure reliability of the data on 11 patients. At the initial stage of osteoarthritis, speed, cadence, stride length and hip flexion-extension motion appeared as very close to normal data. After this initial stage, there was a statistical relationship between these parameters and arthritis functional grading. Pelvis rotation around the vertical axis did not change according to severity of functional grading. The mean value of this component of pelvis motion was 10 degrees in the pathological group, whereas it was 8 degrees in the female normal group, and 7 degrees in the male group. There were no significant relationship between radiographical thickness of hip cartilage and functional grading of patients or gait parameters. This study demonstrates that spatiotemporal gait parameters and kinematic data appear as quantitative index which could be used in future studies. It also shows that pelvic rotation is greater in pathological group than in normal subjects, even in the extreme beginning of the hip osteoarthritis. This particularity can be explained as a very early consequence of the arthritis or, in the opposite, as risk factor.
Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per
2014-02-01
Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Cross-sectional study; Level of evidence, 3. Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P < .001). No other hip strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain compared with asymptomatic soccer players, while no isometric strength differences were observed between the groups.
Nontraumatic Myositis Ossificans of Hip: A Case Presentation
Ozcan, Muhammed Sefa
2016-01-01
In most of the cases trauma is the leading etiology and the nontraumatic myositis ossificans (MO) is a very rare condition. We present an MO case without any trauma occurring. A 36-year-old female patient with a history of pain and restriction of range of motion of the left hip was admitted. Hip motions were restricted with 10–60° of flexion, 10° of internal rotation, 20° of external rotation, 10° of abduction, and 10° of adduction. There was no history of trauma and familial involvement. The biopsy of the lesion revealed mature bone tissue confirming our diagnosis of MO. The mass was removed surgically and postoperatively the patient was treated with a single dose radiotherapy with 800 gyc. MO is a benign and well differentiated bone formation or in other words heterotopic ossification of the muscle tissue. It has a prevalence of less than 1/1 million. Trauma is the most frequent etiological factor seen in almost 60–75% of the cases. Nontraumatic MO is very rare in the literature. Our patient had no history of trauma or familial involvement. Combination of the surgical excision with radiotherapy in the treatment of the MO of the hip may give satisfactory results. PMID:27437157
Hyong, In Hyouk
2015-06-01
[Purpose] This study evaluated the effective selective activation method of the vastus medialis oblique for knee joint stabilization in patients with patellofemoral pain syndrome. [Subjects and Methods] Fifteen healthy college students (9 males, 6 females); mean age, height, and weight: 22.2 years, 167.8 cm, and 61.4 kg, respectively) participated. The knee angle was held at 60°. Muscle activities were measured once each during an ordinary squat and a squat accompanied by hip joint adduction. The muscle activities of the vastus medialis oblique and vastus lateralis were measured by electromyography for five seconds while maintaining 60° knee flexion. Electromyography signals were obtained at a sampling rate of 1,000 Hz and band pass filtering at 20-50 Hz. The obtained raw root mean square was divided by the maximal voluntary isometric contraction and expressed as a percentage. The selective activity of the vastus medialis oblique was assessed according to the muscle activity ratio of the vastus medialis oblique to the vastus lateralis. [Results] The activity ratio of the vastus medialis oblique was higher during a squat with hip joint adduction than without. [Conclusion] A squat accompanied by hip joint adduction is effective for the selective activation of the vastus medialis oblique.
[Case report of a patient with ochronosis and arthroplasty of the hip and both knees].
Moslavac, Aleksandra; Moslavac, Sasa; Cop, Renata
2003-01-01
Alkaptonuria is a rare hereditary metabolic disorder characterised by absence of the enzyme homogentisic acid oxidase. As a result of this defect homogentisic acid accumulates and is excreted in the urine. The term ochronosis is used to describe bluish-black pigmentation of connective tissue. Ochronotic arthropathy results from the pigmented deposits in the joints of the appendicular and axial skeleton. Findings simulate those of uncomplicated degenerative joint disease, with effusion, articular space narrowing, and bony sclerosis. Our patient is a 70-year old male with ochronotic arthropathy. He has typical ears and sclera discoloration, and had arthroplasty of knees 7 and 4 years ago, respectively. In year 2002, he had undergone total right hip arthroplasty and has been admitted for rehabilitation 14th postoperative day. Individually designed rehabilitation regimen included kinesitherapy, hydrokinesitherapy, and ambulation training with gradual increase in weight bearing exercises and electro-analgesia of associated low back pain. In course of rehabilitation our patient improved his endurance with satisfying range of motion of right hip (flexion 90 degrees, abduction 40 degrees) and strength of hip and thigh musculature. The patient was able to walk with crutches without limitation. We conclude that joint destruction followed by painful locomotion due to ochronotic arthropathy is best treated by total joint arthroplasty, as described in our patient.
Periacetabular osteotomy: a review of swiss experience.
Büchler, Lorenz; Beck, Martin
2014-12-01
Symptomatic dysplasia of the hip and acetabular retroversion are possible causes of osteoarthritis in the young adult. Surgical management with reorientation of the acetabulum allows causal therapy of the deformity and preservation of the native hip joint. The Ganz' periacetabular osteotomy permits a free 3-dimensional reorientation of the acetabulum and respects the blood supply of the acetabular fragment. The posterior column remains intact with a stable fixation of the acetabular fragment and a preserved shape of the true pelvis. There is a significant learning curve with severe complications in up to 30 % of cases. Good results can be expected in the long-term follow-up if performed with correct indication at young age in hips with preserved joint cartilage and proper reorientation of the acetabular fragment. Overall survivorship is superior to the natural course of hip dysplasia with a preserved hip joint in 61 % after 20 years.
Upper limb kinetic analysis of three sitting pivot wheelchair transfer techniques.
Koontz, Alicia M; Kankipati, Padmaja; Lin, Yen-Sheng; Cooper, Rory A; Boninger, Michael L
2011-11-01
The objective of this study was to investigate differences in shoulder, elbow and hand kinetics while performing three different SPTs that varied in terms of hand and trunk positioning. Fourteen unimpaired individuals (8 male and 6 female) performed three variations of sitting pivot transfers in a random order from a wheelchair to a level tub bench. Two transfers involved a forward flexed trunk (head-hips technique) and the third with the trunk remaining upright. The two transfers involving a head hips technique were performed with two different leading hand initial positions. Motion analysis equipment recorded upper body movements and force sensors recorded hand reaction forces. Shoulder and elbow joint and hand kinetics were computed for the lift phase of the transfer. Transferring using either of the head hips techniques compared to the trunk upright style of transferring resulted in reduced superior forces at the shoulder (P<0.002), elbow (P<0.004) and hand (P<0.013). There was a significant increase in the medial forces in the leading elbow (P=0.049) for both head hip transfers and the trailing hand for the head hip technique with the arm further away from the body (P<0.028). The head hip techniques resulted in higher shoulder external rotation, flexion and extension moments compared to the trunk upright technique (P<0.021). Varying the hand placement and trunk positioning during transfers changes the load distribution across all upper limb joints. The results of this study may be useful for determining a technique that helps preserve upper limb function overtime. Published by Elsevier Ltd.
Associations between iliotibial band injury status and running biomechanics in women.
Foch, Eric; Reinbolt, Jeffrey A; Zhang, Songning; Fitzhugh, Eugene C; Milner, Clare E
2015-02-01
Iliotibial band syndrome (ITBS) is a common overuse knee injury that is twice as likely to afflict women compared to men. Lower extremity and trunk biomechanics during running, as well as hip abductor strength and iliotibial band flexibility, are factors believed to be associated with ITBS. The purpose of this cross-sectional study was to determine if differences in lower extremity and trunk biomechanics during running exist among runners with current ITBS, previous ITBS, and controls. Additionally, we sought to determine if isometric hip abductor strength and iliotibial band flexibility were different among groups. Twenty-seven female runners participated in the study. Participants were divided into three equal groups: current ITBS, previous ITBS, and controls. Overground running trials, isometric hip abductor strength, and iliotibial band flexibility were recorded for all participants. Discrete joint and segment biomechanics, as well as hip strength and flexibility measures were analyzed using a one-way analysis of variance. Runners with current ITBS exhibited 1.8 (1.5)° greater trunk ipsilateral flexion and 7 (6)° less iliotibial band flexibility compared to runners with previous ITBS and controls. Runners with previous ITBS exhibited 2.2 (2.9) ° less hip adduction compared to runners with current ITBS and controls. Hip abductor strength 3.3 (2.6) %BM×h was less in runners with previous ITBS but not current ITBS compared to controls. Runners with current ITBS may lean their trunk more towards the stance limb which may be associated with decreased iliotibial band flexibility. Copyright © 2015 Elsevier B.V. All rights reserved.
Computational wear assessment of hard on hard hip implants subject to physically demanding tasks.
Nithyaprakash, R; Shankar, S; Uddin, M S
2018-05-01
Hip implants subject to gait loading due to occupational activities are potentially prone to failures such as osteolysis and aseptic loosening, causing painful revision surgeries. Highly risky gait activities such as carrying a load, stairs up or down and ladder up or down may cause excessive loading at the hip joint, resulting in generation of wear and related debris. Estimation of wear under the above gait activities is thus crucial to design and develop a new and improved implant component. With this motivation, this paper presents an assessment of wear generation of PCD-on-PCD (poly crystalline diamond) hip implants using finite element (FE) analysis. Three-dimensional (3D) FE model of hip implant along with peak gait and peak flexion angle for each activity was used to estimate wear of PCD for 10 million cycles. The maximum and minimum initial contact pressures of 206.19 MPa and 151.89 MPa were obtained for carrying load of 40 kg and sitting down or getting up activity. The simulation results obtained from finite element model also revealed that the maximum linear wear of 0.585 μm occurred for the patients frequently involved in sitting down or getting up gait activity and maximum volumetric wear of 0.025 mm 3 for ladder up gait activity. The stair down activity showed the least linear and volumetric wear of 0.158 μm and 0.008 mm 3 , respectively, at the end of 10 million cycles. Graphical abstract Computational wear assessment of hip implants subjected to physically demanding tasks.
The Impact of Lumbar Spine Disease and Deformity on Total Hip Arthroplasty Outcomes.
Blizzard, Daniel J; Sheets, Charles Z; Seyler, Thorsten M; Penrose, Colin T; Klement, Mitchell R; Gallizzi, Michael A; Brown, Christopher R
2017-05-01
Concomitant spine and hip disease in patients undergoing total hip arthroplasty (THA) presents a management challenge. Degenerative lumbar spine conditions are known to decrease lumbar lordosis and limit lumbar flexion and extension, leading to altered pelvic mechanics and increased demand for hip motion. In this study, the effect of lumbar spine disease on complications after primary THA was assessed. The Medicare database was searched from 2005 to 2012 using International Classification of Diseases, Ninth Revision, procedure codes for primary THA and diagnosis codes for preoperative diagnoses of lumbosacral spondylosis, lumbar disk herniation, acquired spondylolisthesis, and degenerative disk disease. The control group consisted of all patients without a lumbar spine diagnosis who underwent THA. The risk ratios for prosthetic hip dislocation, revision THA, periprosthetic fracture, and infection were significantly higher for all 4 lumbar diseases at all time points relative to controls. The average complication risk ratios at 90 days were 1.59 for lumbosacral spondylosis, 1.62 for disk herniation, 1.65 for spondylolisthesis, and 1.53 for degenerative disk disease. The average complication risk ratios at 2 years were 1.66 for lumbosacral spondylosis, 1.73 for disk herniation, 1.65 for spondylolisthesis, and 1.59 for degenerative disk disease. Prosthetic hip dislocation was the most common complication at 2 years in all 4 spinal disease cohorts, with risk ratios ranging from 1.76 to 2.00. This study shows a significant increase in the risk of complications following THA in patients with lumbar spine disease. [Orthopedics. 2017; 40(3):e520-e525.]. Copyright 2017, SLACK Incorporated.
Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments.
Flaxman, Teresa E; Alkjær, Tine; Simonsen, Erik B; Krogsgaard, Michael R; Benoit, Daniel L
2017-03-01
Knee muscles are commonly labeled as flexors or extensors and aptly stabilize the knee against sagittal plane loads. However, how these muscles stabilize the knee against adduction-abduction and rotational loads remains unclear. Our study sought 1) to classify muscle roles as they relate to joint stability by quantifying the relationship between individual muscle activation patterns and internal net joint moments in all three loading planes and 2) to determine whether these roles change with increasing force levels. A standing isometric force matching protocol required subjects to modulate ground reaction forces to elicit various combinations and magnitudes of sagittal, frontal, and transverse internal joint moments. Surface EMG measured activities of 10 lower limb muscles. Partial least squares regressions determined which internal moment(s) were significantly related to the activation of individual muscles. Rectus femoris and tensor fasciae latae were classified as moment actuators for knee extension and hip flexion. Hamstrings were classified as moment actuators for hip extension and knee flexion. Gastrocnemius and hamstring muscles were classified as specific joint stabilizers for knee rotation. Vastii were classified as general joint stabilizers because activation was independent of moment generation. Muscle roles did not change with increasing effort levels. Our findings indicate muscle activation is not dependent on anatomical orientation but perhaps on its role in maintaining knee joint stability in the frontal and transverse loading planes. This is useful for delineating the roles of biarticular knee joint muscles and could have implications in robotics, musculoskeletal modeling, sports sciences, and rehabilitation.
Squatting Exercises in Older Adults: Kinematic and Kinetic Comparisons
FLANAGAN, SEAN; SALEM, GEORGE J.; WANG, MAN-YING; SANKER, SERENA E.; GREENDALE, GAIL A.
2012-01-01
Purpose Squatting activities may be used, within exercise programs, to preserve physical function in older adults. This study characterized the lower-extremity peak joint angles, peak moments, powers, work, impulse, and muscle recruitment patterns (electromyographic; EMG) associated with two types of squatting activities in elders. Methods Twenty-two healthy, older adults (ages 70–85) performed three trials each of: 1) a squat to a self-selected depth (normal squat; SQ) and 2) a squat onto a chair with a standardized height of 43.8 cm (chair squat; CSQ). Descending and ascending phase joint kinematics and kinetics were obtained using a motion analysis system and inverse dynamics techniques. Results were averaged across the three trials. A 2 × 2 (activity × phase) ANOVA with repeated measures was used to examine the biomechanical differences among the two activities and phases. EMG temporal characteristics were qualitatively examined. Results CSQ generated greater hip flexion angles, peak moments, power, and work, whereas SQ generated greater knee and ankle flexion angles, peak moments, power, and work. SQ generated a greater knee extensor impulse, a greater plantar flexor impulse and a greater total support impulse. The EMG temporal patterns were consistent with the kinetic data. Conclusions The results suggest that, with older adults, CSQ places greater demand on the hip extensors, whereas SQ places greater demand on the knee extensors and ankle plantar flexors. Clinicians may use these discriminate findings to more effectively target specific lower-extremity muscle groups when prescribing exercise for older adults. PMID:12673148
X-ray kinematics analysis of vaginal scent marking in female Syrian hamsters (Mesocricetus auratus)
Been, Laura E.; Bauman, Jay M.; Petrulis, Aras; Chang, Young-Hui
2012-01-01
Vaginal marking is a stereotyped scent marking behavior in female Syrian hamsters used to attract male hamsters for mating. Although the modulation of vaginal marking by hormones and odors is well understood, the motor control of this proceptive reproductive behavior remains unknown. Therefore, we used x-ray videography to visualize individual bone movements during vaginal marking. Kinematic analyses revealed several consistent motor patterns of vaginal marking. Despite exhibiting a diversity of trial-to-trial non-marking behaviors (e.g. locomotor stepping), we found that lowering and raising the pelvis consistently corresponded with coordinated flexion and extension cycles of the hip, knee, and tail, suggesting that these movements are fundamental to vaginal marking behavior. Surprisingly, we observed only small changes in the angles of the pelvic and sacral regions, suggesting previous reports of pelvic rotation during vaginal marking may need to be reconsidered. From these kinematic data, we inferred that vaginal marking is primarily due to the actions of hip and knee extensor muscles of the trailing leg working against gravity to support the weight of the animal as it controls the descent of the pelvis to the ground. The cutaneous trunci muscle likely mediates the characteristic flexion of the tail. Interestingly, this tail movement occurred on the same time scale as the joint kinematics suggesting possible synergistic recruitment of these muscle groups. These data therefore provide new targets for future studies examining the peripheral control of female reproductive behaviors. PMID:22138441
Comprehensive profile of hip, knee and ankle ranges of motion in professional football players.
López-Valenciano, Alejandro; Ayala, Francisco; Vera-García, Francisco J; de Ste Croix, Mark; Hernández-Sánchez, Sergio; Ruiz-Pérez, Iñaki; Cejudo, Antonio; Santonja, Fernando
2017-10-31
Limited ranges of motion (ROM) have been considered as a primary risk factor for some football injuries, but only a few studies have analysed differences in lower extremity joints. The main purposes were (a) to describe the lower extremity ROM profile in professional football players; and (b) to examine differences between goalkeepers and outfield players. 82 professional male football players from 4 teams were measured in the 2013 pre-season. Measures of passive hip (flexion with knee flexed [PHFKF] and extended [PHFKE], extension [PHE], abduction [PHA], external [PHER] and internal [PHIR] rotation), knee (flexion [PKF]) and ankle (dorsiflexion with knee flexed [ADFKF] and extended [ADFKE]) ROMs were taken. Magnitude-based inferences exploring differences between player position and limb were made. 46% of all participants showed restricted PHFKE and/or around 30% showed restricted ADFKF ROM values. Contrarily, most players reported normal PHFKF, PHE, PHIR and PHER as well as PKF ROM scores with percentage values close to 100%. Bilateral meaningful differences for PHA, PHIR and PHER were found in approximately 30% of outfield players and goalkeepers. Statistical analysis found trivial differences between players for PHFKE, PHE, PHIR, PHER, ADFKE and ADFKF. However, moderate differences between players were found for PHFKF, PHA and PKF, with goalkeepers demonstrating higher values than outfield players. The findings of this study reinforce the necessity of prescribing exercises aimed at improving PHFKE and ADFKF ROM within everyday football training routines. In addition, as some bilateral deficits were observed, unilateral training should be considered where appropriate.
Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E
2015-12-01
No research exists predicating a link between acute ankle sprain injury-affiliated movement patterns and those of chronic ankle instability (CAI) populations. The aim of the current study was to perform a biomechanical analysis of participants, 6 months after they sustained a first-time acute lateral ankle sprain (LAS) injury to establish this link. Fifty-seven participants with a 6-month history of first-time LAS and 20 noninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment of force) data were acquired for the joints of the lower extremity, from 200 ms pre-initial contact (IC) to 200 ms post-IC. Individual joint stiffnesses and the peak magnitude of the vertical component of the ground reaction force (GRF) were also computed. LAS participants displayed increases in hip flexion and ankle inversion on their injured limb (P < 0.05); this coincided with a reduction in the net flexion-extension moment at the hip joint, with an increase in its stiffness (P < 0.05). There was no difference in the magnitude of the peak vertical GRF for either limb compared with controls. These results demonstrate that altered movement strategies persist in participants, 6 months following acute LAS, which may precipitate the onset of CAI. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A functional agility short-term fatigue protocol changes lower extremity mechanics
Cortes, Nelson; Quammen, David; Lucci, Shawn; Greska, Eric; Onate, James
2012-01-01
The purpose of this study was to evaluate the effects of a functional agility fatigue protocol on lower extremity biomechanics between two unanticipated tasks (stop-jump and sidestep). The subjects consisted of fifteen female collegiate soccer athletes (19 ± 0.7 years, 1.67 ± 0.1 m, 61.7 ± 8 kg) free of lower extremity injury. Participants performed five trials of stop-jump and sidestep tasks. A functional short-term agility protocol was performed, and immediately following participants repeated the unanticipated running tasks. Lower extremity kinematic and kinetic values were obtained pre and post fatigue. Repeated measures analyses of variance were conducted for each dependent variable with an alpha level set at 0.05. Knee position post-fatigue had increased knee internal rotation (11.4 ± 7.5° vs. 7.9 ± 6.5° p = 0.011) than pre-fatigue, and a decreased knee flexion angle (−36.6 ± 6.2° vs.−40.0 ± 6.3°, p = 0.003), as well as hip position post-fatigue had decreased hip flexion angle (35.5 ± 8.7° vs. 43.2 ± 9.5°, p = 0.002). A quick functional fatigue protocol altered lower extremity mechanics of Division I collegiate soccer athletes during landing tasks. Proper mechanics should be emphasized from the beginning of practice/game to aid in potentially minimizing the effects of fatigue in lower extremity mechanics. PMID:22424559
Tramer, Joseph S; Deneweth, Jessica M; Whiteside, David; Ross, James R; Bedi, Asheesh; Goulet, Grant C
2015-01-01
Femoroacetabular impingement (FAI) is a major cause of performance inhibition in elite-level athletes. The condition is characterized by pain, osseous abnormalities such as an increased alpha angle, and decreased range of motion at the affected hip joint. Arthroscopic surgical decompression is useful in reshaping the joint to alleviate symptoms. Functional kinematic outcomes of sport-specific movements after surgery, however, are presently unknown. The ability of an ice hockey goaltender to execute sport-specific movements would improve after arthroscopic surgery. Clinical research. Level 5. An ice hockey goaltender was evaluated after arthroscopic correction of FAI on the symptomatic hip. Passive range of motion and radiographic parameters were assessed from a computed tomography-derived 3-dimensional model. An on-ice motion capture system was also used to determine peak femoral shock and concurrent hip joint postures during the butterfly and braking movements. Maximum alpha angles were 47° in the surgical and 61° in the nonsurgical hip. Internal rotation range of motion was, on average, 23° greater in the surgically corrected hip compared with contralateral. Peak shock was lower in the surgical hip by 1.39 g and 0.86 g during butterfly and braking, respectively. At peak shock, the surgical hip demonstrated increased flexion, adduction, and internal rotation for both tasks (butterfly, 6.1°, 12.3°, and 30.8°; braking, 14.8°, 19.2°, and 41.4°). On-ice motion capture revealed performance differences between hips after arthroscopic surgery in a hockey goaltender. Range of motion and the patient's subjective assessment of hip function were improved in the surgical hip. While presenting as asymptomatic, it was discovered that the contralateral hip displayed measurements consistent with FAI. Therefore, consideration of preemptive treatment in a presently painless hip may be deemed beneficial for young athletes seeking a long career in sport, and future work is needed to determine the costs and benefits of such an approach. Surgical treatment of symptomatic FAI can achieve pain relief and improved kinematics of the hip joint with athletic activities. Additional studies are necessary to determine whether improved kinematics enhance the longevity of the native hip and alter the progression of osteoarthritic changes in those with asymptomatic FAI deformity. © 2015 The Author(s).
Yilmaz, Serdar; Aksahin, Ertugrul; Ersoz, Murat; Bicimoglu, Ali
2017-09-01
The impact on long-term weakness of hip flexion of complete iliopsoas tenotomy during open reduction of developmental hip dysplasia with a medial approach has not yet been fully clarified. The purpose of this study was to investigate the isokinetic muscle strength (IMS) of hip flexor and extensor muscles in these patients and also to analyze the effect of spontaneous reattachment of the iliopsoas muscle on IMS measurements. The study included 20 patients. Earlier magnetic resonance imaging examination of all the patients revealed spontaneous reattachment of the iliopsoas in 18 (90%) patients. IMS measurements were performed at 60 and 150 degrees/s. The peak torque, total work (TW), average power (AP), work fatigue, and agonist to antagonist muscle ratio of the operated and nonoperated hips were recorded separately for flexors and extensors. The effect of iliopsoas reattachment on IMS was also evaluated. The mean follow-up period was 16.65±2.16 (13 to 20) years. Total work (P=0.013) and average power (P=0.009) of the flexor muscles and work fatigue of the extensor muscles (P=0.030) of the operated hip were significantly decreased when compared with the nonoperated hips at 150 degrees/s. There was no significant difference between the flexor muscles of the operated and nonoperated hips (P<0.05) at 60 degrees/s and extensor muscles (P<0.05) at 150 degrees/s. In addition, patients without reattachment had lower IMS in the operated hips. Flexor muscle strength was decreased in the operated hip against low resistance in long-term follow-up after iliopsoas tenotomy. This may reflect that hip muscle strength was decreased after prolonged activities such as sports. However, in forceful activities flexor muscle strength was retained due to iliopsoas reattachment. On the basis of this study we thought that spontaneous reattachment of the iliopsoas tendon substantially preserves muscle strength. Nonetheless possible efforts should be made to surgically reattach the psoas tendon to preserve strength of the muscle. Therapeutic level IV.
Sturges, Beverly K; Kapatkin, Amy S; Garcia, Tanya C; Anwer, Cona; Fukuda, Shimpei; Hitchens, Peta L; Wisner, Tristan; Hayashi, Kei; Stover, Susan M
2016-04-01
To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Ex vivo biomechanical, non-randomized. Cadaveric canine thoracolumbar specimens (n=16). Thoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Both the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Pin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens. © Copyright 2016 by The American College of Veterinary Surgeons.
Williams, D S Blaise; Green, Douglas H; Wurzinger, Brian
2012-10-01
Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. The study included 10 male and 10 female RFS runners who completed 3-dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee.
Green, Douglas H.; Wurzinger, Brian
2012-01-01
Purpose/Background: Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. Methods: The study included 10 male and 10 female RFS runners who completed 3‐dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Results: Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. Conclusions: BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Clinical Relevance: Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee. PMID:23091785
Control of speed during the double poling technique performed by elite cross-country skiers.
Lindinger, Stefan Josef; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer
2009-01-01
Double poling (DP) as a main technique in cross-country skiing has developed substantially over the last 15 yr. The purpose of the present study was to analyze the question, "How do modern elite skiers control DP speed?" Twelve male elite cross-country skiers roller skied using DP at 9, 15, 21, and 27 km.h(-1) and maximum velocity (V(max)). Cycle characteristics, pole and plantar forces, and elbow, hip, and knee joint angles were analyzed. Both poling frequency and cycle length increased up to 27 km.h (-1)(P < 0.05), with a further increase in poling frequency at V(max) (P < 0.05). Peak pole force, rate of force development, and rearfoot plantar force increased with submaximal velocities (V(sm)), whereas poling time and time-to-peak pole force gradually shortened (P < 0.05). Changes in elbow joint kinematics during the poling phase were characterized by a decreased angle minimum and an increased flexion and extension ranges of motion as well as angular velocities across V(sm) (P < 0.05), with no further changes at V(max). Hip and knee joint kinematics adapted across V(sm) by 1) decreasing angles at pole plant and angle minima during the poling phase, 2) increasing the ranges of motion and angular velocities during the flexion phases occurring around pole plant, and 3) increasing extension ranges of motion and angular velocities during the recovery phase (all P values <0.05), with no further changes at V(max). Elite skiers control DP speed by increasing both poling frequency and cycle length; the latter is achieved by increased pole force despite reduced poling time. Adaptation to higher speeds was assisted by an increased range of motion, smaller angle minima, and higher angular velocities in the elbow, the hip, and the knee joints.
Weeks, Benjamin K; Carty, Christopher P; Horan, Sean A
2012-10-25
The single-leg squat (SLS) is a common test used by clinicians for the musculoskeletal assessment of the lower limb. The aim of the current study was to reveal the kinematic parameters used by experienced and inexperienced clinicians to determine SLS performance and establish reliability of such assessment. Twenty-two healthy, young adults (23.8 ± 3.1 years) performed three SLSs on each leg whilst being videoed. Three-dimensional data for the hip and knee was recorded using a 10-camera optical motion analysis system (Vicon, Oxford, UK). SLS performance was rated from video data using a 10-point ordinal scale by experienced musculoskeletal physiotherapists and student physiotherapists. All ratings were undertaken a second time at least two weeks after the first by the same raters. Stepwise multiple regression analysis was performed to determine kinematic predictors of SLS performance scores and inter- and intra-rater reliability were determined using a two-way mixed model to generate intra-class correlation coefficients (ICC3,1) of consistency. One SLS per leg for each participant was used for analysis, providing 44 SLSs in total. Eight experienced physiotherapists and eight physiotherapy students agreed to rate each SLS. Variance in physiotherapist scores was predicted by peak knee flexion, knee medio-lateral displacement, and peak hip adduction (R2 = 0.64, p = 0.01), while variance in student scores was predicted only by peak knee flexion, and knee medio-lateral displacement (R2 = 0.57, p = 0.01). Inter-rater reliability was good for physiotherapists (ICC3,1 = 0.71) and students (ICC3,1 = 0.60), whilst intra-rater reliability was excellent for physiotherapists (ICC3,1 = 0.81) and good for students (ICC3,1 = 0.71). Physiotherapists and students are both capable of reliable assessment of SLS performance. Physiotherapist assessments, however, bear stronger relationships to lower limb kinematics and are more sensitive to hip joint motion than student assessments.
Effects of step rate manipulation on joint mechanics during running.
Heiderscheit, Bryan C; Chumanov, Elizabeth S; Michalski, Max P; Wille, Christa M; Ryan, Michael B
2011-02-01
the objective of this study was to characterize the biomechanical effects of step rate modification during running on the hip, knee, and ankle joints so as to evaluate a potential strategy to reduce lower extremity loading and risk for injury. three-dimensional kinematics and kinetics were recorded from 45 healthy recreational runners during treadmill running at constant speed under various step rate conditions (preferred, ± 5%, and ± 10%). We tested our primary hypothesis that a reduction in energy absorption by the lower extremity joints during the loading response would occur, primarily at the knee, when step rate was increased. less mechanical energy was absorbed at the knee (P < 0.01) during the +5% and +10% step rate conditions, whereas the hip (P < 0.01) absorbed less energy during the +10% condition only. All joints displayed substantially (P < 0.01) more energy absorption when preferred step rate was reduced by 10%. Step length (P < 0.01), center of mass vertical excursion (P < 0.01), braking impulse (P < 0.01), and peak knee flexion angle (P < 0.01) were observed to decrease with increasing step rate. When step rate was increased 10% above preferred, peak hip adduction angle (P < 0.01) and peak hip adduction (P < 0.01) and internal rotation (P < 0.01) moments were found to decrease. we conclude that subtle increases in step rate can substantially reduce the loading to the hip and knee joints during running and may prove beneficial in the prevention and treatment of common running-related injuries.
Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.
Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier
2018-06-01
To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.
Araújo, Cynthia Gobbi Alves; de Souza Guerino Macedo, Christiane; Ferreira, Daiene; Shigaki, Leonardo; da Silva, Rubens A
2016-12-01
The purpose of this study was to assess the effect of patellar taping on muscle activation of the knee and hip muscles in women with Patellofemoral Pain Syndrome during five proprioceptive exercises. Forty sedentary women with syndrome were randomly allocated in two groups: Patellar Taping (based in McConnell) and Placebo (vertical taping on patella without any stretching of lateral structures of the knee). Volunteers performed five proprioceptive exercises randomly: Swing apparatus, Mini-trampoline, Bosu balance ball, Anteroposterior sway on a rectangular board and Mediolateral sway on a rectangular board. All exercises were performed in one-leg stance position with injured knee at flexion of 30° during 15s. Muscle activation was measured by surface electromyography across Vastus Medialis, Vastus Lateralis and Gluteus medius muscles. Maximal voluntary contraction was performed for both hip and knee muscles in order to normalize electromyography signal relative to maximum effort during the exercises. ANOVA results reported no significant interaction (P>0.05) and no significant differences (P>0.05) between groups and intervention effects in all exercise conditions. Significant differences (P<0.01) were only reported between muscles, where hip presented higher activity than knee muscles. Patellar taping is not better than placebo for changes in the muscular activity of both hip and knee muscles during proprioceptive exercises. ClinicalTrials.gov NCT02322515. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wada, Osamu; Tateuchi, Hiroshige; Ichihashi, Noriaki
2014-01-01
Body rotation is associated with many activities. The concomitant movement of the center of mass (COM) is essential for effective body rotation. This movement is considered to be influenced by kinematic changes in the spine, pelvis, and hip joints. However, there is no research on the association between COM movement and kinematic changes during body rotation. We aimed to investigate the association between COM movement and the kinematics of the spine, pelvis, and hip joints during body rotation in standing. Twenty-four healthy men were included in the study. COM movement during active body rotation in a standing position was measured. We evaluated pelvic shift and changes in the angles of the spine, pelvis, and hip joints. We calculated the Pearson correlation coefficients to analyze the relationship between COM movement and kinematic changes in the spine, pelvis, and hip joints. There were significant correlations between lateral COM movement to the rotational side and pelvic shift to the rotational side, and between posterior COM movement and pelvic shift to the posterior side. In addition, lateral COM movement to the rotational side showed significant and negative correlation with spinal flexion and was significantly and positively correlated with the change in anterior pelvic tilt. Clinicians need to take particular note of both spinal and pelvic motion in the sagittal plane, as well as the pelvic shift, to speculate COM movement during body rotation in standing. Copyright © 2013 Elsevier B.V. All rights reserved.
Design, analysis and verification of a knee joint oncological prosthesis finite element model.
Zach, Lukáš; Kunčická, Lenka; Růžička, Pavel; Kocich, Radim
2014-11-01
The aim of this paper was to design a finite element model for a hinged PROSPON oncological knee endoprosthesis and to verify the model by comparison with ankle flexion angle using knee-bending experimental data obtained previously. Visible Human Project CT scans were used to create a general lower extremity bones model and to compose a 3D CAD knee joint model to which muscles and ligaments were added. Into the assembly the designed finite element PROSPON prosthesis model was integrated and an analysis focused on the PEEK-OPTIMA hinge pin bushing stress state was carried out. To confirm the stress state analysis results, contact pressure was investigated. The analysis was performed in the knee-bending position within 15.4-69.4° hip joint flexion range. The results showed that the maximum stress achieved during the analysis (46.6 MPa) did not exceed the yield strength of the material (90 MPa); the condition of plastic stability was therefore met. The stress state analysis results were confirmed by the distribution of contact pressure during knee-bending. The applicability of our designed finite element model for the real implant behaviour prediction was proven on the basis of good correlation of the analytical and experimental ankle flexion angle data. Copyright © 2014 Elsevier Ltd. All rights reserved.
O'Sullivan, Kieran; McCarthy, Raymond; White, Alison; O'Sullivan, Leonard; Dankaerts, Wim
2012-01-01
Low back pain (LBP) is a common musculoskeletal disorder and prolonged sitting often aggravates LBP. A novel dynamic ergonomic chair ('Back App'), which facilitates less hip flexion while sitting on an unstable base has been developed. This study compared lumbar posture and trunk muscle activation on this novel chair with a standard backless office chair. Twelve painfree participants completed a typing task on both chairs. Lumbar posture and trunk muscle activation were collected simultaneously and were analysed using paired t-tests. Sitting on the novel dynamic chair significantly (p < 0.05) reduced both lumbar flexion and the activation of one back muscle (Iliocostalis Lumborum pars Thoracis). The discomfort experienced was mild and was similar (p > 0.05) between chairs. Maintaining lordosis with less muscle activation during prolonged sitting could reduce the fatigue associated with upright sitting postures. Studies with longer sitting durations, and in people with LBP, are required. Sitting on a novel dynamic chair resulted in less lumbar flexion and less back muscle activation than sitting on a standard backless office chair during a typing task among pain-free participants. Facilitating lordotic sitting with less muscle activation may reduce the fatigue and discomfort often associated with lordotic sitting postures.
Iliopsoas tendon rupture: a new differential for atraumatic groin pain post-total hip arthroplasty.
Piggott, Robert Pearse; Doody, Orla; Quinlan, John Francis
2015-02-26
Groin pain post-total hip arthroplasty (THA) is of concern for the patient and the surgeon, especially when there is no history of any traumatic event. Obvious concern centres on complications from the prosthesis. The use of multiple imaging modalities allow for accurate diagnosis of groin pain. Atraumatic iliopsoas rupture is rare and has only been reported once before in the setting of THA. We present the case of 53-year old female with atraumatic rupture of the iliopsoas tendon that presented with severe groin pain and limited flexion. We discuss the clinical presentation, radiological features and follow-up of the patient. We also discuss the relevant published literature on the topic. This is a rare phenomenon but should be consider in patients with groin pain post-THA, especially after prosthesis complications have been ruled out. 2015 BMJ Publishing Group Ltd.
Landing Biomechanics in Participants With Different Static Lower Extremity Alignment Profiles
Nguyen, Anh-Dung; Shultz, Sandra J.; Schmitz, Randy J.
2015-01-01
Context: Whereas static lower extremity alignment (LEA) has been identified as a risk factor for anterior cruciate ligament injury, little is known about its influence on joint motion and moments commonly associated with anterior cruciate ligament injury. Objective: To cluster participants according to combinations of LEA variables and compare these clusters in hip- and knee-joint kinematics and kinetics during the landing phase of a drop-jump task. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: A total of 141 participants (50 men: age = 22.2 ± 2.8 years, height = 177.9 ± 9.3 cm, weight = 80.9 ± 13.3 kg; 91 women: age = 21.2 ± 2.6 years, height = 163.9 ± 6.6 cm, weight = 61.1 ± 8.7 kg). Main Outcome Measure(s): Static LEA included pelvic angle, femoral anteversion, quadriceps angle, tibiofemoral angle, genu recurvatum, tibial torsion, and navicular drop. Cluster analysis grouped participants according to their static LEA profiles, and these groups were compared on their hip- and knee-joint kinematics and external moments during the landing phase of a double-legged drop jump. Results: Three distinct clusters (C1–C3) were identified based on their static LEAs. Participants in clusters characterized with static internally rotated hip and valgus knee posture (C1) and externally rotated knee and valgus knee posture (C3) alignments demonstrated greater knee-valgus motion and smaller hip-flexion moments than the cluster with more neutral static alignment (C2). Participants in C1 also experienced greater hip internal-rotation and knee external-rotation moments than those in C2 and C3. Conclusions: Static LEA clusters that are positioned anatomically with a more rotated and valgus knee posture experienced greater dynamic valgus along with hip and knee moments during landing. Whereas static LEA contributes to differences in hip and knee rotational moments, sex may influence the differences in frontal-plane knee kinematics and sagittal-plane hip moments. PMID:25658815
Hartigan, Erin; Lawrence, Michael; Murray, Thomas; Shaw, Bernadette; Collins, Erin; Powers, Kaitlin; Townsend, James
2016-09-01
Though rehabilitation attempts to correct "stiff knee gait" and control for dynamic limb valgus after anterior cruciate ligament reconstruction (ACLR), impaired biomechanics often persist when an individual is cleared to return to sport (RTS). Reduced knee extension moments (KEMs) and knee flexion angles (KFAs) often continue. While at the hip, increased hip adduction angles (HADDAs) and hip internal rotation angles (HIRAs) often persist in spite of dynamic hip stabilization exercises. Sled towing and weighted vest tasks increase KEM and hip extension moments (HEMs) in healthy individuals, yet biomechanical profiles during these tasks after ACLR are unknown. Weighted gait will increase KEM, HEM, hip abduction moments (HABDMs), and hip external rotation moments (HERMs) and will not increase unwanted biomechanics (limb asymmetries, HIRA, HADDA) compared with normal gait. Controlled laboratory study. Level 4. Fourteen men and 24 women who were 5 to 12 months after ACLR, had no concomitant ligament injuries, and were cleared to RTS were recruited. Sexes were evaluated independently given the sex-specific incidence to ACL injury, reinjury, and gait responses to certain interventions. Joint moment impulses and peak angles over the first 25% of stance were compared between limbs and across tasks (eg, unweighted gait, sled 50% body weight [BW], and vest 50% BW). Men showed that weighted gait increased KEM, HEM, HERM, HADBM (vest only), HADDA, HIRA (sled only), and KFA. Asymmetrical KEM and KFA existed across tasks. Women showed that weighted gait increased KEM, HEM, HERM, HADBM (vest only), HFA (sled only), HADDA, and KFA. Asymmetrical KEM, HEM, HIRA, and KFA (sled only) existed across tasks. Weighted gait generally increased joint moments. Unwanted biomechanics were unique for each weighted gait task. Though joint moments increased, both tasks created unwanted biomechanics after ACLR. Persistent hip (women only) and KEM asymmetries across tasks when cleared to RTS are concerning given the relationship among these biomechanics and decreased functional performance. © 2016 The Author(s).
Taylor, Jeffrey B; Ford, Kevin R; Schmitz, Randy J; Ross, Scott E; Ackerman, Terry A; Shultz, Sandra J
2017-11-01
Taylor, JB, Ford, KR, Schmitz, RJ, Ross, SE, Ackerman, TA, and Shultz, SJ. Biomechanical differences of multidirectional jump landings among female basketball and soccer players. J Strength Cond Res 31(11): 3034-3045, 2017-Anterior cruciate ligament (ACL) injury prevention programs are less successful in basketball than soccer and may be due to distinct movement strategies that these athletes develop from sport-specific training. The purpose of this study was to identify biomechanical differences between female basketball and soccer players during multidirectional jump landings. Lower extremity biomechanics of 89 female athletes who played competitive basketball (n = 40) or soccer (n = 49) at the middle- or high-school level were analyzed with 3-dimensional motion analysis during a drop vertical jump, double- (SAG-DL) and single-leg forward jump (SAG-SL), and double- (FRONT-DL) and single-leg (FRONT-SL) lateral jump. Basketball players landed with either less hip or knee, or both hip and knee excursion during all tasks (p ≤ 0.05) except for the SAGSL task, basketball players landed with greater peak hip flexion angles (p = 0.04). The FRONT-SL task elicited the most distinct sport-specific differences, including decreased hip adduction (p < 0.001) angles, increased hip internal rotation (p = 0.003), and increased relative knee external rotation (p = 0.001) excursions in basketball players. In addition, the FRONT-SL task elicited greater forces in knee abduction (p = 0.003) and lesser forces in hip adduction (p = 0.001) and knee external rotation (p < 0.001) in basketball players. Joint energetics were different during the FRONT-DL task, as basketball players exhibited less sagittal plane energy absorption at the hip (p < 0.001) and greater hip (p < 0.001) and knee (p = 0.001) joint stiffness. Sport-specific movement strategies were identified during all jump landing tasks, such that soccer players exhibited a more protective landing strategy than basketball players, justifying future efforts toward sport-specific ACL injury prevention programs.
Jacobs, Jeremy M.; Evanson, J. Richard; Pniewski, Josh; Dickston, Michelle L.; Mueller, Terry; Bojescul, John A.
2017-01-01
Introduction Hip arthroscopy allows surgeons to address intra-articular pathology of the hip while avoiding more invasive open surgical dislocation. However the post-operative rehabilitation protocols have varied greatly in the literature, with many having prolonged periods of limited motion and weight bearing. Purpose The purpose of this study was to describe a criterion-based early weight bearing protocol following hip arthroscopy and investigate functional outcomes in the subjects who were active duty military. Methods Active duty personnel undergoing hip arthroscopy for symptomatic femoroacetabular impingement were prospectively assessed in a controlled environment for the ability to incorporate early postoperative weight-bearing with the following criteria: no increased pain complaint with weight bearing and normalized gait pattern. Modified Harris Hip (HHS) and Hip Outcome score (HOS) were performed preoperatively and at six months post-op. Participants were progressed with a standard hip arthroscopy protocol. Hip flexion was limited to not exceed 90 degrees for the first three weeks post-op, with progression back to running beginning at three months. Final discharge was dependent upon the ability to run two miles at military specified pace and do a single leg broad jump within six inches of the contralateral leg without an increase in pain. Results Eleven participants met inclusion criteria over the study period. Crutch use was discontinued at an average of five days following surgery based on established weight bearing criteria. Only one participant required continued crutch use at 15 days. Participants’ functional outcome was improved postoperatively, as demonstrated by significant increases in HOS and HHS. At the six month follow up, eight of 11 participants were able to take and complete a full Army Physical Fitness Test. Conclusions Following completion of the early weight bearing rehabilitation protocol, 81% of participants were able to progress to full weight bearing by four days post-operative, with normalized pain-free gait patterns. Active duty personnel utilizing an early weight bearing protocol following hip arthroscopy demonstrated significant functional improvement at six months. Level of Evidence Level 4, Case-series PMID:29181261
Shaw, K Aaron; Jacobs, Jeremy M; Evanson, J Richard; Pniewski, Josh; Dickston, Michelle L; Mueller, Terry; Bojescul, John A
2017-10-01
Hip arthroscopy allows surgeons to address intra-articular pathology of the hip while avoiding more invasive open surgical dislocation. However the post-operative rehabilitation protocols have varied greatly in the literature, with many having prolonged periods of limited motion and weight bearing. The purpose of this study was to describe a criterion-based early weight bearing protocol following hip arthroscopy and investigate functional outcomes in the subjects who were active duty military. Active duty personnel undergoing hip arthroscopy for symptomatic femoroacetabular impingement were prospectively assessed in a controlled environment for the ability to incorporate early postoperative weight-bearing with the following criteria: no increased pain complaint with weight bearing and normalized gait pattern. Modified Harris Hip (HHS) and Hip Outcome score (HOS) were performed preoperatively and at six months post-op. Participants were progressed with a standard hip arthroscopy protocol. Hip flexion was limited to not exceed 90 degrees for the first three weeks post-op, with progression back to running beginning at three months. Final discharge was dependent upon the ability to run two miles at military specified pace and do a single leg broad jump within six inches of the contralateral leg without an increase in pain. Eleven participants met inclusion criteria over the study period. Crutch use was discontinued at an average of five days following surgery based on established weight bearing criteria. Only one participant required continued crutch use at 15 days. Participants' functional outcome was improved postoperatively, as demonstrated by significant increases in HOS and HHS. At the six month follow up, eight of 11 participants were able to take and complete a full Army Physical Fitness Test. Following completion of the early weight bearing rehabilitation protocol, 81% of participants were able to progress to full weight bearing by four days post-operative, with normalized pain-free gait patterns. Active duty personnel utilizing an early weight bearing protocol following hip arthroscopy demonstrated significant functional improvement at six months. Level 4, Case-series.
Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns
Shin, Yoon-Kyum; Chong, Hyun Ju
2015-01-01
Purpose The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Materials and Methods Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Results Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Conclusion Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function. PMID:26446657
Verstraete, Matthias A; Meere, Patrick A; Salvadore, Gaia; Victor, Jan; Walker, Peter S
2017-06-14
Proper tension of the knee's soft tissue envelope is important during total knee arthroplasty; incorrect tensioning potentially leads to joint stiffness or instability. The latter remains an important trigger for revision surgery. The use of sensors quantifying the intra-articular loads, allows surgeons to assess the ligament tension at the time of surgery. However, realistic target values are missing. In the framework of this paper, eight non-arthritic cadaveric specimens were tested and the intra-articular loads transferred by the medial and lateral compartment were measured using custom sensor modules. These modules were inserted below the articulating surfaces of the proximal tibia, with the specimens mounted on a test setup that mimics surgical conditions. For both compartments, the highest loads are observed in full extension. While creating knee flexion by lifting the femur and flexing the hip, mean values (standard deviation) of 114N (71N) and 63N (28N) are observed at 0° flexion for the medial and lateral compartment respectively. Upon flexion, both medial and lateral loads decrease with mean values at 90° flexion of 30N (22N) and 6N (5N) respectively. The majority of the load is transmitted through the medial compartment. These observations are linked to the deformation of the medial and lateral collaterals, in addition to the anatomy of the passive soft tissues surrounding the knee. In conclusion, these findings provide tangible clinical guidance in assessing the soft tissue loads when dealing with anatomically designed total knee implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pinto, Stephanie Santana; Liedtke, Giane Veiga; Alberton, Cristine Lima; da Silva, Eduardo Marczwski; Cadore, Eduardo Lusa; Kruel, Luiz Fernando Martins
2010-11-01
This study was designed to compare surface electromyographic (sEMG) signal and force production during maximal voluntary isometric contractions (MVCs) in water and on dry land. The reproducibility of sEMG and isometric force measurements between water and dry land environments was also assessed. Nine women performed MVC for elbow flexion and extension, hip flexion, and extension against identical fixed resistance in both environments. The sEMG signal from biceps brachii, triceps brachii, rectus femoris, and biceps femoris was recorded with waterproof adhesives placed over each electrode. The sEMG and force production showed no significant difference between water and dry land, except for HEX (p = 0.035). In addition, intraclass correlation coefficient values were significant and ranged from moderate to high (0.66-0.96) for sEMG and force production between environments. These results showed that the environment did not influence the sEMG and force in MVC.
Ribes-Iborra, Julio; Atienza, Carlos; Sevil-De la Torre, Jorge; Gómez Pérez, Amelia
2017-11-01
Pelvic discontinuity is a rare but serious problem in orthopedic surgery. Acetabular reconstruction in case of severe bone loss after failed total hip arthroplasty is technically difficult, especially in segmental loss type III (anterior or posterior) or pelvic discontinuity (type IV). Acetabular reinforcement devices are frequently used as load-sharing devices to allow allograft incorporation and in order to serve as support of acetabular implants. This study tries to show, by means of biomechanic work, the efficiency of reinforced plate in anterior column in a segmental pelvic loss, illustrated with a clinical case, which shows the socket stability of hip prosthesis. © 2017 Elsevier Ltd. All rights reserved.
Huayamave, Victor; Rose, Christopher; Serra, Sheila; Jones, Brendan; Divo, Eduardo; Moslehy, Faissal; Kassab, Alain J; Price, Charles T
2015-07-16
A physics-based computational model of neonatal Developmental Dysplasia of the Hip (DDH) following treatment with the Pavlik Harness (PV) was developed to obtain muscle force contribution in order to elucidate biomechanical factors influencing the reduction of dislocated hips. Clinical observation suggests that reduction occurs in deep sleep involving passive muscle action. Consequently, a set of five (5) adductor muscles were identified as mediators of reduction using the PV. A Fung/Hill-type model was used to characterize muscle response. Four grades (1-4) of dislocation were considered, with one (1) being a low subluxation and four (4) a severe dislocation. A three-dimensional model of the pelvis-femur lower limb of a representative 10 week-old female was generated based on CT-scans with the aid of anthropomorphic scaling of anatomical landmarks. The model was calibrated to achieve equilibrium at 90° flexion and 80° abduction. The hip was computationally dislocated according to the grade under investigation, the femur was restrained to move in an envelope consistent with PV restraints, and the dynamic response under passive muscle action and the effect of gravity was resolved. Model results with an anteversion angle of 50° show successful reduction Grades 1-3, while Grade 4 failed to reduce with the PV. These results are consistent with a previous study based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the PV for Grade 4. However our model indicated that it is possible to achieve reduction of Grade 4 dislocation by hyperflexion and the resultant external rotation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bley, Andre Serra; Correa, João Carlos Ferrari; Dos Reis, Amir Curcio; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia
2014-01-01
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.
Bley, Andre Serra; Correa, João Carlos Ferrari; Reis, Amir Curcio Dos; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia
2014-01-01
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress. PMID:24830289
Culiver, Adam; Garrison, J Craig; Creed, Kalyssa M; Conway, John E; Goto, Shiho; Werner, Sherry
2018-01-24
Numerous studies have reported kinematic data on baseball pitchers using 3D motion analysis, but no studies to date have correlated this data with clinical outcome measures. To examine the relationship among Y Balance Test-Lower Quarter (YBT-LQ) composite scores, musculoskeletal characteristics of the hip and pitching kinematics in NCAA Division I baseball pitchers. Cross-sectional. 3D motion analysis laboratory. 19 healthy male collegiate baseball pitchers. Internal and external hip passive range of motion (PROM); hip abduction strength; YBT-LQ composite scores; kinematic variables of the pitching motion. Stride length demonstrated a moderate positive correlation with dominant limb YBT-LQ composite score (r=0.524, p=0.018) and non-dominant limb YBT-LQ composite score (r=0.550, p=0.012), and a weak positive correlation with normalized time to maximal humerus velocity (r=0.458, p=0.043). Stride length had a moderate negative correlation with normalized time to maximal thorax velocity (r= -0.522, p=0.018) and dominant hip TRM (r= -0.660, p=0.002), and had a strong negative correlation with normalized time from SFC to maximal knee flexion (r= -0.722, p<0.001). Dominant limb YBT-LQ composite score had a weak negative correlation with hip abduction strength difference (r= -0.459, p=0.042) and normalized time to maximal thorax velocity (r= -0.468, p=0.037), as well as a moderate negative correlation with dominant hip TRM (r= -0.160, p=0.004). Non-dominant limb YBT-LQ composite score demonstrated a weak negative correlation with normalized time to maximal thorax velocity (r= -0.450, p=0.046) and had a moderate negative correlation with dominant hip TRM (r= -0.668, p=0.001). Hip abduction strength difference demonstrated a weak positive correlation with dominant hip TRM (r=0.482, p=0.032). Dominant hip TRM had a moderate positive correlation with normalized time to maximal thorax velocity (r=0.484, p=0.031). There were no other significant relationships between the remaining variables. YBT-LQ is a clinical measure which can be used to correlate with hip musculoskeletal characteristics and pitching kinematics in NCAA Division I pitchers.
Augustsson, Jesper
2016-08-01
Dynamic clinical tests of hip strength applicable on patients, non-athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Fifty-three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test-retest reliability. No significant test-retest differences were observed. Intra-class correlation coefficients ranged 0.93-0.94 and coefficients of variation 2.76-4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip external rotation strength in patients, non-athletes and athletes. The test is practical and easy to perform in any setting and could therefore provide additional information to the common clinical hip examination, in the rehabilitation or research setting, as well as when conducting on-the-field testing in sports. 3.