Stevenson, Paul G; Tarafder, Abhijit; Guiochon, Georges
2012-01-13
A 2D comprehensive chromatographic separation of blackberry sage fragrant oil was performed by using HPLC in the first dimension and SFC in the second. A C(18)-bonded silica column eluted with an ACN gradient was used in the HPLC dimension and an amino-bonded silica column eluted with ACN as a modifier in the SFC dimension. This 2D separation was completed in the off-line mode, the fractions from the HPLC column being collected and injected in the SFC column. The retention factors on the two columns have a -0.757 correlation coefficient. The method provides a practical peak capacity of 2400 in 280 min. The first eluted peaks in HPLC are the last ones eluted in SFC and vice versa. The results demonstrate that the coupling of an HPLC and an SFC separation have a great potential for 2D chromatographic separations. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Allen, T.W.; Hussain, A.
1981-03-29
Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less
Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui
2011-01-01
High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.
Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping
2017-01-06
Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...
Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris
2011-03-15
In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment. Copyright © 2011 Elsevier B.V. All rights reserved.
Méndez, S P; González, E B; Sanz-Medel, A
2001-05-01
Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast. Copyright 2001 John Wiley & Sons, Ltd.
Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El
2017-06-27
HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.
HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.
Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun
2008-07-01
A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.
Separation of natural product using columns packed with Fused-Core particles.
Yang, Peilin; Litwinski, George R; Pursch, Matthias; McCabe, Terry; Kuppannan, Krishna
2009-06-01
Three HPLC columns packed with 3 microm, sub-2 microm, and 2.7 microm Fused-Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis Express C18 column packed with Fused-Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3 C18 column packed with 3 microm particles. Column lot-to-lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the Acquity BEH column packed with sub-2 microm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high-efficiency and high-speed separation to be performed using conventional HPLC instrumentation.
Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil
2011-04-01
5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. Published by Elsevier Ltd.
Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich
2011-12-01
Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.
Yan, Zengguang; Li, Jianrong; Xie, Yabo; Bai, Liping; Jiang, Lin; Li, Fasheng
2017-01-01
UiO-66 analogues are good candidates as stationary phase in HPLC because of their chemical/thermal stability, large surface area, and two cage structures. Here, two UiO-66 analogues, UiO-66-NH2 and UiO-67, were synthesized and used as stationary phase in HPLC to evaluate their performance in the separation of substituted benzenes (SBs) and polycyclic aromatic hydrocarbons (PAHs). The results showed that SBs could be well separated on UiO-66-NH2 column but not on UiO-67 column. Nonetheless, PAHs could be well separated on UiO-67 column. The separation mechanisms of SBs and PAHs on UiO-66 analogues may be involved in the pore size and functional group in the frameworks of UiO-66 analogues. Introduction of the–NH2 into UiO-66 significantly reduced its adsorption capacity for SB congeners, which resulted in less separation of SBs on UiO-66-NH2. As for the separation of PAHs on UiO-67 column, the π-π stacking effect was supposed to play a vital role. PMID:28582453
Zhao, Weiwei; Zhang, Chaoyan; Yan, Zengguang; Zhou, Youya; Li, Jianrong; Xie, Yabo; Bai, Liping; Jiang, Lin; Li, Fasheng
2017-01-01
UiO-66 analogues are good candidates as stationary phase in HPLC because of their chemical/thermal stability, large surface area, and two cage structures. Here, two UiO-66 analogues, UiO-66-NH2 and UiO-67, were synthesized and used as stationary phase in HPLC to evaluate their performance in the separation of substituted benzenes (SBs) and polycyclic aromatic hydrocarbons (PAHs). The results showed that SBs could be well separated on UiO-66-NH2 column but not on UiO-67 column. Nonetheless, PAHs could be well separated on UiO-67 column. The separation mechanisms of SBs and PAHs on UiO-66 analogues may be involved in the pore size and functional group in the frameworks of UiO-66 analogues. Introduction of the-NH2 into UiO-66 significantly reduced its adsorption capacity for SB congeners, which resulted in less separation of SBs on UiO-66-NH2. As for the separation of PAHs on UiO-67 column, the π-π stacking effect was supposed to play a vital role.
Miniaturized protein separation using a liquid chromatography column on a flexible substrate
NASA Astrophysics Data System (ADS)
Yang, Yongmo; Chae, Junseok
2008-12-01
We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.
Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping
2015-05-01
Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences. Copyright © 2015 Elsevier B.V. All rights reserved.
Sandmann, Gerhard
2010-01-01
Acetonitrile-based HPLC systems are the most commonly used for carotenoid analysis from different plant tissues. Because of the acetonitrile shortage, an HPLC system for the separation of carotenoids on C(18) reversed-phase columns was developed in which an acetonitrile-alcohol-based mobile phase was replaced by nitromethane. This solvent comes closest to acetonitrile with respect to its elutrophic property. Our criterion was to obtain similar separation and retention times for a range of differently structured carotenoids. This was achieved by further increase in the lipophilicity with ethylacetate. For all the carotenoids which we tested, we found co-elution only of β-cryptoxanthin and lycopene. By addition of 1% of water, separation of this pair of carotenoids was also achieved. The final recommended mobile phase consisted of nitromethane : 2-propanol : ethyl acetate : water (79 : 10 : 10 : 1, by volume). On Nucleosil C(18) columns and related ones like Hypersil C(18), we obtained separation of carotenes, hydroxyl, epoxy and keto derivatives, which resembles the excellent separation properties of acetonitrile-based mobile phases on C(18) reversed phase columns. We successfully applied the newly developed HPLC system to the separation of carotenoids from different vegetables and fruit. Copyright © 2010 John Wiley & Sons, Ltd.
Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang
2017-10-13
Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.
HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES
High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...
Wenzel, Barbara; Fischer, Steffen; Brust, Peter; Steinbach, Jörg
2010-12-10
Different RP-HPLC columns (phenyl, conventional ODS, cross-linked C(18) and special end-capped C(8) and C(18) phases) were used to investigate the separation of four basic ionizable isomers. Using ACN/20mM NH(4)OAc aq., a separation was observed exclusively on RP columns with higher silanol activity at unusual high ACN concentration, indicating cation-exchange as main retention mechanism. Using MeOH/20mM NH(4)OAc aq., another separation at low MeOH concentrations was observed on both, RP columns with higher as well as RP columns with lower silanol activity, which is mainly based on hydrophobic interactions. The isomers were also separated on a bare silica column at higher MeOH content using NH(4)OAc. Since cation-exchange governs this retention, the elution order was different compared to the RP phases. A strong retention on the silica column was observed in ACN, which could be attributed to partition processes as additional retention mechanism. Copyright © 2010 Elsevier B.V. All rights reserved.
Joyner, Katherine; Wang, Weizhen; Yu, Yihua Bruce
2011-01-01
The effect of column and eluent fluorination on the retention and separation of non-fluorinated amino acids and proteins in HPLC is investigated. A side-by-side comparison of fluorocarbon column and eluents (F-column and F-eluents) with their hydrocarbon counterparts (H-column and H-eluents) in the separation of a group of 33 analytes, including 30 amino acids and 3 proteins, is conducted. The H-column and the F-column contain the n-C8H17 group and n-C8F17 group, respectively, in their stationary phases. The H-eluents include ethanol (EtOH) and isopropanol (ISP) while the F-eluents include trifluoroethanol (TFE) and hexafluorosopropanol (HFIP). The 2 columns and 4 eluents generated 8 (column, eluent) pairs that produce 264 retention time data points for the 33 analytes. A statistical analysis of the retention time data reveals that although the H-column is better than the F-column in analyte separation and H-eluents are better than F-eluents in analyte retention, the more critical factor is the proper pairing of column with eluent. Among the conditions explored in this project, optimal retention and separation is achieved when the fluorocarbon column is paired with ethanol, even though TFE is the most polar one among the 4 eluents. This result shows fluorocarbon columns have much potential in chromatographic analysis and separation of non-fluorinated amino acids and proteins. PMID:21318121
Ullrich, Thomas; Wesenberg, Dirk; Bleuel, Corinna; Krauss, Gerd-Joachim; Schmid, Martin G; Weiss, Michael; Gübitz, Gerald
2010-10-01
The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid-liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors. Copyright © 2010 John Wiley & Sons, Ltd.
Wang, Xixi; Li, Xueying; Jiang, Xiaoya; Dong, Peipei; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan
2017-04-01
A high performance liquid chromatography (HPLC) monolithic column was prepared by redox polymerization of styrene, dipentaerythritol hexaacrylate (DPHA) and ethylene glycol dimethacrylate (EDMA) in a porogen system of n-propanol/PEG400. The monolith was characterized by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and the results indicated that the monolith had a stable and homogeneous structure. The porosity of the monolithic column was 75.86% and average pore diameter was 2.1µm. Several alkylbenzenes and anilines were used to evaluate the column performance in terms of hydrophobicity. Then the column was applied to separate small molecules including phytosterol and BSA tryptic digest. Finally, five standard proteins, egg white and plasma were separated respectively and high separation capacity of protein was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Aqueous Reversed-Phase HPLC/FT-IR Using Diffuse Reflectance Detections
NASA Astrophysics Data System (ADS)
Kalasinsky, Victor F.; Pai, T. H.; Kenton, R. C.; Kalasinsky, Kathryn S.
1989-12-01
Solvent-elimination HPLC/FT-IR has become a viable combination of two important techniques, and we have been developing a system which is adaptable to both normal and reversed-phase liquid chromatography. The interface involves the deposition of HPLC eluites onto a KCI-laden train with subsequent analysis via diffuse reflectance spectroscopy, and with minor modifications, the system can be used with microbore and analytical columns. With aqueous solvents, the water is converted to methanol and acetone in a post-column reaction with 2,2-dimethoxypropane before the eluites are deposited. A number of different samples have been used to demonstrate the interface and its flexibility. Steroids, analgesics, and other pharmaceutical preparations have been separated with reverse-phase solvents and identified by their infrared spectra. For some of the compounds studied, different infrared spectra of a given compound have been found to exhibit intensity variations, which arise from different crystalline states. The differences can be concentration dependent and may be useful in obtaining semi-quantitative information from the infrared spectra. Applications involving both gradient elution and isocratic separations have been successful. The former provides the same advantages for HPLC/FT-IR as one finds in conventional HPLC. More recent work has been applied to the use of buffers such as those frequently used in bioanalytical separations. In trying to simplify the post-column reaction with water, we have immobilized dehydration reagents onto silica particles and packed these materials into a column which is inserted in-line after the analytical column. Of the reagents utilized to date, 3,3-dimethoxypropyltrimethoxysilane has been found to perform most efficiently. It has advantages over the simpler reagents because it can be regenerated in the reaction column. Results and the efficiency of the dehydration process and its relation to the type of reagent and its coverage will be discussed.
Liu, Shiming; Chen, Kaoshan; Schliemann, Willibald; Strack, Dieter
2005-01-01
A simple method involving polyamide column chromatography in combination with HPLC-PAD and HPLC-ESI/MS for isolating and identifying two kinds of lignans, arctiin and arctigenin, in the leaves of burdock (Arctium lappa L.) has been established. After extraction of burdock leaves with 80% methanol, the aqueous phase of crude extracts was partitioned between water and chloroform and the aqueous phase was fractionated on a polyamide glass column. The fraction, eluting with 100% methanol, was concentrated and gave a white precipitate at 4 degrees C from which two main compounds were purified by semi-preparative HPLC. In comparison with the UV and ESI-MS spectra and the HPLC retention time of authentic standards, the compounds were determined to be arctiin and arctigenin. The extraction/separation technique was validated using an internal standard method.
Çelik, S Esin; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra; Apak, Reşat
2014-01-01
Development and application of an on-line cupric reducing anti-oxidant capacity (CUPRAC) assay coupled with HPLC for separation and on-line determination of phenolic anti-oxidants in elderflower (Sambucus nigra L.) extracts for their anti-oxidant capacity are significant for evaluating health-beneficial effects. Moreover, this work aimed to assay certain flavonoid glycosides of elderflower that could not be identified/quantified by other similar on-line HPLC methods (i.e. 2,2-diphenyl-1-picrylhdrazyl and 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid). To identify anti-oxidant constituents in elderflower by HPLC and to evaluate their individual anti-oxidant capacities by on-line HPLC-CUPRAC assay with a post-column derivatisation system. The separation and UV detection of polyphenols were performed on a C18 -column using gradient elution with two different mobile phase solutions, that is acetonitrile and 1% glacial acetic acid, with detection at 340 nm. The HPLC-separated anti-oxidant polyphenols in column effluent react with copper(II)-neocuproine in a reaction-coil to reduce the latter to copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The detection limits of tested compounds at 450 nm after post-column derivatisation were compared with those of at 340 nm UV-detection without derivatisation. LOD values (µg/mL) of quercetin and its glycosides at 450 nm were lower than those of UV detection at 340 nm. This method was applied successfully to elderflower extract. The flavonol glycosides of quercetin and kaempferol bound to several sugar components (glucose, rhamnose, galactose and rutinose) were identified in the sample. The on-line HPLC-CUPRAC method was advantageous over on-line ABTS and DPPH methods for measuring the flavonoid glycosides of elderflower. Copyright © 2014 John Wiley & Sons, Ltd.
Shaw, P E; Wilson, C W
1988-09-01
The commercially available computer program, Drylab, for optimization of separations by high-performance liquid chromatography (HPLC) using binary solvent mixtures is used to improve an HPLC method for separation of the bitter principle, limonin, in grapefruit and navel orange juices. Best conditions for separation of limonin in a reasonable time are 30 to 32% acetonitrile in water at 0.9 mL/min using a 5-micron C18 column 10 cm long. These conditions are used to analyze grapefruit and navel orange juice samples, and these HPLC results are compared with values determined by enzyme immunoassay or thin-layer chromatography (TLC) on the same samples.
Duff, G A; Yeager, S A; Singhal, A K; Pestel, B C; Ressner, J M; Foster, N
1987-04-24
The analytical separation of the indium and manganese complexes of three synthetic, meso-substituted, water-soluble porphyrins from their respective free bases in metallation reaction mixtures is described. The ligands tetra-3N-methylpyridyl porphyrin, tetra-4N-methylpyridyl porphyrin and tetra-N,N,N-trimethylanilinium porphyrin are complexed with In (III) and Mn (III) and are separated from residual free base by high-performance liquid chromatography (HPLC) in acidic conditions with gradient elution on ODS bonded stationary phase. Electrophoretic separation is achieved on both cellulose polyacetate strips and polyacrylamide tube gels under basic conditions. Although analytical separations can be achieved by both HPLC and electrophoresis, only HPLC is suitable for the development of preparative scale separations. Column chromatography, ion-pairing and ion-suppression HPLC techniques fail to separate such highly charged and closely related aromatic compounds.
Minarik, Marek; Franc, Martin; Minarik, Milan
2018-06-15
A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling. Copyright © 2018 Elsevier B.V. All rights reserved.
Echols, Kathy R.; Gale, Robert W.; Tillitt, Donald E.; Schwartz, Ted R.; O'Laughlin, Jerome
1997-01-01
The Ah (aryl-hydrocarbon) hydroxylase-receptor active polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were fractionated by an automated high-performance liquid chromatography (HPLC) system using the Hypercarb™ porous graphitic carbon (PGC) column. This commercially available column was used to fractionate the di-, mono-, and non-ortho PCBs into three fractions for gas chromatography (GC)/electron capture detection analysis, and a fourth fraction containing the PCDDs/PCDFs for GC/mass spectrometry analysis. The recoveries of the PCBs ranged from 68 to 96%, and recoveries of the PCDDs/PCDFs ranged from 74 to 123%. The PGC column has the advantage of faster separations (110 min versus 446 min) and less solvent use (275 ml versus 1,100 ml) compared with automated fractionation of these compounds on activated carbon (PX-21), while still affording good separation of the classes. The PGC column may have an advantage over the pyrenyl-based HPLC method because it has a greater loading capacity (400 μg total PCBs versus 250 μg). Overall, the PGC is a standard column that provides reproducible fractionation of PCDD/PCDFs and PCBs for analytical measurement in environmental samples.
NASA Astrophysics Data System (ADS)
Karsten, Ulf; Escoubeyrou, Karine; Charles, François
2009-09-01
Many macroalgal species that are regularly exposed to high solar radiation such as the eulittoral green alga Prasiola crispa and the red alga Porphyra umbilicalis synthesize and accumulate high concentrations of mycosporine-like amino acids (MAAs) as UV-sunscreen compounds. These substances are typically extracted with a widely used standard protocol following quantification by various high performance liquid chromatography (HPLC) techniques. However, further preparation steps prior to HPLC analysis as well as different HPLC column types have not been systematically checked regarding separation quality and reproducibility. Therefore pure methanol, distilled water and HPLC eluent were evaluated as re-dissolution solvent for dried Prasiola and Porphyra extracts, which were subsequently analyzed on three reversed-phase C8 and C18 HPLC columns. The data indicate that distilled water and the HPLC eluent gave almost identical peak patterns and MAA contents on the C8 and C18 columns. In contrast, the application of the widely used methanol led to double peaks or even the loss of specific peaks as well as to a strong decline in total MAA amounts ranging from about 35% of the maximum in P. crispa to 80% of the maximum in P. umbilicalis. Consequently, methanol should be avoided as re-dissolution solvent for the HPLC sample preparation. An improved protocol for the MAA analysis in macroalgae in combination with a reliable C18 column is suggested.
Zhang, Xiaoqiong; Chen, Sha; Han, Qiang; Ding, Mingyu
2013-09-13
Graphene oxide (GO) bonded stationary phase for high performance liquid chromatography (HPLC) was fabricated by coating GO sheets onto aminosilica microspheres via covalent coupling. Graphene (G) functionalized HPLC stationary phase was then prepared through hydrazine reduction of GO bonded silica (GO@SiO2) composite, which was the first example of using graphene as stationary-phase component for HPLC. Effective separations of the tested neutral and polar compounds on both GO@SiO2 and graphene bonded silica (G@SiO2) columns were achieved under the optimal experimental conditions. Compared with commercial C18 column, the different chromatographic performances of GO and graphene bonded columns were ascribed to their unique retention mechanisms. The polyaromatic scaffold of GO and graphene gives π-π stacking property and hydrophobic effect, and other retention mechanisms, such as π-π electron-donor-acceptor (EDA) interaction for the separation of nitroaromatic compounds and hydrogen bonding for hydroxyl and amino compounds, may also be taken into consideration. Experimental results indicated that the mixed-mode retention mechanism can facilitate the separation of analytes with similar hydrophobicity, which is a unique property compared with C18 column. Additionally, G@SiO2 showed higher affinity to aromatic analytes in contrast with GO@SiO2 and its retention mechanism was not consistent with the typical reversed phase behavior. The separation of aromatic compounds on G@SiO2 column relies primarily on the π-π stacking interaction and then the hydrophobicity, while the two interactions have equal shares on GO@SiO2 column. Copyright © 2013 Elsevier B.V. All rights reserved.
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla
2014-01-01
A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects.
Direct HPLC separation of beta-aminoester enantiomers on totally synthetic chiral stationary phases.
Gasparrini, F; D'Acquarica, I; Villani, C; Cimarelli, C; Palmieri, G
1997-01-01
The direct separation of beta-aminoester enantiomers by HPLC on synthetic chiral stationary phases based on a pi-acidic derivative of trans 1,2-diaminocyclohexane as selector is described. The application of different columns containing the stationary phase with opposite configurations and in the racemic form to the determination of enantiomeric excess in chemically impure samples is demonstrated.
Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H
2010-07-16
Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.
Thaithet, Sujitra; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai
2017-01-01
A low-pressure separation procedure of α-tocopherol and γ-oryzanol was developed based on a sequential injection chromatography (SIC) system coupled with an ultra-short (5 mm) C-18 monolithic column, as a lower cost and more compact alternative to the HPLC system. A green sample preparation, dilution with a small amount of hexane followed by liquid-liquid extraction with 80% ethanol, was proposed. Very good separation resolution (R s = 3.26), a satisfactory separation time (10 min) and a total run time including column equilibration (16 min) were achieved. The linear working range was found to be 0.4 - 40 μg with R 2 being more than 0.99. The detection limits of both analytes were 0.28 μg with the repeatability within 5% RSD (n = 7). Quantitative analyses of the two analytes in vegetable oil and nutrition supplement samples, using the proposed SIC method, agree well with the results from HPLC.
NASA Astrophysics Data System (ADS)
Patrushev, Y. V.; Sidelnikov, V. N.; Yudina, Y. S.
2017-03-01
Monolithic chromatographic columns for HPLC with sorbent based on 1-vinylimidazole are prepared. It is shown that changing the 1-vinylimidazole content in the initial solution allows us to change the polarity of columns. An example of aromatic hydrocarbons separation is presented.
Giegold, Sascha; Teutenberg, Thorsten; Tuerk, Jochen; Kiffmeyer, Thekla; Wenclawiak, Bernd
2008-10-01
A fast HPLC method for the analysis of eight selected sulfonamides (SA) and trimethoprim has been developed with the use of high temperature HPLC. The separation could be achieved in less than 1.5 min on a 50 mm sub 2 microm column with simultaneous solvent and temperature gradient programming. Due to the lower viscosity of the mobile phase and the increased mass transfer at higher temperatures, the separation could be performed on a conventional HPLC system obtaining peak widths at half height between 0.6 and 1.3 s.
Sharma, Upendra K; Sharma, Nandini; Sinha, Arun K; Kumar, Neeraj; Gupta, Ajai P
2009-10-01
In this study, two novel chromatographic methods based on monolithic column high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC) were developed for the ultrafast determination of principal flavor compounds namely vanillin, vanillic acid, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde in ethanolic extracts of Vanilla planifolia pods. Good separation was achieved within 2.5 min using Chromolith RP18e column (100 mm x 4.6 mm) for HPLC and Acquity BEH C-18 (100 mm x 2.1 mm, 1.7 microm) column for UPLC. Both methods were compared in terms of total analysis time, mobile phase consumption, sensitivity, and validation parameters like precision, accuracy, LOD, and LOQ. Further, system suitability test data including resolution, capacity factor, theoretical plates, and tailing factor was determined for both the methods by ten replicate injections. Monolithic column based HPLC gave better results for most of the selected parameters while UPLC was found to be more eco-friendly with low mobile phase consumption and better sensitivity. Both methods may be used conveniently for the high throughput analysis of large number of samples in comparison to traditional particulate column.
Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep
2015-01-01
A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Yong; Zhou, An; Xie, Xiao-Mei
2013-03-01
A simple and sensitive method has been developed to simultaneously determine betunilic acid, oleanolic acid and ursolic acid in the fruits of Ziziphus jujuba from different regions by HPLC-MS. This HPLC assay was performed on PAH polymeric C18 bonded stationary phase column with mobile phase contained acetonitrile-water (90: 10) and with negative ESI detection mode. The developed approach was characterized by short time consumption for chromatographic separation, high sensitivity and good reliability so as to meet the requirements for rapid analysis of large-batch fruits of Z. jujuba from different habitats.
Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat
2010-07-26
A novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) method was developed for the selective determination of polyphenols (flavonoids, simple phenolic and hydroxycinnamic acids) in complex plant matrices. The method combines chromatographic separation, constituent analysis, and post-column identification of antioxidants in plant extracts. The separation of polyphenols was performed on a C18 column using gradient elution with two different mobile phase solutions, i.e., MeOH and 0.2% o-phosphoric acid. The HPLC-separated antioxidant polyphenols in the extracts react with copper(II)-neocuproine (Cu(II)-Nc) reagent in a post-column reaction coil to form a derivative. The reagent is reduced by antioxidants to the copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The negative peaks of antioxidant constituents were monitored by measuring the increase in absorbance due to Cu(I)-Nc. The detection limits of polyphenols at 450 nm (in the range of 0.17-3.46 microM) after post-column derivatization were comparable to those at 280 nm UV detection without derivatization. The developed method was successfully applied to the identification of antioxidant compounds in crude extracts of Camellia sinensis, Origanum marjorana and Mentha. The method is rapid, inexpensive, versatile, non-laborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of antioxidant constituents of complex plant samples. Copyright 2010 Elsevier B.V. All rights reserved.
Moriya, Hyuga; Tanaka, Sohei; Iida, Yukari; Kitagawa, Satomi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Yamamoto, Atsushi; Kodama, Shuji
2018-05-16
Xanthohumol, isoxanthohumol, and 8-prenylnaringenin in beer, hop, and hop pellet samples were analyzed by HPLC using InertSustain phenyl column and the mobile phase containing 40% methanol and 12% 2-propanol. Fractions of isoxanthohumol and 8-prenylnaringenin obtained by the above HPLC were separately collected. Isoxanthohumol and 8-prenylnaringenin were enantioseparated by HPLC using Chiralcel OD-H column with a mobile phase composed of hexane/ethanol (90/10, v/v) and Chiralpak AD-RH column with a mobile phase composed of methanol/2-propanol/water (40/20/40, v/v/v), respectively. Both of isoxanthohumol and 8-prenylnaringenin from beer, hop, and hop pellet samples were found to be a racemic mixture. This can be explained that the two analytes were produced by non-enzymatic process. The effects of boiling conditions on the conversion of xanthohumol into isoxanthohumol were also studied. A higher concentration of ethanol in heating solvent resulted in a decrease in the conversion ratio and the conversion was stopped by addition of ethanol more than 50% (v/v). The isomerization was significantly affected pH (2-10) and the boiling medium at pH 5 was minimum for the conversion. Therefore, it was suggested that xanthohumol was relatively difficult to convert to isoxanthohumol in wort (pH 5-5.5) during boiling. This article is protected by copyright. All rights reserved.
Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor
NASA Technical Reports Server (NTRS)
Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1995-01-01
Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.
Signal Enhancement in HPLC/Micro-Coil NMR Using Automated Column Trapping
Djukovic, Danijel; Liu, Shuhui; Henry, Ian; Tobias, Brian; Raftery, Daniel
2008-01-01
A new HPLC-NMR system is described that performs analytical separation, pre-concentration, and NMR spectroscopy in rapid succession. The central component of our method is the online pre-concentration sequence that improves the match between post-column analyte peak volume and the micro-coil NMR detection volume. Separated samples are collected on to a C18 guard column with a mobile phase composed of 90% D2O/10% acetonitrile-D3, and back-flashed to the NMR micro-coil probe with 90% acetonitrile-D3/10% D2O. In order to assess the performance of our unit, we separated a standard mixture of 1 mM ibuprofen, naproxen, and phenylbutazone using a commercially available C18 analytical column. The S/N measurements from the NMR acquisitions indicated that we achieved signal enhancement factors up to 10.4 (±1.2)-fold. Furthermore, we observed that pre-concentration factors increased as the injected amount of analyte decreased. The highest concentration enrichment of 14.7 (±2.2)-fold was attained injecting 100 μL solution of 0.2 mM (~4 μg) ibuprofen. PMID:17037915
Casas, Mònica Escolà; Kretschmann, Andreas Christopher; Andernach, Lars; Opatz, Till; Bester, Kai
2016-06-24
A simple method for the separation of the enantiomers of the fungicide imazalil was developed. Racemic imazalil was separated into its enantiomers with an enantiomeric purity of 99% using HPLC-UV with an enantioselective column (permethylated cyclodextrin) operated in reversed phase mode (water with 0.2% trimethylamine and 0.08% acetic acid and methanol). The absolute configuration of the separated enantiomers was assigned and unequivocally confirmed by optical rotation as well as by vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) combined with ab-initio calculations. The same enantioselective column was also used to develop an HPLC-MS/MS method for the quantification of imazalil enantiomers. The HPLC-MS/MS method reached limits of quantification (LOQs) of 0.025mg/mL with 5μL injections. This method was used to verify imazalil concentrations and enantiomeric fractions in samples from an in vitro test on effects on human steroidogenesis (H295R steroidogenesis assay). The quantification verified the stability of the enantiomers of imazalil during the in vitro tests. Copyright © 2016 Elsevier B.V. All rights reserved.
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla
2014-01-01
A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects. PMID:24551158
Zeric Stosic, Marina Z; Jaksic, Sandra M; Stojanov, Igor M; Apic, Jelena B; Ratajac, Radomir D
2016-11-01
High-performance liquid chromatography (HPLC) method with diode array detection (DAD) were optimized and validated for separation and determination of tetramethrin in an antiparasitic human shampoo. In order to optimize separation conditions, two different columns, different column oven temperatures, as well as mobile phase composition and ratio, were tested. Best separation was achieved on the Supelcosil TM LC-18- DB column (4.6 x 250 mm), particle size 5 jim, with mobile phase methanol : water (78 : 22, v/v) at a flow rate of 0.8 mL/min and at temperature of 30⁰C. The detection wavelength of the detector was set at 220 nm. Under the optimum chromatographic conditions, standard calibration curve was measured with good linearity [r2 = 0.9997]. Accuracy of the method defined as a mean recovery of tetramethrin from shampoo matrix was 100.09%. The advantages of this method are that it can easily be used for the routine analysis of drug tetramethrin in pharmaceutical formulas and in all pharmaceutical researches involving tetramethrin.
Pietrogrande, Maria Chiara; Dondi, Francesco; Ciogli, Alessia; Gasparrini, Francesco; Piccin, Antonella; Serafini, Mauro
2010-06-25
In this study, a comparative investigation was performed of HPLC Ascentis (2.7 microm particles) columns based on fused-core particle technology and Acquity (1.7 microm particles) columns requiring UPLC instruments, in comparison with Chromolith RP-18e columns. The study was carried out on mother and vegetal tinctures of Passiflora incarnata L. on one single or two coupled columns. The fundamental attributions of the chromatographic profiles are evaluated using a chemometric procedure, based on the AutoCovariance Function (ACVF). Different chromatographic systems are compared in terms of their separation parameters, i.e., number of total chemical components (m(tot)), separation efficiency (sigma), peak capacity (n(c)), overlap degree of peaks and peak purity. The obtained results show the improvements achieved by HPLC columns with narrow size particles in terms of total analysis time and chromatographic efficiency: comparable performance are achieved by Ascentis (2.7 microm particle) column and Acquity (1.7 microm particle) column requiring UPLC instruments. The ACVF plot is proposed as a simplified tool describing the chromatographic fingerprint to be used for evaluating and comparing chemical composition of plant extracts by using the parameters D% - relative abundance of the deterministic component - and c(EACF) - similarity index computed on ACVF. Copyright 2010 Elsevier B.V. All rights reserved.
Recent trends in ultra-fast HPLC: new generation superficially porous silica columns.
Ali, Imran; Al-Othman, Zeid A; Nagae, Norikaju; Gaitonde, Vinay D; Dutta, Kamlesh K
2012-12-01
New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8), C(18), RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2)/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Djurdjevic, Predrag; Laban, Aleksandra; Jelikic-Stankov, Milena
2004-01-01
HPLC determination of fleroxacin in dosage forms was carried out using either reversed-phase column YMC pack ODS-AQ or Supelco LC Hisep shielded hydrophobic phase column, with UV detection at 280 nm. The mobile phase for ODS column consisted of 50:50:0.5 v/v/v and for Hisep column 15:85:0.5 v/v/v acetonitrile-water-triethylamine. The pH of the mobile phase was adjusted to 6.30 for ODS column and to 6.85 for Hisep column, with H3PO4. Linear response was obtained in the concentration range of fleroxacin between 0.01 and 1.30 micrograms/mL. Detection limit was 4.8 ng/mL. Recovery test in the determination of fleroxacin in "Quinodis" tablets (Hoffmann La Roche, nominal mass 400 or 200 mg) was 98-101% for both columns. The effect of the composition and pH of the mobile phase on spectra, retention time and dissociation constants of fleroxacin was discussed. The proposed method could be also used for separation of the photo-degradation products of fleroxacin. Ten degradation products were separated on the ODS-AQ column, thus confirming the suitability of the proposed method for stability study of fleroxacin in pharmaceuticals.
Kim, Won Il; Zhao, Bing Tian; Zhang, Hai Yan; Lee, Je Hyun; Son, Jong Keun; Woo, Mi Hee
2014-01-01
Two rapid and simple HPLC methods with UV detector to determine three main compounds (magnoflorine, spinosin and 6'''-feruloyl spinosin) and evaporative light scattering detector (ELSD) to determine jujuboside A were developed for the chemical analyses of Zizyphi Semen. Magnoflorine, spinosin, and 6'''-feruloyl spinosin were separated with an YMC J'sphere ODS-H80 column (250 mm × 4.6 mm, 4 μm) by the gradient elution followed by the isocratic elution using methanol with 0.1 % formic acid and water with 0.1 % formic acid as the mobile phase. The flow rate was 1.0 mL/min. Jujuboside A was separated by HPLC-ELSD with YoungJinBioChrom Aegispak C18-L column (250 mm × 4.6 mm, 5 μm) column in a gradient elution using methanol with 0.1 % formic acid (A) and water with 0.1 % formic acid as the mobile phase. These two methods were fully validated with respect to linearity, precision, accuracy, stability, and robustness. These HPLC methods were applied successfully to quantify four compounds in a Zizyphi Semen extract. The HPLC analytical methods were validated for pattern recognition analysis by repeated analysis of 91 seed samples corresponding to 48 Zizyphus jujuba var. spinosa (J01-J48) and 43 Zizyphus mauritiana (M01-M43). The results indicate that these methods are suitable for a quality evaluation of Zizyphi Semen.
A NEW HPLC METHOD FOR SEPARATION OF PHYTOPLANKTON PIGMENTS IN NATURAL SAMPLES
A new high-performance liquid chromatographic (HPLC) method was developed to analyze, in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a reverse-phase amide C16 (RP-amide C16) column and an elution gradient o...
USDA-ARS?s Scientific Manuscript database
An HPLC method permitting the simultaneous determination of fourteen compounds (phenylalkanoids and monoterpenoids) from the roots of Rhodiola rosea was developed. A separation was achieved within 35 minutes by using C-18 column material, a water/acetonitrile mobile phase, both containing 0.05% phos...
Qiu, Ying-Kun; Chen, Fang-Fang; Zhang, Ling-Ling; Yan, Xia; Chen, Lin; Fang, Mei-Juan; Wu, Zhen
2014-04-11
An on-line comprehensive two-dimensional preparative liquid chromatography system was developed for preparative separation of minor amount components from complicated natural products. Medium-pressure liquid chromatograph (MPLC) was applied as the first dimension and preparative HPLC as the second one, in conjunction with trapping column and makeup pump. The performance of the trapping column was evaluated, in terms of column size, dilution ratio and diameter-height ratio, as well as system pressure from the view of medium pressure liquid chromatograph. Satisfactory trapping efficiency can be achieved using a commercially available 15 mm × 30 mm i.d. ODS pre-column. The instrument operation and the performance of this MPLC×preparative HPLC system were illustrated by gram-scale isolation of crude macro-porous resin enriched water extract of Rheum hotaoense. Automated multi-step preparative separation of 25 compounds, whose structures were identified by MS, (1)H NMR and even by less-sensitive (13)C NMR, could be achieved in a short period of time using this system, exhibiting great advantages in analytical efficiency and sample treatment capacity compared with conventional methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Determination of arsenic species and arsenosugars in marine samples by HPLC-ICP-MS.
Hirata, Shizuko; Toshimitsu, Hideki
2005-10-01
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP-MS detection. Separation of eight arsenic species--As(III), MMA, DMA, As(V), AB, TMAO, AC and TeMAs(+)--was achieved on a C(18) column with isocratic elution (pH 3.0), under which conditions As(III) and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC-ICP-MS detection limits for the eight arsenic species were in the range 0.03-0.23 microg L(-1) based on 3 sigma for the blank response (n=5). The precision was calculated to be 2.4-8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18-9.59 microg g(-1).
HPLC-Chip/MS Technology in Proteomic Profiling
NASA Astrophysics Data System (ADS)
Vollmer, Martin; van de Goor, Tom
HPLC-chip/MS is a novel nanoflow analytical technology conducted on a microfabricated chip that allows for highly efficient HPLC separation and superior sensitive MS detection of complex proteomic mixtures. This is possible through on-chip preconcentration and separation with fluidic connection made automatically in a leak-tight fashion. Minimum precolumn and postcolumn peak dispersion and uncompromised ease of use result in compounds eluting in bands of only a few nanoliters. The chip is fabricated out of bio-inert polyimide-containing channels and integrated chip structures, such as an electrospray emitter, columns, and frits manufactured by laser ablation technology. Meanwhile, a variety of HPLC-chips differing in design and stationary phase are commercially available, which provide a comprehensive solution for applications in proteomics, glycomics, biomarker, and pharmaceutical discovery. The HPLC-chip can also be easily integrated into a multidimensional separation workflow where different orthogonal separation techniques are combined to solve a highly complex separation problems. In this chapter, we describe in detail the methodological chip usage and functionality and its application in the elucidation of the protein profile of human nucleoli.
Abrahim, Ahmed; Al-Sayah, Mohammad; Skrdla, Peter; Bereznitski, Yuri; Chen, Yadan; Wu, Naijun
2010-01-05
Fused-core silica stationary phases represent a key technological advancement in the arena of fast HPLC separations. These phases are made by fusing a 0.5 microm porous silica layer onto 1.7 microm nonporous silica cores. The reduced intra-particle flow path of the fused particles provides superior mass transfer kinetics and better performance at high mobile phase velocities, while the fused-core particles provide lower pressure than sub-2 microm particles. In this work, chromatographic performance of the fused-core particles (Ascentis Express) was investigated and compared to that of sub-2 microm porous particles (1.8 microm Zorbax Eclipse Plus C18 and 1.7 microm Acquity BEH C18). Specifically, retention, selectivity, and loading capacity were systematically compared for these two types of columns. Other chromatographic parameters such as efficiency and pressure drop were also studied. Although the fused-core column was found to provide better analyte shape selectivity, both columns had similar hydrophobic, hydrogen bonding, total ion-exchange, and acidic ion-exchange selectivities. As expected, the retention factors and sample loading capacity on the fused-core particle column were slightly lower than those for the sub-2 microm particle column. However, the most dramatic observation was that similar efficiency separations to the sub-2 microm particles could be achieved using the fused-core particles, without the expense of high column back pressure. The low pressure of the fused-core column allows fast separations to be performed routinely on a conventional LC system without significant loss in efficiency or resolution. Applications to the HPLC impurity profiling of drug substance candidates were performed using both types of columns to validate this last point.
Analytical high-performance liquid chromatographic separations of the individual enantiomers of five polychlorinated compounds were obtained on polysaccharide stereoselective HPLC columns. The enantiomers of the pesticides trans-chlordane, cis-chlordane and heptachlor were separa...
Terol, Amanda; Maestre, Salvador E; Prats, Soledad; Todolí, José L
2012-05-07
The present work describes the first attempt to use microwave reversed phase high performance liquid chromatography (MW-HPLC) to carry out the separation of organic compounds. Biotin and riboflavin were selected for the characterization of the new separation technique. Additional vitamins (nicotinamide, pyridoxine and thiamine) were used as reference compounds. In order to perform the separation, a chromatographic column was placed inside a domestic microwave oven in a hanging position. The column particular location was an extremely critical point, since it precluded the actual power absorbed by the sample. In order to avoid magnetron damage, a heat well (i.e., water vessels) was used. Vitamins were detected using a UV-VIS detector. Results obtained showed that the application of microwave radiation, even at low power levels, gave rise to a significant modification in the characteristics of the chromatograms. It was found that retention times for biotin and riboflavin shortened as the power increased. Furthermore, the peak shape also changed, with the modification being more significant for the former vitamin than for the latter one. Furthermore, sensitivity also increased as the column was exposed to the action of microwave. Comparatively speaking, MW-HPLC was more efficient in terms of compound separation than when performed at room temperature or thermostatted at 45 °C HPLC. This was likely due to the combined action of a moderate and quick heating of the mobile phase with an increase in the analytes diffusivity caused by the radiation.
Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications
Preti, Raffaella
2016-01-01
The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large amount of samples must be analyzed fast using reliable and solvent-saving apparatus. The literature hereby described shows how the outstanding performances provided by core-shell particles column on a traditional HPLC instruments are comparable to those obtained with a costly UHPLC instrumentation, making this novel column a promising key tool in food analysis. PMID:27143972
High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) was obtained on polysaccharide enantioselective HPLC columns using alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, fonofos, fenamiph...
A unified classification of stationary phases for packed column supercritical fluid chromatography.
West, C; Lesellier, E
2008-05-16
The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.
USDA-ARS?s Scientific Manuscript database
A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...
Analysis of D3-,4-,5-phosphorylated phosphoinositides using HPLC.
Munnik, Teun
2013-01-01
Detection of polyphosphoinositides (PPIs) is difficult due to their low chemical abundancy. This problem is further complicated by the fact that PPIs are present as various, distinct isomers, which are difficult, if not impossible, to separate by conventional thin layer chromatography (TLC) systems. PPIs in plants include PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,5)P 2, and PtdIns(4,5)P 2. Here, a protocol is described analyzing plant PPIs using (32)P-orthophosphorus pre-labeled material. After extraction, lipids are deacylated and the resulting glycerophosphoinositol polyphosphates (GroPInsPs) separated by HPLC using a strong anion-exchange column and a shallow salt gradient. Alternatively, PPIs are first separated by TLC, the lipids reisolated, deacylated, and the GroPInsPs then separated by HPLC.
Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa
2006-04-01
A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.
Reversed Phase Column HPLC-ICP-MS Conditions for Arsenic Speciation Analysis of Rice Flour.
Narukawa, Tomohiro; Matsumoto, Eri; Nishimura, Tsutomu; Hioki, Akiharu
2015-01-01
New measurement conditions for arsenic speciation analysis of rice flour were developed using HPLC-ICP-MS equipped with a reversed phase ODS column. Eight arsenic species, namely, arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide (TMAO), tetramethylarsonium (TeMA), arsenobetaine (AsB) and arsenocholine (AsC), were separated and determined under the proposed conditions. In particular, As(III) and MMAA and DMAA and AsB were completely separated using a newly proposed eluent containing ammonium dihydrogen phosphate. Importantly, the sensitivity changes, in particular those of As(V) and As(III) caused by coexisting elements and by complex matrix composition, which had been problematical in previously reported methods, were eliminated. The new eluent can be applied to C8, C18 and C30 ODS columns with the same effectiveness and with excellent repeatability. The proposed analytical method was successfully applied to extracts of rice flour certified reference materials.
Development of at-line assay to monitor charge variants of MAbs during production.
St Amand, M M; Ogunnaike, B A; Robinson, A S
2014-01-01
One major challenge currently facing the biopharmaceutical industry is to understand how MAb microheterogeneity affects therapeutic efficacy, potency, immunogenicity, and clearance. MAb micro-heterogeneity can result from post-translational modifications such as sialylation, galactosylation, C-terminal lysine cleavage, glycine amidation, and tryptophan oxidation, each of which can generate MAb charge variants; such heterogeneity can affect pharmacokinetics (PK) considerably. Implementation of appropriate on-line quality control strategies may help to regulate bioprocesses, thus enabling more homogenous material with desired post-translational modifications and PK behavior. However, one major restriction to implementation of quality control strategies is the availability of techniques for obtaining on-line or at-line measurements of these attributes. In this work, we describe the development of an at-line assay to separate MAb charge variants in near real-time, which could ultimately be used to implement on-line quality control strategies for MAb production. The assay consists of a 2D-HPLC method with sequential in-line Protein A and WCX-10 HPLC column steps. To perform the 2D-HPLC assay at-line, the two columns steps were integrated into a single method using a novel system configuration that allowed parallel flow over column 1 or column 2 or sequential flow from column 1 to column 2. A bioreactor system was also developed such that media samples could be removed automatically from bioreactor vessels during production and delivered to the 2D-HPLC for analysis. With this at-line HPLC assay, we have demonstrated that MAb microheterogeneity occurs throughout the cell cycle whether the host cell line is grown under different or the same nominal culture conditions. © 2013 American Institute of Chemical Engineers.
Jia, Dong-Xu; Ai, Zheng-Gui; Xue, Ya-Ping; Zheng, Yu-Guo
2014-11-01
L-3, 4-dimethoxy-α-methylphenylalanine (L-DMMD) is an important intermediate for the synthesis of 3-hydroxy-α-methyl-L-tyrosine (L-methyldopa). This paper describes an efficient, accurate, and low-priced method of high-performance liquid chromatography (HPLC) using chiral mobile phase and conventional C18 column to separate L-DMMD from its enantiomers. The effects of ligands, copper salts, organic modifiers, pHs of mobile phase, and temperatures on the retention factors (k') and selectivity (α) were evaluated to achieve optimal separation performance. Then, thermal analysis of the optimal separation conditions was investigated as well. It was confirmed that the optimal mobile phase was composed of 20 % (v/v) methanol, 8 mM L-phenylalanine (L-Phe), and 4 mM cupric sulfate in water of pH 3.2, and the column temperature was set at 20 °C. Baseline separation of two enantiomers could be obtained through the conventional C18 column with a resolution (R) of 3.18 in less than 18 min. Thermodynamic data (∆∆H and ∆∆S) obtained by Van't Hoff plots revealed the chiral separation was an enthalpy-controlled process. To the best of our knowledge, this is the first report regarding the enantioseparation of DMMD by chiral ligand-exchange HPLC.
Hemdan, A; Abdel-Aziz, Omar
2018-04-01
Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.
Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K
2006-11-03
In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.
Phototoxicity testing by online irradiation and HPLC.
Schröder, Sven; Surmann, J P
2006-11-01
A high-performance liquid chromatography (HPLC) system was developed for the determination of drug photostability and phototoxicity based on an automated column-switching system with aqueous online UV-A irradiation and hyphenated organic separation of the drug and its photoproducts. The photoreactor is built with an poly(ethylene-co-tetrafluoroethylene) (ETFE) reaction coil knitted around a UV-A light source. The chromatographic separation was performed with two special C18 columns, which are also suitable for using with pure water as eluent. Degradation of chlorpromazine (CPZ) by ultraviolet light was investigated at pH 7 and pH 3. Furthermore chlorpromazine was irradiated in the presence of guanosine-5-monophosphate (GMP) in pH 7 buffered solution, leading to a new photoproduct. In the pH 3 irradiation studies of CPZ and GMP, no reaction was detected between the molecules.
Abu-Lafi, S; Turujman, S A
1997-01-01
We report an HPLC method that allows the simultaneous separation of configurational isomers of the predominant cis/trans forms of astaxanthin. The configurational isomers of the all-trans-, and most of the configurational isomers of the 9-cis-, 13-cis- and 15-cis-astaxanthin were separated on a Sumichiral OA-2000 column, which is manufactured and packed in Japan with a Pirkle covalent D-phenylglycine chiral stationary phase (CSP). The large separation of the cis isomers from the all-trans isomers that we report here ensure the suitability of this method for the routine determination of the ratio of the configurational isomers of all-trans-astaxanthin.
Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong
2018-03-01
We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
1985-09-01
advantage of HPLC/EC for the separation and detection of electroactive species is well documented in the literature (1-5). It has been demonstrated that...Zorbax, Alltech Spherisorb or BAS Biophase columns. The injection valve was a Rheodyne Model 7120 fitted with a 20 pL loop and mounted vertically for
Superficially porous particles columns for super fast HPLC separations.
Ali, Imran; Al-Othman, Zeid A; Al-Za'abi, Mohammed
2012-08-01
Superficially porous silica particles columns (SPSPCs) are manufactured by different companies. The most common have the brand names Halo, Ascentis Express and Kinetex. These columns provide super fast, sharp peaks and moderate sample loading and back pressure. These are available in different chemistries such as C₈, C₁₈, RP Amide and Hilic. Normally, the silica gel particles have 2.7 and 1.7 µm total and inner solid core diameters with 0.5 µm thick outer porous layer, 90 Å pore size and 150 m²/g surface area. They have been used for the separation and identification of low and high molecular weight compounds. The present article describes the state of the art of superficially porous silica particles based columns with special emphasis on their structures, mechanisms of separation, applications and comparison. Copyright © 2012 John Wiley & Sons, Ltd.
Miyagi, Michiko; Yokoyama, Hirokazu; Hibi, Toshifumi
2007-07-01
An HPLC protocol for sugar microanalysis based on the formation of ultraviolet-absorbing benzoyl chloride derivatives was improved. Here, samples were prepared with a C-8 cartridge and analyzed with a high efficiency ODS column, in which porous spherical silica particles 3 microm in diameter were packed. These devices allowed us to simultaneously quantify multiple sugars and sugar alcohols up to 10 ng/ml and to provide satisfactory separations of some sugars, such as fructose and myo-inositol and sorbitol and mannitol. This protocol, which does not require special apparatuses, should become a powerful tool in sugar research.
Li, Jun; Gao, Ruixi; Zhao, Dan; Huang, Xianju; Chen, Yu; Gan, Fei; Liu, Hui; Yang, Guangzhong
2017-08-18
Xanthochymol (XCM) and guttiferone E (GFE), a pair of π bond benzophenone isomers from Garcinia xanthochymus, were once reported to be difficult or impossible to separate. The present study reports the successful separation of these two isomers through high performance liquid chromatography (HPLC), as well as their effective isolation using high speed counter-current chromatography (HSCCC) based on the silver nitrate (AgNO 3 ) coordination reaction. First, an effective HPLC separation system was developed, achieving a successful baseline separation with resolution of 2.0. Based on the partition coefficient (K) resolved by HPLC, the two-phase solvent system was determined as n-hexane, methanol and water with the uncommon volume ratio of 4:6:1. A crude extract of Garcinia xanthochymus (0.2g) was purified by normal HSCCC and refined with AgNO 3 -HSCCC. Monomers of XCM and GFE were identified by HPLC, mass spectrometry (MS) and nuclear magnetic resonance (NMR). The results demonstrate the separation and isolation of π bond benzophenone isomers using ordinary octadecyl silane (C 18 ) columns and HSCCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep
2013-11-15
A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.
Yin, Hongfeng; Killeen, Kevin; Brennen, Reid; Sobek, Dan; Werlich, Mark; van de Goor, Tom
2005-01-15
Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.
Andrighetto, Luke M; Stevenson, Paul G; Pearson, James R; Henderson, Luke C; Conlan, Xavier A
2014-11-01
In-silico optimised two-dimensional high performance liquid chromatographic (2D-HPLC) separations of a model methamphetamine seizure sample are described, where an excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This separation was completed in the heart-cutting mode of 2D-HPLC where C18 columns were used in both dimensions taking advantage of the selectivity difference of methanol and acetonitrile as the mobile phases. This method development protocol is most significant when optimising the separation of chemically similar chemical compounds as it eliminates potentially hours of trial and error injections to identify the optimised experimental conditions. After only four screening injections the gradient profile for both 2D-HPLC dimensions could be optimised via simulations, ensuring the baseline resolution of diastereomers (ephedrine and pseudoephedrine) in 9.7 min. Depending on which diastereomer is present the potential synthetic pathway can be categorized.
Islam, M D Azharul; Yamakawa, Rei; Do, Nguyen Duc; Numakura, Naoko; Suzuki, Toshiro; Ando, Tetsu
2009-05-01
Conjugated dienyl compounds make one of the main groups of lepidopteran sex pheromones, and GC has been frequently used to determine the configurations of the double bonds. However, the separation of two geometric isomers of a terminal-conjugated diene, such as 7,9-decadien-1-ol secreted by a nettle moth Parasa lepida lepida (Limacodidae), is assumed to be difficult. In order to clarify the chromatographic separation of the terminal dienes, 7,9-decadienyl and 9,11-dodecadienyl compounds (alcohols, acetates, and aldehydes) were analyzed by GC and HPLC. On a capillary GC column, the (E)-isomers flowed out slightly faster than the corresponding (Z)-isomers, but their peaks almost overlapped. On the other hand, HPLC equipped with an ODS column completely separated the two geometric isomers examined and the (Z)-isomers eluted from the column faster than the (E)-isomers without dependence on a functional group. In addition to undergoing direct HPLC analysis without derivatization, the dienyl alcohols were converted into 3,5-dinitrobenzoates and analyzed by LC-ESI-MS operated under the same reversed-phase condition. The two separated geometric isomers were sensitively monitored by negative ions at m/z 211, M, M+1, M+17, and M+31, which were characteristically derived from the benzoates. Based on these results, a pheromone extract of P. l. lepida was examined, and it was confirmed that the female moths exclusively produced the (Z)-isomer of the 7,9-diene. Furthermore, a GC-EAD analysis and a field evaluation with both geometrical isomers indicated that the mating communication of P. l. lepida is predominantly mediated with the (Z)-isomer.
1999-06-01
cpdP, from the marine symbiotic bacterium Vibrio fische ri 160 Table of abbreviations 30C6-HSL AI-1 AI-2 C8-HSL CHAPS CNP EDTA FMN GFP HPLC ...using a Zorbax C18 1.0 mm by 150 mm reverse-phase column on a Hewlett-Packard 1090 HPLC /1040 diode array detector at the Harvard Microchemistry...separated by reversed-phase HPLC , and sequenced (Table 2; 10-PK12, 10-PK39, and 10-PK51). From two of the three peptide sequences (Materials and
The use of dihexyldithiocarbamate in reverse-phase HPLC of metal chelates
NASA Astrophysics Data System (ADS)
Fatimah, S. S.; Bahti, H. H.; Hastiawan, I.; Permanasari, A.
2018-05-01
Dialkyldithiocarbamates have long been used as chelating agents in reverse-phase HPLC of transition metals. In the previous study, an alkyl homolog of this type of ligand, namely dihexyldithiocarbamate (DHDTC), was synthesized and characterized. The use of this particular ligand in the revese-phase HPLC of some selected transition metal ions is now reported for the first time. The mobile phase comprising of the flow rate and of the detection, in the separation of the metal chelates of Cd (II), Fe (III), Cu (II), and Co (III), were investigated on a C-18 column. The results showed that dihexylditiocarbamate could be used for separating Cd (II), Fe(III), Cu(II), and Co(III). Therefore, it could be used in simultaneous analysis.
Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco
2016-09-01
HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.
Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide
2009-01-01
The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.
Satínský, Dalibor; Havlíková, Lucie; Solich, Petr
2013-08-01
A new and fast high-performance liquid chromatography (HPLC) column-switching method using fused-core columns in both dimensions for sample preconcentration and determination of propranolol in human urine has been developed. On-line sample pretreatment and propranolol preconcentration were performed on an Ascentis Express RP-C-18 guard column (5 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water (5:95, v/v) at a flow rate of 2.0 mL min(-1) and at a temperature of 50 °C. Valve switch from pretreatment column to analytical column was set at 4.0 min in a back-flush mode. Separation of propranolol from other endogenous urine compounds was achieved on the fused-core column Ascentis Express RP-Amide (100 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water solution of 0.5% triethylamine, pH adjusted to 4.5 by means of glacial acetic acid (25:75, v/v), at a flow rate of 1.0 mL min(-1) and at a temperature of 50 °C. Fluorescence excitation/emission detection wavelengths were set at 229/338 nm. A volume of 1,500 μL of filtered urine sample solution was injected directly into the column-switching HPLC system. The total analysis time including on-line sample pretreatment was less than 8 min. The experimentally determined limit of detection of the method was found to be 0.015 ng mL(-1).
Bai, Shouli; Chen, Qingshuo; Lu, Chao; Lin, Jin-Ming
2013-03-20
In general, the reduction of disulfide bonds with tris(2-carboxyethyl)phosphine (TCEP) is performed using off-line operation, which is not only time-consuming but also vulnerable to the spontaneous re-oxidation of thiols during sample preparation and subsequent analysis procedures. To the best of our knowledge, there has been not any case on the on-line reduction for biological disulfides coupled with high performance liquid chromatography (HPLC). In this study, these obstacles are overcome by packing Zn(II)-TCEP complexes into a home-made column. The as-synthesized Zn(II)-TCEP complexes enable efficient reduction of disulfide bonds at pH 3.0. This acidic pH value was compatible with that of the mobile phase for HPLC separation of thiols and disulfides. Therefore, using fluorosurfactant-prepared triangular gold nanoparticles as HPLC postcolumn specific chemiluminescence (CL) reagents for thiols, the feasibility of the established on-line reduction column has been confirmed for the direct identification of both thiols and disulfides by incorporating this reduction column into a single chromatographic separation. Detection limits for these analytes range from 8.3 to 25.4 nM and the linear range in a log-log plot can comprise three orders of magnitude. Finally, the utility of this automated on-line reduction of disulfides-HPLC-CL system has been demonstrated for the reliable determination of thiols and disulfides in human urine and plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.
SEPARATION OF THE MINOR FLAVONOLS FROM FLOS GOSSYPII BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY
Yang, Yi; Zhao, Yongxin; Gu, Dongyu; Ayupbek, Amatjan; Huang, Yun; Dou, Jun; Ito, Yoichiro; Zhang, Tianyou; Aisa, Haji Akber
2010-01-01
An effective high-speed countercurrent chromatography (HSCCC) method was established for further separation and purification of four minor flavonols in addition to five major flavonols which were reported by our previous study from extracts of Flos Gossypii. HSCCC was performed with three two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (7.5:15:6:7, v/v), (2.5:15:2:7, v/v) and (0:1:0:1, v/v). The separation was repeated 3 times, and 3.8 mg of 8-methoxyl-kaempferol-7-O-β-D-rhamnoside (HPLC purity 98.27%), 6.7 mg of astragalin (HPLC purity 94.18%), 3.3 mg of 4′-methoxyl-quercetin-7-O-β-D-glucoside (HPLC purity 94.30%) and 8.2 mg of hyperoside (HPLC purity 93.48%) were separated from 150 mg of the crude sample. The chemical structures of the flavonols were confirmed by MS, 1H NMR and 13C NMR. Meanwhile, the results indicated that the target compound with smaller K value (<0.5) can be separated by increasing column length of HSCCC. And four separation rules of flavonols according to the present study and references were summarized, which can be used as a useful guide for separation of flavonols by HSCCC. PMID:21494318
Wang, Jin Zhao; Zeng, Su; Hu, Gong Yun; Wang, Dan Hua
2009-04-10
SSS-Octahydroindole-2-carboxylic acid (SSS-Oic) is a key intermediate used in the synthesis of some angiotensin-converting enzyme (ACE) inhibitors. The separation of diastereoisomers and enantiomers of Oic was performed using a pre-column derivatization chiral HPLC method. Phenyl isothiocyanate (PITC) was used as the derivatization reagent. Three PITC derivatives of Oic stereoisomers were separated on an Ultron ES-OVM chiral column (150 mm x 4.6 mm, 5 microm). Derivatization conditions such as reaction temperature, reaction time and derivatization reagent concentration were investigated. The chromatographic conditions for separation of the three PITC-Oic derivatives were optimized. The method was successfully applied in the diastereoisomeric and enantiomeric purity test of SSS-Oic.
Kanazawa, Hideko; Tsubayashi, Akane; Nagata, Yoshiko; Matsushima, Yoshikazu; Mori, Chiharu; Kizu, Junko; Higaki, Megumu
2002-03-01
The chiral separation of loxoprofen was achieved on a chiral column with UV and circular dichroism (CD) detection. The good resolution of four loxoprofen stereoisomers was obtained. The column used for the chiral separation was Chiralcel OJ column (250 x 4.6 mm) using hexane-2-propanol-trifluoroacetic acid (95:5:0.1), as an eluent. The flow-rate was 1.0 ml/min and the detection was at 225 nm. In addition, CD and UV spectra were obtained by stopped flow scanning. The method allows the determination of the stereoisomers of loxoprofen in human plasma after the administration of therapeutic dose of the racemic drug, thus HPLC with CD detector is useful for the stereospecific determination of loxoprofen products in biological samples.
Lee, Kang Choon; Chun, Young Goo; Kim, Insoo; Shin, Beom Soo; Park, Eun-Seok; Yoo, Sun Dong; Youn, Yu Seok
2009-07-15
A simple, specific and sensitive derivatization with monobromobimane (mBrB) and the corresponding HPLC-fluorescence quantitation method for the analysis of bucillamine in human plasma was developed and validated. The analytical procedure involves a simple protein precipitation, pre-column fluorescence derivatization, and separation by reversed-phase high performance liquid chromatography (RP-HPLC). The calibration curve showed good linearity over a wide concentration range (50 ng/mL to 10 microg/mL) in human plasma (r(2)=0.9998). The lower limit of quantitation (LLOQ) was 50 ng/mL. The average precision and accuracy at LLOQ were within 6.3% and 107.6%, respectively. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (300 mg) of bucillamine to 20 healthy Korean volunteers.
Nidiry, Eugene Sebastian J; Ganeshan, Girija; Lokesha, Ankanahalli N
2011-12-01
Bioassay monitored HPLC assisted isolation and purification of the chief antifungal fraction of the leaves of Ipomoea carnea subsp. fistulosa (Convulvulaceae) were achieved using Colletotrichum gloeosporioides and Cladosporium cucumerinum as test organisms. The activity of the purified fraction was further confirmed by the dose dependent inhibition of the spore germination of Alternaria alternata and A. porri. The active fraction was identified as a mixture of (E)-octadecyl p-coumarate and (Z)-octadecyl p-coumarate. The two isomers were detected on an HPLC column with substantially different retention times, but once eluted from the column, one form was partly converted to the other in daylight. Conclusive evidence for the structures and their isomerization were obtained from the HPLC behavior, IR, UV, HRESIMS, CIMS and and NMR spectral data. Important 1H NMR and 13C NMR signals could be separately assigned for the isomers using 2D NMR techniques.
Fingerprint of Hedyotis diffusa Willd. by HPLC-MS.
Yang, Ting; Yang, Yi-Hua; Yang, Ju-Yun; Chen, Ben-Mei; Duan, Ju-Ping; Yu, Shu-Yi; Ouyang, Hong-Tao; Cheng, Jun-Ping; Chen, Yu-Xiang
2008-01-01
A HPLC-MS fingerprint method has been developed based on the consistent chromatographic features of the major chemical constituents among 10 batches of Hedyotis diffusa Willd. Chromatographic separation was conducted on a Hypersil-Keystone Hypurity C(18) column using methanol:water:acetic acid as the mobile phase. Major compounds, including oleanolic acid, ursolic acid and ferulic acid, were analysed by HPLC-MS. Their analysis was ascertained by comparison with data derived from the standard compounds. The HPLC-MS fingerprint was successfully applied to analyse and differentiate samples from different geographical origins, or processing methods. H. diffusa was well distinguished from Hedyotis chrysotricha by HPLC-MS. Therefore the establishment of fingerprint of H. diffusa is critical in assessing and controlling its overall quality.
Singh, Manisha; Bhushan, Ravi
2016-11-01
Separation of racemic mixture of (RS)-bupropion, (RS)-baclofen and (RS)-etodolac, commonly marketed racemic drugs, has been achieved by modifying the conventional ligand exchange approach. The Cu(II) complexes were first prepared with a few l-amino acids, namely, l-proline, l-histidine, l-phenylalanine and l-tryptophan, and to these was introduced a mixture of the enantiomer pair of (RS)-bupropion, or (RS)-baclofen or (RS)-etodolac. As a result, formation of a pair of diastereomeric complexes occurred by 'chiral ligand exchange' via the competition between the chelating l-amino acid and each of the two enantiomers from a given pair. The diastereomeric mixture formed in the pre-column process was loaded onto HPLC column. Thus, both the phases during chromatographic separation process were achiral (i.e. neither the stationary phase had any chiral structural feature of its own nor did the mobile phase have any chiral additive). Separation of diastereomers was successful using a C 18 column and a binary mixture of MeCN and TEAP buffer of pH 4.0 (60:40, v/v) as mobile phase at a flow rate of 1 mL/min and UV detection at 230 nm for (RS)-Bup, 220 nm for (RS)-Bac and 223 nm for (RS)-Etd. Baseline separation of the two enantiomers was obtained with a resolution of 6.63 in <15 min. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Moreau, Robert A; Kohout, Karen; Singh, Vijay
2002-12-01
Previous attempts at separating nonpolar lipid esters (including wax esters, sterol esters, and methyl esters) have achieved only limited success. Among the several normal-phase methods tested, a single recent report of a method employing an alumina column at 30 degrees C with a binary gradient system was the most promising. In the current study, modification of the alumina method by increasing the column temperature to 75 degrees C improved the separation of standards of wax esters and sterol esters. Elevated column temperature also enhanced the separation of FAME with differing degrees of unsaturation. Evidence was also presented to indicate that the method similarly separated phytosterol esters, based on their levels of unsaturation. With the increased interest in phytosterol- and phytostanol-ester enriched functional foods, this method should provide a technique to characterize and compare these products.
Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang
2011-04-01
Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Determination of four alkaloids in Corydalis decumbens by HPLC].
Shen, Yan; Han, Chao; Xia, Biqi; Zhou, Yongfang; Liu, Cuiping; Liu, Aili
2011-08-01
To establish a quantitative HPLC method for determination of protopine, palmatine hydrochloride, bicuculline and tetrahydropalmatine, in Corydalis decumbens. The separation was performed on a ZORBAX Eclipse XDB-C18 column (4.6 mm x 150 mm, 5 microm) at a flow rate of 1.0 mL x min(-1) using mixtures of two solvents [A(20 mmol x L(-1) ammonium acetate)-B(acetonitrile)]: with a gradient elution. The column oven temperature was 30 degrees C and the detection wavelength was set at 280 nm. The 4 alkaloids were well separated by this HPLC method. Linearifies of protopine, palmatine hydrochloride, bicuculline and tetrahydropalmatine were good in the ranges of 1.44-46.0 (r = 0.999 4), 1.2640.2 (r = 0.999 8), 1.37-44.0 (r = 0.999 9), and 1.3643.6 mg x L(-1) (r = 0.999 9), respectively. The average recoveries were 98.2% with RSD 2.7% for protopine, 101.9% with RSD 2.5% for palmatine hydrochloride, 102.8% with RSD 3.5% for tetrahydropalmatine, and 98.8% with RSD 3.1% for tetrahydropalmatine. This method is proved to be convenient, reliable and accurate., and it can be used for quality control of C. decumbens.
Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography.
Ruprecht, Benjamin; Koch, Heiner; Domasinska, Petra; Frejno, Martin; Kuster, Bernhard; Lemeer, Simone
2017-01-01
Phosphorylation is among the most important post-translational modifications of proteins and has numerous regulatory functions across all domains of life. However, phosphorylation is often substoichiometric, requiring selective and sensitive methods to enrich phosphorylated peptides from complex cellular digests. Various methods have been devised for this purpose and we have recently described a Fe-IMAC HPLC column chromatography setup which is capable of comprehensive, reproducible, and selective enrichment of phosphopeptides out of complex peptide mixtures. In contrast to other formats such as StageTips or batch incubations using TiO 2 or Ti-IMAC beads, Fe-IMAC HPLC columns do not suffer from issues regarding incomplete phosphopeptide binding or elution and enrichment efficiency scales linearly with the amount of starting material. Here, we provide a step-by-step protocol for the entire phosphopeptide enrichment procedure including sample preparation (lysis, digestion, desalting), Fe-IMAC column chromatography (column setup, operation, charging), measurement by LC-MS/MS (nHPLC gradient, MS parameters) and data analysis (MaxQuant). To increase throughput, we have optimized several key steps such as the gradient time of the Fe-IMAC separation (15 min per enrichment), the number of consecutive enrichments possible between two chargings (>20) and the column recharging itself (<1 h). We show that the application of this protocol enables the selective (>90 %) identification of more than 10,000 unique phosphopeptides from 1 mg of HeLa digest within 2 h of measurement time (Q Exactive Plus).
D'Ambrosio, Michele
2013-06-15
γ-Oryzanol is an important phytochemical used in pharmaceutical, alimentary and cosmetic preparations. The present article, for the first time, discloses the performances of NP-HPLC in separating γ-oryzanol components and develops a validated method for its routine quantification. The analysis is performed on a cyanopropyl bonded column using the hexane/MTBE gradient elution and UV detection at 325 nm. The method allows: the separation of steryl ferulate, p-coumarate and caffeate esters, the separation of cis- from trans-ferulate isomers, the splitting of steroid moieties into saturated and unsaturated at the side chain. The optimised method provides excellent linear response (R(2)=0.99997), high precision (RSD<1.0%) and satisfactory accuracy (R(∗)=70-86%). In conclusion, the established method presents the details of the procedure and the experimental conditions in order to achieve the required precision and instrumental accuracy. The method is fast and sensitive and it could be a suitable tool for quality assurance and determination of origin. Copyright © 2012 Elsevier Ltd. All rights reserved.
Simultaneous Speciation of Arsenic, Selenium, and Chromium by HPLC-ICP-MS
Wolf, Ruth E.; Morman, Suzette A.; Morrison, Jean M.; Lamothe, Paul J.
2008-01-01
An adaptation of an analytical method developed for chromium speciation has been utilized for the simultaneous determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) species using high performance liquid chromatography (HPLC) separation with ICP-MS detection. Reduction of interferences for the determination of As, Se, and Cr by ICP-MS is a major consideration for this method. Toward this end, a Dynamic Reaction Cell (DRC) ICP-MS system was used to detect the species eluted from the chromatographic column. A variety of reaction cell gases and conditions may be utilized, and the advantages and limitations of the gases tested to date will be presented and discussed. The separation and detection of the As, Se, and Cr species of interest can be achieved using the same chromatographic conditions in less than 2 minutes by complexing the Cr(III) with EDTA prior to injection on the HPLC column. Practical aspects of simultaneous speciation analysis will be presented and discussed, including issues with HPLC sample vial contamination, standard and sample contamination, species stability, and considerations regarding sample collection and preservation methods. The results of testing to determine the method's robustness to common concomitant element and anion effects will also be discussed. Finally, results will be presented using the method for the analysis of a variety of environmental and geological samples including waters, soil leachates and simulated bio-fluid leachates.
High-speed and high-resolution UPLC separation at zero degrees Celsius
Wales, Thomas E.; Fadgen, Keith E.; Gerhardt, Geoff C.; Engen, John R.
2008-01-01
The conformational properties of proteins can be probed with hydrogen/deuterium exchange mass spectrometry (HXMS). In order to maintain the deuterium label during LC/MS analyses, chromatographic separation must be done rapidly (usually in under 8–10 minutes) and at zero degrees Celsius. Traditional RP-HPLC with ~3 micron particles has shown generally poor chromatographic performance under these conditions and thereby has been prohibitive for HXMS analyses of larger proteins and many protein complexes. Ultra performance liquid chromatography (UPLC) employs particles smaller than 2 microns in diameter to achieve superior resolution, speed, and sensitivity as compared to HPLC. UPLC has previously been shown to be compatible with the fast separation and low temperature requirements of HXMS. Here we present construction and validation of a custom UPLC system for HXMS. The system is based on the Waters nanoACQUITY platform and contains a Peltier-cooled module that houses the injection and switching valves, online pepsin digestion column, and C-18 analytical separation column. Single proteins in excess of 95 kDa and a four-protein mixture in excess of 250 kDa have been used to validate the performance of this new system. Near baseline resolution was achieved in 6 minute separations at 0 °C and displayed a median chromatographic peak width of ~2.7 sec at half height. Deuterium recovery was similar to that obtained using a conventional HPLC and icebath. This new system represents a significant advancement in HXMS technology that is expected to make the technique more accessible and mainstream in the near future. PMID:18672890
Zhang, Hong; Chen, Si; Lu, Yanbin; Dai, Zhiyuan
2010-07-01
A simple and effective multi-residue analysis method is presented for the extraction and determination of eleven quinolones (pipemidic acid, enoxacin, norfloxacin, ciprofloxacin, lomefloxacin, enrofloxacin, gatifloxacin, difloxacin, oxolinic acid, nalidixic acid and flumequine) in fish tissues. In this study, multi-residue separations on four columns packed with 5 microm or sub-2 microm particles were simultaneously developed for the purpose of comparison. Various gradients were optimized and best resolutions were achieved on each column. A short and sub-2 microm particle-sized HPLC column was chosen for its advantages in analysis time and column performance. Additionally, considering the matrix effect of the complex crude fish tissue, an effective extraction protocol was also established for sample pre-treatment procedure. Good recoveries (71-98%) were obtained from samples fortified with a mix of eleven quinolones at three levels, with satisfactory relative standard deviations and limits of detection. As a result, the sub-2 microm HPLC column and proposed analytical procedures have been evaluated and applied to the analysis of different fish tissues. Detectable residues were observed in 8 of 30 samples, at concentrations ranging from 4.74 to 23.27 microg/kg.
Kuhlmann, O; Stoldt, G; Struck, H G; Krauss, G J
1998-09-01
A sensitive and selective bioanalytical method for simultaneous determination of diclofenac and oxybuprocaine in human aqueous humor using reversed-phase HPLC and electrochemical detection is described. Chromatographic separation was achieved by using a Regis SPS 100 RP-8 column (5 microns; 150 x 4.6 mm I.D.). This support is coated with a hydrophilic polyoxyethylenepolymer. It allows protein-containing samples to be injected directly onto the column. The electrochemical detector permit a detection limit of 500 pg diclofenac per ml (daily relative standard deviation 6.3%) and 50 ng oxybuprocaine per ml (daily R.S.D. 2.6%), respectively. Results of administered and measured drug-concentrations in time dependent decrease are presented.
[Determination of sennosides and degraded products in the process of sennoside metabolism by HPLC].
Sun, Yan; Li, Xuetuo; Yu, Xingju
2004-01-01
A method for the separation and determination of sennosides A and B and the main composition (sennidins A and B) in degraded products of sennosides by linear gradient high performance liquid chromatography has been developed. Separation conditions were as follows: column, a Spherisorb C18 column (250 mm x 4.6 mm i.d., 10 microm); column temperature, 40 degrees C; detection wavelength, 360 nm; mobile phase A, 1.25% acetic acid aqueous solution; mobile phase B, methanol; linear gradient, 100% A --> (20 min) 100% B. The method is effective, quick, accurate and reproducible. The satisfactory results show that this new method has certain practical values as an approach of real-time analysis in the process of sennoside metabolism.
Avula, Bharathi; Wang, Yan-Hong; Smillie, Troy J; Mabusela, Wilfred; Vincent, Leszek; Weitz, Frans; Khan, Ikhlas A
2009-01-01
A simple and specific analytical method for the quantitative determination of flavonoids from the aerial parts of the Artemisia afra plant samples was developed. By column high-performance liquid chromatography (HPLC) with UV absorption and mass spectrometry (MS) detection, separation was achieved on a reversed-phase octadecylsilyl (C18) column with water, methanol, and acetonitrile, all containing 0.1% acetic acid, as the mobile phase. These methods were used to analyze various species of Artemisia plant samples. The wavelength used for quantification of flavonoids with the diode array detector was 335 nm. The limits of detection (LOD) by HPLC/MS were found to be 7.5, 7.5, 10, 2.0, and 2.0 ng/mL; and by LC-UV the LODs were 500, 500, 500, 300, and 300 ng/mL for apigenin, chrysoeriol, tamarixetin, acacetin, and genkwanin, respectively. The HPLC/MS method was found to be 50-150 times more sensitive than the HPLC-UV method. HPLC/MS coupled with an electrospray ionization interface is described for the identification and quantification of flavonoids in various plant samples. This method involved the use of the [M+H]+ ions of the compounds at mass-to-charge ratio of 1.0606, 301.0712, 317.0661, 285.0763, and 285.0763 (calculated mass), respectively, in the positive ion mode with extractive ion monitoring.
Liu, Hongbin; Jeong, Justin; Kao, Yung-Hsiang; Zhang, Yonghua Taylor
2015-05-10
RP-HPLC has been demonstrated as a powerful tool to study antibody free thiol and disulfide variants. Recently, the introduction of UHPLC columns with wide pore size (300Å) and small particle size (1.7μm) offered the opportunity to further improve the separation of such variants. This paper describes a systematic evaluation of stationary phases, operating parameters, and mobile phases for a UHPLC based method to separate free thiol variants of a recombinant monoclonal antibody (referred as mAb A), targeting high resolution, high throughput and improved recovery. Among the four different stationary phases evaluated, UHPLC diphenyl columns were found to provide the best separation. Using an optimized UHPLC method, free thiol variants of mAb A were separated in 5min. Importantly, the UHPLC method revealed minor variants that had coeluted in an HPLC based method, and the UHPLC method is also applicable as a platform method for characterization of other mAbs as well. Furthermore, an on-line UHPLC-MS method was developed to characterize the separated variants, and this method can streamline the characterization of fully assembled monoclonal and bispecific therapeutic antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.
Mc Fadden, Kim; Gillespie, John; Carney, Brian; O'Driscoll, Daniel
2006-07-07
A rapid and selective HPLC method using monolithic columns was developed for the separation and quantification of the principal amphetamines in ecstasy tablets. Three monolithic (Chromolith RP18e) columns of different lengths (25, 50 and 100 mm) were assessed. Validation studies including linearity, selectivity, precision, accuracy and limit of detection and quantification were carried out using the Chromolith SpeedROD, RP-18e, 50 mm x 4.6 mm column. Column backpressure and van Deemter plots demonstrated that monolithic columns provide higher efficiency at higher flow rates when compared to particulate columns without the loss of peak resolution. Application of the monolithic column to a large number of ecstasy tablets seized in Ireland ensured its suitability for the routine analysis of ecstasy tablets.
High-pressure liquid chromatography with direct injection of gas sample.
Astanin, Anton I; Baram, Grigory I
2017-06-09
The conventional method of using liquid chromatography to determine the composition of a gaseous mixture entails dissolving vapors in a suitable solvent, then obtaining a chromatograph of the resulting solution. We studied the direct introduction of a gaseous sample into a C18 reversed-phase column, followed by separation of the components by HPLC with UV detection. Since the chromatography was performed at high pressure, vapors readily dissolved in the eluent and the substances separated in the column as effectively as in liquid samples. Samples were injected into the column in two ways: a) through the valve without a flow stop; b) after stopping the flow and relieving all pressure. We showed that an injectable gas volume could reach 70% of column dead volume. When an injected gaseous sample volume was less than 10% of the column dead volume, the resulting peaks were symmetrical and the column efficiency was high. Copyright © 2017 Elsevier B.V. All rights reserved.
Xie, Rui; Wen, Jun; Wei, Hua; Fan, Guorong; Zhang, Dabing
2010-05-01
An automated system using on-line solid-phase extraction and HPLC with UV detection was developed for the determination of faropenem in human plasma and urine. Analytical process was performed isocratically with two reversed-phase columns connected by a switching valve. After simple pretreatment for plasma and urine with acetonitrile, a volume of 100microl upper layer of the plasma or urine samples was injected for on-line SPE column switching HPLC-UV analysis. The analytes were retained on the self-made trap column (Lichrospher C(18), 4.6mmx37mm, 25microm) with the loading solvent (20mM NaH(2)PO(4) adjusted pH 3.5) at flow rate of 2mlmin(-1), and most matrix materials were removed from the column to waste. After 0.5min washing, the valve was switched to another position so that the target analytes could be eluted from trap column to analytical column in the back-flush mode by the mobile phase (acetonitrile-20mM NaH(2)PO(4) adjusted pH 3.5, 16:84, v/v) at flow rate of 1.5mlmin(-1), and then separated on the analytical column (Ultimate XB-C(18), 4.6mmx50mm, 5microm).The complete cycle of the on-line SPE preconcentration purification and HPLC separation of the analytes was 5min. Calibration curves with good linearities (r=0.9994 for plasma sample and r=0.9988 for urine sample) were obtained in the range 0.02-5microgml(-1) in plasma and 0.05-10microg ml(-1) in urine for faropenem. The optimized method showed good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. The method was successfully utilized to quantify faropenem in human plasma and urine to support the clinical pharmacokinetic studies. Copyright 2009 Elsevier B.V. All rights reserved.
Krokhin, Oleg V; Spicer, Vic
2016-12-01
The emergence of data-independent quantitative LC-MS/MS analysis protocols further highlights the importance of high-quality reproducible chromatographic procedures. Knowing, controlling and being able to predict the effect of multiple factors that alter peptide RP-HPLC separation selectivity is critical for successful data collection for the construction of ion libraries. Proteomic researchers have often regarded RP-HPLC as a "black box", while vast amount of research on peptide separation is readily available. In addition to obvious parameters, such as the type of ion-pairing modifier, stationary phase and column temperature, we describe the "mysterious" effects of gradient slope, column size and flow rate on peptide separation selectivity. Retention time variations due to these parameters are governed by the linear solvent strength (LSS) theory on a peptide level by the value of its slope S in the basic LSS equation-a parameter that can be accurately predicted. Thus, the application of shallower gradients, higher flow rates, or smaller columns will each increases the relative retention of peptides with higher S-values (long species with multiple positively charged groups). Simultaneous changes to these parameters that each drive shifts in separation selectivity in the same direction should be avoided. The unification of terminology represents another pressing issue in this field of applied proteomics that should be addressed to facilitate further progress. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Separation methods applicable to urinary creatine and creatinine.
Smith-Palmer, Truis
2002-12-05
Urinary creatinine has been analyzed for many years as an indicator of glomerular filtration rate. More recently, interest in studying the uptake of creatine as a result of creatine supplementation, a practice increasingly common among bodybuilders and athletes, has lead to a need to measure urinary creatine concentrations. Creatine levels are of the same order of magnitude as creatinine levels when subjects have recently ingested creatine, while somewhat elevated urinary creatine concentrations in non-supplementing subjects can be an indication of a degenerative disease of the muscle. Urinary creatine and creatinine can be analyzed by HPLC using a variety of columns. Detection methods include absorption, fluorescence after post-column derivatization, and mass spectrometry, and some methods have been automated. Capillary zone electrophoresis and micellar electrokinetic capillary chromatography have also been used to analyze urinary creatine and creatinine. Creatine and creatinine have also been analyzed in serum and tissue using HPLC and CE, and many of these separations could also be applicable to urinary analysis.
[Determination of aristolochic acid A in Radix Aristolociae and Herba Asari by RP-HPLC].
Jiang, Xu; Wang, Zhi-min; You, Li-shuan; Dai, Li-ping; Ding, Guang-zhi
2004-05-01
To develop a HPLC method to determine the contents of aristolochic A in aristolochia debilis and Asarun spp.. Methanol-water-formic acid extracts were separated on an Alltech C18 column with methanol-water-acetic acid (68:32:1) as mobile phase. The flow rate was 1.0 mL x min(-1). UV detection wavelength was 390 nm. Column temperature was 35 degrees C. Aristolochic acid A was separated well. The relationship of injection amounts and peak areas was linear (r = 0.9999) the range of 0.12-1.89 microg x g(-1) and the recovery rate was 101.8% (n = 5). 11 samples of aristolochia debilis which bought from different areas in China were determined, and the contents of aristolochic acid A varied from 0.9 to 2 mg x g(-1). The difference of the contents in Asarum spp. was obvious. The highest is 0.35, and aristolochic acid A couldn't be detected in one sample.
Krull, I S; Sebag, A; Stevenson, R
2000-07-28
Separation of biopolymers is an obvious application of capillary electrochromatography (CEC) technology, since speed and resolution should increase significantly over high-performance liquid chromatography (HPLC). All too often, HPLC chromatograms of polymers show poorly resolved envelopes of overlapping peaks from oligomers. The practical limitation of column length and pressure drop has hindered development of high resolution separations of many polymers in HPLC. However, this generally applies only to packed beds of small particles, and not to continuous (or monolithic) beds, as introduced by Hjerten et al. [S. Hjerten, Ind. Eng. Chem. Res. 38 (1999) 1205; S. Hjerten, C. Ericson, Y.-M. Li, R. Zhang, Biomed. Chromatogr. 12 (1998) 120; C. Ericson, S. Hjerten, Anal. Chem. 71 (1999) 1621; J.-L. Liao, N. Chen, C. Ericson, S. Hjerten, Anal. Chem. 68 (1996) 3468; S. Hjerten, A. Vegvari, T. Srichaiyo, H.-X. Zhang, C. Ericson, D. Eaker, J. Capillary. Elec. 5 (1998) 13; C. Ericson, J.-L. Liao, K. Nakazato, S. Hjerten, J. Chromatogr. A 767 (1997) 33; S. Hjerten, D. Eaker, K. Elenbring, C. Ericson, K. Kubo, J.-L. Liao, C.-M. Zeng, P.-A. Lidstrom, C. Lindh, A. Palm, T. Srichiayo, L. Valtcheva, R. Zhang, Jpn. J. Electroph. 39 (1995) 1]. Throughout this review we will refer to such packings as monolithic or continuous beds, but they are identical type packings, formed by the in situ polymerization in the capillary or column. CEC capillaries can be much longer, and contain smaller particles than is practical for HPLC. This improves resolution significantly. CEC is able to capitalize on existing mobile phase technology developed over 30 years to improve separations. The requirement that the mobile phase simultaneously promote the separation and mobile phase mobility needs to be considered. In RPLC, this dual role is not much of a problem. It may be much more important in other modes, particularly ion-exchange (IEC). As the field develops, it is becoming clear that CEC is not just a simple extension of HPLC. Instruments, column technology and operating optima are clearly different than HPLC. CEC will develop into its own unique field. Open tubular HPLC is almost precluded by the high pressures required for forcing liquids through 10 microm or smaller capillaries. Electroosmotic pumping (EOF) avoids the pressure constraints and provides better flow profiles. Compared to HPCE, the ability to interact with the stationary phase may enable separations that would be difficult with electrophoresis alone. Since the mobile phase can be less complex than micellar electrokinetic chromatography (MEKC), CEC also avoids the problem of high background signals from the micelle forming compounds. Thus CEC-MS (mass spectrometry) is expected to be even more powerful than HPCE-MS. The fortuitous, simultaneous development of matrix assisted laser desorption-time of flight MS (MALDI-TOF-MS) technology will enable extension of the mass range to above 100 000 Da. Lack of familiarity is the perhaps the largest liability of CEC compared to other techniques. This paper critically compares the state-of-the-art of CEC with HPLC and HPCE, with a particular emphasis on separation of biopolymers. The goal is to help the reader overcome the fear of the unknown, in this case, CEC.
Gong, Yi; Pegg, Ronald B
2017-07-19
U.S. pecans and Chinese hickory nuts possess a wide array of phenolic constituents with potential health benefits including phenolic acids and proanthocyanidins. Only limited information is available, however, on their compositions. The present study optimized the separation performance and characterized the low-molecular-weight phenolic fractions of these nuts with C18 and pentafluorophenyl (PFP) fused-core LC columns by employing a kinetic approach. Although both types of reversed-phase columns demonstrated similar performance in general, the PFP column furnished greater plate numbers and superior peak shapes for the low-molecular-weight fractions as well as overall separations of ellagic acid derivatives. The high-molecular-weight fraction of pecans, analyzed by a 3-μm HILIC column, possessed more proanthocyanidins than the Chinese hickory nuts with dimers and trimers (31.4 and 18.34 mg/g crude extract, respectively) being present at the greatest levels. Chinese hickory nuts had lower proanthocyanidin content but possessed tetramers and pentamers at 4.46 and 4.01 mg/g crude extract, respectively.
Blind column selection protocol for two-dimensional high performance liquid chromatography.
Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G
2016-07-01
The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material. Copyright © 2016 Elsevier B.V. All rights reserved.
Lesellier, Eric; Tchapla, Alain
2005-12-23
This paper describes a new test designed in subcritical fluid chromatography (SFC) to compare the commercial C18 stationary phase properties. This test provides, from a single analysis of carotenoid pigments, the absolute hydrophobicity, the silanol activity and the steric separation factor of the ODS stationary phases. Both the choice of the analytical conditions and the validation of the information obtained from the chromatographic measurements are detailed. Correlations of the carotenoid test results with results obtained from other tests (Tanaka, Engelhard, Sander and Wise) performed both in SFC and HPLC are discussed. Two separation factors, calculated from the retention of carotenoid pigments used as probe, allowed to draw a first classification diagram. Columns, which present identical chromatographic behaviors are located in the same area on this diagram. This location can be related to the stationary phase properties: endcapping treatments, bonding density, linkage functionality, specific area or silica pore diameter. From the first classification, eight groups of columns are distinguished. One group of polymer coated silica, three groups of polymeric octadecyl phases, depending on the pore size and the endcapping treatment, and four groups of monomeric stationary phases. An additional classification of the four monomeric groups allows the comparison of these stationary phases inside each group by using the total hydrophobicity. One hundred and twenty-nine columns were analysed by this simple and rapid test, which allows a comparison of columns with the aim of helping along their choice in HPLC.
Patel, Rashmin B; Patel, Nilay M; Patel, Mrunali R; Solanki, Ajay B
2017-03-01
The aim of this work was to develop and optimize a robust HPLC method for the separation and quantitation of ambroxol hydrochloride and roxithromycin utilizing Design of Experiment (DoE) approach. The Plackett-Burman design was used to assess the impact of independent variables (concentration of organic phase, mobile phase pH, flow rate and column temperature) on peak resolution, USP tailing and number of plates. A central composite design was utilized to evaluate the main, interaction, and quadratic effects of independent variables on the selected dependent variables. The optimized HPLC method was validated based on ICH Q2R1 guideline and was used to separate and quantify ambroxol hydrochloride and roxithromycin in tablet formulations. The findings showed that DoE approach could be effectively applied to optimize a robust HPLC method for quantification of ambroxol hydrochloride and roxithromycin in tablet formulations. Statistical comparison between results of proposed and reported HPLC method revealed no significant difference; indicating the ability of proposed HPLC method for analysis of ambroxol hydrochloride and roxithromycin in pharmaceutical formulations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Luo, Zuliang; Kong, Weijun; Qiu, Feng; Yang, Meihua; Li, Qian; Wei, Riwei; Yang, Xiaoli; Qin, Jieping
2013-02-01
A simple and sensitive HPLC coupled with photodiode array (HPLC-PDA) method was developed for simultaneous determination of seven lignans in Justicia procumbens using relative response factors (RRFs). The chromatographic separation was performed on a Shiseido Capcell Pak C(18) column (250 × 4.6 mm id, 5 μm), a gradient elution of acetonitrile/water, and a photodiode array detector. The column temperature was maintained at 35°C and the detection wavelength was set at 256 nm. Chinensinaphthol methyl ether was selected as the reference compound for calculating the relative response factors of the lignans. It has shown that the RRFs for lignans are quite similar at 256 nm of detection under different analytical conditions (different columns and HPLC instruments). Using RRFs, not every lignan is needed as a reference standard, making the method ideal for rapid, routine analysis, especially for those laboratories where lignans standards are not readily available. An economic and practicable HPLC method using RRFs was established for the determination of seven lignans in J. procumbens. This method not only can determine multiple indexes in traditional Chinese medicines (TCMs) simultaneously, but also resolve the problem of lacking of chemical standards. It will be a good quality evaluation method and pattern for TCMs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)
1993-01-01
The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.
Shan, Xiao-Lin; Liu, Xiao-Ting; Gong, Can; Xu, Xu
2018-01-01
The complexity of triacylglycerols (TAGs) in edible oils is largely due to the many similar unsaturated TAG compounds, which makes profiling TAGs difficult. In this study, precolumn derivatization with bromine (Br 2 ) was used to improve the separation and detection sensitivity of TAGs in edible oils by RP-HPLC. Oil samples dissolved in n-hexane and TAGs were derived by reaction with a Br2-CCl 4 (1:1, v/v) solution for 3 h at room temperature. The derivate product solution was stable and was best separated and detected by RP-HPLC using a C18 column, with a mobile phase of methanol-n-hexane (91.5:8.5, v/v) at 25°C. A detection wavelength of 230 nm was used. The results showed that the approach enabled the separation and detection of more similar TAGs by RP-HPLC. The method was applied to profile 20 types of edible oil, and the results presented the differences in the TAG profiles of various edible oils, which may be useful in the identification of edible oils.
Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin.
Jayaprakasha, Guddadarangavvanahally K; Jagan Mohan Rao, Lingamullu; Sakariah, Kunnumpurath K
2002-06-19
Commercially available curcumin, a bright orange-yellow color pigment of turmeric, consists of a mixture of three curcuminoids, namely, curcumin, demethoxycurcumin, and bisdemethoxycurcumin. These were isolated by column chromatography and identified by spectroscopic studies. The purity of the curcuminoids was analyzed by an improved HPLC method. HPLC separation was performed on a C(18) column using three solvents, methanol, 2% AcOH, and acetonitrile, with detection at 425 nm. Four different commercially available varieties of turmeric, namely, Salem, Erode, Balasore, and local market samples, were analyzed to detect the percentage of these three curcuminoids. The percentages of curcumin, demethoxycurcumin, and bisdemethoxycurcumin as estimated using their calibration curves were found to be 1.06 +/- 0.061 to 5.65 +/- 0.040, 0.83 +/- 0.047 to 3.36 +/- 0.040, and 0.42 +/- 0.036 to 2.16 +/- 0.06, respectively, in four different samples. The total percentages of curcuminoids are 2.34 +/- 0.171 to 9.18 +/- 0.232%.
Separation of anionic oligosaccharides by high-performance liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, E.D.; Baenziger, J.U.
1986-10-01
The authors have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the anionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since themore » latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study they demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (..cap alpha..2,3 vs ..cap alpha..2,6) and/or location of ..cap alpha..2,3- and ..cap alpha..2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties.« less
Determination of fenoterol in human plasma by HPLC with fluorescence detection after derivatization.
Meineke, Ingolf; Steinmetz, Hannelore; Kramer, Skaidrit; Gleiter, Christoph H
2002-06-20
A new method for the determination of fenoterol is described, which uses HPLC separation with fluorescence detection. Dobutamine is employed as an internal standard. The separation was achieved on a short reversed phase column with a mobile phase consisting of water, acetonitrile and methanol. Prior to chromatography both analytes are derivatized with 9-chloroformyl-carbazole. Isolation of the analytes from plasma is carried out by liquid-liquid extraction into 2-butanol after protein precipitation with acetonitrile. The method is capable of estimating fenoterol concentrations in the sub-nanogram per ml range with sufficient accuracy and precision. The determination of fenoterol can now be carried out in the average laboratory without radiolabelled material.
Kapalavavi, B; Marple, R; Gamsky, C; Yang, Y
2012-04-01
In this study, high-temperature liquid chromatographic (HTLC) and subcritical water chromatographic (SBWC) separations of sunscreens contained in skincare creams were achieved at temperatures ranging from 90 to 250°C. The columns employed in this work include a ZirChrom-DiamondBond-C18, a XTerra MS C18 and a XBridge C18 column. The quantity of methanol consumed by the greener HTLC sunscreen methods developed in this project is significantly reduced although the HTLC separation at this stage is not as efficient as that achieved by traditional HPLC. SBWC separation of sunscreens was also achieved on the XTerra MS C18 and the XBridge C18 columns using pure water at 230-250°C. Methanol was eliminated in the SBWC methods developed in this study. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Kumar, Ashwini; Kumar Malik, Ashok; Kumar Tewary, Dhananjay; Singh, Baldev
2008-02-01
A simple and highly sensitive high pressure liquid chromatographic (HPLC-UV) method has been developed for the determination of ofloxacin, lomefloxacin, cinoxacin, and nalidixic acid, in mobile phase citrate buffer (0.001 M) of pH 4.5 prepared in water (X), methanol (Y), and ACN (Z) using gradient at a flow rate of 1.0 mL/min by direct UV absorbance detection at lambda = 280 nm. Separation of analytes was studied on the C-18 and RP-amide columns and best results were observed on the RP-amide column with LODs (3.3 x S/m) 0.89, 0.55, 0.67, and 1.41 ng/mL for ofloxacin, lomefloxacin, cinoxacin, and nalidixic acid, respectively, and better RSD than the C-18 column. The recovery of Fluoroquinolones (FQs) in urine, ground water, hospital wastewater, and chicken muscle using this method is more than 90%. The method was successfully applied to the analysis of ofloxacin, lomefloxacin, cinoxacin, and nalidixic acid in urine, ground water, pharmaceutical dosage forms, hospital wastewater, and chicken muscle.
Fairhurst, Robert E; Chassaing, Christophe; Venn, Richard F; Mayes, Andrew G
2004-12-15
Spherical molecularly imprinted polymers (MIPs) specific to the beta-blocker propranolol have been synthesised using two different approaches and compared to traditional ground monolithic MIPs in HPLC and TFC applications. TFC is a LC technique used for rapid extraction of compounds directly from complex matrices. It can be easily coupled to HPLC and MS for automation of an extraction/analysis procedure. Spherical MIP beads were produced using a suspension polymerisation technique and silica/MIP composite beads by grafting MIP to spherical silica particles using a surface-bound initiator species. Synthesis of both beaded and silica-grafted MIPs was more practical than using the traditional grinding method and yields of spherical particles of the required size between 80 and 100% were routinely achieved. Under HPLC conditions, beaded and ground MIP materials showed a degree of chiral separation for all of the nine beta-blockers tested. The beaded MIP, however, showed much better flow properties and peak shape than the ground material. Silica-grafted MIP showed some separation in five of the drugs and a large improvement in peak shape and analysis times compared with both ground and beaded MIPs. The materials prepared were also used in extraction columns for Turbulent Flow Chromatography (TFC). Although no imprinting effect was observed under typical TFC conditions, beaded polymer materials showed promise for use as TFC extraction columns due to the good flow properties and clean extracts obtained.
Kinetics on cocondensation between phenol and urea through formaldehyde I
Yasunori Yoshida; Bunchiro Tomita; Chung-Yun Hse
1995-01-01
The kinetics of the reactions of methylolphenols and urea were investigated using 2- and 4-hydroxybenzyl alcohols. The high-performance liquid chromatography (HPLC) using a reverse-phase column gave a clear separation between methylolphenols and hydroxybenzylureas. The molar ratios of hydroxybenzylureas to the corresponding methylolphenols in reaction mixtures were...
Kinetics on cocondensation between phenol and urea through formaldehyde I.
Yasunori Yoshida; Bunichiro Tomita; Chung-Yun Hse
1995-01-01
The kinetics of the ractions of methylolphenols and urea were investigated using 2- and 4- hydroxybenzyl alcohols. The high-performance liquid chromatogrpahy (HPLC) using a reverse-phase column gave a clear separation between methylolphenols and hydroxybenzylureas. The molar ratios of hydroxybenzylureas to be corresponding methylolphenols in reaction mixtures were...
Krungkrai, J; Wutipraditkul, N; Prapunwattana, P; Krungkrai, S R; Rochanakij, S
2001-12-15
A novel nonradioactive, microassay method has been developed to determine simultaneously the two enzymatic activities of orotate phosphoribosyltransferase (OPRTase) and orotidine 5'-monophosphate decarboxylase (ODCase), either as a bifunctional protein (uridine 5'-monophosphate synthase, UMPS) or as separate enzymes. Substrates (orotate for OPRTase or orotidine 5'-monophosphate for ODCase) and a product (UMP) of the enzymatic assay were separated by high-performance liquid chromatography (HPLC) using a reversed-phase column and an ion-pairing system; the amount of UMP was quantified by dual-wavelength uv detection at 260 and 278 nm. This HPLC assay can easily detect picomole levels of UMP in enzymatic reactions using low specific activity UMPS of mammalian cell extracts, which is difficult to do with the other nonradioactive assays that have been described. The HPLC assay is suitable for use in protein purification and for kinetic study of these enzymes. (c)2001 Elsevier Science.
Behnoush, Behnam; Sheikhazadi, Ardeshir; Bazmi, Elham; Fattahi, Akbar; Sheikhazadi, Elham; Saberi Anary, Seyed Hossein
2015-04-01
The aim of this study was to compare system efficiency and analysis duration regarding the solvent consumption and system maintenance in high-pressure liquid chromatography (HPLC) and ultra high-pressure liquid chromatography (UHPLC). In a case-control study, standard solutions of 7 benzodiazepines (BZs) and 73 biological samples such as urine, tissue, stomach content, and bile that screened positive for BZs were analyzed by HPLC and UHPLC in laboratory of forensic toxicology during 2012 to 2013. HPLC analysis was performed using a Knauer by 100-5 C-18 column (250 mm × 4.6 mm) and Knauer photodiode array detector (PAD). UHPLC analysis was performed using Knauer PAD detector with cooling autosampler and Eurospher II 100-3 C-18 column (100 mm × 3 mm) and also 2 pumps. The mean retention time, standard deviation, flow rate, and repeatability of analytical results were compared by using 2 methods. Routine runtimes in HPLC and UHPLC took 40 and 15 minutes, respectively. Changes in mobile phase composition of the 2 methods were not required. Flow rate and solvent consumption in UHPLC decreased. Diazepam and flurazepam were detected more frequently in biological samples. In UHPLC, small particle size and short length of column cause effective separation of BZs in a very short time. Reduced flow rate, solvent consumption, and injection volume cause more efficiency and less analysis costs. Thus, in the detection of BZs, UHPLC is an accurate, sensitive, and fast method with less cost of analysis.
Comparison of UHPLC and HPLC in Benzodiazepines Analysis of Postmortem Samples
Behnoush, Behnam; Sheikhazadi, Ardeshir; Bazmi, Elham; Fattahi, Akbar; Sheikhazadi, Elham; Saberi Anary, Seyed Hossein
2015-01-01
Abstract The aim of this study was to compare system efficiency and analysis duration regarding the solvent consumption and system maintenance in high-pressure liquid chromatography (HPLC) and ultra high-pressure liquid chromatography (UHPLC). In a case–control study, standard solutions of 7 benzodiazepines (BZs) and 73 biological samples such as urine, tissue, stomach content, and bile that screened positive for BZs were analyzed by HPLC and UHPLC in laboratory of forensic toxicology during 2012 to 2013. HPLC analysis was performed using a Knauer by 100-5 C-18 column (250 mm × 4.6 mm) and Knauer photodiode array detector (PAD). UHPLC analysis was performed using Knauer PAD detector with cooling autosampler and Eurospher II 100-3 C-18 column (100 mm × 3 mm) and also 2 pumps. The mean retention time, standard deviation, flow rate, and repeatability of analytical results were compared by using 2 methods. Routine runtimes in HPLC and UHPLC took 40 and 15 minutes, respectively. Changes in mobile phase composition of the 2 methods were not required. Flow rate and solvent consumption in UHPLC decreased. Diazepam and flurazepam were detected more frequently in biological samples. In UHPLC, small particle size and short length of column cause effective separation of BZs in a very short time. Reduced flow rate, solvent consumption, and injection volume cause more efficiency and less analysis costs. Thus, in the detection of BZs, UHPLC is an accurate, sensitive, and fast method with less cost of analysis. PMID:25860209
Lacker, T; Strohschein, S; Albert, K
1999-08-27
In this paper the application of on-line HPLC-UV-APCI (atmospheric pressure chemical ionization) mass spectrometry (MS) coupling for the separation and determination of different carotenoids as well as cis/trans isomers of beta-carotene is reported. All HPLC separations were carried out under RP conditions on self-synthesized polymeric C30 phases. The analysis of a carotenoid mixture containing astaxanthin, canthaxanthin, zeaxanthin, echinenone and beta-carotene by HPLC-APCI-MS was achieved by scanning the mass range from m/z 200 to 700. For the characterization of a sample containing cis/trans isomers of beta-carotene as well as their oxidation products, a photodiode-array UV-visible absorbance detector was used in addition between the column and the mass spectrometer for structural elucidation of the geometrical isomers. The detection limit for beta-carotene in positive-ion APCI-MS was determined to be 1 pmol. In addition, an extract of non-polar substances in vegetable juice has been analyzed by HPLC-APCI-MS. The included carotenoids could be identified by their masses and their retention times.
Chiral separation and enantioselective degradation of vinclozolin in soils.
Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng
2014-03-01
Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.
He, Jingren; Santos-Buelga, Celestino; Mateus, Nuno; de Freitas, Victor
2006-11-17
A combination of column chromatography on Toyopearl gel HW-40 (S) and polyamide resin has been developed for the preparative isolation and further determination of pyranoanthocyanins of oligomeric nature formed after reaction between anthocyanins and different flavanols in a complex wine matrix. Polyamide chromatography was found to be exceptionally useful to separate oligomeric pyanoanthocyanins from other classes of wine flavonoids and polymerized pigments into an advanced state of purity for further identification and quantification by HPLC-diode array detector coupled with electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS). Fractionation on Toyopearl gel chromatography allowed the separation of pyranoanthocyanins bearing the same flavanols (catechin, epicatechin and procyanidin dimers) but with different anthocyanin moieties (either acylated or non-acylated in the glucose residue) in order to allow further isolation of individual oligomeric pigments on C18 chromatography. A quantitative procedure for analyzing the major pyranoanthocyanin-flavanol derivatives in different aged wines is proposed for the first time. Results obtained showed good reproducibility and recovery regarding sample pretreatment and quantitative method for all analyzed oligomeric pyranoanthocyanins. The combination of these two chromatographic separations is likely to be applicable to the preparative isolation of other anthocyanin-derived pigments.
Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P
2013-09-01
To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lintelmann, Jutta; Wu, Xiao; Kuhn, Evelyn; Ritter, Sebastian; Schmidt, Claudia; Zimmermann, Ralf
2018-05-01
A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter. Copyright © 2018 John Wiley & Sons, Ltd.
Šatínský, Dalibor; Naibrtová, Linda; Fernández-Ramos, Carolina; Solich, Petr
2015-09-01
A new on-line SPE-HPLC method using fused-core columns for on-line solid phase extraction and large volume sample injection for increasing the sensitivity of detection was developed for the determination of insecticides fenoxycarb and cis-, trans-permethrin in surface waters. The separation was carried out on fused-core column Phenyl-Hexyl (100×4.6 mm), particle size 2.7 µm with mobile phase acetonitrile:water in gradient mode at flow rate 1.0 mL min(-1), column temperature 45°C. Large volume sample injection (1500 µL) to the extraction dimension using short precolumn Ascentis Express RP C-18 (5×4.6 mm); fused-core particle size 2.7 µm allowed effective sample preconcentration and efficient ballast sample matrix removal. The washing mobile phase consisting of a mixture of acetonitrile:water; 30:70, (v/v) was pumped at flow rate of 0.5 mL min(-1) through the extraction precolumn to the waste. Time of the valve switch for transferring the preconcentrated sample zone from the extraction to the separation column was set at 3rd min. Elution of preconcentrated insecticides from the extraction precolumn and separation on the analytical column was performed in gradient mode. Linear gradient elution started from 40% of acetonitrile at time of valve switch from SPE column (3rd min) to 95% of acetonitrile at 7th min. Synthetic dye sudan I was chosen as an internal standard. UV detection at wavelength 225 nm was used and the method reached the limits of detection (LOD) at ng mL(-1) levels for both insecticides. The method showing on-line sample pretreatment and preconcentration with highly sensitive determination of insecticides was applied for monitoring of fenoxycarb and both permethrin isomers in different surface water samples in Czech Republic. The time of whole analysis including on-line extraction, interferences removal, chromatography separation and system equilibration was less than 8 min. Copyright © 2015 Elsevier B.V. All rights reserved.
Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan
2017-09-29
Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M
2010-05-21
Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method. 2010. Published by Elsevier B.V.
Pietta, P; Bruno, A; Mauri, P; Rava, A
1992-02-28
Calendula officinalis and Sambucus nigra flowers were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC) and micellar electrokinetic capillary chromatography (MECC). RP-HPLC was performed on C8 Aquapore RP 300 columns with eluents containing 2-propanol and tetrahydrofuran. MECC was carried out on a 72-cm fused-silica capillary using sodium dodecyl sulphate and sodium borate (pH 8.3) as the running buffer. The results obtained by these techniques are compared.
[Simultaneous determination of eight kinds of conjunct bile acids in human bile by R-HPLC].
Dai, Z; Tan, G; Qian, K; Chen, X
1997-01-01
A method for the simultaneous determination of eight kinds of conjunct bile acids in human bile was developed by HPLC. They were separated on a YWG-C18 (3 microns) column at 30 degrees C, with methanol/water (65/35, V/V, pH3.0) as mobile phase, and detection wavelength at UV 210 nm. The linear ranges were 50-1,000 microns.ml-1, the recoveries were 91.2%-108.6%. The biles of 30 cases with cholelithiasis cholecystolithiasis and 20 cases without gallstone were detected by HPLC. The results showed that the constitution of bile acids was different between patients with cholelithiasis cholecystolithiasis and patients without gallstone.
Higashi, Kyohei; Shibasaki, Mana; Kuni, Kyoshiro; Uemura, Takeshi; Waragai, Masaaki; Uemura, Kenichi; Igarashi, Kazuei; Toida, Toshihiko
2017-09-29
A three column-switching high-performance liquid chromatography (HPLC) using an electrochemical detector (ECD) equipped with a diamond electrode was established to determine 3-hydroxypropylmercapturic acid (3-HPMA) in urine. An extracted urine sample was consecutively fractionated using a strong anion-exchange column (first column) and a C8 column (second column) via a switching valve before application on an Octa Decyl Silyl (ODS) column (third column), followed by ECD analysis. The% recovery of 3-HPMA standard throughout the three-column process and limit of detection (LOD) were 94±1% and 0.1pmol, respectively. A solid phase extraction step is required for the sensitive analysis of 3-HPMA in urine by column-switching HPLC-ECD despite a decreased% recovery (55%) of urine sample spiked with 100pmol of 3-HPMA. To test the utility of our column-switching HPLC-ECD method, 3-HPMA levels of 27 urine samples were determined, and the correlation between HPLC-ECD and LC-Electrospray ionization (ESI)-MS/MS method was examined. As a result, the median values of μmol 3-HPMA/g Creatinine (Cre) in urine obtained by column-switching HPLC-ECD and LC-MS/MS were 2.19±2.12μmol/g Cre and 2.13±3.38μmol/g Cre, respectively, and the calibration curve (y=1.5171x-1.007) exhibited good linearity within a defined range (r 2 =0.907). These results indicate that the combination of column-switching HPLC and ECD is a powerful tool for the specific, reliable detection of 3-HPMA in urine. Copyright © 2017 Elsevier B.V. All rights reserved.
HPLC determination of cefprozil in tablets using monolithic and C18 silica columns.
Can, Nafiz O
2011-08-01
Cefprozil (CPZ) is a second-generation semi-synthetic cephalosporin antibiotic that commonly exists as the mixture of Z and E diastereoisomers, at the ratio of approximately 9:1. A novel reversed-phase HPLC method for the determination of CPZ in tablets was described. The separation of CPZ diastereoisomers and caffeine (internal standard) was carried out by applying the same analytical and instrumental conditions on two stationary phases, which have different surface chemistries. The columns used in the study were monolithic silica Merck Chromolith Performance RP-18e and conventional C18 silica Phenomenex Synergi Hydro RP columns. In total, 10 μL aliquots of samples were injected into the system and eluted using water-acetonitrile (90:10, v/v) solution, which was pumped through the column at a flow rate of 1.0 mL/min. The analyte peaks were detected at 200 nm using diode array detector with high specificity. CPZ diastereoisomers and caffeine were measured within 13 min using the C18 column, whereas <5 min was required for the monolithic one. Validation studies were performed according to official recommendations. Value of a monolithic column for the assay of diastereoisomers in pharmaceutical tablets was evaluated for the first time and found as a powerful alternative to highly efficient C18 columns. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paired-ion chromatography and high performance liquid chromatography of labetalol in feeds.
Townley, E R; Ross, B
1980-11-01
A high performance liquid chromatographic (HPLC) method using reverse phase paired-ion chromatography and ultraviolet detection at 280 nm has been developed to determine labetalol, an alpha and beta adrenoceptor blocking agent, in Purina No. 5001 rodent chow. The method is simple and rapid, and demonstrates a separation technique applicable to other acidic and basic drugs. It requires only extraction of the drug with methanol--water--acetic acid (66 + 33 + 1) and separation of insoluble material by filtration before HPLC. Labetalol, is chromatographically separated from soluble feed components by means of a microBondapak C18 column and methanol--water--acetic acid (66 + 33 + 1) mobile phase, 0.005M with respect to sodium dioctylsulfosuccinate paired-ion reagent. Average recovery is 98.7% with a relative standard deviation of +/- 2.3% for the equipment described.
Extraction and identification of flavonoids from parsley extracts by HPLC analysis
NASA Astrophysics Data System (ADS)
Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.
2012-02-01
Flavonoids are phenolic compounds isolated from a wide variety of plants, and are valuable for their multiple properties, including antioxidant and antimicrobial activities. In the present work, parsley (Petroselinum crispum L.) extracts were obtained by three different extraction techniques: maceration, ultrasonic-assisted and microwave-assisted solvent extractions. The extractions were performed with ethanol-water mixtures in various ratios. From these extracts, flavonoids like the flavones apigenin and luteolin, and the flavonols quercetin and kaempferol were identified using an HPLC Shimadzu apparatus equipped with PDA and MS detectors. The separation method involved a gradient step. The mobile phase consisted of two solvents: acetonitrile and distilled water with 0.1% formic acid. The separation was performed on a RP-C18 column.
We used chromatography modeling software to assist in HPLC method development, with the goal
of enhancing separations through the exclusive use of gradient time and column temperature. We
surveyed nine stationary phases for their utility in pigment purification and natur...
Ohyama, Kaname; Kishikawa, Naoya; Matsuo, Aya; Imazato, Takahiro; Ueki, Yukitaka; Wada, Mitsuhiro; Nakashima, Kenichiro; Kuroda, Naotaka
2014-01-01
A simple and selective HPLC-fluorescence (FL) method with FL probe, 4-[4-(4-dimethylaminophenyl)-5-phenyl-1H-imidazol-2-yl]benzoic acid methyl ester (DAPIM), for simultaneous determination of mercaptalbumin (HMA) and nonmercaptalbumin (HNA1) was developed. After HMA and HNA1 were separated on an ion-exchange column, they were on-line and post-column mixed with DAPIM. The DAPIM-albumin complex produces FL (λex 370nm and λem 510nm); however, DAPIM solution never gives the FL. Based on this mechanism, selective determination of HMA and HNA1 were achieved without any pretreatment and interfering peak. The proposed method was applied to the measurement of HMA and HNA1 in human serum of healthy volunteers and diabetes mellitus patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, D Q; Zhao, J; Li, S P
2014-06-06
Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Yu; Wang, DanDan; Tang, Lan; Wang, Jian
2017-10-25
Eleven unknown allergic impurities in cefodizime, cefmenoxime and cefonicid were separated and characterized by a trap-free two-dimensional high performance size exclusion chromatography (HPSEC) and reversed phase liquid chromatography (RP-HPLC) coupled to high resolution ion trap/time-of-flight mass spectrometry (2D-HPSEC×LC-IT-TOF MS) with positive and negative modes of electrospray ionization method. Separation and characterization the allergic polymerized impurities in β-lactam antibiotics were on the basis of column-switching technique which effectively combined the advantages of HPSEC and the ability of RP-HPLC to identify the special impurities. In the first dimension HPSEC, the column was Xtimate SEC-120 analytical column (7.8mm×30cm, 5μm), and the gradient elution used pH 7.0 buffer-acetonitrile as mobile phase And the second dimension analytical column was ZORBAX SB-C18 (4.6×150mm, 3.5μm) with ammonium formate solution (10mM) and ammonium formate (8mM) in [acetonitrile-water (4:1, v/v)] solution as mobile phase. Structures of eleven unknown impurities were deduced based on the high resolution MS n data with both positive and negative modes, in which nine impurities were polymerized impurities. The forming mechanism of β-lactam antibiotic polymerization in cephalosporins was also studied. The question on incompatibility between non-volatile salt mobile phase and mass spectrometry was solved completely by multidimensional heart-cutting approaches and online demineralization technique, which was worthy of widespread use and application for the advantages of stability and repeatability. Copyright © 2017. Published by Elsevier B.V.
Kośliński, Piotr; Jarzemski, Piotr; Markuszewski, Michał J; Kaliszan, Roman
2014-03-01
Pterins are a class of potential cancer biomarkers. New methods involving hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) high-performance liquid chromatography have been developed for analysis of eight pterin compounds: 6,7-dimethylpterin, pterin, 6-OH-methylpterin, biopterin, isoxanthopterin, neopterin, xanthopterin, and pterin-6-carboxylic acid. The effect of mobile phase composition, buffer type, pH and concentration on retention using HILIC, C8 and C18 RP stationary phases were examined. Separation of pterins on RP and HILIC stationary phase was performed and optimized. Eight pterins were successfully separated on HILIC Luna diol-bonded phases, Aquasil C18 RP column and LiChrospher C8 RP column. Determination and separation of the pterins from urine samples were performed on HILIC Luna and LiChrospher C8 RP columns which were chosen as the most appropriate ones. Finally, LiChrospher C8 RP column with fluorescence detection was selected for further validation of the method. The optimum chromatographic condition was mobile phase methanol (A)/phosphoric buffer pH 7, 10mM (B), isocratic elution 0-15min 5% A flow=0.5ml/min 15-17min. 5% A, flow=0.5-1ml/min the linearity (R(2)>0.997) and retention time repeatability (RSD%<1) were at satisfactory level. The precision of peak areas expressed as RSD in % was between 0.55 and 14. Pterins detection limits varied from 0.041ng/ml to 2.9ng/ml. Finally, HPLC method was used for the analysis of pterins in urine samples with two different oxidation procedures. Concentration levels of pterin compounds in bladder cancer patients and healthy subjects were compared. Copyright © 2013 Elsevier B.V. All rights reserved.
Quantification of allantoin in various Zea mays L. hybrids by RP-HPLC with UV detection.
Maksimović, Z; Malenović, A; Jancić, B; Kovacević, N
2004-07-01
A RP-HPLC method for quantification of allantoin in silk of fifteen maize hybrids (Zea mays L., Poaceae) was described. Following extraction of the plant material with an acetone-water (7:3, VN) mixture, filtration and dilution, the extracts were analyzed without previous chemical derivatization. Separation and quantification were achieved using an Alltech Econosil C18 column under isocratic conditions at 40 degrees C. The mobile phase flow (20% methanol--80% water with 5 mM sodium laurylsulfate added at pH 2.5, adjusted with 85% orthophosphoric acid; pH of water phase was finally adjusted at 6.0 by addition of triethylamine) was maintained at 1.0 mL/min. Column effluent was monitored at 235 nm. This simple procedure afforded efficient separation and quantification of allantoin in plant material, without interference of polyphenols or other plant constituents of medium to high polarity, or similar UV absorption. Our study revealed that the silk of all investigated maize hybrids could be considered relatively rich in allantoin, covering the concentration range between 215 and 289 mg per 100 g of dry plant material.
Uranishi, Hiroaki; Nakamura, Mitsuhiro; Nakamura, Hiroki; Ikeda, Yukari; Otsuka, Mayuko; Kato, Zenichiro; Tsuchiya, Teruo
2011-04-15
A direct-injection HPLC-based method has been developed for determining amounts of micafungin in human plasma using a novel hydrophobic/hydrophilic hybrid ODS column. The method is easy to perform and requires only 10 μL of a filtered plasma sample. The chromatographic separations were carried out with a gradient mode. The fluorescence detection wavelengths of excitation and emission were set at 273 nm and 464 nm, respectively. Retention times for micafungin and IS were 22.4 and 23.7 min, respectively. Micafungin and FR195743 (IS) peaks were completely separated with little tailing, and no interference was observed. The calibration curve of micafungin showed good linearity in the range of 0.5-20.0 μg/mL (r(2)=1.00). The intra-day accuracy ranged from -4.5 to 5.3%. The inter-day accuracy ranged from -9.8 to 1.5%. The precisions were less than 10%. This method is useful for the determination of micafungin in human plasma. Copyright © 2011 Elsevier B.V. All rights reserved.
Ma, Yilong; Shang, Yafang; Zhu, Danye; Wang, Caihong; Zhong, Zhifeng; Xu, Ziyang
2016-05-01
5-O-Galloylquinic acid from green tea and other plants is attracting increasing attention for its antioxidant and antileishmanial bioactivities. It is always isolated using a silica column, a Sephadex column and high-performance liquid chromatography (HPLC) methods, which are either laborious or instrument dependent. To develop a new method to easily separate 5-O-galloylquinic acid. Mesoporous zirconium phosphate (m-ZrP) was prepared to conveniently separate 5-O-galloylquinic acid from Chinese green tea extract, and the target compound was easily obtained by simple steps of adsorption, washing and desorption. The effects of the green tea extraction conditions, extract concentrations, and m-ZrP adsorption/desorption dynamics on the 5-O-galloylquinic acid separation were evaluated. 5-O-Galloylquinic acid that was separated from a 70% ethanol extract of green tea was of moderate HPLC purity (92%) and recovery (88%), and an increased non-specific binding of epigallocatechin gallate (EGCG) on m-ZrP was observed in the diluted tea extract. The times for maximal adsorption of 5-O-galloylquinic acid in 70% ethanol extract and maximal desorption of 5-O-galloylquinic acid in 0.4% phosphoric acid solution were confirmed as 7 h and 5 h, respectively. A facile method to separate 5-O-galloylquinic acid from Chinese green tea extract using m-ZrP was established. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Bandoniene, Donata; Murkovic, Michael
2002-04-24
An on-line HPLC-DPPH screening method for phenolic antioxidants in apple methanol/water (80:20, v/v) extracts was applied. The determination of antioxidants was based on a decrease in absorbance at 515 nm after postcolumn reaction of HPLC-separated antioxidants with the 2,2'-diphenyl-1-picrylhydrazyl radicals (DPPH*). Each of the antioxidants separated by the HPLC column was observed as a negative peak corresponding to its antioxidative activity. The on-line method was applied for quantitative analysis of the antioxidants. A linear dependence of negative peak area on concentration of the reference antioxidants was observed. For validation of the on-line method the limit of detection, LOD (microg/mL), and the limit of quantification, LOQ (microg/mL), of the phenolic compounds were determined. Comparison of the UV and DPPH radical quenching chromatograms with authentic compounds identified catechin, chlorogenic acid, caffeic acid, epicatechin, and phloridzin in the apple cultivars (Lobo, Golden Delicious, and Boskoop), and the distribution of total antioxidant activity was calculated.
Wang, Daijie; Du, Ning; Wen, Lei; Zhu, Heng; Liu, Feng; Wang, Xiao; Du, Jinhua; Li, Shengbo
2017-02-02
In this work, the n-butanol extract from leaves of Lonicera japonica Thunb. (L. japonica) was reacted with DPPH and subjected to a HPLC analysis for the guided screening antioxidants (DPPH-HPLC experiments). Then, nine antioxidants, including flavonoid glycosides and caffeoylquinic acid derivatives, were isolated and purified from leaves of L. japonica using high speed counter-current chromatography (HSCCC) and prep-HPLC. The n-butanol extract was firstly isolated by HSCCC using methyl tert-butyl ether/n-butanol/acetonitrile/water (0.5% acetic acid) (2:2:1:5, v/v), yielding five fractions F1, F2 (rhoifolin), F3 (luteoloside), F4 and F5 (collected from the column after the separation). The sub-fractions F1, F4 and F5 were successfully separated by prep-HPLC. Finally, nine compounds, including chlorogenic acid (1), lonicerin (2), rutin (3), rhoifolin (4), luteoloside (5), 3,4-Odicaffeoylquinic acid (6), hyperoside (7), 3,5-O-dicaffeoylquinic acid (8), and 4,5-O-dicaffeoylquinic acid (9) were obtained, respectively, with the purities over 94% as determined by HPLC. The structures were identified by electrospray ionization mass spectrometry (ESI-MS), 1H- and 13C-NMR. Antioxidant activities were tested, and the isolated compounds showed strong antioxidant activities.
Chemmalil, Letha; Suravajjala, Sreekanth; See, Kate; Jordan, Eric; Furtado, Marsha; Sun, Chong; Hosselet, Stephen
2015-01-01
This paper describes a novel approach for the quantitation of nonderivatized sialic acid in glycoproteins, separated by hydrophilic interaction chromatography, and detection by Nano Quantity Analyte Detector (NQAD). The detection technique of NQAD is based on measuring change in the size of dry aerosol and converting the particle count rate into chromatographic output signal. NQAD detector is suitable for the detection of sialic acid, which lacks sufficiently active chromophore or fluorophore. The water condensation particle counting technology allows the analyte to be enlarged using water vapor to provide highest sensitivity. Derivatization-free analysis of glycoproteins using HPLC/NQAD method with PolyGLYCOPLEX™ amide column is well correlated with HPLC method with precolumn derivatization using 1, 2-diamino-4, 5-methylenedioxybenzene (DMB) as well as the Dionex-based high-pH anion-exchange chromatography (or ion chromatography) with pulsed amperometric detection (HPAEC-PAD). With the elimination of derivatization step, HPLC/NQAD method is more efficient than HPLC/DMB method. HPLC/NQAD method is more reproducible than HPAEC-PAD method as HPAEC-PAD method suffers high variability because of electrode fouling during analysis. Overall, HPLC/NQAD method offers broad linear dynamic range as well as excellent precision, accuracy, repeatability, reliability, and ease of use, with acceptable comparability to the commonly used HPAEC-PAD and HPLC/DMB methods. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Biedermann, Maurus; Munoz, Celine; Grob, Koni
2017-10-27
On-line coupled high performance liquid chromatography-gas chromatography-flame ionization detection (HPLC-GC-FID) is the most widely used method for the analysis of mineral oil hydrocarbons in food, food contact materials, tissues and cosmetics. With comprehensive two-dimensional gas chromatography (GCxGC), a tool became available for better establishing the elution sequence of the various types of hydrocarbons from the HPLC column used for isolating the mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). The performance of a heavily used HPLC column with reduced retention for MOAH was investigated to improve the robustness of the method. Updates are recommended that render the MOSH/MOAH separation less dependent of the state of the HPLC column and more correct in cases of highly refined mineral oil products of high molecular mass. Cyclohexyl cyclohexane (Cycy), used as internal standard, turned out to be eluted slightly after cholestane (Cho); apparently the size exclusion effect predominates the extra retention by ring number on the 60Å pore size silica gel. Hence, Cycy can be used to determine the end of the MOSH fraction. Long chain alkyl benzenes were eluted earlier than tri-tert. butyl benzene (Tbb). It is proposed to start the MOAH transfer immediately after the MOSH fraction and use a gradient causing breakthrough of dichloromethane (visible in the UV chromatogram) at a time suitable to elute perylene (Per) at the end of the fraction. In this way, a decrease in retention power of the HPLC column can be tolerated without adjustment of the MOAH fraction until some MOAH start being eluted into the MOSH fraction. This critical point can be checked either with di(2-ethylhexyl) benzene (DEHB) as a marker or the HPLC-UV chromatogram. Finally, based on new findings in rats and human tissues, it is recommended to integrate the MOSH and MOAH up to the retention time of the n-alkane C40. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald
2017-11-03
A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.
Allen, Samuel J; Ott, Lisa S
2012-07-01
There are a wide and growing variety of feedstocks for biodiesel fuel. Most commonly, these feedstocks contain triglycerides which are transesterified into the fatty acid alkyl esters (FAAEs) which comprise biodiesel fuel. While the tranesterification reaction itself is simple, monitoring the reaction progress and reaction products is not. Gas chromatography-mass spectrometry is useful for assessing the FAAE products, but does not directly address either the tri-, di-, or monoglycerides present from incomplete transesterification or the free fatty acids which may also be present. Analysis of the biodiesel reaction mixture is complicated by the solubility and physical property differences among the components of the tranesterification reaction mixture. In this contribution, we present a simple, rapid HPLC method which allows for monitoring all of the main components in a biodiesel fuel transesterification reaction, with specific emphasis on the ability to monitor the reaction as a function of time. The utilization of a relatively new, core-shell stationary phase for the HPLC column allows for efficient separation of peaks with short elution times, saving both time and solvent.
Uchiyama, Kazuhisa; Kondo, Mari; Yokochi, Rika; Takeuchi, Yuri; Yamamoto, Atsushi; Inoue, Yoshinori
2011-07-01
A simple, selective and rapid analytical method for determination of trimethoprim (TMP) in honey samples was developed and validated. This method is based on a SPE technique followed by HPLC with photodiode array detection. After dilution and filtration, aliquots of 500 μL honey samples were directly injected to an on-line SPE HPLC system. TMP was extracted on an RP SPE column, and separated on a hydrophilic interaction chromatography column during HPLC analysis. At the first detection step, the noise level of the photodiode array data was reduced with two-dimensional equalizer filtering, and then the smoothed data were subjected to derivative spectrum chromatography. On the second-derivative chromatogram at 254 nm, the limit of detection and the limit of quantification of TMP in a honey sample were 5 and 10 ng/g, respectively. The proposed method showed high accuracy (60-103%) with adequate sensitivity for TMP monitoring in honey samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid purification of staphylococcal enterotoxin B by high-pressure liquid chromatography.
Strickler, M P; Neill, R J; Stone, M J; Hunt, R E; Brinkley, W; Gemski, P
1989-01-01
The Staphylococcus aureus enterotoxins represent a group of proteins that cause emesis and diarrhea in humans and other primates. We have developed a rapid two-step high-pressure liquid chromatography (HPLC) procedure for purification of staphylococcal enterotoxin B (SEB). Sterile filtrates (2.5 liters) of strain 10-275 were adsorbed directly onto a reversed-phase column (50 mm by 30 cm Delta Pak; 300 A [30 nm], 15 microns, C18). SEB was obtained by using a unique sequential gradient system. First, an aqueous ammonium acetate to acetonitrile gradient followed by an aqueous trifluoroacetic acid (TFA) wash was used to remove contaminants. A subsequent TFA to acetonitrile-TFA gradient eluted the bound SEB. Further purification was obtained by rechromatography on a cation-exchange column. From 35 to 45% of the SEB in starting filtrates was recovered. Analysis by immunoblotting of samples separated on sodium dodecyl sulfate-polyacrylamide gels indicated that HPLC-purified SEB exhibited immunological and biochemical properties similar to those of the SEB standard. Induction of an emetic response in rhesus monkeys showed that the HPLC-purified toxin also retained biological activity. Images PMID:2745678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalliker, R. Andrew; Guiochon, Georges A
Understanding the nature of viscosity contrast induced flow instabilities is an important aspect in the design of two-dimensional HPLC separations. When the viscosity contrast between the sample plug and the mobile phase is sufficiently large, the phenomenon known as viscous fingering can be induced. Viscous fingering is a flow instability phenomenon that occurs at the interface between two fluids with different viscosities. In liquid chromatography, viscous fingering results in the solute band undergoing a change in form as it enters into the chromatography column. Moreover, even in the absence of viscous fingering, band shapes change shape at low viscosity contrasts.more » These changes can result in a noticeable change in separation performance, with the result depending on whether the solvent pushing the solute plug has a higher or lower viscosity than the solute plug. These viscosity induced changes become more important as the solute injection volume increases and hence understanding the process becomes critical in the implementation of multidimensional HPLC techniques, since in these techniques the sample injection plug into the second dimension is an order of magnitude greater than in one-dimensional HPLC. This review article assesses the current understanding of the viscosity contrast induced processes as they relate to liquid chromatographic separation behaviour.« less
Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto
2017-09-01
Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.
Bailey-Shaw, Y A; Golden, K D; Pearson, A G M; Porter, R B R
2012-09-01
This paper describes the determination of fatty acid composition of coffee, citrus and rum distillery wastes using reversed-phase high-performance liquid chromatography (RP-HPLC). Lipid extracts of the waste samples are derivatized with phenacyl bromide and their phenacyl esters are separated on a C8 reversed-phase column by using continuous gradient elution with water and acetonitrile. The presence of saturated and unsaturated fatty acids in quantifiable amounts in the examined wastes, as well as the high percentage recoveries, are clear indications that these wastes have potential value as inexpensive sources of lipids. The HPLC procedures described here could be adopted for further analysis of materials of this nature.
Kotoni, Dorina; Ciogli, Alessia; D'Acquarica, Ilaria; Kocergin, Jelena; Szczerba, Ted; Ritchie, Harald; Villani, Claudio; Gasparrini, Francesco
2012-12-21
This paper reports on the thermodynamic and kinetic evaluation of a new ultra-high performance liquid chromatography broad-spectrum Pirkle-type chiral stationary phase (CSP) for enantioselective applications (eUHPLC). The well-known Whelk-O1 selector was covalently immobilized onto 1.7-μm high-surface-area, porous spherical silica particles to produce a totally synthetic, covalently bonded CSP that was packed into 150 mm, 100mm, 75 mm and 50mm columns, either 4.6 or 3.0mm ID. A 100 mm × 4.6 mm ID column was fully characterized from a kinetic and thermodynamic point of view, using as reference a conventional HPLC Whelk-O1 column, 250 mm×4.6mm ID, based on 5-μm porous silica particles. On the eUHPLC column, van Deemter plots generated H(min) values of 3.53 μm for 1,3-dinitrobenzene, at an interstitial mobile phase linear velocity (μ(inter)) of 5.07 mm/s, and H(min) of 4.26 and 4.17 μm for the two enantiomers of acenaphthenol, at μ(inter) of 4.85 mm/s and 4.24 mm/s, respectively. Resolution of 21 enantiomeric pairs including alcohols, epoxides, sulfoxides, phosphine oxides, benzodiazepines and 2-aryloxyproprionic esters used as herbicides, were obtained with significant advantages in terms of efficiency and analysis time. Speed gain factors were calculated for the different column geometries (150 mm, 100mm, 75 mm and 50mm, either 4.6 or 3.0mm ID), with respect to the standard HPLC column (250 mm ×4.6 mm ID), and were as high as 13, in the case of the 50-mm-long column, affording sub-minute separations of enantiomers with excellent resolution factors. In particular, trans-stilbene oxide was resolved in only 10s, while a 50 mm×3.0 mm ID column was used as a compromise between reduced mobile phase consumption (less than 1 mL per analysis) and smaller extra-column band-broadening effect. Given the relatively low viscosity in NP mode, and the excellent permeability of these eUHPLC columns, with backpressure values under 600 bar for a wide range of flow rates, the use of standard HPLC hardware is possible. In this case, however, a significant loss in resolution is observed, compared to the UHPLC instrumentation, if no modifications are introduced in the HPLC apparatus to reduce extra-column variance. The excellent efficiency and selectivity, conjugated with the very high-throughput and the ultra-fast analysis time, prove the potentials of the eUHPLC Whelk-O1 columns in the development of enantioselective UHPLC methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun
2015-03-27
A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Structural elucidation of potential impurities in Azilsartan bulk drug by HPLC.
Zhou, Wentao; Zhou, Yuxia; Sun, Lili; Zou, Qiaogen; Wei, Ping; Ouyang, Pingkai
2014-01-01
During the synthesis of Azilsartan (AZS), it was speculated that 15 potential impurities would arise. This study investigated the possible mechanism for the formation of 14 of them, and their structures were characterized and confirmed by IR, NMR, and MS techniques. In addition, an efficient chromatographic method was developed to separate and quantify these impurities, using an Inertsil ODS-3 column (250 x 4.6 mm, 5 pm) in gradient mode with a mixture of acetonitrile and the potassium dihydrogen orthophosphate buffer (10 mM, pH adjusted to 3.0 with phosphoric acid). The HPLC method was validated for specificity, precision, accuracy, and sensitivity. LOQ of impurities were in the range of 1.04-2.20 ng. Correlation coefficient values of linearity were >0.9996 for AZS and its impurities. The mean recoveries of all impurities in AZS were between 93.0 and 109.7%. Thus, the validated HPLC method is suitable for the separation and quantification of all potential impurities in AZS.
Zhu, Kevin Y; Leung, K Wing; Ting, Annie K L; Wong, Zack C F; Ng, Winki Y Y; Choi, Roy C Y; Dong, Tina T X; Wang, Tiejie; Lau, David T W; Tsim, Karl W K
2012-03-01
A microfluidic chip based nano-HPLC coupled to tandem mass spectrometry (nano-HPLC-Chip-MS/MS) has been developed for simultaneous measurement of abused drugs and metabolites: cocaine, benzoylecgonine, cocaethylene, norcocaine, morphine, codeine, 6-acetylmorphine, phencyclidine, amphetamine, methamphetamine, MDMA, MDA, MDEA, and methadone in the hair of drug abusers. The microfluidic chip was fabricated by laminating polyimide films and it integrated an enrichment column, an analytical column and a nanospray tip. Drugs were extracted from hairs by sonication, and the chromatographic separation was achieved in 15 min. The drug identification and quantification criteria were fulfilled by the triple quardropule tandem mass spectrometry. The linear regression analysis was calibrated by deuterated internal standards with all of the R(2) at least over 0.993. The limit of detection (LOD) and the limit of quantification (LOQ) were from 0.1 to 0.75 and 0.2 to 1.25 pg/mg, respectively. The validation parameters including selectivity, accuracy, precision, stability, and matrix effect were also evaluated here. In conclusion, the developed sample preparation method coupled with the nano-HPLC-Chip-MS/MS method was able to reveal the presence of drugs in hairs from the drug abusers, with the enhanced sensitivity, compared with the conventional HPLC-MS/MS.
Sayar, Esin; Sahin, Selma; Cevheroglu, Semsettin; Hincal, A Atilla
2010-09-01
The combination of trimethoprim (TMP) and sulfamethoxazole (SMX) is used in the treatment of many common infections such as urinary, respiratory and gastrointestinal tract infections. The aim of this study was to determine TMP and SMX simultaneously in human plasma samples by high performance liquid chromatography (HPLC) using antipyrine as the internal standard. Separation of the compounds was achieved on a reverse-phase C8 column packed with 5 microm dimethyl octadecylsilyl bonded amorphous silica (4.6 mm x 250 mm) column using a mobile phase consisted of potassium hydrogen phosphate, acetonitrile, methanol and water adjusted to pH 6.2. The mobile phase was delivered at a flow rate of 1 mL min- and the effluent was monitored using Max plot technique at 25 derees C. Retention times were 5 min for TMP, 7 min for antipyrine and 9 min for SMX. Quantitation limits were 10 ng mL(-1) for TMP and 50 ng mL(-1) for SMX. Our findings indicated that the developed HPLC method was precise, accurate, specific and sensitive for simultaneous determination of TMP and SMX. Proposed HPLC method was successfully applied for the analysis of TMP and SMX in human plasma after oral administration of a co-trimoxazole tablet to human volunteers.
Stolarczyk, Mariusz; Hubicka, Urszula; Żuromska-Witek, Barbara; Krzek, Jan
2015-01-01
A new sensitive, simple, rapid, and precise HPLC method with diode array detection has been developed for separation and simultaneous determination of hydrochlorothiazide, furosemide, torasemide, losartane, quinapril, valsartan, spironolactone, and canrenone in combined pharmaceutical dosage forms. The chromatographic analysis of the tested drugs was performed on an ACE C18, 100 Å, 250×4.6 mm, 5 μm particle size column with 0.0.05 M phosphate buffer (pH=3.00)-acetonitrile-methanol (30+20+50 v/v/v) mobile phase at a flow rate of 1.0 mL/min. The column was thermostatted at 25°C. UV detection was performed at 230 nm. Analysis time was 10 min. The elaborated method meets the acceptance criteria for specificity, linearity, sensitivity, accuracy, and precision. The proposed method was successfully applied for the determination of the studied drugs in the selected combined dosage forms.
Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo
2013-01-01
Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%).
Expanding the term "Design Space" in high performance liquid chromatography (I).
Monks, K E; Rieger, H-J; Molnár, I
2011-12-15
The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.
Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo
2013-01-01
Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%). PMID:23922985
Manassra, Adnan; Khamis, Mustafa; El-Dakiky, Magdy; Abdel-Qader, Zuhair; Al-Rimawi, Fuad
2010-03-11
An HPLC method using UV detection is proposed for the simultaneous determination of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid formulation. C18 column (250mmx4.0mm) is used as the stationary phase with a mixture of methanol:acetate buffer:acetonitrile (85:5:10, v/v) as the mobile phase. The factors affecting column separation of the analytes were studied. The calibration graphs exhibited a linear concentration range of 0.06-1.0mg/ml for pseudophedrine hydrochloride, 0.02-1.0mg/ml for codeine phosphate, and 0.0025-1.0mg/ml for triprolidine hydrochloride for a sample size of 5microl with correlation coefficients of better than 0.999 for all active ingredients studied. The results demonstrate that this method is reliable, reproducible and suitable for routine use with analysis time of less than 4min. Copyright 2009 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D.
2011-01-01
The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…
Wang, Xiao; Dong, Hongjing; Yang, Bin; Liu, Dahui; Duan, Wenjuan; Huang, Luqi
2011-12-01
pH-Zone-refining counter-current chromatography was successfully applied for the preparative separation of alkaloids from Dactylicapnos scandens. The two-phase solvent system was composed of petroleum ether-ethyl acetate-methanol-water (3:7:1:9, v/v), where 20 mM of triethylamine (TEA) was added to the upper phase as a retainer and 5 mM of hydrochloric acid (HCl) to the aqueous phase as an eluter. In this experiment, the apparatus with an adjustable length of the separation column was used for the separation of alkaloids from D. scandens and the resolution of the compounds can be remarkably improved by increasing the length of the separation column. As a result, 70 mg protopin, 30 mg (+) corydine, 120 mg (+) isocorydine and 40 mg (+) glaucine were obtained from 1.0 g of the crude extracts and each with 99.2%, 96.5%, 99.3%, 99.5% purity as determined by HPLC. The chemical structures of these compounds were confirmed by positive ESI-MS and (1)H NMR. Copyright © 2011 Elsevier B.V. All rights reserved.
Wannet, W J; Hermans, J H; van Der Drift, C; Op Den Camp, H J
2000-02-01
A convenient and sensitive method was developed to separate and detect various types of carbohydrates (polyols, mono- and disaccharides, and phosphorylated sugars) simultaneously using high-performance liquid chromatography (HPLC). The method consists of a chromatographic separation on a CarboPac PA1 anion-exchange analytical column followed by pulsed amperometric detection. In a single run (43 min) 13 carbohydrates were readily resolved. Calibration plots were linear over the ranges of 5-25 microM to 1. 0-1.5 mM. The reliable and fast analysis technique, avoiding derivatization steps and long run times, was used to determine the levels of carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. Moreover, the method was used to study the trehalose phosphorylase reaction.
Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao
2009-09-01
Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.
NASA Astrophysics Data System (ADS)
Malejko, Julita; Świerżewska, Natalia; Bajguz, Andrzej; Godlewska-Żyłkiewicz, Beata
2018-04-01
A new method based on coupling high performance liquid chromatography (HPLC) to inductively coupled plasma mass spectrometry (ICP MS) has been developed for the speciation analysis of gold nanoparticles (AuNPs) and dissolved gold species (Au(III)) in biological samples. The column type, the composition and the flow rate of the mobile phase were carefully investigated in order to optimize the separation conditions. The usefulness of two polymeric reversed phase columns (PLRP-S with 100 nm and 400 nm pore size) to separate gold species were investigated for the first time. Under the optimal conditions (PLRP-S400 column, 10 mmol L-1 SDS and 5% methanol as the mobile phase, 0.5 mL min-1 flow rate), detection limits of 2.2 ng L-1 for Au(III), 2.8 ng L-1 for 10 nm AuNPs and 3.7 ng L-1 for 40 nm AuNPs were achieved. The accuracy of the method was proved by analysis of reference material RM 8011 (NIST) of gold nanoparticles of nominal diameter of 10 nm. The HPLC-ICP MS method has been successfully applied to the detection and size characterization of gold species in lysates of green algae Acutodesmus obliquus, typical representative of phytoplankton flora, incubated with 10 nm AuNPs or Au(III).
Ji, Chao; Feng, Feng; Chen, Zhengxing; Sun, Li; Chu, Xiaogang
2010-08-01
A high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS) method for the determination of five synthetic sweeteners (acesulfame, sodium saccharin, sodium cyclamate, aspartame and neotame) in wines has been developed. The HPLC separation was carried out on an Ultimate C18 column (100 mm x 2.1 mm, 3 microm). Several parameters, including the composition and pH of the mobile phase, column temperature and the monitor ions, were optimized for improving the chromatographic performance and the sensitivity of determination. The results demonstrated that the separation can be completed in less than 5 min by gradient elution with 20 mmol/L ammonium formate and 0.1% (v/v) formic acid (pH 3.8) and methanol as the mobile phase. The column temperature was kept at 45 degrees C. When the analytes were detected by ESI -MS/MS under multiple reaction monitoring mode, the detection limits were 0.6, 5, 1, 0.8 and 0.2 microg/L for acesulfame, sodium saccharin, sodium cyclamate, aspartame and neotame, respectively. The average recoveries ranged from 87.2% to 103%. The relative standard deviations were not more than 1.2%. This method is rapid, accurate, highly sensitive and suitable for the quality control of low concentration of the synthetic sweeteners, which are illegally added to wines and other foods with complex matrices.
Determination of alkyllead compounds by HPLC/ICP using a glass-frit nebulizer ICP interface
NASA Astrophysics Data System (ADS)
Ibrahim, Mona; Nisamaneepong, Wipawan; Haas, David L.; Caruso, Joseph A.
The glass-frit nebulizer, by forming a very fine mist, has improved the ability of the ICP to accept the introduction of organic solvents with high evaporation rates. The reversed-phase chromatographic separation of TML and TEL, and their determination with glass frit nebulization ICP was accomplished with various mobile phases and columns. The separation of several trialkyllead salts also was studied on a strong cation exchange column, but these compounds were not determined with the glass frit nebulizer interface. Detection limits as low as 33 pg s -1 for TML and 100 pg s -1 for TEL and precision of 3.4% for TML and 6.9% relative standard deviation for TEL were obtained.
Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation.
Šilarová, Petra; Česlová, Lenka; Meloun, Milan
2017-12-15
The degradation of catechins and other phenolics in green tea infusions were monitored using fast HPLC/MS separation. The final separation was performed within 2.5min using Ascentis Express C18 column (50mm×2.1mm i.d.) packed with 2μm porous shell particles. Degradation was studied in relation to the temperature of water (70, 80, 90°C) and the standing time of the infusion (up to 6h). Along with chromatographic separation, the antioxidant properties of the infusions were monitored using two spectrophotometric methods. During staying of green tea infusion, the degradation of some catechins probably to gallic acid was observed. Finally, the influence of tea bag storage on antioxidant properties of green tea was evaluated. Rapid degradation of antioxidants after 3weeks was observed. The principal component analysis, factor analysis and discriminant analysis were used for the statistical evaluation of obtained experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Lu; Liu, Shu; Zhang, Xueju; Xing, Junpeng; Liu, Zhiqiang; Song, Fengrui
2016-06-24
In this paper, an analysis strategy integrating macroporous resin (AB-8) column chromatography and high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) combined with ion mobility spectrometry (IMS) was proposed and applied for identification and structural characterization of compounds from the fruits of Gardenia jasminoides. The extracts of G. jasminoides were separated by AB-8 resin column chromatography combined with reversed phase liquid chromatography (C18 column) and detected by electrospray ionization tandem mass spectrometry. Additionally, ion mobility spectrometry (IMS) was employed as a supplementary separation technique to discover previously undetected isomers from the fruits of G. jasminoides. A total of 71 compounds, including iridoids, flavonoids, triterpenes, monoterpenoids, carotenoids and phenolic acids were identified by the characteristic high resolution mass spectrometry and the ESI-MS/MS fragmentations. In conclusion, the IMS-MS technique achieved the separation of isomers in crocin-3 and crocin-4 according to their acquired mobility drift times differing from classical analysis by mass spectrometry. The proposed strategy can be used as a highly sensitive and efficient procedure for identification and separation isomeric components in extracts of herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.
Park, Ah Yeon; Park, So-Young; Lee, Jaehyun; Jung, Mihye; Kim, Jinwoong; Kang, Sam Sik; Youm, Jeong-Rok; Han, Sang Beom
2009-10-01
Rapid, simple and reliable HPLC/UV and LC-ESI-MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C(30) column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC-ESI-MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC-ESI-MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC-ESI-MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC-ESI-MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright (c) 2009 John Wiley & Sons, Ltd.
HPLC, MS, and pharmacokinetics of melphalan, bisantrene and 13-cis retinoic acid.
Davis, T P; Peng, Y M; Goodman, G E; Alberts, D S
1982-11-01
High performance liquid chromatographic procedures are described for melphalan, bisantrene, and 13-cis retinoic acid, three important anticancer drugs in various stages of clinical development. The procedures require a rapid and simple sample clean-up followed by a 10-to 20-min chromatographic separation on a reversed-phase C18 column. Precisions are all less than 8% with recoveries greater than 80%. Mass spectrometry confirmation of each drug from patient sample separations is presented to provide unambiguous identification for valid pharmacokinetic parameter determination.
Osborne, D J; Peters, B J; Meade, C J
1983-11-01
The following high performance liquid chromatography system was found suitable for separating most lipoxygenase metabolites of arachidonic acid: Techsphere 5-C18 column, eluting solvent methanol:water:acetic acid (65:35:0.06 v/v), pH 5.3. Comparisons with other packing materials and solvent systems are described. The method could be used to identify lipoxygenase products released from mouse macrophage cells stimulated with gamma-hexachlorocyclohexane. Detection limits between 1 and 10 ng were obtained.
Marlot, Léa; Batteau, Magali; Escofet, Marie-Claire; Nuccio, Sylvie; Coquoin, Véronique; De Vaumas, René; Faure, Karine
2017-06-30
The Edelweiss plant has been recognized as a very valuable source of anti-aging principles due to its composition of antioxidants compounds: leontopodic acid A and 3,5-dicaffeoylquinic acid. In this work, off-line multi-heart cutting CPC-LC separation was set up at industrial scale in order to isolate and produce new high quality reference material of these two antioxidants from Edelweiss. For this purpose, CPC and HPLC methods were developed and optimized at laboratory scale and a comprehensive CPCxHPLC analysis of the crude extract was established. Thereby, the CPC method led to a first separation of the target compounds according to their partition coefficient in the solvent system and the HPLC method was performed on the recovered fractions to lead to a second separation. A 2D CPCxHPLC plot was established in order to know the fractions to select at the industrial scale. Then, the CPC and HPLC methods were transferred at industrial scale and the multi-heart cutting CPC-LC was performed in off-line mode. Using CPC with methyl ter-butyl ether-water 1:1 (v/v) solvent system and LC with Denali C18 column, 2g of crude extract sample were injected and leontopodic acid A and 3,5-dicaffeoylquinic acid were recovered with purity over 97%. The compounds were identified by MS and NMR. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Ya-Wen; Fan, Wei-Wei; Li, Hui; Ni, He; Han, Han-Bing; Li, Hai-Hang
2015-10-01
Abscisic acid (ABA), a universal signaling molecule, plays important roles in regulating plant growth, development and stress responses. The low contents and complex components in plants make it difficult to be accurately analyzed. A novel one-step sample preparation method for ABA in plants was developed. Fresh peanut (Arachis hypogaea) plant materials were fixed by oven-drying, microwave drying, boiling or Carnoy's fixative, and loaded onto a mini-preparing column. After washed the impurities, ABA was eluted with a small amount of solvent. ABA in plant materials was completely extracted and purified in 2mL solution and directly analyzed by HPLC, with a 99.3% recovery rate. Multiple samples can be simultaneously prepared. Analyses using this method indicated that the endogenous ABA in oven-dried peanut leaves increased 20.2-fold from 1.01 to 20.37μgg(-1) dry weight within 12h and then decreased in 30% polyethylene glycol 6000 treated plants, and increased 3.34-fold from 0.85 to 2.84μgg(-1) dry weight in 5 days and then decreased in soil drought treated plants. The method combined the column chromatographic extraction and solid-phase separation technologies in one step and can completely extracted plant endogenous ABA in a purified and highly concentrated form for direct HPLC analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Okada, Makiko; Yamamoto, Atsushi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Kodama, Shuji
2017-01-11
Racemic sulforaphane, which was derivatized with (S)-leucine (l-leucine), was resolved by reversed phase HPLC with UV detection. The optimum mobile phase conditions were found to be 10 mM citric acid (pH 2.8) containing 22% methanol at 35 °C using detection at 254 nm. Sulforaphane enantiomers in florets and stems of five brands of broccoli and leaves and stems of three brands of broccoli sprouts were analyzed by the proposed HPLC method. Both sulforaphane enantiomers were detected in all of the samples. The S/R ratios of sulforaphane in broccoli samples were 1.5-2.6/97.4-98.5% for florets and 5.0-12.1/87.9-95.0% for stems. The S/R ratios in broccoli sprout samples were higher than those in broccoli samples and were found to be 8.3-19.7/80.3-91.7% for leaves and 37.0-41.8/58.2-63.0% for stems. (S)-Sulforaphane detected in the broccoli and its sprout samples was positively identified by separately using an HPLC with a chiral column (Chiralpak AD-RH) and mass spectrometry.
1984-10-01
regardless of the method of polymerization. The styrene-bead copolymers were packed in HPLC columns, but none were especiall, effective in separating...enantiomers in a racemic mixture. The chiral butyrolactone polymer was coated on silica, but this material did not effect resolution of racemic mixtures in an...been effected utilizing chiral oxazolines3 prompted the initial efforts to synthesize various chiral 2-vinyl- oxazoline monomers for incorporation
USDA-ARS?s Scientific Manuscript database
This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...
USDA-ARS?s Scientific Manuscript database
This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...
Li, Ke; Wang, Shudong
2005-05-01
A simple and reliable high performance liquid chromatographic (HPLC) method has been developed and validated for the study of fingerprint chromatograms of extracts from the leaves of Tripterygium wilfordii Hook. F. (TWHF) and for controlling the quality of the herb. HPLC separation of the extracts was performed on a Lichrospher RP-18 column and detected by ultraviolet absorbance at 210 nm. The column temperature was maintained at 35 degrees C. A mobile phase composed of acetonitrile:H2O in the ratio of 39:61 (v/v) was found to be most suitable for this separation at a flow rate of 0.8 mL/min with isocratic elution. Under the chromatographic conditions described, the peak profile of the 10 components collected within 35 min made up the fingerprint of the extracts from leaves of TWHF with universal features. The fingerprint chromatograms had a good stability, precision, and reproducibility. The similarity of the extracts from leaves of TWHF collected in summer and winter was studied with triptolide as a reference peak. The method is suitable for differentiation of extracts from the leaves of TWHF, and can be used as a quality control method for this herb.
Enantioselective HPLC resolution of synthetic intermediates of armodafinil and related substances.
Nageswara Rao, Ramisetti; Shinde, Dhananjay D; Kumar Talluri, Murali V N
2008-04-01
Armodafinil is a unique psychostimulant recently approved by the US Food and Drug Administration for the treatment of narcolepsy. The chromatographic resolution of its chiral intermediates including related substances in the total synthesis of armodafinil was studied on polysaccharide-based stationary phases, viz. cellulose tris-(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) by HPLC. The effects of 1-propanol, 2-propanol, ethanol, and trifluoroacetic acid added to the mobile phase and of column temperature on resolution were studied. A good separation was achieved on cellulose-based Chiralcel OD-H column compared to amylose-based Chiralpak AD-H. The effects of structural features of the solutes and solvents on discrimination between the enantiomers were examined. Baseline separation with R(s) >1.38 was obtained using a mobile phase containing n-hexane-ethanol-TFA (75:25:0.15 v/v/v). Detection was carried out at 225 nm with photodiode array detector while identification of enantiomers was accomplished by a polarimetric detector connected in series. The method was found to be suitable not only for process development of armodafinil but also for determination of the enantiomeric purity of bulk drugs and pharmaceuticals.
Makino, Yukiko
2012-03-01
A simple and sensitive HPLC technique was developed for the qualitative determination of ephedrine and pseudoephedrine (ephedrines), used as precursors of clandestine d-methamphetamine hydrochloride of high purity. Good separation of ephedrines from bulk d-methamphetamine was achieved, without any extraction or derivatization procedure on a CAPCELLPACK C18 MGII (250 × 4.6 mm) column. The mobile phase consisted of 50 mM KH2 PO4-acetonitrile (94:6 v/v %) using an isocratic pump system within 20 min for detecting two analytes. One run took about 50 min as it was necessary to wash out overloaded methamphetamine for column conditioning. The analytes were detected by UV absorbance measurement at 210 nm. A sample (20 mg) was simply dissolved in 1 mL of water, and a 50 μL aliquot of the solution was injected into the HPLC. The detection limits for ephedrine and pseudoephedrine in bulk d-methamphetamine were as low as 3 ppm each. This analytical separation technique made it possible to detect ephedrine and/or pseudoephedrine in seven samples of high-purity d-methamphetamine hydrochloride seized in Japan. The presence of trace ephedrines in illicit methamphetamine may strongly indicate a synthetic route via ephedrine in methamphetamine profiling. This method is simple and sensitive, requiring only commonly available equipment, and should be useful for high-purity methamphetamine profiling. Copyright © 2011 John Wiley & Sons, Ltd.
Gotoh, Naohiro; Matsumoto, Yumiko; Yuji, Hiromi; Nagai, Toshiharu; Mizobe, Hoyo; Ichioka, Kenji; Kuroda, Ikuma; Noguchi, Noriko; Wada, Shun
2010-01-01
The characteristics of a non-endcapped polymeric ODS column for the resolution of triacylglycerol positional isomers (TAG-PI) were examined using a recycle HPLC-atmospheric pressure chemical ionization/mass spectrometry system. A pair of TAG-PI containing saturated fatty acids at least 12 carbons was separated. Except for TAG-PI containing elaidic acid, pairs of TAG-PI containing three unsaturated fatty acids were not separated, even by recycle runs. These results indicate that the resolution of TAG-PI on a non-endcapped polymeric ODS stationary phase is realized by the recognition of the linear structure of the fatty acid and the binding position of the saturated fatty acid in TAG-PI. Chain length was also an important factor for resolution. This method may be a useful and simple for measuring the abundance ratio of TAG-PI containing saturated fatty acids in natural oils.
Retention behavior of long chain quaternary ammonium homologues and related nitroso-alkymethylamines
Abidi, S.L.
1985-01-01
Several chromatographic methods have been utilized to study the retentionbehavior of a homologous series of n-alkylbenzyldimethylammonium chlorides (ABDAC) and the corresponding nitroso-n-alkylmethylamines (NAMA). Linear correlation of the logarithmic capacity factor (k') with the number of carbons in the alkyl chain provides useful information on both gas chromatographic (GC) and high-performance liquid chromatographich (HPLC) retention parameters of unknown components. Under all conditions empolyed, GC methodology has proved effective in achieving complete resolution of the homologous mixture of NMA despite its obvious inadequacy in the separation of E-Z configurational isomers. Conversely, normal-phase HPLC on silica demonstrates that the selectivity (a) value for an E-Z pair is much higher than that for an adjacent homologous pair. In the reversed-phase HPLC study, three different silica-based column systems were examined under various mobile phase conditions. The extent of variation in k' was found to be a function of the organic modifier, counter-ion concentration, eluent pH, nature of counter-ion, and the polarity and type of stationary phase. The k'—[NaClO4] profiles showed similar trends between the ABDAC and the NAMA series, supporting the dipolar electronic structures of the latter compounds. Mobile phase and stationary phase effects on component separation are described. The methodology presented establishes the utility of HPLC separation techniques as versatile analytical tools for practical application.
Yang, Y; Kapalavavi, B; Gujjar, L; Hadrous, S; Marple, R; Gamsky, C
2012-10-01
Several high-temperature liquid chromatography (HTLC) and subcritical water chromatography (SBWC) methods have been successfully developed in this study for separation and analysis of preservatives contained in Olay skincare creams. Efficient separation and quantitative analysis of preservatives have been achieved on four commercially available ZirChrom and Waters XBridge columns at temperatures ranging from 100 to 200°C. The quantification results obtained by both HTLC and SBWC methods developed for preservatives analysis are accurate and reproducible. A large number of replicate HTLC and SBWC runs also indicate no significant system building-up or interference for skincare cream analysis. Compared with traditional HPLC separation carried out at ambient temperature, the HTLC methods can save up to 90% methanol required in the HPLC mobile phase. However, the SBWC methods developed in this project completely eliminated the use of toxic organic solvents required in the HPLC mobile phase, thus saving a significant amount of money and making the environment greener. Although both homemade and commercial systems can accomplish SBWC separations, the SBWC methods using the commercial system for preservative analysis are recommended for industrial applications because they can be directly applied in industrial plant settings. © 2012 The Authors ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Column chromatography as a useful step in purification of diatom pigments.
Tokarek, Wiktor; Listwan, Stanisław; Pagacz, Joanna; Leśniak, Piotr; Latowski, Dariusz
2016-01-01
Fucoxanthin, diadinoxanthin and diatoxanthin are carotenoids found in brown algae and most other heterokonts. These pigments are involved in photosynthetic and photoprotective reactions, and they have many potential health benefits. They can be extracted from diatom Phaeodactylum tricornutum by sonication, extraction with chloroform : methanol and preparative thin layer chromatography. We assessed the utility of an additional column chromatography step in purification of these pigments. This novel addition to the isolation protocol increased the purity of fucoxanthin and allowed for concentration of diadinoxanthin and diatoxanthin before HPLC separation. The enhanced protocol is useful for obtaining high purity pigments for biochemical studies.
Kim, Min Kyung; Yang, Dong-Hyug; Jung, Mihye; Jung, Eun Ha; Eom, Han Young; Suh, Joon Hyuk; Min, Jung Won; Kim, Unyong; Min, Hyeyoung; Kim, Jinwoong; Han, Sang Beom
2011-09-16
Methods using high performance liquid chromatography with diode array detection (HPLC-DAD) and tandem mass spectrometry (HPLC-MS/MS) were developed and validated for the simultaneous determination of 5 chromones and 6 coumarins: prim-O-glucosylcimifugin (1), cimifugin (2), nodakenin (3), 4'-O-β-d-glucosyl-5-O-methylvisamminol (4), sec-O-glucosylhamaudol (5), psoralen (6), bergapten (7), imperatorin (8), phellopterin (9), 3'-O-angeloylhamaudol (10) and anomalin (11), in Radix Saposhnikoviae. The separation conditions for HPLC-DAD were optimized using an Ascentis Express C18 (4.6 mm×100 mm, 2.7 μm particle size) fused-core column. The mobile phase was composed of 10% aqueous acetonitrile (A) and 90% acetonitrile (B) and the elution was performed under a gradient mode at a flow rate of 1.0 mL/min. The detection wavelength was set at 300 nm. The HPLC-DAD method yielded a base line separation of the 11 components in 50% methanol extract of Radix Saposhnikoviae with no interfering peaks detected. The HPLC-DAD method was validated in terms of linearity, accuracy and precision (intra- and inter-day), limit of quantification (LOQ), recovery, and robustness. Specific determination of the 11 components was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization (ESI) source. This HPLC-MS/MS method was also validated by determining the linearity, limit of quantification, accuracy, and precision. Quantification of the 11 components in 51 commercial Radix Saposhnikoviae samples was successfully performed using the developed HPLC-DAD method. The identity, batch-to-batch consistency, and authenticity of Radix Saposhnikoviae were successfully monitored by the proposed HPLC-DAD and HPLC-MS/MS methods. Copyright © 2011 Elsevier B.V. All rights reserved.
Determination of some phenolic compounds in red wine by RP-HPLC: method development and validation.
Burin, Vívian Maria; Arcari, Stefany Grützmann; Costa, Léa Luzia Freitas; Bordignon-Luiz, Marilde T
2011-09-01
A methodology employing reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and validated for simultaneous determination of five phenolic compounds in red wine. The chromatographic separation was carried out in a C(18) column with water acidify with acetic acid (pH 2.6) (solvent A) and 20% solvent A and 80% acetonitrile (solvent B) as the mobile phase. The validation parameters included: selectivity, linearity, range, limits of detection and quantitation, precision and accuracy, using an internal standard. All calibration curves were linear (R(2) > 0.999) within the range, and good precision (RSD < 2.6%) and recovery (80-120%) was obtained for all compounds. This method was applied to quantify phenolics in red wine samples from Santa Catarina State, Brazil, and good separation peaks for phenolic compounds in these wines were observed.
Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr
2006-02-13
The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.
Ma, Jun; Jia, Zheng-Ping; Zhang, Qiang; Fan, Jun-Jie; Jiang, Ning-Xi; Wang, Rong; Xie, Hua; Wang, Juan
2003-10-25
A simple, rapid, sensitive column-switching HPLC method is described for the analysis of the 10-hydroxycamptothecin (HCPT) in human serum. A pre-column containing restricted access media (RAM) is used for the sample clean-up and trace enrichment and is combined with a C18 column for the final separation. The analytical time is 8 min. The HCPT is monitored with fluorescence detector, excitation and emission wavelengths being 385 and 539 nm, respectively. There is a linear response range of 1-1000 ng/ml with correlation coefficient of 0.998 while the limit of quantification is 0.1 ng/ml. The intra-day and inter-day variations are less than 5%. This analytic procedure has been applied to a pharmacokinetic study of HCPT in clinical patients and the pharmacokinetic parameters of one-compartment model are calculated.
Pan, Ziyu; Peng, Jingdong; Zang, Xu; Peng, Huanjun; Xiao, Huan; Bu, Lingli; Chen, Fang; He, Yan; Chen, Yu; Wang, Xiang; Li, Shiyu; Chen, Yi
2018-03-01
Herein, a highly selective high-performance liquid chromatography (HPLC) coupled with resonance Rayleigh scattering (RRS) method was developed to detect gatifloxacin (GFLX) and sparfloxacin (SPLX). GFLX and SPLX were first separated by HPLC, then, in pH 4.4 Britton-Robinson (BR) buffer medium, protonic quaternary ammonia cation of GFLX and SPLX reacted with erythrosine (ERY) to form 1:1 ion-association complexes, which resulted in a significant enhancement of RRS signal. The experimental conditions of HPLC and post-column RRS have been investigated, including detection wavelength, flow rate, pH, reacting tube length and reaction temperature. Reaction mechanism were studied in detail by calculating the distribution fraction. The maximum RRS signals for GFLX and SPLX were recorded at λ ex = λ em = 330 nm. The detection limits were 3.8 ng ml -1 for GFLX and 17.5 ng ml -1 for SPLX at a signal-to-noise ratio of 3. The developed method was successfully applied to the determination of GFLX and SPLX in water samples. Recoveries from spiked water samples were 97.56-98.85%. Copyright © 2017 John Wiley & Sons, Ltd.
Sharma, Gaurav; Attri, Savita Verma; Behra, Bijaylaxmi; Bhisikar, Swapnil; Kumar, Praveen; Tageja, Minni; Sharda, Sheetal; Singhi, Pratibha; Singhi, Sunit
2014-05-01
The present study reports the simultaneous analysis of 26 physiological amino acids in plasma along with total cysteine and homocysteine by high-performance liquid chromatography (HPLC) employing 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) as precolumn derivatizing reagent. Separations were carried out using Lichrospher 100 RP-18e (5 μm) 250 × 4.0 mm column connected to 100 CN 4.0 × 4.0 mm guard column on a quaternary HPLC system and run time was 53 min. Linearity of the peak areas for different concentrations ranging from 2.5 to 100 pmol/μL of individual amino acids was determined. A good linearity (R (2) > 0.998) was achieved in the standard mixture for each amino acid. Recovery of amino acids incorporated at the time of derivatization ranged from 95 to 106 %. Using this method we have established the normative data of amino acids in plasma, the profile being comparable to the range reported in literature and identified cases of classical homocystinuria, cobalamin defect/deficiency, non-ketotic hyperglycinemia, hyperprolinemia, ketotic hyperglycinemia, urea cycle defect and maple syrup urine disease.
Isolation and identification of three potential impurities of pholcodine bulk drug substance.
Denk, O M; Gray, A I; Skellern, G G; Watson, D G
2000-07-01
Three previously unreported manufacturing impurities were isolated from a pholcodine mother liquor using preparative reversed-phase HPLC. The liquor was the residue remaining after recrystallisation of a production batch of pholcodine. The impurities, which are structurally related to pholcodine, were initially detected by thin-layer chromatography (TLC). Their structures were determined after separation by preparative HPLC (Econo-Prep 5 microm C18 column, 30 cm x 21.2 mm i.d.). Structure elucidation was carried out using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and ultra violet (UV) spectroscopy. The impurities were identified as alkylated derivatives of pholcodine possessing second 2-morpholinoethyl substituents at various positions.
[Determination of protopine and isocorydine in root of Dactylicapnos scandens by HPLC].
Yan, Tian-qing; Yang, Yan-fang; Ai, Tie-min
2004-10-01
To establish a HPLC method for determination of protopine and isocorydine in root of Dactylicapnos scandens. The separation was performed in a PHENOMENEX-C18 column with a mobile phase of methanol-0.2% phosphoric acid (adjusted to pH 7.0 with triethylamine)(50:50), The detection wavelength was at 254 nm and the flow rate was 0.8 mL x min(-1). The average recovery of Protopine and Isocorydine was 97.9%, 98.6% respectively, and RSD 1.3%, 1.4%. This method is accurate, simple and reliable. It can be used for quality control of D. scandens.
Laaniste, Asko; Kruve, Anneli; Leito, Ivo
2013-08-01
Two different methods to reinforce the poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics
NASA Astrophysics Data System (ADS)
Brenneman, Charles A.; Ebeler, Susan E.
1999-12-01
We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Chromatography/Mass Spectrometry (GC/MS) 525.3 24 Carbofuran High-performance liquid chromatography (HPLC) with... (HPLC) with Post-Column Derivatization and Fluorescence Detection 6651 B 6651 B 6651 B-00. Heptachlor... Spectrometry (GC/MS) 525.3 24 Oxamyl High-performance liquid chromatography (HPLC) with post-column...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karimi, A.R.
In this study a method for the measurement of uranium in natural waters at sub-ppB concentration levels by the separation and determination of U/sup 4 +/ and UO/sub 2//sup 2 +/ species is proposed. Reversed phase high performance liquid chromatography, followed by a post-column reaction and a sensitive UV-visible detection system was the method of choice to determine qualitatively and quantitatively the two uranium species. Also a cation-exchange and fluorescence detection system was studied for separation and determination of UO/sub 2//sup 2 +/ ions. Uranyl ion was selectively complexed with L-phenylalanine moetie in the sample solution containing U/sup 4 +/more » ions. Uranium (IV)/U(VI)-ligand was separated on a C/sub 18/ column with acetate buffer. Hexanesulfonate was found to be the choice for ion-pair reagent. The separation was best done with the acetate buffer at .01 M concentration and pH of 3.5. Absorption of the two species were measured after a post-column reaction with Arsenazo-III. Chromatographic parameters were calculated and a calibration curves were constructed. The detection limit for the procedure was 0.7 ..mu..g/mo and 1.2..mu..g/ml for U(IV) and U(VI) respectively. When U(VI) was separated on the cation-exchange column the limit of detection was calculated to be 1 ..mu..g/ml. The direct fluorometric method for U(VI) measurement results in a detection limit of 2 ppB and upper concentration limit of 2 ppM. The effect of interfering ions in the direct method of determination could be eliminated by dilution of sample solution.« less
Dai, Xingping; Huang, Qiong; Zhou, Boting; Gong, Zhicheng; Liu, Zhaoqian; Shi, Shuyun
2013-08-15
Seven antioxidants were purified from Eucommia ulmoides Oliv. leaves using HSCCC guided by DPPH-HPLC experiment. HSCCC was successfully used to separate target antioxidants by three runs with different solvent systems after D101 column chromatography fractionation. Ethyl acetate-n-butanol-water (1:2:3, v/v/v) was selected as the optimum solvent system to purify geniposidic acid. Ethyl acetate-ethanol-water (4:1:5, v/v/v) was used to isolate caffeic acid, chlorogenic acid and ferulic acid. While three flavonoids, quercetin-3-O-sambubioside, rutin and isoquercitrin were purified by petroleum ether-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v). The structures were identified by MS and NMR. Antioxidant activities were assessed, and compounds 2-7 showed strong antioxidant activities. This is the first report about separation of antioxidants from E. ulmoides leaves by HSCCC. The results indicated that the combinative methods using DPPH-HPLC and HSCCC could be widely applied for screening and isolation of antioxidants from complex extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC
Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang
2016-01-01
A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively). PMID:26657408
Wada, Mitsuhiro; Inoue, Keiyu; Thara, Ayuko; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka
2003-02-14
A HPLC method was developed for the simultaneous determination of organic peroxides and hydrogen peroxide with peroxyoxalate chemiluminescence (PO-CL) detection following on-line UV irradiation. Organic peroxides [i.e., benzoyl peroxide (BP), tert.-butyl hydroperoxide (BHP), tert.-butyl perbenzoate (BPB), cumene hydroperoxide (CHP)] were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined by PO-CL detection. The conditions for UV irradiation and PO-CL detection were optimized by a flow injection analysis (FIA) system. Generation of hydrogen peroxide from peroxides with on-line UV irradiation also was confirmed by the FIA system by incorporating an enzyme column reactor immobilized with catalase. The separation of four organic peroxides and hydrogen peroxide by HPLC was accomplished isocratically on an ODS column within 30 min. The detection limits (signal-to-noise ratio=3) were 1.1 microM for hydrogen peroxide, 6.8 microM for BP, 31.3 microM for BHP, 7.5 microM for BPB and 1.3 microM for CHP. The proposed method was applied to the determination of BP in wheat flour.
Wolter, Marc; Lämmerhofer, Michael
2017-05-12
This work reports on the proof-of-principle of preparation of novel one step in-situ functionalized monolithic polysiloxane-polymethacrylate composite materials in capillary columns for enantioselective nano-HPLC using a thiol-ene click reaction. Quinine carbamate as functional monomer and ethylene dimethacrylate as crosslinker were both used as ene components in a thermally initiated double click-type polymerization reaction with poly(3-mercaptopropyl)methylsiloxane as thiol component in presence of 1-propanol as porogenic solvent. Elemental analysis and on-capillary fluorescence measurement proved the successful incorporation of the functional chiral monomer into the polymer. Scanning electron microscopy images revealed a macroporous polymer morphology which is typical for a nucleation and growth mechanism of pore formation. The individual microglobules appear relatively spherical and smooth indicating a non-porous nature. Nano-HPLC experiments of the chiral monolithic capillary column provided successful enantiomer separation of N-3,5-dinitrobenzoylleucine as test compound in polar organic elution mode clearly documenting the successful implementation of the proposed concept towards new functionalized monolithic composite materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Malherbe, Christiaan J.; de Beer, Dalene; Joubert, Elizabeth
2012-01-01
Biochemical detection (BCD) methods are commonly used to screen plant extracts for specific biological activities in batch assays. Traditionally, bioactives in the most active extracts were identified through time-consuming bio-assay guided fractionation until single active compounds could be isolated. Not only are isolation procedures often tedious, but they could also lead to artifact formation. On-line coupling of BCD assays to high performance liquid chromatography (HPLC) is gaining ground as a high resolution screening technique to overcome problems associated with pre-isolation by measuring the effects of compounds post-column directly after separation. To date, several on-line HPLC-BCD assays, applied to whole plant extracts and mixtures, have been published. In this review the focus will fall on enzyme-based, receptor-based and antioxidant assays. PMID:22489144
Petruczynik, Anna; Wroblewski, Karol; Szultka-Mlynska, Malgorzata; Buszewsk, Boguslaw; Karakula-Juchnowicz, Hanna; Gajewski, Jacek; Morylowska-Topolska, Justyna; Waksmundzka-Hajnosi, Monika
2017-05-01
A high performance liquid chromatography (HPLC) method for simultaneous analysis of venlafaxine and its major metabolite 0-desmethylvenlafaxine and vilazodone and its methabolite M10 have been devel- oped and validated. Chromatography was performed on the Phenyl-Hexyl column with mobile phase containing methanol, acetate buffer at pH 3.5 and diethylamine. The application of stationary phase with 7r-7c moieties and mobile phase containing diethylamine as silanol blocker lets to obtain double protection against silanols and thus very high theoretical plate numbers were obtained. The good separation selectivity, good peaks' symmetry and very high systems efficiency for all investigated compounds were obtained in applied chromatographic system. The method is very efficient and suitable for the analysis of investigated drugs and their metabolites in human serum for patients' pharmacotherapy control.
Brabcová, Ivana; Hlaváčková, Markéta; Satínský, Dalibor; Solich, Petr
2013-11-15
A simple and automated HPLC column-switching method with rapid sample pretreatment has been developed for quantitative determination of β-carotene in food supplements. Commercially samples of food supplements were dissolved in chloroform with help of saponification with 1M solution of sodium hydroxide in ultrasound bath. A 20-min sample dissolution/extraction step was necessary before chromatography analysis to transfer β-carotene from solid state of food supplements preparations (capsules,tablets) to chloroform solution. Sample volume - 3μL of chloroform phase was directly injected into the HPLC system. Next on-line sample clean-up was achieved on the pretreatment precolumn Chromolith Guard Cartridge RP-18e (Merck), 10×4.6mm, with a washing mobile phase (methanol:water, 92:8, (v/v)) at a flow rate of 1.5mL/min. Valve switch to analytical column was set at 2.5min in a back-flush mode. After column switching to the analytical column Ascentis Express C-18, 30×4.6mm, particle size 2.7μm (Sigma Aldrich), the separation and determination of β-carotene in food supplements was performed using a mobile phase consisting of 100% methanol, column temperature at 60°C and flow rate 1.5mL/min. The detector was set at 450nm. Under the optimum chromatographic conditions standard calibration curve was measured with good linearity - correlation coefficient for β-carotene (r(2)=0.999014; n=6) between the peak areas and concentration of β-carotene 20-200μg/mL. Accuracy of the method defined as a mean recovery was in the range 96.66-102.40%. The intraday method precision was satisfactory at three concentration levels 20, 125 and 200μg/mL and relative standard deviations were in the range 0.90-1.02%. The chromatography method has shown high sample throughput during column-switching pretreatment process and analysis in one step in short time (6min) of the whole chromatographic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Spectrometry (GC/MS) 525.3 24 Carbofuran High-performance liquid chromatography (HPLC) with post-column... (HPLC) with Post-Column Derivatization and Fluorescence Detection 6651 B 6651 B 6651 B-00, B-05... Chromatography/Mass Spectrometry (GC/MS) 525.3 24 Oxamyl High-performance liquid chromatography (HPLC) with post...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J; Kertesz, Vilmos
RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI modemore » was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.« less
Zhang, Chunyu; Wang, Hui; Zhang, Xiaohui; Ma, Zhongqiang; Deng, Wanmei; Hu, Ke; Ding, Mingyu
2011-12-01
A method of gel permeation chromatography-high performance liquid chromatography (GPC-HPLC) was established for the simultaneous determination of 5 main phthalate plasticizers in foods (edible oil, instant noodles, fried pastries, Saqima, etc.). The samples were extracted with petroleum ether in an ultrasonator, purified by a GPC column, and analyzed by HPLC. The chromatographic separation was achieved on a Labtech-C18 column (250 mm x 4.6 mm, 5 microm) using acetonitrile and water mixture as the mobile phases in a gradient elution mode. The developed method exhibited a linear correlation coefficient of more than 0.997 and the detection limits of 3.25 - 13.4 microg/L. The spike recoveries were between 70.4% and 113.6% with the relative standard deviations (RSDs, n = 3) of 0.3% - 5.8% at the spiked level of 50 mg/L. This method is simple, rapid and practical, and can be used for the simultaneous determination of PAEs in grease food samples.
Britton, Robert G; Fong, Isabel; Saad, Shaban; Brown, Karen; Steward, William P; Gescher, Andreas; Sale, Stewart
2009-04-01
3',4',5'-Trimethoxyflavonol (TMFol) was synthesized as a potential colorectal cancer chemopreventive agent. An HPLC method for determination for TMFol in murine plasma and tissues was developed and validated using human plasma. Analyte was separated (C(18) column; fluorescence detection 330nm excitation, 440nm emission) using 69% methanol and 0.1M ammonium acetate buffer (pH 5.1) as mobile phase. The method was linear for 50-2500ng/ml plasma and 0.05-10microg/g tissue (r>0.99). TMFol was recovered from plasma or tissues using solid phase columns or organic solvent protein precipitation, respectively. Recovery at low, medium and high concentrations was 97.6-107.3%, with inter- and intra-day coefficients of variation of <10%. The lower limit of quantitation for plasma was 50ng/ml. The method was applied to measure steady-state TMFol plasma and tissue levels in mice which received dietary TMFol (0.2%).
Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara
2013-01-01
A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by 1H-NMR, 13C-NMR, and mass spectral studies. The mass balance of the method varied between 92–99%. PMID:24482770
Ji, Xiaohu; Hu, Guixin; Zhang, Qiongyan; Wang, Fengshan; Liu, Chunhui
2016-11-05
Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid determination of minoxidil in human plasma using ion-pair HPLC.
Zarghi, A; Shafaati, A; Foroutan, S M; Khoddam, A
2004-10-29
A rapid, simple and sensitive ion-pair high-performance liquid chromatography (HPLC) method has been developed for quantification of minoxidil in plasma. The assay enables the measurement of minoxidil for therapeutic drug monitoring with a minimum detectable limit of 0.5 ng ml(-1). The method involves simple, one-step extraction procedure and analytical recovery was complete. The separation was performed on an analytical 150 x 4.6 mm i.d. microbondapak C18 column. The wavelength was set at 281 nm. The mobile phase was a mixture of 0.01 M sodium dihydrogen phosphate buffer and acetonitrile (60:40, v/v) containing 2.5 mM sodium dodecyl sulphate adjusted to pH 3.5 at a flow rate of 1 ml/min. The column temperature was set at 50 degrees C. The calibration curve was linear over the concentration range 2-100 ng ml(-1). The coefficients of variation for inter-day and intra-day assay were found to be less than 8%.
Dinesh, Diwakar Singh; Kumari, Seema; Pandit, Vibhishan; Kumar, Jainendra; Kumari, Nisha; Kumar, Prahlad; Hassan, Faizan; Kumar, Vijay; Das, Pradeep
2015-12-01
Phlebotomus argentipes (Diptera: Psychodidae), the established vector for kala-azar is presently being controlled by indoor residual spray of DDT in kala-azar endemic areas in India. Search for non-hazardous and non-toxic biodegradable active molecules from botanicals may provide cost-effective and eco-friendly alternatives to synthetic insecticides. The present study was aimed at evaluating various plant extracts from endemic and non-endemic areas of Bihar for their insecticidal activity against sandfly to identify the most effective plant extract. Bio-assay test was conducted with larvae and adult of P. argentipes with different plant extracts collected in distilled water, hexane, ethyl acetate, acetone and methanol. Thin layer chromatography (TLC), column chromatography and high performance liquid chromatography (HPLC) were conducted for detection of active molecules. Adults and larvae of sandflies exposed to the aqueous extract of Nicotiana tabacum resulted in 100 per cent mortality. The hexane extract of Clerodendrum infortunatum was found to kill 77 per cent adults but was ineffective against larvae. Bio-assay test of the ninth fraction (hexane extract-methanol phase) separated by column chromatography was found to be 63 per cent effective. The purple spot on the TLC of this fraction indicated the presence of a diterpenoid. HPLC of this fraction detected nine compounds with two peaks covering 20.44 and 56.52 per cent areas with retention time of 2.439 and 5.182 min, respectively supporting the TLC results. The column separated 9 [th] fraction of C. infortunatum extract was found to be effective in killing 63 per cent of adult P. argentipes. Compounds of this fraction need to be evaluated further for identification and characterization of the active molecule by conducting individual bio-assay tests followed by further fractionation and HPLC. Once the structure of the active molecule is identified and validated, it may be synthesized and formulated as a product.
Brünen, Sonja; Krüger, Ralf; Finger, Susann; Korf, Felix; Kiefer, Falk; Wiedemann, Klaus; Lackner, Karl J; Hiemke, Christoph
2010-02-01
We present data for a comparison of a liquid-chromatographic method coupled with tandem mass spectrometry (LC-MS/MS) and a high-performance liquid-chromatographic method with column switching and UV spectrophotometric detection. The two methods were developed for determination of naltrexone and 6beta-naltrexol in blood serum or plasma aiming to be used for therapeutic drug monitoring to guide the treatment of patients with naltrexone. For the high-performance liquid chromatography (HPLC)/UV detection, online sample cleanup was conducted on Perfect Bond C(18) material with 2% (vol/vol) acetonitrile in deionized water. Drugs were separated on a C(18) column using 11.5% (vol/vol) acetonitrile and 0.4% (vol/vol) N,N,N,N-tetramethylethylenediamine within 20 min. LC-MS/MS used naltrexone-d (3) and 6beta-naltrexol-d (4) as internal standards. After protein precipitation, the chromatographic separation was performed on a C(18) column by applying a methanol gradient (5-100%, vol/vol) with 0.1% formic acid over 9.5 min. The HPLC/UV method was found to be linear for concentrations ranging from 2 to 100 ng/ml, with a regression correlation coefficient of r (2) > 0.998 for naltrexone and 6beta-naltrexol. The limit of quantification was 2 ng/ml for naltrexone and 6beta-naltrexol. For the LC-MS/MS method the calibration curves were linear (r(2) > 0.999) from 0.5 to 200 ng/ml for both substances, and the limit of quantification was 0.5 ng/ml. The concentrations measured by the two methods correlated significantly for both substances (r(2) > 0.967; p < 0.001). Both methods could be used for therapeutic drug monitoring. The HPLC/UV method was advantageous regarding automatization and costs, whereas LC-MS/MS was superior with regard to sensitivity.
Dinesh, Diwakar Singh; Kumari, Seema; Pandit, Vibhishan; Kumar, Jainendra; Kumari, Nisha; Kumar, Prahlad; Hassan, Faizan; Kumar, Vijay; Das, Pradeep
2015-01-01
Background & objectives: Phlebotomus argentipes (Diptera: Psychodidae), the established vector for kala-azar is presently being controlled by indoor residual spray of DDT in kala-azar endemic areas in India. Search for non-hazardous and non-toxic biodegradable active molecules from botanicals may provide cost-effective and eco-friendly alternatives to synthetic insecticides. The present study was aimed at evaluating various plant extracts from endemic and non-endemic areas of Bihar for their insecticidal activity against sandfly to identify the most effective plant extract. Methods: Bio-assay test was conducted with larvae and adult of P. argentipes with different plant extracts collected in distilled water, hexane, ethyl acetate, acetone and methanol. Thin layer chromatography (TLC), column chromatography and high performance liquid chromatography (HPLC) were conducted for detection of active molecules. Results: Adults and larvae of sandflies exposed to the aqueous extract of Nicotiana tabacum resulted in 100 per cent mortality. The hexane extract of Clerodendrum infortunatum was found to kill 77 per cent adults but was ineffective against larvae. Bio-assay test of the ninth fraction (hexane extract-methanol phase) separated by column chromatography was found to be 63 per cent effective. The purple spot on the TLC of this fraction indicated the presence of a diterpenoid. HPLC of this fraction detected nine compounds with two peaks covering 20.44 and 56.52 per cent areas with retention time of 2.439 and 5.182 min, respectively supporting the TLC results. Interpretation & conclusions: The column separated 9th fraction of C. infortunatum extract was found to be effective in killing 63 per cent of adult P. argentipes. Compounds of this fraction need to be evaluated further for identification and characterization of the active molecule by conducting individual bio-assay tests followed by further fractionation and HPLC. Once the structure of the active molecule is identified and validated, it may be synthesized and formulated as a product. PMID:26905249
Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Jones, Donald J L
2012-06-01
Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 µm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 µm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 µm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 µm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 µm average particle size materials for clinical sample analysis. Copyright © 2011 John Wiley & Sons, Ltd.
[Study on HPLC fingerprint of Oldenlandia diffusa].
Chen, Yan; Yao, Zhi-Hong; Dai, Yi; Cheng, Hong; Wen, Li-Rong; Zhou, Guang-Xiong; Yao, Xin-Sheng
2012-06-01
To establish the HPLC fingerprint chromatogram of Oldenlandia diffusa coupled with chemometrics means for the quality control of multi-batches of medicinal material. The separation was developed on C18 column(4.6 mm x 250 mm, 5 microm) by gradient elution with acetonitrile-water(both containing 0.1 per thousand (V/V) ocetic acid) as mobile phase at a flow rate of 0.8 mL/min, the detection wavelength at 238 nm and column temperature at 30 degrees C. The HPLC fingerprint chromatogram of Oldenlandia diffusa was set up and the main characteristic peaks were identified by comparing with chemical reference substance. The quality of 22 batches of medicinal material was evaluated by similarity assay as well as principal component analysis (PCA) and cluster analysis. The established HPLC fingerprint chromatogram of Oldenlandia diffusa was specific, precise, reproducible and stable. 11 peaks were chemically identified. The similarity of 17 batches of Oldenlandia diffusa was obviously higher than 5 batches of adulterants. PCA showed that 17 batches of Oldenlandia diffusa were in a domain and 5 batches of adulterants were far apart from the domain. The cluster analysis of the 22 batches of medicinal material showed that 17 batches of Oldenlandia diffusa were in a cluster while 5 batches of adulterants were excluded. Further cluster analysis was carried out for the quality consistency of 17 batches of Oldenlandia diffusa and accordingly they were devided into 4 clusters. With the combination of chemometrics means, the HPLC fingerprint chromatogram provides a method for evaluation of authenticity and quality control of Oldenlandia diffusa, which is favorable to improve overall quality control of Oldenlandia diffusa.
Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang
2017-04-07
Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.
Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M
2010-03-01
The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).
Heinänen, M; Barbas, C
2001-03-01
A method is described for ambroxol, trans-4-(2-amino-3,5-dibromobenzylamino) cyclohexanol hydrochloride, and benzoic acid separation by HPLC with UV detection at 247 nm in a syrup as pharmaceutical presentation. Optimal conditions were: Column Symmetry Shield RPC8, 5 microm 250 x 4.6 mm, and methanol/(H(3)PO(4) 8.5 mM/triethylamine pH=2.8) 40:60 v/v. Validation was performed using standards and the pharmaceutical preparation which contains the compounds described above. Results from both standards and samples show suitable validation parameters. The pharmaceutical grade substances were tested by factors that could influence the chemical stability. These reaction mixtures were analysed to evaluate the capability of the method to separate degradation products. Degradation products did not interfere with the determination of the substances tested by the assay.
Carotenoids from Foods of Plant, Animal and Marine Origin: An Efficient HPLC-DAD Separation Method.
Strati, Irini F; Sinanoglou, Vassilia J; Kora, Lintita; Miniadis-Meimaroglou, Sofia; Oreopoulou, Vassiliki
2012-12-19
Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose) egg yolks through the use of a modified gradient elution HPLC method with a C 30 reversed-phase column for the efficient separation and analysis of carotenoids and their cis -isomers. Elution time was reduced from 60 to 45 min without affecting the separation efficiency. All- trans lycopene predominated in tomato waste, followed by all- trans -β-carotene, 13- cis -lutein and all- trans lutein, while minor amounts of 9- cis -lutein, 13- cis -β-carotene and 9- cis -β-carotene were also detected. Considering the above findings, tomato waste is confirmed to be an excellent source of recovering carotenoids, especially all- trans lycopene, for commercial use. Xanthophylls were the major carotenoids of avian egg yolks, all- trans lutein and all- trans zeaxanthin in duck and goose egg yolk, respectively. In the Penaeus kerathurus prawn, several carotenoids (zeaxanthin, all- trans -lutein, canthaxanthin, cryptoxanthin, optical and geometrical astaxanthin isomers) were identified in considerable amounts by the same method. A major advantage of this HPLC method was the efficient separation of carotenoids and their cis -isomers, originating from a wide range of matrices.
Chen, Jun; Chen, Jianwei; Wang, Sijia; Zhou, Guangmin; Chen, Danqing; Zhang, Huawei; Wang, Hong
2018-04-02
A novel, green, rapid, and precise polar RP-HPLC method has been successfully developed and screened for ectoine high-yield strain in marine bacteria. Ectoine is a polar and extremely useful solute which allows microorganisms to survive in extreme environmental salinity. This paper describes a polar-HPLC method employed polar RP-C18 (5 μm, 250 × 4.6 mm) using pure water as the mobile phase and a column temperature of 30 °C, coupled with a flow rate at 1.0 mL/min and detected under a UV detector at wavelength of 210 nm. Our method validation demonstrates excellent linearity (R 2 = 0.9993), accuracy (100.55%), and a limit of detection LOQ and LOD of 0.372 and 0.123 μgmL -1 , respectively. These results clearly indicate that the developed polar RP-HPLC method for the separation and determination of ectoine is superior to earlier protocols.
Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.
Valto, Piia; Knuutinen, Juha; Alén, Raimo
2011-04-01
A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface confined ionic liquid as a stationary phase for HPLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; Baker, Gary A; Baker, Sheila N
Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less
Pereira, A V; Cass, Q B
2005-11-05
A bidimensional HPLC method for the simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) in bovine milk has been developed and validated. After centrifugation, aliquots (150 microl) of milk samples were directly injected to a column-switching HPLC system. At the first step a RAM octyl-BSA column was employed to automatically remove proteins that otherwise would interfere with milk analysis. The mobile phase 0.01 M phosphate buffer pH 6.0:acetonitrile (95:5, v/v) was used in the first 5 min for the elution of milk proteins and then 0.01 M phosphate buffer pH 6.0:acetonitrile (83:17, v/v) for transfer SMX and TMP to the analytical column. The separation of SMX and TMP from one another and from other remaining milk components was performed on an octyl column using the mobile phase 0.01 M phosphate buffer pH 5.0:acetonitrile (82:18, v/v), which were detected by UV at 265 nm. The calibration graphs were linear in the concentration ranges of 25-800 ng/ml and 50-400 ng/ml for SMX and TMP, respectively. The intra- and inter-assay coefficients of variation were less than 15% for both drugs. The validated method was applied to the analysis of milk samples of twelve (two groups of six) cows after administration (intramuscular or subcutaneous) of a single recommended therapeutic dose of the SMX-TMP combination.
Kifle, Dejene; Wibetoe, Grethe
2013-09-13
One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.
Yi, Yan; Zhang, Qing-Wen; Li, Song-Lin; Wang, Ying; Ye, Wen-Cai; Zhao, Jing; Wang, Yi-Tao
2012-11-15
A pressurised liquid extraction (PLE) and high performance liquid chromatography (HPLC) method was developed for simultaneous quantification of six major flavonoids in edible flower of Hylocereus undatus. In order to achieve the baseline separation of two pairs of isomers, the HPLC conditions were optimised with different kind of reversed phase columns and mobile phase gradient programs. In addition, the solvent concentration, extraction temperature, extraction time and flush cycle for PLE were also optimised. Zorbax SB-C8 (100×2.1 mm, 1.8 μm) column was chosen with acetonitrile and water containing 0.1% trifluoroacetic acid as mobile phase, the six analytes were eluted with baseline separation. The calibration curves showed good linearity (r(2)>0.9994) with LODs and LOQs less than 0.90 and 3.60 ng respectively. The RSDs for intra- and inter-day repeatability was not more than 1.09% and 1.79% respectively. The overall recovery of the assay was 96.9-105.2%. The sample was stable for at least 12 h. The newly established method was successfully applied to quantify six flavonoids in different parts of "Bawanghua", and the commercial samples from different locations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Churchwell, Mona I; Twaddle, Nathan C; Meeker, Larry R; Doerge, Daniel R
2005-10-25
Recent technological advances have made available reverse phase chromatographic media with a 1.7 microm particle size along with a liquid handling system that can operate such columns at much higher pressures. This technology, termed ultra performance liquid chromatography (UPLC), offers significant theoretical advantages in resolution, speed, and sensitivity for analytical determinations, particularly when coupled with mass spectrometers capable of high-speed acquisitions. This paper explores the differences in LC-MS performance by conducting a side-by-side comparison of UPLC for several methods previously optimized for HPLC-based separation and quantification of multiple analytes with maximum throughput. In general, UPLC produced significant improvements in method sensitivity, speed, and resolution. Sensitivity increases with UPLC, which were found to be analyte-dependent, were as large as 10-fold and improvements in method speed were as large as 5-fold under conditions of comparable peak separations. Improvements in chromatographic resolution with UPLC were apparent from generally narrower peak widths and from a separation of diastereomers not possible using HPLC. Overall, the improvements in LC-MS method sensitivity, speed, and resolution provided by UPLC show that further advances can be made in analytical methodology to add significant value to hypothesis-driven research.
Ion-Exclusion Chromatography for Analyzing Organics in Water
NASA Technical Reports Server (NTRS)
Sauer, Richard; Rutz, Jeffrey A.; Schultz, John R.
2006-01-01
A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion-exclusion resin; heretofore, this column has been sold for use in analyzing monosaccharides and food softeners, but not for analyzing water supplies. The prior technique commonly used to analyze water for urea content has been one of high-performance liquid chromatography (HPLC), with reliance on hydrophobic interactions between analytes in a water sample and long-chain alkyl groups bonded to an HPLC column. The prior technique has proven inadequate because of a strong tendency toward co-elution of urea with other compounds. Co-elution often causes the urea and other compounds to be crowded into a narrow region of the chromatogram (see left part of figure), thereby giving rise to low chromatographic resolution and misidentification of compounds. It is possible to quantitate urea or another analyte via ultraviolet- and visible-light absorbance measurements, but in order to perform such measurements, it is necessary to dilute the sample, causing a significant loss of sensitivity. The ion-exclusion resin used in the improved technique is sulfonated polystyrene in the calcium form. Whereas the alkyl-chain column used in the prior technique separates compounds on the basis of polarity only, the ion-exclusion-resin column used in the improved technique separates compounds on the basis of both molecular size and electric charge. As a result, the degree of separation is increased: instead of being crowded together into a single chromatographic peak only about 1 to 2 minutes wide as in the prior technique, the chromatographic peaks of different compounds are now separated from each other and spread out over a range about 33 minutes wide (see right part of figure), and the urea peak can readily be distinguished from the other peaks. Although the analysis takes more time in the improved technique, this disadvantage is offset by two important advantages: Sensitivity is increased. The minimum concentration of urea that can be measured is reduced (to between 1/5 and 1/3 of that of the prior technique) because it is not necessary to dilute the sample. The separation of peaks facilitates the identification and quantitation of the various compounds. The resolution of the compounds other than urea makes it possible to identify those compounds by use of mass spectrometry.
Hild, J; Gertz, C
1980-02-01
For the quantitative determination of preservatives in food, analyses were carried out by means of GLC, HPLC, and TLC according to the TAS-method. Using the alkaline extract (sample preparation see part I) the preservatives can be analysed as free acid or appropriate ester out the same GLC-column without any interference from coextractives. A fast and accurate HPLC determination can be achieved by direct injection of the alkaline extract. All preservatives were well separated and detected at a wavelength of 225 resp. 232 nm. As a quick test for the qualitative estimation the TLC (TAS) method is suggested and a suitable solvent system is proposed.
Bailey, Steven W; Ayling, June E
2013-11-08
Although many countries have fortified their grain supplies with folic acid (FA) to decrease the incidence of neural tube defects, others have not due to concerns that this synthetic folate might have some adverse effects. Persistent unmetabolized FA has been found even in plasma from fasted subjects. To facilitate measurement of low levels of folic acid in human plasma, post-column coulometric oxidative cleavage was used to convert poorly fluorescent FA into a highly fluorescent compound determined to be 6-formyl-pterin. To minimize sample work-up and maximize recovery, column-switching HPLC transferred a window of eluate containing the FA from the first column (C8) onto a second column (phenyl-hexyl). The pH of two mobile phases were adjusted to be above and then below a pK of the FA α-carboxyl group, thus promoting separation from compounds coeluting from the C8-column. This permitted sample preparation using only a simple high recovery protein precipitation. Definitive identification of FA in human plasma was accomplished by duplicate injections of sample with the electrochemical voltage set above and below its half-potential. The LOD (S/N=3) was 0.10 nM. The intra- and inter-assay CV's were 2.3% and 5%, respectively. Comparison of these results with those obtained by HPLC/MS/MS with stable isotope internal standard showed a slope of 1.00 ± 0.019. This simple, sensitive, and repeatable assay facilitates a more thorough investigation of the response of various human populations to folic acid intake. Post-column differential coulometric electrochemistry can expand the variety of compounds amenable to fluorescence detection. Copyright © 2013 Elsevier B.V. All rights reserved.
Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed
2009-01-01
The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.
Ding, Shujing; Dudley, Ed; Chen, Lijuan; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth
2006-01-01
Ginkgo biloba is one of the most popular herbal nutritional supplements, with terpene lactones and flavonoids being the two major active components. An on-line purification high-performance liquid chromatography/mass spectrometry (HPLC/MS) method was successfully developed for the quantitative determination of flavonoids and terpene lactones excreted in human urine after ingesting the herbal supplement. Satisfactory separation was obtained using a C18 capillary column made in-house with sample clean-up and pre-concentration achieved using a C18 pre-column with column switching. High selectivity and limits of detection of 1-18 ng/mL were achieved using a selected ion monitoring (SIM) scan in negative ion mode; the on-line solid-phase extraction (SPE) recovery of the active components in Ginkgo biloba determined in this study was greater than 75%. Copyright 2006 John Wiley & Sons, Ltd.
Olmo, B; García, A; Marín, A; Barbas, C
2005-03-25
The development of new pharmaceutical forms with classical active compounds generates new analytical problems. That is the case of sugar-free sachets of cough-cold products containing acetaminophen, phenylephrine hydrochloride and chlorpheniramine maleate. Two cyanopropyl stationary phases have been employed to tackle the problem. The Discovery cyanopropyl (SUPELCO) column permitted the separation of the three actives, maleate and excipients (mainly saccharine and orange flavour) with a constant proportion of aqueous/ organic solvent (95:5, v/v) and a pH gradient from 7.5 to 2. The run lasted 14 min. This technique avoids many problems related to baseline shifts with classical organic solvent gradients and opens great possibilities to modify selectivity not generally used in reversed phase HPLC. On the other hand, the Agilent Zorbax SB-CN column with a different retention profile permitted us to separate not only the three actives and the excipients but also the three known related compounds: 4-aminophenol, 4-chloracetanilide and 4-nitrophenol in an isocratic method with a run time under 30 min. This method was validated following ICH guidelines and validation parameters showed that it could be employed as stability-indicating method for this pharmaceutical form.
Chen, Chao-Jung; Chen, Wei-Yun; Tseng, Mei-Chun; Chen, Yet-Ran
2012-01-03
In this study, an easy method to fabricate a durable in-capillary frit was developed for use in nanoflow liquid chromatography (nanoLC). A small orifice was tunneled into the sol-gel frit during the polymerization process resulting in the simple fabrication of a tunnel frit. A short packing tunnel frit column (2 cm, C(18) particles) was able to sustain over 10,000 psi continuous liquid flow for 10 days without observation of particle loss, and back pressure variation was less than 5%. The tunnel frit was successfully applied to the fabrication of nanoflow ultra high-performance liquid chromatography (nano-UHPLC) trap and analytical columns. In the analysis of tryptic peptides, the tunnel frit trap and analytical columns were demonstrated to have high separation efficiency and sensitivity. In analysis of phosphopeptides, the use of the nonmetallic tunnel frit column showed better sensitivity than the metallic frit column. This design can facilitate the preparation of nano-HPLC and nano-UHPLC columns and the packing material can easily be refilled when the column is severely contaminated or clogged. © 2011 American Chemical Society
Karthikeyan, Ramadoss; Devadasu, Chapala; Srinivasa Babu, Puttagunta
2015-01-01
P-coumaric acid is a nonflavonoid phenolic acid and is a major constituent of the species Cynodon dactylon Linn. (Pers.). In this study isolation of P-coumaric acid was achieved by preparative TLC and the compound thus isolated was characterised by UV, mass, and H1 NMR spectral analysis. An isocratic RP-HPLC method was developed for the estimation of P-coumaric acid from methanolic extracts of durva grass. The chromatographic separations were achieved by RP-C18 column (250 mm × 4.6 mm, 5 μ), Shimadzu LC-20AT Prominence liquid chromatograph, and a mobile phase composed of water : methanol : glacial acetic acid (65 : 34 : 1 v/v). The flow rate was 1.0 mL/min and the analyses of column effluents were performed using UV-visible detector at 310 nm. Retention time of P-coumaric acid was found to be 6.617 min. This method has obeyed linearity over the concentration range of 2–10 μg/mL and the regression coefficient obtained from linearity plot for P-coumaric acid was found to be 0.999. RP-HPLC method was validated in pursuance of ICH guidelines. PMID:25788944
Contents of lecithin and choline in crude drugs.
Yamasaki, K; Kikuoka, M; Nishi, H; Kokusenya, Y; Miyamoto, T; Matsuo, M; Sato, T
1994-01-01
The determination of lecithin and choline in crude drugs was established by a combination of high performance liquid chromatography (HPLC) with electrochemical detector (ECD) and enzyme reaction. Lecithin in crude drugs extracted with a mixture of chloroform-methanol (2:1) at room temperature was hydrolyzed by phospholipase D. The hydrolyzate was injected to HPLC, and choline was separated from impurities by reverse phase column. The choline was converted to betaine and hydrogen peroxide by passing through column packed with immobilized choline oxidase. This hydrogen peroxide was detected by ECD. The peak area of hydrogen peroxide derived from lecithin was proportional to the concentration of lecithin from 0.10 to 1.52 microgram/ml. Choline in crude drugs was extracted with ethanol under reflux and determined under the same HPLC conditions as lecithin. The peak area of hydrogen peroxide derived from choline was proportional to the concentration of choline from 0.01 to 0.45 microgram/ml. The contents of lecithin and choline in 31 kinds of crude drugs were determined by these established methods. The results showed that Cervi Parvum Cornu, Kokurozin, Foenigraeci Semen and Psoraleae Semen contained more lecithin than other crude drugs, while Angelicae Radix, Foenigraeci Semen, Psoraleae Semen, and especially Hippocampus were found to contain more choline than other crude drugs.
Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo
2018-06-01
Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.
Bazylak, Grzegorz; Malak, Anna; Ali, Imran; Borowiak, Teresa; Dutkiewicz, Grzegorz
2008-06-01
Retention profiles in series of the neutral and highly hydrophobic 1,3,4-oxadiazoles containing chlorophenylurea and halogenobenzamide moiety and indicating analgesic activity were determined in the isocratic standard- and narrow-bore HPLC systems employing, respectively, various octadecylsilica and different calixarene bonded stationary phases. When acetonitrile - 2.65 mM phosphoric acid (55 : 45, %, v/v), pH* 3.25, mobile phase was applied retention of these compounds increased with decline of their overall hydrophobicity according to the general preference of more polar compounds by calixarene cavity in time of its non-specific host-guest supramolecular interactions with halogenated substances. The size of calixarene nanocavity and its upper-rim substitution did not change the observed retention order, resolution and selectivity of separation for oxadiazoles. Compared to the retention on the non-end-capped and the highly-end-capped octadecylsilica HPLC column a most improved separation of some regioisomers of halogenated 1,3,4-oxadiazoles were observed on both used calixarene-type HPLC supports. In addition, preliminary data on the self-assembled supramolecular crystal structure of exemplary 1,3,4-oxadiazolchlorophenylurea with cis-elongated conformation was reported and formation of the monovalent inclusion host-guest complexes between 1,3,4-oxadiazoles and each calixarene-type stationary phase was studied with molecular modelling MM+ and AM1 methods. The structural, isomeric and energetic factors leading to the hydrogen bond stabilized inclusion complexes between these species were considered and used for explanation of observed retention sequence and selectivity of 1,3,4-oxadiazoles separation in applied calixarene-based HPLC systems. All these data would be useful in future development of optimized procedures enabling encapsulation of 1,3,4-oxadiazolurea-type drugs with calixarenes.
Measurement of menadione in urine by HPLC
USDA-ARS?s Scientific Manuscript database
Mammals convert phylloquinone to MK-4, with menadione as a possible intermediate. We developed and validated a method measuring urinary menadione. A high performance liquid chromatography (HPLC) method with a C30 column, fluorescence detection and post-column zinc reduction was developed. The mobile...
Ou, Zong-Quan; Schmierer, David M; Rades, Thomas; Larsen, Lesley; McDowell, Arlene
2013-02-01
To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity. Separation of phytochemicals and simultaneous assessment of antioxidant activity were performed online using HPLC and post-column reaction with a free-radical reagent (2, 2-diphenylpicrylhydrazyl, DPPH). Active compounds were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. We applied the online HPLC-DPPH radical assay to evaluate antioxidants in leaves from different positions on the plant and to assess the effect of pre-treatment of leaves with liquid N(2) before grinding, extraction time, extraction temperature and method of concentrating extracts. Key antioxidants identified in S. oleraceus leaf extracts were caftaric acid, chlorogenic acid and chicoric acid. Middle leaves contained the highest total amount of the three key antioxidant compounds, consisting mainly of chicoric acid. Pre-treatment with liquid N(2), increasing the extraction temperature and time and freeze-drying the extract did not enhance the yield of the key antioxidants. The online HPLC-DPPH radical assay was validated as a useful screening tool for investigating individual antioxidants in leaf extracts. Optimized extraction conditions were middle leaves pre-treated with liquid N(2), extraction at 25°C for 0.5 h and solvent removal by rotary evaporation. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.
Reising, Arved E; Schlabach, Sabine; Baranau, Vasili; Stoeckel, Daniela; Tallarek, Ulrich
2017-09-01
Column wall effects are well recognized as major limiting factor in achieving high separation efficiency in HPLC. This is especially important for modern analytical columns packed with small particles, where wall effects dominate the band broadening. Detailed knowledge about the packing microstructure of packed analytical columns has so far not been acquired. Here, we present the first three-dimensional reconstruction protocol for these columns utilizing focused ion-beam scanning electron microscopy (FIB-SEM) on a commercial 2.1mm inner diameter×50mm length narrow-bore analytical column packed with 1.7μm bridged-ethyl hybrid silica particles. Two sections from the packed bed are chosen for reconstruction by FIB-SEM: one from the bulk packing region of the column and one from its critical wall region. This allows quantification of structural differences between the wall region and the center of the bed due to effects induced by the hard, confining column wall. Consequences of these effects on local flow velocity in the column are analyzed with flow simulations utilizing the lattice-Boltzmann method. The reconstructions of the bed structures reveal significant structural differences in the wall region (extending radially over approximately 62 particle diameters) compared to the center of the column. It includes the local reduction of the external porosity by up to 10% and an increase of the mean particle diameter by up to 3%, resulting in a decrease of the local flow velocity by up to 23%. In addition, four (more ordered) layers of particles in the direct vicinity of the column wall induce local velocity fluctuations by up to a factor of three regarding the involved velocity amplitudes. These observations highlight the impact of radial variations in packing microstructure on band migration and column performance. This knowledge on morphological peculiarities of column wall effects helps guiding us towards further optimization of the packing process for analytical HPLC columns. Copyright © 2017 Elsevier B.V. All rights reserved.
Shim, You-Shin; Kim, Jong-Chan; Jeong, Seung-Weon
2016-01-01
A simultaneous analytical method for piperine, capsaicin, and dihydrocapsaicin in Korean instant-noodle soup base using HPLC was validated in terms of precision, accuracy, sensitivity, and linearity. The HPLC separation was performed on a reversed-phase C18 column (5 μm particle size, 4.6 mm id, 250 mm length) using a UV detector fixed at 280 nm. The LOD and LOQ of the HPLC analyses ranged from 0.25 to 1.03 mg/kg. The intraday and interday precisions of the individual piperine, capsaicin, and dihydrocapsaicin were <10.55%, and the recovery values ranged from 85.43 to 94.68%. The calibration curves exhibited good linearity (r(2) = 0.999) within the tested ranges. These results suggest that the analytical method in this study can be used to classify Korean instant noodles based on their levels of spiciness.
Temova-Rakuša, Žane; Srečnik, Eva; Roškar, Robert
2017-09-01
A precise, accurate and rapid HPLC-UV method for simultaneous determination of fat-soluble vitamins (vitamin D3, E-acetate, K1, β-carotene, A-palmitate) and coenzyme Q10 was developed and validated according to ICH guidelines. Optimal chromatographic separation of the analytes in minimal analysis time (8 min) was achieved on a Luna C18 150 × 4.6 mm column using a mixture of acetonitrile, tetrahydrofuran and water (50:45:5, v/v/v). The described reversed phase HPLC method is the first published for quantification of these five fat-soluble vitamins and coenzyme Q10 within a single chromatographic run. The method was further applied for quantification of the analytes in selected liquid and solid dosage forms, registered as nutritional supplements and prescription medicines, which confirmed its suitability for routine analysis.
Molinelli, Alejandro R; Rose, Charles H
2016-01-01
Voriconazole and posaconazole are triazole antifungal compounds used in the treatment of fungal infections. Therapeutic drug monitoring of both compounds is recommended in order to guide drug dosing to achieve optimal blood concentrations. In this chapter we describe an HPLC-ESI-MS/MS method for the quantification of both compounds in human plasma or serum following a simple specimen preparation procedure. Specimen preparation consists of protein precipitation using methanol and acetonitrile followed by a cleanup step that involves filtration through a cellulose acetate membrane. The specimen is then injected into an HPLC-ESI-MS/MS equipped with a C18 column and separated over an acetonitrile gradient. Quantification of the drugs in the specimen is achieved by comparing the response of the unknown specimen to that of the calibrators in the standard curve using multiple reaction monitoring.
Ahmed, Amal B; Abdelrahman, Maha M; Abdelwahab, Nada S; Salama, Fathy M
2016-11-01
Newly established TLC-densitometric and RP-HPLC methods were developed and validated for the simultaneous determination of Piracetam (PIR) and Vincamine (VINC) in their pharmaceutical formulation and in the presence of PIR and VINC degradation products, PD and VD, respectively. The proposed TLC-densitometric method is based on the separation and quantitation of the studied components using a developing system that consists of chloroform-methanol-glacial acetic acid-triethylamine (8 + 2 + 0.1 + 0.1, v/v/v/v) on TLC silica gel 60 F254 plates, followed by densitometric scanning at 230 nm. On the other hand, the developed RP-HPLC method is based on the separation of the studied components using an isocratic elution of 0.05 M KH2PO4 (containing 0.1% triethylamine adjusted to pH 3 with orthophosphoric acid)-methanol (95 + 5, v/v) on a C8 column at a flow rate of 1 mL/min with diode-array detection at 230 nm. The developed methods were validated according to International Conference on Harmonization guidelines and demonstrated good accuracy and precision. Moreover, the developed TLC-densitometric and RP-HPLC methods are suitable as stability-indicating assay methods for the simultaneous determination of PD and VD either in bulk powder or pharmaceutical formulation. The results were statistically compared with those obtained by the reported RP-HPLC method using t- and F-tests.
2011-03-01
of Betti Reaction Product Enantiomers : Absolute Configuration and Inhibition of Botulinum Neurotoxin A John H. Cardellina II,† Rebecca C. Vieira...observing sufficient resolution of the two enantiomers on a Chiralcel OD column to permit semipreparative purification of adequate quantities of (þ)-1...comparison of the botulinum neurotoxin serotype A (BoNT/A) inhibitory activity of the (þ) and () enantiomers of 1 was accomplished via an HPLC-based assay
Dubois, M; Fluchard, D; Sior, E; Delahaut, P
2001-04-05
We present an electrospray high-performance liquid chromatographic tandem mass spectrometric (HPLC-MS-MS) method capable of determining in several tissues (muscle, kidney, liver), eggs and milk the following five macrolides: tylosin, tilmicosin, spiramycin, josamycin, erythromycin. Roxithromycin was used as an internal standard. The method uses extraction in a Tris buffer at pH 10.5, followed by protein precipitation with sodium tungstate and clean-up on an Oasis solid-phase extraction column. The HPLC separation was performed on a Purospher C18 column (125 x 3 mm I.D.) protected by a guard column, with a gradient of aqueous 0.1 M ammonium acetate-acetonitrile as the mobile phase at a flow-rate of 0.7 ml min(-1). Protonated molecules served as precursor ions for electrospray ionisation in the positive ion mode and four product ions were chosen for each analyte for multiple reaction monitoring (MRM). A validation study was conducted to confirm the five macrolides by MRM HPLC-MS-MS analysis of a negative control and fortified samples. All of the samples analysed were confirmed with four ions. The ion ratio reproducibility limit ranged from 2.4 to 15%. All compounds could be detected and quantified at half-maximum residue limits (MRLs). The method is specific, quantitative and reproducible enough to conform to European Union recommendations within the concentration range 0.5 MRL-2 MRL (accuracy: 80 to 110%, relative standard deviation: 2 to 13%). This whole method allows extraction and analysis of up to 50 samples per day.
Bao, Lei; Oles, Carolyn J; White, Kevin D; Sapp, Chelsea; Trucksess, Mary W
2011-01-01
Deoxynivalenol (DON), also known as vomitoxin, belongs to a class of naturally occurring mycotoxins produced by Fusarium spp. DON, 12, 13-epoxy-3,7 trihydroxytrichothec-9-en-8-one, is one of the most frequently detected mycotoxins in agricultural commodities worldwide. A method consisting of extraction, filtration, column cleanup, and RP-HPLC-UV separation and quantitation was validated for the determination of DON in grains (rice and barley), grain products (whole wheat flour, white flour, wheat germ, and wheat bran), and processed foods (bread, breakfast cereals, and pretzels). A 25 g test portion was extracted with 100 mL acetonitrile-water (84 + 16, v/v). After blending for 3 min, the supernatant was applied to a multifunctional column (MycoSep 225). The purified filtrate (2 mL) was evaporated to dryness and redissolved in the mobile phase. The toxins were then subjected to RP-HPLC-UV analysis. The accuracy and repeatability characteristics of the method were determined. Recoveries of DON added at levels ranging from 0.5 to 1.5 microg/g for all test matrixes were from 75 to 98%. SD and RSD(r) ranged from 0.7 to 11.6% and 0.9 to 12.7%, respectively. Within-laboratory HorRat values were from 0.1 to 0.7 for all matrixes analyzed. The method was found to meet AOAC method performance criteria for grains, grain products, and processed foods. The identity of DON in naturally contaminated test sample extracts was confirmed by HPLC/MS/MS analysis.
Fanali, Chiara; Dugo, Laura; D'Orazio, Giovanni; Lirangi, Melania; Dachà, Marina; Dugo, Paola; Mondello, Luigi
2011-01-01
Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 μm id and a 2.1 mm id narrow-bore C(18) column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 μg/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e.g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of Menadione in urine by HPLC
USDA-ARS?s Scientific Manuscript database
Menadione may be an important metabolite of vitamin K that is excreted in urine. A high performance liquid chromatography (HPLC) method with a C30 column, fluorescence detection and post-column zinc reduction was developed to measure menadione in urine. The mobile phase was composed of 95% methanol...
Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan
2016-11-04
High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests comparing with the commercial one currently available. The high column efficiency and good reproducibility present that the large-porous silica microspheres obtained can be used as a matrix for peptide and protein separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J
2005-04-01
The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.
Meng, X; Ma, Q; Bai, H; Wang, Z; Han, C; Wang, C
2017-08-01
A comprehensive methodology for the simultaneous determination of 15 multiclass organic UV filters in sunscreen cosmetics was developed using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Sunscreen cosmetics of various matrices, such as toning lotion, emulsion, cream and lipstick, were analysed. Ultrasound-assisted extraction (UAE) was utilized as the extraction technique for sample preparation. The 15 UV filters were chromatographically separated by two groups of mobile phase system on an XBridge C 18 analytical column (150 × 2.1 mm I.D., 3.5 μm particle size) and quantified using HPLC-ESI-MS/MS. The quantitation was performed using the external calibration method. The established method was validated in terms of linearity, sensitivity, specificity, accuracy, stability, intraday and interday precisions, recovery and matrix effect. The method was also applied for the determination of UV filters in commercial sunscreen cosmetics. The experimental results demonstrated that the developed method was accurate, rapid and sensitive and can be used for the analytical control of sunscreen cosmetics. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Ding, M; Yang, H; Xiao, S; Chen, P
1999-09-01
A reversed-phase high performance liquid chromatographic(RP-HPLC) method for the direct determination of three purine bases(theobromin, theophyllin and caffeine) in tea was developed. An ODS column with Zorbax SB-C18(4.6 mm i.d. x 250 mm, 5 microns) was employed. The aqueous solution of methanol containing 0.05% of acetic acid and 0.25% of N,N-dimethylformamide(DMF) was used as eluent with a flow rate of 0.8 mL/min. In this method, the aqueous extract of tea can be injected into HPLC directly, but in current HPLC methods for purine bases the coexisted tea polyphenols must be pre-separated. The three purine bases in tea were separated without any interference from the coexisted tea polyphenols. This method is simple (without any special sample pretreatment) and sensitive with detection limits (S/N = 3) of 0.7, 0.9 and 1.8 mg/L for theobromin, theophyllin and caffeine respectively. The linear range of the calibration curve of peak area for the three purine bases were from 6 mg/L to 1,000 mg/L with a correlation coefficient (r) of 0.998-0.999.
Can, Nafiz O; Arli, Goksel
2010-01-01
Development and validation of an RP-HPLC method for determination of levetiracetam in pharmaceutical tablets is described. The separation and quantification of levetiracetam and caffeine (internal standard) were performed using a single analytical procedure with two different types of stationary phases, conventional Phenomenex Gemini C18 (100 x 4.6 mm, 5 microm) and Merck Chromolith Performance RP18e (100 x 4.6 mm, macropore size 2 mm, micropore size 13 nm) monolithic silica. Five-microliter aliquots of samples were injected into the system and eluted using water-acetonitrile (90 + 10, v/v) mobile phase pumped at the rate of 1 mL/min. The analyte peaks were detected at 200 nm using a diode array detector with adequate resolution. Validation studies were performed using the method recommended by the International Conference on Harmonization, the U.S. Pharmacopeia, and AOAC INTERNATIONAL, which includes accuracy, precision, range, limits, robustness, and system suitability parameters. Levetiracetam and caffeine were detected in about 7 min using the conventional column, whereas less than 5 min was required when the monolithic column was used. Calibration plots had r values close to unity in the range of 0.8-8.0 microg/mL. Assay of levetiracetam in a tablet formulation was demonstrated as an application to real samples.
Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella
2013-02-01
Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K
2009-08-01
Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different chemistries and molecular sizes.
Villa-Lojo, M C; Alonso-Rodríguez, E; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D
2002-06-10
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.
Han, Hai; Miyoshi, Yurika; Ueno, Kyoko; Okamura, Chieko; Tojo, Yosuke; Mita, Masashi; Lindner, Wolfgang; Zaitsu, Kiyoshi; Hamase, Kenji
2011-11-01
For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance. Copyright © 2011 Elsevier B.V. All rights reserved.
Beneito-Cambra, M; Herrero-Martínez, J M; Ramis-Ramos, G; Lindner, W; Lämmerhofer, M
2011-10-14
Enzymes of several classes used in the formulations of cleaning products were characterized by trypsin digestion followed by HPLC with UV detection. A polymeric monolithic column (ProSwift) was used to optimize the separation of both the intact enzymes and their tryptic digests. This column was adequate for the quality control of raw industrial enzyme concentrates. Then, monolithic and microparticulate columns were compared for peptide analysis. Under optimized conditions, the analysis of tryptic digests of enzymes of different classes commonly used in the formulation of cleaning products was carried out. Number of peaks, peak capacity and global resolution were obtained in order to evaluate the chromatographic performance of each column. Particulate shell-core C18 columns (Kinetex, 2.6 μm) showed the best performance, followed by a silica monolithic column (Chromolith RP-18e) and the conventional C18 packings (Gemini, 5 μm or 3 μm). A polymeric monolithic column (ProSwift) gave the worst performances. The proposed method was satisfactorily applied to the characterization of the enzymes present in spiked detergent bases and commercial cleaners. Copyright © 2011 Elsevier B.V. All rights reserved.
Guillaume, Y C; Peyrin, E
2000-03-06
A chemometric methodology is proposed to study the separation of seven p-hydroxybenzoic esters in reversed phase liquid chromatography (RPLC). Fifteen experiments were found to be necessary to find a mathematical model which linked a novel chromatographic response function (CRF) with the column temperature, the water fraction in the mobile phase and its flow rate. The CRF optimum was determined using a new algorithm based on Glover's taboo search (TS). A flow-rate of 0.9 ml min(-1) with a water fraction of 0.64 in the ACN-water mixture and a column temperature of 10 degrees C gave the most efficient separation conditions. The usefulness of TS was compared with the pure random search (PRS) and simplex search (SS). As demonstrated by calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimisation, this procedure is generally applicable, easy to implement, derivative free, conceptually simple and could be used in the future for much more complex optimisation problems.
Nicoletti, I; Corradini, C; Cogliandro, E; Cavazza, A
1999-08-01
This paper reports the results of a study carried out to develop a simple, rapid and sensitive method for the separation, identification and quantitative measurement of alpha-hydroxy acids in commercial cosmetics using high-performance liquid chromatography (HPLC). This method is successfully applied to the simultaneous identification and quantitative determination of glycolic, lactic, malic, tartaric and citric acids employing a reversed phase narrow-bore column under isocratic condition and UV detection. The method is validated by determining the precision of replicate analyses and accuracy by analyzing samples with and without adding know amount of the alpha-hydroxy acids. The procedure is suitable for routine analyses of commercial cosmetics.
Characterization of nutraceuticals and functional foods by innovative HPLC methods.
Corradini, Claudio; Galanti, Roberta; Nicoletti, Isabella
2002-04-01
In recent years there is a growing interest in food and food ingredient which may provide health benefits. Food as well as food ingredients containing health-preserving components, are not considered conventional food, but can be defined as functional food. To characterise such foods, as well as nutraceuticals specific, high sensitive and reproducible analytical methodologies are needed. In light of this importance we set out to develop innovative HPLC methods employing reversed phase narrow bore column and high-performance anion-exchange chromatographic methods coupled with pulsed amperometric detection (HPAEC-PAD), which are specific for carbohydrate analysis. The developed methods were applied for the separation and quantification of citrus flavonoids and to characterize fructooligosaccharide (FOS) and fructans added to functional foods and nutraceuticals.
Nyeborg, M; Pissavini, M; Lemasson, Y; Doucet, O
2010-02-01
The aim of the study was the validation of a high-performance liquid chromatography (HPLC) method for the simultaneous and quantitative determination of twelve commonly used organic UV-filters (phenylbenzimidazole sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, diethylamino hydroxybenzoyl hexyl benzoate, octocrylene, ethylhexyl methoxycinnamate, ethylhexyl salicylate, butyl methoxydibenzoylmethane, diethylhexyl butamido triazone, ethylhexyl triazone, methylene bis-benzotriazolyl tetramethylbutylphenol and bis-ethylhexyloxyphenol methoxyphenyl triazine) contained in suncare products. The separation and quantitative determination was performed in <30 min, using a Symmetry Shield(R) C18 (5 microm) column from Waters and a mobile phase (gradient mode) consisting of ethanol and acidified water. UV measurements were carried out at multi-wavelengths, according to the absorption of the analytes.
[Study on the fingerprint of Morus alba from different habitats by HPLC].
Chen, Cheng; Li, Hong-Bo; Wang, Liu-Ping; Li, Yun-Rong; Xin, Ning
2012-12-01
To establish HPLC fingerprint of Morus alba from different habitats by HPLC and provide basis for its quality control. HPLC analysis was performed on an Agilent XDB C18 Column (4.6 mm x 250 mm, 5 microm), gradient eluted composed of acetonitrile and 0.3% phosphate acid. The column temperature was set at 35 degrees C and the flow rate was 0.5 mL/min. The detective wavelength was 290 nm. The HPLC fingerprint for 10 batches of Morus alba was studied on their similarity. There were twelve common peaks in the fingerprint. The similarity of 7 batches was above 0.9 and the other batches had low similarity. The HPLC fingerprint can be used for quality control of Morus alba with high characteristics and specificity.
Simultaneous Estimation of Withaferin A and Z-Guggulsterone in Marketed Formulation by RP-HPLC.
Agrawal, Poonam; Vegda, Rashmi; Laddha, Kirti
2015-07-01
A simple, rapid, precise and accurate high-performance liquid chromatography (HPLC) method was developed for simultaneous estimation of withaferin A and Z-guggulsterone in a polyherbal formulation containing Withania somnifera and Commiphora wightii. The chromatographic separation was achieved on a Purosphere RP-18 column (particle size 5 µm) with a mobile phase consisting of Solvent A (acetonitrile) and Solvent B (water) with the following gradients: 0-7 min, 50% A in B; 7-9 min, 50-80% A in B; 9-20 min, 80% A in B at a flow rate of 1 mL/min and detection at 235 nm. The marker compounds were well separated on the chromatogram within 20 min. The results obtained indicate accuracy and reliability of the developed simultaneous HPLC method for the quantification of withaferin A and Z-guggulsterone. The proposed method was found to be reproducible, specific, precise and accurate for simultaneous estimation of these marker compounds in a combined dosage form. The HPLC method was appropriate and the two markers are well resolved, enabling efficient quantitative analysis of withaferin A and Z-guggulsterone. The method can be successively used for quantitative analysis of these two marker constituents in combination of marketed polyherbal formulation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Determination and validation of six sunscreen agents in suncare products by UPLC and HPLC.
Lee, So-Mi; Jeong, Hye-Jin; Chang, Ih Seop
2008-01-01
Methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine are sunscreen agents that have hydrophobic behaviors in common. They were not normally assayed with the following four sunscreen agents that have hydrophilic behaviors in a single chromatographic run: ethylhexyl methoxycinnamate, isoamyl p-methoxycinnamate, ethylhexyl salicylate, and ethylhexyl triazone. For that reason, methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine require much time in order to assay products with those materials. A rapid, selective, and reproducible determination method needs to be developed for the simultaneous examination of methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine with the sunscreen agents, ethylhexyl methoxycinnamate, isoamyl p-methoxycinnamate, ethylhexyl salicylate, and ethylhexyl triazone. This new technique could reduce time in examining the sunscreen agents and be effective for quality control of suncare products. In this paper, the HPLC and UPLC system is used for developing the determination of the sunscreen agents. Several evaluations of some mixtures of eluents and columns were obtained for the optimal condition of separation. In HPLC, the optimal peak resolution was obtained through ethanol-water gradient elution and a 75-mm C18 column with a 3.5-microm-sized particle on a flow rate of 1.0 ml/min. In UPLC, the most distinctive peak resolution was obtained through methanol-water gradient elution and a 50-mm C18 column with a 1.7-microm-sized particle on a flow rate 0.4 ml/min. Both of those chromatographic determination methods could be used in the examination of six types of sunscreen agents without any interference from other product excipients in the agents. The proposed determination methods were validated for specificity, linearity, repeatability, system stability, intermediate precision, and accuracy. Consequently, HPLC and UPLC determination methods could be rapid, selective, and proper applications for the assay of sunscreen agents in suncare products.
Ni, Yongnian; Zhang, Liangsheng; Churchill, Jane; Kokot, Serge
2007-06-15
In this paper, chemometrics methods were applied to resolve the high performance liquid chromatography (HPLC) fingerprints of complex, many-component substances to compare samples from a batch from a given manufacturer, or from those of different producers. As an example of such complex substances, we used a common Chinese traditional medicine, Huoxiang Zhengqi Tincture (HZT) for this research. Twenty-one samples, each representing a separate HZT production batch from one of three manufacturers were analyzed by HPLC with the aid of a diode array detector (DAD). An Agilent Zorbax Eclipse XDB-C18 column with an Agilent Zorbax high pressure reliance cartridge guard-column were used. The mobile phase consisted of water (A) and methanol (B) with a gradient program of 25-65% (v/v, B) during 0-30min, 65-55% (v/v, B) during 30-35min and 55-100% (v/v, B) during 35-60min (flow rate, 1.0mlmin(-1); injection volume, 20mul; and column temperature-ambient). The detection wavelength was adjusted for maximum sensitivity at different time periods. A peak area matrix with 21objectsx14HPLC variables was obtained by sampling each chromatogram at 14 common retention times. Similarities were then calculated to discriminate the batch-to-batch samples and also, a more informative multi-criteria decision making methodology (MCDM), PROMETHEE and GAIA, was applied to obtain more information from the chromatograms in order to rank and compare the complex HZT profiles. The results showed that with the MCDM analysis, it was possible to match and discriminate correctly the batch samples from the three different manufacturers. Fourier transform infrared (FT-IR) spectra taken from samples from several batches were compared by the common similarity method with the HPLC results. It was found that the FT-IR spectra did not discriminate the samples from the different batches.
Zhao, Yan-Yan; Liu, Li-Yan; Han, Yuan-Yuan; Li, Yue-Qiu; Wang, Yan; Shi, Min-Jian
2013-08-01
A simple, fast and sensitive analytical method for the simultaneous separation and detection of 18alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B by RP-HPLC and drug quality standard was established. The structures of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate have been confirmed. Reference European Pharmacopoeia EP7.0 version, British Pharmacopoeia 2012 version, National Drug Standards of China (WS 1-XG-2002), domestic and international interrelated literature were referred to select the composition of mobile phase. The experimental parameters including salt concentration, pH, addition quantities of organic solvent, column temperature and flow rate were optimized. Finally, the assay was conducted on a Durashell-C18 column (250 mm x 4.6 mm, 5 microm) with 0.01 mol x mL(-1) ammonium perchlorate (add ammonia to adjust the pH value to 8.2) -methanol (48 : 52) as mobile phase at the flow rate of 0.8 mL x min(-1), and the detection wavelength was set at 254 nm. The column temperature was 50 degrees C and the injection volume was 10 microL. The MS, NMR, UV and RP-HPLC were used to confirm the structures of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate. Under the optimized separation conditions, the calibration curves of 18 alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B showed good linearity within the concentration of 0.50-100 microg x mL(-1) (r = 0.999 9). The detection limits for 18alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B were 0.15, 0.10, 0.10, 0.15 microg x mL(-1) respectively. The method is sensitive, reproducible and the results are accurate and reliable. It can be used for chiral resolution of 18alpha-glycyrrhizinic acid, 18Pbeta-glycyrrhizinic acid, and detection content of principal component and related substances of raw material drug of ammonium glycyrrhizinate. It is concluded that the separation of principal component isomer of raw material drug of ammonium glycyrrhizinate and the validity of the substance's structure assignments of retention time being 1.2 in the European pharmacopoeia EP7.0 version, British pharmacopoeia 2012 version remains open to question. It may be of practical value for the quality control of raw material drug, preparation, and Chinese herbal medicine of ammonium glycyrrhizinate.
Mosiashvili, L; Chankvetadze, L; Farkas, T; Chankvetadze, B
2013-11-22
This article reports the systematic study of the effect of basic and acidic additives on HPLC separation of enantiomers of some basic chiral drugs on polysaccharide-based chiral columns under polar organic mobile-phase conditions. In contrary to generally accepted opinion that the basic additives improve the separation of enantiomers of basic compounds, the multiple scenarios were observed including the increase, decrease, disappearance and appearance of separation, as well as the reversal of the enantiomer elution order of studied basic compounds induced by the acidic additives. These effects were observed on most of the studied 6 chiral columns in 2-propanol and acetonitrile as mobile phases and diethylamine as a basic additive. As acidic additives formic acid was used systematically and acetic acid and trifluoroacetic acid were applied for comparative purposes. This study illustrates that the minor acidic additives to the mobile phase can be used as for the adjustment of separation selectivity and the enantiomer elution order of basic compounds, as well as for study of chiral recognition mechanisms with polysaccharide-based chiral stationary phases. Copyright © 2013 Elsevier B.V. All rights reserved.
Stability indicating HPLC method for the estimation of oxycodone and lidocaine in rectal gel.
Gebauer, M G; McClure, A F; Vlahakis, T L
2001-07-31
An HPLC method for the quantification of oxycodone and lidocaine in a gel matrix is described. The mobile phase consisted of methanol--water--acetic acid (35:15:1 v/v/v) and was delivered at 1.5 ml/min through a 4.6 x 250 mm Zorbax SB-C8 column. Oxycodone was detected at 285 nm and lidocaine at 264 nm. Linear calibration curves were obtained for oxycodone in the range of 0.05--1.5% (w/w) and for lidocaine in the range of 0.1--5.0% (w/w). Oxycodone and lidocaine were treated with hydrogen peroxide and the oxidation products were readily separated on the column. The method was applied to assess the stability of a gel containing oxycodone hydrochloride (0.3% w/w) and lidocaine (1.5% w/w). The gel was stored under refrigeration in ready-to-use syringes and under these conditions oxycodone and lidocaine were stable for at least 1 year. The gel is useful in the management of tenesmus in rectal cancer.
[Separation and identification of red pigments in natural red yolk of duck's eggs by HPLC-MS-MS].
Liu, Liangzhong; Zhang, Min; Peng, Guanghua; Wang, Haibin; Zhang, Shenghua
2004-05-01
The natural red yolk of duck's eggs is produced by the laying duck in the lake areas in southward of China. In the laying duck breeding areas such as Honghu, Jianli, Xiantao, Tianmen and Hanchuan citys in Hubei Province, the culturists are used to feeding fresh pondweeds to the laying ducks. The yolk of duck's eggs is natural red with the chrominance reaching up to and/or above RCF (Roche Yolk Color Fan) 15. The red pigment components of natural red yolk of duck's eggs were separated and identified by thin layer chromatography (TLC), high performance liquid chromatography-mass spectrometry-mass spectrometry (HPLC-MS-MS) and high resolution electron impact-mass spectrometry (EI-MS). Four isomers of red pigments were separated by HPLC on a RP-C18 column with methanol-water (99.5:0.5, v/v) as mobile phase. The lambda(max) of the four components were 482, 488, 496, 501 nm, respectively, and all of them were single peak on chromatogram. They had the same molecular mass (Mr = 562), and had the same fragment peaks of MS2 with rhodoxanthin. The molecular formula of red pigments was determined as C40H50O2 by high resolution EI-MS. The results indicate that the red pigment is rhodoxanthin, and they are all cis-isomers of rhodoxanthin.
Chiral-phase high-performance liquid chromatography of rotenoid racemates
Abidi, S.L.
1987-01-01
The high-performance liquid chromatograhic (HPLC) behavior of parent rotenoids (type I) and the hydroxyl-analogues (type II) on three different chiral stationary phases (CSPs) was studied. Separations of optical isomers were achieved in various degrees depending largely upon the rotenoidal structures and the CSP types employed. Enantiomers of all but elliptone compounds were separable on β-cyclodextrin-bonded silica (CDS). Without exception, the 12a-hydroxyrotenoid antipodes were resolved on Pirkle's phenylglycine-bonded silica (PGS) despite unsuccessful attenmpts to resolve the type I rotenoidal racemates. Conversely, optical resolution of the latter rotenoids was accomplished by using a helical polytriphenylmethylacrylate-coated silica (TPS) column and the observed separation factors (α values) ranged from 1.14 to 1.90. The results from HPLC of type II rotenoids on TPS (α = 1.00–1.63) suggested that variations in E-ring structures had profound influence on the resolution outcome. Conjugated double bonds on the E-ring and the desisopropylation of the five-membered E-ring ot type II rotenoids appeared to be important structural features for chiral recognition involving the TPS substrate. In both reversed-phase (CDS) and normal-pahse (PGS and TPS) HPLC modes, the less polar enantiomers were the 6aβ,12aβ-rotenoids as observed in most cases, though this relationship was reversed in the cases of deguelin and hydroxyelliptone probably due to conformational effects of rotenoidal ring systems.
Ion Chromatography-on-a-chip for Water Quality Analysis
NASA Technical Reports Server (NTRS)
Kidd, R. D.; Noell, A.; Kazarians, G.; Aubrey, A. D.; Scianmarello, N.; Tai, Y.-C.
2015-01-01
We report progress towards developing a Micro-Electro-Mechanical Systems (MEMS)- based ion chromatograph (IC) for crewed spacecraft water analysis. This IC-chip is an offshoot of a NASA-funded effort to produce a high performance liquid chromatograph (HPLC)-chip. This HPLC-chip system would require a desalting (i.e. ion chromatography) step. The complete HPLC instrument consists of the Jet Propulsion Labortory's (JPL's) quadrupole ion trap mass spectrometer integrated with a state-of-the-art MEMS liquid chromatograph (LC) system developed by the California Institute of Technology's (Caltech's) Micromachining Laboratory. The IC version of the chip consist of an electrolysis-based injector, a separation column, two electrolysis pumps for gradient generation, mixer, and a built-in conductivity detector. The HPLC version of the chip also includes a nanospray tip. The low instrument mass, coupled with its high analytical capabilities, makes the LC chip ideally suitable for wide range of applications such as trace contaminant, inorganic analytical science and, when coupled to a mass spectrometer, a macromolecular detection system for either crewed space exploration vehicles or robotic planetary missions.
Analysis of a spacecraft instrument ball bearing assembly lubricated by a perfluoroalkylether
NASA Technical Reports Server (NTRS)
Morales, W.; Jones, W. R., Jr.; Buckley, D. H.
1986-01-01
An analysis of a spacecraft instrument ball bearing assembly, subjected to a scanning life test, was performed to determine the possible case of rotational problems involving these units aboard several satellites. The analysis indicated an ineffective transfer of a fluorinated liquid lubricant from a phenolic retainer to the bearing balls. Part of the analysis led to a novel HPLC separation method employing a fluorinated mobile phase in conjunction with silica based size exclusion columns.
Huo, Zhixia; Wan, Qianhong; Chen, Lei
2018-06-08
Polymethylsilsesquioxanes (PMSQ) are potentially useful materials for liquid chromatography owing to their unique chemical, electrical and mechanical properties. Surprisingly however, no systematic studies on the use of spherical PMSQ particles as chromatographic packing have been reported. Accordingly, we present a comprehensive study aimed to characterize the chromatographic properties of this material in high performance liquid chromatography (HPLC) and to compare them with those observed on methyl (C 1 ) bonded silica phase under comparable conditions. Porous spherical particles were synthesized by a two-step hydrolysis and condensation procedure from methyltrimethoxysilane (MTMS) as a sole precursor. The as-synthesized microspheres possess spherical shape, narrow size distribution, mesoporous structure, high surface area (817 m 2 g -1 ) and reasonable carbon load (16.6%). They can be used directly as the HPLC stationary phase without the need for size classification. The PMSQ phase exhibits typical reversed-phase chromatographic properties with higher methylene selectivity and low silanol activity compared with the C 1 column. The retention mechanism for basic compounds was systematically evaluated by studying the effect of pH, ionic and solvent strength of the mobile phase. Basic compounds displayed lower retention factor and symmetric peak shape on the PMSQ column whereas longer retention and strong tailing peaks were observed on the C 1 column. The difference in retention behavior between the two columns is explained in terms of different principal retention mechanisms. Because of the low silanol activity, retention of basic compounds on the PMSQ column is governed solely by a reversed-phase mechanism. By contrast, multiple interactions including reversed-phase, cation exchange and simultaneous reversed-phase/cationic exchange interaction contribute to the retention on the C 1 column, as previously observed on other silica based reversed-phases. Furthermore, the PMSQ phase exhibited significantly enhanced stability under alkaline conditions compared with its silica-based counterpart. Taken together, the favorable morphology and pore structure combined with the benefits of low silanol activity, high pH stability and prolonged column lifetime make the newly developed PMSQ phase a promising and viable alternative to silica based reversed-phase packings for separation of basic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I
2013-12-01
The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.
Sanchez-Gonzalez, Noe; Jaime-Fonseca, Monica R; San Martin-Martinez, Eduardo; Zepeda, L Gerardo
2013-12-11
Betalains were extracted and analyzed from Opuntia joconostle (the prickly pear known as xoconostle in Mexico). For the extraction, two solvent systems were used, methanol/water and ethanol/water. A three-variable Box-Behnken statistical design was used for extraction: solvent concentration (0-80%, v/v), temperature (5-30 °C), and treatment time (10-30 min). The extraction and stability of betalains from xoconostle were studied using response surface methodology (RSM). Techniques such as UV-vis, column chromatography, and HPLC were employed for the separation and analysis of the main pigments present in the extracts. Maximum pigment concentration (92 mg/100 g of fruit) was obtained at a temperature of 15 °C and a time of 10 min for methanol/water (20:80), whereas maximum stability of the pigment was observed at pH 5 and a temperature of 25 °C. HPLC chromatograms showed the main betalains of the xoconostle characterized were betalain, betanidin, and isobetalain.
A study of elastase peptides from bovine white matter proteolipid.
Lees, M B; Macklin, W B; Chao, B H
1981-10-01
Bovine white matter proteolipid has been digested with elastase in the presence of deoxycholate. After acidification, the digest was separated into an acid-soluble and an acid-insoluble fraction. The acid-insoluble fraction was enriched in nonpolar amino acids and, by a combination of solvent fractionation and chromatography, a fraction was obtained which consisted of a mixture of two peptides with a molecular weight of approximately 4000 daltons. The acid-soluble peptides were separated by molecular sieve, ion exchange and high performance liquid chromatography (HPLC) in the reverse phase mode. The purified peptides were smaller than expected on the basis of their elution position from a molecular sieve column, suggesting they were in an aggregated state during the initial chromatography. Reverse phase HPLC was shown to be useful for fingerprinting these peptide mixtures. The data demonstrate the difficulties associated with the study of this proteolipid and emphasize the tendency of both the protein and the peptides derived from it to aggregate.
Vrkoslav, Vladimír; Urbanová, Klára; Háková, Matina; Cvačka, Josef
2013-08-09
Wax esters (WEs), esters of long-chain fatty acids and long-chain alcohols, were analysed by Ag-HPLC/APCI-MS/MS. Two ChromSpher Lipids columns connected in series (a total length of 50cm) and hexane-2-propanol-acetonitrile mobile phases were used to achieve good separation of the molecular species. The chromatographic behaviour of WEs was studied under optimised conditions: retention increased with the number of double bonds and with the temperature (15-35°C); retention times were affected by the double-bond position, trans isomers eluted earlier than cis isomers, and the WEs were partially separated depending on the aliphatic-chain length. The WEs provided simple APCI spectra with [M+H](+) ions, the MS/MS spectra showed fragments, which allowed their identification. The method was applied for an analysis of the WE mixtures from jojoba oil and human hair and the results were compared with analogous data from an optimised RP-HPLC system. Copyright © 2013 Elsevier B.V. All rights reserved.
Korchazhkina, Olga; Exley, Christopher; Andrew Spencer, Stephen
2003-09-05
A selective and sensitive method based on derivatisation with 2,4-dinitrophenylhydrazine (DNPH) and consecutive HPLC gradient separation is described for the determination of malondialdehyde (MDA) in urine. Preparation of urine samples involved a one-step derivatisation/extraction procedure. Separation was achieved using a Waters SymmetryC(18) column (3.9 x 150 mm) and linear gradient of acetonitrile in water (from 30% to 70% in 30 min). The overall detection limit of the method was 56 nM of MDA in urine. The recovery of MDA was 94.3+/-8.6%. MDA in urine of healthy volunteers, measured using the method of standard additions, was 0.019+/-0.012 microM/mmol creatinine. MDA in the same samples measured using the 2-thiobarbituric acid (TBA) assay was 0.181+/-0.063 microM/mmol creatinine. We demonstrate that the commonly used TBA assay in conjunction with HPLC may overestimate the MDA concentration in human urine by almost 10-fold.
Validation of a HPLC method for determination of hydroxymethylfurfural in crude palm oil.
Ariffin, Abdul Azis; Ghazali, H M; Kavousi, Parviz
2014-07-01
For the first time 5-hydroxymethyl-2-furaldehyde (HMF) was separated from crude palm oil (CPO), and its authenticity was determined using an RP-HPLC method. Separation was accomplished with isocratic elution of a mobile phase comprising water and methanol (92:8 v/v) on a Purospher Star RP-18e column (250mm×4.6mm, 5.0μm). The flow rate was adjusted to 1ml/min and detection was performed at 284nm. The method was validated, and results obtained exhibit a good recovery (95.58% to 98.39%). Assessment of precision showed that the relative standard deviations (RSD%) of retention times and peak areas of spiked samples were less than 0.59% and 2.66%, respectively. Further, the limit of detection (LOD) and LOQ were 0.02, 0.05mg/kg, respectively, and the response was linear across the applied ranges. The crude palm oil samples analysed exhibited HMF content less than 2.27mg/kg. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Lei; Jin, Hong-Yu; Tian, Run-Tao; Wang, Ming-Juan; Liu, Li-Na; Ye, Liu-Ping; Zuo, Tian-Tian; Ma, Shuang-Cheng
2017-01-01
Analysis of related substances in pharmaceutical chemicals and multi-components in traditional Chinese medicines needs bulk of reference substances to identify the chromatographic peaks accurately. But the reference substances are costly. Thus, the relative retention (RR) method has been widely adopted in pharmacopoeias and literatures for characterizing HPLC behaviors of those reference substances unavailable. The problem is it is difficult to reproduce the RR on different columns due to the error between measured retention time (t R ) and predicted t R in some cases. Therefore, it is useful to develop an alternative and simple method for prediction of t R accurately. In the present study, based on the thermodynamic theory of HPLC, a method named linear calibration using two reference substances (LCTRS) was proposed. The method includes three steps, procedure of two points prediction, procedure of validation by multiple points regression and sequential matching. The t R of compounds on a HPLC column can be calculated by standard retention time and linear relationship. The method was validated in two medicines on 30 columns. It was demonstrated that, LCTRS method is simple, but more accurate and more robust on different HPLC columns than RR method. Hence quality standards using LCTRS method are easy to reproduce in different laboratories with lower cost of reference substances.
Dai, Zhaolai; Wu, Zhenlong; Jia, Sichao; Wu, Guoyao
2014-08-01
Studies of protein nutrition and biochemistry require reliable methods for analysis of amino acid (AA) composition in polypeptides of animal tissues and foods. Proteins are hydrolyzed by 6M HCl (110°C for 24h), 4.2M NaOH (105°C for 20 h), or proteases. Analytical techniques that require high-performance liquid chromatography (HPLC) include pre-column derivatization with 4-chloro-7-nitrobenzofurazan, 9-fluorenyl methylchloroformate, phenylisothiocyanate, naphthalene-2,3-dicarboxaldehyde, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and o-phthaldialdehyde (OPA). OPA reacts with primary AA (except cysteine or cystine) in the presence of 2-mercaptoethanol or 3-mercaptopropionic acid to form a highly fluorescent adduct. OPA also reacts with 4-amino-1-butanol and 4-aminobutane-1,3-diol produced from oxidation of proline and 4-hydroxyproline, respectively, in the presence of chloramine-T plus sodium borohydride at 60°C, or with S-carboxymethyl-cysteine formed from cysteine and iodoacetic acid at 25°C. Fluorescence of OPA derivatives is monitored at excitation and emission wavelengths of 340 and 455 nm, respectively. Detection limits are 50 fmol for AA. This technique offers the following advantages: simple procedures for preparation of samples, reagents, and mobile-phase solutions; rapid pre-column formation of OPA-AA derivatives and their efficient separation at room temperature (e.g., 20-25°C); high sensitivity of detection; easy automation on the HPLC apparatus; few interfering side reactions; a stable chromatography baseline for accurate integration of peak areas; and rapid regeneration of guard and analytical columns. Thus, the OPA method provides a useful tool to determine AA composition in proteins of animal tissues (e.g., skeletal muscle, liver, intestine, placenta, brain, and body homogenates) and foods (e.g., milk, corn grain, meat, and soybean meal). Copyright © 2014 Elsevier B.V. All rights reserved.
Matysova, Ludmila; Zahalkova, Oxana; Klovrzova, Sylva; Sklubalova, Zdenka; Solich, Petr; Zahalka, Lukas
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min(-1) was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances.
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min−1 was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances. PMID:25878920
NASA Astrophysics Data System (ADS)
Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.
2016-05-01
High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.
Wu, Xiaodan; Jiang, Wei; Lu, Jiajia; Yu, Ying; Wu, Bin
2014-02-15
Sargassum fusiforme (hijiki) is the well-known edible algae, whose polysaccharides have been proved to possess interesting bioactivities like antitumor, antioxidant, antimicrobial and immunomodulatory activities. A facile and sensitive method based on high-performance liquid chromatography method of pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) coupled with electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been established for the analysis of the monosaccharide composition of polysaccharides in S. fusiforme. Monosaccharides have been converted into PMP-labelled derivatives with aqueous ammonia as a catalyst at 70 °C for 30 min. The optimisation of the pre-column derivatization process was studied. The LODs of the monosaccharides were in the range from 0.01 to 0.02 nmol. PMP-labelled mixture of monosaccharides has been well separated by a reverse-phase HPLC and detected by on-line ESI-MS method under optimised conditions. The mobile phase of elution system was chosen as acetonitrile (solvent A) and 20mM aqueous ammonium acetate (solvent B) (pH 3.0) with Zorbax XDB-C18 column at 30 °C for the separation of the monosaccharide derivatives. Identification of the monosaccharides composition was carried out by analysis with mass spectral behaviour and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone (PMP) labelled monosaccharides. All PMP-labelled derivatives display high chemical stabilities, whose regular MS fragmentation is specific for reducing labelled sugars. The result showed that the S. fusiforme polysaccharide consisted of mannose, glucose, galactose, xylose, fucose and glucuronic acid or galacturonic acid, or both uronic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Retinoid quantification by HPLC/MS(n)
NASA Technical Reports Server (NTRS)
McCaffery, Peter; Evans, James; Koul, Omanand; Volpert, Amy; Reid, Kevin; Ullman, M. David
2002-01-01
Retinoic acid (RA) mediates most of the biological effects of vitamin A that are essential for vertebrate survival. It acts through binding to receptors that belong to the nuclear receptor transcription factor superfamily (Mangelsdorf et al. 1994). It is also a highly potent vertebrate teratogen. To determine the function and effects of endogenous and exogenous RA, it is important to have a highly specific, sensitive, accurate, and precise analytical procedure. Current analyses of RA and other retinoids are labor intensive, of poor sensitivity, have limited specificity, or require compatibility with RA reporter cell lines (Chen et al. 1995. BIOCHEM: Pharmacol. 50: 1257-1264; Creech Kraft et al. 1994. BIOCHEM: J. 301: 111-119; Lanvers et al. 1996. J. Chromatogr. B Biomed. Appl. 685: 233-240; Maden et al. 1998. DEVELOPMENT: 125: 4133-4144; Wagner et al. 1992. DEVELOPMENT: 116: 55-66). This paper describes an HPLC/mass spectrometry/mass spectrometry product ion scan (HPLC/MS(n)) procedure for the analysis of retinoids that employs atmospheric pressure chemical ionization MS. The retinoids are separated by normal-phase column chromatography with a linear hexane-isopropanol-dioxane gradient. Each retinoid is detected by a unique series of MS(n) functions set at optimal collision-induced dissociation energy (30% to 32%) for all MS(n) steps. The scan events are divided into three segments, based on HPLC elution order, to maximize the mass spectrometer duty cycle. The all-trans, 9-cis, and 13-cis RA isomers are separated, if desired, by an isocratic hexane-dioxane-isopropanol mobile phase. This paper describes an HPLC/MS(n) procedure possessing high sensitivity and specificity for retinoids.
Anumula, K R; Dhume, S T
1998-07-01
Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.
Fernandez-Torres, R; Consentino, M Olías; Lopez, M A Bello; Mochon, M Callejon
2010-05-15
A new, accurate and sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) as analytical method for the quantitative determination of 11 antibiotics (drugs) and the main metabolites of five of them present in human urine has been worked out, optimized and validated. The analytes belong to four different groups of antibiotics (sulfonamides, tetracyclines, penicillins and anphenicols). The analyzed compounds were sulfadiazine (SDI) and its N(4)-acetylsulfadiazine (NDI) metabolite, sulfamethazine (SMZ) and its N(4)-acetylsulfamethazine (NMZ), sulfamerazine (SMR) and its N(4)-acetylsulfamerazine (NMR), sulfamethoxazole (SMX), trimetroprim (TMP), amoxicillin (AMX) and its main metabolite amoxicilloic acid (AMA), ampicillin (AMP) and its main metabolite ampicilloic acid (APA), chloramphenicol (CLF), thiamphenicol (TIF), oxytetracycline (OXT) and chlortetracycline (CLT). For HPLC analysis, diode array (DAD) and fluorescence (FLD) detectors were used. The separation of the analyzed compounds was conducted by means of a Phenomenex Gemini C(18) (150mm x 4.6mm I.D., particle size 5microm) analytical column with LiChroCART LiChrospher C(18) (4mm x 4mm, particle size 5microm) guard column. Analyzed drugs were determined within 34min using formic acid 0.1% in water and acetonitrile in gradient elution mode as mobile phase. A linear response was observed for all compounds in the range of concentration studied. Two procedures were optimized for sample preparation: a direct treatment with methanol and acetonitrile and a solid phase extraction procedure using Bond Elut Plexa columns. The method was applied to the determination of the analytes in human urine from volunteers under treatment with different pharmaceutical formulations. This method can be successfully applied to routine determination of all these drugs in human urine samples.
Zhang, Haiyang; Ou, Junjie; Wei, Yinmao; Wang, Hongwei; Liu, Zhongshan; Zou, Hanfa
2016-04-01
A hybrid fluorous monolithic column was simply prepared via photo-initiated free radical polymerization of an acrylopropyl polyhedral oligomeric silsesquioxane (acryl-POSS) and a perfluorous monomer (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate) in UV-transparent fused-silica capillaries within 5min. The physical characterization of hybrid fluorous monolith, including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and nitrogen adsorption/desorption measurement was performed. Chromatographic performance was also evaluated by capillary liquid chromatography (cLC). Due to the fluorous-fluorous interaction between fluorous monolith and analytes, fluorobenzenes could well be separated, and the column efficiencies reached 86,600-92,500plates/m at the velocity of 0.87mm/s for alkylbenzenes and 51,900-76,000plates/m at the velocity of 1.10mm/s for fluorobenzenes. Meanwhile, an approach to integrate nanoelectrospray ionization (ESI) emitter with hybrid fluorous monolithic column was developed for quantitative determination of perfluoroalkyl acids by nanoHPLC-ESI-MS/MS. The integration design could minimize extracolumn volume, thus excluding undesirable peak broadening and improving separation performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Lhotská, Ivona; Šatínský, Dalibor; Havlíková, Lucie; Solich, Petr
2016-05-01
A new fast and sensitive method based on on-line solid-phase extraction on a fused-core precolumn coupled to liquid chromatography with fluorescence detection has been developed for ochratoxin A (OTA) and citrinin (CIT) determination in lager beer samples. Direct injection of 100 μL filtered beer samples into an on-line SPE-HPLC system enabled fast and effective sample extraction including separation in less than 6 min. Preconcentration of OTA and CIT from beer samples was performed on an Ascentis Express RP C18 guard column (5 × 4.6 mm), particle size 2.7 μm, with a mobile phase of methanol/0.5% aqueous acetic acid pH 2.8 (30:70, v/v) at a flow rate of 2.0 mL min(-1). The flow switch from extraction column to analytical column in back-flush mode was set at 2.0 min and the separation was performed on the fused-core column Ascentis Express Phenyl-Hexyl (100 × 4.6 mm), particle size 2.7 μm, with a mobile phase acetonitrile/0.5% aqueous acetic acid pH 2.8 in a gradient elution at a flow rate of 1.0 mL min(-1) and temperature of 50 °C. Fluorescence excitation/emission detection wavelengths were set at 335/497 nm. The accuracy of the method, defined as the mean recoveries of OTA and CIT from light and dark beer samples, was in the range 98.3-102.1%. The method showed high sensitivity owing to on-line preconcentration; LOQ values were found to be 10 and 20 ng L(-1) for OTA and CIT, respectively. The found values of OTA and CIT in all tested light, dark and wheat beer samples were significantly below the maximum tolerable limits (3.0 μg kg(-1) for OTA and 2000 μg kg(-1) for CIT) set by the European Union.
[Determination of azoxystrobin in tea by HPLC].
Chonan, T
2001-08-01
A determination method has been developed for azoxystrobin in tea by HPLC. Azoxystrobin was extracted from a sample with acetone, and the extract was passed through an alumina column to remove tannin. The eluate was concentrated to ca. 25 mL and passed through a Sep-Pak Vac tC18 to remove pigments. The eluate was cleaned-up by using liquid-liquid partition, and Florisil and silica-gel columns. The HPLC analysis for azoxystrobin was carried out on a C18 column with acetonitrile-water (9:11) as the mobile phase, with ultraviolet detection at 260 nm. The recovery of azoxystrobin fortified at the level of 0.4 microgram/g was 90.2% and the limit of determination was 0.2 microgram/g.
Wagner, Brian M.; Schuster, Stephanie A.; Boyes, Barry E.; Shields, Taylor J.; Miles, William L.; Haynes, Mark J.; Moran, Robert E.; Kirkland, Joseph J.; Schure, Mark R.
2017-01-01
To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core®, core shell or porous shell) particles with very large (1000 Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. PMID:28213987
Wagner, Brian M; Schuster, Stephanie A; Boyes, Barry E; Shields, Taylor J; Miles, William L; Haynes, Mark J; Moran, Robert E; Kirkland, Joseph J; Schure, Mark R
2017-03-17
To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core ® , core shell or porous shell) particles with very large (1000Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Validated HPLC method for determination of sennosides A and B in senna tablets.
Sun, Shao Wen; Su, Hsiu Ting
2002-07-31
This study developed an efficient and reliable ion-pair liquid chromatographic method for quantitation of sennosides A and B in commercial senna tablets. Separation was conducted on a Hypersil C 18 column (250 x 4.6 mm, 5 microm) at a temperature of 40 degrees C, using a mixture of 0.1 M acetate buffer (pH 6.0) and acetonitrile (70:30, v/v) containing 5 mM tetrahexylammonium bromide as mobile phase. Sennosides A and B were completely separated from other constituents within 14 min. The developed method was validated. Both run-to-run repeatability (n=10) and day-to-day reproducibility (n=3) of peak area were below 0.4% RSD. Linearity of peak area was tested in the range 30-70 microg/ml (r>0.9997). Accuracy was assessed with recovery and the recoveries for sennosides A and B were 101.73+/-1.30% and 101.81+/-2.18% (n=3 x 6), respectively. Robustness of the analytical method was tested using a three-leveled Plackett-Burman design in which 11 factors were assessed with 23 experiments. Eight factors (column, concentration of ion pair reagent, % of organic modifier (acetonitrile), buffer pH, column temperature, flow rate, time constant and detection wavelength) were investigated in a specified range above and below the nominal method conditions. It was found that: (1) column and % acetonitrile affected significantly resolution and retention time, (2) column, % acetonitrile, column temperature, flow rate and time constant affected significantly the plate number of sennoside A, and (3) column and time constant affected significantly the tailing factor.
Ma, Ruyi; Zhou, Rongrong; Tong, Runna; Shi, Shuyun; Chen, Xiaoqing
2017-01-01
Vine tea (Ampelopsis grossedentata), a widely used healthy tea, beverage and herbal medicine, exhibited strong antioxidant activity. However, systematic purification of antioxidants, especially for those with similar structures or polarities, is a challenging work. Here, we present a novel at-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography (HSCCC-Sephadex LH-20 CC) for rapid and efficient separation of antioxidants from vine tea target-guided by 1,1-diphenyl-2-picryl-hydrazyl radical-high performance liquid chromatography (DPPH-HPLC) experiment. A makeup pump, a six-port switching valve and a trapping column were served as interface. The configuration had no operational time and mobile phase limitations between two dimensional chromatography and showed great flexibility without tedious sample-handling procedure. Seven targeted antioxidants were firstly separated by stepwise HSCCC using petroleum ether-ethyl acetate-methanol-water (4:9:4:9, v/v/v/v) and (4:9:5:8, v/v/v/v) as solvent systems, and then co-eluted antioxidants were on-line trapped, concentrated and desorbed to Sephadex LH-20 column for further off-line purification by methanol. It is noted that six elucidated antioxidants with purity over 95% exhibited stronger activity than ascorbic acid (VC). More importantly, this at-line hyphenated strategy could sever as a rapid and efficient pathway for systematic purification of bioactive components from complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Yanjun; Sun, Yinshi; Chen, Hui; Hao, Zhiyou; Wang, Junmin; Guan, Yanbin; Zhang, Yanli; Feng, Weisheng; Zheng, Xiaoke
2014-10-15
Two new prenylated flavonoids, sinoflavonoids A-B, were isolated from the dried fruits of Sinopodophyllum emodi by silica gel column chromatography (SGCC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with petroleum ether, dichloromethane, ethyl acetate, and n-butanol in water, respectively. The ethyl acetate fraction was pre-separated by SGCC with a petroleum ether-acetone gradient. The eluates containing target compounds were further separated by HSCCC with n-hexane-ethyl acetate-methanol-water (4:6:4:4, v/v). Finally, 17.3mg of sinoflavonoid A and 25.9mg of sinoflavonoid B were obtained from 100mg of the pretreated concentrate. The purities of sinoflavonoid A and sinoflavonoid B were 98.47% and 99.38%, respectively, as determined by HPLC. Their structures were elucidated on the basis of spectroscopic evidences (HR-ESI-MS, (1)H-NMR, (13)C-NMR, HSQC, HMBC). The separation procedures proved to be efficient, especially for trace prenylated flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.
[HPLC specific chromatogram of Dendrobium officinale].
Yan, Mei-Qiu; Chen, Su-Hong; Lv, Gui-Yuan; Zhou, Gui-Fen; Liu, Xia
2013-02-01
To establish the method of specific chromatogram analysis of ether extract of Dendrobium officinale for identification of D. officinale. Chromatographic separation was carried out at 30 degrees C on an Ultimate C18 column (4.6 mm x 250 mm, 5 microm) eluted with methanol and water containing 0.2% phosphoric acid in a gradient elution at a flow rate of 1.0 mL x min(-1). The detection wavelength was set at 280 nm. The similarity evaluation system for chromatographic fingerprint of NPC (National Pharmacopoeia Committee) was adopted to specific chromatogram construction. The HPLC specific chromatogram of D. officinale was constructed with 6 common specific chromatographic peaks including naringenin as a reference peak. The method shows good precision and repeatability of relative retention time. It can be used to identify D. officinale.
Deng, Shuang; Scott, David; Myers, Douglas; Garg, Uttam
2016-01-01
Triosephosphate isomerase (TPI) is a glycolytic enzyme which catalyzes the interconversion between glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). TPI deficiency results in accumulation of DHAP in human red blood cells and other tissues. The disease is characterized by congenital hemolytic anemia, and progressive neuromuscular dysfunction. The laboratory diagnosis is generally made by measurement of TPI activity in RBCs. Measurement of DHAP can be useful in further confirmation and follow-up of the disease. We developed HPLC/TOF-MS method for quantitation of DHAP in RBCs. The method involves simple protein precipitation, reverse phase C8 column chromatography, ion pairing with tributylamine, and long run time of 50 min to separate the two isomers (G3P and DHAP).
Sommella, Eduardo; Pepe, Giacomo; Pagano, Francesco; Tenore, Gian Carlo; Dugo, Paola; Manfra, Michele; Campiglia, Pietro
2013-10-01
We have developed a fast ultra HPLC with ion-trap TOF-MS method for the analysis of flavonoids in Citrus bergamia juice. With respect to the typical methods for the analysis of these matrices based on conventional HPLC techniques, a tenfold faster separation was attained. The use of a core-shell particle column ensured high resolution within the fast analysis time of only 5 min. Unambiguous determination of flavonoid identity was obtained by the employment of a hybrid ion-trap TOF mass spectrometer with high mass accuracy (average error 1.69 ppm). The system showed good retention time and peak area repeatability, with maximum RSD% values of 0.36 and 3.86, respectively, as well as good linearity (R(2) ≥ 0.99). Our results show that ultra HPLC can be a useful tool for ultra fast qualitative/quantitative analysis of flavonoid compounds in citrus fruit juices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro.
Zhu, Yongsheng; Sun, Hanju; He, Shudong; Lou, Qiuyan; Yu, Min; Tang, Mingming; Tu, Lijun
2018-01-01
Anthocyanins are naturally active substances. In this study, anthocyanins from black rice were obtained by membrane filtration and column chromatography separation. Five anthocyanin monomers in black rice extract were identified by HPLC-MS/MS, and the major anthocyanin monomer (cyanidin-3-glucoside, C3G) was purified by preparative HPLC (Pre-HPLC). The proliferative effects of the anthocyanins on Bifidobacteria and Lactobacillus were investigated by determining the media pH, bacterial populations and metabolic products. After anaerobic incubation at 37 °C for 48 h, not only the pH of the media containing C3G was lower than that of the extract of black rice anthocyanin (BRAE), but the numbers of both Bifidobacteria and Lactobacillus were also significantly increased. Furthermore, hydroxyphenylpropionic, hydroxyphenylacetic, and hydroxybenzoic acids and other metabolites were detected by GC-MS in vitro. Our results revealed that the anthocyanins and anthocyanin monomers from black rice had prebiotic activity and they were metabolized into several small molecules by Bifidobacteria and Lactobacillus.
Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro
Zhu, Yongsheng; He, Shudong; Lou, Qiuyan; Yu, Min; Tang, Mingming; Tu, Lijun
2018-01-01
Anthocyanins are naturally active substances. In this study, anthocyanins from black rice were obtained by membrane filtration and column chromatography separation. Five anthocyanin monomers in black rice extract were identified by HPLC-MS/MS, and the major anthocyanin monomer (cyanidin-3-glucoside, C3G) was purified by preparative HPLC (Pre-HPLC). The proliferative effects of the anthocyanins on Bifidobacteria and Lactobacillus were investigated by determining the media pH, bacterial populations and metabolic products. After anaerobic incubation at 37 °C for 48 h, not only the pH of the media containing C3G was lower than that of the extract of black rice anthocyanin (BRAE), but the numbers of both Bifidobacteria and Lactobacillus were also significantly increased. Furthermore, hydroxyphenylpropionic, hydroxyphenylacetic, and hydroxybenzoic acids and other metabolites were detected by GC-MS in vitro. Our results revealed that the anthocyanins and anthocyanin monomers from black rice had prebiotic activity and they were metabolized into several small molecules by Bifidobacteria and Lactobacillus. PMID:29630662
2009-05-01
equilibrated for 4 min with Buffer A with a flow rate of 1 mL/min at room temperature. Once the HPLC lines and MARS column were flushed and equilibrated...ul 4 ) FT mouse control HPLC 10 ul 9) E mouse control Spin Column 10 ul 5) E mouse control HPLC 10 ul 10) Blue MW Standard The distinct...of Low Level Kidney Degradation in Response to Toxin Exposures Christopher L. Woolard Camilla A. Mauzy Biosciences and Protection
Ahmad, Abdel Kader S; Kawy, M Abdel; Nebsen, M
2002-10-15
Three methods are presented for the determination of Nicergoline in presence of its hydrolysis-induced degradation product. The first method was based on measurement of the first derivative of ratio spectra amplitude of Nicergoline at 291 nm. The second method was based on separation of Nicergoline from its degradation product followed by densitometric measurement of the spots at 287 nm. The separation was carried out on HPTLC silica gel F(254) plates, using methanol-ethyl acetate-glacial acetic acid (5:7:3, v/v/v) as mobile phase. The third method was based on high performance liquid chromatographic (HPLC) separation and determination of Nicergoline from its degradation product on a reversed phase, nucloesil C(18) column using a mobile phase of methanol-water-glacial acetic acid (80:20:0.1, v/v/v) with UV detection at 280 nm. Chlorpromazine hydrochloride was used as internal standard. Laboratory prepared mixtures containing different percentages of the degradation product were analysed by the proposed methods and satisfactory results were obtained. These methods have been successfully applied to the analysis of Nicergoline in Sermion tablets. The validities of these methods were ascertained by applying standard addition technique, the mean percentage recovery +/- R.S.D.% was found to be 99.47 +/- 0.752, 100.01 +/- 0.940, 99.75 +/- 0.740 for the first derivative of ratio spectra method, the HPTLC method and the HPLC method, respectively. The proposed methods were statistically compared with the manufacturer's HPLC method of analysis of Nicergoline and no significant difference was found with respect to both precision and accuracy. They have the advantage of being stability indicating. Therefore, they can be used for routine analysis of the drug in quality control laboratories. Copyright 2002 Elsevier Science B.V.
Ping, Bonnie Tay Yen; Aziz, Haliza Abdul; Idris, Zainab
2018-01-01
High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.
Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo
2016-01-01
In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.
Quantitative analysis of the major constituents of St John's wort with HPLC-ESI-MS.
Chandrasekera, Dhammitha H; Welham, Kevin J; Ashton, David; Middleton, Richard; Heinrich, Michael
2005-12-01
A method was developed to profile the major constituents of St John's wort extracts using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESI-MS). The objective was to simultaneously separate, identify and quantify hyperforin, hypericin, pseudohypericin, rutin, hyperoside, isoquercetrin, quercitrin and chlorogenic acid using HPLC-MS. Quantification was performed using an external standardisation method with reference standards. The method consisted of two protocols: one for the analysis of flavonoids and glycosides and the other for the analysis of the more lipophilic hypericins and hyperforin. Both protocols used a reverse phase Luna phenyl hexyl column. The separation of the flavonoids and glycosides was achieved within 35 min and that of the hypericins and hyperforin within 9 min. The linear response range in ESI-MS was established for each compound and all had linear regression coefficient values greater than 0.97. Both protocols proved to be very specific for the constituents analysed. MS analysis showed no other signals within the analyte peaks. The method was robust and applicable to alcoholic tinctures, tablet/capsule extracts in various solvents and herb extracts. The method was applied to evaluate the phytopharmaceutical quality of St John's wort preparations available in the UK in order to test the method and investigate if they contain at least the main constituents and at what concentrations.
Patel, Sejal K; Patel, Natvarlal J
2010-01-01
This paper describes the development of a stability-indicating RP-HPLC method for the determination of atomoxetine hydrochloride (ATX) in the presence of its degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of acid, base, oxidation, wet heat, dry heat, and photodegradation. In stability tests, the drug was susceptible to acid, base, oxidation, and dry and wet heat degradation. It was found to be stable under the photolytic conditions tested. The drug was successfully separated from the degradation products formed under stress conditions on a Phenomenex C18 column (250 x 4.6 mm id, 5 microm particle size) by using acetonitrile-methanol-0.032 M ammonium acetate (55 + 05 + 40, v/v/v) as the mobile phase at 1.0 mL/min and 40 degrees C. Photodiode array detection at 275 nm was used for quantitation after RP-HPLC over the concentration range of 0.5-5 microg/mL with a mean recovery of 100.8 +/- 0.4% for ATX. Statistical analysis demonstrated that the method is repeatable, specific, and accurate for the estimation of ATX. Because the method effectively separates the drug from its degradation products, it can be used as a stability-indicating method.
Chhalotiya, Usmangani K.; Bhatt, Kashyap K.; Shah, Dimal A.; Baldania, Sunil L.
2010-01-01
The objective of the present work was to develop a stability-indicating RP-HPLC method for duloxetine hydrochloride (DUL) in the presence of its degradation products generated from forced decomposition studies. The drug substance was found to be susceptible to stress conditions of acid hydrolysis. The drug was found to be stable to dry heat, photodegradation, oxidation and basic condition attempted. Successful separation of the drug from the degradation products formed under acidic stress conditions was achieved on a Hypersil C-18 column (250 mm × 4.6 mm id, 5μm particle size) using acetonitrile: 0.01 M potassium dihydrogen phosphate buffer (pH 5.4 adjusted with orthophosphoric acid) (50:50, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Quantification was achieved with photodiode array detection at 229 nm over the concentration range 1–25 μg/ml with range of recovery 99.8–101.3 % for DUL by the RP-HPLC method. Statistical analysis proved the method to be repeatable, specific, and accurate for estimation of DUL. It can be used as a stability-indicating method due to its effective separation of the drug from its degradation products, PMID:21179321
Determination of hydroxyurea in human plasma by HPLC-UV using derivatization with xanthydrol.
Legrand, Tiphaine; Rakotoson, Marie-Georgine; Galactéros, Frédéric; Bartolucci, Pablo; Hulin, Anne
2017-10-01
A simple and rapid high performance liquid chromatography (HPLC) method using ultraviolet (UV) detection was developed to determine hydroxyurea (HU) concentration in plasma sample after derivatization with xanthydrol. Two hundred microliters samples were spiked with methylurea (MeU) as internal standard and proteins were precipitated by adding methanol. Derivatization of HU and MeU was immediately performed by adding 0.02M xanthydrol and 1.5M HCl in order to obtain xanthyl-derivatives of HU and MeU that can be further separated using HPLC and quantified using UV detection at 240nm. Separation was achieved using a C18 column with a mobile phase composed of 20mM ammonium acetate and acetonitrile in gradient elution mode at a flow rate of 1mL/min. The total analysis time did not exceed 18min. The method was found linear from 5 to 400μM and all validation parameters fulfilled the international requirements. Between- and within-run accuracy error ranged from -4.7% to 3.2% and precision was lower than 12.8%. This simple method requires small volume samples and can be easily implemented in most clinical laboratories to develop pharmacokinetics studies of HU and to promote its therapeutic monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Gumuscu, Burcu; Erdogan, Zeynep; Guler, Mustafa O.; Tekinay, Turgay
2014-01-01
In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95–98%. The detection limits for diol column ranged from 0.78 to 1.17 µg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation. PMID:24905826
Gumuscu, Burcu; Erdogan, Zeynep; Guler, Mustafa O; Tekinay, Turgay
2014-01-01
In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95-98%. The detection limits for diol column ranged from 0.78 to 1.17 µg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation.
Methods and applications of HPLC-AMS (WBio 5)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucholz, B A; Clifford, A J; Duecker, S R
Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a {sup 14}C-labelled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the {sup 14}C content above the control predose tissue and converting to equivalents of the parent compound. High Performance Liquid Chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement.more » Unknowns are identified by coelution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the {sup 14}C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of {sup 14}C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected {sup 14}C activity <0.17 Bq (4.5 pCi) on the HPLC column.« less
Cytokinin nucleotides contents in sexual buds of Douglas-fir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imbault, N.; Doumas, P.; Bonnet-Masimbert, N.
1989-04-01
Cytokinin nucleotides were extracted from male and female buds of Pseudotsuga menxiesii by 10 % perchloric acid. They were prepurified on cation exchanger columns (CBA, Amersham) and then separated by two HPLC systems. The first one (Partisil 10 SAX, 10{mu}m, Wathman) separates the mono-, di- and tri-phosphates groups which were collected. The second one (Ultraspher, 5 {mu}m, Beckman) separates the cytokinin nucleotides inside each group. After separation, cytokinin nucleotides were assayed by radioimmunoassay with anti ribosyl zeatin (RZ) and anti isopentenyladenosine (iPA) antibodies. The analysis showed in the monophosphate (mono-P) group one immunoreactant peak in RZ fraction which co-chromatographied withmore » RZ-5{prime}-mono-P and two peaks in the iPA fraction. One of them co-chromatographied with iPA-5{prime}-mono-P. In the diphosphate group, there were three peaks which reacted with anti RZ antibodies and one with anti iPA antibodies. The nucleotides obtained after the first HPLC system, were hydrolysed by a 5{prime}-nucleotidase showed compounds co-chromatographing with RZ and iPA. We did not observe any qualitative differences between the male and female buds. This is the first evidence of cytokinin nucleotides in tissue from woody plants.« less
Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka
2014-05-01
This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.
Liu, Hongcheng; Shao, Jinliang; Li, Qiwan; Li, Yangang; Yan, Hong Mei; He, Lizhong
2012-01-01
A simple, rapid method was developed for simultaneous extraction of trigonelline, nicotinic acid, and caffeine from coffee, and separation by two chromatographic columns in series. The trigonelline, nicotinic acid, and caffeine were extracted with microwave-assisted extraction (MAE). The optimal conditions selected were 3 min, 200 psi, and 120 degrees C. The chromatographic separation was performed with two columns in series, polyaromatic hydrocarbon C18 (250 x 4.6 mm id, 5 microm particle size) and Bondapak NH2 (300 x 3.9 mm id, 5 microm particle size). Isocratic elution was with 0.02 M phosphoric acid-methanol (70 + 30, v/v) mobile phase at a flow rate of 0.8 mL/min. Good recoveries and RSD values were found for all analytes in the matrix. The LOD of the three compounds was 0.02 mg/L, and the LOQ was 0.005% in the matrix. The concentrations of trigonelline, nicotinic acid, and caffeine in instant coffee, roasted coffee, and raw coffee (Yunnan Arabica coffee) were assessed by MAE and hot water extraction; the correlation coefficients between concentrations of the three compounds obtained were close to 1.
Liu, Min; Li, Xiaolin; Bie, Wei; Wang, Minglin; Feng, Qian
2011-02-01
A new method was established for the determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography (SPE-HPLC). The samples were extracted by methanol-water (1:1, v/v) and purified by a solid phase extraction column. Then, the chromatographic separation was achieved on a Luna C18 column by linear gradient elution. The mobile phase was 10 mmol/L ammonium acetate-acetonitrile (containing 1% acetic acid). The results showed that the 15 industrial synthetic dyes can be separated efficiently. The recoveries of the 15 industrial synthetic dyes spiked in condiment were between 84.6% and 114.2% with the relative standard deviations of 0.9% - 10.3%. The limits of detection of this method was 0.05 - 0.18 mg/kg for the 15 industrial synthetic dyes. The method is simple, sensitive, accurate, repeatable and can be used for simultaneous determination of the 15 illegally added industrial synthetic dyes.
Gritti, Fabrice; McDonald, Thomas; Gilar, Martin
2016-06-17
250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J
2011-02-20
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.
Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.
2011-01-01
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276
Ge, Liya; Yong, Jean Wan Hong; Goh, Ngoh Khang; Chia, Lian Sai; Tan, Swee Ngin; Ong, Eng Shi
2005-12-27
Kinetin (free base and riboside), which was assumed by many scientists to be a synthetic cytokinin plant growth hormone, has been detected for the first time in the endosperm liquid of fresh young coconut fruits ("coconut water"). To facilitate the study, we developed a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the identification and quantification of kinetin and kinetin riboside in purified coconut water extract sample. Following a solid-phase extraction of cytokinins in coconut water using C18 columns, the samples were further purified by Oasis MCX columns and analyzed by LC-MS/MS for kinetin and kinetin riboside. Detection by mass spectrometry was carried out using selected reaction monitoring (SRM) mode, by identifying the putative kinetin and kinetin riboside based on their characteristic fragments. Based on a signal-to-noise ratio of 3, the limits of detection in SRM mode were 0.02 microM and 0.005 microM for kinetin and kinetin riboside, respectively. Furthermore, optimal conditions for a baseline chromatographic separation of 18 cytokinin standards by high performance liquid chromatography (HPLC) were developed. The HPLC method had been employed for the confirmation and further fractionation of kinetin in coconut water extracts. The confirmation and fractionation of kinetin riboside was carried out using a further modified HPLC program due to the presence of other interfering material(s) in the sample matrix. Finally, fractions of putative kinetin and kinetin riboside collected from HPLC eluate of coconut water sample were further authenticated by independent capillary zone electrophoresis (CZE) experiment.
Wang, Lu; Qu, Haibin
2016-03-01
A method combining solid phase extraction, high performance liquid chromatography, and ultraviolet/evaporative light scattering detection (SPE-HPLC-UV/ELSD) was developed according to Quality by Design (QbD) principles and used to assay nine bioactive compounds within a botanical drug, Shenqi Fuzheng Injection. Risk assessment and a Plackett-Burman design were utilized to evaluate the impact of 11 factors on the resolutions and signal-to-noise of chromatographic peaks. Multiple regression and Pareto ranking analysis indicated that the sorbent mass, sample volume, flow rate, column temperature, evaporator temperature, and gas flow rate were statistically significant (p < 0.05) in this procedure. Furthermore, a Box-Behnken design combined with response surface analysis was employed to study the relationships between the quality of SPE-HPLC-UV/ELSD analysis and four significant factors, i.e., flow rate, column temperature, evaporator temperature, and gas flow rate. An analytical design space of SPE-HPLC-UV/ELSD was then constructed by calculated Monte Carlo probability. In the presented approach, the operating parameters of sample preparation, chromatographic separation, and compound detection were investigated simultaneously. Eight terms of method validation, i.e., system-suitability tests, method robustness/ruggedness, sensitivity, precision, repeatability, linearity, accuracy, and stability, were accomplished at a selected working point. These results revealed that the QbD principles were suitable in the development of analytical procedures for samples in complex matrices. Meanwhile, the analytical quality and method robustness were validated by the analytical design space. The presented strategy provides a tutorial on the development of a robust QbD-compliant quantitative method for samples in complex matrices.
Liu, E-Hu; Qi, Lian-Wen; Li, Bin; Peng, Yong-Bo; Li, Ping; Li, Chang-Yin; Cao, Jun
2009-01-01
A fast high-performance liquid chromatography (HPLC) method coupled with diode-array detection (DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) has been developed for rapid separation and sensitive identification of major constituents in Radix Paeoniae Rubra (RPR). The total analysis time on a short column packed with 1.8-microm porous particles was about 20 min without a loss in resolution, six times faster than the performance of a conventional column analysis (115 min). The MS fragmentation behavior and structural characterization of major compounds in RPR were investigated here for the first time. The targets were rapidly screened from RPR matrix using a narrow mass window of 0.01 Da to restructure extracted ion chromatograms. Accurate mass measurements (less than 5 ppm error) for both the deprotonated molecule and characteristic fragment ions represent reliable identification criteria for these compounds in complex matrices with similar if not even better performance compared with tandem mass spectrometry. A total of 26 components were screened and identified in RPR including 11 monoterpene glycosides, 11 galloyl glucoses and 4 other phenolic compounds. From the point of time savings, resolving power, accurate mass measurement capability and full spectral sensitivity, the established fast HPLC/DAD/TOFMS method turns out to be a highly useful technique to identify constituents in complex herbal medicines. (c) 2008 John Wiley & Sons, Ltd.
Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin
2017-10-13
A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
Prinsen, Hubertus C M T; Schiebergen-Bronkhorst, B G M; Roeleveld, M W; Jans, J J M; de Sain-van der Velden, M G M; Visser, G; van Hasselt, P M; Verhoeven-Duif, N M
2016-09-01
Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma.
Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin.
Xu, Chao; Wang, Jiajia; Liu, Weiping; Daniel Sheng, G; Tu, Yunjie; Ma, Yun
2008-01-01
Chiral pollutants are receiving growing environmental concern due to differential biological activities of their enantiomers. In the present study, enantiomeric separation of the pyrethroid insecticide lambda-cyhalothrin (LCT) was investigated by high-performance liquid chromatography (HPLC) using the columns of Chiralpak AD (amylase tris[3,5-dimethyl-phenyl carbamate]), Chiralpak AS (amylase tris[(S)-1-phenyl carbamate]), Chiralcel OD (cellulose tris[3,5-dimethylphenyl carbamate]), and Chiralcel OJ (cellulose tris[4-methyl benzoate]) with different chiral stationary phases. The differential toxicities of the enantiomers in aquatic systems were evaluated using the acute zebrafish (Danio rerio) toxicity test and the zebrafish embryo test. The enantiomers of LCT were separated completely on all the columns tested and detected by circular dichroism at 236 nm. Better separations were achieved at lower temperatures (e.g., 20 degrees C) and lower levels of polar modifiers (=5%) in mobile phase. Ethanol was found to be a good modifier of the mobile phase for all the columns, although isopropanol acted better for the Chiralcel OD column. The (-)-enantiomer was >162 times more toxic than its antipode to zebrafish in the acute test. The embryo test indicated that the exposure to LCT enantioselectively induced crooked body, yolk sac edema, and pericardial edema and that the (-)-enantiomer was 7.2 times stronger than the (+)-enantiomer in 96-h mortality. The malformations were induced by the racemate and its (-)-enantiomer at lower concentrations tested (e.g., 50 microg L(-1)), whereas the (+)-enantiomer induced malformations at relatively higher concentrations (>/=100 microg L(-1)). These results suggest that the toxicological effects of chiral pesticides must be evaluated using their individual enantiomers.
Zhang, Ting-Ting; Wu, Yi; Hang, Tai-Jun
2009-05-01
To establish a stable and repeatable HPLC fingerprint standard and evaluate the flavonoids from Houttuynia cordata qualitatively and quantitatively. HPLC separation was performed on a C18 column with methanol-0.1% phosphoric acid mixed solution as mobile phase in gradient elution mode. The fingerprint reference was determined as one of the most typical chromatograms and used to be compared with other samples through Cosine and Relative Euclid Distance methods, thus the chromatographic fingerprints of flavonoids from Houttuynia cordata were evaluated by constitutes and contents, respectively. Fourteen mutual peaks were fixed in the HPLC fingerprint of flavonoids from Houttaynia cordata. It showed good results in validation tests in which the quercitrin's peak was set as the reference peak to calculate relative retention time and area of other peaks in the chromatograms, and the RSD were less than 0.2% and 5.0%, respectively. The linear ranges for quercitrin was 1.07-83.4 microg/mL (r=0.9999) and the average recovery was 100.3%. The method shows good repeatability, ruggedness and reliability. Comparing with the established reference fingerprint, the evaluation system including Cosine and Relative Euclid Distance methods lays dependable foundation for controlling the quality of Houttuynia cordata.
Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS.
Russell, A L; Seiter, J M; Coleman, J G; Winstead, B; Bednar, A J
2014-10-01
The use of Insensitive Munitions eXplosives (IMX) is increasing as the Army seeks to replace certain conventional munitions constituents, such as 2,4,6-trinitrotolene (TNT), for improved safety. The IMX formulations are more stable and therefore less prone to accidental detonation while designed to match the performance of legacy materials. Two formulations, IMX 101 and 104 are being investigated as a replacement for TNT in artillery rounds and composition B Army mortars, respectively. The chemical formulations of IMX-101 and 104 are comprised of four constituents;2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), 1-nitroguanidine (NQ), and Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) which are mixed in various ratios to achieve the desired performance. The current work details the analysis of the IMX constituents by single column HPLC-UV-ESI-MS. Detection limits determined are in agreement with similar HPLC analysis of compounds, ranging from 7 to 9μg/L. Gradient mobile phases are used to allow separation of the 4 target compounds in more complex mixture of other concomitant compounds. Mass spectra are used to confirm analyte identity with chromatographic retention time. Published by Elsevier B.V.
Quantitative high-performance liquid chromatography of nucleosides in biological materials.
Gehrke, C W; Kuo, K C; Davis, G E; Suits, R D; Waalkes, T P; Borek, E
1978-03-21
A rigorous, comprehensive, and reliable reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the analysis of ribonucleosides in urine (psi, m1A, m1I, m2G, A, m2(2)G). An initial isolation of ribonucleosides with an affinity gel containing an immobilized phenylboronic acid was used to improve selectivity and sensitivity. Response for all nucleosides was linear from 0.1 to 50 nmoles injected and good quantitation was obtained for 25 microliter or less of sample placed on the HPLC column. Excellent precision of analysis for urinary nucleosides was achieved on matrix dependent and independent samples, and the high resolution of the reversed-phase column allowed the complete separation of 9 nucleosides from other unidentified UV absorbing components at the 1-ng level. Supporting experimental data are presented on precision, recovery, chromatographic methods, minimum detection limit, retention time, relative molar response, sample clean-up, stability of nucleosides, boronate gel capacity, and application to analysis of urine from patients with leukemia and breast cancer. This method is now being used routinely for the determination of the concentration and ratios of nucleosides in urine from patients with different types of cancer and in chemotherapy response studies.
Piwowarski, Jakub P; Kiss, Anna K
2013-01-01
Lythri herba, a pharmacopoeial plant material (European Pharmacopoea), is obtained from flowering parts of purple loosestrife (Lythrum salicaria L.). Although extracts from this plant material have been proven to possess some interesting biological activities and its pharmacopoeial standardisation is based on total tannin content determination, the phytochemical characterisation of this main group of compounds has not yet been fully conducted. To isolate ellagitannins from Lythri herba, determine their structures and develop chromatographic methods for their qualitative analysis. Five C-glucosidic ellagitannins - monomeric- vescalagin and castalagin together with new dimeric structures - salicarinins A-C, composed of vescalagin and stachyurin, vescalagin and casuarinin, castalagin and casuarinin units connected via formation of valoneoyl group, were isolated using column chromatography and preparative HPLC. Structures were determined according to (1) H and (13) C-NMR (one- and two-dimensional), electrospray ionisation-time of flight (ESI-TOF), electrospray ionisation-ion trap (ESI-MS(n) ) and circular dichroism (CD) spectra, together with acidic hydrolysis products analysis. HPTLC on RP-18 modified plates and HPLC-DAD-MS(n) on RP-18 column methods were developed for separation of the five main ellagitannins. Copyright © 2012 John Wiley & Sons, Ltd.
Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin
2009-11-06
Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.
Gant, Anastasia; Leyva, Vanessa E; Gonzalez, Ana E; Maruenda, Helena
2015-01-01
Nicotinic acid, N-methylpyridinium ion, and trigonelline are well studied nutritional biomarkers present in coffee, and they are indicators of thermal decomposition during roasting. However, no method is yet available for their simultaneous determination. This paper describes a rapid and validated HPLC-diode array detector method for the simultaneous quantitation of caffeine, trigonelline, nicotinic acid, N-methylpyridinium ion, 5-caffeoylquinic acid, and 5-hydroxymethyl furfural that is applicable to three coffee matrixes: green, roasted, and instant. Baseline separation among all compounds was achieved in 30 min using a phenyl-hexyl RP column (250×4.6 mm, 5 μm particle size), 0.3% aqueous formic buffer (pH 2.4)-methanol mobile phase at a flow rate of 1 mL/min, and a column temperature at 30°C. The method showed good linear correlation (r2>0.9985), precision (less than 3.9%), sensitivity (LOD=0.023-0.237 μg/mL; LOQ=0.069-0.711 μg/mL), and recovery (84-102%) for all compounds. This simplified method is amenable for a more complete routine evaluation of coffee in industry.
[Study on HPLC fingerprint of Alpinia officinarum].
Deng, Yi-Feng; Feng, Li-Na; Luo, Hui
2011-09-01
To establish the chromatography fingerprint of Alpinia officinarum by HPLC. An optimum HPLC conditions which were obtained under the assessment of LC-MS were as follows: Shim-pack VP-ODS column (2.0 mm x 250 mm, 5 microm), 0.1% HAc aqueous solution as phase A, 15% Acetonitrile: 40% Methanol: 45% Tetrafuran as phase B, the flow rate was 0.20 mL/min, column temperature was 35 degrees C and UV detector was set at 280 nm. The HPLC fingerprint of Alpinia officinarum was established, the consensus 10 peaks and their relative retention times along with the ranges of relative area were determined. The method is reliable and stable and can be used for the quality control and identification of Alpinia officinarum.
Xiao, Yuan; Guo, Jialiang; Ran, Danni; Duan, Qianqian; Crommen, Jacques; Jiang, Zhengjin
2015-06-26
A facile and efficient "one-pot" copolymerization strategy was used for the preparation of sulfonamide drug (SA) functionalized monolithic columns. Two novel SA-immobilized methacrylate monolithic columns, i.e. poly(GMA-SMX-co-EDMA) and poly(GMA-SAA-co-EDMA) were prepared by one-pot in situ copolymerization of the drug ligand (sulfamethoxazole (SMX) or sulfanilamide (SAA)), the monomer (glycidyl methacrylate, GMA) and the cross-linker (ethylene dimethacrylate, EDMA) within 100 μm i.d. capillaries under optimized polymerization conditions. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, scanning electron microscopy and micro-HPLC. Satisfactory column permeability, efficiency and separation performance were obtained on the optimized poly(GMA-SMX-co-EDMA) monolithic column for small molecules, such as a standard test mixture and eight aromatic ketones. Notably, it was found that the poly(GMA-SMX-co-EDMA) monolith showed a selective affinity to trypsin, while the poly(GMA-SAA-co-EDMA) monolith containing sulfanilamide did not exhibit such affinity at all. This research not only provides a novel monolith for the selective isolation and purification of trypsin, but it also offers the possibility to easily prepare novel drug functionalized methacrylate monoliths through a one-pot copolymerization strategy. Copyright © 2015 Elsevier B.V. All rights reserved.
Jalalizadeh, Hassan; Raei, Mahdi; Tafti, Razieh Fallah; Farsam, Hassan; Kebriaeezadeh, Abbas; Souri, Effat
2014-01-01
Memantine is chemically a tricyclic amine and is used for Parkinson’s disease and movement disorders. Although several HPLC methods with different derivatization reagents have been developed for the determination of memantine in biological fluids, there are some complications which limit the use of these methods in routine analysis of memantine in in vitro tests. We established a simple, sensitive, precise, and accurate HPLC method for the quantification of memantine in dosage forms. Pre-column derivatization of memantine was performed with 1-fluoro-2,4-dinitrobenzene and the reaction product was separated on a Nova-Pak C18 column. A mixture of acetonitrile and sodium dihydrogenphosphate (pH 2.5; 0.05 M) (70: 30, v/v) was used as the mobile phase. UV detection was performed at 360 nm. Forced degradation studies were performed on a powdered tablet sample of memantine hydro-chloride using acidic (0.1 M hydrochloric acid), basic (0.1 M sodium hydroxide), oxidative (10% hydrogen peroxide), thermal (105°C), photolytic, and humidity conditions. Good linearity (r2=0.999) was obtained over the range of 1–12 μg mL−1 of memantine hydrochloride with acceptable within-day and between-day precision values in the range of 0.05–0.95%. The proposed method was used for the assay determination and dissolution rate study of memantine dosage forms with excellent specificity. PMID:24959398
Antoniou, Constantinos G; Markopoulou, Catherine K; Kouskoura, Maria G; Koundourellis, John E
2011-01-01
Different HPLC chromatographic systems were investigated on a C18 ACE 5 pm, 150 x 4.6 mm id column for the determination of tymazoline, tramazoline, and antazoline, with either naphazoline or xylometazoline, in commercial preparations. For the development and optimization of the systems, a Response Surface Method (r=0.925-0.980) was used to illustrate the changes in k as a function of pH values and different salt concentrations. The simultaneous separation of 2-imidazolines was accomplished at 40 degrees C with 0.01 M ammonium acetate-methanol (50+50, v/v, pH 6.0) mobile phase at a flow rate of 1.2 mL/min. In order to deal with the usual coexistence of 2-imidazolines with benzethonium and benzalkonium chloride preservatives, it was necessary to use another chromatographic system, 0.01 M ammonium acetate-methanol (50+50, v/v) mobile phase on a cyano ACE 5 pm, 150 x 4.6 mm id column. As part of a more thorough theoretical investigation, a partial least-squares (PLS) technique was used for modeling the RP-HPLC retention data. The model was based on molecular structure descriptors of the analytes' X variables and on their retention time (Log K) Y. The goodness of fit was estimated by the PLS correlation coefficient (r2) and root mean square error of estimation values, which were 0.994 and 0.0479, respectively.
Sun, Baoguo; Miller, Gregory; Lee, Wan Yee; Ho, Kelvin; Crowe, Michael A; Partridge, Leslie
2013-01-04
Analytical methods were developed for a directed enzyme evolution research programme, which pursued high performance enzymes to produce high quality L-ribose using large scale biocatalytic reaction. A high throughput HPLC method with evaporative light-scattering detection was developed to test ribose and ribitol in the enzymatic reaction, a β-cyclobond 2000 analytical column separated ribose and ribitol in 2.3 min, a C(18) guard column was used as an on-line filter to clean up the enzyme sample matrix and a short gradient was applied to wash the column, the enzymatic reaction solution can be directly injected after quenching. Total run time of each sample was approx. 4 min which provided capability of screening 4×96-well plates/day/instrument. Meanwhile, a capillary electrophoresis method was developed for the separation of ribose enantiomers, while 7-aminonaphthalene-1,3-disulfonic acid was used as derivatisation reagent and 25 mM tetraborate with 5 mM β-cyclodextrin was used as electrolyte. 0.35%of D-ribose in L-ribose can be detected which can be translated into 99.3% ee of L-ribose. Derivatisation reagent and sample matrix did not interfere with the measurement. Copyright © 2012 Elsevier B.V. All rights reserved.
Souri, Effat; Zargarpoor, Mohammad; Mottaghi, Siavash; Ahmadkhaniha, Reza; Kebriaeezadeh, Abbas
2015-01-01
Fingolimod is an immunosuppressive agent which is used for the prophylaxis of organ transplantation rejection or multiple sclerosis treatment. In this study, systematic forced degradation studies on fingolimod bulk powder were performed to develop a stability-indicating HPLC method. Separation of fingolimod and its degradation products was achieved on a Nova-Pak C8 column. The mobile phase was a mixture of potassium dihydrogenphosphate 50 mM (pH 3.0) and acetonitrile (45:55, v/v) at a flow rate of 1 ml/min. The proposed method was linear in the range of 0.125-20 μg mL(-1). The within-day and between-day coefficients of variation were in the range of 0.6-1.2%. The developed method was successfully applied for the determination of the fingolimod amount in pharmaceutical dosage forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, M.; Yoshida, K.; Akabane, S.
We measured endogenous angiotensins (ANGs) I, IIandIII using a system of extraction by Sep-Pak column followed by high performance liquid chromatography (HPLC) combined with radioimmunoassay (RIA). An excellent separation of ANGs was obtained by HPLC. The recovery of ANGs I, IIandIII was 80-84%, when these authentic peptides were added to 6 ml of plasma. The coefficient of variation of the ANGs was 0.04-0.09 for intra-assay and 0.08-0.13 for inter-assay, thereby indicating a good reproducibility. Plasma ANGs I, IIandIII measured by this method in 5 normal volunteers were 51,4.5 and 1.2 pg/ml. In the presence of captopril, ANGs IIandIII decreased bymore » 84% and 77%, respectively, while ANG I increased 5.1 times. This method is therefore useful to assess the precise levels of plasma ANGs.« less
Quantification of Aconitum alkaloids in aconite roots by a modified RP-HPLC method.
Jiang, Zhi-Hong; Xie, Ying; Zhou, Hua; Wang, Jing-Rong; Liu, Zhong-Qiu; Wong, Yuen-Fan; Cai, Xiong; Xu, Hong-Xi; Liu, Liang
2005-01-01
The three Aconitum alkaloids, aconitine (1), mesaconitine (2) and hypaconitine (3), are pharmacologically active but also highly toxic. A standardised method is needed for assessing the levels of these alkaloids in aconite roots in order to ensure the safe use of these plant materials as medicinal herbs. By optimising extraction, separation and measurement conditions, a reliable, reproducible and accurate method for the quantitative determination of all three Aconitum alkaloids in unprocessed and processed aconite roots has been developed. This method should be appropriate for use in the quality control of Aconitum products. The three Aconitum alkaloids were separated by a modified HPLC method employing a C18 column gradient eluted with acetonitrile and ammonium bicarbonate buffer. Quantification of Aconitum alkaloids, detected at 240 nm, in different batches of samples showed that the content of 1, 2 and 3 varied significantly. In general, the alkaloid content of unprocessed roots was higher than that of processed roots. These variations were considered to be the result of differences in species, processing methods and places of origin of the samples.
Lindley, C.E.; Burkhardt, M.R.; DeRusseau, S.N.
1994-01-01
Organic explosives are determined in samples of ground water and surface water with emphasis on identifying and quantifying trinitrotoluene (TNT) metabolites. Water samples are filtered to remove suspended particulate material and passed through a polystyrene divinylbenzene-packed cartridge by a vacuum-extraction system. The target analytes subsequently are eluted with acetonitrile. A high-performance liquid chromatograph (HPLC) equipped with a photodiode-array detector is used for sample analysis. Analytes are separated on an octadecylsilane column using a methanol, water, and acetonitrile gradient elution. The compounds 2,4- and 2,6-dinitrotoluene are separated through an independent, isocratic elution. Method detection limits, on the basis of a 1-liter sample size, range from 0.11 to 0.32 microgram per liter. Recoveries averaged from 71 to 101 percent for 13 analytes in one set of HPLC-grade water fortified at about 1 microgram per liter. The method is limited to use by analysts experienced in handling explosive materials. (USGS)
Lee, Kathy Wai Yu; Porter, Christopher J H; Boyd, Ben J
2013-09-01
There is increasing attention in the literature towards understanding the behaviour of lipid-based drug formulations under digestion conditions using in vitro and in vivo methods. This necessitates a convenient method for quantitation of lipids and lipid digestion products. In this study, a simple and accessible method for the separation and quantitative determination of typical formulation and digested lipids using high performance liquid chromatography coupled to refractive index detection (HPLC-RI) is described. Long and medium chain lipids were separated and quantified in a biological matrix (gastrointestinal content) without derivatisation using HPLC-RI on C18 and C8 columns, respectively. The intra- and inter-assay accuracy was between 92% and 106%, and the assays were precise to within a coefficient of variation of less than 10% over the range of 0.1-2 mg/mL for both long and medium chain lipids. This method is also shown to be suitable for quantifying the lipolysis products collected from the gastrointestinal tract in the course of in vivo lipid digestion studies.
Castro Grijalba, Alexander; Fiorentini, Emiliano F; Martinez, Luis D; Wuilloud, Rodolfo G
2016-09-02
The application of different ionic liquids (ILs) as modifiers for chromatographic separation and determination of arsenite [As(III)], arsenate [As(V)], dimethylarsonic acid (DMA) and monomethylarsonic acid (MMA) species in wine samples, by reversed-phase high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry detection (RP-HPLC-HG-AFS) was studied in this work. Several factors influencing the chromatographic separation of the As species, such as pH of the mobile phase, buffer solution concentration, buffer type, IL concentration and length of alkyl groups in ILs were evaluated. The complete separation of As species was achieved using a C18 column in isocratic mode with a mobile phase composed of 0.5% (v/v) 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 5% (v/v) methanol at pH 8.5. A multivariate methodology was used to optimize the variables involved in AFS detection of As species after they were separated by HPLC. The ILs showed remarkable performance for the separation of As species, which was obtained within 18min with a resolution higher than 0.83. The limits of detection for As(III), As(V), MMA and DMA were 0.81, 0.89, 0.62 and 1.00μg As L(-1). The proposed method was applied for As speciation analysis in white and red wine samples originated from different grape varieties. Copyright © 2016 Elsevier B.V. All rights reserved.
Hu, Bing; Wang, Lin; Zhou, Bei; Zhang, Xin; Sun, Yi; Ye, Hong; Zhao, Liyan; Hu, Qiuhui; Wang, Guoxiang; Zeng, Xiaoxiong
2009-04-10
Monomers of (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) and (-)-3-O-methyl epicatechin gallate (ECG3'Me) (purity, >97%) were successfully prepared from extract of green tea by two-time separation with Toyopearl HW-40S column chromatography eluted by 80% ethanol. In addition, monomers of (-)-catechin (C), (-)-gallocatechin (GC), (-)-gallocatechin gallate (GCG), and (-)-catechin gallate (CG) (purity, >98%) were prepared from EC, EGC, EGCG, and ECG by heat-epimerization and semi-preparative HPLC chromatography. With the prepared catechin standards, an effective and simultaneous HPLC method for the analysis of gallic acid, tea catechins, and purine alkaloids in tea was developed in the present study. Using an ODS-100Z C(18) reversed-phase column, fourteen compounds were rapidly separated within 15min by a linear gradient elution of formic acid solution (pH 2.5) and methanol. A 2.5-7-fold reduction in HPLC analysis time was obtained from existing analytical methods (40-105min) for gallic acid, tea catechins including O-methylated catechins and epimers of epicatechins, as well as purine alkaloids. Detection limits were generally on the order of 0.1-1.0ng for most components at the applied wavelength of 280nm. Method replication generally resulted in intraday and interday peak area variation of <6% for most tested components in green, Oolong, black, and pu-erh teas. Recovery rates were generally within the range of 92-106% with RSDs less than 4.39%. Therefore, advancement has been readily achievable with commonly used chromatography equipments in the present study, which will facilitate the analytical, clinical, and other studies of tea catechins.
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Zhang, Jie; Wang, Liang-Sheng; Gao, Jin-Ming; Xu, Yan-Jun; Li, Lian-Fang; Li, Chong-Hui
2012-01-01
Anthocyanins are important plant secondary metabolites. They show strong antioxidant activities and have potential as anti-cancer agents. Viola yedoensis and V. prionantha are traditional Chinese medicines and ornamental plants. However, the anthocyanin compositions of these two species are still unresolved. To develop a rapid and reliable high-performance liquid chromatography (HPLC) method for the separation and identification of anthocyanins from V. yedoensis and V. prionantha. Samples were extracted in methanol-water-formic acid-TFA (70:27:2:1, v/v). HPLC analysis was done on a C(18) column (TSK-GEL ODS-80Ts: 150 × 4.6 mm i.d.). Four solvent systems were tested to optimise the separation of anthocyanins using different gradient separation systems. HPLC-photodiode array detection (DAD) coupled to electrospray ionisation mass spectrometry (ESI-MS) was used to carry out the comprehensive characterisation of anthocyanins. Fourteen anthocyanins were characterised within 40 min with satisfactory peak resolution by a gradient composed of 10% aqueous formic acid and formic acid-acetonitrile-water (10:40:50, v/v). The calibration curve showed an excellent linear regression (r(2) = 0.9995) and low intra- and inter-day variations (RSD < 3.67%). The detected anthocyanins derived from Dp, Cy, Pt, Mv and Pn, could be divided into three groups: non-acylated glycosides, acetylglycosides and coumaroylglycosides. Anthocyanins distribution exhibited remarkable differences in aglycone levels and acylation patterns. The optimised method was successfully applied for the analysis of 14 anthocyanins from V. yedoensis and V. prionantha. The identification of anthocyanin constitutions is valuable for breeding and will open up new prospects for their medicinal application. Copyright © 2011 John Wiley & Sons, Ltd.
Van Berkel, Gary J; Kertesz, Vilmos
2013-06-30
A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.
Weber, Roland W S; Anke, Heidrun; Davoli, Paolo
2007-03-23
A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions.
Sen, Indranil; Zou, Wei; Alvaran, Josephine; Nguyen, Linda; Gajek, Ryszard; She, Jianwen
2015-01-01
In order to better distinguish the different toxic inorganic and organic forms of arsenic (As) exposure in individuals, we have developed and validated a simple and robust analytical method for determining the following six As species in human urine: arsenous (III) acid (As-III), As (V) acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine (AsB), and arsenocholine. In this method, human urine is diluted using a pH 5.8 buffer, separation is performed using an anion exchange column with isocratic HPLC, and detection is achieved using inductively coupled plasma-MS. The method uses a single mobile phase consisting of low concentrations of both phosphate buffer (5 mM) and ammonium nitrate salt (5 mM) at pH 9.0; this minimizes the column equilibration time and overcomes challenges with separation between AsB and As-III. In addition, As-III oxidation is prevented by degassing the sample preparation buffer at pH 5.8, degassing the mobile phase online at pH 9.0, and by the use of low temperature (-70 °C) and flip-cap airtight tubes for long term storage of samples. The method was validated using externally provided reference samples. Results were in agreement with target values at varying concentrations and successfully passed external performance test criteria. Internal QC samples were prepared and repeatedly analyzed to assess the method's long-term precision, and further analyses were completed on anonymous donor urine to assess the quality of the method's baseline separation. Results from analyses of external reference samples agreed with target values at varying concentrations, and results from precision studies yielded absolute CV values of 3-14% and recovery from 82 to 115% for the six As species. Analysis of anonymous donor urine confirmed the well-resolved baseline separation capabilities of the method for real participant samples.
Janssen, Hans-Gerd; Swindells, Chris; Gunning, Philip; Wang, Weijun; Grün, Christian; Mahabir, Krishna; Maharaj, Vinesh J; Apps, Peter J
2008-06-09
High-performance liquid chromatography (HPLC)-UV and HPLC-Mass Spectrometry (MS) methods were developed for the quantitative analysis of the family of Hoodia gordonii steroid glycosides with appetite suppressing properties in dried plant material, in purified and enriched extracts and in various prototype food-products fortified with H. gordonii extracts. For solid materials, e.g. dried plants or for non-fatty foods, extraction of the steroid glycosides is performed using methanol. For products where the steroid glycosides are present in an oil matrix, direct injection of the oil after dilution in tetrahydrofuran is applied. The HPLC separation is performed on an octyl-modified reversed-phase column in the gradient mode with UV detection at lambda = 220 nm. Quantification is performed against an external calibration line prepared using either one of the pure steroid glycosides or geranyl-tiglate. Short- and long-term repeatabilities of the methods are better than 3 and 6%, respectively. Recoveries are better than 85%, even in the analysis of the least abundant steroid glycosides in a complex yoghurt drink. Linearity is better than 3-4 orders of magnitude and the detection limits are below approximately 2 microg g(-1) for the individual steroid glycosides in dried plant material and food products. HPLC-MS is used to confirm that the steroid glycosides contain the characteristic steroid core, the carbohydrate chain and the tigloyl group.
Abudayeh, Zead Helmi Mahmoud; Al Azzam, Khaldun Mohammad; Naddaf, Ahmad; Karpiuk, Uliana Vladimirovna; Kislichenko, Viktoria Sergeevna
2015-11-01
To separate and quantify four major saponins in the extracts of the skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum L.) using ultrasonic solvent extraction followed by a high performance liquid chromatography-diode array detector (HPLC-DAD) with positive confirmation by thin layer chromatography (TLC). The saponins: escin Ia, escin Ib, isoescin Ia and isoescin Ib were extracted using ultrasonic extraction method. The optimized extraction conditions were: 70% methanol as extraction solvent, 80 °C as extraction temperature, and the extraction time was achieved in 4 hours. The HPLC conditions used: Zorbax SB-ODS-(150 mm × 2.1 mm, 3 μm) column, acetonitrile and 0.10% phosphoric acid solution (39:61 v/v) as mobile phase, flow rate was 0.5 mL min(-1) at 210 nm and 230 nm detection. The injection volume was 10 μL, and the separation was carried out isothermally at 30 °C in a heated chamber. The results indicated that the developed HPLC method is simple, sensitive and reliable. Moreover, the content of escins in seeds decreased by more than 30% in endosperm and by more than 40% in skin upon storage for two years. This assay can be readily utilized as a quality control method for horse chestnut and other related medicinal plants.
High-efficiency high performance liquid chromatographic analysis of red wine anthocyanins.
de Villiers, André; Cabooter, Deirdre; Lynen, Frédéric; Desmet, Gert; Sandra, Pat
2011-07-22
The analysis of anthocyanins in natural products is of significant relevance in recent times due to the recognised health benefits associated with their consumption. In red grapes and wines in particular, anthocyanins are known to contribute important properties to the sensory (colour and taste), anti-oxidant- and ageing characteristics. However, the detailed investigation of the alteration of these compounds during wine ageing is hampered by the challenges associated with the separation of grape-derived anthocyanins and their derived products. High performance liquid chromatography (HPLC) is primarily used for this purpose, often in combination with mass spectrometric (MS) detection, although conventional HPLC methods provide incomplete resolution. We have previously demonstrated how on-column inter-conversion reactions are responsible for poor chromatographic efficiency in the HPLC analysis of anthocyanins, and how an increase in temperature and decrease in particle size may improve the chromatographic performance. In the current contribution an experimental configuration for the high efficiency analysis of anthocyanins is derived using the kinetic plot method (KPM). Further, it is shown how analysis under optimal conditions, in combination with MS detection, delivers much improved separation and identification of red wine anthocyanins and their derived products. This improved analytical performance holds promise for the in-depth investigation of these influential compounds in wine during ageing. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Jin; Zhao, Yong-ming; Zhang, Man-li; Shi, Qing-wen
2015-04-01
A rapid and sensitive high-performance liquid chromatographic (HPLC) method was developed for the simultaneous separation and determination of chlorogenic acid, caffeic acid, alantolactone and isoalantolactone in Inula helenium. The HPLC separation was performed on an Elite Hypersil C18 column (200 × 4.6 mm i.d., 5 µm particle size) with a gradient elution of solvent A (acetonitrile) and solvent B (0.1% phosphoric acid in water) at a flow rate of 1.0 mL/min. Detection was monitored at 225 nm. The recovery of chlorogenic acid ranged from 95.6 to 107.7%, the recovery of caffeic acid ranged from 95.4 to 104.2%, the recovery of alantolactone ranged from 95.8 to 100.8% and the recovery of isoalantolactone ranged from 96.5 to 102.3%. The retention times for chlorogenic acid, caffeic acid, alantolactone and isoalantolactone were 5.2, 7.1, 25.6 and 26.6 min with the limits of detection of 0.069, 0.021, 0.039 and 0.051 µg/mL, respectively. Relative standard deviation for the intra-day and inter-day was ≤2.5%. The validated method is reliable for the routine control of these four compounds in I. helenium. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ferguson, Glenda K.
1998-12-01
A quantitative high-performance liquid chromatography (HPLC) laboratory experiment which entails the isocratic separation and simultaneous determination of the two active components of a commercial antipsychotic tablet has been developed. The prescription formulation used in this experiment contains amitriptyline hydrochloride (a tricyclic antidepressant) and perphenazine (a tranquilizer). Our experiment makes use of a straightforward HPLC separation on a cyanopropyl-packed column with an acetonitrile:methanol:aqueous monopotassium phosphate mobile phase pumped at a flow rate of 2.0 mL/min. Analytes are detected by UV absorbance at 215 nm. These conditions yield highly symmetrical and well-resolved peaks in less than 5 min after the injection of a mixture. In the experiment, students are given amitriptyline hydrochloride-perphenazine tablets without the manufacturer's labeled composition claim and a stock solution mixture with known concentrations of amitriptyline hydrochloride and perphenazine. They prepare four standards and a pharmaceutical sample of unknown concentration, assay each solution in quadruplicate, and plot average peak areas of the concentrations of the known solutions in the construction of a standard curve. From the mathematical relationships that result, the average masses of amitriptyline hydrochloride and perphenazine in the prescription tablet are determined. Finally, the standard deviations of the mean masses are calculated. The entire laboratory procedure and statistical data analysis can be completed in a single 3-hour period.
Determination of arsenic species in marine samples by HPLC-ICP-MS.
Hirata, Shizuko; Toshimitsu, Hideki; Aihara, Masato
2006-01-01
Arsenic speciation analysis in marine samples was performed using high performance liquid chromatography (HPLC) with ICP-MS detection. The separation of eight arsenic species viz. arsenite (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), arsenobetaine, trimethylarsine oxide (TMAO), arsenocholine and tetramethylarsonium ion (TeMAs) was achieved on a Shiseido Capcell Pak C18 column by using an isocratic eluent (pH 3.0), in which condition As(III) and MMA were co-eluted. The entire separation was accomplished in 15 min. The detection limits for 8 arsenic species by HPLC/ICP-MS were in the range of 0.02 - 0.10 microg L(-1) based on 3sigma of blank response (n=9). The precision was calculated to be 3.1-7.3% (RSD) for all eight species. The method then successfully applied to several marine samples e.g., oyster, scallop, fish, and shrimps. For the extraction of arsenic species from seafood products, the low power microwave digestion was employed. The extraction efficiency was in the range of 52.9 - 112.3%. Total arsenic concentrations were analyzed by using the microwave acid digestion. The total arsenics in the certified reference materials (DORM-2 and TORT-2) were analyzed and agreed with the certified values. The concentrations of arsenics in marine samples were in the range 6.6 - 35.1 microg g(-1).
ERIC Educational Resources Information Center
Mei-Ratliff, Yuan
2012-01-01
Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…
1992-01-01
4.13] have been applied to their estimation. This approach has the advantages of sensitivity and of not requiring high purity and known structures...Chrom absorbance detector, and an Alltech Econosil C-18 (10 micrometer) column (4.6 mm X 25 cm with guard column). The mobile phase, HPLC-grade methanol...water partition coefficient or vice versa. The HPLC method is of similar precision and has the advantage that known structure and purity of the dye are
Turiel, E; Tadeo, J L; Cormack, P A G; Martin-Esteban, A
2005-12-01
A molecularly imprinted polymer (MIP) tailored for the HPLC determination of the fungicide thiabendazole (TBZ) has been synthesised in one single preparative step by precipitation polymerisation in an acetonitrile/toluene co-solvent, using TBZ as template molecule, methacrylic acid as functional monomer and divinylbenzene-80 as crosslinker. The imprinted polymer particulates obtained were characterised by scanning electron microscopy and nitrogen sorption porosimetry. These analyses showed clearly that spherical polymer particulates (polymer microspheres) with narrow size distributions (average particle diameter approximately 3.5 microm) and well-developed pore structures had been produced. The imprinted microspheres were packed into a stainless steel HPLC column (50 x 4.6 mm id) and evaluated as an imprinted stationary phase. The imprinting effect was demonstrated clearly, i.e., the column was observed to bind TBZ selectively, and the effect of different chromatographic parameters (e.g., temperature, flow-rate and elution solvents) on TBZ retention/elution studied. Under optimised conditions, the TBZ-imprinted column was used for the HPLC-fluorescence (HPLC-F) determination of TBZ directly from orange (both whole fruit and juice), lemon, grape and strawberry extracts at low concentration levels in less than 15 min, without any need for a clean-up step in the analytical protocol.
Rao, Kareti Srinivasa; Kumar, Keshar Nargesh; Joydeep, Datta
2011-01-01
A simple stability indicating reversed-phase HPLC method was developed and subsequently validated for estimation of Cefpirome sulphate (CPS) present in pharmaceutical dosage forms. The proposed RP-HPLC method utilizes a LiChroCART-Lichrosphere100, C18 RP column (250 mm × 4mm × 5 μm) in an isocratic separation mode with mobile phase consisting of methanol and water in the proportion of 50:50 % (v/v), at a flow rate 1ml/min, and the effluent was monitored at 270 nm. The retention time of CPS was 2.733 min and its formulation was exposed to acidic, alkaline, photolytic, thermal and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. The described method was linear over a range of 0.5-200μg/ml. The percentage recovery was 99.46. F-test and t-test at 95% confidence level were used to check the intermediate precision data obtained under different experimental setups; the calculated value was found to be less than the critical value.
Khairy, Mostafa A; Mansour, Fotouh R
2017-01-01
A reversed-phase HPLC method was developed for the simultaneous determination of ursodeoxycholic acid (UDCA) and the epimeric isomer, chenodeoxycholic acid (CDCA), in their synthetic mixtures and in tablet dosage form. The proposed HPLC method uses a C18 column and mobile phase consisting of an acetonitrile-phosphate buffer mixture (pH 2.3, 100 mM; 50 + 50, v/v) at a flow rate of 2.0 mL/min with UV detection at 210 nm. The method was validated according to the International Conference on Harmonization guidelines; and linearity, range, accuracy, precision, robustness, and system suitability were studied. The LOD and LOQ were also calculated and found to be 1.23 and 3.73 μg/mL for UDCA and 0.83 and 2.52 μg/mL for CDCA, respectively. The method was adapted for UHPLC, in which baseline separation was achieved in <2.5 min. The assay results of Ursomix tablets by the developed method were statistically compared with those obtained by the reference method using t- and F-tests, and no significant differences were observed.
Slavin, Margaret; Yu, Liangli Lucy
2012-12-15
A saponification/extraction procedure and high performance liquid chromatography (HPLC) analysis method were developed and validated for simultaneous analysis of phytosterols, tocopherols and lutein (a carotenoid) in soybeans. Separation was achieved on a phenyl column with a ternary, isocratic solvent system of acetonitrile, methanol and water (48:22.5:29.5, v/v/v). Evaporative light scattering detection (ELSD) was used to quantify β-sitosterol, stigmasterol, campesterol, and α-, δ- and γ-tocopherols, while lutein was quantified with visible light absorption at 450 nm. Peak identification was verified by retention times and spikes with external standards. Standard curves were constructed (R(2)>0.99) to allow for sample quantification. Recovery of the saponification and extraction was demonstrated via analysis of spiked samples. Also, the accuracy of results of four soybeans using the described saponification and HPLC analytical method was validated against existing methods. This method offers a more efficient alternative to individual methods for quantifying lutein, tocopherols and sterols in soybeans. Copyright © 2012 Elsevier Ltd. All rights reserved.
El-Fatatry, Hamed M; Mabrouk, Mokhtar M; Hewala, Ismail I; Emam, Ehab H
2014-08-01
Two selective stability-indicating HPLC methods are described for determination of rabeprazole sodium (RZ)-mosapride citrate (MR) and RZ-itopride hydrochloride (IO) mixtures in the presence of their ICH-stress formed degradation products. Separations were achieved on X-Bridge C18 column using two mobile phases: the first for RZ-MR mixture consisted of acetonitrile: 0.025 M KH 2 PO 4 solution: TEA (30:69:1 v/v; pH 7.0); the second for RZ-IO mixture was at ratio of 25:74:1 (v/v; pH 9.25). The detection wavelength was 283 nm. The two methods were validated and validation acceptance criteria were met in all cases. Peak purity testing using contrast angle theory, relative absorbance and log A versus the wavelengths plots were presented. The % recoveries of the intact drugs were between 99.1% and 102.2% with RSD% values less than 1.6%. Application of the proposed HPLC methods indicated that the methods could be adopted to follow the stability of their formulations.
Guan, Y-G; Yu, P; Yu, S-J; Xu, X-B; Wu, X-L
2012-11-01
A simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde of the Maillard reaction products was detailed. It was based on a high performance anion exchange chromatography with electrochemical detector system and an HPLC with refractive index detector. Results showed that high performance anion exchange chromatography with electrochemical detector using a CarboPac PA-1 column (Dionex Corp., Sunnyvale, CA) was more suitable for reducing sugars and 5-hydroxymethyl-2-furaldehyde determination, especially for trace analysis. The lowest detectable limit of reducing sugars and 5-hydroxymethyl-2-furaldehyde was 0.00005 mol/L in this experiment. However, HPLC with a refractive index detector always produces a tailing peak for 5-hydroxymethyl-2-furaldehyde, and mannose and fructose cannot be absolutely separated. The results of the present study could provide a more sensitive means for 5-hydroxymethyl-2-furaldehyde and reducing sugar detection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
UPLC and HPLC of caffeoyl esters in wild and cultivated Arctium lappa L.
Haghi, Ghasem; Hatami, Alireza; Mehran, Mehdi
2013-05-01
Analytical methods including ultra-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC) with photodiode array (PDA) detector were developed for the analysis of caffeoylquinic acid derivatives in seeds, leaves and roots of Arctium lappa L. Separation was performed on C(18) column utilising 5% (v/v) acetic acid in water and acetonitrile at 330 nm. Both methodologies were validated in terms of linearity, precision, and recovery. The results showed that the major advantages of UPLC, over HPLC were the fast analysis, narrow peaks, high sensitivity, and reduction of solvent consumption. Subsequently the methods were applied for the identification and quantification of chlorogenic acid (5-CQA) and 1,5-dicaffeoylquinic acid (1,5-DCQA) as main compounds in samples. The total phenolic content of samples ranged from 3.93 to 14.13 g of 5-CQA equivalent/100g dry weight (DW). There was a significant variability from 89 to 571 mg/100g for 5-CQA and 48 to 486 mg/100g for 1,5-DCQA in dry material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Geoffroy, Thibaud R; Meda, Naamwin R; Stevanovic, Tatjana
2017-09-01
To investigate the antioxidant potential in natural products, radical scavenging tests (ABTS, DPPH, ORAC, etc.) are usually considered as the first approach. In addition to the standard colorimetric assays, methods using separation techniques (on-line and pre-column assays) have been developed in the past decades. Based on the peak area (PA) reductions of compounds monitored by HPLC, the pre-column spiking method allows rapid characterisation of natural matrices avoiding laborious isolation steps. However, available information about the significance of the results produced remains scarce. Here, we report, for the first time, a discussion of the potential of the pre-column DPPH spiking method to pinpoint antioxidant compounds using red maple bark extract (RMBE). First, DPPH spiking was conventionally applied to the galloyl compounds in the extract showing the inadequacy of assessing results by PA reductions. The method was then applied to pure galloyl derivatives, evaluating their molar amount reacted (MAR) for more significance. The comparison with the standard DPPH-HPLC/AE method directly monitoring DPPH • inhibition highlighted the inability to retrieve the respective antioxidant efficiencies (AE) of each compound by using DPPH spiking. Despite its limitations, the DPPH spiking method brought to light an autoxidation phenomenon and a matrix/mixture effect investigated through tertiary mixtures of galloyl compounds. Although restricted to the compounds from one natural matrix, this study questions the validity of the spiking method as usually performed and could serve as a basis for further investigations (explorations of other natural products, kinetics considerations). Graphical abstract Investigation of the pre-column DPPH spiking method through the case of galloyl derivatives.
Baj, Stefan; Słupska, Roksana; Krawczyk, Tomasz
2013-01-15
The possibility of the utilization of chemiluminescence post-column luminol oxidation (CL) in a HPLC system for silyl peroxides analysis has been investigated. The conditions of HPLC separation for 12 silyl peroxides, representing bissilyl and alkyl-silyl peroxides, as well as their potential impurities, were established. Optimal chemiluminescent post-column reaction conditions were found using central composite design (CCD) and response surface methodology (RSM). The interaction effects of four of the most important operating variables - the concentrations of luminol, hemin, sodium hydroxide and the post-column solution flow rate - on the light intensity were evaluated. The optimized conditions for analysis were the same for bissilyl and alkyl-silyl peroxides for the base concentration (0.03 M), the luminol concentration (0.4 g L(-1)) and the hemin concentration (0.3 g L(-1)). The only differences occurred in a reagent flow rate (for bissilyl peroxide -0.3 mL min(-1) and for alkyl-silyl peroxides -0.9 mL min(-1)). Under optimal conditions, the detection limits were in the 0.07-0.16 nM range for bissilyl, and 0.53-1.01 for alkyl-silyl peroxides. The calibration curves were linear in the 0.25-3 nM range for bissilyl and the 2.5-25 range for alkyl-silyl peroxides. Intra-day and inter-day precision was lower than 5.5% for each tested concentration level. A mechanism of luminol oxidation by silyl peroxides involving a hydrolysis step with the formation of hydrogen peroxide or hydroperoxide was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.
Rahimi, Marzieh; Hashemi, Payman; Nazari, Fariba
2014-05-15
A cold column trapping-cloud point extraction (CCT-CPE) method coupled to high performance liquid chromatography (HPLC) was developed for preconcentration and determination of curcumin in human urine. A nonionic surfactant, Triton X-100, was used as the extraction medium. In the proposed method, a low surfactant concentration of 0.4% v/v and a short heating time of only 2min at 70°C were sufficient for quantitative extraction of the analyte. For the separation of the extraction phase, the resulted cloudy solution was passed through a packed trapping column that was cooled to 0 °C. The temperature of the CCT column was then increased to 25°C and the surfactant rich phase was desorbed with 400μL ethanol to be directly injected into HPLC for the analysis. The effects of different variables such as pH, surfactant concentration, cloud point temperature and time were investigated and optimum conditions were established by a central composite design (response surface) method. A limit of detection of 0.066mgL(-1) curcumin and a linear range of 0.22-100mgL(-1) with a determination coefficient of 0.9998 were obtained for the method. The average recovery and relative standard deviation for six replicated analysis were 101.0% and 2.77%, respectively. The CCT-CPE technique was faster than a conventional CPE method requiring a lower concentration of the surfactant and lower temperatures with no need for the centrifugation. The proposed method was successfully applied to the analysis of curcumin in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Sun, Zhiwei; Liu, Lingjun; Hu, Baojun; Sheng, Xiao; Wang, Xiaoyan; Suo, Yourui; You, Jinmao
2008-03-01
Eight saccharides were derivatized using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatizing reagent, and separated on a reversed-phase Hypersil ODS 2 column (4.6 mm x 200 mm, 5 microm), by high performance liquid chromatography (HPLC) in conjunction with a gradient elution, detected by a diode array detector (DAD), and identified by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. NMP reacted with reductive saccharides easily in the presence of 17% ammonia water at 70 degrees C. All linear correlation coefficients for saccharide derivatives were over 0.998 5. The detection limits (at signal-to-noise of 3:1) were 0.58 - 1.1 pmol for saccharide derivatives. The characteristic fragment ions, especially m/z 473, from the cleavage of NMP-labeled saccharides exhibited high regularity for the identification of the composition of saccharide mixture. The established method is sensitive and repeatable for the determination of saccharides.
Optimation and Determination of Fe-Oxinate Complex by Using High Performance Liquid Chromatography
NASA Astrophysics Data System (ADS)
Oktavia, B.; Nasra, E.; Sary, R. C.
2018-04-01
The need for iron will improve the industrial processes that require iron as its raw material. Control of industrial iron waste is very important to do. One method of iron analysis is to conduct indirect analysis of iron (III) ions by complexing with 8-Hydroxyquinoline or oxine. In this research, qualitative and quantitative tests of iron (III) ions in the form of complex with oxine. The analysis was performed using HPLC at a wavelength of 470 nm with an ODS C18 column. Three methods of analysis were performed: 1) Fe-oxinate complexes were prepared in an ethanol solvent so no need for separation anymore, (2) Fe-oxinate complexes were made in chloroform so that a solvent extraction was required before the complex was injected into the column while the third complex was formed in the column, wherein the eluent contains the oxide and the metal ions are then injected. The resulting chromatogram shows that the 3rd way provides a better chromatogram for iron analysis.
Michel, Thomas; Destandau, Emilie; Elfakir, Claire
2011-09-09
Centrifugal Partition Chromatography (CPC), a liquid-liquid preparative chromatography using two immiscible solvent systems, benefits from numerous advantages for the separation or purification of synthetic or natural products. This study presents the on-line hyphenation of CPC-Evaporative Light Scattering Detector (CPC-ELSD) with High Performance Liquid Chromatography-UV (HPLC-UV) for the fractionation of flavonols from a solvent-free microwave extract of sea buckthorn (Hippophaë rhamnoides L., Elaeagnaceae) berries. An Arizona G system was used for the fractionation of flavonoids by CPC and a fused core Halo C18 column allowed the on-line analyses of collected fractions by HPLC. The on-line CPC/HPLC procedure allowed the simultaneous fractionation step at preparative scale combined with the HPLC analyses which provide direct fingerprint of collected fractions. Thus the crude extract was simplified and immediate information on the composition of fractions could be obtained. Furthermore, this methodology reduced the time of post-fractionation steps and facilitated identification of main molecules by Mass Spectrometry (MS). Rutin, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin-3-O-glucoside, isorhamnetin-rhamnoside, quercetin and isorhamnetin were identified. CPC-ELSD/HPLC-UV could be considered as a high-throughput technique for the guided fractionation of bioactive natural products from complex crude extracts. Copyright © 2011 Elsevier B.V. All rights reserved.
Simultaneous analysis of 17 diuretics in dietary supplements by HPLC and LC-MS/MS.
Woo, H; Kim, J W; Han, K M; Lee, J H; Hwang, I S; Lee, J H; Kim, J; Kweon, S J; Cho, S; Chae, K R; Han, S Y; Kim, J
2013-01-01
In order to test health foods for illegally added diuretics for weight loss, we developed simple, rapid, selective, and sensitive methods using HPLC and LC-MS/MS for the simultaneous analysis of 17 diuretics in dietary supplements. HPLC conditions were set with a Capcell-pak C18, using a mobile phase consisting of gradient conditions, UV detection at 254 nm and validated for linearity (r(2)> 0.999), precision (CV ≤ 3%), recoveries (90.4-102.8%) and reproducibility. Identification and quantification of 17 diuretics were accomplished by ion-spray LC-MS/MS using multiple reaction monitoring (MRM). The chromatographic separation was carried out under the reversed-phase mechanism on an HSS-T3 column. The LC-MS/MS method was validated for linearity (r(2)> 0.99) and precision (CV < 13%). Sixteen dietary supplements were tested with the developed methods. Diuretics were not detected in all samples. Extraction recovery was also investigated and the extraction recoveries in different formulations were from 88% to 110% and from 81% to 116% using HPLC and LC-MS/MS, respectively. There was no significant difference in recoveries in the type of dietary supplements. Based on this result, the developed methods to monitor illegal drug adulterations in dietary supplements using HPLC and LC-MS/MS are simple, fast and reliable. Therefore, it is applicable to routine drug-adulteration screening.
Quantitative HPLC Analysis of an Analgesic/Caffeine Formulation: Determination of Caffeine
NASA Astrophysics Data System (ADS)
Ferguson, Glenda K.
1998-04-01
A modern high performance liquid chromatography (HPLC) laboratory experiment which entails the separation of acetaminophen, aspirin, and caffeine and the quantitative assay of caffeine in commercial mixtures of these compounds has been developed. Our HPLC protocol resolves these compounds in only three minutes with a straightforward chromatographic apparatus which consists of a C-18 column, an isocratic mobile phase, UV detection at 254 nm, and an integrator; an expensive, sophisticated system is not required. The separation is both repeatable and rapid. Moreover, the experiment can be completed in a single three-hour period. The experiment is appropriate for any chemistry student who has completed a minimum of one year of general chemistry and is ideal for an analytical or instrumental analysis course. The experiment detailed herein involves the determination of caffeine in Goody's Extra Strength Headache Powders, a commercially available medication which contains acetaminophen, aspirin, and caffeine as active ingredients. However, the separation scheme is not limited to this brand of medication nor is it limited to caffeine as the analyte. With only minor procedural modifications, students can simultaneously quantitate all of these compounds in a commercial mixture. In our procedure, students prepare a series of four caffeine standard solutions as well as a solution from a pharmaceutical analgesic/caffeine mixture, chromatographically analyze each solution in quadruplicate, and plot relative average caffeine standard peak area versus concentration. From the mathematical relationship that results, the concentration of caffeine in the commercial formulation is obtained. Finally, the absolute standard deviation of the mean concentration is calculated.
Raust, Jacques-Antoine; Bruell, Adele; Sinha, Pritish; Hiller, Wolf; Pasch, Harald
2010-09-01
A comprehensive two-dimensional liquid chromatography system was developed to precisely describe the molecular heterogeneity of fatty alcohol ethoxylates. The end-group functionality was analyzed by gradient HPLC while ethylene oxide oligomer distributions were characterized by liquid adsorption chromatography. A baseline separation of all functionality fractions irrespective of the ethylene oxide oligomer chain length was achieved on nonpolar X-Terra(®) C(18) with a methanol-water gradient, whereas an isocratic flow of isopropanol-water on a polar Chromolith(®) Si column gave a separation according to the oligomer chain length without interference of the end-group distribution. The combination of these two methods to conduct online two-dimensional liquid chromatography experiments resulted in a comprehensive two-dimensional picture on the molecular heterogeneity of the sample.
Fibigr, Jakub; Šatínský, Dalibor; Havlíková, Lucie; Solich, Petr
2016-02-20
Indole-3-carbinol is a natural glucosinolate known for prevention of human breast, prostate and other types of cancer and it started to be used in commercial preparations, as food supplements. However no analytical method has been proposed for quality control of nutraceuticals with this substance yet. In this paper a new high-performance liquid chromatography (HPLC) method using core-shell column for separation of indole-3-carbinol and its condensation/degradation products was developed and used for the quantitative determination of indole-3-carbinol in nutraceuticals. Separation of indole-3-carbinol, its condensation/degradation products and internal standard ethylparaben was performed on the core-shell column Kinetex 5μ XB-C18 100A (100×4.6mm), particle size 5.0μm, with mobile phase acetonitrile/water according to the gradient program at a flow rate of 1.25mLmin(-1) and at temperature 50°C. The detection wavelength was set at 270nm. Under the optimal chromatographic conditions good linearity of determination was achieved. Available commercial samples of nutraceuticals were extracted with 100% methanol using ultrasound bath. A 5-μL sample volume of the supernatant was directly injected into the HPLC system. The developed method provided rapid and accurate tool for quality control of nutraceuticals based on cruciferous vegetable extracts with indole-3-carbinol content. The presented study showed that the declared content of indole-3-carbinol significantly varied in the different nutraceuticals available on the market. Two analyzed preparations showed the presence of condensation/degradation products of indole-3-carbinol which were not officially declared by the manufacturer. Moreover, further two analyzed nutraceutical preparations showed absolutely no content of declared amount of indole-3-carbinol. Copyright © 2015 Elsevier B.V. All rights reserved.
Kao, T H; Huang, S C; Inbaraj, B Stephen; Chen, B H
2008-09-26
Gynostemma pentaphyllum (Thunb.) Makino, a traditional Chinese herb possessing antitumor and antioxidant activities, has been shown to contain several functional components like saponins and flavonoids. However, their identities remain uncertain. The objectives of this study were to develop an appropriate extraction, purification and HPLC-MS method to determine saponins and flavonoids in G. pentaphyllum. Both flavonoids and saponins were extracted with methanol, followed by purification with a C18 cartridge to elute the former with 50% methanol and the latter with 100% methanol. A total of 34 saponins were separated within 40 min by a Gemini C18 column and a gradient mobile phase of acetonitrile and 0.1% formic acid in water, in which 18 saponins were identified by LC-MS with ESI mode and Q-TOF (LC/MS/MS). Similarly, a total of eight flavonoids were separated within 45 min by the same column and a gradient solvent system of methanol and 0.1% formic acid in water, with identification being carried out by a post-column derivatization method and LC-MS with ESI mode. The amounts of flavonoids in G. pentaphyllum ranged from 170.7 to 2416.5 mug g(-1), whereas saponins were from 491.0 to 89,888.9 mug g(-1).
Hirata, Keiko; Shimamura, Yasuhiro; Suzuki, Keiko; Sadamasu, Yuki; Ito, Koichi
2005-12-01
We have developed an analytical method for components of alpha-glucosyltransferase-treated stevia, a food additive product. Suitable conditions to separate additional sugar from alpha-glucosyltransferase-treated stevia by using glucoamylase were found (55 degrees C for 3 hr with 250 U of glucoamylase in 10 mL of reaction solution). By solid-phase extraction using a C18 cartridge column, polysaccharides were excluded from the sample, and the glycosides and sugar obtained after hydrolysis with glucoamylase were separated on another C18 cartridge column. The glycosides and sugar contents were determined by HPLC. By this method, additional sugar was detected in all of three product samples tested and the sugar was glucose. The contents of glucose and total glycosides (minus unreacted glycoside) were 25-42% and 35.7-52.5%, respectively. In alpha-glucosyltransferase-treated stevia, the sum of total glycosides and glucose amounted to 77.5-80.4% of the total and their recoveries from samples from which polysaccharide had been excluded by C18 cartridge column processing were over 85%. The contents of alpha-glucosyltransferase-treated stevia obtained by multiplying the sugar content by the coefficient (0.9) for hydrolysis and converting on dry weight basis were all over 80.0% and met the standard set by the Japan Food Additives Association.
Manns, David C; Mansfield, Anna Katharine
2012-08-17
Four high-throughput reverse-phase chromatographic protocols utilizing two different core-shell column chemistries have been developed to analyze the phenolic profiles of complex matrices, specifically targeting juices and wines produced from interspecific hybrid grape cultivars. Following pre-fractionation via solid-phase extraction or direct injection, individual protocols were designed to resolve, identify and quantify specific chemical classes of compounds including non-anthocyanin monomeric phenolics, condensed tannins following acid hydrolysis, and anthocyanins. Detection levels ranging from 1.2 ppb to 27.5 ppb, analyte %RSDs ranging from 0.04 to 0.38, and linear ranges of quantitation approaching five orders of magnitude were achieved using conventional HPLC instrumentation. Using C(18) column chemistry, the non-anthocyanin monomeric protocol effectively separated a set of 16 relevant phenolic compounds comprised flavan-3-ols, hydroxycinnamic acids, and flavonols in under 14 min. The same column was used to develop a 15-min protocol for hydrolyzed condensed tannin analysis. Two anthocyanin protocols are presented, one utilizing the same C(18) column, best suited for anthocyanidin and monoglucoside analysis, the other utilizing a pentafluorophenyl chemistry optimized to effectively separate complex mixtures of coexisting mono- and diglucoside anthocyanins. These protocols and column chemistries have been used initially to explore a wide variety of complex phenolic matrices, including red and white juices and wines produced from Vitis vinifera and interspecific hybrid grape cultivars, juices, teas, and plant extracts. Each protocol displayed robust matrix responses as written, yet are flexible enough to be easily modified to suit specifically tailored analytical requirements. Copyright © 2012 Elsevier B.V. All rights reserved.
Vikram, Amit; Jayaprakasha, G K; Patil, Bhimanagouda S
2007-05-08
High performance liquid chromatography (HPLC) method has been developed for simultaneous quantification of limonoid aglycones and glucosides on a reversed phase C18 column using a binary solvent system, coupled with diode array detector. Seven limonoids such as limonin, nomilin, isolimonic acid, ichangin, isoobacunoic acid, limonin 17-beta-D glucopyranoside and deacetyl nomilinic acid 17-beta-D glucopyranoside were separated and detected at 210 nm. Furthermore, limonoids were separated, identified and quantified in four varieties of citrus fruits and seeds using developed method. Limonin and limonin glucoside were found to be the predominant limonoid aglycone and glucoside, respectively, in all tested samples. The sensitivity of the method was found to be 0.25-0.50 microg for tested limonoids.
Souri, Effat; Zargarpoor, Mohammad; Mottaghi, Siavash; Ahmadkhaniha, Reza; Kebriaeezadeh, Abbas
2015-01-01
Fingolimod is an immunosuppressive agent which is used for the prophylaxis of organ transplantation rejection or multiple sclerosis treatment. In this study, systematic forced degradation studies on fingolimod bulk powder were performed to develop a stability-indicating HPLC method. Separation of fingolimod and its degradation products was achieved on a Nova-Pak C8 column. The mobile phase was a mixture of potassium dihydrogenphosphate 50 mM (pH 3.0) and acetonitrile (45:55, v/v) at a flow rate of 1 ml/min. The proposed method was linear in the range of 0.125–20 μg mL−1. The within-day and between-day coefficients of variation were in the range of 0.6–1.2%. The developed method was successfully applied for the determination of the fingolimod amount in pharmaceutical dosage forms. PMID:26839803
Detection of Xeljanz enantiomers in diethyl amine active pharmaceutical ingredients and tablets.
Wang, Na-Na; Zhang, Dao-Lin; Jiang, Xin-Hui
2015-03-01
A high-performance liquid chromatography (HPLC) method was established to detect Xeljanz enantiomers in active pharmaceutical ingredients (APIs) and tablets. The separation was achieved on a Chiralpak IC column using a mobile phase of hexane-ethanol-diethylamine (65:35:0.1, v/v). The detection wavelength was 289 nm. The peak areas and the enantiomer concentrations in the range of 0.15-2.25 μg•mL(-1) were in high linearity, with correlation coefficients higher than 0.999. The recoveries were 86.44% at the concentrations of 7.5, 18.75, and 37.5 μg•mL(-1) . The limit of detection (LOD) and limit of quantification (LOQ) were 0.042 and 0.14 μg•mL(-1) , respectively. This HPLC method is suitable for detecting the enantiomers of Xeljanz in its APIs and tablets. © 2014 Wiley Periodicals, Inc.
Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits.
de Rosso, Veridiana V; Mercadante, Adriana Z
2007-06-27
The major and minor carotenoids from six fruits, buriti (Mauritia vinifera), mamey (Mammea americana), marimari (Geoffrola striata), peach palm (Bactrys gasipaes), physalis (Physalis angulata), and tucuma (Astrocaryum aculeatum), all native to the Amazonia region, were determined by high-performance liquid chromatography-photodiode array detector-mass spectrometry detector (HPLC-PDA-MS/MS), fulfilling the recommended criteria for identification. A total of 60 different carotenoids were separated on a C30 column, all-trans-beta-carotene being the major carotenoid found in all fruits. The presence of apo-10'-beta-carotenol, found in mamey, was not previously reported in foods. In addition, this is the first time that the identification of beta-zeacarotene in natural sources is supported by MS data. The total carotenoid content ranged from 38 microg/g in marimari to 514 microg/g in buriti. All fruits analyzed can be considered good sources of provitamin A, especially buriti, with 7280 RE/100 g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, G.L.; Speirs, R.J.; Morse, P.D.
1990-06-01
Iron is essential for the growth of living cells. To meet biochemical needs, microorganisms, including algae, produce high affinity chelators termed siderophores. These compounds solubilize Fe and increase its bioavailability. We have developed a new method to study siderophore formation in cultured and natural environments. Based on the fact siderophores tightly bind 55-Fe, the radioactive complexes can be separated by HPLC using an inert PRP-1 column and detected by scintillation counting. This method cleanly resolves several known siderophores, including ferrichrome A, ferrichrome, desferal, and rhodotorulic acid. The optimization of the method and its use for analysis of siderophore formation inmore » bacteria (E. coli, and Bacillus megaterium), fungi (Ustilago sphaerogena), and cyanobacteria (Anabaena flos-aqua UTEX 1444 and Anabaena sp. ATCC 27898) will be presented.« less
Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD
Won, Jin Bae; Ma, Jin Yeul; Um, Young Ran; Ma, Choong Je
2010-01-01
A HPLC-DAD method was established for the simultaneous evaluation of five bioactive compounds in Ssanghwa tang (SHT) including glycyrrhizin, paeoniflorin, cinnamic acid, decursin and 6-gingerol. These compounds were separated in less than 40 min using a Dionex C18 column with a gradient elution system of water and methanol at a flow rate of 1 ml/min. Calibration curve of standard components presented excellent linear regression (R2 > 0.9903) within the test range. Limit of detection and limit of quantification varied from 0.07 to 0.46 μg/ml and 0.13 to 1.11 μg/ml, respectively. The relative standard deviations (RSDs) of data of the intraday and interday experiments were less than 3.67 and 5.73%, respectively. The accuracy of recovery test ranged from 95.98 to 105.88% with RSD values 0.10– 4.82%. PMID:20668576
Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu
2010-03-01
This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.
Zhang, Hongmin; Chen, Shiwei; Qin, Feng; Huang, Xi; Ren, Ping; Gu, Xinqi
2008-12-15
An HPLC-photodiode array (PDA) detection method was established for the simultaneous determination of 12 components in Xiao-Yao-San-Jia-Wei (XYSJW): geniposide, puerarin, paeoniflorin, ferulic acid, liquiritin, hesperidin, naringin, paeonol, daidzein, glycyrrhizic acid, honokiol, and magnolol. These were separated in less than 70 min using a Waters Symmetry Shield RP 18 column with gradient elution using (A) acetonitrile, (B) water, and (C) acetic acid at a flow rate of 1 ml/min, and with a PDA detector. All calibration curves showed good linear regression (r(2)>0.9992) within the test ranges. The method was validated for specificity, accuracy, precision, and limits of detection. The proposed method enables in a single run the simultaneous identification and determination for quality control of 12 multi-structural components of XYSJW forming the basis of its therapeutic effect.
Grotzkyj Giorgi, Margherita; Howland, Kevin; Martin, Colin; Bonner, Adrian B.
2012-01-01
An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B1, B2, B5, B6, B9, B12) in biological matrices (plasma and urine). Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males). Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%. PMID:22536136
Giorgi, Margherita Grotzkyj; Howland, Kevin; Martin, Colin; Bonner, Adrian B
2012-01-01
An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B(1), B(2), B(5), B(6), B(9), B(12)) in biological matrices (plasma and urine). Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males). Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%.
Han, Meihua; Chen, Jing; Chen, Shilin; Wang, Xiangtao
2009-05-01
To establish a RP-HPLC method for content and entrapment efficiency of 20 (S)-protopanaxadiol in pharmacosomes. The separation was performed with a COSMOSIL 5 C18-MS-II column (4.6 mm x 250 mm, 5 mmicrom) using methanol-water (95:5) as the mobile phase and detected at 203 nm. The flow rate was 1.0 mL x min(-1) and 50 microL sample solution was injected for each time. The calibration curve was linear within the range 0.1-0.5 mg x mL(-1) (r = 0. 9999) , the intra-day RSD and inter-day RSD were less than 2% and the average recovery was between 101.44%-103.11% (n = 3). The method is simple, accurate, sensitive and applicable for determination of content and entrapment efficiency of 20 (S)-protopanaxadiol pharmacosomes.
Zan, Ke; Jiao, Xing-Ping; Guo, Li-Nong; Zheng, Jian; Ma, Shuang-Cheng
2016-06-01
This study is to establish the HPLC specific chromatogram and determine four main effective components of Lamiophlomis Herba and its counterfeit.Chlorogenic acid, forsythoside B, acteoside and luteoloside were reference substance.HPLC analysis was performed on a Waters XSelect C₁₈ column (4.6 mm×250 mm,5 μm).The mobile phase was acetonitrile-0.5% phosphoric acid solution (18∶82) with isocratic elution.The flow rate was 1.0 mL•min⁻¹, the detection wavelength was 332 nm and the column temperature was 30 ℃.Chemometrics software Chempattern was employed to analyze the research data.HPLC specific chromatogram of Lamiophlomis Herba from different samples were of high similarity, but the similarity of the HPLC specific chromatogram of its counterfeit were less than 0.65.Both of cluster and principal component analysis can distinguish certified products and adulterants.The HPLC specific chromatogram and contents of four effective components can be used for the quality control of Lamiophlomis Herba and its preparations.It provided scientific basis to standardize the use of the crude drug. Copyright© by the Chinese Pharmaceutical Association.
Design and Prototype of an Automated Column-Switching HPLC System for Radiometabolite Analysis.
Vasdev, Neil; Collier, Thomas Lee
2016-08-17
Column-switching high performance liquid chromatography (HPLC) is extensively used for the critical analysis of radiolabeled ligands and their metabolites in plasma. However, the lack of streamlined apparatus and consequently varying protocols remain as a challenge among positron emission tomography laboratories. We report here the prototype apparatus and implementation of a fully automated and simplified column-switching procedure to allow for the easy and automated determination of radioligands and their metabolites in up to 5 mL of plasma. The system has been used with conventional UV and coincidence radiation detectors, as well as with a single quadrupole mass spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, Jon M.; Taylor, Wayne A.; Rundberg, Robert S.
2008-05-15
Roughly one curie of 171Tm (t1/2=1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating roughly 250 mg of its stable enriched 170Er lanthanide neighbor with neutrons at the ILL reactor in France. This production method resulted in a “difficult-to-separate” 1:167 mixture of near-neighboring lanthanides, Tm and Er.more » Separation and purification was accomplished using high-performance liquid chromatorgraphy (HPLC), with a proprietary cation exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (a-HIB) eluent. This technique yielded a final product of ~95% purity with respect to Tm. A portion (20 ug) of the Tm was electrodeposited on thin Be foil and delivered to the Los Alamos Neutron Science CEnter (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step including, scale-up issues related to the use of HPLC for material separation and purification of the target material from a-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant.« less
[Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].
Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura
2013-01-01
To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.
Simultaneous Liquid Chromatographic Determination of 10 Ultra-Violet Filters in Sunscreens.
Wharton, Mary; Geary, Michael; O'Connor, Niamh; Curtin, Laura; Ketcher, Krystal
2015-09-01
A rapid HPLC method was developed for the simultaneous determination of 10 UV filters found in sunscreen. The following UV filters were analyzed in this method; 2-phenylbenzimidazole-5-sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl dimethyl 4-aminobenzoic acid, ethylhexyl methoxycinnamate, butyl methoxydibenzoylmethane, ethylhexyl salicylate and homosalate. The method was developed on two columns; a Thermo Hypersil C18 BDS, 3 µm column (4.6 × 100 mm) and a Chromolith RP-18e Monolithic column (4.6 × 100 mm). The same mobile phase of ethanol and 1% acetic acid (70:30, v/v) was employed for both columns. The separation of the 10 UV filters was carried out successfully on both columns; the optimal resolution was obtained on the Thermo Scientific Hypersil column in a time frame of 7 min. An isocratic elution utilizing ethanol and acetic acid (70:30, v/v) at a temperature of 35°C was employed. The method was applied to a number of commercial samples of sunscreen and lotions and was validated according to International Conference on Harmonisation guidelines for selectivity, linearity, accuracy, precision and robustness. A comparison of the performances of both columns was also carried out. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Identification of geometrical isomers and comparison of different isomeric samples of astaxanthin.
Qiu, Dan; Wu, Yue-Chan; Zhu, Wen-Li; Yin, Hong; Yi, Long-Tao
2012-09-01
A high-performance liquid chromatographic (HPLC) analysis system for isomeric astaxanthin was developed. The separation system consisted of a C(30) column and an elution system of methanol/MTBE/water/dichloromethane (77:13:8:2, v/v/v/v). Using the combination of HPLC diode array detector and HPLC atmospheric pressure chemical ionization mass spectrometry, 11 geometrical isomers and 4 epoxides of astaxanthin were successfully identified. Referred to crystal, only isomerization with different degrees was found for solvent dissolving and iodine catalysis, while melting of astaxanthin caused isomerization, slight oxidation, and more noticeable polymerization confirmed by gel permeation chromatography. Chemical changes in isomeric samples all caused a decrease in UV content. The vibrational spectra (infrared and Raman) showed that epoxide was the only new functional group generated for melting. Changes of several key bands and formations of new bands were found in iodine catalysis and melting samples because of isomerization. Practical Application: Eleven geometrical isomers and 4 epoxides, which were normally generated for solvent dissolving, iodine catalysis, and melting of astaxanthin, have been identified by C(30) -HPLC-MS technology. Furthermore, different samples were measured by gel permeation chromatography, UV, infrared, and Raman, based on the analysis of messages, the effect of each processing was well understood. © 2012 Institute of Food Technologists®
High performance liquid chromatography used for quality control of Achyranthis Radix.
Zhao, Bing Tian; Jeong, Su Yang; Moon, Dong Cheul; Son, Kun Ho; Son, Jong Keun; Woo, Mi Hee
2012-08-01
To establish a standard of quality control and to identify reliable Achyranthis Radix, three phytoecdysones including ecdysterone (1), 25R-inokosterone (2) and 25S-inokosterone (3) were determined by quantitative HPLC/UV analysis. Three phytoecdysones were separated with an YMC J'sphere ODS C(18) column (250 mm × 4.6 mm, 4 μm) by isocratic elution using 0.1% formic acid in water and acetonitrile (85:15, v/v%) as the mobile phase. The flow rate was 1.0 mL/min and the UV detector wavelength was set at 245 nm. The standards were quantified by HPLC/UV from Achyranthes bidentata Blume and Achyranthes japonica Nakai, as well as Cyathula capitata Moq. and Cyathula officinalis Kuan, which are of a different genus but are comparative herbs. The method was successfully used in the analysis of Achyranthis Radix of different geographical origin or genera with relatively simple conditions and procedures, and the assay results were satisfactory for linearity, recovery, precision, accuracy, stability and robustness. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of eighteen A. bidentata Blume samples and ten A. japonica Nakai samples. The results indicate that the established HPLC/UV method is suitable for quantitation and pattern recognition analyses for quality evaluation of Achyranthis Radix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, G.; Bulman, R.A.
The determination of soil adsorption coefficients (K[sub oc]) via HPLC capacity factors (k[prime]) has been studied, including the effect of column type and mobile phase composition on the correlation between log K[sub oc] and log k[prime]. K[sub oc] values obtained by procedures other than HPLC correlate well with HPLC capacity factors determined on a chemically immobilized humic acid stationary phase, and it is suggested that this phase is a better model for the sorption onto soil or sediment than the octadecyl-, phenyl- and ethylsilica phases. By using log k[prime][sub w] a theoretical capacity factor has been obtained by extrapolation ofmore » the retention data in a binary solvent system to pure aqueous eluent. There is a better correlation between log K[sub oc] and log k[prime][sub w] than the correlation between log K[sub oc] and log k[prime].« less
Choo, K S; Kim, I W; Jung, J K; Suh, Y G; Chung, S J; Lee, M H; Shim, C K
2001-06-01
A simple, reliable HPLC-UV detection method was developed for the simultaneous determination of loxoprofen and its metabolites (i.e. trans- and cis-alcohol metabolites), in human plasma and urine samples. The method involves the addition of a ketoprofen (internal standard) solution in methanol, zinc sulfate solution and acetonitrile to plasma and urine samples, followed by centrifugation. An aliquot of the supernatant was evaporated to dryness, and the residue reconstituted in a mobile phase (acetonitrile:water=35:65 v/v, pH 3.0). An aliquot of the solution was then directly injected into the HPLC system. Separations were performed on octadecylsilica column (250x4.5 mm, 5 microm) with a guard column (3.2x1.5 cm, 7 microm) at ambient temperature. Loxoprofen and the metabolites in the eluent were monitored at 220 nm (a.u.f.s. 0.005). Coefficients of variations (CV%) and recoveries for loxoprofen and its metabolites were below 10 and over 96%, respectively, in the 200 approximately 15000 ng ml(-1) range for plasma and 500 approximately 50000 ng ml(-1) range for urine. Calibration curves for all the compounds in the plasma and urine were linear over the above-mentioned concentration ranges with a common correlation coefficient of 0.999. The detection limit of the present method was 100 ng for all the compounds. These results indicate that the present method is very simple and readily applicable to routine bioavailability studies of these compounds with an acceptable sensitivity.
Wan, Jun-Hui; Tian, Pei-Ling; Luo, Wei-Hao; Wu, Bing-Yi; Xiong, Fu; Zhou, Wan-Jun; Wei, Xiang-Cai; Xu, Xiang-Min
2012-07-15
Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work. Copyright © 2012 Elsevier B.V. All rights reserved.
[HPLC fingerprint of the antiarrhythmic fraction of Valeriana officinalis].
Duan, Xue-Yun; Gong, Zhan-Feng; Chen, Shu-He; Fang, Ying; Liu, Yan-Wen
2009-06-01
To establish HPLC fingerprints of the Antiarrhythmic fraction of Valeriana officinalis. Agilent C18 (250 mm x 4.6 mm, 5 microm) column was used and the acetonitrile-water was chosen as the mobile phase in a gradient mode. The column temperature was 380 degrees C and the detection wavelength was 218 nm. The detection time was 70 min, and the flow rate was 1.0 mL/ min. Fifteen characteristic peaks were indicated in HPLC fingerprints. The relative retention time and the ranges of relative areas of the common peaks were also determined. This method is simple and accurate with a good reproducibility and provides a reference standard for the quality control of Valeriana officinalis.
Zhang, Juzhou; Ji, Shuilin; Cai, Huimei; Li, Jing; Wang, Yongxin; Wang, Jingqiu
2017-11-08
A novel analytical method was developed for the simultaneous determination of six fluorescent whitening agents (FWAs:FWA 135, FWA 184, FWA 185, FWA 199, FWA 378 and FWA 393) in paper and plastic food packaging materials by high performance liquid chromatography with fluorescence detection (HPLC-FLD). The sample was extracted with mixed solution of chloroform and acetonitrile (3:7, v/v), then cleaned up by HLB solid phase extraction column. Qualitative and quantitative analyses were carried out by HPLC. The sample was separated on a Phenomenex C18 column using acetonitrile and 5 mmol/L ammonium acetate aqueous solution as mobile phases. The results indicated that the linear range of FWA393 was 15-1500 μg/L and the linear ranges of the other five FWAs were 5-500 μg/L with correlation coefficients greater than 0.999. The recoveries in spiked samples were between 80.4% and 125.0% with RSDs ( n =6) of 1%-13%. Furthermore, this method was applied to analyze 12 samples in the market to verify the practicality of the method. The method showed the advantages of simplicity, high recovery and good precision, and is suitable for the detection of the six fluorescent whitening agents in food packaging materials.
[Quantitative analysis of nucleosides in four Cordyceps genus by HPLC].
Qian, Zheng-Ming; Li, Wen-Qing; Wang, Chuan-Xi; Zhou, Miao-Xia; Sun, Min-Tian; Gao, Hao; Li, Wen-Jia
2016-07-01
To compare the main nucleosides in Cordyceps genus herbs (C. sinensis, C. millitaris, Hirsutella sinensis and C. sobolifera), an HPLC method for simultaneous determination of uridine, inosine, guanosine, adenosine and cordycepine in Cordyceps genus herbs was developed. The sample was extracted with 0.5% phosphoric acid solution to prepare test solution. The separation was performed on a Zorbax SB-Aq (4.6 mm×150 mm, 5 μm) column with gradient elution by 0.04 mol•L⁻¹ potassium dihydrogen phosphate solution and acetonitrile, column temperature 30 ℃,flow rate 0.8 mL•min⁻¹,and detection wavelength 260 nm. The content of nucleosides in four Cordyceps genus herbs was evaluated by fingerprint analysis and hierarchical cluster analysis (HCA). The calibration curves of five nucleosides showed good linear regression (r>0.99) and the average recoveries were between 95.0% and 105.0%. The contents of the five nucleosides in the four Cordyceps genus herbs were different and could be obviously distinguished by HCA. The fingerprint analysis result showed that the similarity between C. sinensis and the others was less than 0.9. The method was accurate and reliable, which can be used for quality control of Cordyceps genus herbs. Copyright© by the Chinese Pharmaceutical Association.
Zhong, Jing; Bai, Ligai; Qin, Junxiao; Wang, Jiafei; Hao, Mengbei; Yang, Gengliang
2015-04-01
A novel organic monolithic stationary phase was prepared for high-performance liquid chromatography (HPLC) by in situ copolymerization. In which, triallyl isocyanurate (TAIC) and trimethylolpropane triacrylate (TMPTA) in a binary porogenic solvent consisting of polyethylene glycol 200 and 1, 2-propanediol were used. The resultant monoliths with different column properties (e.g., morphology and pressure) were optimized by adjusting the ratio of TMPTA/TAIC and the composition of porogenic solvent. The resulting poly(TAIC-co-TMPTA) monolith showed a relatively homogeneous structure, good permeability and mechanical stability. The chemical group of the monolith was assayed by the infrared spectra method, the morphology of monolithic material was studied by scanning electron microscopy and the pore size distribution was determined by a mercury porosimeter. A series of small molecules were used to evaluate the column performance in terms of hydrophobic mode. At an optimized flow rate of 1.0 mL min(-1), the theoretical plate number of analyte was >15,000 plates m(-1). These applications demonstrated that the monoliths could be successfully used as the stationary phase in conjunction with HPLC to separate small molecules from the mixture. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sadeghi, Fahimeh; Navidpour, Latifeh; Bayat, Sima; Afshar, Minoo
2013-01-01
A green, simple, and stability-indicating RP-HPLC method was developed for the determination of diltiazem in topical preparations. The separation was based on a C18 analytical column using a mobile phase consisted of ethanol: phosphoric acid solution (pH = 2.5) (35 : 65, v/v). Column temperature was set at 50°C and quantitation was achieved with UV detection at 240 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in diltiazem concentration range of 0.5–50 μg/mL (r 2 = 0.9996). Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.25%–101.66%) ensured the accuracy of the developed method. The degradation products as well as the pharmaceutical excipients were well resolved from the pure drug. The expanded uncertainty (5.63%) of the method was also estimated from method validation data. Accordingly, the proposed validated and sustainable procedure was proved to be suitable for routine analyzing and stability studies of diltiazem in pharmaceutical preparations. PMID:24163778
Rao, R Nageswara; Maurya, Pawan K; Shinde, Dhananjay D; Khalid, Sara
2011-05-15
Alzheimer disease (AD) is characterized pathologically by extracellular amyloid deposits composed of amyloid β (Aβ) protein. A simple and rapid method using HPLC with fluorescence detector was developed and validated for determination of tramiprosate in rat plasma. Pre-column derivatization of the deproteinized rat plasma was carried out using o-phthaldialdehyde (OPA) as a fluorescent reagent in presence of 3-mercaptopropionic acid. The liquid chromatographic separation was achieved on a Kromasil C18 column using methanol:acetonitrile: 20 mM phosphate buffer pH 7.5 (8.0:17.5:74.5 v/v/v) as a mobile phase in an isocratic elution mode. The eluents were monitored by a fluorescence detector set at 330 and 450 nm of excitation and emission wavelength respectively. Vigabatrin was used as an internal standard. The method was linear within the range 30.0-1000.0 ng/mL. Design of experiments (DOE) was used to evaluate the robustness of the method. The developed method was applied to study the pharmacokinetics of tramiprosate in rats. Copyright © 2011. Published by Elsevier B.V.
Letica, Jelena; Marković, Slavko; Zirojević, Jelena; Nikolić, Katarina; Agbaba, Danica
2010-01-01
An RP-HPLC method for simultaneous separation and quantification of pantoprazole and its five main impurities in pharmaceutical formulations was developed and validated. The separation was accomplished on a Zorbax Eclipse XDB C18 column (5 microm particle size, 150 x 4.6 mm id) using a gradient with mobile phase A [buffer-acetonitrile (70 + 30, v/v)], and mobile phase B [buffer-acetonitrile (30 + 70, v/v)]. The buffer was 0.01 M ammonium acetate solution with addition of 1 mL triethylamine/L of the solution, adjusted to pH 4.5 with orthophosphoric acid. The eluent flow rate was 1 mL/min, the temperature of the column was 30 degrees C, and the eluate was monitored at 290 nm. Linearity (r = 0.999), recovery (97.6-105.8%), RSD (0.55-1.90%), and LOQ (0.099-1.48 microg/mL) were evaluated and found to be satisfactory. The proposed method can be used for simultaneous identification and quantification of the analyzed compounds in pharmaceutical formulations.
Peng, Lian-Xin; Wang, Jing-Bo; Hu, Li-Xue; Zhao, Jiang-Lin; Xiang, Da-Bing; Zou, Liang; Zhao, Gang
2013-01-30
A simple and rapid method for determining emodin, an active factor presented in tartary buckwheat (Fagopyrum tataricum), by high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) has been developed. Emodin was separated from an extract of buckwheat on a Kromasil-ODS C(18) (250 mm × 4.6 mm × 5 μm) column. The separation is achieved within 15 min on the ODS column. Emodin can be quantified using an external standard method detecting at 436 nm. Good linearity is obtained with a correlation coefficient exceeding 0.9992. The limit of detection and the limit of quantification are 5.7 and 19 μg/L, respectively. This method shows good reproducibility for the quantification of the emodin with a relative standard deviation value of 4.3%. Under optimized extraction conditions, the recovery of emodin was calculated as >90%. The validated method is successfully applied to quantify the emodin in tartary buckwheat and its products.
Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.
Zhang, Chen; Zhang, Jing; Huang, Yan-Ping; Liu, Zhao-Sheng
2015-04-01
A macromolecular crowding-assisted liquid-crystalline molecularly imprinted monolith (LC-MIM) was prepared successfully for the first time. The imprinted stationary phase was synthesized with polymethyl methacrylate (PMMA) or polystyrene (PS) as the crowding agent, 4-cyanophenyl dicyclohexyl propylene (CPCE) as the liquid-crystal monomer, and hydroquinidine as the pseudo-template for the chiral separation of cinchona alkaloids in HPLC. A low level of cross-linker (26%) has been found to be sufficient to achieve molecular recognition on the crowding-assisted LC-MIM due to the physical cross-linking of mesogenic groups in place of chemical cross-linking, and baseline separation of quinidine and quinine could be achieved with good resolution (R(s) = 2.96), selectivity factor (α = 2.16), and column efficiency (N = 2650 plates/m). In contrast, the LC-MIM prepared without crowding agents displayed the smallest diastereoselectivity (α = 1.90), while the crowding-assisted MIM with high level of cross-linker (80%) obtained the greatest selectivity factor (α = 7.65), but the lowest column efficiency (N = 177 plates/m).
Gezici, Orhan; Kara, Hüseyin
2011-09-15
The stationary phase characteristics of the material obtained through immobilization of humic acid (HA) to aminopropyl silica (APS) via amide-bond formation were investigated. The material was characterized in terms of elemental analysis, FTIR, thermogravimetric analyses, pH point of zero charge measurements, potentiometric titrations, and contact angle measurements. Amount of HA bonded to APS was determined from the elemental analysis results, and found as 170 mgHA/gAPS. Stability of the material was studied in aqueous media at different pH values, and amount of HA released at pH=8 did not exceed 2% of the total immobilized HA. Stationary phase characteristics of the well-characterized material were investigated in an HPLC system by using some low-molecular weight polar compounds (i.e. some nucleosides and nucleobases) as test solutes. Effect of some experimental variables such as column conditioning, composition of mobile phase, and temperature on the chromatographic behavior of the studied compounds was studied. Role of ammonium solutions at different pH values on retentive properties of the species was also studied. Retention factors (k') versus volume percentage of organic modifier exhibited a U-curve, which was evaluated as an indication for RPLC/HILIC mixed-mode behavior of the stationary phase. Orthogonality between RPLC and HILIC modes was analyzed through geometric approach, and found as 48.5%. Base-line separation for the studied groups of compounds was achieved under each studied mode, and some differentiations were observed in elution order of the compounds depending on the HPLC mode applied. Chromatograms recorded under RPLC and HILIC modes were compared with those recorded on APS under similar conditions, and thus the influence/importance of HA immobilization process was evaluated in detail. In light of the obtained results, immobilized HA is represented as a useful stationary phase for HPLC separations. Copyright © 2011 Elsevier B.V. All rights reserved.
Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils.
Kalpio, Marika; Nylund, Matts; Linderborg, Kaisa M; Yang, Baoru; Kristinsson, Björn; Haraldsson, Gudmundur G; Kallio, Heikki
2015-04-01
Enantiomers of racemic triacylglycerol (TAG) mixtures were separated using two chiral HPLC columns with a sample recycling system and a UV detector. A closed system without sample derivatisation enabled separation and identification by using enantiopure reference compounds of eleven racemic TAGs with C12-C22 fatty acids with 0-2 double bonds. The prolonged separation time was compensated for by fewer pretreatment steps. Presence of one saturated and one unsaturated fatty acid in the asymmetric TAG favoured the separation. Enantiomeric resolution, at the same time with stronger retention of TAGs, increased with increasing fatty acid chain length in the sn-1(3) position. Triunsaturated TAGs containing oleic, linoleic or palmitoleic acids did not separate. The elution order of enantiomers was determined by chemoenzymatically synthesised enantiopure TAGs with a co-injection method. The method is applicable to many natural fats and oils of low unsaturation level assisting advanced investigation of lipid synthesis and metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sensing Impacts of the Fate of Trace Explosives Signatures Under Environmental Conditions
2010-01-01
vial with a pair of clean metal tweezers. A 10 mL aliquot of CHROMASOLV® Plus HPLC -grade acetone was dispensed on the wide surfaces of the sample...Evaporator Workstation under a nitrogen purge stream in a 50 ºC water bath and reconstituted with CHROMASOLV® HPLC -grade acetonitrile to 500 L... simultaneously on the two parallel GC columns, using a refrigerated (ɠ °C) 100-vial autosampler and two parallel auto-injectors. Column 1 (Restek 562719
[Coumarins of Anemone raddeana Regel and their biological activity].
Ren, Feng-Zhi; Chen, Shu-Hong; Zheng, Zhi-Hui; Zhang, Xue-Xia; Li, Li-Hong; Dong, Ai-Hua
2012-02-01
To study the coumarins of Anemone raddeana Regel, the compounds were separated by silica gel column chromatography and HPLC. Their structures were identified by their physicochemical property and spectral analysis. Two new compounds were isolated and identified as 4, 7-dimethoxyl-5-methyl-6-hydroxy coumarin (1) and 4, 7-dimethoxyl-5-formyl-6-hydroxycoumarin (2). The bioassays indicated that compounds 1 and 2 could significantly inhibit the proliferation of cancer cell, and showed the agonist effect on the transactivity of retinoic acid receptor-alpha (RARalpha). In addition, the two compounds had inhibitory effect against human leukocyte elastase (HLE).
Quantitative analysis of pyroglutamic acid in peptides.
Suzuki, Y; Motoi, H; Sato, K
1999-08-01
A simplified and rapid procedure for the determination of pyroglutamic acid in peptides was developed. The method involves the enzymatic cleavage of an N-terminal pyroglutamate residue using a thermostable pyroglutamate aminopeptidase and isocratic HPLC separation of the resulting enzymatic hydrolysate using a column switching technique. Pyroglutamate aminopeptidase from a thermophilic archaebacteria, Pyrococcus furiosus, cleaves N-terminal pyroglutamic acid residue independent of the molecular weight of the substrate. It cleaves more than 85% of pyroglutamate from peptides whose molecular weight ranges from 362.4 to 4599.4 Da. Thus, a new method is presented that quantitatively estimates N-terminal pyroglutamic acid residue in peptides.
Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka
2018-06-22
The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion chromatography (SEC) before grafting onto silica surface. Moreover, both of the monomers were commercially available. Therefore, the technique of preparation was very facile and better separation was achieved with the Sil-alt-T phase compared to the ODS, C 30 and other previously reported alternating copolymer-based columns. Copyright © 2018 Elsevier B.V. All rights reserved.
Grynbaum, Marc David; Hentschel, Petra; Putzbach, Karsten; Rehbein, Jens; Krucker, Manfred; Nicholson, Graeme; Albert, Klaus
2005-09-01
HPLC atmospheric pressure chemical ionization (APCI)/MS, GC MS, HPLC diode array detection (DAD), and NMR were used for the identification of astaxanthin and astaxanthin fatty acid esters in krill (Euphausia superba Dana). Matrix solid phase dispersion was applied for the extraction of the carotenoids. This gentle and expeditious extraction technique for solid and viscous samples leads to distinct higher enrichment rates than the conventional liquid-liquid extraction. The chromatographic separation was achieved employing a C30 RP column that allows the separation of shape-constrained geometrical isomers. A methanol/tert-butylmethyl ether/water gradient was applied. (all-E) Astaxanthin and the geometrical isomers were identified by HPLC APCI/MS, by coelution with isomerized authentical standard, by UV spectroscopy (DAD), and three isomers were unambiguously assigned by microcoil NMR spectroscopy. In this method, microcoils are transversally aligned to the magnetic field and have an increased sensitivity compared to the conventional double-saddle Helmholtz coils, thus enabling the measurement on small samples. The carotenol fatty acid esters were saponified enzymatically with Lipase type VII from Candida rugosa. The fatty acids were detected by GC MS after transesterification, but also without previous derivatization by HPLC APCI/MS. C14:0, C16:0, C16:1, C18:1, C20:0, C20:5, and C22:6 were found in astaxanthin monoesters and in astaxanthin diesters. (all-E) Astaxanthin was identified as the main isomer in six fatty acid ester fractions by NMR. Quantitation was carried out by the method of internal standard. (13-cis) Astaxanthin (70 microg/g), 542 microg/g (all-E) astaxanthin, 36 microg/g unidentified astaxanthin isomer, 62 microg/g (9-cis) astaxanthin, and 7842 microg/g astaxanthin fatty acid esters were found.
Obmann, Astrid; Purevsuren, Sodnomtseren; Zehl, Martin; Kletter, Christa; Reznicek, Gottfried; Narantuya, Samdan; Glasl, Sabine
2012-01-01
Dianthus versicolor is used in traditional Mongolian medicine against liver impairment. Fractions enriched in flavone-di- and triglycosides were shown to enhance bile secretion. Therefore, reliable and accurate analytical methods are needed for the determination of these flavonoids in the crude drug and extracts thereof. To provide a validated HPLC-DAD (diode array detector) method especially developed for the separation of polar flavonoids and to compare the data obtained with those evaluated by UV spectrophotometry. Separations were carried out on an Aquasil® C₁₈-column (4.6 mm × 250.0 mm, 5 µm) with a linear gradient of acetonitrile and water (adjusted to pH 2.8 with trifluoroacetic acid) as mobile phase. Rutoside was employed as internal standard with linear behavior in a concentration range of 0.007-3.5 mg/mL. Accuracy was determined by spiking the crude drug with saponarin resulting in recoveries between 92% and 102%. The method allows the quantification of highly polar flavonoid glycosides and the determination of their total content. For saponarin a linear response was evaluated within the range 0.007-3.5 mg/mL (R² > 0.9999). It was proven that threefold sonication represents a time-saving, effective and cheap method for the extraction of the polar flavonoid glycosides. The contents determined by HPLC were shown to be in agreement with those obtained employing UV spectrophotometry. The study has indicated that the newly developed HPLC method represents a powerful technique for the quality control of D. versicolor. Ultraviolet spectrophotometry may be used alternatively provided that the less polar flavonoids are removed by purification. Copyright © 2011 John Wiley & Sons, Ltd.
Raudonis, Raimondas; Raudone, Lina; Jakstas, Valdas; Janulis, Valdimaras
2012-04-13
ABTS and FRAP post-column techniques evaluate the antioxidant characteristics of HPLC separated compounds with specific reagents. ABTS characterize their ability to scavenge free radicals by electron-donating antioxidants, resulting in the absorbance decrease of the chromophoric radical. FRAP - is based on the reduction of Fe(III)-tripyridyltriazine complex to Fe(II)-tripyridyltriazine at low pH by electron-donating antioxidants, resulting in an absorbance increase. Both post-column assays were evaluated and compared according to the following validation parameters: specificity, precision, limit of detection (LoD), limit of quantitation (LoQ) and linearity. ABTS and FRAP post-column assays were specific, repeatable and sensitive and thus can be used for the evaluation of antioxidant active compounds. Antioxidant active compounds were quantified according to TEAC for each assay and ABTS/FRAP ratio was derived. No previous records of antioxidative activity of leaves and fruits of strawberries (Fragaria viridis, Fragaria moschata) research have been found. The research results confirm the reliability of ABTS and FRAP post-column assays for screening of antioxidants in complex mixtures and the determination of radical scavenging and ferric reducing ability by their TEAC values. Copyright © 2012 Elsevier B.V. All rights reserved.
Ono, I; Matsuda, K; Kanno, S
1997-05-09
A simple, rapid and sensitive two column-switching high-performance liquid chromatographic (HPLC) method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (AY4166, I) and its seven metabolites in human plasma and urine. Measurements of I and its metabolites were carried out by two column-switching HPLC, because metabolites were classified into two groups according to their retention times. After purification of plasma samples using solid-phase extraction and direct dilution of urinary samples, I and each metabolite were injected into HPLC. The calibration graphs for plasma and urinary samples were linear in the ranges 0.1 to 10 microg ml(-1) and 0.5 to 50 microg ml(-1), respectively. Recoveries of I and its seven metabolites were over 88% by the standard addition method and the relative standard deviations of I and its metabolites were 1-6%.
Paleologos, E K; Kontominas, M G
2005-06-10
A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature.
Holtin, Karsten; Kuehnle, Maximilian; Rehbein, Jens; Schuler, Paul; Nicholson, Graeme; Albert, Klaus
2009-11-01
The oily product ZANTHIN consists of natural astaxanthin, which is manufactured from the microalgae Haematococcus pluvialis by supercritical CO(2) extraction. An HPLC method was developed to separate all of the components of the complex astaxanthin extract using a C(30) column. The separation resulted in different isomers of astaxanthin accompanied by two other carotenoids. The main component consisted of astaxanthin singly esterified with several different fatty acids. C18:3, C18:2, C18:1 and C16:0 were identified as the most commonly occurring fatty acids. Doubly esterified astaxanthin was also found, although in lower concentrations compared to singly esterified astaxanthin. After performing a detailed fatty acid analysis by GC-MS, the peaks from the extract were assigned via HPLC-MS. A trans to cis transmutation of the all-trans compound was performed by thermal treatment in order to obtain an enrichment of cis isomers as the basis for unambiguous identification via NMR experiments. The all-trans as well as the 9- and 13-cis isomers of astaxanthin were characterized in detail by UV/Vis, (1)H, and (1)H,(1)H COSY NMR spectroscopy.
Lin, Jau-Tien; Chen, Yi-Chen; Chang, Yan-Zin; Chen, Ting-Yu; Yang, Deng-Jye
2017-04-19
Scavenging effect of 2,2-diphenyl -2-picrylhydrazyl hydrate (DPPH) radicals, inhibitory effect of low-density lipoprotein (LDL) oxidation, Trolox equivalent antioxidant capacity (TEAC), and phenolic contents were used for the activity-guided separation to identify the effective compounds of Muntingia calabura Linn. fruit. Its ethanol extract with higher phenolic content and antioxidant activities was subjected to silica gel column chromatographic separation, which was sequentially eluted with n-hexane, 10-90% ethyl acetate (EA) in n-hexane, EA, EA/acetone (50/50, v/v), acetone, acetone/methanol (MeOH) (50/50, v/v), and MeOH; fifteen fractions (Fr. 1-15) were obtained. Fractions 13 and 14 with better antioxidant effects were mixed followed by purification of the effective compounds using HPLC. Two major compounds were isolated and identified as gallic acid and 1,2-benzenedicarboxylic acid diisooctyl ester through high performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) measurements. Their amounts in the fruit were 3.76 and 4.62 mg g -1 . This study is the first report to clarify the effective antioxidant compounds of M. calabura Linn. fruit.
Determination of the design space of the HPLC analysis of water-soluble vitamins.
Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y
2013-06-01
Analysis of water-soluble vitamins has been tremendously approached through the last decades. A multitude of HPLC methods have been reported with a variety of advantages/shortcomings, yet, the design space of HPLC analysis of these vitamins was not defined in any of these reports. As per the food and drug administration (FDA), implementing the quality by design approach for the analysis of commercially available mixtures is hypothesized to enhance the pharmaceutical industry via facilitating the process of analytical method development and approval. This work illustrates a multifactorial optimization of three measured plus seven calculated influential HPLC parameters on the analysis of a mixture containing seven common water-soluble vitamins (B1, B2, B6, B12, C, PABA, and PP). These three measured parameters are gradient time, temperature, and ternary eluent composition (B1/B2) and the seven calculated parameters are flow rate, column length, column internal diameter, dwell volume, extracolumn volume, %B (start), and %B (end). The design is based on 12 experiments in which, examining of the multifactorial effects of these 3 + 7 parameters on the critical resolution and selectivity, was carried out by systematical variation of all these parameters simultaneously. The 12 basic runs were based on two different gradient time each at two different temperatures, repeated at three different ternary eluent compositions (methanol or acetonitrile or a mixture of both). Multidimensional robust regions of high critical R(s) were defined and graphically verified. The optimum method was selected based on the best resolution separation in the shortest run time for a synthetic mixture, followed by application on two pharmaceutical preparations available in the market. The predicted retention times of all peaks were found to be in good match with the virtual ones. In conclusion, the presented report offers an accurate determination of the design space for critical resolution in the analysis of water-soluble vitamins by HPLC, which would help the regulatory authorities to judge the validity of presented analytical methods for approval. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Olszewska, Monika A
2012-09-01
An HPLC method of high resolution has been developed and validated for the simultaneous determination of ten prominent flavonoid aglycones in plant materials using a fused-core C18-silica column (Ascentis® Express, 4.6 mm × 150 mm, 2.7 μm). The separation was accomplished with an acetonitrile-tetrahydrofuran gradient elution at a flow rate of 1 mL/min and temperature of 30°C. UV spectrophotometric detection was employed at 370 nm for flavonols (quercetin [QU], myricetin [MY], isorhamnetin [IS], kaempferol [KA], sexangularetin [SX], and limocitrin [LM]) and 340 nm for flavones (apigenin [AP], acacetin [AC], chrysoeriol [CH], and luteolin [LU]). The high resolution of critical pairs QU/LU (10.50), QU/CH (3.40), AP/CH (2.51), SX/LM (2.30), and IS/KA (2.70) was achieved within 30.3 min. The observed column back pressure was less than 4300 psi, thus acceptable for conventional HPLC equipment. The method was sensitive enough having LODs of 0.115-0.525 ng and good linearity (r > 0.9999) over the test range. The precision values, expressed as RSD values, were <7.5%, and the accuracy was in the range of 95.3-100.2% for all analytes except MY (73.8%). The method was successfully employed for the determination of flavonoids in several medicinal plants, such as Ginkgo biloba, Betula pendula, and a variety of Sorbus species. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferslew, K E; Hagardorn, A N; McCormick, W F
1989-01-01
A case is presented of a death caused by self-injection of sufentanil and midazolam. Biological fluids and tissues were analyzed for midazolam by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS) and for sufentanil by GC/MS. Midazolam was extracted from basified fluids or tissues homogenated with n-butyl chloride and analyzed by HPLC by using a phosphate buffer: acetonitrile (60:40) mobile phase on a mu-Bondapak C18 column at 240 nm. Sufentanil was extracted from basified fluids and tissue homogenates with hexane:ethanol (19:1). GC/MS methodology for both compounds consisted of chromatographic separation on a 15-m by 0.25-mm inside diameter (ID) DB-5 (1.0-micron-thick film) bonded phase fused silica capillary column with helium carrier (29 cm/s) splitless injection at 260 degrees C; column 200 degrees C (0.8 min) 10 degrees C/min to 270 degrees C; and electron ionization and multiple ion detection for midazolam (m/z 310), methaqualone (IS, m/z 235), sufentanil (m/z 289), and fentanyl (IS, m/z 245). Sufentanil concentrations were: blood 1.1 ng/mL, urine 1.3 ng/mL, vitreous humor 1.2 ng/mL, liver 1.75 ng/g, and kidney 5.5 ng/g. Midazolam concentrations were: blood 50 ng/mL, urine 300 ng/mL, liver 930 ng/g, and kidney 290 ng/g. Cause of death was attributed to an acute sufentanil/midazolam intoxication and manner of death a suicide.
Rana, Inder Singh; Rana, Aarti Singh; Rajak, Ram Charan
2011-01-01
Antifungal properties of some essential oils have been well documented. Clove oil is reported to have strong antifungal activity against many fungal species. In this study we have evaluated antifungal potential of essential oil of Syzygium aromaticum (L.) against some common fungal pathogens of plants and animals namely, Fusarium moniliforme NCIM 1100, Fusarium oxysporum MTCC 284, Aspergillus sp., Mucor sp., Trichophyton rubrum and Microsporum gypseum. All fungal species were found to be inhibited by the oil when tested through agar well diffusion method. Minimum inhibitory concentration (MIC) was determined for all the species. Column chromatography was performed to separate the eugenol rich fraction from clove oil. Out of seven fractions maximum activity was obtained in column fraction II. TLC and HPLC data confirmed presence of considerable Eugenol in fraction II and clove oil. Microscopic study on effect of clove oil and column fraction II on spores of Mucor sp. and M. gypseum showed distortion and shrinkage while it was absent in other column fractions. So it can be concluded that the antifungal action of clove oil is due to its high eugenol content. PMID:24031751
Rana, Inder Singh; Rana, Aarti Singh; Rajak, Ram Charan
2011-10-01
Antifungal properties of some essential oils have been well documented. Clove oil is reported to have strong antifungal activity against many fungal species. In this study we have evaluated antifungal potential of essential oil of Syzygium aromaticum (L.) against some common fungal pathogens of plants and animals namely, Fusarium moniliforme NCIM 1100, Fusarium oxysporum MTCC 284, Aspergillus sp., Mucor sp., Trichophyton rubrum and Microsporum gypseum. All fungal species were found to be inhibited by the oil when tested through agar well diffusion method. Minimum inhibitory concentration (MIC) was determined for all the species. Column chromatography was performed to separate the eugenol rich fraction from clove oil. Out of seven fractions maximum activity was obtained in column fraction II. TLC and HPLC data confirmed presence of considerable Eugenol in fraction II and clove oil. Microscopic study on effect of clove oil and column fraction II on spores of Mucor sp. and M. gypseum showed distortion and shrinkage while it was absent in other column fractions. So it can be concluded that the antifungal action of clove oil is due to its high eugenol content.
A lectin HPLC method to enrich selectively-glycosylated peptides from complex biological samples.
Johansen, Eric; Schilling, Birgit; Lerch, Michael; Niles, Richard K; Liu, Haichuan; Li, Bensheng; Allen, Simon; Hall, Steven C; Witkowska, H Ewa; Regnier, Fred E; Gibson, Bradford W; Fisher, Susan J; Drake, Penelope M
2009-10-01
Glycans are an important class of post-translational modifications. Typically found on secreted and extracellular molecules, glycan structures signal the internal status of the cell. Glycans on tumor cells tend to have abundant sialic acid and fucose moieties. We propose that these cancer-associated glycan variants be exploited for biomarker development aimed at diagnosing early-stage disease. Accordingly, we developed a mass spectrometry-based workflow that incorporates chromatography on affinity matrices formed from lectins, proteins that bind specific glycan structures. The lectins Sambucus nigra (SNA) and Aleuria aurantia (AAL), which bind sialic acid and fucose, respectively, were covalently coupled to POROS beads (Applied Biosystems) and packed into PEEK columns for high pressure liquid chromatography (HPLC). Briefly, plasma was depleted of the fourteen most abundant proteins using a multiple affinity removal system (MARS-14; Agilent). Depleted plasma was trypsin-digested and separated into flow-through and bound fractions by SNA or AAL HPLC. The fractions were treated with PNGaseF to remove N-linked glycans, and analyzed by LC-MS/MS on a QStar Elite. Data were analyzed using Mascot software. The experimental design included positive controls-fucosylated and sialylated human lactoferrin glycopeptides-and negative controls-high mannose glycopeptides from Saccharomyces cerevisiae-that were used to monitor the specificity of lectin capture. Key features of this workflow include the reproducibility derived from the HPLC format, the positive identification of the captured and PNGaseF-treated glycopeptides from their deamidated Asn-Xxx-Ser/Thr motifs, and quality assessment using glycoprotein standards. Protocol optimization also included determining the appropriate ratio of starting material to column capacity, identifying the most efficient capture and elution buffers, and monitoring the PNGaseF-treatment to ensure full deglycosylation. Future directions include using this workflow to perform mass spectrometry-based discovery experiments on plasma from breast cancer patients and control individuals.
Mahaboob Basha, D; Venkata Reddy, G; Gopi Krishna, Y; Kumara Swamy, B E; Vijay, Rajani
2018-04-19
The first approach of this research paper explores the simultaneous characterization and determination of theAsulam active ingredient and its associated nine impurities in bulk batch production by the gradient reverse-phase high-performance liquid chromatographic (RP-HPLC) method. The best separation from its potential impurities and reproducible method was achieved by selecting the Cosmosil C-18 (250 × 4.6 mm, 5 μm particle size) analytical column with a run time of 40 min. The pumping chromatographic mobile phase was composed of 0.1% formic acid in milli-Q water (pH ~2.72) and methanol (80 + 20, v/v). An ambient column-oven temperature and UV detection at 260 nm were used. For this broad resolution, a gradient program was employed at a flow rate of 1.20 mL/min. All potential related substances in Asulam bulk manufacturing were ascertained by mass, proton nuclear magnetic resonance, and infrared spectroscopy. The developed HPLC method was validated with respect to linearity (25.64-151.83 mg/L for Asulam and 0.71-16.29, 1.02-12.26, 1.01-20.29, 0.60-10.01, 1.04-16.65, 0.94-22.47, 0.93-16.60, 1.00-12.45, 1.00-12.45, and 0.71-12.17 mg/L for Impurities A to I with a correlation coefficient 0.999 for Asulam and all the impurities), precision (RSD, % for active analyte Asulam and impurities were ˂2%), accuracy (percent recovery for Asulam at two levels ranged from 99.28 to 99.35%, and for Impurities A to I, it was 93.44 to 101.41%), and specificity. Hence, this simple and reliable HPLC method was able to determine the purity of Asulam active analyte and the level of impurities in bulk batch synthesis. By using this quantified procedure, five self-made production batches were analyzed simultaneously.
Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua
2018-01-05
Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017 Elsevier B.V. All rights reserved.
[A new method for safety monitoring of natural dietary supplements--quality profile].
Wang, Juan; Wang, Li-Ping; Yang, Da-Jin; Chen, Bo
2008-07-01
A new method for safety monitoring of natural dietary supplements--quality profile was proposed. It would convert passive monitoring of synthetic drug to active, and guarantee the security of natural dietary supplements. Preliminary research on quality profile was completed by high performance liquid chromatography (HPLC) and mass spectrometry (MS). HPLC was employed to analyze chemical constituent profiles of natural dietary supplements. The separation was completed on C18 column with acetonitrile and water (0.05% H3PO4) as mobile phase, the detection wavelength was 223 nm. Based on HPLC, stability of quality profile had been studied, and abnormal compounds in quality profile had been analyzed after addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide. And by MS, detector worked with ESI +, capillary voltage: 3.5 kV, cone voltage: 30 V, extractor voltage: 4 V, RF lens voltage: 0.5 V, source temperature: 105 degrees C, desolvation temperature: 300 degrees C, desolvation gas flow rate: 260 L/h, cone gas flow rate: 50 L/h, full scan mass spectra: m/z 100-600. Abnormal compound in quality profile had been analyzed after addition of N-mono-desmethyl sibutramine. Quality profile based on HPLC had good stability (Similarity > 0.877). Addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide in natural dietary supplements could be reflected by HPLC, and addition of N-mono-desmethyl sibutramine in natural dietary supplements could be reflected by MS. Quality profile might monitor adulteration of natural dietary supplements, and prevent addition of synthetic drug after "approval".
A novel HPLC fluorescence method for the quantification of methylphenidate in human plasma
Zhu, Hao-Jie; Wang, Jun-Sheng; Patrick, Kennerly S.; Donovan, Jennifer L.; DeVane, C. Lindsay; Markowitz, John S.
2007-01-01
A number of analytical methods have been established to quantify methylphenidate (MPH). However, to date no HPLC methods are applicable to human pharmacokinetic studies without the use of mass spectrometry (MS) detection. We developed a sensitive and reliable HPLC-fluorescence method for the determination of MPH in human plasma using 4-(4,5-diphenyl-1H-imidazol-2-yl) benzoyl chloride (DIB-Cl) as the derivatizing agent. An established GC-MS method was adopted in this study as a comparator assay. MPH was derivatized DIB-Cl, and separated isocratically on a C18 column using a HPLC system with fluorescence detection (λex: 330 nm, λem: 460 nm). The lower limit of determination was found to be 1 ng/mL. A linear calibration curve was obtained over the concentrations ranging from 1 to 80 ng/mL (r=0.998). The relative standard deviations of intra-day and inter-day variations were ≤ 9.10 % and ≤ 7.58 %, respectively. The accuracy ranged between 92.59 % and 103.06 %. The method was successfully applied to the pharmacokinetic study of a subject who received a single oral dose (0.3 mg/kg) of immediate-release MPH and yielded consistent results with that of the GC-MS method. This method is the first HPLC assay with non-MS detection providing sufficient reliability and sensitivity for both pre-clinical and clinical studies of MPH. PMID:17804308
HPLC-DAD-MS identification of bioactive secondary metabolites from Ferula communis roots.
Arnoldi, Lolita; Ballero, Mauro; Fuzzati, Nicola; Maxia, Andrea; Mercalli, Enrico; Pagni, Luca
2004-06-01
A simple HPLC method was developed to distinguish between 'poisonous' and 'non-poisonous' chemotypes of Ferula communis. The method was performed on a C8 reverse phase analytical column using a binary eluent (aqueous TFA 0.01%-TFA 0.01% in acetonitrile) under gradient condition. The two chemotypes showed different fingerprints. The identification of five coumarins and eleven daucane derivatives by HPLC-diode array detection (HPLC-DAD) and HPLC-MS is described. A coumarin, not yet described, was detected. Copyright 2004 Elsevier B.V.
Mitrowska, Kamila; Vincent, Ursula; von Holst, Christoph
2012-04-13
The manuscript presents the development of a new reverse phase high performance liquid chromatography (RP-HPLC) photo diode array detection method allowing the separation and quantification of 15 carotenoids (adonirubin, adonixanthin, astaxanthin, astaxanthin dimethyl disuccinate, asteroidenone, beta-apo-8'-carotenal, beta-apo-8'-carotenoic acid ethyl ester, beta-carotene, canthaxanthin, capsanthin, citranaxanthin, echinenone, lutein, lycopene, and zeaxanthin), 10 of which are feed additives authorised within the European Union. The developed method allows for the reliable determination of the total carotenoid content in one run using the corresponding E-isomer as calibration standard while taking into account the E/Z-isomers composition. This is a key criterion for the application of the method, since for most of the analytes included in this study analytical standards are only available for the E-isomers. This goal was achieved by applying the isosbestic concept, in order to identify specific wavelengths, at which the absorption coefficients are identical for all stereoisomers concerned. The second target referred to the optimisation of the LC conditions. By means of an experimental design, an optimised RP-HPLC method was developed allowing for a sufficient chromatographic separation of all carotenoids. The selected method uses a Suplex pKb-100 HPLC column and applying a gradient with a mixture of acetonitrile, tert-butyl-methyl ether and water as mobile phases. The limits of detection and limits of quantification ranged from 0.06 mg L(-1) to 0.14 mg L(-1) and from 0.20 mg L(-1) to 0.48 mg L(-1), respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2012-05-04
The kinetic performance of 0.5 mm × 50 mm columns packed with 2.7 μm Halo-C(18) core-shell particles and 3 μm EP-120-C(18) fully porous particles fitted on an Eksigent LC-Express Ultra μHPLC system were measured. The instrument contribution to band broadening was obtained by directly connecting the injection valve and the detector cell with a short, narrow PEEKSIL tube. The connections between the column and the connecting tubes, the column endfittings and its frits contribute to band spreading and are responsible for a significant rear peak tailing, even for retained compounds, resulting in a significant loss of efficiency. Our results show that the μHPLC system could outperform the current VHPLC systems using 2.1mm I.D. columns packed with 1.7 μm particles if it were using 0.5mm I.D. columns packed with 1 μm particles, if it could operate at a few kbar pressure drop, and if the sum of the contributions of the instrument, column endfittings and the column frits to band dispersion were three times smaller than it is at present. Copyright © 2012 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...
Code of Federal Regulations, 2012 CFR
2012-10-01
... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...
Code of Federal Regulations, 2014 CFR
2014-10-01
... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...
Abudayeh, Zead Helmi Mahmoud; Al Azzam, Khaldun Mohammad; Naddaf, Ahmad; Karpiuk, Uliana Vladimirovna; Kislichenko, Viktoria Sergeevna
2015-01-01
Purpose: To separate and quantify four major saponins in the extracts of the skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum L.) using ultrasonic solvent extraction followed by a high performance liquid chromatography-diode array detector (HPLC-DAD) with positive confirmation by thin layer chromatography (TLC). Methods: The saponins: escin Ia, escin Ib, isoescin Ia and isoescin Ib were extracted using ultrasonic extraction method. The optimized extraction conditions were: 70% methanol as extraction solvent, 80 °C as extraction temperature, and the extraction time was achieved in 4 hours. The HPLC conditions used: Zorbax SB-ODS-(150 mm × 2.1 mm, 3 μm) column, acetonitrile and 0.10% phosphoric acid solution (39:61 v/v) as mobile phase, flow rate was 0.5 mL min−1 at 210 nm and 230 nm detection. The injection volume was 10 μL, and the separation was carried out isothermally at 30 °C in a heated chamber. Results: The results indicated that the developed HPLC method is simple, sensitive and reliable. Moreover, the content of escins in seeds decreased by more than 30% in endosperm and by more than 40% in skin upon storage for two years. Conclusion: This assay can be readily utilized as a quality control method for horse chestnut and other related medicinal plants. PMID:26819933
Leveque, Nathalie L; Charman, William N; Chiu, Francis C K
2006-01-18
A sensitive, simple and fast liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 1-(4-chlorophenyl)biguanide (4CPB), was developed and validated over a concentration range of 1-2000 ng/mL using only 50 microL of blood or plasma. After a simple solvent precipitation procedure, the supernatant was analysed directly by HPLC-MS/MS. Separation was achieved using an ethyl-linked phenyl reverse phase column with polar endcapping with an acetonitrile-water-formic acid gradient. Mass spectrometry was performed using a triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The elution of PG (254.07-->169.99), CG (252.12-->195.02) and 4CPB (212.06-->153.06) was monitored using selected reaction monitoring. The three compounds and the internal standard (chloroproguanil) were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in blood and plasma. The limit of quantification of PG and CG was 1 ng/mL and 5 ng/mL for 4CPB in rat blood and plasma. The extraction efficiency of PG, CG and 4CPB from rat blood and plasma was higher than 73%. The intra- and inter-assay variability of PG, CG and 4CPB were within 12% and the accuracy within +/-5%. This new assay offers higher sensitivity and a much shorter run time over earlier methods.
Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong
2014-01-01
This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742
Zhang, Pei-Ting; Pan, Bi-Yan; Liao, Qiong-Feng; Yao, Mei-Cun; Xu, Xin-Jun; Wan, Jin-Zhi; Liu, Dan; Xie, Zhi-Yong
2013-01-01
A simple and efficient HPLC-DAD (225 nm) method was developed and validated for the simultaneous determination of limonin and six key alkaloids (evodiamine, rutaecarpine, 1-methyl-2-undecyl-4(1H)-quinolone, evocarpine, 1-methy-2-[(6Z,9Z)]-6,9-pentadecadienyl-4-(1H)-quinolone, and dihydroevocarpine) in Evodia rutaecarpa (Juss.) Benth, which has been widely used as one of the Traditional Chinese Medicines. The chromatographic separation was carried out on a Hypersil BDS C18 column, and gradient elution was employed with a mobile phase containing acetonitrile and water. Contents of the analytes in 18 batches of samples were analyzed by ultrasonic extraction with ethanol and water mixture (80 : 20, v/v) followed by HPLC analysis. Separation of the seven analytes was achieved within 60 min with good linearity (r > 0.999). The RSD of both the intraday and interday precision was below 1.85%. The accuracy at different concentrations was within the range of 97.91 to 100.49%. Hierarchical clustering analysis was performed to differentiate and classify the samples based on the contents of the seven constituents. This study indicated that the quality control of E. rutaecarpa could be simplified to the measurement of four constituents, and that limonin, 1-methyl-2-undecyl-4(1H)-quinolone, and dihydroevocarpine should also be served as the chemical markers together with evodiamine for the quality control of Evodia rutaecarpa (Juss.) Benth.
Zhang, Pei-ting; Pan, Bi-yan; Liao, Qiong-feng; Yao, Mei-cun; Xu, Xin-jun; Wan, Jin-zhi; Liu, Dan; Xie, Zhi-yong
2013-01-01
A simple and efficient HPLC-DAD (225 nm) method was developed and validated for the simultaneous determination of limonin and six key alkaloids (evodiamine, rutaecarpine, 1-methyl-2-undecyl-4(1H)-quinolone, evocarpine, 1-methy-2-[(6Z,9Z)]-6,9-pentadecadienyl-4-(1H)-quinolone, and dihydroevocarpine) in Evodia rutaecarpa (Juss.) Benth, which has been widely used as one of the Traditional Chinese Medicines. The chromatographic separation was carried out on a Hypersil BDS C18 column, and gradient elution was employed with a mobile phase containing acetonitrile and water. Contents of the analytes in 18 batches of samples were analyzed by ultrasonic extraction with ethanol and water mixture (80 : 20, v/v) followed by HPLC analysis. Separation of the seven analytes was achieved within 60 min with good linearity (r > 0.999). The RSD of both the intraday and interday precision was below 1.85%. The accuracy at different concentrations was within the range of 97.91 to 100.49%. Hierarchical clustering analysis was performed to differentiate and classify the samples based on the contents of the seven constituents. This study indicated that the quality control of E. rutaecarpa could be simplified to the measurement of four constituents, and that limonin, 1-methyl-2-undecyl-4(1H)-quinolone, and dihydroevocarpine should also be served as the chemical markers together with evodiamine for the quality control of Evodia rutaecarpa (Juss.) Benth. PMID:23738236
Chromatographic determination of itopride hydrochloride in the presence of its degradation products.
Kaul, Neeraj; Agrawal, Himani; Maske, Pravin; Rao, Janhavi Ramchandra; Mahadik, Kakasaheb Ramoo; Kadam, Shivajirao S
2005-08-01
Two sensitive and reproducible methods are described for the quantitative determination of itopride hydrochloride (IH) in the presence of its degradation products. The first method is based on HPLC separation on a reversed phase Kromasil column [C18 (5-microm, 25 cm x 4.6 mm, ID)] at ambient temperature using a mobile phase consisting of methanol and water (70:30, v/v) adjusted to pH 4.0 with orthophosphoric acid with UV detection at 258 nm. The flow rate was 1.0 mL per min with an average operating pressure of 180 kg/cm2. The second method is based on HPTLC separation on silica gel 60 F254 using toluene:methanol:chloroform:10% ammonia (5.0:3.0:6.0:0.1, v/v/v/v) as mobile phase at 270 nm. The analysis of variance (ANOVA) and Student's t-test were applied to correlate the results of IH determination in dosage form by means of HPLC and HPTLC methods. The drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment, UV, and photodegradation. The proposed HPLC method was utilized to investigate the kinetics of the acidic, alkaline, and oxidative degradation processes at different temperatures and the apparent pseudo-first-order rate constant, half-life, and activation energy were calculated. In addition the pH-rate profile of degradation of IH in constant ionic strength buffer solutions in the pH range 2-11 was studied.
Hattori, Toshiaki; Anraku, Nobuhiro; Kato, Ryo
2010-02-01
Five chitosan oligosaccharides were separated in acidic aqueous solution by capillary electrophoresis (CE) with indirect photometric detection using a positively coated capillary. Electrophoretic mobility of the chitooligosaccharides (COSs) depended on the number of monomer units in acidic aqueous solution, similar to other polyelectrolyte oligomers. The separation was developed in nitric acid aqueous solution at pH 3.0 with 1 mM Crystal Violet, using a capillary positively coated with N-trimethoxypropyl-N,N,N-trimethylammonium chloride. The limit of the detection for chitooligosaccharides with two to six saccharide chains was less than 5 microM. CE determination of an enzymatically hydrolyzed COS agreed with results from HPLC. 2009 Elsevier B.V. All rights reserved.
Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang
2014-06-01
An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)). The interaction and chiral recognition mechanisms were based on the synergistic double ion-paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α-amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion-paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π-π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(-) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wong, Peerapon; Sritippayawan, Suchila; Suwannakhon, Narutchala; Tapprom, Akamon; Deoisares, Rawisut; Sanguansermsri, Torpong
2016-11-01
For beta thalassemia control program in pregnancy, mass screening of the carrier state by determination of the hemoglobin (Hb) A 2 and Hb E proportions and mutation analysis is a preferred method for making prenatal diagnoses. Q Sepharose micro-column chromatography, developed for the determination of Hb A 2 and Hb E for screening purposes, was compared with high performance liquid chromatography (HPLC) to ascertain its relative accuracy and reliability. Results using Q Sepharose micro-column chromatography in 350 blood specimens, including 50 samples genetically proven to be beta thalassemia heterozygotes, were compared to HPLC for validation. An additional study was conducted to test a clinical application on a large-scale survey for beta thalassemia in 1581 pregnant women and their spouses. The mean (±SD) Hb A 2 proportions in the normal and genetically proven beta thalassemia heterozygotes were 2.70±0.40% and 6.30±1.23%, respectively, as determined by Q-Sepharose micro-column chromatography, and 2.65±0.31% and 5.37±0.96%, respectively, as determined by HPLC. The mean Hb E proportions in the Hb E heterozygotes were 23.25±4.13% and 24.72±3.5% as determined by Q Sepharose micro-column chromatography and HPLC, respectively. In the large-scale survey for beta thalassemia, 23 at risk couples were detected. Seven affected fetuses were identified by prenatal diagnosis. Q Sepharose micro-column chromatography was found to be reliable, reproducible and well-suited for large-scale surveys. Additionally, by being reusable and convenient, this simple and economical chromatography method may be an alternative means to screen for beta thalassemia and Hb E carriers in the mass population. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Ianni, Federica; Sardella, Roccaldo; Lisanti, Antonella; Gioiello, Antimo; Cenci Goga, Beniamino Terzo; Lindner, Wolfgang; Natalini, Benedetto
2015-12-10
In two-dimensional HPLC (2D-HPLC) "heart-cut" applications, two columns are connected in series via a switching valve and volume fractions from the "primary" column are re-injected on the "secondary" column. The heart-cut 2D-HPLC system here described was implemented by connecting a reversed-phase (RP) column (first dimension) to a chiral column (second dimension) containing a quinidine-based chiral stationary phase. The system was used to evaluate the change in the enantiomeric excess value of dansylated (Dns) amino acids (AAs) in milk samples from two cows with different "California Mastitis Test" scores: negative test for sample 1, positive for sample 2. Apart from the co-elution of Dns-Arg/Dns-Gly and the reduced chemoselectivity for Dns-Leu/Dns-allo-Ile, the optimized achiral RP method distinguished the remaining standard Dns-AAs. Dns-AAs were identified in the chromatograms of the real samples, and in higher concentration Dns-Ala, Dns-Arg, Dns-Asp, Dns-Glu, Dns-Ile, Dns-Leu, Dns-Phe and Dns-Val. Except Dns-Arg, the chiral column enabled the RP enantioseparation of all the other compounds (α and RS values up to 1.65 and 8.63, respectively, for Dns-Phe). In sample 2, the amounts of Dns-d-AAs were rather elevated, in particular for Dns-Ala and Dns-Asp. Instead, for sample 1, D-isomers were detected for Dns-Ala, Dns-Glu and Dns-Leu. The proposed 2D-HPLC method could be useful for the identification of clinical mastitis difficult to be diagnosed. Moreover, the eventual progressive reduction of D-AAs levels with the degree of sub-clinical mastitis could allow the building of mathematical models to use for the diagnosis of early stages of mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua
2017-03-01
Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bargar, T.A.; Cobb, G.P.
1995-12-31
The relative distribution of coplanar polychlorinated biphenyls (PCBs) between chorioallantoic membranes (CAMS) and eggs was investigated in inviable American alligator (Alligator mississippiensis) and Loggerhead sea turtle (Caretta caretra) eggs. Cam and egg extracts were fractionated by HPLC using a porous graphitic column (PGC) and an in line switching valve to separate coplanar from non-coplanar PCBs. The fractions were collected, concentrated by nitrogen evaporation, and injected on GC-ECD (60M DB-5 capillary column) for quantification. Alligator and Loggerhead sea turtle eggs contain toxicologically significant coplanar PCBs. Mono-ortho substituted PCBs were present with greater frequency relative to non-ortho substituted PCBs in both eggsmore » and CAMS. The presence of coplanar PCBs in eggs appears to be correlated to coplanar PCB presence in CAMS. The chorioallantoic membrane could serve as a biomarker of embryo exposure to coplanar PCBs.« less
Zhong, W Z; Williams, M G
2000-02-25
A chiral method for the simultaneous analysis of the (+)- and (-)-enantiomers of PNU-83894 and its metabolite, PNU-83892, in plasma was developed to characterize the enantioselective pharmacokinetics of PNU-83894, a potential anticonvulsant candidate. The method involves solid-phase extraction (phenyl column) of the enantiomers from plasma followed by direct enantioselective separation on a beta-cyclodextrin HPLC chiral column and UV detection at 230 nm. The linear range for this method was found to be 12.5 ng/ml to 5.00 microg/ml and the intra- and inter-assay precision and accuracy for each enantiomer were <11% in all cases. The validity of this assay was also demonstrated by its application to the pharmacokinetic evaluation of PNU-83894 in the dog.
Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping
2012-05-15
In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.
Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H
2006-05-05
A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min.
Li, Hui-Jun; Yu, Jun-Jie; Li, Ping
2011-03-25
This study presents a high performance liquid chromatography (HPLC) with electrospray ionization mass spectrometric detection (ESI-MSD) and evaporative light scattering detection (ELSD) method for the simultaneous qualification and quantification of eight major baccharane glycosides, namely hosenlosides A, B, C, F, G, K, L, and M in Impatientis Semen, a Chinese herbal medicine derived from the seeds of Impatiens balsamina L. In order to achieve optimum performance, several extraction parameters (including extraction solvent, extraction mode, extraction time) were optimized. The baccharane glycosides were separated on a Shim-pack CLC-ODS column with gradient elution of water and methanol. Temperature for the ELSD drift tube was set at 98°C and the nitrogen flow rate was 2.7l/min. The unambiguous identities of the analytes were realized by comparing retention times and mass data with those of reference compounds. The developed method was fully validated in terms of linearity, sensitivity, precision, repeatability, recovery as well as robustness, and subsequently applied to evaluate the quality of 14 batches of Impatientis Semen commercial samples from different collections. Copyright © 2010 Elsevier B.V. All rights reserved.
Rapid measurement of plasma free fatty acid concentration and isotopic enrichment using LC/MS
Persson, Xuan-Mai T.; Błachnio-Zabielska, Agnieszka Urszula; Jensen, Michael D.
2010-01-01
Measurements of plasma free fatty acids (FFA) concentration and isotopic enrichment are commonly used to evaluate FFA metabolism. Until now, gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) was the best method to measure isotopic enrichment in the methyl derivatives of 13C-labeled fatty acids. Although IRMS is excellent for analyzing enrichment, it requires time-consuming derivatization steps and is not optimal for measuring FFA concentrations. We developed a new, rapid, and reliable method for simultaneous quantification of 13C-labeled fatty acids in plasma using high-performance liquid chromatography-mass spectrometry (HPLC/MS). This method involves a very quick Dole extraction procedure and direct injection of the samples on the HPLC system. After chromatographic separation, the samples are directed to the mass spectrometer for electrospray ionization (ESI) and analysis in the negative mode using single ion monitoring. By employing equipment with two columns connected parallel to a mass spectrometer, we can double the throughput to the mass spectrometer, reducing the analysis time per sample to 5 min. Palmitate flux measured using this approach agreed well with the GC/C/IRMS method. This HPLC/MS method provides accurate and precise measures of FFA concentration and enrichment. PMID:20526002
Wang, Zhaopin; Wu, Juanli; Wu, Shihua; Bao, Aimin
2013-04-24
Histamine, a neurotransmitter crucially involved in a number of basic physiological functions, undergoes changes in neuropsychiatric disorders. Detection of histamine in biological samples such as cerebrospinal fluid (CSF) is thus of clinical importance. The most commonly used method for measuring histamine levels is high performance liquid chromatography (HPLC). However, factors such as very low levels of histamine, the even lower CSF-histamine and CSF-histamine metabolite levels, especially in certain neuropsychiatric diseases, rapid formation of histamine metabolites, and other confounding elements during sample collection, make analysis of CSF-histamine and CSF-histamine metabolites a challenging task. Nonetheless, this challenge can be met, not only with respect to HPLC separation column, derivative reagent, and detector, but also in terms of optimizing the CSF sample collection. This review aims to provide a general insight into the quantitative analyses of histamine in biological samples, with an emphasis on HPLC instruments, methods, and hyphenated techniques, with the aim of promoting the development of an optimal and practical protocol for the determination of CSF-histamine and/or CSF-histamine metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Qian; Wang, Yixiang; Liu, Ran; Yan, Xu; Li, Yujiao; Fu, Hui; Bi, Kaishun; Li, Qing
2013-02-01
A simple and sensitive method for the simultaneous determination of plasma concentrations of five polyamines in normal and Hepatoma-22 mice, and mice treated with Mylabris and Acanthopanax senticosus was developed by HPLC-ESI-MS. Male Kunming mice were divided into nine groups, a control group (inoculation without treatment), a positive group (Cyclophosphamide), treatment groups [Mylabris (4, 8, 16 mg/kg), Acanthopanax senticosus (6, 12, 24 g/kg)] and a normal group (without inoculation). Twenty-four hours after the last administration, plasma samples were collected. The derived polyamines were separated on a C(18) column by a gradient elution using methanol-water with excellent linearity within the range from 2.5 to 1000 ng/mL. Polyamines were confirmed as useful biochemical markers of hepatoma. The differences in anti-cancer therapeutic efficacy between Mylabris and Acanthopanax senticosus might contribute to the variability of polyamine levels in vivo. This HPLC-ESI-MS method was successfully applied to investigate the relationship between polyamines and cancer in mice and might be a useful method to test the activity of potential anti-tumor drugs. Copyright © 2012 John Wiley & Sons, Ltd.
Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo
2004-06-17
A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.
Xie, Ying; Zhou, Hua; Wong, Yuen Fan; Liu, Zhongqiu; Xu, Hongxi; Jiang, Zhihong; Liu, Liang
2008-01-01
Background Benzoylmesaconine (BMA) is the main Aconitum alkaloid in Radix Aconiti Lateralis Preparata (Fuzi, aconite roots) with potent pharmacological activities, such as analgesia and anti-inflammation. The present study developed a simple and reliable method using BMA as a marker compound for the quality control of processed aconite roots and their products. Methods After extraction, a high-performance liquid chromatography (HPLC) determination of BMA was conducted on a RP-C18 column by gradient elution with acetonitrile and aqueous phase, containing 0.1% phosphoric acid adjusted with triethylamine to pH 3.0. Results A distinct peak profile was obtained and separation of BMA was achieved. Method validation showed that the relative standard deviations (RSDs) of the precision of BMA in all intra-day and inter-day assays were less than 1.36%, and that the average recovery rate was 96.95%. Quantitative analysis of BMA showed that the content of BMA varied significantly in processed aconite roots and their products. Conclusion This HPLC method using BMA as a marker compound is applicable to the quality control of processed aconite roots and their products. PMID:18513409
Wang, Yan-Hong; Avonto, Cristina; Avula, Bharathi; Wang, Mei; Rua, Diego; Khan, Ikhlas A
2015-01-01
An HPLC-UV method was developed for the quantitative analysis of nine skin whitening agents in a single injection. These compounds are α-arbutin, β-arbutin, kojic acid, nicotinamide, resorcinol, ascorbic acid, hydroquinone, 4-methoxyphenol, and 4-ethoxyphenol. The separation was achieved on a reversed-phase C18 column within 30 min. The mobile phase was composed of water and methanol, both containing 0.1% acetic acid (v/v). The stability of the analytes was evaluated at different pH values between 2.3 and 7.6, and the extraction procedure was validated for different types of skin whitening product matrixes, which included two creams, a soap bar, and a capsule. The best solvent system for sample preparation was 20 mM NaH2PO4 containing 10% methanol at pH 2.3. The analytical method was validated for accuracy, precision, LOD, and LOQ. The developed HPLC-UV method was applied for the quantitation of the nine analytes in 59 skin whitening products including creams, lotions, sera, foams, gels, mask sheets, soap bars, tablets, and capsules.
Kalafut, P; Kucera, R; Klimes, J; Sochor, J
2009-07-12
3-[4-(2-Methylpropyl)phenyl]propanoic acid has been introduced as impurity F to the European Pharmacopoeia in its Supplement 4.2. In contrast to other impurities, which are evaluated by HPLC, the content of impurity F is determined by gas chromatography after previous derivatization. Thus a novel reversed-phase HPLC method was developed to simplify the evaluation of pharmacopoeial impurity F of ibuprofen. Favourable properties of zirconia stationary phases were employed for this purpose. The HPLC separation was achieved on a Zr-CARB column (150 mm x 4.6mm i.d., 5 microm) using the mobile phase acetonitrile-phosphate buffer (pH 3.5, 25 mM) (38:62, v/v), temperature 80 degrees C and the flow rate 1.2 ml min(-1). The fluorescence detection was employed to enhance the sensitivity of the method. Optimal detection parameters were chosen on the basis of fluorescence spectra of the analytes. The excitation and emission wavelengths were 220 nm and 285 nm, respectively. The analysis was completed within 25 min. The subsequent validation of the method confirmed the applicability of method for the analytical assay of impurity F.
Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction.
Li, Jing; Liu, Xiaomei; Zhou, Bin; Zhao, Jing; Li, Shaoping
2013-06-19
The root of burdock ( Arctium lappa L.) is a commonly used vegetable in Asia. Fructooligosaccharides (FOS) are usually considered as its main bioactive components. Thus, quantitative analysis of these components is very important for the quality control of burdock. In this study, an HPLC-ELSD and microwave-assisted extraction method was developed for the simultaneous determination of seven FOS with degrees of polymerization (DP) between 3 and 9, as well as fructose, glucose, and sucrose in burdock from different regions. The separation was performed on a Waters XBridge Amide column (4.6 × 250 mm i.d., 3.5 μm) with gradient elution. All calibration curves for investigated analytes showed good linear regression (r > 0.9990). Their LODs and LOQs were lower than 3.63 and 24.82 μg/mL, respectively. The recoveries ranged from 99.2 to 102.6%. The developed method was successfully applied to determination of ten sugars in burdock from different locations of Asia. The results showed that the contents of FOS in different samples of burdock collected at appropriate times were similar, and the developed HPLC-ELSD with microwave-assisted extraction method is helpful to control the quality of burdock.
Yoshitake, A; Kawahara, K; Shono, F; Umeda, I; Izawa, A; Komatsu, T
1980-01-01
A sensitive and reliable high-pressure liquid chromatography (HPLC) assay for miloxacin and its two principal metabolites, 5,8-dihydro-8-oxo-2H-1,3-dioxolo[4,5-g]quinoline-7-carboxylic acid (M-1) and 1,4-dihydro-1,6-dimethoxy-7-hydroxy-4-oxoquinoline-3-carboxylic acid (M-2), in human serum and urine was developed. A strong anion-exchange Zipax SAX column using a mobile phase of 0.01 M citric acid solution containing 0.03 M sodium nitrate with pH 5.0 was used to achieve separation of the three compounds. The retention times of miloxacin, M-1, and M-2 were 3.8, 9.3, and 5.9 min, respectively. Serum and urine concentrations of these compounds as low as 10 ng/ml were measured. When results from the HPLC assay were compared with those from the microbiological assay of serum and urine samples from human subjects receiving miloxacin orally, the correlation coefficients were 0.94 for the serum and 0.99 for the urine. The HPLC assay method presents an alternative to the microbiological assay and permits future pharmacokinetic investigations of miloxacin. PMID:7416751
G Archana; Dhodapkar, Rita; Kumar, Anupama
2016-09-01
The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.
Ikeda, Rie; Ichiyama, Kosuke; Tabuchi, Naoto; Wada, Mitsuhiro; Kuroda, Naotaka; Nakashima, Kenichiro
2014-11-01
A chemiluminescence (CL) reaction of folic acid (FA) with ruthenium (II) and cerium (IV) was applied to quantify FA-related compounds such as FA, dihydrofolic acid, tetrahydrofolic acid, 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and methotrexate (MTX). Among the FAs, 5-methyltetrahydrofolic acid provided the highest CL intensity. HPLC-CL detection of FA was applied to quantify FA in pharmaceutical preparations and supplements. Analytical samples were separated on a semi-micro ODS column with a mixture of 20 mM phosphate buffer (pH 5.7) and acetonitrile (94 : 6, v/v %). The separated samples were mixed with a post-column CL reagent consisting of 1.5 mM Ru(bipy)3 (2+) and 1.0 mM Ce(SO4)2 , then the generated CL was monitored. The calibration range for FA was 10-100 μM and the limit of detection was 1.34 μM (signal-to-noise ratio of 3). Repeatabilities were 4.2, 4.6 and 5.0 RSD% (10, 25, 50 μM), and the recoveries for FA supplement, vitamin B complex supplement and FA-containing medication (tablet) were 102.4 ± 10.5, 103.3 ± 13.3 and 100.3 ± 8.5%, respectively. The described method is robust against changes in the chromatographic parameters of ± 3.3 or ± 1.5%. The measured FA content corresponded well to the labeled content of FA-containing products (100.6-104.9%), demonstrating the precision and accuracy of this method for the evaluation of FA pharmaceutical preparations. Copyright © 2014 John Wiley & Sons, Ltd.
Tata, P N; Fu, C H; Browder, N J; Chow, P C; Bramer, S L
1998-11-01
A high-performance liquid chromatography-ultraviolet (HPLC-UV) method for the quantitation of cilostazol and four of its principal metabolites (i.e. OPC-13015, OPC-13213, OPC-13217 and OPC-13326) in human liver microsomal solutions was developed and validated. Cilostazol, its metabolites, and the internal standard (OPC-3930), were analyzed by protein precipitation followed by reverse-phase HPLC separation on a TSK-Gel ODS-80TM (150 x 4.6 mm, 5 microm) column and a Cosmil C-18 column (150 x 4.6 mm, 5 microm) in tandem and UV detection at 254 nm. An 80 min gradient elution of mobile phase acetonitrile in acetate buffer (pH = 6.50) was used to obtain quality chromatography and peak resolution. All the analytes were separated from each other, with the resolution being 2.43-17.59. The components of liver microsomal incubation mixture and five metabolic inhibitor probes (quinidine sulfate, diethyl dithiocarbamate (DEDTC), omeprazole, ketoconazole and furafylline) did not interfere with this analytical method. The LOQ was 1000 ng ml(-1) for cilostazol and 100 ng ml(-1) for each of the metabolites. This method has been validated for linear ranges of 100-4000 ng ml(-1) for OPC-13213, OPC-13217 and OPC-13326; 100-2000 ng ml(-1) for OPC-13015; and 1000-20000 ng ml(-1) for cilostazol. The percent relative recovery of this method was established to be 81.2-101.0% for analytes, with the precision (% coefficient of variation (CV)) being 2.8-7.7%. The autosampler stability of the analytes was evaluated and it was found that all analytes were stable at room temperature for a period of at least 17 h. This assay has been shown to be precise, accurate and reproducible.
Chromatographic analysis of salicylic compounds in different species of the genus Salix.
Pobłocka-Olech, Loretta; van Nederkassel, Anne-Marie; Vander Heyden, Yvan; Krauze-Baranowska, Mirosława; Glód, Daniel; Baczek, Tomasz
2007-11-01
The separation of nine phenol glycosides--salicin, salicortin, 2'-acetylsalicortin, populin, tremulacin, salidroside, triandrin, picein and helicin--by normal phase (NP), reversed phase (RP) HPLC techniques and a coupling of NP and RP monolithic silica columns was studied. Among the above nine compounds only five--salicin, populin, tremulacin, salidroside and triandrin--were resolved in an NP system with a mobile phase comprising hexane/isopropanol/methanol (87:12:1, v/v/v). Optimized separation was performed with two coupled monolithic silica columns of different polarity (bare silica and RP-18). The method was applied to verify the presence of salicylic compounds and other phenolic derivatives in the bark of six species from the genus Salix, namely S. purpurea, S. daphnoides clone 1095, S. alba clone 1100, S. triandra, S. viminalis, and S. herbacea. Gradient elution with a mobile phase composed of acetonitrile and water containing 0.05% of trifluoroacetic acid, with increasing acetonitrile concentration from 3% to 48%, was chosen as optimal. For the selective detection of the salicylic compounds, an evaporative light scattering detector was employed along with a UV detector. The differences in the composition of phenols in the different plant materials were confirmed. Additionally, it must be emphasized that for the first time the presence of 2'-acetylsalicortin was revealed in S. alba clone 1100. Furthermore, an SPE-HPLC method was developed for the rapid analysis of the salicin content, analyzed as free and total fraction, in willow barks. The determined concentrations of total salicin varied from 25.4 mg/g in S. alba clone 1100 to 96.47 mg/g in S. daphnoides clone 1095.
Genovese, S; Epifano, F; Carlucci, G; Marcotullio, M C; Curini, M; Locatelli, M
2010-10-10
Oxyprenylated natural products (isopentenyloxy-, geranyloxy- and the less spread farnesyloxy-compounds and their biosynthetic derivatives) represent a family of secondary metabolites that have been consider for years merely as biosynthetic intermediates of the most abundant C-prenylated derivatives. Many of the isolated oxyprenylated natural products were shown to exert in vitro and in vivo remarkable anti-cancer and anti-inflammatory effects. 4'-Geranyloxyferulic acid [3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic] has been discovered as a valuable chemopreventive agent of several types of cancer. After development of a high yield and "eco-friendly" synthetic scheme of this secondary metabolite, starting from cheap and non-toxic reagents and substrates, we developed a new HPLC-DAD method for its quantification in grapefruit skin extract. A preliminary study on C18 column showed the separation between GOFA and boropinic acid (having the same core but with an isopentenyloxy side chain), used as internal standard. The tested column were thermostated at 28+/-1 degrees C and the separation was achieved in gradient condition at a flow rate of 1 mL/min with a starting mobile phase of H(2)O:methanol (40:60, v/v, 1% formic acid). The limit of detection (LOD, S/N=3) was 0.5 microg/mL and the limit of quantification (LOQ, S/N=10) was 1 microg/mL. Matrix-matched standard curves showed linearity up to 75 microg/mL. In the analytical range the precision (RSD%) values were
Lazzarino, Giacomo; Longo, Salvatore; Amorini, Angela Maria; Di Pietro, Valentina; D'Urso, Serafina; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara
2017-12-08
Fat-soluble vitamins and antioxidants are of relevance in health and disease. Current methods to extract these compounds from biological fluids mainly need use of multi-steps and multi organic solvents. They are time-consuming and difficult to apply to treat simultaneously large sample number. We here describe a single-step, one solvent extraction of fat-soluble vitamins and antioxidants from biological fluids, and the chromatographic separation of all-trans-retinoic acid, 25-hydroxycholecalciferol, all-trans-retinol, astaxanthin, lutein, zeaxanthin, trans-β-apo-8'-carotenal, γ-tocopherol, β-cryptoxanthin, α-tocopherol, phylloquinone, lycopene, α-carotene, β-carotene and coenzyme Q 10 . Extraction is obtained by adding one volume of biological fluid to two acetonitrile volumes, vortexing for 60s and incubating for 60min at 37°C under agitation. HPLC separation occurs in 30min using Hypersil C18, 100×4.6mm, 5μm particle size column, gradient from 70% methanol+30% H 2 O to 100% acetonitrile, flow rate of 1.0ml/min and 37°C column temperature. Compounds are revealed using highly sensitive UV-VIS diode array detector. The HPLC method suitability was assessed in terms of sensitivity, reproducibility and recovery. Using the present extraction and chromatographic conditions we obtained values of the fat-soluble vitamins and antioxidants in serum from 50 healthy controls similar to those found in literature. Additionally, the profile of these compounds was also measured in seminal plasma from 20 healthy fertile donors. Results indicate that this simple, rapid and low cost sample processing is suitable to extract fat-soluble vitamins and antioxidants from biological fluids and can be applied in clinical and nutritional studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Congote, L. F.; Hamilton, E. F.; Chow, J. C.; Perry, T. B.
1982-01-01
Three techniques for analysing hemoglobin synthesis in blood samples obtained by fetoscopy were evaluated. Of the fetuses studied, 12 were not at risk of genetic disorders, 10 were at risk of beta-thalassemia, 2 were at risk of sickle cell anemia and 1 was at risk of both diseases. The conventional method of prenatal diagnosis of hemoglobinopathies, involving the separation of globin chains labelled with a radioactive isotope on carboxymethyl cellulose (CMC) columns, was compared with a method involving globin-chain separation by high-pressure liquid chromatography (HPLC) and with direct analysis of labelled hemoglobin tetramers obtained from cell lysates by chromatography on ion-exchange columns. The last method is technically the simplest and can be used for diagnosing beta-thalassemia and sickle cell anemia. However, it gives spuriously high levels of adult hemoglobin in samples containing nonlabelled adult hemoglobin. HPLC is the fastest method for prenatal diagnosis of beta-thalassemia and may prove as reliable as the CMC method. Of the 13 fetuses at risk for hemoglobinopathies, 1 was predicted to be affected, and the diagnosis was confirmed in the abortus. Of 12 predicted to be unaffected, 1 was aborted spontaneously and was unavailable for confirmatory studies, as were 3 of the infants; however, the diagnosis was confirmed in seven cases and is awaiting confirmation when the infant in 6 months old in one case. Couples at risk of bearing a child with a hemoglobinopathy should be referred for genetic counselling before pregnancy or, at the latest, by the 12th week of gestation so that prenatal diagnosis can be attempted by amniocentesis, safer procedure, with restriction endonuclease analysis of the amniotic fluid cells. PMID:7139502
Ye, Zi; Lu, Ye; Xue, Ya-Fu; Xu, Hong; Wang, Zheng-Tao
2016-07-01
The violanthin, a specific component, was separated and identified from the stems of Dendrobium officinale by chromatographic technique and spectroscopic method for the first time. The microscopic characteristics of D. officinale powder were examined under a microscopy and described. Thin layer chromatography (TLC) method was used for qualitative analysis of the violanthin from D. officinale stems with a mixture of ethyl acetate, butanone, formic acid and water (4∶3∶1∶1) as the developing solvent on high performance silica gel precoated plate (SGF254) and using aluminium trichloride as a chromagenic agent. The results showed significant characteristics of violanthin from D. officinale stems on TLC, with certain specificity, and could be used to distinguish it from other easily confusing processed medicinal stems of D. devonianum, D. gratiosissimum and D. aphyllum. The content of naringenin, an active ingredient in D. officinale stems was determined by HPLC analysis on a Bischoff Chromatography HIPAK NC-04 ODS AB column (4.4 mm×250 mm, 5 mm) with acetonitrile-0.1% phosphoric acid solution as the mobile phase for gradient elution. The wavelength was set at 226 nm and column temperature was 25 ℃. The HPLC method showed good linearity within the range of 3.90-250.00 g•mL⁻¹ (r = 0.999 9) for naringenin. The average recovery of naringenin was 99.20% with 0.17% of RSD. The mass fraction of 20 batches of D. officinale stems was between 0.190 and 0.498 mg•g⁻¹. The established qualitative and quantitative method was simple and rapid with good repeatability and accuracy, providing experimental basis for improving the quality standard of D. officinale, with a very important significance to ensure its quality and clinical effect. Copyright© by the Chinese Pharmaceutical Association.
Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography.
Nagatsu, T; Oka, K; Kato, T
1979-07-21
A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. D-Tyrosine was used for the control. alpha-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.
Wang, Jinzhao; Zeng, Su; Wang, Danhua; Hu, Gongyun
2009-05-01
A simple pre-column derivatization-high performance liquid chromatographic (HPLC) method was established for the determination of optical purity of alpha-phenylethylamine. The enantiomers of alpha-phenylethylamine were derivatized with 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl isothiocyanate (GITC). The resulted diastereoisomers were separated on an Agilent Zorbax C18 column (250 mm x 4.6 mm, 5 microm) with a mobile phase of methanol-phosphate buffer (1.36 g/L aqueous solution of potassium dihydrogen phosphate, adjusted to pH 3.0 with concentrated phosphoric acid) (58:42, v/v). The flow rate was set at 1.0 mL/min and the detection wavelength was set at 241 nm. The method was linear from 0.15 - 15.0 mg/L for both enantiomers. The limit of detection and the limit of quantification were 0.05 mg/L and 0.15 mg/L, respectively. The relative standard deviations (RSDs) of inter- and intra-day determination were below 0.5%. The method is easy to handle, accurate, and suitable for the quality control of the optical purity of alpha-phenylethylamine.
Fernandes, Ricardo; Koudelka, Tomas; Tholey, Andreas; Dreves, Alexander
2017-07-15
AMS-radiocarbon measurements of amino acids can potentially provide more reliable radiocarbon dates than bulk collagen analysis. Nonetheless, the applicability of such an approach is often limited by the low-throughput of existing isolation methods and difficulties in determining the contamination introduced during the separation process. A novel tertiary prep-HPLC amino acid isolation method was developed that relies on the combustion of eluted material without requiring any additional chemical steps. Amino acid separation was carried out using a gradient mix of pure water and phosphoric acid with an acetonitrile step in-between runs to remove hydrophobic molecules from the separation column. The amount of contaminant carbon and its 14 C content were determined from two-point measurements of collagen samples of known 14 C content. The amount of foreign carbon due to the isolation process was estimated at 4±1μg and its 14 C content was 0.43±0.01 F 14 C. Radiocarbon values corrected for carbon contamination have only a minor increase in uncertainties. For Holocene samples, this corresponds to an added uncertainty typically smaller than 10 14 Cyears. The developed method can be added to routine AMS measurements without implying significant operational changes and offers a level of measurement uncertainty that is suitable for many archaeological, ecological, environmental, and biological applications. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yinfa, Ma.
Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will bemore » described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation of DNA fragments in agarose gel electrophoresis is investigated. 262 refs.« less
A high pressure liquid chromatography method for separation of prolactin forms.
Bell, Damon A; Hoad, Kirsten; Leong, Lillian; Bakar, Juwaini Abu; Sheehan, Paul; Vasikaran, Samuel D
2012-05-01
Prolactin has multiple forms and macroprolactin, which is thought not to be bioavailable, can cause a raised serum prolactin concentration. Gel filtration chromatography (GFC) is currently the gold standard method for separating macroprolactin, but is labour-intensive. Polyethylene glycol (PEG) precipitation is suitable for routine use but may not always be accurate. We developed a high pressure liquid chromatography (HPLC) assay for macroprolactin measurement. Chromatography was carried out using an Agilent Zorbax GF-250 (9.4 × 250 mm, 4 μm) size exclusion column and 50 mmol/L Tris buffer with 0.15 mmol/L NaCl at pH 7.2 as mobile phase, with a flow rate of 1 mL/min. Serum or plasma was diluted 1:1 with mobile phase and filtered and 100 μL injected. Fractions of 155 μL were collected for prolactin measurement and elution profile plotted. The area under the curve of each prolactin peak was calculated to quantify each prolactin form, and compared with GFC. Clear separation of monomeric-, big- and macroprolactin forms was achieved. Quantification was comparable to GFC and precision was acceptable. Total time from injection to collection of the final fraction was 16 min. We have developed an HPLC method for quantification of macroprolactin, which is rapid and easy to perform and therefore can be used for routine measurement.
Qureshi, A A; Elson, C E; Lebeck, L A
1982-11-19
The isolation and identification of three major alpha-keto end products (glyoxylate, pyruvate, alpha-ketoglutarate) of the isocitrate lyase reaction in 18-day chick embryo liver have been described. This was accomplished by the separation of these alpha-keto acids as their 2,4-dinitrophenylhydrazones (DNPHs) by high-performance liquid chromatography (HPLC). The DNPHs of alpha-keto acids were eluted with an isocratic solvent system of methanol-water-acetic acid (60:38.5:1.5) containing 5 mM tetrabutylammonium phosphate from a reversed-phase ultrasphere C18 (IP) and from a radial compression C18 column. The separation can be completed on the radial compression column within 15-20 min as compared to 30-40 min with a conventional reversed-phase column. Retention times and peak areas were integrated for both the assay samples and reference compounds. A relative measure of alpha-keto acid in the peak was calculated by comparison with the standard. The identification of each peak was done on the basis of retention time matching, co-chromatography with authentic compounds, and stopped flow UV-VIS scanning between 240 and 440 nm. Glyoxylate represented 5% of the total product of the isocitrate lyase reaction. Day 18 parallels the peak period of embryonic hepatic glycogenesis which occurs at a time when the original egg glucose reserve has been depleted.
Leitão, Suzana Guimaraes; Leitão, Gilda Guimarães; Vicco, Douglas K T; Pereira, João Paulo Barreto; de Morais Simão, Gustavo; Oliveira, Danilo R; Celano, Rita; Campone, Luca; Piccinelli, Anna Lisa; Rastrelli, Luca
2017-10-20
Lippia origanoides (Verbenaceae) is an important Brazilian medicinal plant, also used for culinary purposes. Most chemical studies with this plant have been focused on its volatile composition. In this work, we combined High-Speed Counter-current Chromatography (HSCCC) and High Performance Liquid Chromatography coupled to Ultra Violet detection and High Resolution Mass Spectrometry (HPLC-UV-HRMS n ) methodologies to access the non-volatile chemical composition of L. origanoides. The crude ethanol extract of L. origanoides (LOEF) was first analyzed by HPLC-UV-HRMS n and allowed the identification of 7 major compounds. Among them, eriodictyol, naringenin and pinocembrin, were determined and are phytochemical markers of this plant. However, owing to the complexity of this plant matrix, LOEF was fractionated by HSCCC (hexane-ethanol-water, 4:3:1) as a tool for preparative pre-purification, affording a flavonoid-rich fraction. A column screening with the chromatographic stationary phases ZIC-HILIC, monolithic and particulate RP18 was performed. The best column separation was achieved with a Purospher STAR RP18e, which was used for HPLC-DAD-HRMS n studies. By this approach 12 compounds were further identified in addition to the major ones identified in the raw extract. Two of them, 6,8-di-C-hexosyl-luteolin and 6,8-di-C-glucosyl-apigenin, are being reported for the first time in the family Verbenaceae. This work shows the integration of HSCCC as a preparative tool for the fractionation and purification of natural products from a complex plant extract with other analytical techniques, with the purpose of showing each technique's potential. Copyright © 2017 Elsevier B.V. All rights reserved.
Journal of Chemical Education: Software.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1988
1988-01-01
Describes a chemistry software program that emulates a modern binary gradient HPLC system with reversed phase column behavior. Allows for solvent selection, adjustment of gradient program, column selection, detectory selection, handling of computer sample data, and sample preparation. (MVL)
Mikołajczyk-Bator, Katarzyna; Pawlak, Sylwia
2016-01-01
Increased consumption of fruits and vegetables significantly reduces the risk of cardio-vascular disease. This beneficial effect on the human organism is ascribed to the antioxidant compounds these foods contain. Unfortunately, many products, particularly vegetables, need to be subjected to thermal processing before consumption. The aim of this study was to determine the effect of such thermal treatment on the antioxidant capacity and pigment contents in separated fractions of violet pigments (betacyanins) and yellow pigments (betaxanthins and betacyanins). Fractions of violet and yellow pigments were obtained by separation of betalain pigments from fresh roots of 3 red beet cultivars using column chromatography and solid phase extraction (SPE). The betalain pigment content was determined in all samples before and after thermal treatment (90°C/30 min) by spectrophotometry, according to Nilsson's method [1970] and antioxidant capacity was assessed based on ABTS. Betalain pigments in the separated fractions were identified using HPLC-MS. After thermal treatment of betacyanin fractions a slight, but statistically significant degradation of pigments was observed, while the antioxidant capacity of these fractions did not change markedly. Losses of betacyanin content amounted to 13-15% depending on the cultivar, while losses of antioxidant capacity were approx. 7%. HPLC/MS analyses showed that before heating, betanin was the dominant pigment in the betacyanin fraction, while after heating it was additionally 15-decarboxy-betanin. Isolated fractions of yellow pigments in red beets are three times less heat-resistant than betacyanin fractions. At losses of yellow pigment contents in the course of thermal treatment reaching 47%, antioxidant capacity did not change markedly (a decrease by approx. 5%). In the yellow pigment fractions neobetanin was the dominant peak in the HPLC chromatogram, while vulgaxanthin was found in a much smaller area, whereas after heating additionally 2-decarboxy-2,3-dehydro-neobetanin was detected. Both groups of betalain pigments (betacyanins and betaxanthins) exhibit antioxidant capacity before and after heating. Violet beatacyjanins are 3 times more stable when heated than yellow betaxanthins.
[HPLC fingerprint of Calendula officinalis flower].
Xing, Zhan-Fen; Cheng, Hong-Da; Zhang, Ping-Ping; Gong, Lei; Ma, Li-Ya
2014-07-01
To establish an HPLC fingerprint of Calendula officinalis flower for its quality control. Hypersil ODS C18 column (250 mm x 4.6 mm, 5 μm) was used with acetonitrile and water as mobile phase in a gradient mode at the flow rate of 1.0 mL/min. The detection wavelength was 220 nm and the temperature of column was set at 35 degrees C. The similarity was analyzed with the Estimating System of Similarity on the Chinese Medicine Fingerprint Chromatogram. The HPLC fingerprint of Calendula officinalis flower containing eleven peaks was set up. The similarity of Calendula officinalis flower from different habitats was greater than 0.90. This method is easy and reliable, which can be used to judge the habitat and control the quality of Calendula officinalis flower.
Hemasa, Ayman L.; Maher, William A.; Ghanem, Ashraf
2017-01-01
Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns. PMID:28718832
Osorio-Tobón, J Felipe; Carvalho, Pedro I N; Barbero, Gerardo Fernández; Nogueira, Gislaine Chrystina; Rostagno, Mauricio Ariel; Meireles, Maria Angela de Almeida
2016-06-01
The recent development of fused-core technology in HPLC columns is enabling faster and highly efficient separations. This technology was evaluated for the development of a fast method for the analysis of main curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) present in extracts of turmeric (Curcuma longa L.). A step-by-step strategy was used to optimize temperature (40-55 °C), flow rate (1.0-2.5 mL min(-1)), mobile phase composition and equilibration time (1-5 min). A gradient method was developed using acidified water and acetonitrile combined with high column temperature (55 °C) and flow rate (2.5 mL min(-1)). Optimized conditions provided a method for the separation of these three curcuminoids in approximately 1.3 min with a total analysis time (sample-to-sample) of 7 min, including the clean-up and the re-equilibration of the column. Evaluation of chromatographic performance revealed excellent intraday and interday reproducibility (>99%), resolution (>2.23), selectivity (>1.12), peak symmetry (1.24-1.42) while presenting low limits of detection (<0.40 mg L(-1)) and quantification (<1.34 mg L(-1)). The robustness of the method was calculated according to the concentration/dilution of the sample and the injection volume. Several combinations of methanol and ethanol with water as sample solvents were evaluated and the best chromatographic results and extraction rate were obtained using 100% methanol. Finally, the developed method was validated with different extracts of turmeric rhizome and products that use turmeric in their formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B
2016-09-01
The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.