Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.
1998-09-08
A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.
1998-01-01
A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.
40 CFR 141.40 - Monitoring requirements for unregulated contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring to be completed Reserved i Reserved i Reserved i Reserved i Reserved i Reserved i Column headings... Pesticides and Flame Retardants in Drinking Water by Solid Phase Extraction and Capillary Column Gas... Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS...
Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han
2017-01-01
In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Majors, Ronald E.; And Others
1984-01-01
Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…
Modified sedimentation-dispersion model for solids in a three-phase slurry column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.N.; Ruether, J.A.; Shah, Y.T.
1986-03-01
Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less
Furukawa, Makoto; Takagai, Yoshitaka
2016-10-04
Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.
Lü, Weichao; Shen, Shuchang; Wang, Chao
2017-11-08
With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.
Guo, Mengzhe; Yin, Dengyang; Han, Jie; Zhang, Liyan; Li, Xiao; He, Dandan; Du, Yan; Tang, Daoquan
2016-09-01
Maltose, a common auxiliary material of pharmaceutical preparation, may disturb the analysis of total amino acids in sepia capsule by aldolization. Therefore, it is necessary to remove the maltose through a convenient method. In this work, a phenylboronic acid modified solid-phase extraction column has been synthesized and used to remove the maltose. The materials were synthesized by one step "thiol-ene" reaction and the parameters of the column such as absorption capacity, recovery, and absorption specificity have been investigated. The results showed the column (0.5 cm of length × 0.5 cm of inner diameter) can absorb 4.6 mg maltose with a linear absorption and absorption specificity. Then this technique was applied in the quantification of amino acids in sepia capsule. After the optimization of the method, four kinds of amino acids, which were the most abundant, were quantified by high-performance liquid chromatography with diode array detection. The amounts of the four kinds of amino acids are 1.5∼2 times more than that without the treatment of solid-phase extraction column, which almost overcomes the influence of the maltose. All the results indicate that the phenylboronic acid modified solid-phase extraction column can successfully help to accurately quantify the total amino acids in sepia capsule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping
2015-12-01
A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swineford, D.M.; Belisle, A.A.
1989-01-01
A method was developed for the simultaneous extraction of trifluralin, methyl paraoxon, methyl parathion, fenvalerate, and 2,4-D dimethylamine salt in pond water using a solid-phase C18 column. After elution from the C18 column, the eluate was analyzed on a capillary gas chromatograph equipped with an electron-capture or flame photometric detector.
ERIC Educational Resources Information Center
Mei-Ratliff, Yuan
2012-01-01
Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…
ERIC Educational Resources Information Center
Karasek, Francis W.; And Others
1984-01-01
This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…
Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C
2001-12-14
A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.
Zaugg, Steven D.; Sandstrom, Mark W.; Smith, Steven G.; Fehlberg, Kevin M.
1995-01-01
A method for the isolation of 41 pesticides and pesticide metabolites in natural-water samples using C-18 solid-phase extraction and determination by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction columns containing octadecyl-bonded porous silica to extract the pesticides. The columns are dried using carbon dioxide or nitrogen gas, and adsorbed pesticides are removed from the columns by elution with 3.0 milliliters of hexane-isopropanol (3:1). Extracted pesticides are determined by capillary- column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 4 micrograms per liter (g/L) for most pesticides, with the exception of widely used corn herbicides--atrazine, alachlor, cyanazine, and metolachlor--which have upper concentration limits of 20 g/L. Single- operator method detection limits in reagent-water samples range from 0.001 to 0.018 g/L. Average short-term single-operator precision in reagent- water samples is 7 percent at the 0.1- and 1.0-g/L levels and 8 percent at the 0.01-g/L level. Mean recoveries in reagent-water samples are 73 percent at the 0.1- and 1.0-g/L levels and 83 percent at the 0.01-g/L level. The estimated holding time for pesticides after extraction on the solid-phase extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time.
Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases
NASA Astrophysics Data System (ADS)
Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.
2010-12-01
Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement of the total cell titer (i.e., attached plus planktonic cells). The results indicate that within the higher organic matter Appling soil, the fraction of target cells associated with the solid phase was nearly 2-orders of magnitude higher compared to the fraction attached to the aqueous phase. In the sandy soil, differences were approximately 1-order of magnitude. Ongoing efforts use dynamic light scattering and electrophoretic mobility measurements over a range of ionic strengths and pH values to shed light on the parameters that control microbial attachment behavior. Knowledge of factors that affect microbial distribution between aqueous and solid phases is essential for interpreting qPCR data obtained from site groundwater where biological remedies are implemented.
Development of andrographolide molecularly imprinted polymer for solid-phase extraction
NASA Astrophysics Data System (ADS)
Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming
2011-06-01
A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.
Automated solid-phase extraction and liquid chromatography for assay of cyclosporine in whole blood.
Kabra, P M; Wall, J H; Dimson, P
1987-12-01
In this rapid, precise, accurate, cost-effective, automated liquid-chromatographic procedure for determining cyclosporine in whole blood, the cyclosporine is extracted from 0.5 mL of whole blood together with 300 micrograms of cyclosporin D per liter, added as internal standard, by using an Advanced Automated Sample Processing unit. The on-line solid-phase extraction is performed on an octasilane sorbent cartridge, which is interfaced with a RP-8 guard column and an octyl analytical column, packed with 5-microns packing material. Both columns are eluted with a mobile phase containing acetonitrile/methanol/water (53/20/27 by vol) at a flow rate of 1.5 mL/min and column temperature of 70 degrees C. Absolute recovery of cyclosporine exceeded 85% and the standard curve was linear to 5000 micrograms/L. Within-run and day-to-day CVs were less than 8%. Correlation between automated and manual Bond-Elut extraction methods was excellent (r = 0.987). None of 18 drugs and four steroids tested interfered.
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
Huang, Juan; Chen, Guosong; Zhang, Xiaoyan; Shen, Chongyu; Lü, Chen; Wu, Bin; Liu, Yan; Chen, Huilan; Ding, Tao
2012-11-01
A method was established for the determination of deoxynivalenol (vomitoxin) in grain and its products based on solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The sample was firstly extracted by acetonitrile-water (84:16, v/v). The extract was then cleaned-up by an HLB solid phase extraction cartridge. The separation was carried out on a Phenomenex Kinetex C18 column (100 mm x4. 6 mm, 2.6 microm) with a gradient elution using 0.3% per hundred ammonia solution-acetonitrile as mobile phases. The analysis of deoxynivalenol was performed under electrospray negative ionization mode. The limit of detection (LOD, S/N= 3) and the limit of quantification (LOQ, S/N = 10) were 20 microg/kg and 50 microg/kg, respectively. A good linearity (r > 0.99) was achieved for the target compound over the range of 20-1000 pg/L. The recoveries at the three spiked levels (50, 100, 500 microg/kg) in the blank matrices such as flour, barley, soybean, rice, cornmeal, cassava and wheat, were varied from 75.6% to 111.0% with the relative standard deviations no more than 13. 0%. The method is accurate, efficient, sensitive and practical. The cost of pretreatment is obviously reduced by replacing immunoaffinity columns and Mycosep columns with HLB columns which have the same purification effect.
Studies in Three Phase Gas-Liquid Fluidised Systems
NASA Astrophysics Data System (ADS)
Awofisayo, Joyce Ololade
1992-01-01
Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.
Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.
Batista, Alex D; Chocholouš, Petr; Satínský, Dalibor; Solich, Petr; Rocha, Fábio R P
2015-02-01
On-line sample pretreatment (clean-up and analyte preconcentration) is for the first time coupled to sequential injection chromatography. The approach combines anion-exchange solid-phase extraction and the highly effective pentafluorophenylpropyl (F5) fused-core particle column for separation of eight sulfonamide antibiotics with similar structures (sulfathiazole, sulfanilamide, sulfacetamide, sulfadiazine, sulfamerazine, sulfadimidine, sulfamethoxazole and sulfadimethoxine). The stationary phase was selected after a critical comparison of the performance achieved by three fused-core reversed phase columns (Ascentis(®) Express RP-Amide, Phenyl-Hexyl, and F5) and two monolithic columns (Chromolith(®) High Resolution RP-18 and CN). Acetonitrile and acetate buffer pH 5.0 at 0.60 mL min(-1) were used as mobile phase to perform the separations before spectrophotometric detection. The first mobile phase was successfully used as eluent from SPE column ensuring transfer of a narrow zone to the chromatographic column. Enrichment factors up to 39.2 were achieved with a 500 µL sample volume. The developed procedure showed analysis time <10.5 min, resolutions >1.83 with peak symmetry ≤1.52, LODs between 4.9 and 27 µg L(-1), linear response ranges from 30.0 to 1000.0 µg L(-1) (r(2)>0.996) and RSDs of peak heights <2.9% (n=6) at a 100 µg L(-1) level and enabled the screening control of freshwater samples contaminated at the 100 µg L(-1) level. The proposed approach expanded the analytical potentiality of SIC and avoided the time-consuming batch sample pretreatment step, thus minimizing risks of sample contamination and analyte losses. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Min; Li, Xiaolin; Bie, Wei; Wang, Minglin; Feng, Qian
2011-02-01
A new method was established for the determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography (SPE-HPLC). The samples were extracted by methanol-water (1:1, v/v) and purified by a solid phase extraction column. Then, the chromatographic separation was achieved on a Luna C18 column by linear gradient elution. The mobile phase was 10 mmol/L ammonium acetate-acetonitrile (containing 1% acetic acid). The results showed that the 15 industrial synthetic dyes can be separated efficiently. The recoveries of the 15 industrial synthetic dyes spiked in condiment were between 84.6% and 114.2% with the relative standard deviations of 0.9% - 10.3%. The limits of detection of this method was 0.05 - 0.18 mg/kg for the 15 industrial synthetic dyes. The method is simple, sensitive, accurate, repeatable and can be used for simultaneous determination of the 15 illegally added industrial synthetic dyes.
Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.
Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong
2017-08-15
As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.
Sandstrom, Mark W.; Wydoski, Duane S.; Schroeder, Michael P.; Zamboni, Jana L.; Foreman, William T.
1992-01-01
A method for the isolation of organonitrogen herbicides from natural water samples using solid-phase extraction and analysis by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction cartridges containing octadecyl-bonded porous silica to remove the herbicides. The cartridges are dried using carbon dioxide, and adsorbed herbicides are removed from the cartridges by elution with 1.8 milliliters of hexaneisopropanol (3:1). Extracts of the eluants are analyzed by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of at least three characteristic ions. The method detection limits are dependent on sample matrix and each particular herbicide. The method detection limits, based on a 100-milliliter sample size, range from 0.02 to 0.25 microgram per liter. Recoveries averaged 80 to 115 percent for the 23 herbicides and 2 metabolites in 1 reagent-water and 2 natural-water samples fortified at levels of 0.2 and 2.0 micrograms per liter.
NASA Technical Reports Server (NTRS)
Song, Q.; Putcha, L.; Harm, D. L. (Principal Investigator)
2001-01-01
A chromatographic method for the quantitation of promethazine (PMZ) and its three metabolites in urine employing on-line solid-phase extraction and column-switching has been developed. The column-switching system described here uses an extraction column for the purification of PMZ and its metabolites from a urine matrix. The extraneous matrix interference was removed by flushing the extraction column with a gradient elution. The analytes of interest were then eluted onto an analytical column for further chromatographic separation using a mobile phase of greater solvent strength. This method is specific and sensitive with a range of 3.75-1400 ng/ml for PMZ and 2.5-1400 ng/ml for the metabolites promethazine sulfoxide, monodesmethyl promethazine sulfoxide and monodesmethyl promethazine. The lower limits of quantitation (LLOQ) were 3.75 ng/ml with less than 6.2% C.V. for PMZ and 2.50 ng/ml with less than 11.5% C.V. for metabolites based on a signal-to-noise ratio of 10:1 or greater. The accuracy and precision were within +/- 11.8% in bias and not greater than 5.5% C.V. in intra- and inter-assay precision for PMZ and metabolites. Method robustness was investigated using a Plackett-Burman experimental design. The applicability of the analytical method for pharmacokinetic studies in humans is illustrated.
Lindley, C.E.; Stewart, J.T.; Sandstrom, M.W.
1996-01-01
A sensitive and reliable gas chromatographic/mass spectrometric (GC/MS) method for determining acetochlor in environmental water samples was developed. The method involves automated extraction of the herbicide from a filtered 1 L water sample through a C18 solid-phase extraction column, elution from the column with hexane-isopropyl alcohol (3 + 1), and concentration of the extract with nitrogen gas. The herbicide is quantitated by capillary/column GC/MS with selected-ion monitoring of 3 characteristic ions. The single-operator method detection limit for reagent water samples is 0.0015 ??g/L. Mean recoveries ranged from about 92 to 115% for 3 water matrixes fortified at 0.05 and 0.5 ??g/L. Average single-operator precision, over the course of 1 week, was better than 5%.
Jiao, Lijin; Tao, Yanduo; Wang, Weidong; Shao, Yun; Mei, Lijuan; Wang, Qilan; Dang, Jun
2017-10-01
An offline preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid-phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula. First, the non-flavonoids were removed using an XAmide solid-phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first-dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two-dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula. Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...
Collapse of tall granular columns in fluid
NASA Astrophysics Data System (ADS)
Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves
2017-06-01
Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.
Determination of the cyanobacterial toxin cylindrospermopsin in algal food supplements.
Liu, H; Scott, P M
2011-06-01
For the analysis of blue-green algal food supplements for cylindrospermopsin (CYN), a C18 solid-phase extraction column and a polygraphitized carbon solid-phase extraction column in series was an effective procedure for the clean-up of extracts. Determination of CYN was by liquid chromatography with ultraviolet light detection. At extract spiking levels of CYN equivalent to 25-500 µg g(-1), blue-green algal supplement recoveries were in the range 70-90%. CYN was not detected in ten samples of food supplements and one chocolate product, all containing blue-green algae. The limit of detection for the method was 16 µg g(-1), and the limit of quantification was 52 µg g(-1).
Optimization of monolithic columns for microfluidic devices
NASA Astrophysics Data System (ADS)
Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.
2011-06-01
Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.
Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso; ...
2017-02-02
Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso
Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less
Reactive solute transport in streams: 1. Development of an equilibrium- based model
Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.
1996-01-01
An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.
Li, Yubo; Zhang, Zhenzhu; Liu, Xinyu; Li, Aizhu; Hou, Zhiguo; Wang, Yuming; Zhang, Yanjun
2015-08-28
This study combines solid phase extraction (SPE) using 96-well plates with column-switching technology to construct a rapid and high-throughput method for the simultaneous extraction and non-targeted analysis of small molecules metabolome and lipidome based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. This study first investigated the columns and analytical conditions for small molecules metabolome and lipidome, separated by an HSS T3 and BEH C18 columns, respectively. Next, the loading capacity and actuation duration of SPE were further optimized. Subsequently, SPE and column switching were used together to rapidly and comprehensively analyze the biological samples. The experimental results showed that the new analytical procedure had good precision and maintained sample stability (RSD<15%). The method was then satisfactorily applied to more widely analyze the small molecules metabolome and lipidome to test the throughput. The resulting method represents a new analytical approach for biological samples, and a highly useful tool for researches in metabolomics and lipidomics. Copyright © 2015 Elsevier B.V. All rights reserved.
Tagiri-Endo, Misako; Suzuki, Shigeru; Nakamura, Tomoyuki; Hatakeyama, Takashi; Kawamukai, Kazuo
2009-02-01
A simple and quick online solid-phase extraction (SPE) coupled to liquid chromatography (LC)/tandem mass spectrometry (MS/MS) for the determination of the five antibiotics (florfenicol, FF; lincomycin, LCM; oxytetracyclin, OTC; tylosin, TS; valnemulin, VLM) in swine wastewater has been developed. After filtration, aliquots (100 microl) of wastewater samples were directly injected to a column-switching LC system. Some matrix interference was removed by washing up SPE column with 0.2% formic acid solution and acetonitrile. Antibiotics eluted from SPE column were separated on analytical column by converting switching valve and were detected by MS/MS. Calibration curves using the method of standard addition had very good correlation coefficients (r > 0.99) in the range of 0.1 to 2 ng/ml. The intra-day precision of the method was less than 12% and the inter-day precision was between 6 to 17%. The detection limits were 0.01-0.1 ng/ml. When this method was applied to wastewater samples in swine facilities, four compounds (LCM, OTC, TS, and VLM) were detected.
Solid phase pegylation of hemoglobin.
Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo
2009-01-01
A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.
Impact of electronic waste disposal on lead concentrations in landfill leachate.
Spalvins, Erik; Dubey, Brajesh; Townsend, Timothy
2008-10-01
Lead is the element most likely to cause discarded electronic devices to be characterized as hazardous waste. To examine the fate of lead from discarded electronics in landfills, five columns were filled with synthetic municipal solid waste (MSW). A mix of electronic devices was added to three columns (6% by weight), while two columns served as controls. A sixth column contained waste excavated from an existing MSW landfill. Leachate quality was monitored for 440 days. In columns with the synthetic waste, leachate pH indicated that the simulated landfill environment was characteristic of the acid phase of waste decomposition; lead leachability should be greater in the acid phase of landfill degradation as compared to the methanogenic phase. Lead concentrations ranged from 7 to 66 microg/L in the columns containing electronic waste and ranged from < 2 to 54 microg/L in the control columns. Although the mean lead concentrations in the columns containing electronic devices were greater than those in the controls, the difference was not found to be statistically significant when comparing the data sets over the entire monitoring period. Lead results from the excavated waste column suggest that lead concentrations in all columns will decrease as the pH increases toward more neutral methanogenic conditions.
Zhou, Yuchun; Kong, Weijun; Li, Yan; Logrieco, Antonio F; Xu, Jun; Yang, Meihua
2012-03-01
A new solid-phase extraction (SPE) pretreatment method using a home-made polyvinylpolypyrrolidone-florisil (PVPP-F) column was developed for the analysis of patulin in apple and hawthorn products in China. Fifty samples (25 apple juices, 12 apple jams, and 13 hawthorn juices) were prepared using the new method and then analyzed by high performance liquid chromatography with diode array detection (HPLC-DAD) on an Agela Venusil MP C(18) reversed-phase column (4.6 mm × 250 mm, 5 μm). The cleanup results for all samples using home-made PVPP-F column were compared with those obtained using a MycoSep®228 AflaPat column. The correlation coefficient R (0.9998) fulfilled the requirement of linearity for patulin in the concentration range of 2.5-250 μg/kg. The limits of detection (LODs) and quantification (LOQs) of patulin were 3.99 and 9.64 μg/kg for PVPP-F column, and 3.56 and 8.07 μg/kg for MycoSep®228 AflaPat column, respectively. Samples were spiked with patulin at levels ranging from 25 to 250 μg/kg, and recoveries using PVPP-F and MycoSep®228 AflaPat columns were in the range of 81.9-100.9% and 86.4-103.9%, respectively. Naturally occurring patulin was found in 2 of 25 apple juice samples (8.0%) and 1 of 13 hawthorn juice samples (7.7%) at concentrations ranging from 12.26 to 36.81 μg/kg. The positive results were further confirmed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scott, Peter M; Niedzwiadek, Barbara; Rawn, Dorothea F K; Lau, Ben P-Y
2009-08-01
Beta-N-Methylamino-L-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 microg/g for BGA supplements, 0.5 to 5.0 microg/g for fish, and 0.002 microg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.
[Determination of lead in edible salt with solid-phase extraction and GFAAS].
Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin
2013-01-01
Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.
Pojjanapornpun, Siriluck; Nolvachai, Yada; Aryusuk, Kornkanok; Kulsing, Chadin; Krisnangkura, Kanit; Marriott, Philip J
2018-02-17
New generation inert ionic liquid (iIL) GC columns IL60i, IL76i and IL111i, comprising phosphonium or imidazolium cationic species, were investigated for separation of fatty acid methyl esters (FAME). In general, the iIL phases provide comparable retention times to their corresponding conventional columns, with only minor selectivity differences. The average tailing factors and peak widths were noticeably improved (reduced) for IL60i and IL76i, while they were slightly improved for IL111i. Inert IL phase columns were coupled with conventional IL columns in comprehensive two-dimensional GC (GC × GC) with a solid-state modulator which offers variable modulation temperature (T M ), programmable T M during analysis and trapping stationary phase material during the trap/release (modulation) process, independent of oven T and column sets. Although IL phases are classified as polar, relative polarity of the two phases comprising individual GC × GC column sets permits combination of less-polar IL/polar IL and polar IL/less-polar IL column sets; it was observed that a polar/less-polar column set provided better separation of FAME. A higher first dimension ( 1 D) phase polarity combined with a lower 2 D phase polarity, for instance 1 D IL111i with 2 D IL59 gave the best result; the greater difference in 1 D/ 2 D phase polarity results in increasing occupancy of peak area in the 2D space. The IL111i/IL59 column set was selected for analysis of fatty acids in fat and oil products (butter, margarine, fish oil and canola oil). Compared with the conventional IL111, IL111i showed reduced column bleed which makes this more suited to GC × GC analysis of FAME. The proposed method offers a fast profiling approach with good repeatability of analysis of FAME.
NASA Astrophysics Data System (ADS)
Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas
2014-04-01
Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.
Ono, I; Matsuda, K; Kanno, S
1996-04-12
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1-20 micrograms/ml. The limit of quantitation of I, in plasma, was 0.05 microgram/ml. The recovery of spiked I (0.5 microgram/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 microgram/ml) compared to drug-free plasma was 4.3% (n = 8).
Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.
2001-01-01
A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.
Manns, David C; Mansfield, Anna Katharine
2012-08-17
Four high-throughput reverse-phase chromatographic protocols utilizing two different core-shell column chemistries have been developed to analyze the phenolic profiles of complex matrices, specifically targeting juices and wines produced from interspecific hybrid grape cultivars. Following pre-fractionation via solid-phase extraction or direct injection, individual protocols were designed to resolve, identify and quantify specific chemical classes of compounds including non-anthocyanin monomeric phenolics, condensed tannins following acid hydrolysis, and anthocyanins. Detection levels ranging from 1.2 ppb to 27.5 ppb, analyte %RSDs ranging from 0.04 to 0.38, and linear ranges of quantitation approaching five orders of magnitude were achieved using conventional HPLC instrumentation. Using C(18) column chemistry, the non-anthocyanin monomeric protocol effectively separated a set of 16 relevant phenolic compounds comprised flavan-3-ols, hydroxycinnamic acids, and flavonols in under 14 min. The same column was used to develop a 15-min protocol for hydrolyzed condensed tannin analysis. Two anthocyanin protocols are presented, one utilizing the same C(18) column, best suited for anthocyanidin and monoglucoside analysis, the other utilizing a pentafluorophenyl chemistry optimized to effectively separate complex mixtures of coexisting mono- and diglucoside anthocyanins. These protocols and column chemistries have been used initially to explore a wide variety of complex phenolic matrices, including red and white juices and wines produced from Vitis vinifera and interspecific hybrid grape cultivars, juices, teas, and plant extracts. Each protocol displayed robust matrix responses as written, yet are flexible enough to be easily modified to suit specifically tailored analytical requirements. Copyright © 2012 Elsevier B.V. All rights reserved.
Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark
2008-01-01
Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.
NASA Astrophysics Data System (ADS)
Fox, P. M.; Davis, J. A.; Bargar, J.; Williams, K. H.; Singer, D. M.; Long, P.
2011-12-01
Bioremediation of uranium in subsurface environments is an approach that has been used at numerous field sites throughout the U.S in an attempt to lower dissolved U(VI) concentrations in groundwater. At the Rifle IFRC research site in Colorado, biostimulation of the native microbial population through acetate amendment for various periods of time has been tested in order to immobilize uranium through reduction U(VI) to U(IV). While this approach has successfully decreased U(VI) concentrations in the dissolved phase, often to levels below the EPA's maximum contaminant level of 0.13 μM, little work has examined the solid-phase accumulation of U during field-scale biostimulation. The lack of information on solid-phase U accumulation is due in large part to the difficulty of obtaining comparable pre- and post-biostimulation field sediment samples. In addition, the relatively low (<10 ppm) U concentrations present in most sediments preclude the use of spectroscopic techniques such as XAS for examining solid-phase U speciation. However, a recently developed technique of performing column experiments in situ has allowed us to overcome both of these problems, obtaining sediment samples which were exposed to the same biogeochemical conditions as subsurface sediments during the course of biostimulation. During the 2010 Rifle IFRC field experiment (dubbed "Super 8"), a number of in situ columns were deployed in various wells representing regions of the aquifer affected by acetate amendment (ambient bicarbonate) and concomitant acetate and bicarbonate amendment (elevated bicarbonate). Elevated levels of bicarbonate have been shown to cause desorption of U(VI) from the solid phase at the Rifle site under non-stimulated conditions, resulting in higher dissolved U(VI) concentrations in the aquifer. The Super 8 field experiment was designed in part to test the effect of elevated bicarbonate concentrations on U sequestration during biostimulation. Results from this experiment provide a comparison of temporal aqueous and solid-phase U concentrations under ambient and elevated bicarbonate conditions during field-scale biostimulation. Additionally, a subset of in situ columns amended with 20 μM U(VI) were analyzed by XANES in order to determine the relative importance of U(VI) and U(IV) in the solid phase. While the elevated bicarbonate concentrations did not impede reduction and sequestration of U, differences in the behavior of dissolved U(VI) after acetate amendment was stopped demonstrate the importance of U adsorption-desorption reactions in controlling dissolved U concentrations post-biostimulation.
Chen, Ling; Dang, Xueping; Ai, Youhong; Chen, Huaixia
2018-05-07
An acryloyl β-cyclodextrin-silica hybrid monolithic column for pipette tip solid-phase extraction and high-performance liquid chromatography determination of methyl parathion and fenthion have been prepared through a sol-gel polymerization method. The synthesis conditions, including the volume of cross-linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid-phase extraction with high-performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15-400 μg/kg for methyl parathion and 20-400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Paluch, Justyna; Mesquita, Raquel B R; Cerdà, Víctor; Kozak, Joanna; Wieczorek, Marcin; Rangel, António O S S
2018-08-01
A sequential injection (SI) system equipped with in-line solid phase extraction column and in-line soil mini-column is proposed for determination of zinc and copper in soil leachates. The spectrophotometric determination (560 nm) is based on the reaction of both analytes with 1-(2-Pyridylazo)-2-naphthol (PAN). Zinc is determined after retaining copper on a cationic resin (Chelex100) whereas copper is determined from the difference of the absorbance measured for both analytes, introduced into the system with the use of a different channel, and zinc absorbance. The influence of several potential interferences was studied. Using the developed method, zinc and copper were determined within the concentration ranges of 0.005-0.300 and 0.011-0.200 mg L -1 , and with a relative standard deviation lower than 6.0% and 5.1%, respectively. The detection limits are 1.4 and 3.0 µg/L for determination of zinc and copper, respectively. The developed SI method was verified by the determination of both analytes in synthetic and certified reference materials of water samples, and applied to the determination of the analytes in rain water and soil leachates from laboratory scale soil core column and in-line soil mini-column. Copyright © 2018 Elsevier B.V. All rights reserved.
Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia
2013-06-14
This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Crepeau, Kathryn L.; Baker, Lucian M.; Kuivila, Kathryn
2000-01-01
A method of analysis and quality-assurance practices were developed to study the fate and transport of pesticides in the San Francisco Bay-Estuary by the U.S. Geological Survey. Water samples were filtered to remove suspended-particulate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide and the pesticides were eluted with three cartridge volumes of hexane:diethyl ether (1:1) solution. The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for pesticides ranged from 0.002 to 0.025 microgram per liter for 1-liter samples. Recoveries ranged from 44 to 140 percent for 25 pesticides in samples of organic-free reagent water and Sacramento-San Joaquin Delta and Suisun Bay water fortified at 0.05 and 0.50 microgram per liter. The estimated holding time for pesticides after extraction on C-8 solid-phase extraction cartridges ranged from 10 to 257 days.
Cobb, Zoe; Sellergren, Börje; Andersson, Lars I
2007-12-01
Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.
Lin, Ling; Chen, Hui; Wei, Huibin; Wang, Feng; Lin, Jin-Ming
2011-10-21
A porous polymer monolithic column for solid-phase microextraction and chemiluminescence detection was integrated into a simple microfluidic chip for the extraction and determination of catechins in green tea. The porous polymer was prepared by poly(glycidyl methacrylate-co-ethylene dimethacrylate) and modified with ethylenediamine. Catechins can be concentrated in the porous polymer monolithic column and react with potassium permanganate to give chemiluminescence. The microfluidic chip is reusable with high sensitivity and very low reagent consumption. The on-line preconcentration and detection can be realized without an elution step. The enrichment factor was calculated to be about 20 for catechins. The relative chemiluminescence intensity increased linearly with concentration of catechin from 5.0 × 10(-9) to 1.0 × 10(-6) M and the limit of detection was 1.0 × 10(-9) M. The proposed method was applied to determine catechin in green tea. The recoveries are from 90% to 110% which benefits the actual application for green tea samples.
Chen, Guowen; Li, Wenjie; Zhang, Chen; Zhou, Chuanjian; Feng, Shengyu
2012-09-21
Phenyl-ended hyperbranched carbosilane (HBC) is synthesized and immobilized onto the inner wall of a fused silica capillary column using a sol-gel process. The hybrid coating layer formed is used as a stationary phase for gas chromatography (GC) and as an adsorption medium for solid phase microextraction (SPME). Trifluoroacetic acid, as a catalyst in this process, helps produce a homogeneous hybrid coating layer. This result is beneficial for better column chromatographic performances, such as high efficiency and high resolution. Extraction tests using the novel hybrid layer show an extraordinarily large adsorption capacity and specific adsorption behavior for aromatic compounds. A 1 ppm trace level detectability is obtained with the SPME/GC work model when both of the stationary phase and adsorption layer bear a hyperbranched structure. A large amount of phenyl groups and a low viscosity of hyperbranched polymers contribute to these valuable properties, which are important to environment and safety control, wherein detection sensitivity and special adsorption behavior are usually required. Copyright © 2012 Elsevier B.V. All rights reserved.
Xie, Rui; Wen, Jun; Wei, Hua; Fan, Guorong; Zhang, Dabing
2010-05-01
An automated system using on-line solid-phase extraction and HPLC with UV detection was developed for the determination of faropenem in human plasma and urine. Analytical process was performed isocratically with two reversed-phase columns connected by a switching valve. After simple pretreatment for plasma and urine with acetonitrile, a volume of 100microl upper layer of the plasma or urine samples was injected for on-line SPE column switching HPLC-UV analysis. The analytes were retained on the self-made trap column (Lichrospher C(18), 4.6mmx37mm, 25microm) with the loading solvent (20mM NaH(2)PO(4) adjusted pH 3.5) at flow rate of 2mlmin(-1), and most matrix materials were removed from the column to waste. After 0.5min washing, the valve was switched to another position so that the target analytes could be eluted from trap column to analytical column in the back-flush mode by the mobile phase (acetonitrile-20mM NaH(2)PO(4) adjusted pH 3.5, 16:84, v/v) at flow rate of 1.5mlmin(-1), and then separated on the analytical column (Ultimate XB-C(18), 4.6mmx50mm, 5microm).The complete cycle of the on-line SPE preconcentration purification and HPLC separation of the analytes was 5min. Calibration curves with good linearities (r=0.9994 for plasma sample and r=0.9988 for urine sample) were obtained in the range 0.02-5microgml(-1) in plasma and 0.05-10microg ml(-1) in urine for faropenem. The optimized method showed good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. The method was successfully utilized to quantify faropenem in human plasma and urine to support the clinical pharmacokinetic studies. Copyright 2009 Elsevier B.V. All rights reserved.
Háková, Martina; Raabová, Hedvika; Havlíková, Lucie Chocholoušová; Chocholouš, Petr; Chvojka, Jiří; Šatínský, Dalibor
2018-05-01
Nylon 6 nanofibers were tested for their ability to serve as a sorbent for solid phase extraction (SPE). The regular nanostructure providing a great sorption area and amidic functionality should lead to the assumption that nylon 6 nanofibers could be used as a novel sorbent with great potential for sample pre-treatment. However, due to the substantial differences between classical particle sorbents used for solid phase extraction and nanofibers, it is necessary to evaluate this novel approach. This article describes three types of laboratory fabricated nylon 6 nanofibers with different surface density (5.04gm -2 , 3.90gm -2 and 0.75gm -2 ) and corresponding surface areas for solid phase extraction of several groups of compounds with different structural and physicochemical properties (parabens, steroids, flavonoids and pesticides). The nanofibers were created by needleless electrospinning. Extraction columns were manually packed in classic 1- or 3-mL plastic syringe cartridges with 26-30mg of nanofibers and the column bed was sealed with polypropylene frits. The SPE procedure followed a typical five-step protocol and the collected eluates were analyzed by HPLC with UV detection. Extraction recovery was used as a parameter to evaluate the behavior of the analytes within the SPE process. Under this set condition, the recovery of the SPE process ranged from 23.1% to 125.8%. SPE showed good repeatability (0.58-11.87% RSD) and inter-day reproducibility (3.86-9.79% RSD). The achieved results were compared with SPE using a classic particle sorbent column. Good mechanical and chemical stability of nanofibers was proved. Scanning electron microscope was used for the evaluation of morphological changes in nanostructure. Nylon 6 nanofibers proved being a cost-effective sorbent for repeated use in SPE. Nylon 6 nanofibers have great potential in miniaturized SPE enabling users to overcome troubles with high back-pressure. Copyright © 2018 Elsevier B.V. All rights reserved.
Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D
2014-12-22
Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.
NASA Astrophysics Data System (ADS)
Lee, Cheng-Hsien; Huang, Zhenhua
2018-05-01
The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.
Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J
2005-04-01
The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.
Van Os, E C; McKinney, J A; Zins, B J; Mays, D C; Schriver, Z H; Sandborn, W J; Lipsky, J J
1996-04-26
A specific, sensitive, single-step solid-phase extraction and reversed-phase high-performance liquid chromatographic method for the simultaneous determination of plasma 6-mercaptopurine and azathioprine concentrations is reported. Following solid-phase extraction, analytes are separated on a C18 column with mobile phase consisting of 0.8% acetonitrile in 1 mM triethylamine, pH 3.2, run on a gradient system. Quantitation limits were 5 ng/ml and 2 ng/ml for azathioprine and 6-mercaptopurine, respectively. Peak heights correlated linearly to known extracted standards for 6-mercaptopurine and azathioprine (r = 0.999) over a range of 2-200 ng/ml. No chromatographic interferences were detected.
Gundersen, T E; Lundanes, E; Blomhoff, R
1997-03-28
A fully automated isocratic high-performance liquid chromatographic method for the determination of 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid, 4-oxo-13-cis-retinoic acid and 4-oxo-all-trans-retinoic acid, has been developed using on-line solid-phase extraction and a column switching technique allowing clean-up and pre-concentration in a single step. A 500-microliter sample of serum was diluted with 750 microliters of a solution containing 20% acetonitrile and the internal standard 9,10-dimethylanthracene. About 1000 microliters of this mixture was injected on a 20 x 4.6 mm I.D. poly ether ether ketone (PEEK) pre-column with titanium frits packed with Bondapak C18, 37-53 microns, 300 A particles. Proteins and very polar compounds were washed out to waste, from the pre-column, with 0.05% trifluoroacetic acid (TFA)-acetonitrile (8.5:1.5, v/v). More than 200 aliquots of diluted serum could be injected on this pre-column before elevated back-pressure enforces replacement. Components retained on the pre-column were backflushed to the analytical column for separation and detection at 360 nm. Baseline separation was achieved using a single 250 x 4.6 mm I.D. Suplex pKb-100 column and a mobile phase containing 69:10:2:16:3 (v/v) of acetonitrile-methanol-n-butanol-2% ammonium acetate-glacial acetic acid. A total time of analysis of less than 30 min, including sample preparation, was achieved. Recoveries were in the range of 79-86%. The limit of detection was 1-7 ng/ml serum and the precision, in the concentration range 20-1000 ng/ml, was between 1.3 and 4.5% for all five compounds. The method was applied for the analysis of human serum after oral administration of 60 mg Roaccutan. The method is well suited for pharmacological studies, while the endogenous levels of some retinoic acid isomers are below the limit of quantitation.
Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics
NASA Astrophysics Data System (ADS)
Zaid, Faraj Muftah
This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.
Ion chromatographic methods for the detection of starch hydrolysis products in ruminal digesta.
Barsuhn, K; Kotarski, S F
1991-06-21
Dionex high-performance ion chromatographic methods were evaluated for separation and quantitation of plant sugars and starch digestion products in the ruminal digesta of cattle. Mono- and disaccharides were eluted from a Dionex CarboPac PA1 column with sodium hydroxide used isocratically or as a pH gradient. Maltooligosaccharides which had a degree of polymerization (DP) less than 30 glucose residues were eluted in 60 min by a sodium hydroxide eluent containing a sodium acetate gradient. Carbohydrates were detected amperometrically. Responses were linear (r2 greater than 0.99) for glucose, disaccharides and maltooligosaccharides (DP less than 8). Precipitation and solid-phase extraction methods were evaluated for clean-up of samples of feedstuffs, ruminal contents, and bacterial culture fluids. Perchloric acid precipitation hydrolyzed sucrose but did not affect recoveries of cellobiose, isomaltose or maltose. Ethanol in concentrations of 79 and 86% precipitated maltooligosaccharides having chain lengths larger than 14 and 9 glucose residues, respectively. Maltooligosaccharide recoveries from solid-phase extraction columns varied with maltooligosaccharide size and column packing. Recoveries were greater than 94% for short chains (DP less than 6) eluted from phenyl-substituted columns and variable for all oligosaccharides eluted from C18 columns. Applications of these methods are presented and include: (1) detection of sugars in ruminant feed, (2) monitoring changes in ruminal sugars after feeding and (3) monitoring changes in extracellular sugars and oligosaccharides in the culture fluids of the ruminal bacterium, Bacteroides ruminicola.
Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza
2015-12-18
A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.
Wood, Tamara M.; Gartner, Jeffrey W.
2010-01-01
Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.
Percent recovery of low influent concentrations of microorganism surrogates in small sand columns
NASA Astrophysics Data System (ADS)
Stevenson, M. E.; Blaschke, A. P.
2012-04-01
In order to develop a dependable method to calculate the setback distance of a drinking water well from a potential point of microbiological contamination, surrogates are used to perform field tests to avoid using pathogenic micro-organisms. One such surrogate used to model the potential travel time of microbial contamination is synthetic microspheres. The goal of this study is to examine the effect of differing influent colloid concentrations on the percent recovery of microbial surrogates after passing through a soil column. Similar studies have been done to investigate blocking of ideal attachment sites using concentrations between 106 and 1010 particles ml-1. These high concentrations were necessary due to the detection limit of the measuring technique used; however, our measuring technique allows us to test input concentrations ranging from 101 to 106 particles ml-1. These low concentrations are more similar to the concentrations of pathogenic microorganisms present in nature. We have tested the enumeration of 0.5 μm microspheres using a solid-phase cytometer and evaluated their transport in small sand columns. Fluorescent microspheres were purchased for this study with carboxylated surfaces. The soil columns consist of Plexiglas tubes, 30 cm long and 7 cm in diameter, both filled with the same coarse sand. Bromide was used as a conservative tracer, to estimate pore-water velocity and dispersivity, and bromide concentrations were analysed using ion chromatography and bromide probes. Numerical modelling was done using CXTFIT and HYDRUS-1D software programs. The 0.5 μm beads were enumerated in different environmental waters using solid-phase cytometry and compared to counts in sterile water in order to confirm the accuracy of the method. The solid-phase cytometer was able to differentiate the 0.5 μm beads from naturally present autofluorescent particles and bacteria, and therefore, is an appropriate method to enumerate this surrogate.
Gutiérrez Valencia, Tania M; García de Llasera, Martha P
2011-09-28
A miniaturized method based on matrix solid-phase dispersion coupled to solid phase extraction and high performance liquid chromatography with diode array detection (MSPD-SPE-HPLC/DAD) was developed for the trace simultaneous determination of the following organophosphorus pesticides (OPPs) in bovine tissue: parathion-methyl, fenitrothion, parathion, chlorfenvinphos, diazinon, ethion, fenchlorphos, chlorpyrifos and carbophenothion. To perform the coupling between MSPD and SPE, 0.05 g of sample was dispersed with 0.2 g of C(18) silica sorbent and packed into a stainless steel cartridge containing 0.05 g of silica gel in the bottom. After a clean-up of high and medium polarity interferences with water and an acetonitrile:water mixture, the OPPs were desorbed from the MSPD cartridge with pure acetonitrile and directly transferred to a dynamic mixing chamber for dilution with water and preconcentration into an SPE 20 mm × 2.0 mm I.D. C(18) silica column. Subsequently, the OPPs were eluted on-line with the chromatographic mobile phase to the analytical column and the diode array detector for their separation and detection, respectively. The method was validated and yielded recovery values between 91% and 101% and precision values, expressed as relative standard deviations (RSD), which were less than or equal to 12%. Linearity was good and ranged from 0.5 to 10 μg g(-1), and the limits of detection of the OPPs were in the range of 0.04-0.25 μg g(-1). The method was satisfactorily applied to the analysis of real samples and is recommended for food control, research efforts when sample amounts are limited, and laboratories that have ordinary chromatographic instrumentation. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet
2014-10-01
In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence displays a similar yellow shift when gas is added. Solid residues rarely form in mixtures with 42 °API oil. FT-IR spectra suggest that the decrease of fluorescence intensity of the original oil at short wavelengths to be due to the partitioning of low molecular weight aromatic molecules into the vapour phase and/or the new immiscible liquid phase. The decrease of fluorescence intensity at long wavelengths appears to be due to loss of high molecular weight aromatics during precipitation of solid residues by desorption of aromatics and resins from asphaltenes. Desorption of low molecular weight aromatics and resins from asphaltenes during precipitation can also increase the fluorescence intensity at short wavelengths of the residual oil. Water clearly affects the precipitation of semi-solid residues from the oil phase of the lowest API gravity oil. The change of hydrocarbon phase(s) in UV-visible fluorescence and FT-IR enclosed within the FSCCs were compared with the fluorescence patterns of natural fluid inclusions at Phuong Dong gas condensate field. The experimental results support the concept of gas-washing of residual oil and are consistent with the oil inclusion attributes from the current gas zone at Phuong Dong field. The hydrocarbon charge history of the fractured granite reservoir is interpreted to result from the trapping of residual oil after drainage of a palaeo-oil column by gas.
Automated solid-phase radiofluorination using polymer-supported phosphazenes.
Mathiessen, Bente; Zhuravlev, Fedor
2013-08-30
The polymer supported phosphazene bases PS-P₂(tBu) and the novel PS-P₂(PEG) allowed for efficient extraction of [¹⁸F]F⁻ from proton irradiated [¹⁸O]H₂O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic sulfonates (69%) and bromides (42%); the total radiosynthesis time was 35-45 min. The multivariate analysis showed that the radiochemical yields and purities were controlled by the resin load, reaction temperature, and column packing effects. The resins could be reused several times with the same or different substrates. The fully automated on-column radiofluorination methodology was applied to the radiosynthesis of the important PET radiotracers [¹⁸F]FLT and [¹⁸F]FDG. The latter was produced with 40% yield on a 120 GBq scale and passed GMP-regulated quality control required for commercial production of [1¹⁸F]FDG. The combination of compact form factor, simplicity of [¹⁸F]F⁻ recovery and processing, and column reusability can make solid phase radiofluorination an attractive radiochemistry platform for the emerging dose-on-demand instruments for bedside production of PET radiotracers.
Mallik, Abul K; Qiu, Hongdeng; Oishi, Tomohiro; Kuwahara, Yutaka; Takafuji, Makoto; Ihara, Hirotaka
2015-07-07
For the first time, we synthesized multiple embedded polar groups (EPGs) containing linear C18 organic phases. The new materials were characterized by elemental analysis, IR spectroscopy, (1)H NMR, diffuse reflectance infrared Fourier transform (DRIFT), solid-state (13)C cross-polarization magic angle spinning (CP/MAS) NMR, suspended-state (1)H NMR, and differential scanning calorimetry (DSC). (29)Si CP/MAS NMR was carried out to investigate the degree of cross-linking of the silane and silane functionality of the modified silica. Solid-state (13)C CP/MAS NMR and suspended-state (1)H NMR spectroscopy indicated a higher alkyl chain order for the phase containing four EPGs than for the phase with three EPGs. To correlate the NMR results with temperature-dependent chromatographic studies, standard reference materials (SRM 869b and SRM 1647e), a column selectivity test mixture for liquid chromatography was employed. A single EPG containing the C18 phase was also prepared in a similar manner to be used as a reference column especially for the separation of basic and polar compounds in reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), respectively. Detailed chromatographic characterization of the new phases was performed in terms of their surface coverage, hydrophobic selectivity, shape selectivity, hydrogen bonding capacity, and ion-exchange capacity at pH 2.7 and 7.6 for RPLC as well as their hydrophilicity, the selectivity for hydrophilic-hydrophobic substituents, the selectivity for the region and configurational differences in hydrophilic substituents, the evaluation of electrostatic interactions, and the evaluation of the acidic-basic nature for HILIC-mode separation. Furthermore, peak shapes for the basic analytes propranolol and amitriptyline were studied as a function of the number of EPGs on the C18 phases in the RPLC. The chromatographic performance of multiple EPGs containing C18 HILIC phases is illustrated by the separation of sulfa drugs, β-blockers, xanthines, nucleic acid bases, nucleosides, and water-soluble vitamins. Both of the phases showed the best performance for the separation of shape-constrained isomers, nonpolar, polar, and basic compounds in RPLC- and HILIC-mode separation of sulfa drugs, and other polar and basic analytes compared to the conventional alkyl phases with and without embedded polar groups and HILIC phases. Surprisingly, one phase would be able to serve the performance of three different types of phases with very high selectivity, and we named this phase the "smart phase". Versatile applications with a single column will reduce the column purchasing cost for the analyst as well as achieve high separation, which is challenging with the commercially available columns.
Rotating Rod Renewable Microcolumns for Automated, Solid-Phase DNA Hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruckner-Lea, Cynthia J.; Stottlemyre, Mark R.; Holman, David A.
1999-12-01
The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid analysis in a sequential injection system is described. The flow cell includes a stepper motor-driven rotating rod with the working end cut to a 45 degree angle. In one position, the end of the rod prevents passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees release the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence specific nucleic acid hybridization. Target nucleic acids labeled with a near-infraredmore » fluorescent dye were detected immediately post-column using a flow-through fluorescence detector, with a detection limit of 40 pM dye concentration at a flow rate of 5 mu l/s. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 mu l, 10nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than a second and a total sample perfusion time of 40 seconds. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated.« less
Two-dimensional ice mapping of molecular cores
NASA Astrophysics Data System (ADS)
Noble, J. A.; Fraser, H. J.; Pontoppidan, K. M.; Craigon, A. M.
2017-06-01
We present maps of the column densities of H2O, CO2 and CO ices towards the molecular cores B 35A, DC 274.2-00.4, BHR 59 and DC 300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200 au, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C18O towards B 35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of 'small-scale' chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.
Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya
2015-05-22
In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%). Copyright © 2015 Elsevier B.V. All rights reserved.
The sex specific metabolic footprint of Oithona davisae
NASA Astrophysics Data System (ADS)
Heuschele, Jan; Nemming, Louise; Tolstrup, Lea; Kiørboe, Thomas; Nylund, Göran M.; Selander, Erik
2016-11-01
In pelagic copepods, the group representing the highest animal abundances on earth, males and females have distinct morphological and behavioural differences. In several species female pheromones are known to facilitate the mate finding process, and copepod exudates induce changes in physiology and behaviour in several phytoplankton species. Here we tested whether the sexual dimorphism in morphology and behaviour is mirrored in the exudate composition of males and females. We find differences in the exudate composition, with females seemingly producing more compounds. While we were able to remove the sex pheromones from the water by filtration through reverse phase solid phase extraction columns, we were not able to recover the active pheromone from the solid phase.
Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics
NASA Astrophysics Data System (ADS)
Brenneman, Charles A.; Ebeler, Susan E.
1999-12-01
We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.
Solid-Phase Biological Assays for Drug Discovery
NASA Astrophysics Data System (ADS)
Forsberg, Erica M.; Sicard, Clémence; Brennan, John D.
2014-06-01
In the past 30 years, there has been a significant growth in the use of solid-phase assays in the area of drug discovery, with a range of new assays being used for both soluble and membrane-bound targets. In this review, we provide some basic background to typical drug targets and immobilization protocols used in solid-phase biological assays (SPBAs) for drug discovery, with emphasis on particularly labile biomolecular targets such as kinases and membrane-bound receptors, and highlight some of the more recent approaches for producing protein microarrays, bioaffinity columns, and other devices that are central to small molecule screening by SPBA. We then discuss key applications of such assays to identify drug leads, with an emphasis on the screening of mixtures. We conclude by highlighting specific advantages and potential disadvantages of SPBAs, particularly as they relate to particular assay formats.
Solid-phase assays for small molecule screening using sol-gel entrapped proteins.
Lebert, Julie M; Forsberg, Erica M; Brennan, John D
2008-04-01
With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.
Kish, J.L.; Thurman, E.M.; Scribner, E.A.; Zimmerman, L.R.
2000-01-01
A method for the extraction and analysis of eight herbicides and five degradation products using solid-phase extraction from natural water samples followed by gas chromatography/mass spectrometry is presented in this report. This method was developed for dimethenamid; flufenacet; fluometuron and its degradation products, demethylfluometuron (DMFM), 3-(trifluromethyl)phenylurea (TFMPU), 3-(trifluromethyl)-aniline (TFMA); molinate; norflurazon and its degradation product, demethylnorflurazon; pendamethalin; the degradation product of prometryn, deisopropylprometryn; propanil; and trifluralin. The eight herbicides are used primarily in the southern United States where cotton, rice, and soybeans are produced. The exceptions are dimethenamid and flufenacet, which are used on corn in the Midwest. Water samples received by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas, are filtered to remove suspended particulate matter and then passed through disposable solid-phase extraction columns containing octadecyl-bonded porous silica (C-18) to extract the compounds. The herbicides and their degradation products are removed from the column by ethyl acetate elution. The eluate is evaporated under nitrogen, and components then are separated, identified, and quantified by injecting an aliquot of the concentrated extract into a high-resolution, fused-silica capillary column of a gas chromatograph/mass spectrometer under selected-ion mode. Method detection limits ranged from 0.02 to 0.05 ?g/L for all compounds with the exception of TFMPU, which has a method detection limit of 0.32 ?g/L. The mean absolute recovery is 107 percent. This method for the determination of herbicides and their degradation products is valuable for acquiring information about water quality and compound fate and transport in water.
Shih, Yung-Han; Lirio, Stephen; Li, Chih-Keng; Liu, Wan-Ling; Huang, Hsi-Ya
2016-01-08
In this study, an effective method for the separation of imidazole derivatives 2-methylimidazole (2-MEI), 4- methylimidazole (4-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in caramel colors using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC) was developed. The limits of detection (LOD) and quantitation (LOQ) for the CSEI-sweeping-MEKC method were in the range of 4.3-80μgL(-1) and 14-270μgL(-1), respectively. Meanwhile, a rapid fabrication activated carbon-polymer (AC-polymer) monolithic column as adsorbent for solid-phase microextraction (SPME) of imidazole colors was developed. Under the optimized SPME condition, the extraction recoveries for intra-day, inter-day and column-to-column were in the range of 84.5-95.1% (<6.3% RSDs), 85.6-96.1% (<4.9% RSDs), and 81.3-96.1% (<7.1% RSDs), respectively. The LODs and LOQs of AC-polymer monolithic column combined with CSEI-sweeping-MEKC method were in the range of 33.4-60.4μgL(-1) and 111.7-201.2μgL(-1), respectively. The use of AC-polymer as SPME adsorbent demonstrated the reduction of matrix effect in food samples such as soft drink and alcoholic beverage thereby benefiting successful determination of trace-level caramel colors residues using CSEI-sweeping-MEKC method. The developed AC-polymer monolithic column can be reused for more than 30 times without any significant loss in the extraction recovery for imidazole derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.
2005-02-01
followed by extensive sample preparation procedures that are performed in a laboratory. Analysis is typically conducted by injecting a liquid or gas sample...Alfentanil, Remifentanil , Sufentanil, and Carfentanil) in a laboratory. (5) Quantitatively determine a maximum temperature ramping rate at which the LTM...RHT Column combined with a GC-MS can separate and analyze a mixture of non- traditional CWAs (i.e. Fentanyl, Alfentanil, Remifentanil , Sufentanil
Passive samplers, including semi-permeable membrane devices (SPMDs), solid phase microextraction (SPME) and polyethylene devices (PEDs), provide innovative tools for measuring hydrophobic organic contaminants (HOCs) originating from contaminated waters and sediments. Because the...
Ramesh, A; Balasubramanian, M
1999-01-01
A simple and rapid method involving solid phase extraction and liquid chromatography for the determination of azadirachtin-A and -B, nimbin and salannin at nanogram levels in neem oil samples is presented. The neem oil samples are defatted and the compounds of interest extracted by mixing the sample with hexane and passing the hexane solution through a graphitised carbon black column. After washing the column with 2 ml of hexane, azadirachtin-A and -B, nimbin and salannin are eluted with 5 ml of acetonitrile and quantified using HPLC with UV detection. The recoveries of azadirachtin-A and -B, nimbin and salannin in fortified oil samples were 97.4-104.7%. The upper limit of quantification is up to 100 micrograms ml-1 without any additional clean-up and with little interference from lipids during the analysis by HPLC. The method was successfully applied to various neem oil samples collected from different locations in India.
Xu, Hui; Jia, Li
2009-01-01
A capillary liquid chromatography (CLC) system with UV/vis detection was coupled with an in-tube solid-phase microextraction (SPME) device for the analysis of fat-soluble vitamins and beta-carotene. A monolithic silica-ODS column was used as the extraction medium. An optical-fiber flow cell with a long light path in the UV/vis detector was utilized to further enhance the detection sensitivity. In the in-tube SPME/CLC system, the pre-condition of the extraction column and the effect of the injection volume were investigated. The detection limits (LOD) for the fat-soluble vitamins and beta-carotene were in the range from 1.9 to 173 ng/mL based on the signal-to-noise ratio of 3 (S/N=3). The relative standard deviations of migration time and peak area for each analyte were less than 5.0%. The method was applied to the analysis of fat-soluble vitamins and beta-carotene contents in corns.
Prantl, R; Tesar, M; Huber-Humer, M; Lechner, P
2006-01-01
Emissions from old landfills via leachate and the gas phase are influenced by state and stability of the organic matter in the solid waste and by environmental conditions within the landfill. Remediation of landfills by means of in-situ aeration is one possibility to reduce these emissions. By establishing aerobic conditions, biological processes in the landfill are accelerated. To investigate the effects of this remediation technology, lab-scale experiments with column tests have been carried out. The main goal of the present work is to characterize the changes of the carbon and nitrogen compounds in the aerated solid waste, the leachate and the gas phase under varying conditions. The results demonstrate a clear reduction of emissions and a stabilization of the organic matter. Furthermore, it is shown that both the intensity of aeration and the amount of water affect biological processes to a certain extent. Even when columns were operated under anaerobic conditions after a long running period of aeration, the emissions remained low.
Measurement of bromate in bread by liquid chromatography with post-column flow reactor detection.
Himata, K; Noda, M; Ando, S; Yamada, Y
2000-01-01
This method is suitable for the determination of bromate residues in a variety of baked goods. The peer-verified method trial was performed on white bread, multigrain bread, and coffee cake spiked with known levels of potassium bromate. The analytical portion is extracted with deionized water to remove bromate from the bulk of the baked product. The aqueous extract is carried through a series of steps to remove co-extractives that would interfere with the liquid chromatography (LC) in the determinative step or hasten the deterioration of the LC column. The extract is filtered before passing it through a reversed-phase solid-phase extraction (SPE) column and a cation-exchange column in the silver form to remove lipids and chloride, respectively. Ultrafiltration is then used to remove proteins with molecular weights of >30,000 daltons. Finally, a cation-exchange column in the sodium form is used to remove silver ions from the extract. The determinative step uses LC with a reversed-phase column and an ion-pairing agent in the mobile phase. Detection is based on the post-column reaction of bromate with o-dianisidine to form an oxidation product that is quantitated spectrophotometrically at 450 nm. Overall agreement between the submitting and peer laboratories was quite good. For bromate levels of 10-52 ppb, overall mean recoveries were 76.9 and 78.8% for the submitting and peer laboratories, respectively. The standard deviations were higher for the results of the peer laboratory, probably because of the generally higher level of baseline noise present in the chromatograms. The results demonstrate that the method provides adequate accuracy with low-fat as well as high-fat foods. Bromate at levels as low as 5 ppb (ng/g) can be detected with the method.
Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon
2013-01-01
During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155
Liu, Jiang; Zhang, Lu; Li Han Song, Le; Liu, Yuan; Tang, Hui; Li, Yingchun
2015-04-01
Metronidazole-imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation-precipitation polymerization. The as-obtained polymers were characterized by Fourier-transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole-imprinted polymers were further applied as packing agents in solid-phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid-phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer-packed chromatographic column. The relative standard deviation of both methods was less than 6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Xia; Guo, Bao-Lin; Hu, Hong-Yu; Huang, Wen-Hua; Qiao, He-Ping; Fan, Sheng-Ci; Guan, Zha-Gen
2013-09-01
A Cleanert Alumina-N-SPE column (0.5 g/6 mL) chromatograpy with 5 mL of chloroform-methanol (7: 3) as eluent, instead of aluminum oxide column (100-200 mesh, 5 g, 1 cm) chromatograpy eluted successively with chloroform and the chloroform-methanol (7:3) (20 mL each), was applied to enrich matrine and oxymatrine in Sophora flavescens. Also, the optimization of the HPLC determination conditions with acetonitrile-ethanol absolute-3% phosphoric acid solution (84: 6: 10) as mobile phase, instead of acetonitrile-ethanol absolute -3% Phosphoric acid solution (80: 10: 10) recorded in Chinese Pharmacopoeia 2010 Edition, was more suitable for determination of matrine and oxymatrine in S. flavescens. This method has advantage of reducing sample handling time and solvent volume and increasing the accuracy and feasibility, which can simplify the procedure for determination of matrine and oxymatrine in S. flavescens.
Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Clark, Sara L; Voorhees, Jennifer P; Tjeerdema, Ron S; Casteline, Jane; Stewart, Margaret
2009-02-01
Phase I whole sediment toxicity identification evaluation (TIE) methods have been developed to characterize the cause of toxicity as organic chemicals, metals, or ammonia. In Phase II identification treatments, resins added to whole sediment to reduce toxicity caused by metals and organics can be separated and eluted much like solid-phase extraction (SPE) columns are eluted for interstitial water. In this study, formulated reference sediments spiked with toxic concentrations of copper, fluoranthene, and nonylphenol were subjected to whole sediment and interstitial water TIE treatments to evaluate Phase I and II TIE procedures for identifying the cause of toxicity to Hyalella azteca. Phase I TIE treatments consisted of adding adsorbent resins to whole sediment, and using SPE columns to remove spiked chemicals from interstitial water. Phase II treatments consisted of eluting resins and SPE columns and the preparation and testing of eluates for toxicity and chemistry. Whole sediment resins and SPE columns significantly reduced toxicity, and the eluates from all treatments contained toxic concentrations of the spiked chemical except for interstitial water fluoranthene. Toxic unit analysis based on median lethal concentrations (LC50s) allowed for the comparison of chemical concentrations among treatments, and demonstrated that the bioavailability of some chemicals was reduced in some samples and treatments. The concentration of fluoranthene in the resin eluate closely approximated the original interstitial water concentration, but the resin eluate concentrations of copper and nonylphenol were much higher than the original interstitial water concentrations. Phase II whole sediment TIE treatments provided complementary lines of evidence to the interstitial water TIE results.
Bound Volatile Precursors in Genotypes in the Pedigree of 'Marion' Blackberry (Rubus Sp.)
USDA-ARS?s Scientific Manuscript database
Glycosidically bound volatiles and precursors in genotypes representing the pedigree for 'Marion' blackberry were investigated over two growing seasons. The volatile precursors were isolated using a C18 solid-phase extraction column. After enzymatic hydrolysis, the released volatiles were analyzed u...
Cui, Beijiao; Guo, Bin; Wang, Huimin; Zhang, Doudou; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan; Han, Dandan
2018-08-15
A composite monolithic column was prepared by redox initiation method for the on-line purification and enrichment of β-sitosterol, in which graphene oxide (GO) was embedded. The obtained monolithic column was characterized by scanning electron microscopy (SEM) and nitrogen adsorption-desorption isotherm measurement, which indicated that the monolith possessed characteristics of porous structure and high permeability. Under the optimum conditions for extraction and determination, the calibration equation was y = 47.92 × -0.1391; the linear range was 0.008-1.0 mg mL -1 ; the linear regression coefficient was 0.998; the limit of detection (LOD) is 2.4 μg mL -1 ; the limit of quantitation (LOQ) was 8 μg mL -1 ; precisions for intra-day and inter-day assays presented as relative standard deviations were less than 4.3% and 6.8%, respectively. Under the selective conditions, the enrichment factor of the method was 119. The recovery was in the range of 80.40-98.00%. Moreover, the adsorption amount of the monolith was compared with silica gel-C18 adsorbent and the monolith without graphene oxide being embedded. The polymerization monolithic column showed high selectivity and good permeability, and it was successfully used as on-line solid-phase extraction (SPE) column for determination of β-sitosterol in edible oil. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhai, Haiyun; Su, Zihao; Chen, Zuanguang; Liu, Zhenping; Yuan, Kaisong; Huang, Lu
2015-03-20
A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC-LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001-2.0 μg mL(-1) (r=0.9995) with the detection limit (S/N=3) of 0.075 ng mL(-1). Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC-LIF method can be applied to sensitively determine phloxine B in coffee bean. Copyright © 2015 Elsevier B.V. All rights reserved.
Rapid separation of beryllium and lanthanide derivatives by capillary gas chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Scott D.; Lucke, Richard B.; Douglas, Matt
2012-09-04
Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The β-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Unoptimized separations on a 100-μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanidemore » derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Finally, extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).« less
Kotoni, Dorina; Villani, Claudio; Bell, David S; Capitani, Donatella; Campiglia, Pietro; Gasparrini, Francesco
2013-07-05
A rational approach for the design and preparation of two new "Crab-like" totally synthetic, brush-type chiral stationary phases is presented. Enantiopure diamines, namely 1,2-diaminocyclohexane and 1,2-diphenyl-1,2-ethylene-diamine were treated with 3-(triethoxysilyl)propyl isocyanate, to yield reactive ureido selectors that were eventually attached to unmodified silica particles through a stable, bidentate tether, through a facile two-step one-pot procedure. A full chemical characterization of the new materials has been obtained through solid-state NMR (both (29)Si and (13)C CPMAS) spectroscopy. Columns packed with the two Crab-like chiral stationary phases allow for different mechanisms of separation: normal phase liquid chromatography, reversed phase liquid chromatography and polar organic mode and show a high stability at basic pH values. In particular, the Crab-like column containing the 1,2-diphenyl-1,2-ethylene-diamine selector proved a promising candidate for the resolution of a wide range of racemates (including benzodiazepines, N-derivatized amino acids, and free carboxylic acids) both in normal phase and polar organic mode. An Hmin of 9.57 at a μsf of 0.80mm/s (corresponding to 0.8mL/min) was obtained through van Deemter analysis, based on toluene, for the Crab-like column with the 1,2-diphenyl-1,2-ethylene-diamine selector (250mm×4.6mm I.D.), with a calculated reduced height equivalent to a theoretical plate (h) of only 1.91. Finally, comparative studies were performed with a polymeric commercially available P-CAP-DP column in order to evaluate enantioselectivity and resolution of the Crab-like columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Chan, W; Gerhardt, G C; Salisbury, C D
1994-01-01
A method for the simultaneous determination of tylosin and tilmicosin residues in animal tissues is reported. Solid-phase extraction columns are used to isolate the drugs from tissue extracts. Determination is accomplished by reversed-phase liquid chromatography with UV detection at 287 nm. Mean recoveries from spiked tissues were 79.9% (coefficient of variation [CV], 8.1%) for tylosin and 92.6% (CV, 8.7%) for tilmicosin. Detection limits for tylosin and tilmicosin were 0.020 and 0.010 ppm, respectively.
Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu
2012-02-01
An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.
Baños, Clara-Eugenia; Silva, Manuel
2009-03-15
A rapid and straightforward continuous solid-phase extraction system has been developed for in situ derivatization and pre-concentration of carbonyl compounds in aqueous samples. Initially 2,4-dinitrophenylhydrazine, the derivatizing agent, was adsorbed on a C(18) mini-column and then 15-ml of sample were continuously aspirated into the flow system, where the derivatization and pre-concentration of the analytes (low-molecular mass aldehydes) were performed simultaneously. Following elution, 20 microl of the extract were injected into a LC-DAD system, in which hydrazones were successfully separated in 12 min on a RP-C(18) column using a linear gradient mobile phase of acetonitrile-water of 60-100% acetonitrile for 8 min, flowing at 0.5 ml/min. The whole analytical process can be accomplished within ca. 35 min. Under optimum conditions, limits of detection were obtained between 0.3 and 1.0 microg/l and RSDs (inter-day precision) from 1.2 to 4.6%. Finally, some applications on water samples are presented with recoveries ranged from 95.8 to 99.4%.
Fiore, D; Auger, F A; Drusano, G L; Dandu, V R; Lesko, L J
1984-01-01
A rapid, sensitive, and specific method of analysis for mezlocillin in serum and urine by high-pressure liquid chromatography is described. A solid-phase extraction column was used to remove interfering substances from samples before chromatography. Quantitation included the use of an internal standard, nafcillin. Mezlocillin was chromatographed with a phosphate buffer-acetonitrile (73:27) mobile phase and a C-18 reverse-phase column and detected at a wavelength of 220 nm. The assay had a sensitivity of 1.6 micrograms/ml and a linearity of up to 600 micrograms/ml and 16 mg/ml in serum and urine, respectively, with only 0.1 ml of sample. The interday and intraday coefficients of variation for replicate analyses of spiked serum and urine specimens were less than 6.5%. PMID:6517560
Ramos-Ruiz, Adriana; Wilkening, Jean V.; Field, James A.; Sierra-Alvarez, Reyes
2017-01-01
A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30 days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1 mg L-1), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005 mg L-1). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. PMID:28472709
Chromatographic properties PLOT multicapillary columns.
Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N
2017-03-10
Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of microfocused X-ray techniques to investigate the mobilization of arsenic by oxalic acid
NASA Astrophysics Data System (ADS)
Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.
2012-08-01
Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (˜4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88-95%). Considerably less Fe was removed by oxalic acid treatment, 14-25% based on μSXRF counts, which is somewhat higher than the 7-9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing ferrihydrite or transforming it to more stable oxides; however, Fe redox states were not impacted. Kinetics information extracted from μSXRF data compared favorably with rates of As removal from observed As breakthrough curves. The average pseudo-first order As removal rate constant was calculated to be 0.015 min-1 ± 0.002 (± average standard error, N = 400) based on changes in μSXRF counts over time. The spatial variation observed in the rate constant is likely a result of differences in the mineral substrate or As retention mechanism. Geochemical models created using the calculated As removal rate constants showed agreement with As breakthrough curves for both a small column (4.25 cm × 0.635 cm ID) and a larger column (23.5 cm × 4.2 cm ID), indicating that the processes studied using the microprobe are representative and often can be predictive of larger systems. While this work was used to understand the processes that regulate As release and transport, the methods developed here could be used to study a wide variety of reaction processes, including contaminant removal due to chemical treatment, mineral precipitation due to changing redox characteristics, and solid phase transformations.
Use of Microfocused X-ray Techniques to Investigate the Mobilization of As by Oxalic Acid
Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.
2012-01-01
Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (~4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88–95%). Considerably less Fe was removed by oxalic acid treatment, 14–25% based on μSXRF counts, which is somewhat higher than the 7–9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing ferrihydrite or transforming it to more stable oxides; however, Fe redox states were not impacted. Kinetics information extracted from μSXRF data compared favorably with rates of As removal from observed As breakthrough curves. The average pseudo-first order As removal rate constant was calculated to be 0.015 min−1 ± 0.002 (± average standard error, N=400) based on changes in μSXRF counts over time. The spatial variation observed in the rate constant is likely a result of differences in the mineral substrate or As retention mechanism. Geochemical models created using the calculated As removal rate constants showed agreement with As breakthrough curves for both a small column (4.25 cm × 0.635 cm ID) and a larger column (23.5 cm × 4.2 cm ID), indicating that the processes studied using the microprobe are representative and often can be predictive of larger systems. While this work was used to understand the processes that regulate As release and transport, the methods developed here could be used to study a wide variety of reaction processes, including contaminant removal due to chemical treatment, mineral precipitation due to changing redox characteristics, and solid phase transformations. PMID:23175572
Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi
2015-10-16
A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
NASA Astrophysics Data System (ADS)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
2010-02-01
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.
Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, B.; Borch, T; Fendorf, S
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina
2007-09-01
Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.
Ho, Emmie N M; Kwok, W H; Wong, April S Y; Wan, Terence S M
2012-01-13
Quaternary ammonium drugs (QADs) are anticholinergic agents some of which are known to have been abused or misused in equine sports. A recent review of literature shows that the screening methods reported thus far for QADs mainly cover singly-charged QADs. Doubly-charged QADs are extremely polar substances which are difficult to be extracted and poorly retained on reversed-phase columns. It would be ideal if a comprehensive method can be developed which can detect both singly- and doubly-charged QADs. This paper describes an efficient liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the simultaneous detection and confirmation of 38 singly- and doubly-charged QADs at sub-parts-per-billion (ppb) to low-ppb levels in equine urine after solid-phase extraction. Quaternary ammonium drugs were extracted from equine urine by solid-phase extraction (SPE) using an ISOLUTE(®) CBA SPE column and analysed by LC/MS/MS in the positive electrospray ionisation mode. Separation of the 38 QADs was achieved on a polar group embedded C18 LC column with a mixture of aqueous ammonium formate (pH 3.0, 10 mM) and acetonitrile as the mobile phase. Detection and confirmation of the 38 QADs at sub-ppb to low-ppb levels in equine urine could be achieved within 16 min using selected reaction monitoring (SRM). Matrix interference of the target transitions at the expected retention times was not observed. Other method validation data, including precision and recovery, were acceptable. The method was successfully applied to the analyses of drug-administration samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan
2013-01-01
Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.
Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL
2009-11-17
A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.
Chen, Wenzhang; Shen, Jing; Yin, Xuefeng; Yu, Yingnian
2007-01-01
A nano-scale solid-phase extraction (SPE) device was developed for the detection of gel-separated proteins in low abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with a simplified microfabrication technology. By using SU-8 photoresist instead of epoxy glue to connect the microchannel and transfer capillary, polymeric contaminant signals in MS analysis were significantly reduced. Micro SPE columns with different capacities and geometric characteristics were investigated in order to increase the detection sensitivity and decrease spot size for MALDI-TOF-MS analysis. It is shown that enhancements in sensitivities for the detection of proteins in low abundance were correlated with the reduction in column capacity and increase in column aspect ratio. Fifty nanoliters of matrix solution were sufficient to elute the sample completely from the optimized micro SPE column with 3.5 nL capacity. The mass spectrum of a 5 fmol in-gel tryptic digest of bovine serum albumin (BSA), processed by the micro SPE column, demonstrated that 29 peptides matched the protein giving a sequence coverage of 51%, which was better than that obtained from analysis of 25 fmol of the same sample prepared by the dried-droplet method. With the micro SPE column treatment of 2 microL of digestion supernatant of a gel spot of the IQGAP1 protein, 15 peptides were detected from the mass spectrum with the highest individual score of 111, while, with a ZipTip procedure, only nine peaks were detected with the highest individual score of 71. Analytical results demonstrated that this approach greatly improved the sequence coverage and identification specificity for the tested protein. It can serve as a very useful tool in proteomics studies, especially for low abundance proteins. Copyright (c) 2006 John Wiley & Sons, Ltd.
Targeted Control of Permeability Using Carbonate Dissolution/Precipitation Reactions
NASA Astrophysics Data System (ADS)
Clarens, A. F.; Tao, Z.; Plattenberger, D.
2016-12-01
Targeted mineral precipitation reactions are a promising approach for controlling fluid flow in the deep subsurface. Here we studied the potential to use calcium and magnesium bearing silicates as cation donors that would react with aqueous phase CO2 under reservoir conditions to form solid carbonate precipitates. Preliminary experiments in high pressure and temperature columns suggest that these reactions can effectively lower the permeability of a porous media. Wollastonite (CaSiO3) was used as the model silicate, injected as solid particles into the pore space of a packed column, which was then subsequently flooded with CO2(aq). The reactions occur spontaneously, leveraging the favorable kinetics that occur at the high temperature and pressure conditions characteristic of the deep subsurface, to form solid phase calcium carbonate (CaCO3) and amorphous silica (SiO2) within the pore space. Both x-ray tomography imaging of reacted columns and electron microscopy imaging of thin sections were used to characterize where dissolution/precipitation occurred within the porous media. The spatial distribution of the products was closely tied to the flow rate and the duration of the experiment. The SiO2 product precipitated in close spatial proximity to the CaSiO3 reactant. The CaCO3 product, which is sensitive to the low pH and high pCO2 brine, precipitated out of solution further down the column as Ca2+ ions moved with the brine. The permeability of the columns decreased by several orders of magnitude after injecting the CaSiO3 particles. Following carbonation, the permeability decreased even further as precipitates filled flow paths within the pore network. A pore network model was developed to help understand the interplay between precipitation kinetics and flow in altering the permeability of the porous media. The effect of particle concentration and size, pore size, reaction time, and pCO2, are explored on pore/fracture aperture and reaction extent. To provide better control of these dynamics and ultimately devise a mechanism to deliver carbonation seed particles into leakage pathways, we are exploring the potential to functionalize the silicate particles using temperature sensitive polymer coatings.
Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Pre-calibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were...
Separations on water-ice. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, P.K.
1998-07-01
This report focuses on processes to separate water frozen into ice. Research topics include the following: normal phase columnar chromatography; electrophoresis in a planar format; and zone melting type separations on a solid column of ice. Attempts were made to dope the emulsion with {beta}-cyclodextrin in order to separate commercially important chiral drugs such as Inderal.
Runkel, Robert L.
2010-01-01
OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.
Liu, Lingling; Huang, Hua; Wu, Yanwen; Li, Bingning; Ouyang, Jie
2017-09-01
An offline solid-phase extraction (SPE) approach combined with a large-volume injection (LVI)-gas chromatography-flame ionization detector (LVI-GC-FID) is improved for routine analysis of mineral oil saturated hydrocarbons (MOSH) in vegetable oils. The key procedure of the method consists in using offline SPE columns for MOSH purification. The SPE column packed with 1% Ag-activated silica gel was used to separate MOSH from triglycerides and olefins in variety of vegetable oils. The eluent of MOSH fraction was only 3 mL and the concentration step was quick with little evaporation loss. The limit of quantification (LOQ) of the method was 2.5 mg/kg and the linearity ranged from 2 to 300 mg/kg. The accuracy was assessed by measuring the recoveries from spiked oil samples and was higher than 90%. Twenty-seven commercial vegetable oils were analyzed, and different levels of MOSH contamination were detected with the highest being 259.4 mg/kg. The results suggested that it is necessary to routinely detect mineral oil contamination in vegetable oils for food safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less
Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya
2016-07-13
In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling of sorption processes on solid-phase ion-exchangers
NASA Astrophysics Data System (ADS)
Dorofeeva, Ludmila; Kuan, Nguyen Anh
2018-03-01
Research of alkaline elements separation on solid-phase ion-exchangers is carried out to define the selectivity coefficients and height of an equivalent theoretical stage for both continuous and stepwise filling of column by ionite. On inorganic selective sorbents the increase in isotope enrichment factor up to 0.0127 is received. Also, parametrical models that are adequately describing dependence of the pressure difference and the magnitude expansion in the ion-exchange layer from the flow rate and temperature have been obtained. The concentration rate value under the optimum realization conditions of process and depending on type of a selective material changes in a range 1.021÷1.092. Calculated results show agreement with experimental data.
Zhang, Ming; He, Juan; Shen, Yanzheng; He, Weiye; Li, Yuanyuan; Zhao, Dongxin; Zhang, Shusheng
2018-02-01
A polymer-based adsorption medium with molecular recognition ability for homologs of pyrethroids was prepared by atom transfer radical polymer iration using a fragment imprinting technique. Phenyl ether-biphenyl eutectic was utilized as a pseudo-template molecule, and the adsorption medium prepared was evaluated by solid-phase extraction and gas chromatography. Selectivity of the medium for pyrethroids was evaluated using it as solid phase extraction packing by Gas Chromatography. The results demonstrated that the absorption amount of bifenthrin, fenpropathrin, permethrin, cypermethrin, fenvalerate, Dursban and pentachloronitrobenzene for molecularly imprinted polymers were 2.32, 2.12, 2.18, 2.20, 2.30, 1.30 and 1.40mgg -1 , respectively, while the non-imprinted polymers were 1.20, 1.13, 1.25, 1.05, 1.20, 1.23 and 1.32mgg -1 , respectively. The rebinding test based on the molecularly imprinted solid phase extraction column technique showed the recoveries of honey sample spiked with seven insecticides within 88.5-106.2%, with relative standard deviations of 2.38-5.63%. Finally, the method was successfully applied to the analysis of pyrethroids in a honey sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Fischer-Tropsch Slurry Reactor modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soong, Y.; Gamwo, I.K.; Harke, F.W.
1995-12-31
This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas,more » solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.« less
Huynh, T T; Laidlaw, W S; Singh, B; Gregory, D; Baker, A J M
2008-12-01
Heavy metal concentrations and pH of pore-water in contaminated substrates are important factors in controlling metal uptake by plants. We investigated the effects of phytoextraction on these properties in the solution phase of biosolids and diluted biosolids in a 12-month phytoextraction column experiment. Phytoextraction using Salix and Populus spp. temporarily decreased pore-water pH of the substrates over the experimental period followed by a return to initial pH conditions. Salixxreichardtii and Populus balsamifera effectively extracted Ni, Zn and Cd and actively mobilized these metals from the solid to the solution phase. S.xreichardtii had the stronger effect on mobilization of metals due to its larger root system. Phytoextraction did not affect Cu in the solution phase of the biosolids. Heavy metals were leached down to lower depths of the columns during the phytoextraction process.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
Longobardi, Francesco; Iacovelli, Vito; Catucci, Lucia; Panzarini, Giuseppe; Pascale, Michelangelo; Visconti, Angelo; Agostiano, Angela
2013-02-27
A new analytical method for the determination of ochratoxin A (OTA) in red wine has been developed by using a double-extract cleanup and a fluorometric measurement after spectral deconvolution. Wine samples were diluted with a solution containing 1% polyethylene glycol and 5% sodium hydrogencarbonate, filtered, and purified by immunoaffinity and aminopropyl solid-phase column. OTA contents in the purified extract were determined by a spectrofluorometer (excitation wavelength, 330 nm; emission wavelength, 470 nm) after deconvolution of fluorescence spectra. Average recoveries from wine samples spiked with OTA at levels ranging from 0.5 to 3.0 ng/mL were 94.5-105.4% with relative standard deviations (RSD) of <15% (n = 4). The limit of detection (LOD) was 0.2 ng/mL, and the total time of analysis was 30 min. The developed method was tested on 18 red wine samples (naturally contaminated and spiked with OTA at levels ranging from 0.4 to 3.0 ng/mL) and compared with AOAC Official Method 2001.01, based on immunoaffinity column cleanup and HPLC with fluorescence detector. A good correlation (r(2) = 0.9765) was observed between OTA levels obtained with the two methods, highlighting the reliability of the proposed method, the main advantage of which is the simple OTA determination by a benchtop fluorometer with evident reductions of cost and time of analysis.
Tanizawa, Haruna; Shima, Mikie; Ikehara, Chieko; Kobata, Masakazu; Sato, Motoaki
2005-10-01
A simple and rapid method was developed for the screening of 82 pesticides/metabolites in a wide variety of crops, using solid-phase extraction and liquid chromatography with tandem mass spectrometry (LC/MS/MS). After extraction with methanol, the filtered extracts were made up to 100 mL and a 2 mL aliquot was subjected to solid-phase extraction. Co-extractives were removed with a C18 mini-column, while pesticides were retained on 3 kinds of mini-columns (HLB, SAX, activated carbon), and then eluted with acetonitrile. Analysis was performed by LC/MS/MS, and MS acquisition parameters were established in positive and negative ESI modes. The utility of the method was demonstrated by the analysis of 6 crops (carrot, cabbage, onion, spinach, lemon, brown rice) and one mixed vegetable juice. Of 82 compounds tested, 75 in carrot and 62 in lemon were obtained with recoveries ranging from 70-120%. For all samples tested, 75 compounds could be obtained with recoveries of over 50%, and the detection limits of most compounds were lower than 0.01 microg/g. This method provides acceptable performance for analysis of these 75 compounds. Further, by using aliquots of the extracts with small-scale mini-columns, purified samples could be obtained. This proposed method with small matrix effects, is effective and suitable for screening of multiple residual pesticides by using LC/MS/MS.
Leaching of Arsenic from Granular Ferric Hydroxide Residuals under Mature Landfill Conditions
Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A. Eduardo; Ela, Wendell P.
2008-01-01
Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in non-hazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction. PMID:17051802
Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions.
Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A Eduardo; Ela, Wendell P
2006-10-01
Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in nonhazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter, and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292
Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu
2017-06-08
A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .
Ramos-Ruiz, Adriana; Wilkening, Jean V; Field, James A; Sierra-Alvarez, Reyes
2017-08-15
A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1mgL -1 ), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005mgL -1 ). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Xue-Dong; Tang, Xu-Yan; Sang, Lin
2012-11-01
To establish a method for rapid identification of micro-constituents in monoammonium glycyrrhizinate by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry. HPLC preparative chromatograph was adopted for determining the optimal method for high-pressure solid phase extraction under optimal conditions. 5C18-MS-II column (20.0 mm x 20.0 mm) was used as the extraction column, with 35% acetonitrile-acetic acid solution (pH 2. 20) as eluent at the speed of 16 mL x min(-1). The sample size was 0.5 mL, and the extraction cycle was 4.5 min. Then, extract liquid was analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) after being concentrated by 100 times. Under the optimal condition of high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry, 10 components were rapidly identified from monoammonium glycyrrhizinate raw materials. Among them, the chemical structures of six micro-constituents were identified as 3-O-[beta-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-0-beta-D-apiopyranosylglycyrrhetic/3-O- [P-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-O-beta-D-arabinopyranosylglycyrrhetic, glycyrrhizic saponin F3, 22-hydroxyglycyrrhizin/18alpha-glycyrrhizic saponin G2, 3-O-[beta-D-rhamnopyranosyl]-24-hydroxyglycyrrhizin, glycyrrhizic saponin J2, and glycyrrhizic saponin B2 by MS(n) spectra analysis and reference to literatures. Four main chemical components were identified as glycyrrhizic saponin G2, 18beta-glycyrrhizic acid, uralglycyrrhizic saponin B and 18alpha-glycyrrhizic acid by liquid chromatography, MS(n) and ultraviolet spectra information and comparison with reference substances. The method can be used to identify chemical constituents in monoammonium glycyrrhizinate quickly and effectively, without any reference substance, which provides basis for quality control and safe application of monoammonium glycyrrhizinate-related products.
Heat transfer in three-phase fluidization and bubble-columns with high gas holdups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; Kusakabe, K.; Fan, L.S.
1993-08-01
Bubble column and three-phase fluidized bed reactors have wide applications in biotechnological and petroleum processes (Deckwer, 1985; Fan, 1989). In such biotechnological processes as fermentation and waste water treatment, small bubbles of oxygen and/or nitrogen are introduced in the column to enhance oxygen transfer and to ensure the stability of immobilized cell particles. In addition, tiny bubbles are produced during the biological process due to the production of surface active compounds. The presence of these small bubbles causes an increase in the gas holdup of the system. High gas holdups are also characteristics of industrial processes such as coal liquefactionmore » and hydrotreating of residual oils. Good understanding of the transport properties of three-phase fluidized beds with high gas holdups is essential to the design, control and optimum operations of the commercial reactors employed in the above-mentioned processes. Heat-transfer studies in three-phase fluidized beds have been reviewed recently by Kim and Laurent (1991). Past studies focused primarily on the measurements of time-averaged heat transfer from the column wall to bed (Chiu and Ziegler 1983; Muroyama et al., 1986) or on immersed heating objects to bed (Baker et al., 1978; Kato et al., 1984) in aqueous systems. Recently, Kumar et al. (1992) provided a mechanistic understanding of the heat transfer in bubbly-liquid and liquid-solid systems. The purpose of this work is to investigate the heat transfer in a three-phase fluidized bed under high gas holdup conditions. The associated hydrodynamic behavior of the system is also studied.« less
Jiang, Han-Peng; Chu, Jie-Mei; Lan, Meng-Dan; Liu, Ping; Yang, Na; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi
2016-09-02
More than 140 modified ribonucleosides have been identified in RNA. Determination of endogenous modified ribonucleosides in biological fluids may serve as non-invasive disease diagnostic strategy. However, detection of the modified ribonucleosides in biological fluids is challenging, especially for the low abundant modified ribonucleosides due to the serious matrix interferences of biological fluids. Here, we developed a facile preparation strategy and successfully synthesized zirconium oxide-silica (ZrO2/SiO2) composite capillary monolithic column that exhibited excellent performance for the selective enrichment of cis-diol-containing compounds. Compared with the boronate-based affinity monolith, the ZrO2/SiO2 monolith showed ∼2 orders of magnitude higher extraction capacity and can be used under physiological pH (pH 6.5-7.5). Using the prepared ZrO2/SiO2 composite monolith as the trapping column and reversed-phase C18 column as the analytical column, we further established an online solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry (online SPME-LC-MS/MS) analysis for the comprehensive profiling of ribonucleosides modification in human urine. Our results showed that 68 cis-diol-containing ribosylated compounds were identified in human urine, which is, to the best of our knowledge, the highest numbers of cis-diol-containing compounds were determined in a single analysis. It is worth noting that four modified ribonucleosides were discovered in the human urine for the first time. In addition, the quantification results from the pooled urine samples showed that compared to healthy controls, the contents of sixteen ribose conjugates in the urine of gastric cancer, eleven in esophagus cancer and seven in lymphoma increased more than two folds. Among these ribose conjugates, four ribose conjugates increased more than two folds in both gastric cancer and esophagus cancer; three ribose conjugates increased more than two folds in both gastric cancer and lymphoma; one ribose conjugate increased more than two folds in both esophagus cancer and lymphoma. The developed analytical method provides a good platform to study the modified ribonucleosides in human body fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
Yu, Shuo; Yang, Bo; Yan, Liangping; Dai, Qiuyun
2017-07-28
α-conotoxin GI, a short peptide toxin in the venom of Conus geographus , is composed of 13 amino acids and two disulfide bonds. It is the most toxic component of Conus geographus venom with estimated lethal doses of 0.029-0.038 mg/kg for humans. There is currently no reported analytical method for this toxin. In the present study, a sensitive detection method was developed to quantify GI in human plasma using a solid-phase extraction (SPE) column (polystyrene-divinyl benzene copolymer) combined with liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The plasma samples were treated with a protein precipitating solvent (methanol: acetonitrile = 50:50, v / v ). GI in the solvent was efficiently extracted with an SPE column and was further separated by a Grace Alltima HP C 18 (50 × 2.1 mm, 5 μm) column at a flow rate of 0.4 mL/min. Water (with 2% methanol) acetonitrile (with 0.1% acetic acid) was selected as the mobile phase combination used in a linear gradient system. α-Conotoxin GI was analyzed by an API 4000 triple quadrupole mass spectrometer. In the method validation, the linear calibration curve in the range of 2.0 to 300.0 ng/mL had correlation coefficients ( r ) above 0.996. The recovery was 57.6-66.8% for GI and the internal standard. The lower limit of quantification (LLOQ) was 2 ng/mL. The intra- and inter-batch precisions were below 6.31% and 8.61%, respectively, and the accuracies were all within acceptance. GI was stable in a bench-top autosampler through long-term storage and freeze/thaw cycles. Therefore, this method is specific, sensitive and reliable for quantitative analysis of α-conotoxin GI in human plasma.
Toward in situ monitoring of water contamination by nitroenergetic compounds.
Johnson, Brandy J; Leska, Iwona A; Medina, Alejandro; Dyson, Norris F; Nasir, Mansoor; Melde, Brian J; Taft, Jenna R; Charles, Paul T
2012-11-06
We have previously described the application of novel porous organosilicate materials to the preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbents and the advantages of these types of materials over commercially available solid phase extraction sorbents have been demonstrated. Here, the development of systems for application of those sorbents to in situ monitoring is described. Considerations such as column pressure, particulate filtration, and component durability are discussed. The diameter of selected column housings, the sorbent bed depth, and the frits utilized significantly impact the utility of the sorbent columns in the prototype system. The impact of and necessity for improvements in the morphological characteristics of the sorbents as they relate to reduction in column pressure are detailed. The results of experiments utilizing a prototype system are presented. Data demonstrating feasibility for use of the sorbents in preconcentration prior to ion mobility spectrometry is also presented.
Ding, Shujing; Dudley, Ed; Chen, Lijuan; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth
2006-01-01
Ginkgo biloba is one of the most popular herbal nutritional supplements, with terpene lactones and flavonoids being the two major active components. An on-line purification high-performance liquid chromatography/mass spectrometry (HPLC/MS) method was successfully developed for the quantitative determination of flavonoids and terpene lactones excreted in human urine after ingesting the herbal supplement. Satisfactory separation was obtained using a C18 capillary column made in-house with sample clean-up and pre-concentration achieved using a C18 pre-column with column switching. High selectivity and limits of detection of 1-18 ng/mL were achieved using a selected ion monitoring (SIM) scan in negative ion mode; the on-line solid-phase extraction (SPE) recovery of the active components in Ginkgo biloba determined in this study was greater than 75%. Copyright 2006 John Wiley & Sons, Ltd.
2016-02-01
SPECTROMETRY: QUANTIFICATION OF FREE GB FROM VARIOUS FOOD MATRICES ECBC-TR-1351 Sue Y. Bae Mark D. Winemiller RESEARCH AND TECHNOLOGY DIRECTORATE...Flight Mass Spectrometry: Quantification of Free GB from Various Food Matrices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...methylphosphonofluoridate (sarin, GB) in various food matrices. The development of a solid-phase extraction method using a normal-phase silica gel column for
Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo
2012-12-01
In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dilatancy and compaction effects on the submerged granular column collapse
NASA Astrophysics Data System (ADS)
Wang, Chun; Wang, Yongqi; Peng, Chong; Meng, Xiannan
2017-10-01
The effects of dilatancy on the collapse dynamics of granular materials in air or in a liquid are studied experimentally and numerically. Experiments show that dilatancy has a critical effect on the collapse of granular columns in the presence of an ambient fluid. Two regimes of the collapse, one being quick and the other being slow, are observed from the experiments and the underlying reasons are analyzed. A two-fluid smoothed particle hydrodynamics model, based on the granular-fluid mixture theory and the critical state theory, is employed to investigate the complex interactions between the solid particles and the ambient water. It is found that dilatancy, resulting in large effective stress and large frictional coefficient between solid particles, helps form the slow regime. Small permeability, representing large inter-phase drag force, also retards the collapse significantly. The proposed numerical model is capable of reproducing these effects qualitatively.
Hogendoorn, E A; Westhuis, K; Dijkman, E; Heusinkveld, H A; den Boer, A C; Evers, E A; Baumann, R A
1999-10-08
The coupled-column (LC-LC) configuration consisting of a 3 microm C18 column (50 x 4.6 mm I.D.) as the first column and a 5 microm C18 semi-permeable-surface (SPS) column (150 x 4.6 mm I.D.) as the second column appeared to be successful for the screening of acidic pesticides in surface water samples. In comparison to LC-LC employing two C18 columns, the combination of C18/SPS-C18 significantly decreased the baseline deviation caused by the hump of the co-extracted humic substances when using UV detection (217 nm). The developed LC-LC procedure allowed the simultaneous determination of the target analytes bentazone and bromoxynil in uncleaned extracts of surface water samples to a level of 0.05 microg/l in less than 15 min. In combination with a simple solid-phase extraction step (200 ml of water on a 500 mg C18-bonded silica) the analytical procedure provides a high sample throughput. During a period of about five months more than 200 ditch-water samples originating from agricultural locations were analyzed with the developed procedure. Validation of the method was performed by randomly analyzing recoveries of water samples spiked at levels of 0.1 microg/l (n=10), 0.5 microg/l (n=7) and 2.5 microg/l (n=4). Weighted regression of the recovery data showed that the method provides overall recoveries of 95 and 100% for bentazone and bromoxynil, respectively, with corresponding intra-laboratory reproducibilities of 10 and 11%, respectively. Confirmation of the analytes in part of the samples extracts was carried out with GC-negative ion chemical ionization MS involving a derivatization step with bis(trifluoromethyl)benzyl bromide. No false negatives or positives were observed.
Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.
Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela
2010-02-19
The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.
Lu, Ping; Deng, Dayi; Ni, Xiaodan
2012-09-01
Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jiabin; Wu, Fangling; Zhao, Qi
2015-08-01
A C18 monolithic capillary column was utilized as the solid phase microextraction column to construct an in-tube SPME-HPLC system which was used to simultaneously extract and detect five phenoxy acid herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D), 2- (2-chloro)-phenoxy propionic acid (2,2-CPPA), 2-(3-chloro)-phenoxy propionic acid (2,3- CPPA), phenoxy propionic acid (PPA) and 2-(2,4-dichlorophenoxy) propionic acid (2,4-DP). The operating parameters of the in-tube SPME-HPLC system, including the length of the monolithic column, the sampling flow rate, the sampling time, the elution flow rate and the elution time, had been investigated in detail. The optimized operating parameters of the in-tube SPME-HPLC system were as follow: the length of the monolithic column was 20 cm, the sampling flow rate was 0. 04 mL/min, sampling time was 13 min; the elution flow rate was 0.02 mL/min, elution time was 5 min. Under the optimized conditions, the detection limits of the five phenoxy acid herbicides were as follows: 9 µg/L for PPA, 4 µg/L for 2,2-CPPA, 4 µg/L for 2,3-CPPA, 5 µg/L for 2,4-D, 5 µg/L for 2,4-DP. Compared with the HPLC method with direct injection, the combined system showed a good enrichment factors to the analytes. The recoveries of the five phenoxy acid herbicides were between 79.0% and 98.0% (RSD ≤ 3.9%). This method was successfully used to detect the five phenoxy acid herbicides in water samples with satisfactory results.
Zeng, Honglian; Liu, Zhenli; Zhao, Siyu; Shu, Yisong; Song, Zhiqian; Wang, Chun; Dong, Yunzhuo; Ning, Zhangchi; He, Dan; Wang, Menglei; Lu, Cheng; Liu, Yuanyan; Lu, Aiping
2016-10-01
Citrus fruit is an important health-promoting food that is rich in dietary phenolic metabolites. Traditional Chinese medicines, such as Zhishi and Zhiqiao, come from young and immature fruits of Citrus cultivars. The preparation of diversified bioactive phenolic products and establishment of the corresponding quality control methodology are challenging and necessary. In the current study, four types of solid-phase extraction sorbents for the enrichment and clean-up of the phenolic matrix were evaluated. A solid-phase extraction column coated with Strata-X was finally used in the procedure. Twenty phenolic compounds were selected to evaluate the extraction performances of the sorbents using high-performance liquid chromatography analysis. Under the optimized conditions, good linearities were obtained with R 2 more than 0.9996 for all analytes with LODs of 0.04-1.012 μg/g. Intra- and interday relative standard deviation values were less than 3%, and the recovery was equal to or higher than 90.02%. Compared to non-solid-phase extraction process, the content of total phenolic products was elevated 35.55-68.48% with solid-phase extraction. Finally, the developed and validated method was successfully applied to the discrimination of Zhishi samples from different species as well as Zhishi and Zhiqiao samples in different development stages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less
Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes
NASA Astrophysics Data System (ADS)
Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.
2015-12-01
At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.
Tess, D A; Cole, R O; Toler, S M
1995-12-15
A simple and highly sensitive reversed-phase fluorimetric HPLC method for the quantitation of droloxifene from rat, monkey, and human plasma as well as human serum is described. This assay employs solid-phase extraction and has a dynamic range of 25 to 10,000 pg/ml. Sample extraction (efficiencies > 86%) was accomplished using a benzenesulfonic acid (SCX) column with water and methanol rinses. Droloxifene and internal standard were eluted with 1 ml of 3.5% (v/v) ammonium hydroxide (30%) in methanol. Samples were quantitated using post-column UV-photochemical cyclization coupled with fluorimetric detection with excitation and emission wavelengths of 260 nm and 375 nm, respectively. Relative ease of sample extraction and short run times allow for the analysis of approximately 100 samples per day.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a military explosive which is known to have contaminated groundwater on and near military installations where it has been used and stored. Historical disposal practices such as open burning and detonation have contributed to envir...
Wang, Shuo; Li, Shuming; Zhang, Xiangming; Wei, Yunfang; Zhang, Meiyun; Zhang, Jing
2015-07-01
To develop a comprehensive method for simultaneous analysis of sulfonamides and their metabolites in drinking water by high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Different solid-phase extraction columns were compared with respect to the recovery of target drugs from drinking water. The drinking water samples were adjusted to 3 by HCl and purified by a mix mode cation-ion exchange solid-phase extraction (SPE), following determination using LG-MS/MS. A total of 21 sulfonamides were separated by a C15 column (2.1 mm x 100 mm, 1.7 µm) and analyzed under positive ion mode with multi-reaction monitoring. The matrix-matched external standard calibration was used for quantification. The method quantification limits for 21 analytes were 0.03-0.63 ng/L with overall recoveries of 50.1%-114.9%, and the relative standard deviations less than 20%. The method was finally used to analyze sulfonamides in drinking water in Beijing, and 5 target compounds (sulfadiazine, sulfathiazole, sulfapyridine, trimethoprim and sulfamethazine) were detected at a concentration range of 0.08-32.54 ng/L. This method could be applied in simultaneous analysis of sulfonamides and their metabolites in drinking water samples.
Smith, Lori L; Francis, Kyle A; Johnson, Joseph T; Gaskill, Cynthia L
2017-11-01
Pre-column derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was determined to be effective for quantitation of fumonisins B 1 and B 2 in feed. Liquid-solid extraction, clean-up using immunoaffinity solid phase extraction chromatography, and FMOC-derivatization preceded analysis by reverse phase HPLC with fluorescence. Instrument response was unchanged in the presence of matrix, indicating no need to use matrix-matched calibrants. Furthermore, high method recoveries indicated calibrants do not need to undergo clean-up to account for analyte loss. Established method features include linear instrument response from 0.04-2.5µg/mL and stable derivatized calibrants over 7days. Fortified cornmeal method recoveries from 0.1-30.0μg/g were determined for FB 1 (75.1%-109%) and FB 2 (96.0%-115.2%). Inter-assay precision ranged from 1.0%-16.7%. Method accuracy was further confirmed using certified reference material. Inter-laboratory comparison with naturally-contaminated field corn demonstrated equivalent results with conventional derivatization. These results indicate FMOC derivatization is a suitable alternative for fumonisins B 1 and B 2 quantitation in corn-based feeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bortolomeazzi, Renzo; Munari, Marina; Anese, Monica; Verardo, Giancarlo
2012-12-15
In this work, a rapid and reliable purification method based on a single mixed solid phase extraction (SPE) column, for the determination of acrylamide in roasted coffee by liquid chromatography-tandem mass spectrometry, was developed. Deuterium labelled d(3)-acrylamide was used as internal standard. Acrylamide was extracted by 10 mL of water and the extract purified by a single SPE column consisting of 0.5 g of an in-house prepared mixture of C18, strong cation (SCX) and anion exchange (SAX) sorbents in the ratio 2/1.5/1.5 (w/w/w). The amount of the three sorbents was optimised in order to eliminate the main interfering compounds present in coffee extracts, such as melanoidins, trigonelline, chlorogenic acids and caffeine. The SPE procedure was very simple and consisted of pushing 1 mL of an aqueous coffee extract through the SPE column followed by 1 mL of water which was collected for the analysis. The method was tested on six samples of roasted coffee of different composition and roasting level. The repeatability of the method, expressed as relative standard deviation (n=6), was lower than 5%. The recovery of acrylamide at three spiked levels ranged from 92% to 95%. The limits of detection (LOD) and quantitation (LOQ) were 5 and 16 μg kg(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
20. Detail of 8" square solid wood column at fruit ...
20. Detail of 8" square solid wood column at fruit and vegetable storage room; note ledger plates bolted to top of column - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
Flaminio, L; Ripamonti, M; Ascalone, V
1994-05-13
Alpidem, 6-chloro-2-(4-chlorophenyl)-N,N-dipropylimidazo[1,2-a]pyridine- 3-acetamide, is an anxiolytic imidazopyridine that undergoes a first-pass elimination after oral administration to humans; it is actively metabolized and three circulating metabolites have been identified in plasma due to N-dealkylation, oxidation or a combination of both processes. For the determination of the unchanged drug and its metabolites in human plasma, a column-switching HPLC method was developed. The method, based on solid-phase extraction (performed on-line), involves the automatic injection of plasma samples (200 microliters) on to a precolumn filled with C18 material, clean-up of the sample with water in order to remove protein and salts and transfer of the analytes to the analytical column (after valve switching) by means of the mobile phase. All the processes were performed in the presence of an internal standard, a compound chemically related to alpidem. During the analytical chromatography, the precolumn was flushed with different solvents and after regeneration with water, it was ready for further injections. The analytical column was a C8 type and the mobile phase was acetonitrile-methanol-phosphate buffer solution (45:15:45, v/v/v) at a flow-rate of 1.5 ml min-1. The column was connected to a fluorimetric detector operating at excitation and emission wavelengths of 255 and 423 nm, respectively. The limits of quantitation of alpidem and three metabolites were 2.5 and 1.5 ng ml-1, respectively, in human plasma.
Kargi, Fikret; Cikla, Sinem
2007-12-01
Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.
Perrenoud, Alexandre Grand-Guillaume; Farrell, William P; Aurigemma, Christine M; Aurigemma, Nicole C; Fekete, Szabolcs; Guillarme, Davy
2014-09-19
Superficially porous particles (SPP), or core shell particles, which consist of a non-porous silica core surrounded by a thin shell of porous silica, have gained popularity as a solid support for chromatography over the last decade. In the present study, five unbonded silica, one diol, and two ethylpyridine (2-ethyl and 4-ethyl) SPP columns were evaluated under SFC conditions using two mixtures, one with 17 drug-like compounds and the other one with 7 drug-like basic compounds. Three of the SPP phases, SunShell™ 2-ethylpyridine (2-EP), Poroshell™ HILIC, and Ascentis(®) Express HILIC, exhibited superior performances relative to the others (reduced theoretical plate height (hmin) values of 1.9-2.5 for neutral compounds). When accounting for both achievable plate count and permeability of the support using kinetic plot evaluation, the Cortecs™ HILIC 1.6μm and Ascentis(®) Express HILIC 2.7μm phases were found to be the best choices among tested SPPs to reach efficiencies up to 30,000 plates in the minimum amount of time. For desired efficiencies ranging from 30,000 to 60,000 plates, the SunShell™ 2-EP 2.6μm column clearly outperformed all other SPPs. With the addition of a mobile phase additive such as 10mM ammonium formate, which was required to elute the basic components with sharp peaks, the Poroshell™ HILIC, SunShell™ Diol and SunShell™ 2-EP phases represent the most orthogonal SPP columns with the highest peak capacities. This study demonstrates the obvious benefits of using columns packed with SPP on current SFC instrumentation. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.
A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within themore » continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.« less
Li, Hang; He, Junting; Liu, Qin; Huo, Zhaohui; Liang, Si; Liang, Yong
2011-03-01
A tandem solid-phase extraction method (SPE) of connecting two different cartridges (C(18) and MCX) in series was developed as the extraction procedure in this article, which provided better extraction yields (>86%) for all analytes and more appropriate sample purification from endogenous interference materials compared with a single cartridge. Analyte separation was achieved on a C(18) reversed-phase column at the wavelength of 265 nm by high-performance liquid chromatography (HPLC). The method was validated in terms of extraction yield, precision and accuracy. These assays gave mean accuracy values higher than 89% with RSD values that were always less than 3.8%. The method has been successfully applied to plasma samples from rats after oral administration of target compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herrero, P; Borrull, F; Pocurull, E; Marcé, R M
2012-11-09
A fast chromatographic method has been developed that takes less than 5 min per run to determine five polyether ionophores with a novel amide polar-embedded reversed-phase column coupled to a triple quadrupole mass spectrometer. A comparison between Oasis HLB and Oasis MAX sorbents for the solid-phase extraction was done. Oasis HLB sorbent gave recoveries close to 90% and the repeatability (%RSD, 25-100 ng/L, n=3) of the method was less than 7% for all compounds in all matrices. The presence of polyether ionophores in environmental waters such as river water and sewage was investigated. Monensin and narasin were frequently determined in influent and effluent sewage at concentrations from 10 ng/L to 47 ng/L in influents and from 6 ng/L to 34 ng/L in effluents. In river waters, polyether ionophores were not detected in any sample. Copyright © 2012 Elsevier B.V. All rights reserved.
Pous, X; Ruíz, M J; Picó, Y; Font, G
2001-09-01
Imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole have been simultaneously determined in strawberries, oranges, potatoes, pears, and melons by matrix solid-phase dispersion (MSPD) followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) in positive-ion mode. The samples were homogenized with C8 bonded silica as MSPD sorbent, placed in a glass column, and eluted with dichloromethane. Chromatographic separation of the compounds was achieved on a reversed-phase LC column using a methanol-ammonium formate (50 mmol L(-1)) gradient as a mobile phase. Samples were screened by monitoring the protonated molecular ion at m/z 256 for imidacloprid, 280 for metalaxyl, 289 for myclobutanil, and 202 for thiabendazole, and the main fragment at m/z 138 for propham. Positive samples were confirmed by multiple-ion monitoring. The repeatability (<20%) and recovery (>57%) of the method were good, and limits of detection (<0.05 mg kg(-1)) were adequate.
Solid-phase glycan isolation for glycomics analysis
Yang, Shuang; Zhang, Hui
2013-01-01
Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis. PMID:23090885
Solid-phase glycan isolation for glycomics analysis.
Yang, Shuang; Zhang, Hui
2012-12-01
Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Serra-Mora, P; Jornet-Martinez, N; Moliner-Martinez, Y; Campíns-Falcó, P
2017-09-01
In-tube solid-phase microextraction (IT-SPME) coupled to miniaturized liquid chromatography (LC) techniques are attractive mainly due to the column efficiency improvement, sensitivity enhancement and reduction of solvent consumption. In addition, the nanomaterials based sorbents can play a key role in the improvement of the extraction efficiency taking into account their interesting physical and chemical properties. Thus, in this work the performance of IT-SPME coupled to nano LC (NanoLC) has been compared with the performance of IT-SPME coupled to capillary LC (CapLC) with similar configurations for the determination of polar triazines including their degradation products. In both cases, a DAD detector was used. Different extractive phases such as TRB-5, TRB-5/c-SWNTs, TRB-5/c-MWNTs capillary columns have been tested. The dimensions of the capillary columns were 0.32mm id×40cm length and 0.1 or 0.075mm i.d.×15cm length for the couplings with CapLC and NanoLC, respectively. The processed volume was 4mL for CapLC and 0.5mL for NanoLC. The elution was carried out with ACN:H 2 O (30:70, v/v). IT-SPME-NanoLC has shown a higher performance than IT-SPME-CapLC for the target analytes demonstrating the enhancement of the extraction efficiency with the former configuration. A new phase TEOS-MTEOS-SiO 2 NPs has been also proposed for IT-SPME-NanoLC, which improves the retention of polar compounds. Compared with previously published works, improved LODs were achieved (0.025-0.5μgL -1 ). The practical application of the proposed procedure has been demonstrated for the analysis of water samples and recovered struvite samples from wastewater treatment plants. Therefore, the proposed procedure can be an alternative method for regulatory purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
G Archana; Dhodapkar, Rita; Kumar, Anupama
2016-09-01
The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.
Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P
2012-07-27
A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Ayaz, Muhammad Mazhar; Sajid, Muhammad; Das, Sanjota Nirmal; Hanif, Muhammad
2018-05-01
Detection of various molecules of drugs remained a prime issue especially in tissues of animals, humans and in their target parasites. The cestode/tapeworms pose a dilemma because of their weird body composition and uptake pattern of nutrients and medicines especially through absorption by tegument. We selected levamisole; thought to be potent antiparasitic/ani-cestodal drug. The uptake of levamisole (LEV) through cestodeal tissues is studied through HPCL in this paper. High performance liquid chromatography technique has been utilized to know the uptake of levamisole in tissues of cestodes of Goat (Monezia expensa) in small ruminants. The drug was exposed to M. expensa by in vitro till its death or a parasite ceases its movement. The tissue/ part of proglattids of the M. expensa were homogenized with some modifications and levamisole extraction was performed with liquid phase extraction method. The evaporation of solvent was done and the residual cestodal tissues were cleaned by solid phase. After the solid phase extraction method, the recovery of drug, detection and quantification of levamisole from cestodal tissues was determined through Reverse Phase Column High Performance Liquid Chromatography (RP-HPLC). Levamisole (LEV) molecules assay was obtained on a C18 reverse-phase (20um, 6mm x 150mm) column at flow rate of 1ml/min using acetonitrile and ammonium acetate as mobile phase and UV detection was done at 254nm. The development of method of Levamisole (LEV) detection from cestodal tissues by HPLC in vitro samples has been demonstrated first time in Pakistan, which can provide the solution of parasitic control and provide in sight in to the uptake of anti cestodal drugs either against human or livestock parasites.
Wang, Jincheng; Xiong, Li; Zhang, Haijun; Chen, Jiping
2011-12-01
A simple method based on solid phase extraction (SPE) coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for the determination of octylphenol (OP), nonylphenol (NP), octylphenol ethoxylates (OPEOs) and nonylphenol ethoxylates (NPEOs) in brine. The extraction and cleanup of brine samples were performed on C18 solid-phase extraction cartridges. The complete separation among OP, NP, OPEOs and NPEOs was achieved on a Hypersil GOLD analytical column with methanol-water as the mobile phase. The determination was achieved using HPLC-MS with electrospray ionization (ESI) in selected ion monitoring mode. The results showed that the average recoveries of target compounds were 59.6% - 104.4% and the corresponding relative standard deviations (RSDs, n = 3) were 1.0% - 13.5%. The instrumental limits of detection for the compounds were 0.08 - 3 microg/L. This method was applied to the analysis of the samples of seawater near Dalian coast. The results showed that both NP and NPEOs were detected in all samples and their concentrations in seaport and oil port were much higher than those in other sampling sites.
Injection of coal by screw feed
NASA Technical Reports Server (NTRS)
Fisher, R.
1977-01-01
The use of the screw feeder for injecting solids through a 20 to 30 psi barrier is common practice in the cement making industry. An analytical extrapolation of that design, accounting for pressure holding characteristics of a column of solids, shows that coal can be fed to zones at several hundred psi with minimal or no loss of gas. A series of curves showing the calculated pressure gradient through a moving column of solids is presented. Mean particle size, solids velocity, and column length are parameters. Further study of this system to evaluate practicality is recommended.
Guo, C; Hu, J-Y; Chen, X-Y; Li, J-Z
2008-02-01
An analytical method for the determination imazaquin residues in soybeans was developed. The developed liquid/liquid partition and strong anion exchange solid-phase extraction procedures provide the effective cleanup, removing the greatest number of sample matrix interferences. By optimizing mobile-phase pH water/acetonitrile conditions with phosphoric acid, using a C-18 reverse-phase chromatographic column and employing ultraviolet detection, excellent peak resolution was achieved. The combined cleanup and chromatographic method steps reported herein were sensitive and reliable for determining the imazaquin residues in soybean samples. This method is characterized by recovery >88.4%, precision <6.7% CV, and sensitivity of 0.005 ppm, in agreement with directives for method validation in residue analysis. Imazaquin residues in soybeans were further confirmed by high performance liquid chromatography-mass spectrometry (LC-MS). The proposed method was successfully applied to the analysis of imazaquin residues in soybean samples grown in an experimental field after treatments of imazaquin formulation.
Lefebvre, P; Agadir, A; Cornic, M; Gourmel, B; Hue, B; Dreux, C; Degos, L; Chomienne, C
1995-04-07
All-trans retinoic acid (all-trans RA), the active metabolite of vitamin A, has been demonstrated to be an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (APL), the AML3 subtype of the FAB cytological classification. Complete remission is obtained by inducing terminal granulocytic differentiation of the leukemic cells. To study all-trans RA pharmacokinetics in patients with APL, a rapid, precise and selective high-performance liquid chromatographic (HPLC) assay was developed. This method is easy and shows good repeatability (C.V. = 8.41-12.44%), reproducibility (C.V. = 9.19-14.73%), accuracy (C.V. = 3.5-11%) and sensitivity with a detection limit of 5 pmol/ml. The analysis is performed using normal-phase HPLC in an isocratic mode with UV detection after solid-phase extraction on octadecyl (C18) columns. The mobile phase is hexane-dichloromethane-dioxane (78:18:4, v/v) containing 1% acetic acid.
Hinsmann, P; Arce, L; Ríos, A; Valcárcel, M
2000-01-07
The separation of seven pesticides by micellar electrokinetic capillary chromatography in spiked water samples is described, allowing the analysis of pesticides mixtures down to a concentration of 50 microg l(-1) in less than 13 min. Calibration, pre-concentration, elution and injection into the sample vial was carried out automatically by a continuous flow system (CFS) coupled to a capillary electrophoresis system via a programmable arm. The whole system was electronically coupled by a micro-processor and completely controlled by a computer. A C18 solid-phase mini-column was used for the pre-concentration, allowing a 12-fold enrichment (as an average value) of the pesticides from fortified water samples. Under the optimal extraction conditions, recoveries between 90 and 114% for most of the pesticides were obtained.
Plasma column and nano-powder generation from solid titanium by localized microwaves in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda
2015-07-14
This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less
Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won
2015-08-21
We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.
Irakli, Maria N; Samanidou, Victoria F; Papadoyannis, Ioannis N
2012-03-07
The separation and determination of tocopherols (Ts) and tocotrienols (T3s) by reversed-phase high-performance liquid chromatography with fluorescence detection has been developed and validated after optimization of various chromatographic conditions and other experimental parameters. Analytes were separated on a PerfectSil Target ODS-3 (250 × 4.6 mm, 3 μm) column filled with a novel sorbent material of ultrapure silica gel. The separation of Ts and T3s was optimized in terms of mobile-phase composition and column temperature on the basis of the best compromise among efficiency, resolution, and analysis time. Using a gradient elution of mobile phase composed of isopropanol/water and 7 °C column temperature, a satisfactory resolution was achieved within 62 min. For the quantitative determination, α-T acetate (50 μg/mL) was used as the internal standard. Detection limits ranged from 0.27 μg/mL (γ-T) to 0.76 μg/mL (γ-T3). The validation of the method was examined performing intraday (n = 5) and interday (n = 3) assays and was found to be satisfactory, with high accuracy and precision results. Solid-phase extraction provided high relative extraction recoveries from cereal samples: 87.0% for γ-T3 and 115.5% for δ-T. The method was successfully applied to cereals, such as durum wheat, bread wheat, rice, barley, oat, rye, and corn.
Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.
Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne
2017-07-01
The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2013-07-05
The effective diffusion coefficients of five low molecular weigh compounds (naphthalene, uracil, uridine, adenosine, and cytosine) were measured at room temperature in a 4.6mm×100mm column packed with 3.5μm XBridge HILIC particles. The mobile phase was an acetonitrile-water mixture (92.5/7.5, v/v) containing 10mM ammonium acetate and 0.02% acetic acid. Using a physically reliable model of effective diffusion in binary composite media (Torquato's model), accurate estimates of the intra-particle diffusivities in the HILIC particles were obtained as a function of the retention of these analytes. The HILIC diffusion coefficients were compared to those previously obtained for endcapped RPLC-C18 particles (5.0μm Gemini-C18). The experimental results confirm that adsorption sites are not localized in RPLC whereas they are so in the HILIC mode. In contrast to RPLC columns, HILIC columns provide longitudinal diffusion B/u terms that increase very little with increasing retention factors. This confirms the absence of surface diffusion in HILIC. The impact of intra-particle diffusivity on the column efficiency was projected in HILIC and RPLC on the basis of the measured intra-particle diffusivities and on the well established theory of band broadening in particulate columns. Accordingly, RPLC columns generate short-range eddy dispersion and solid-liquid mass transfer resistance Cu terms that increase less than do HILIC column with increasing retention factors. The HETP contribution caused by the trans-column structure heterogeneity is smaller in the HILIC than in the RPLC modes because the transverse excursion length is smaller in HILIC. Even though the overall column efficiencies are comparable in HILIC and RPLC, this study shows that the individual mass transfer phenomena are inherently different in the HILIC and the RPLC retention modes. Copyright © 2013 Elsevier B.V. All rights reserved.
Shamsayei, Maryam; Yamini, Yadollah; Asiabi, Hamid; Safari, Meysam
2018-02-22
The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe 3 O 4 ) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L -1 , with linear responses from 0.1-500 μg L -1 (water samples), 0.6-500 μg L -1 (spiked urine), and 0.9-500 μg L -1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n = 5) are in the range of 2.2-5.4%, 2.8-4.9%, and 2.0-5.2% at concentration levels of 5, 25 and 50 μg L -1 , respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved. Graphical abstract Fe 3 O 4 @SiO 2 @CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.
Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip
2012-02-01
The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.
Bişgin, Abdullah Taner
2018-05-29
Background: Brilliant Blue and Sunset Yellow, two highly water-soluble synthetic food dyes, are the most popular food dyes used and consumed. Although they are not highly toxic, some health problems can be observed when excessive amounts of food products containing these dyes are consumed. Objectives: The aim of the study was to develop a simultaneous UV-Vis combined solid-phase extraction method, based on the adsorption onto Amberlite XAD-8 resin, for determination of Brilliant Blue and Sunset Yellow dyes. Methods: Sample solution was poured into the reservoir of the column and permitted to gravitationally pass through the column at 2 mL/min flow rate. Adsorbed dyes were eluted to 5 mL of final volume with 1 mol/L HNO₃ in ethanol solution by applying a 2 mL/min flow rate. Dye concentrations of the solution were determined at 483 and 630 nm for Sunset Yellow and Brilliant Blue, respectively. Results: The detection limits of the method for Brilliant Blue and Sunset Yellow were determined as 0.13 and 0.66 ng/mL, respectively. Preconcentration factor was 80. Brilliant Blue contents of real food samples were found to be between 11 and 240 μg/g. Sunset Yellow concentrations of foodstuffs were determined to be between 19 and 331 μg/g. Conclusions: Economical, effective, and simple simultaneous determination of Brilliant Blue and Sunset Yellow was achieved by using a solid-phase extraction combined UV-Vis spectrometry method. Highlights: The method is applicable and suitable for routine analysis in quality control laboratories without the need for expert personnel and high operational costs because the instrumentation is simple and inexpensive.
Frazey, P A; Barkley, R M; Sievers, R E
1998-02-01
An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.
Transport models for desorption from natural soils packed in flushed columns
NASA Astrophysics Data System (ADS)
Brouwers, H. J. H.
1999-06-01
This paper addresses an experimental and theoretical study of sorbed contaminant removal from a column (or reactor) by flushing. This removal may take place by either volatilization or rinsing, and nonlinear sorption is accounted for by employing a Freundlich relationship. A one-dimensional nonequilibrium transport model is proposed which describes the unsteady mass transfer between flushing medium and soil phases in the column, using a linear chemical transfer model. The moving boundary problem is transferred, and a perturbation method is employed to obtain an approximate solution of the governing equations for a small Merkel number Me (this dimensionless number comprises the product of fluid residence time and the mass transfer coefficient). The solution reveals the effect of the various parameters, such as the Freundlich parameter n, on the contaminant transport in fluid phase and decay in solid phase. Applying the model to various experimental data results in values for the overall mass transfer coefficients, which are useful for engineering computations. Furthermore, the model enables the prediction of the initial soil contamination level as well as the parameter n solely from the measured exit contaminant concentrations in the flushing fluid. A thorough comparison of this prediction with the measured soil concentration (prior to the experiments) yields good agreement.
NASA Astrophysics Data System (ADS)
Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.
2018-04-01
In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.
Ling, Xu; Zou, Li; Chen, Zilin
2017-09-01
A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka
2018-06-22
The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion chromatography (SEC) before grafting onto silica surface. Moreover, both of the monomers were commercially available. Therefore, the technique of preparation was very facile and better separation was achieved with the Sil-alt-T phase compared to the ODS, C 30 and other previously reported alternating copolymer-based columns. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Z.; Wen, H.; Li, L.
2017-12-01
Accidental release of Marcellus Shale waters (MSW) can release high concentrations of chemicals that can deteriorate groundwater quality. It is important to understand the reactive transport and fate of chemicals from MSW. Natural aquifers typically have complex mineralogical compositions and are heterogeneous with large spatial variation in terms of physical and geochemical properties. To investigate the effects of mineralogical compositions, flow-through experiments and reactive transport modeling were carried out using 3 large columns (5 cm×50 cm, Quartz, Calcite, and Vermiculite). Results indicate calcite immobilizes heavy metals by precipitation and solid solution partitioning (coprecipitation). Vermiculite retards heavy metals through ion exchange. The sorbed chemicals however slowly release back to the groundwater. Na and Ca transport similarly to Br in Qtz and Cal columns however become sorbed in Vrm column during release through ion exchange by 27.8% and 46.5%, respectively and later slowly release back to aqueous phase. To understand the role of mineral spatial patterns, three 2D flow-cell (40 cm×12 cm×1 cm) experiments were carried out. All flow cells have the same clay mass within quartz matrix but different spatial patterns characterized by the relative length of the clay zone ( 0, ¼, ½) of the domain length (L). Results show that in the uniform column, ion exchange dominates and most Ba sorbs to the solid phase, to an extent Ba cannot precipitate out with SO4 as barite. In 1/2-Zone, however, most Ba precipitates as barite. In 1/4-Zone, both ion exchange and mineral precipitation occur. In general, the 1/2-Zone has the smallest ion exchange capacity for other species including Na, Ca, Mg, K and heavy metals (Mn, Cu, Zn, Cd and Pb) as well. Our flow cell experiment emphasizes the importance of mineral spatial patterns in regulating not only reaction rates but also the type of reactions in controlling the reactive transport of MSW chemicals. The column study suggests in carbonate rich aquifers, carbonate facilitate natural attenuation. In clay-rich aquifers, such as sandstone aquifers, clay helps alleviate the cation during MSW release however these sorbed cations will ultimately release back to the aqueous phase. In sand and gravel aquifers, mixing process primarily controls the concentration level.
Recent trends in ultra-fast HPLC: new generation superficially porous silica columns.
Ali, Imran; Al-Othman, Zeid A; Nagae, Norikaju; Gaitonde, Vinay D; Dutta, Kamlesh K
2012-12-01
New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8), C(18), RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2)/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yingguo; Chen, Yiqiang; Li, Zhengguo; Zhang, Lei; Li, Xianliang; Xi, Cunxian; Wang, Guomin; Wang, Xiong; Guo, Qi; Li, Na
2012-03-01
This paper describes the preparation of a novel mixed-bed immunoaffinity chromatography (IAC) column by coupling four monoclonal antibodies against different sulfonamides (SAs) to Sepharose 4B. The IAC column can be used to simultaneously extract and purify 16 SAs in pork muscle. The dynamic column capacities for all SAs in mixed standard solution were between 312 and 479 ng/mL gel. After simple extraction and IAC cleanup, the sample solution can be directly injected for liquid chromatography-ultraviolet analysis. The recoveries of SAs from spiked samples at levels of 25, 50 and 100 µg/kg ranged from 83.3 to 103.1% with variation coefficient less than 8.6%. The comparison of IAC with liquid-liquid extraction and solid phase extraction indicated that IAC has better purification effect and needs less organic solution than conventional methods, thus it would be an ideal method for selective purification of SAs in pork muscle.
Lirio, Stephen; Liu, Wan-Ling; Lin, Chen-Lan; Lin, Chia-Her; Huang, Hsi-Ya
2016-01-08
In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin). The Al-MOF-polymer was characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM-energy-dispersive X-ray spectroscopy (SEM-EDS) to clarify the retained crystalline structure well as the homogeneous dispersion of Al-MOF (MIL-53) in polymer monolith. The developed Al-MOF-polymer (MIL-53) monolithic column was evaluated according to its extraction recovery of penicillins. Several parameters affecting the extraction recoveries of penicillins using fabricated Al-MOF-polymer (MIL-53) monolithic column including different MIL-53 weight percentages, column length, pH, desorption solvent, and mobile phase flow rate were investigated. For comparison, different Al-based MOFs (MIL-68, CYCU-4 and DUT-5) were fabricated using the optimized condition for MIL-53-polymer (sample matrix at pH 3, 200μL desorption volume using methanol, 37.5% of MOF, 4-cm column length at 0.100mLmin(-1) flow rate). Among all the Al-MOF-polymers, MIL-53(Al)-polymer still afforded the best extraction recovery for penicillins ranging from 90.5 to 95.7% for intra-day with less than 3.5% relative standard deviations (RSDs) and inter-day precision were in the range of 90.7-97.6% with less than 4.2% RSDs. Meanwhile, the recoveries for column-to-column were in the range of 89.5-93.5% (<3.4% RSDs) while 88.5-90.5% (<5.8% RSDs) for batch-to-batch (n=3). Under the optimal conditions, the limit of detections were in the range of 0.06-0.26μgL(-1) and limit of quantifications between 0.20 and 0.87μgL(-1). Finally, the MIL-53-polymer was applied for the extraction of penicillin in river water and milk by spiking trace-level penicillin for as low as 50μgL(-1) and 100μgL(-1) with recoveries ranging from 80.8% to 90.9% (<6.7% RSDs) in river water and 81.1% to 100.7% (<7.1% RSDs) in milk sample, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Franke, Lukáš; Čožíková, Dagmar; Smirnou, Dzianis; Hermannová, Martina; Hanová, Tereza; Růžičková, Andrea; Velebný, Vladimír
2015-08-01
Two chromatographic methods for the quantitative analysis of uridine diphosphate (UDP) sugars involved in hyaluronan pathway of Streptococcus zooepidemicus (SEZ) were developed and compared. The sample preparation protocol using centrifugation and extraction in hot ethanol was employed prior to the analyses. Separation was achieved using an anion exchange Spherisorb SAX column or a Shodex QA-825 column connected with a photodiode array (PDA) detector. To increase the throughput of the chromatography method employing the Spherisorb SAX column, the solid phase extraction (SPE) procedure was introduced. Method validation results displayed that limits of detection (LODs) of UDP-glucose (UDP-Glc), UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA) calculated according to QC Expert software were in the low micromolar range and the coefficient of correlation (R(2)) was above 0.997. However, the analytical technique using the Spherisorb SAX column resulted in 80-90% recoveries and low LODs (≤6.19μM), the Shodex QA-825 column showed better long-term stability and reproducible chromatographic properties (RSD≤5.60%). The Shodex QA-825 column was successfully used to monitor UDP-sugar levels during the growth rate of SEZ cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Chiap, P; Rbeida, O; Christiaens, B; Hubert, Ph; Lubda, D; Boos, K S; Crommen, J
2002-10-25
A new kind of silica-based restricted-access material (RAM) has been tested in pre-columns for the on-line solid-phase extraction (SPE) of basic drugs from directly injected plasma samples before their quantitative analysis by reversed-phase liquid chromatography (LC), using the column switching technique. The outer surface of the porous RAM particlescontains hydrophilic diol groups while sulphonic acid groups are bound to the internal surface, which gives the sorbent the properties of a strong cation exchanger towards low molecular mass compounds. Macromolecules such as proteins have no access to the internal surface of the pre-column due to their exclusion from the pores and are then flushed directly out. The retention capability of this novel packing material has been tested for some hydrophilic basic drugs, such as atropine, fenoterol, ipratropium, procaine, sotalol and terbutaline, used as model compounds. The influence of the composition of the washing liquid on the retention of the analytes in the pre-column has been investigated. The elution profiles of the different compounds and the plasma matrix as well as the time needed for the transfer of the analytes from the pre-column to the analytical column were determined in order to deduce the most suitable conditions for the clean-up step and develop on-line methods for the LC determination of these compounds in plasma. The cationic exchange sorbent was also compared to another RAM, namely RP-18 ADS (alkyl diol silica) sorbent with respect to retention capability towards basic analytes.
González-Fuenzalida, R. A.; Moliner-Martínez, Y.; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P.; Zaragozá, Ramon J.
2014-01-01
The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%). PMID:28344221
Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali
2014-07-01
Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NDMA is an emerging drinking water contaminant that is of interest to EPA and the environmental community. Its presence in drinking water is a potential health concern, because the EPA's IRIS data base lists the concentration of NDMA required to result in a one in one million li...
Cajka, Tomás; Hajslová, Jana; Cochran, Jack; Holadová, Katerina; Klimánková, Eva
2007-03-01
Head-space solid phase microextration (SPME), followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS), has been implemented for the analysis of honey volatiles, with emphasis on the optimal selection of SPME fibre and the first- and second-dimension GC capillaries. From seven SPME fibres investigated, a divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50/30 microm fibre provided the best sorption capacity and the broadest range of volatiles extracted from the headspace of a mixed honey sample. A combination of DB-5ms x SUPELCOWAX 10 columns enabled the best resolution of sample components compared to the other two tested column configurations. Employing this powerful analytical strategy led to the identification of 164 volatile compounds present in a honey mixture during a 19-min GC run. Combination of this simple and inexpensive SPME-based sampling/concentration technique with the advanced separation/identification approach represented by GCxGC-TOFMS allows a rapid and comprehensive examination of the honey volatiles profile. In this way, the laboratory sample throughput can be increased significantly and, at the same time, the risk of erroneous identification, which cannot be avoided in one-dimensional GC separation, is minimised.
Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos
2015-01-01
This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.
Ha, Jing; Song, Ge; Ai, Lian-Feng; Li, Jian-Chen
2016-04-01
A new method using solid phase extraction (SPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the determination of six polyether antibiotics, including lasalocid, salinomycin, monensin, narasin, madubamycin and nigericin residues, in foods of animal origin. The samples were extracted with acetonitrile and purified by ENVI-Carb SPE columns after comparing the impurity effect and maneuverability of several SPE cartridges. Subsequently, the analytes were separated on a Hypersil Gold column (2.1×150mm, 5μm) and analyzed by MS/MS detection. The limit of quantization (LOQ) for milk and chicken was 0.4μg/kg, and for chicken livers and eggs, it was 1μg/kg. The linearity was satisfactory with a correlation coefficient of >0.9995 at concentrations ranging from 2 to 100μg/L. The average recoveries of the analytes fortified at three levels ranged from 68.2 to 114.3%, and the relative standard deviations ranged from 4.5 to 12.1%. The method was suitable for quantitative analysis and confirmation of polyether antibiotic residues in foods of animal origin. Copyright © 2016 Elsevier B.V. All rights reserved.
Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes
2009-08-15
A semiautomatic method has been proposed for the determination of different types of amines in water samples including anilines, chloroanilines, N-nitrosamines and aliphatic amines. The analytes were retained on a solid-phase extraction sorbent column and after elution, 1 microL of the extract was analysed by gas chromatography coupled with electron impact ionization mass spectrometry. A systematic overview is given of the advantages and disadvantages of several sorbents (LiChrolut EN, Oasis HLB, RP-C(18), graphitized carbon black, fullerenes and nanotubes) in the retention of amine compounds and based on sensitivity, selectivity and reliability. The retention efficiency for the studied amines was higher (ca. 100%) with LiChrolut EN and Oasis HLB than it was with RP-C(18) and fullerenes (53 and 62%, respectively, on average). Detection limits of 0.5-16 ng L(-1) for the 27 amines studied were obtained when using a sorbent column containing 75 mg of LiChrolut EN for 100mL of sample, the RSD being lower than 6.5%. The method was applied with good accuracy and precision in the determination of amines in various types of water including river, pond, tap, well, drinking, swimming pool and waste.
Chen, LiQin; Wang, Hui; Xu, Zhen; Zhang, QiuYue; Liu, Jia; Shen, Jun; Zhang, WanQi
2018-08-03
In the present study, we developed a simple and high-throughput solid phase extraction (SPE) procedure for selective extraction of catecholamines (CAs) in urine samples. The SPE adsorbents were electrospun composite fibers functionalized with 4-carboxybenzo-18-crown-6 ether modified XAD resin and polystyrene, which were packed into 96-well columns and used for high-throughput selective extraction of CAs in healthy human urine samples. Moreover, the extraction efficiency of packed-fiber SPE (PFSPE) was examined by high performance liquid chromatography coupled with fluorescence detector. The parameters affecting the extraction efficiency and impurity removal efficiency were optimized, and good linearity ranging from 0.5 to 400 ng/mL was obtained with a low limit of detection (LOD, 0.2-0.5 ng/mL) and a good repeatability (2.7%-3.7%, n = 6). The extraction recoveries of three CAs ranged from 70.5% to 119.5%. Furthermore, stable and reliable results obtained by the fluorescence detector were superior to those obtained by the electrochemical detector. Collectively, PFSPE coupled with 96-well columns was a simple, rapid, selective, high-throughput and cost-efficient method, and the proposed method could be applied in clinical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.
Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.
Bartzas, Georgios; Komnitsas, Kostas
2010-11-15
A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. Copyright © 2010 Elsevier B.V. All rights reserved.
Gong, Rujin; Lin, Xiaojian; Li, Ping; Yu, Jianguo; Rodrigues, Alirio E
2014-10-10
The separation of guaifenesin enantiomers by both simulated moving bed (SMB) process and Varicol process was investigated experimentally and theoretically, where the columns were packed with cellulose tris 3,5-dimethylphenylcarbamate (Chiralcel OD) stationary phase and a mixture of n-hexane and ethanol was used as mobile phase. The operation conditions were designed based on the separation region with the consideration of mass transfer resistance and axial dispersion, and the experiments to separate guaifenesin enantiomers were carried out on VARICOL-Micro unit using SMB process with the column configuration of 1/2/2/1 and Varicol process with the column configuration of 1/1.5/1.5/1, respectively. Single enantiomer with more than 99.0% purity was obtained in both processes with the productivity of 0.42 genantiomer/dcm(3) CSP for SMB process and 054 genantiomer/dcm(3) CSP for Varicol process. These experimental results obtained from SMB and Varicol processes were compared with those reported from literatures. In addition, according to the numerical simulation, the effects of solid-film mass transfer resistance and axial dispersion on the internal profiles were discussed, and the effect of column configuration on the separation performance of SMB and Varicol processes was analyzed for a few columns system. The feasibility and efficiency for the separation of guaifenesin enantiomers by SMB and Varicol processes were evaluated. Copyright © 2014 Elsevier B.V. All rights reserved.
29 CFR 1926.756 - Beams and columns.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...
29 CFR 1926.756 - Beams and columns.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...
29 CFR 1926.756 - Beams and columns.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...
29 CFR 1926.756 - Beams and columns.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...
Ou, Junjie; Lin, Hui; Zhang, Zhenbin; Huang, Guang; Dong, Jing; Zou, Hanfa
2013-01-01
Hybrid organic-silica monolithic columns, regarded as a second generation of silica-based monoliths, have received much interest due to their unique properties over the pure silica-based monoliths. This review mainly focuses on development in the fields of preparation of hybrid monolithic columns in a capillary and their application for CEC and capillary liquid chromatography separation, as well as for sample pretreatment of solid-phase microextraction and immobilized enzyme reactor since July 2010. The preparation approaches are comprehensively summarized with three routes: (i) general sol-gel process using trialkoxysilanes and tetraalkoxysilanes as coprecursors; (ii) "one-pot" process of alkoxysilanes and organic monomers concomitantly proceeding sol-gel chemistry and free radical polymerization; and (iii) other polymerization approaches of organic monomers containing silanes. The modification of hybrid monoliths containing reactive groups to acquire the desired surface functionality is also described. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rugged large volume injection for sensitive capillary LC-MS environmental monitoring
NASA Astrophysics Data System (ADS)
Roberg-Larsen, Hanne; Abele, Silvija; Demir, Deniz; Dzabijeva, Diana; Amundsen, Sunniva F.; Wilson, Steven R.; Bartkevics, Vadims; Lundanes, Elsa
2017-08-01
A rugged and high throughput capillary column (cLC) LC-MS switching platform using large volume injection and on-line automatic filtration and filter back-flush (AFFL) solid phase extraction (SPE) for analysis of environmental water samples with minimal sample preparation is presented. Although narrow columns and on-line sample preparation are used in the platform, high ruggedness is achieved e.g. injection of 100 non-filtrated water samples would did not result in a pressure rise/clogging of the SPE/capillary columns (inner diameter 300 µm). In addition, satisfactory retention time stability and chromatographic resolution were also features of the system. The potential of the platform for environmental water samples was demonstrated with various pharmaceutical products, which had detection limits (LOD) in the 0.05 - 12.5 ng/L range. Between-day and within-day repeatability of selected analytes were < 20% RSD.
Farré, Maria José; Insa, Sara; Mamo, Julian; Barceló, Damià
2016-08-05
A new methodology based on on-line solid-phase extraction (SPE) ultra-high-performance-liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS-MS) for the determination of 15 individual anthropogenic N-nitrosodimethylamine (NDMA) precursors was developed. On-line SPE was performed by passing 2mL of the water sample through a Hypersil GOLD aQ column and chromatographic separation was done using a Kinetex Biphenyl column using methanol and 0.1% formic acid aqueous solution as a mobile phase. For unequivocal identification and confirmation, two selected reaction monitoring (SRM) transitions were monitored per compound. Quantification was performed by internal standard approach and matrix match calibration. The main advantages of the developed method are high sensitivity (limits of detection in the sub ng/L range), selectivity due to the use of tandem mass spectrometry, precision and minimum sample manipulation as well as fast analytical response. Process efficiency and recovery were also evaluated for all the target compounds. As part of the validation procedure, the method was applied in a sampling campaign for the analysis of influent and secondary effluent of a wastewater treatment plant (WWTP) in Girona, Spain. Additionally, the effluent from a nanofiltration (NF) membrane system used for water recycling was monitored. The percentage of NDMA formation explained by the measured precursors was also quantified. Copyright © 2016 Elsevier B.V. All rights reserved.
Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping
2012-05-15
In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.
Li, Xiaobing; Zhou, Man; Turson, Mamat; Lin, Shen; Jiang, Ping; Dong, Xiangchao
2013-05-21
A novel imprinted monolithic material with the ability of protein exclusion was developed for the selective extraction of clenbuterol (CLE) from biological samples by direct injection in the HPLC analysis. The material has an imprinted inner structure and hydrophilic outer layer. The reversible addition-fragmentation chain transfer (RAFT) polymerization was employed in the material preparation by a two-step procedure. In the first step, clenbuterol imprinted monolithic polymer was synthesized by combining the molecular imprinting and the RAFT polymerization techniques. The resulting monolithic polymer has a RAFT chain transfer agent (trithioester groups) in its structure, which was used to graft poly(glycerol mono-methacrylate) [pGMMA] in the second step by post-RAFT polymerization. The hydrophilic pGMMA layers grafted on the surface of the imprinted monolith created barriers for protein diffusion. More than 90% of bovine serum albumin can be excluded from the pGMMA coated monolithic column. Meanwhile the clenbuterol was retained selectively with a large retention factor. The result indicated that the column, denoted as RA-MIM, has both the merits of a molecularly imprinted polymer and restricted access material. By using RA-MIM as the solid-phase extraction pre-column, an on-line column-switching HPLC method for the determination of clenbuterol in human serum has been established and validated. The recoveries of clenbuterol from the serum were 87.3-96.9% in the spiked level 2-1000 ng mL(-1). Both good linearity (R = 0.999) and acceptable reproducibility (RSD < 7.0%) were obtained. The limit of detection and the limit of quantitation were 0.7 ng mL(-1) and 2.0 ng mL(-1) respectively, which is sensitive in terms of UV detection. The results have demonstrated that the RAFT polymerization can be used to synthesize bi-functional monolithic columns by using its living reaction property. The resulting RA-MIM in this research can be used for efficient clenbuterol determination by HPLC from biological samples.
NASA Astrophysics Data System (ADS)
Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo
2018-04-01
Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.
Dissolved sulfides in the oxic water column of San Francisco Bay, California
Kuwabara, J.S.; Luther, G.W.
1993-01-01
Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.
Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang
2008-01-01
Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.
Stationary phase deposition based on onium salts
Wheeler, David R [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM; Dirk, Shawn M [Albuquerque, NM; Trudell, Daniel E [Albuquerque, NM
2008-01-01
Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.
Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine.
de Oliveira, Anderson Rodrigo Moraes; Cesarino, Evandro José; Bonato, Pierina Sueli
2005-04-25
A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.
Zhan, Yanwei; Musteata, Florin M; Basset, Fabien A; Pawliszyn, Janusz
2011-01-01
A thin sheet of polydimethylsilosane membrane was used as an extraction phase for solid-phase microextraction. Compared with fiber or rod solid-phase microextraction geometries, the thin film exhibited much higher extraction capacity without sacrificing extraction time due to its higher area-to-volume ratio. The analytical method involved direct extraction of unconjugated testosterone (T) and epitestosterone (ET) followed by separation on a C18 column and detection by selected reaction monitoring in positive ionization mode. The limit of detection was 1 ng/l for both T and ET. After method validation, free (unconjugated) T and ET were extracted and quantified in real samples. Since T and ET are extensively metabolized, the proposed method was also applied to extract the steroids after enzymatic deconjugation of urinary-excreted steroid glucuronides. The proposed method allows quantification of both conjugated and unconjugated steroids, and revealed that there was a change in the ratio of T to ET after enzymatic deconjugation, indicating different rates of metabolism.
Kumar, Ashwini; Singh, Baldev; Malik, Ashok Kumar; Tiwary, Dhananjay K
2007-01-01
A new approach has been developed for the extraction and determination of aldehydes such as veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde by using solid-phase microextraction (SPME) and high-performance liquid chromatography with UV detection (HPLC/UV). The method involves adsorption of the aldehydes on polydimethylsiloxane/divinylbenzene-coated fiber, followed by desorption in the desorption chamber of the SPME-HPLC interface, using acetonitrile-water (70 + 30) as the mobile phase; UV detection was at 254 nm. A good separation of 5 aldehydes was obtained on a C18 column. The detection limits of veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde are 25, 41, 13, 12, and 11 pg/mL, respectively, which are about 100 times better than the detection limits for other SPME methods using gas chromatography. The proposed method was validated by determining benzaldehyde in bitter almonds and cinnamaldehyde in cinnamon bark. The recoveries of the 5 analytes were determined by analysis of spiked drinking water.
Carlucci, Giuseppe; Pasquale, Dorina Di; Ruggieri, Fabrizio; Mazzeo, Pietro
2005-12-15
A method based on solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) was developed for the simultaneous determination of 3-(3,5-diclorophenyl)-5-ethenyl-5-methyl-2,4-oxazolidinedione (vinclozolin) and 3-(3,5-diclorophenyl)-N-(1-methylethyl)-2,4-dioxo-1-imidazolidinecarboxamide (iprodione) in human urine. Urine samples containing vinclozolin and iprodione were collected by solid phase extraction using C(18) cartridges. The chromatographic separation was achieved on a Spherisorb ODS2 (250 mm x 4.6 mm, 5 microm) column with an isocratic mobile phase of acetonitrile-water (60:40, v/v). Detection was UV absorbance at 220 nm. The calibration graphs were linear from 30 to 1000 ng/mL for the two fungicides. Intra- and inter-day R.S.D. did not exceed 2.9%. The quantitation limit was 50 ng/mL for vinclozolin and 30 ng/mL for iprodione, respectively.
Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan
2017-01-01
Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.
Månsson, Maria; Phipps, Richard K; Gram, Lone; Munro, Murray H G; Larsen, Thomas O; Nielsen, Kristian F
2010-06-25
Microbial natural products (NP) cover a high chemical diversity, and in consequence extracts from microorganisms are often complex to analyze and purify. A distribution analysis of calculated pK(a) values from the 34390 records in Antibase2008 revealed that within pH 2-11, 44% of all included compounds had an acidic functionality, 17% a basic functionality, and 9% both. This showed a great potential for using ion-exchange chromatography as an integral part of the separation procedure, orthogonal to the classic reversed-phase strategy. Thus, we investigated the use of an "explorative solid-phase extraction" (E-SPE) protocol using SAX, Oasis MAX, SCX, and LH-20 columns for targeted exploitation of chemical functionalities. E-SPE provides a minimum of fractions (15) for chemical and biological analyses and implicates development into a preparative scale methodology. Overall, this allows fast extract prioritization, easier dereplication, mapping of biological activities, and formulation of a purification strategy.
Zhang, Hua; Yang, Xin; Ma, Ying; Dong, Aijun; Zhang, Yingchun
2008-05-01
A method was developed for the simultaneous determination of canthaxanthin and astaxanthin in feedstuffs using reversed-phase high performance liquid chromatography (RP-HPLC). The sample was extracted by acetonitrile, and cleaned up by an LC-NH2 column. An Agilent ZORBAX Eclipse XDB-C18 analytical column (150 mm x 4.6 mm, 5 microm) was used and kept at 25 degrees C. Acetonitrile-methanol (95 : 5, v/v) was used as the mobile phase at a flow rate of 1.0 mL/min. The detection was performed by a diode array detector at 474 nm. The quantitive analysis of external standard calibration curves was used. The linear ranges of the method for canthaxanthin and astaxanthin were 1.0 - 30.0 mg/L (r = 0.999 0) and 1.0 - 20.0 mg/L (r = 0.999 1), respectively. The average recoveries were 90% - 101% with the relative standard deviations of 0.62% - 3.68%. The detection limits were 0.84 and 0.60 mg/L for canthaxanthin and astaxanthin, respectively. The method is simple, precise, sensitive and reproductive. It can be used to determine the contents of canthaxanthin and astaxanthin in feedstuffs.
Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Yang, Xin Hao; Ong, Eng Shi
2004-09-03
Micellar electrokinetic capillary chromatography (MECC) was developed for the separation of cytokinins including trans-zeatin, trans-zeatin-O-glucoside, dihydrozeatin, dihydrozeatin-O-glucoside, meta-topolin riboside, N6-isopentenyladenine and N6-benzylaminopurine. Under the optimum conditions, i.e. a combination of 10 mM phosphate and 10 mM borate as the running buffer containing 50 mM sodium dodecyl sulphate at pH 10.4, the separation of seven cytokinin standards was accomplished within 11 min. The C18 solid-phase extraction (SPE) method was used to pre-concentrate the putative cytokinins present in the coconut water. Following which, the eluate was further purified using mixed mode Oasis MCX SPE columns and this additional step helps to reduce matrix interference during MECC. After the two solid-phase extraction steps, the optimized MECC method was able to screen for certain cytokinins (zeatin-O-glucoside and dihydrozeatin-O-glucoside) present in coconut water. After this screening, the presence of zeatin-O-glucoside and dihydrozeatin-O-glucoside in coconut water was further confirmed by independent high-performance liquid chromatography and liquid chromatography-mass spectrometry experiments.
Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S
2015-09-03
This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Bohrer, Denise; Do Nascimento, Paulo Cícero; Ramirez, Adrian G; Mendonça, Jean Karlo A; De Carvalho, Leandro M; Pomblum, Solange Cristina G
2004-07-01
The determination of the ratio free/protein-bound serum copper along with urinary copper can be used as a preliminary test for the Wilson's Disease diagnosis. In this work, the determination of these copper fractions in serum samples was carried out in two different ways; after separation of the copper bound to proteins from the free fraction by a column for protein adsorption and by ultrafiltration. As proteins can be adsorbed onto plastic polymeric surfaces, polyethylene (PE) with different molecular weights in powder form was investigated for protein adsorption. A small column was adapted in a flow system to carry out a solid-phase extraction (SPE) on-line. Preliminary experiments defined conditions for protein retention and elution and column saturation. Good performance was achieved using Mg(NO3)2 solution as carrier and methanol as eluent. The presence of proteins in both fraction (column effluent and eluate) was checked by the Coomassie Brilliant Blue test. Copper was measured by graphite furnace atomic absorption spectrometry. The measurement in the column effluent furnished the free-fraction of copper while the copper measured in the eluate the bound-fraction. The method was compared with ultrafiltration (20 kDa), measuring the free-copper in the ultrafiltrate. For the determination of protein-bound copper, the copper found in the ultrafitrate was discounted from the total copper measured in the sample. Serum samples of 10 individuals were analyzed by both methods with good agreement of the results. The regression plots, obtained by analysing the samples by both methods, presented r2 and slope of 0.97 and 0.96 for free copper and 1.00 and 1.00 for bound copper, respectively. Protein-bound copper (PB) concentrations ranged from 74 to 2074 microg/l and free-copper (F) from 22 to 54 microg/l. The ratio F/PB, calculated from SPE data, was 29.7% for one individual, with Wilson Disease well-characterized, and ranged from 1.2% to 5.2% for the others. The SPE method performed well in terms of accuracy and precision, and showed good agreement with the UF. Advantages of SPE are small sample volume (50 microl), separation carried out in 10 min, and the use of the same column for several analyses. Copyright 2004 Elsevier B.V.
Yu, Chang Ho; Patel, Bhupendra; Palencia, Marilou; Fan, Zhihua Tina
2017-01-13
A selective, sensitive, and accurate analytical method for the measurement of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in human serum, utilizing LC-MS/MS (liquid chromatography-tandem mass spectrometry), was developed and validated according to the Centers for Disease Control and Prevention (CDC) guidelines for biological sample analysis. Tests were conducted to determine the optimal analytical column, mobile phase composition and pH, gradient program, and cleaning procedure. The final analytical column selected for analysis was an extra densely bonded silica-packed reverse-phase column (Agilent XDB-C 8 , 3.0×100mm, 3.5μm). Mobile phase A was an aqueous buffer solution containing 10mM ammonium acetate (pH=4.3). Mobile phase B was a mixture of methanol and acetonitrile (1:1, v/v). The gradient program was programmed by initiating a fast elution (%B, from 40 to 65%) between 1.0 and 1.5min, followed by a slow elution (%B: 65-80%) in the period of 1.5-7.5min. The cleanup procedures were augmented by cleaning with (1) various solvents (isopropyl alcohol, methanol, acetonitrile, and reverse osmosis-purified water); (2) extensive washing steps for the autosampler and solid phase extraction (SPE) cartridge; and (3) a post-analysis cleaning step for the whole system. Under the above conditions, the resolution and sensitivity were significantly improved. Twelve target PFASs were baseline-separated (2.5-7.0min) within a 10-min of acquisition time. The limits of detection (LODs) were 0.01ng/mL or lower for all of the target compounds, making this method 5 times more sensitive than previously published methods. The newly developed method was validated in the linear range of 0.01-50ng/mL, and the accuracy (recovery between 80 and 120%) and precision (RSD<20%) were acceptable at three spiked levels (0.25, 2.5, and 25ng/mL). The method development and validation results demonstrated that this method was precise, accurate, and robust, with high-throughput (∼10min per sample); thus suitable for large-scale epidemiological studies. Published by Elsevier B.V.
Synthesis and biological properties of enzyme-resistant analogues of substance P.
Sandberg, B E; Lee, C M; Hanley, M R; Iversen, L L
1981-02-01
Six analogues of substance P were synthesized with the aim of developing a metabolically stable peptide that would retain the biological activity of substance P. A recently isolated and characterized substance-P-degrading enzyme from human brain with a high specificity for substance P described in the preceding paper in this journal was used as a model for the enzymatic inactivation of substance P. The synthetic analogues were designed to protect the peptide bonds on the carboxyl side of residues 6, 7 and 8 of substance P, which represent the sites of cleavage by substance-P-degrading enzyme. To test for increased enzymatic resistance, the analogues were incubated with the enzyme, the digests were separated on a high-performance liquid chromatography reverse-phase column and the peptide fragments were collected and identified by amino acid analysis. Of the analogues described, an heptapeptide analogue of residues 5-11, less than Glu-Gln-Phe-MePhe-MeGly-Leu-MetNH2, showed almost complete resistance both towards substance-P-degrading enzyme and to degradation on exposure to rat hypothalamic slices. This analogue was about a third as potent as substance P in competing for binding to receptor sites for this peptide in rat brain membranes and a tenth as potent in eliciting contractions of the guinea pig ileum. The peptides were synthesized using the solid-phase technique with polydimethylacrylamide as a solid support and the coupling was achieved with pre-formed symmetrical anhydrides in dimethylacetamide. Fluorenylmethyloxycarbonyl was used as an alpha-amino protecting group in conjunction with t-butyloxycarbonyl as an epsilon-amino protecting group. Ammoniolytic cleavage from the resin was followed by stepwise elution from an SP-Sephadex column, deprotection with trifluoroacetic acid and chromatography on a Bio-Rex 70 ion-exchanger. The peptides were finally purified on a semi-preparative reverse-phase column.
A rapid solid-phase extraction fluorometric method for thiamine and riboflavin in salmonid eggs
Zajicek, James L.; Tillitt, Donald E.; Brown, Scott B.; Brown, Lisa R.; Honeyfield, Dale C.; Fitzsimons, John D.
2005-01-01
A new method has been developed and successfully applied to the selective measurement of thiamine (nonphosphorylated), total thiamine (sum of thiamine, thiamine monophosphate [TMP], thiamine diphosphate [TDP], and thiamine triphosphate [TTP]), and potentially interfering riboflavin in acidic (2% trichloroacetic acid) extracts of selected salmonid and walleye egg samples. Acidic extracts of eggs were applied directly to end-capped C18, reversed-phase solid-phase extraction (SPE) columns and separated into three fractions by elution with mixtures of PO4 buffer (pH 2), methanol (10%), and acetonitrile (20%). All thiamine compounds recovered in the first two fractions were oxidized to their corresponding thiochromes with alkaline potassium hexacyanoferrate, and we measured the thiochrome fluorescence (excitation at 360 nm, emission at 460 nm) in a 96-well microplate reader. Riboflavin, recovered in third fraction (eluted with pH 2, 20% acetonitrile), was analyzed directly by measuring the fluorescence of this fraction (excitation at 450 nm, emission at 530 nm). Significant portions of the phosphate esters of thiamine (TMP, TDP, and presumably TTP), when present at low concentrations (< 10 nmol of total -thiamine per gram of egg), were not retained by the 100-mg SPE column, and were collected directly during sample loading and in a subsequent phosphoric acid rinse as fraction 1. Free thiamine (nonphosphorylated) and remaining portions of the TDP and TMP were then eluted in the second fraction with 10% methanol/PO4 buffer, whereas the un-ionized, relatively nonpolar riboflavin was eluted in the third fraction with 20% acetonitrile. This new method uses a traditional sample homogenization of egg tissue to extract thiamine compounds into 2% trichlororacetic acid solution; an inexpensive, commercially available SPE column; small amounts of sample (0.5-1 g); microliter volumes of solvents per sample; a traditional, relatively nonhazardous, oxidation of thiamine compounds to fluorescent thiochromes; and an ultraviolet-visible-wavelength-filter fluorometer for the measurements. ?? Copyright by the American Fisheries Society 2005.
Núñez, L; Turiel, E; Tadeo, J L
2007-04-06
A simple and rapid analytical method for the determination of nonylphenol (NP) and nonylphenol ethoxylates (NPEOx) in solid environmental samples has been developed. This method combines an ultrasonic-assisted extraction procedure in small columns and an enrichment step onto C(18) solid-phase extraction cartridges prior to separation using HPLC with fluorescence detection. Method optimization was carried out using soil samples fortified at different concentration levels (from 0.1 to 100 microg/g). Under optimum conditions, 2g of soil was placed in small glass columns and extraction was performed assisted by sonication (SAESC) at 45 degrees C in two consecutive steps of 15 min using a mixture of H(2)O/MeOH (30/70). The obtained extracts were collected, loaded onto 500 mg C(18) cartridges, and analytes were eluted with 3 x 1 ml of methanol and 1 ml of acetonitrile. Finally, sample extracts were evaporated under a nitrogen stream, redissolved in 500 microl H(2)O/AcN (50/50), and passed though a 0.45 microm nylon filter before final determination by HPLC-FL. The developed procedure allowed to achieve quantitative recoveries for NP and NPEOx, and was properly validated. Finally, the method was applied to the determination of these compounds in soils and other environmental solid samples such as sediments, compost and sludge.
Brabcová, Ivana; Hlaváčková, Markéta; Satínský, Dalibor; Solich, Petr
2013-11-15
A simple and automated HPLC column-switching method with rapid sample pretreatment has been developed for quantitative determination of β-carotene in food supplements. Commercially samples of food supplements were dissolved in chloroform with help of saponification with 1M solution of sodium hydroxide in ultrasound bath. A 20-min sample dissolution/extraction step was necessary before chromatography analysis to transfer β-carotene from solid state of food supplements preparations (capsules,tablets) to chloroform solution. Sample volume - 3μL of chloroform phase was directly injected into the HPLC system. Next on-line sample clean-up was achieved on the pretreatment precolumn Chromolith Guard Cartridge RP-18e (Merck), 10×4.6mm, with a washing mobile phase (methanol:water, 92:8, (v/v)) at a flow rate of 1.5mL/min. Valve switch to analytical column was set at 2.5min in a back-flush mode. After column switching to the analytical column Ascentis Express C-18, 30×4.6mm, particle size 2.7μm (Sigma Aldrich), the separation and determination of β-carotene in food supplements was performed using a mobile phase consisting of 100% methanol, column temperature at 60°C and flow rate 1.5mL/min. The detector was set at 450nm. Under the optimum chromatographic conditions standard calibration curve was measured with good linearity - correlation coefficient for β-carotene (r(2)=0.999014; n=6) between the peak areas and concentration of β-carotene 20-200μg/mL. Accuracy of the method defined as a mean recovery was in the range 96.66-102.40%. The intraday method precision was satisfactory at three concentration levels 20, 125 and 200μg/mL and relative standard deviations were in the range 0.90-1.02%. The chromatography method has shown high sample throughput during column-switching pretreatment process and analysis in one step in short time (6min) of the whole chromatographic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bieri, Stefan; Marriott, Philip J
2006-12-01
A method producing simultaneously three retention indexes for compounds has been developed for comprehensive two-dimensional gas chromatography by using a dual secondary column approach (GC x 2GC). For this purpose, the primary flow of the first dimension column was equally diverted into two secondary microbore columns of identical geometry by means of a three-way flow splitter positioned after the longitudinally modulated cryogenic system. This configuration produced a pair of comprehensive two-dimensional chromatograms and generated retention data on three different stationary phases in a single run. First dimension retention indexes were determined on a polar SolGel-Wax column under linear programmed-temperature conditions according to the van den Dool approach using primary alcohol homologues as the reference scale. Calculation of pseudoisothermal retention indexes in both second dimensions was performed on low-polarity 5% phenyl equivalent polysilphenylene/siloxane (BPX5) and 14% cyanopropylphenyl/86% dimethylpolysiloxane (BP10) columns. To construct a retention correlation map in the second dimension separation space upon which KovAts indexes can be derived, two methods exploiting "isovolatility" relationships of alkanes were developed. The first involved 15 sequential headspace samplings of selected n-alkanes by solid-phase microextraction (SPME), with each sampling followed by their injection into the GC at predetermined times during the chromatographic run. The second method extended the second dimension retention map and consisted of repetitive introduction of SPME-sampled alkane mixtures at various isothermal conditions incremented over the temperature program range. Calculated second dimension retention indexes were compared with experimental values obtained in conventional one-dimensional GC. A case study mixture including 24 suspected allergens (i.e., fragrance ingredients) was used to demonstrate the feasibility and potential of retention index information in comprehensive 2D-GC.
Zhai, Haiyun; Huang, Lu; Chen, Zuanguang; Su, Zihao; Yuan, Kaisong; Liang, Guohuan; Pan, Yufang
2017-01-01
A novel solid-phase extraction chip embedded with array columns of molecularly imprinted polymer-coated silanized graphene oxide (GO/SiO2-MISPE) was established to detect trace rhodamine B (RB) in chili powder. GO/SiO2-MISPE monolithic columns for RB detection were prepared by optimizing the supporting substrate, template, and polymerizing monomer under mild water bath conditions. Adsorption capacity and specificity, which are critical properties for the application of the GO/SiO2-MISPE monolithic column, were investigated. GO/SiO2-MIP was examined by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy. The recovery and the intraday and interday relative standard deviations for RB ranged from 83.7% to 88.4% and 2.5% to 4.0% and the enrichment factors were higher than 110-fold. The chip-based array columns effectively eliminated impurities in chili powder, indicating that the chip-based GO/SiO2-MISPE method was reliable for RB detection in food samples using high-performance liquid chromatography. Accordingly, this method has direct applications for monitoring potentially harmful dyes in processed food. Copyright © 2016 Elsevier Ltd. All rights reserved.
Higashi, Kyohei; Shibasaki, Mana; Kuni, Kyoshiro; Uemura, Takeshi; Waragai, Masaaki; Uemura, Kenichi; Igarashi, Kazuei; Toida, Toshihiko
2017-09-29
A three column-switching high-performance liquid chromatography (HPLC) using an electrochemical detector (ECD) equipped with a diamond electrode was established to determine 3-hydroxypropylmercapturic acid (3-HPMA) in urine. An extracted urine sample was consecutively fractionated using a strong anion-exchange column (first column) and a C8 column (second column) via a switching valve before application on an Octa Decyl Silyl (ODS) column (third column), followed by ECD analysis. The% recovery of 3-HPMA standard throughout the three-column process and limit of detection (LOD) were 94±1% and 0.1pmol, respectively. A solid phase extraction step is required for the sensitive analysis of 3-HPMA in urine by column-switching HPLC-ECD despite a decreased% recovery (55%) of urine sample spiked with 100pmol of 3-HPMA. To test the utility of our column-switching HPLC-ECD method, 3-HPMA levels of 27 urine samples were determined, and the correlation between HPLC-ECD and LC-Electrospray ionization (ESI)-MS/MS method was examined. As a result, the median values of μmol 3-HPMA/g Creatinine (Cre) in urine obtained by column-switching HPLC-ECD and LC-MS/MS were 2.19±2.12μmol/g Cre and 2.13±3.38μmol/g Cre, respectively, and the calibration curve (y=1.5171x-1.007) exhibited good linearity within a defined range (r 2 =0.907). These results indicate that the combination of column-switching HPLC and ECD is a powerful tool for the specific, reliable detection of 3-HPMA in urine. Copyright © 2017 Elsevier B.V. All rights reserved.
Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D
2014-04-01
A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase
Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.
2016-01-01
A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789
Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase
NASA Astrophysics Data System (ADS)
Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.
2016-08-01
A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth.
Inukai, Takehito; Kaji, Sanae; Kataoka, Hiroyuki
2018-07-15
Smoking not only increases the risk of lung cancer but is strongly related to the onset of cardiovascular disease. Particularly, passive smoking due to sidestream smoke is a critical public health problem. To assess active and passive exposure to tobacco smoke, we developed a simple and sensitive method, consisting of on-line in-tube solid phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to determine nicotine and its metabolite cotinine in hair samples. These compounds were separated within 5 min using a Polar-RP80A column and detected in the positive ion mode by multiple reaction monitoring. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample at a flow rate of 200 μL/min using a Carboxen 1006 capillary column as an extraction device. The extracted compounds in the stationary phase on the inner wall of the capillary could be dissolved easily into the mobile phase and transferred to an LC column. Using the in-tube SPME LC-MS/MS method, the calibration curves were linear in the 5-1000 pg/mL ranges for nicotine and cotinine, and the detection limits (signal to noise ratio of 3) were 0.45 and 0.13 pg/mL, respectively. The intra-day and inter-day precisions were below 3.4% and 6.0% (n = 5), respectively. This method was utilized successfully to analyze pg/mg levels of nicotine and cotinine in 1 mg of hairs without interference peaks, and good recoveries were obtained. The concentration of cotinine in hair was two orders of magnitude lower than that of nicotine, but a good positive correlation was found between the concentrations of these compounds. This method can automate the extraction, concentration and analysis of samples, and is useful for the assessment of long-term exposure to tobacco smoke. Copyright © 2018 Elsevier B.V. All rights reserved.
Míguez-Framil, Martha; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar; Alvarez-Freire, Iván; Tabernero, María Jesús; Bermejo, Ana María
2010-10-08
A simple and fast sample pre-treatment method based on matrix solid-phase dispersion (MSPD) for isolating cocaine, benzoylecgonine (BZE), codeine, morphine and 6-monoacethylmorphine (6-MAM) from human hair has been developed. The MSPD approach consisted of using alumina (1.80 g) as a dispersing agent and 0.6M hydrochloric acid (4 mL) as an extracting solvent. For a fixed hair sample mass of 0.050 g, the alumina mass to sample mass ratio obtained was 36. A previously conditioned Oasis HLB cartridge (2 mL methanol, plus 2 mL ultrapure water, plus 1 mL of 0.2M/0.2M sodium hydroxide/boric acid buffer solution at pH 9.2) was attached to the end of the MSPD syringe for on column clean-up of the hydrochloric acid extract and for transferring the target compounds to a suitable solvent for gas chromatography (GC) analysis. Therefore, the adsorbed analytes were directly eluted from the Oasis HLB cartridges with 2 mL of 2% acetic acid in methanol before concentration by N(2) stream evaporation and dry extract derivatization with N-methyl-tert-butylsilyltrifluoroacetamide (BSTFA) and chlorotrimethylsilane (TMCS). The optimization/evaluation of all the factors affecting the MSPD and on column clean-up procedures has led to a fast sample treatment, and analytes extraction and pre-concentration can be finished in approximately 30 min. The developed method has been applied to eight hair samples from poli-drug abusers and measured analyte concentrations have been found to be statistically similar (95% confidence interval) to those obtained after a conventional enzymatic hydrolysis method (Pronase E). Copyright © 2010. Published by Elsevier B.V.
Rochat, D; Ramirez-Lucas, P; Malosse, C; Aldana, R; Kakul, T; Morin, J P
2000-07-14
Solid-phase microextraction (SPME) samplings from live insects or natural secretion allowed one to identify the aggregation pheromones of the pest beetles Scapanes australis and Strategus aloeus by efficient and rapid isolation of their highly volatile (72 < M(r) < 116) components. S. australis male pheromone was identified as a 84:12:4 (w/w) mixture of 2-butanol [67:33 (R)-(-):(S)-(+) ratio], 3-hydroxy-2-butanone and 2,3-butanediol [43:17:40 (R,R)-(-):(S,S)-(+):meso ratio], and S. aloeus pheromone as a 95.5:4.0:0.5 (w/w) mixture of 2-butanone, 3-pentanone and sec.-butyl acetate by GC-MS using conventional and chiral capillary columns. This is the first report of Scarabaeidae pheromones based on such small and common molecules.
Validation of material point method for soil fluidisation analysis
NASA Astrophysics Data System (ADS)
Bolognin, Marco; Martinelli, Mario; Bakker, Klaas J.; Jonkman, Sebastiaan N.
2017-06-01
The main aim of this paper is to describe and analyse the modelling of vertical column tests that undergo fluidisation by the application of a hydraulic gradient. A recent advancement of the material point method (MPM), allows studying both stationary and non-stationary fluid flow while interacting with the solid phase. The fluidisation initiation and post-fluidisation processes of the soil will be investigated with an advanced MPM formulation (Double Point) in which the behavior of the solid and the liquid phase is evaluated separately, assigning to each of them a set of material points (MPs). The result of these simulations are compared to analytic solutions and measurements from laboratory experiments. This work is used as a benchmark test for the MPM double point formulation in the Anura3D software and to verify the feasibility of the software for possible future engineering applications.
Defined presentation of carbohydrates on a duplex DNA scaffold.
Schlegel, Mark K; Hütter, Julia; Eriksson, Magdalena; Lepenies, Bernd; Seeberger, Peter H
2011-12-16
A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mohamed, N.; Ariffin, N. A. N.; Mohamed, C. A. R.
2016-07-01
Distribution of 226Ra and 228Ra radioactive in marine have been studied at Kapar coastal area that closed to Sultan Salahudin Abdul Aziz Shah (SJSSAS) power station. The concentration level of 226Ra and 228Ra were measured in seawater include total suspended solids (TSSrw) and dissolved phases from September 2006 to February 2008. The measurement technique used for 226Ra and 228Ra was using cation exchange column and counted using Liquid Scintillator Ciunter (LSC). The radioactivities of 226Rasw and 228Rasw in the dissolved phase of seawater ranged from 1.29 ± 0.52 mBq/L - 3.69 ± 1.29 mBq/L and 2.12 ± 0.71 mbq/L - 17.07 ± 6.03 mBq/L respectively. The measurement of radioactivities of radium isotopes in the particulate phase of seawater ranged from 15.62 ± 1.99 Bq/kg - 241.76 ± 100.23 Bq/kg (226Ratsw) and 7.19 ± 3.21 Bq/kg - 879.66 ± 365.74 Bq/kg (228Ratsw). Radium isotopes inventory in this study showed that suspended solid have higher inventory value than seawater and sediment. Study also found that suspended solid play an important role for flux contribution at seawater. Based on the finding, the radioactivity concentration of 226Ra and 228Ra is higher in particulate phase than in dissolved phase.
A Laboratory Study of Natural Zeolite for Treatment of Fluorinated Water
NASA Astrophysics Data System (ADS)
Pandey, A.
2015-12-01
Fluoride contamination is mainly induced in ground water by chemical interaction between water and fluoride bearing rocks and natural fluoridation is further catalyzed by anthropogenic activities. Elevated fluoride concentrations in the water bodies above the permissible limits are not only degrading water for drinking purposes but also to the agricultural, industrial as well as daily household needs. Fluoride content in water has been constantly a subject of serious concern to the concerned authorities. It is significantly contributing in increasing tolls of arthritis, brain and kidney diseases, cancer, male fertility issues and cases of thyroid diseases. Hence, the present study has been conducted to investigate the possibility of treating fluorinated water using zeolites. The capabilities of natural zeolites are attributed to their catalytic, molecular sieve, adsorption and ion-exchange properties which have been utilized in our laboratory experiment. The experiment was carried out in two phases. In the first phase of the experiment, the properties of zeolites were tested in solid and liquid phases using ICP-OES, SEM, EDX and IC tests. Physio-chemical alterations induced by zeolites in the fluid chemistry were monitored by analyzing fluid sample regularly for pH, redox potential, electrical conductivity and total dissolved solids, and by conducting metal and anion tests. In second phase, zeolite was used for treatment of fluorinated water with known concentration of fluoride, and the geochemical processes associated with fluoride remediation were monitored by conducting non-invasive, invasive geochemical and physical measurements at regular time periods on the water samples collected from both control column and the experiment column. Results thus obtained in this study showed decrease in fluoride concentration over time, indicating the possibility of use of zeolites in treatment of fluorinated water.
Khayoon, Wejdan Shakir; Saad, Bahruddin; Salleh, Baharuddin; Ismail, Nor Azliza; Abdul Manaf, Normaliza Hj; Abdul Latiff, Aishah
2010-10-29
The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B(1) and fumonisin B(2) by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C(18) solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith(®) RP-18e column (100 mm × 4.6 mm) at 30 °C and eluted with a mobile phase of a mixture of methanol and phosphate buffer pH 3.35 (78:22, v/v) at a flow rate of 1.0 mL min(-1). The fumonisins separation was achieved in about 4 min, compared to approximately 20 min by using a C(18) particle-packed column. The fluorescence excitation and emission were at 335 nm and 440 nm, respectively. The limits of detections were 0.01-0.04 μg g(-1) fumonisin B(1) and fumonisin B(2), respectively. Good recoveries were found for spiked samples (0.1, 0.5, 1.5 μg g(-1) fumonisins B(1) and B(2)), ranging from 84.0 to 106.0% for fumonisin B(1) and from 81.0 to 103.0% for fumonisin B(2). Fifty-three samples were analyzed including 39 food and feeds and 14 inoculated corn and rice. Results show that 12.8% of the food and feed samples were contaminated with fumonisin B(1) (range, 0.01-0.51 μg g(-1)) and fumonisin B(2) (0.05 μg g(-1)). The total fumonisins in these samples however, do not exceed the legal limits established by the European Union of 0.8 μg g(-1). Of the 14 inoculated samples, 57.1% contained fumonisin B(1) (0.16-41.0 μg g(-1)) and fumonisin B(2) (range, 0.22-50.0 μg g(-1)). Positive confirmation of selected samples was carried out using liquid chromatography-tandem mass spectrometry, using triple quadrupole analyzer and operated in the multiple reaction monitoring mode. Copyright © 2010 Elsevier B.V. All rights reserved.
Háková, Martina; Chocholoušová Havlíková, Lucie; Chvojka, Jiří; Solich, Petr; Šatínský, Dalibor
2018-02-01
Polyamide 6 nanofiber polymers were used as modern sorbents for on-line solid phase extraction (SPE) coupled with liquid chromatography. The on-line SPE system was tested for the determination of bisphenol A in river water samples. Polyamide nanofibers were prepared using needleless electrospinning, inserted into a mini-column cartridge (5 × 4.6mm) and coupled with HPLC. The effect of column packing and the amount of polyamide 6 on extraction efficiency was tested and the packing process was optimized. The proposed method was performed using a 50-µL sample injection followed by an on-line nanofibrous extraction procedure. The influence of the washing mobile phase on the retention of bisphenol A during the extraction procedure was evaluated. Ascentis ® Express C18 (10cm × 4.6mm) core-shell column was used as an analytical column. Fluorescence detection wavelengths (λ ex = 225nm and λ em = 320nm) were used for identification and quantification of Bisphenol A in river waters. The linearity was tested in the range from 2 to 500µgL -1 (using nine calibration points). The limits of detection and quantification were 0.6 and 2µgL -1 , respectively. The developed method was successfully used for the determination of bisphenol A in various samples of river waters in the Czech Republic (The Ohře, Labe, Nisa, Úpa, and Opava Rivers). Copyright © 2017 Elsevier B.V. All rights reserved.
Britton, Robert G; Fong, Isabel; Saad, Shaban; Brown, Karen; Steward, William P; Gescher, Andreas; Sale, Stewart
2009-04-01
3',4',5'-Trimethoxyflavonol (TMFol) was synthesized as a potential colorectal cancer chemopreventive agent. An HPLC method for determination for TMFol in murine plasma and tissues was developed and validated using human plasma. Analyte was separated (C(18) column; fluorescence detection 330nm excitation, 440nm emission) using 69% methanol and 0.1M ammonium acetate buffer (pH 5.1) as mobile phase. The method was linear for 50-2500ng/ml plasma and 0.05-10microg/g tissue (r>0.99). TMFol was recovered from plasma or tissues using solid phase columns or organic solvent protein precipitation, respectively. Recovery at low, medium and high concentrations was 97.6-107.3%, with inter- and intra-day coefficients of variation of <10%. The lower limit of quantitation for plasma was 50ng/ml. The method was applied to measure steady-state TMFol plasma and tissue levels in mice which received dietary TMFol (0.2%).
An HPLC method for determination of azadirachtin residues in bovine muscle.
Gai, María Nella; Álvarez, Christian; Venegas, Raúl; Morales, Javier
2011-04-01
A high-performance liquid chromatography (HPLC) method for the determination of azadirachtin (A and B) residues in bovine muscle has been developed. Azadirachtin is a neutral triterpene and chemotherapeutic agent effective in controlling some pest flies in horses, stables, horns and fruit. The actual HPLC method uses an isocratic elution and UV detection. Liquid-liquid extraction and solid-phase purification was used for the clean-up of the biological matrix. The chromatographic determination of these components is achieved using a C18 analytical column with water-acetonitrile mixture (27.5:72.5, v/v) as mobile phase, 1 mL/min as flow rate, 45 °C column temperature and UV detector at 215 nm. The azadirachtin peaks are well resolved and free of interference from matrix components. The extraction and analytical method developed in this work allows the quantitation of azadirachtin with precision and accuracy, establishing a lower limit of quantitation of azadirachtin, extracted from the biological matrix.
Code of Federal Regulations, 2012 CFR
2012-10-01
... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111...; Specification IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... provisions specified in column 7 of the § 172.101 table. (a) Rail cars: Class DOT 103, 104, 105, 109, 111... IM 101, IM 102, and UN portable tanks when a T Code is specified in Column (7) of the § 172.101... authorized according to the IBC packaging code specified for the specific hazardous material in Column (7) of...
Dubbelman, Anne-Charlotte; Cuyckens, Filip; Dillen, Lieve; Gross, Gerhard; Hankemeier, Thomas; Vreeken, Rob J
2014-12-29
The present study investigated the practical use of modern ultra-high performance liquid chromatography (UHPLC) separation techniques for drug metabolite profiling, aiming to develop a widely applicable, high-throughput, easy-to-use chromatographic method, with a high chromatographic resolution to accommodate simultaneous qualitative and quantitative analysis of small-molecule drugs and metabolites in biological matrices. To this end, first the UHPLC system volume and variance were evaluated. Then, a mixture of 17 drugs and various metabolites (molecular mass of 151-749Da, logP of -1.04 to 6.7), was injected on six sub-2μm particle columns. Five newest generation core shell technology columns were compared and tested against one column packed with porous particles. Two aqueous (pH 2.7 and 6.8) and two organic mobile phases were evaluated, first with the same flow and temperature and subsequently at each column's individual limit of temperature and pressure. The results demonstrated that pre-column dead volume had negligible influence on the peak capacity and shape. In contrast, a decrease in post-column volume of 57% resulted in a substantial (47%) increase in median peak capacity and significantly improved peak shape. When the various combinations of stationary and mobile phases were used at the same flow rate (0.5mL/min) and temperature (45°C), limited differences were observed between the median peak capacities, with a maximum of 26%. At higher flow though (up to 0.9mL/min), a maximum difference of almost 40% in median peak capacity was found between columns. The finally selected combination of solid-core particle column and mobile phase composition was chosen for its selectivity, peak capacity, wide applicability and peak shape. The developed method was applied to rat hepatocyte samples incubated with the drug buspirone and demonstrated to provide a similar chromatographic resolution, but a 6 times higher signal-to-noise ratio than a more traditional UHPLC metabolite profiling method using a fully porous particle packed column, within one third of the analysis time. In conclusion, a widely applicable, selective and fast chromatographic method was developed that can be applied to perform drug metabolite profiling in the timeframe of a quantitative analysis. It is envisioned that this method will in future be used for simultaneous qualitative and quantitative analysis and can therefore be considered a first important step in the Quan/Qual workflow. Copyright © 2014 Elsevier B.V. All rights reserved.
Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H
2012-09-26
Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.
Maraschiello, C; García Regueiro, J A
1998-08-28
A procedure designed for the determination of retinol (vitamin A) and alpha-tocopherol (vitamin E) in poultry tissues has been developed. The procedure involves lipid extraction, saponification, solid-phase clean-up and capillary gas chromatography (cGC). Retinol and alpha-tocopherol were determined separately by cGC-flame ionisation detection using a fused-silica open tubular capillary column, 30 m x 0.25 mm I.D. coated with 5% phenylmethylsilicone and with a film thickness of 0.25 micron. Solvent extraction followed by saponification were sufficient to provide a purified extract which was directly analyzed for retinol by cGC in the solvent venting mode. However, in order to accurately determine alpha-tocopherol by cGC, further purification of the extract by solid-phase extraction was necessary. A silica SPE column was used to remove interfering cholesterol from the extract. alpha-Tocopherol was analyzed in its derivatized form. Absolute and relative recoveries for both vitamins from spiked samples were evaluated. Absolute and relative recoveries ranging from 80 to 95% were obtained for both compounds. 5 alpha-Cholestane and alpha-tocopheryl acetate were used as internal standards. Poultry muscle meat and liver tissue were analyzed for their retinol and alpha-tocopherol content and the peaks detected by cGC were confirmed by cGC-mass spectrometry.
Matysova, Ludmila; Zahalkova, Oxana; Klovrzova, Sylva; Sklubalova, Zdenka; Solich, Petr; Zahalka, Lukas
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min(-1) was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances.
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min−1 was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances. PMID:25878920
Ye, Jianglei
2017-09-08
A novel solid phase extraction (SPE) device driven by positive pressure was developed instead of negative pressure from a vacuum pump, in order to enrich organo chlorinated and pyrethroid pesticides in seawater. The water sampling bottles and the pipelines which touch water samples were made of plastic material without chlorine. In order to ensure the sealing and firmness, the whole device were tightened with nut and bolt. The inner pressure (0.1-0.3 MPa) in the water sampling bottle was provided by the small air pump (powered by 12 V cell) controlled by a microprogrammed control unit (MCU) and pressure sensor to keep the water flow rate (4.0-6.0 mL/min). The pre-conditioned SPE column can be used for the enrichment of pesticides within four weeks, and the loaded SPE column can be eluted for detection within six weeks with recoveries greater than 80%. The linearity of the method was good with the correlation coefficient more than 0.9. The limits of quantification (LOQs) were 0.8-6 ng/L. The recoveries of the pesticides at three spiked levels (3 parallel samples) were 86.1%-95.5% with the relative standard deviations less than 10%. The benzene hexachlorides (BHCs) and dichloro-diphenyl-trichloroethanes (DDTs) were detected in seawater samples. The device has good application in enriching organo chlorinated and pyrethroid pesticides in seawater.
Kong, Wei-Jun; Liu, Shu-Yu; Qiu, Feng; Xiao, Xiao-He; Yang, Mei-Hua
2013-05-07
A simple and sensitive analytical method based on ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with high performance liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection (USLE-IAC-HPLC-PCD-FLD) has been developed for simultaneous multi-mycotoxin determination of aflatoxins B1, B2, G1, G2 (AFB1, AFB2, AFG1, AFG2) and ochratoxin A (OTA) in 13 edible and medicinal nutmeg samples marketed in China. AFs and OTA were extracted from nutmeg samples by ultrasonication using a methanol : water (80 : 20, v/v) solution, followed by an IAC clean-up step. Different USL extraction conditions, pre-processing ways for nutmeg sample and clean-up columns for mycotoxins, as well as HPLC-PCD-FLD parameters (mobile phase, column temperature, elution procedure, excitation and emission wavelengths) were optimized. This method, which was appraised for analyzing nutmeg samples, showed satisfactory results with reference to limits of detection (LODs) (from 0.02 to 0.25 μg kg(-1)), limits of quantification (LOQs) (from 0.06 to 0.8 μg kg(-1)), linear ranges (up to 30 ng mL(-1) for AFB1, AFG1 and OTA and 9 ng mL(-1) for AFB2 and AFG2), intra- and inter-day variability (all <2%) and average recoveries (from 79.6 to 90.8% for AFs and from 93.6 to 97.3% for OTA, respectively). The results of the application of developed method in nutmeg samples have elucidated that four samples were detected with contamination of AFs and one with OTA. AFB1 was the most frequently found mycotoxin in 30.8% of nutmeg samples at contamination levels of 0.73-16.31 μg kg(-1). At least two different mycotoxins were co-occurred in three samples, and three AFs were simultaneously detected in one sample.
Ha, Ji-Eun; Yang, Seung-Ju; Gong, Young-Dae
2018-02-12
An efficient solid-phase synthetic route for the construction of 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries based on branching diversity-oriented synthesis (DOS) has been developed in this study. The core skeleton resins, 1,3,4-oxadiazole and 1,3,4-thiadiazole, were obtained through desulfurative and dehydrative cyclizations of thiosemicarbazide resin, respectively. Various functional groups have been introduced to the core skeleton resins, such as aryl, amine, amide, urea, thiourea, and an amino acid. Most of the libraries were purified by simple trituration without extraction or column chromatography after cleavage of the products from the solid-supported resin. As a result, we obtained high yields of pure 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives (total numbers = 128). Finally, we confirmed the drug-like properties of our library by calculation of physicochemical properties, displays of the skeletal diversities of the library in 3D-space, and occupation of a broad range of areas by their functional groups.
Rastkari, Noushin; Ahmadkhaniha, Reza
2018-03-01
A sensitive, reliable and simple HPLC method was developed for the determination of lisinopril in human plasma. The method consists of extraction and clean-up steps based on magnetic solid-phase extraction and pre-column derivatization with a fluorescent reagent. The mobile phase consisted of a mixture of methanol-sodium dihydrogen phosphate (pH 3.0; 0.005 m; 75:25, v/v). The flow rate was set at 0.7 mL/min. Fluorescence detection was performed at 470nm excitation and 530nm emission wavelengths. Total chromatography run time was 5 min. The average extraction recovery of lisinopril and fluvoxamine (internal standard) was ≥82.8%. The limits of detection and quantification were determined as 1 and 3 ng/mL respectively. The method exhibited a linear calibration line over the concentration range of 3-1000 ng/mL with coefficient of determination (r 2 ) of ≥0.98. The within-run and between-run precisions were satisfactory with values of CV of 1.8-12.8% (accuracy from 99.2 to 94.7%) and 2.4-13.7% (accuracy from 99.5 to 92.2%), respectively. These developments led to considerable improvement in method sensitivity and reliability. The method was validated according to the US Food and Drug Administration guidelines. Therefore, it can be considered as a suitable method for determination of lisinopril in plasma samples. Copyright © 2017 John Wiley & Sons, Ltd.
Saber, Amr L
2009-04-15
An instrumental setup including on-line solid phased extraction coupled to capillary liquid chromatography-electrospray ionization-mass spectrometry (SPE-capLC-ESI-MS) has been constructed to improve the sensitivity for quantification of fluoxetine hydrochloride in human plasma. Prior to injection, 0.5 mL of plasma spiked with metronidazole (internal standard) was mixed with ammonium formate buffer for effective chloroform liquid-liquid extraction. The method was validated in the range 5-60 ng mL(-1) fluoxetine, yielding a correlation coefficient of 0.999 (r(2)). The within-assay and between-assay precisions were between (8.5 and 11%) and (6.6 and 7.5%), respectively. The method was used to determine the amount of fluoxetine in a healthy male 14 h after an intake of one capsule of the antidepressant and anorectic Flutin, which contains 20mg fluoxetine per each capsule. Fluoxetine was detected, and the concentration was calculated to 9.0 ng mL(-1) plasma. In the preliminary experiments, conventional LC-UV instrumentation was employed. However, it was found that employing a capillary column with an inner diameter of (0.3mm I.D. x 50 mm, Zorbax C(18)) increased the sensitivity by a factor of approximately 100, when injecting the same mass of analyte. Incorporating an easily automated C(18) reversed phase column switching system with SPE (1.0mm I.D. x 5.0mm, 5 microm) made it possible to inject up to 100 microL of solution, and the total analysis time was 5.5 min.
Chávez-Moreno, C A; Guzmán-Mar, J L; Hinojosa-Reyes, L; Hernández-Ramírez, A; Ferrer, L; Cerdà, V
2012-07-01
Simultaneous determination of three herbicides (dicamba, 2,4-D, and atrazine) has been achieved by on-line solid-phase extraction (SPE) coupled to multisyringe chromatography (MSC) with UV detection. The preconcentration conditions were optimized; a preconcentration flow rate of 0.5 mL min(-1) and elution at 0.8 mL min(-1) were the optimum conditions. A C(18) (8 mm i.d.) membrane extraction disk conditioned with 0.3 mol L(-1) HCl in 0.5% MeOH was used. A 3-mL sample was preconcentrated, then eluted with 0.43 mL 40:60 water-MeOH. A C(18) monolithic column (25 mm × 4.6 mm) was used for chromatographic separation. Separation of the three compounds was achieved in 10 min by use of 0.01% aqueous acetic acid-MeOH (60:40) as mobile phase at a flow rate of 0.8 mL min(-1). The limits of detection (LOD) were 13, 57, and 22 μg L(-1) for dicamba, 2,4-D, and atrazine, respectively. The sampling frequency was three analyses per hour, and each analysis consumed only 7.3 mL solvent. The method was applied to spiked water samples, and recovery between 85 and 112% was obtained. Recovery was significantly better than in the conventional HPLC-UV method. These results indicated the reliability and accuracy of this flow-based method. This is the first time this family of herbicides has been simultaneously analyzed by on-line SPE-MSC using a monolithic column.
Angelis, Apostolis; Hamzaoui, Mahmoud; Aligiannis, Nektarios; Nikou, Theodora; Michailidis, Dimitris; Gerolimatos, Panagiotis; Termentzi, Aikaterini; Hubert, Jane; Halabalaki, Maria; Renault, Jean-Hugues; Skaltsounis, Alexios-Léandros
2017-03-31
An integrated extraction and purification process for the direct recovery of high added value compounds from extra virgin olive oil (EVOO) is proposed by using solid support free liquid-liquid extraction and chromatography techniques. Two different extraction methods were developed on a laboratory-scale Centrifugal Partition Extractor (CPE): a sequential strategy consisting of several "extraction-recovery" cycles and a continuous strategy based on stationary phase co-current elution. In both cases, EVOO was used as mobile phase diluted in food grade n-hexane (feed mobile phase) and the required biphasic system was obtained by adding ethanol and water as polar solvents. For the sequential process, 17.5L of feed EVOO containing organic phase (i.e. 7L of EVOO treated) were extracted yielding 9.5g of total phenolic fraction corresponding to a productivity of 5.8g/h/L of CPE column. Regarding the second approach, the co-current process, 2L of the feed oil phase (containing to 0.8L of EVOO) were treated at 100mL/min yielding 1.03g of total phenolic fraction corresponding to a productivity of 8.9g/h/L of CPE column. The total phenolic fraction was then fractionated by using stepwise gradient elution Centrifugal Partition Chromatography (CPC). The biphasic solvent systems were composed of n-hexane, ethyl acetate, ethanol and water in different proportions (X/Y/2/3, v/v). In a single run of 4h on a column with a capacity of 1L, 910mg of oleocanthal, 882mg of oleacein, 104mg of hydroxytyrosol were successfully recovered from 5g of phenolic extract with purities of 85%, 92% and 90%, respectively. CPC fractions were then submitted to orthogonal chromatographic steps (adsorption on silica gel or size exclusion chromatography) leading to the isolation of additional eleven compounds belonging to triterpens, phenolic compounds and secoiridoids. Among them, elenolic acid ethylester was found to be new compound. Thin Layer Chromatography (TLC), Nuclear magnetic Resonance (NMR) and High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD) were used for monitoring and evaluation purposes throughout the entire procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Xue-Feng; Zhou, Yang; Zhang, Jian; Ren, Yu-Peng
2018-06-01
The present work describes the development and application of an ultrasonic-enhanced microwave-assisted extraction (UEMAE) followed by online solid phase extraction (SPE)-ultra-high performance liquid chromatography-tandem mass spectrometry method for the analysis of 14 fluoroquinolones in cattle manure-based biogas residue (CMBBR). The UEMAE was performed using the mixed solution of sodium dihydrogen phosphate and disodium ethylenediamine tetraacetic acid, avoiding use of any organic solvent. The online SPE system employed two solid phase extraction columns in a parallel manner, and the extraction was performed by passing 1 mL of the extract through the column. Quantification was performed using standard spiked samples and structural analogue internal standard, which were indispensable to reduce the matrix effects. Validation parameters were performed and good linearity (R 2 > 0.99 in all cases) and precision (inter- and intra-day relative standard deviations were lower than 12.8%) were obtained. Limits of detection were as low as 0.021 ng ∙ g -1 and lower limits of quantification were 0.5 ng ∙ g -1 for all fluoroquinolones. The overall extraction recovery, which was the product of the UEMAE recovery and the online SPE recovery, was assessed for three concentration levels (0.8, 40 and 400 ng ∙ g -1 ) and acceptable values (74.3-99.3%) were found. As a part of the method validation, the developed method has been used to analyze real CMBBR samples. Nine fluoroquinolones were found in the concentration range of 0.9-74.6 ng ∙ g -1 , while five were not detected in the samples. The results showed the method could be adapted for screening the presence or the final fate of fluoroquinolones during fermentation of animal waste. Copyright © 2018. Published by Elsevier B.V.
Jia, Xiaoyu; Gong, Dirong; Zhao, Junyi; Ren, Hongyun; Wang, Jiani; Zhang, Xian
2018-03-19
This paper describes the preparation of zwitterion-functionalized polymer microspheres (ZPMs) and their application to simultaneous enrichment of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) from environmental water samples. The ZPMs were prepared by emulsion copolymerization of ethyl methacrylate, 2-diethylaminoethyl methacrylate and triethylene glycol dimethyl acrylate followed by modification with 1,3-propanesultone. The components were analyzed by elemental analyses as well as Fourier transform infrared spectroscopy, and the structures were characterized by scanning electron microscopy and transmission electron microscopy. The ZPMs were packed into a mini-column for on-line solid-phase extraction (SPE) of the above metal ions. Following extraction with 40 mM NH 4 NO 3 and 0.5 M HNO 3 solution, the ions were quantified by ICP-MS. Under the optimized conditions, the enrichment factors (from a 40 mL sample) are up to 60 for the ions V(V), As(III), Sb(III) and Hg(II), and 55 for Cr(III) and Sn(IV). The detection limits are 1.2, 3.4, 1.0, 3.7, 2.1 and 1.6 ng L -1 for V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II), respectively, and the relative standard deviations (RSDs) are below 5.2%. The feasibility and accuracy of the method were validated by successfully analyzing six certified reference materials as well as lake, well and river waters. Graphical abstract Zwitterion-functionalized polymer microspheres (ZPMs) were prepared and packed into a mini-column for on-line solid-phase extraction (SPE) via pump 1. Then V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) ions in environmental waters were eluted and submitted to ICP-MS via pump 2.
NASA Technical Reports Server (NTRS)
Young, Philip R.
1999-01-01
A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.
Gitari, Wilson M; Petrik, Leslie F; Key, David L; Okujeni, Charles
2011-01-01
Fly ash (FA) has been investigated as a possible treatment agent for Acid mine drainage (AMD) and established to be an alternative, cheap and economically viable agent compared to the conventional alkaline agents. However, this treatment option also leads to generation of solid residues (SR) that require disposal and one of the proposed disposal method is a backfill in coal mine voids. In this study, the interaction of the SR with AMD that is likely to be present in such backfill scenario was simulated by draining columns packed with SR and SR + 6% Ordinary Portland Cement (OPC) unsaturated with simulated AMD over a 6 month period. The evolving geochemistry of the liquid/solid (L/S) system was evaluated in-terms of the mineral phases likely or controlling contaminants attenuation at the different pH regimes generated. Stepwise acidification of the percolates was observed as the drainage progressed. Two pH buffer zones were observed (7.5-9 and 3-4) for SR and (11.2-11.3 and 3.5-4) for SR + 6% OPC. The solid residue cores (SR) appeared to have a significant buffering capacity, maintaining a neutral to slightly alkaline pH in the leachates for an extended period of time (97 days: L/S 4.3) while SR + 6% OPC reduced this neutralization capacity to 22 days (L/S 1.9). Interaction of AMD with SR or SR + 6% OPC generated alkaline conditions that favored precipitation of Fe, Al, Mn-(oxy) hydroxides, Fe and Ca-Al hydroxysulphates that greatly contributed to the contaminants removal. However, precipitation of these phases was restricted to the pH of the leachates remaining at neutral to circum-neutral levels. Backfill of mine voids with SR promises to be a feasible technology for the disposal of the SR but its success will greatly depend on the disposal scenario, AMD generated and the alkalinity generating potential of the SR. A disadvantage would be the possible re-dissolution of the precipitated phases at pH < 4 that would release the contaminants back to the water column. However extrapolation of this concept to a field scenario can greatly enhance beneficial application of fly ash (FA) and solid residues (SR) generated from treatment of AMD.
Zhang, Ming; Tang, Fangliang; Yu, Yayun; Chen, Feng; Xu, Jianfen; Ye, Yonggen
2014-05-01
A high-throughput detection method has been developed for the determination of sixteen perfluorinated organic compounds (PFCs) in surface water by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The water samples were concentrated and purified through WAX solid phase extraction cartridges. The UPLC separation was performed on an ACQUITY UPLC BEH C18 column utilizing a gradient elution program of methanol (containing 2 mmol/L ammonium acetate) and water (containing 2 mmol/L ammonium acetate) as the mobile phases at a flow rate of 0.4 mL/min. The MS/MS detection was performed under negative electrospray ionization ( ESI ) in multiple reaction monitoring (MRM) mode. Good linearities were observed in the range of 0.5-100 gg/L or 1.0 - 100 microg/L with correlation coefficients from 0.998 7 to 0.999 9. The limits of detection (LODs) for the sixteen perfluorinated organic compounds were in the range of 0.06-0.46 ng/L. The recoveries ranged from 67.6% to 103% with the relative standard deviations between 2.94% and 12.0%. This method was characterized by high sensitivity and precision, extensive range and high speed, and can be applied for the analysis of PFC contaminants in surface water.
Lei, Meikang; Peng, Fang; Ding, Tao; Zhu, Zitong; Xu, Jiawen; Wu, Xiaoqin
2015-01-01
A method based on solid phase extraction and ultra performance liquid chromatography coupled with tandem mass spectrometry (SPE-UPLC-MS/MS) has been proposed for the determination of wilforine residue in honey. After the sample was dissolved with water, concentrated and purified by an HLB solid phase extraction cartridge, the UPLC separation was performed on a Hypersil GOLD C18 column (50 mm x 2.1 mm, 1.9 microm) utilizing a gradient elution program of methanol (containing 0.15% formic acid) and water as mobile phases at a flow rate of 0. 25 mL/min. The determination was carried out with electrospray ion source in the positive mode (ESI) and multiple reaction monitoring (MRM) mode. The mass concentration of wilforine in the range of 0.01-2 microg/L was linearly correlated with the peak area, and the correlation coefficients was greater than 0.998. The limit of quantification (S/N>10) for wilforine was 0.01 microg/kg. The recoveries were 76.1% to 96.2% in the spiked levels of 0.01, 0.05 and 0.5 microg/kg with the relative standard deviations (RSD, n=6) lower than 10%. The results indicate that the method is rapid, sensitive and accurate, and can be applied for the qualitative and quantitative analysis of wilforine in honey.
Zhang, Ming; Tang, Fangliang; Xu, Jianfen; Yu, Bo; Zhang, Wei; Yao, Jianliang; Hu, Minhua
2017-10-08
A high-throughput detection method has been developed for the determination of nine perfluorinated compound precursors (PFCPs) in atmospheric precipitation by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The atmospheric precipitation samples were concentrated and purified with HLB solid phase extraction cartridges. The UPLC separation was performed on an HSS T 3 column (100 mm×2.1 mm, 1.7 μm) utilizing a gradient elution program of methanol and water as the mobile phases at a flow rate of 0.2 mL/min. The MS/MS detection was performed under negative electrospray ionization (ESI - ) in multiple reaction monitoring (MRM) mode. Good linearity was observed in the range of 0.05-5.00 μg/L, 0.50-50.0 μg/L or 5.00-500 μg/L with correlation coefficients from 0.9921 to 0.9995. The limits of detection (LODs) for the nine perfluorinated compound precursors were in the ranges of 0.05-7.9 ng/L. The recoveries ranged from 76.0% to 106% with the relative standard deviations between 0.72% and 13.7%. This method is characterized by high sensitivity and precision, extensive analytical range and quick analytical rate, and can be applied for the analysis of perfluorinated compound precursors in atmospheric precipitation.
Kanaze, Feras Imad; Kokkalou, Eugene; Georgarakis, Manolis; Niopas, Ioannis
2004-03-05
Naringenin and hesperetin, the aglycones of the flavanone glucosides naringin and hesperidin occur naturally in citrus fruits. They exert a variety of pharmacological effects such as antioxidant, blood lipid-lowering, anticarcinogenic and inhibit selected cytochrome P-450 enzymes resulting in drug interactions. A specific, sensitive, precise, and accurate solid-phase extraction high-performance liquid chromatographic (HPLC) assay for the simultaneous determination of naringenin and hesperetin in human plasma was developed and validated. After addition of 7-ethoxycoumarin as internal standard, plasma samples were incubated with beta-glucuronidase/sulphatase, and the analytes were isolated from plasma by solid-phase extraction using C(18) cartridges and separated on a C(8) reversed phase column with methanol/water/acetic acid (40:58:2, v/v/v) as the eluent at 45 degrees C. The method was linear in the 10-300 ng/ml concentration range for both naringenin and hesperetin (r>0.999). Recovery for naringenin, hesperetin and internal standard was greater than 76.7%. Intra- and inter-day precision for naringenin ranged from 1.4 to 4.2% and from 1.9 to 5.2%, respectively, and for hesperetin ranged from 1.3 to 4.1% and from 1.7 to 5.1%, respectively. Accuracy was better than 91.5 and 91.3% for naringenin and hesperetin, respectively.
CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.
Gu, Congying; Shamsi, Shahab A
2010-04-01
A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.
McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping
2018-01-16
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .
Microfluidic integration of parallel solid-phase liquid chromatography.
Huft, Jens; Haynes, Charles A; Hansen, Carl L
2013-03-05
We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.
Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weimin; Criddle, Craig S.
2015-11-16
We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetingsmore » at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.« less
Ono, I; Matsuda, K; Kanno, S
1997-05-09
A simple, rapid and sensitive two column-switching high-performance liquid chromatographic (HPLC) method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (AY4166, I) and its seven metabolites in human plasma and urine. Measurements of I and its metabolites were carried out by two column-switching HPLC, because metabolites were classified into two groups according to their retention times. After purification of plasma samples using solid-phase extraction and direct dilution of urinary samples, I and each metabolite were injected into HPLC. The calibration graphs for plasma and urinary samples were linear in the ranges 0.1 to 10 microg ml(-1) and 0.5 to 50 microg ml(-1), respectively. Recoveries of I and its seven metabolites were over 88% by the standard addition method and the relative standard deviations of I and its metabolites were 1-6%.
Van Beek, T A; Blaakmeer, A
1989-03-03
A method has been developed for the quantitation of the bitter component limonin in grapefruit juice and other citrus juices. The sample clean-up consisted of centrifugation, filtration and a selective, rapid and reproducible purification with a C2 solid-phase extraction column. The limonin concentration was determined by high-performance liquid chromatography on a C18 column with UV detection at 210 nm. A linear response was obtained from 0.0 to 45 ppm limonin. The minimum detectable amount was 2 ng. The minimum concentration which was detected without concentration with good precision was 0.1 ppm. The method was also used for the determination of limonin in different types of oranges, including navel oranges, mandarins, lemons, limes, pomelos and uglis.
Pseudowollastonite Carbonation Could Enable New Frontiers in Carbon Storage
NASA Astrophysics Data System (ADS)
Plattenberger, D.; Tao, Z.; Ling, F. T.; Peters, C. A.; Clarens, A. F.
2017-12-01
One of the primary challenges of CO2 mineral trapping is that precipitation reactions are reversible. A wide range of solid magnesium, iron, or calcium carbonates (such as magnesite, MgCO3) can be synthesized by reacting mineral silicates (such as olivine, Mg2SiO4) with CO2 to produce mineral carbonates. However, if CO2 remains present at high concentrations, as would be the case in many subsurface environments, the carbonate minerals could re-dissolve, making the precipitated carbonates impermanent forms of storage. In this work, we study pseudowollastonite (CaSiO3), a crystalline form of calcium silicate that is common in slags, cement, and calcium-rich volcanic formations, for its potential to produce other secondary mineral phases that may be resistant to dissolution under low pH conditions. These secondary mineral precipitation phases have morphologies and X-ray diffraction patterns that resemble both calcium silicate hydrate gels as well as crystalline calcium silicate carbonate hydrates. The combination of these phases forms a complex system that may resist acid attack while providing strength and limiting flow in the subsurface environment. High pressure and temperature column experiments carried out in our lab show that pseudowollastonite carbonation effectively lowers permeability in columns of sintered glass beads. Many of the pore throats are clogged by precipitates, as seen using micro X-ray tomography of intact columns and electron microscopy of thin sections. The spatial distribution of the products suggests that calcite forms toward the inlet of the columns where the pCO2 is highest. This forms a barrier that reduces, but does not eliminate, the availability of CO2 deeper in the porous media where the secondary phases precipitate. The existence of the calcite zone drives the reduction in permeability and the depth of this zone is self-limiting, which could have important implications for limiting leakage and unwanted migration of CO2 in some instances.
Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I
2013-09-06
In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.
Qiao, Xue; Liu, Chun-Fang; Ji, Shuai; Lin, Xiong-Hao; Guo, De-An; Ye, Min
2014-02-01
Minor phenolic compounds in licorice (Glycyrrhiza uralensis) have recently been proved for diverse bioactivities and favorable bioavailability, indicating that they may play an important role in the therapeutic effects or herb-drug interactions of licorice. However, so far, their abundance in licorice remains unknown. In this study, a reliable solid-phase extraction coupled with a high-performance liquid chromatography and diode array detection method was established to determine the minor phenolic compounds in licorice. The analytes were enriched by a three-step solid-phase extraction method, and then separated on a YMC ODS-A column by gradient elution. Five coumarins and flavonoids were identified by electrospray ionization tandem mass spectrometry, and then quantified using high-performance liquid chromatography and diode array detection. The amounts of glycycoumarin, dehydroglyasperin C, glycyrol, licoflavonol, and glycyrin in G. uralensis were 0.81 ± 0.28, 1.25 ± 0.59, 0.20 ± 0.08, 0.12 ± 0.04, and 0.17 ± 0.08 mg/g, respectively. Abundances of these compounds in other Glycyrrhiza species (G. glabra, G. inflata, and G. yunnanesis) were remarkably lower than G. uralensis. Georg Thieme Verlag KG Stuttgart · New York.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A
2013-06-13
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.
2016-01-01
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870
Šatínský, Dalibor; Naibrtová, Linda; Fernández-Ramos, Carolina; Solich, Petr
2015-09-01
A new on-line SPE-HPLC method using fused-core columns for on-line solid phase extraction and large volume sample injection for increasing the sensitivity of detection was developed for the determination of insecticides fenoxycarb and cis-, trans-permethrin in surface waters. The separation was carried out on fused-core column Phenyl-Hexyl (100×4.6 mm), particle size 2.7 µm with mobile phase acetonitrile:water in gradient mode at flow rate 1.0 mL min(-1), column temperature 45°C. Large volume sample injection (1500 µL) to the extraction dimension using short precolumn Ascentis Express RP C-18 (5×4.6 mm); fused-core particle size 2.7 µm allowed effective sample preconcentration and efficient ballast sample matrix removal. The washing mobile phase consisting of a mixture of acetonitrile:water; 30:70, (v/v) was pumped at flow rate of 0.5 mL min(-1) through the extraction precolumn to the waste. Time of the valve switch for transferring the preconcentrated sample zone from the extraction to the separation column was set at 3rd min. Elution of preconcentrated insecticides from the extraction precolumn and separation on the analytical column was performed in gradient mode. Linear gradient elution started from 40% of acetonitrile at time of valve switch from SPE column (3rd min) to 95% of acetonitrile at 7th min. Synthetic dye sudan I was chosen as an internal standard. UV detection at wavelength 225 nm was used and the method reached the limits of detection (LOD) at ng mL(-1) levels for both insecticides. The method showing on-line sample pretreatment and preconcentration with highly sensitive determination of insecticides was applied for monitoring of fenoxycarb and both permethrin isomers in different surface water samples in Czech Republic. The time of whole analysis including on-line extraction, interferences removal, chromatography separation and system equilibration was less than 8 min. Copyright © 2015 Elsevier B.V. All rights reserved.
van de Riet, J M; Brothers, N N; Pearce, J N; Burns, B G
2001-01-01
A liquid chromatographic (LC) method for determining residues of the antiparasitic drugs emamectin (EMA) and ivermectin (IVR) in fish tissues has been developed. EMA and IVR residues are extracted with acetonitrile and cleaned up on a C18 solid-phase extraction column. Extracts are derivatized with 1-methylimidazole and trifluoroacetic anhydride and the components are determined by LC on a C18 reversed-phase column with fluorescence detection (excitation: 365 nm, emission: 470 nm). The mobile phase is 94% acetonitrile-water run isocratically. Calibration curves were linear between 1 and 32 ng injected for both EMA and IVR. The limit of detection for both analytes was 0.5 ng/g, with a limit of quantitation of 1.5 ng/g. Recoveries of EMA and IVR added to salmon muscle averaged 96 +/- 9% and 86 +/- 6%, respectively, at levels between 5 and 80 ng/g. The percent relative standard deviation for the described method was less than 7% over the range of concentrations studied. The operational errors, interferences, and recoveries for fortified samples compare favorably with an established IVR method. The recommended method is simple, rapid, and specific for monitoring residues of EMA and IVR in Atlantic salmon muscle.
Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R
2016-11-01
A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.
Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A
2016-05-05
This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. Copyright © 2016 Elsevier B.V. All rights reserved.
Scattering of Microwaves by Steady-State Plasma Slabs, Columns, and Layers at Atmospheric Pressure
1998-03-01
permeability unity is- (Fig 0) SÖ$ftS?S5 Pressure Plasmas Y=J7(er) . 2071 (1) where y is the complex propagation coefficient, w is the wave...a phase dependence expjtot-Yxl to a i„ ., permeability nnTty,^ J ’°SSy med’Um °f reIat<- ■j^r)^ • (1) where y is the complex propagation...preservation is an. issue. Some examples are food (solid or liquid) sterilization, pharmaceutical applications, and environmental applications ( soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raymond H.; Stone, James; Truax, Ryan
Batch tests, column tests, and predictive reactive transport modeling can be done before ISR begins as part of the decision making/permitting process by bracketing possible post-restoration conditions; Help address stakeholder concerns; The best predictions require actual restored groundwater in contact with the downgradient solid phase; Resulting modeling provides a range of natural attenuation rates and assists with designing the best locations and time frames for continued monitoring; Field pilot tests are the best field-scale data and can provide the best model input and calibration data
Nezirević, Dzeneta; Arstrand, Kerstin; Kågedal, Bertil
2007-09-07
Malignant melanomas are more often seen in subjects with light colored skin who tan poorly than in persons who tan more rapidly. This has been attributed to the structure of their pigment, pheomelanin, which differs markedly from the eumelanin of persons with darker skin. To study the hydrolysis products of pheomelanin pigments a new method was developed for analysis of 4-amino-3-hydroxyphenylalanine (4-AHP) and 3-amino-4-hydroxyphenylalanine (3-AHP). Pheomelanin samples were hydrolyzed and extracted with solid-phase extraction columns using strong cation-exchange (SCX) cartridges. Separation of 4-AHP and 3-AHP was achieved on a ZIC-HILIC column (150 mm x 2.1mm I.D.) with a mobile phase consisting of acetonitrile: 0.1 M ammonium acetate buffer, pH 4.5 (82:18, v/v). Detection was performed with an electrochemical detector at +400 mV. Run time was 30 min. The limits of detection were 73 pg and 51 pg for 4-AHP and 3-AHP respectively, using 2 microl injections. Good linearity was found within the range 0.05-5.0 microg/ml. Absolute recovery was 70% and relative recovery was 100%. The AHPs were stable for 1 year in the hydrolyzed samples, for 4 days in the eluates from solid-phase sorbents stored in the refrigerator, and for 2 days diluted with mobile phase and stored in the autosampler at 10 degrees C. The within-day imprecision was <5% and the between-day imprecision was <7% for the two analytes. The method, applied to the analysis of pheomelanin in urine from human melanoma patients, allows the analysis of 30 samples in one set and is suitable for routine work with human hair and melanoma cells. By using the ZIC-HILIC stationary phase, ion-pairing reagents could be avoided, which makes the method suitable to further analysis of degradation products from pheomelanins using mass spectrometric detection.
Effects of elevated temperature and mobile phase composition on a novel C18 silica column.
Lippert, J Andreas; Johnson, Todd M; Lloyd, Jarem B; Smith, Jared P; Johnson, Bryce T; Furlow, Jason; Proctor, Angela; Marin, Stephanie J
2007-05-01
A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.
NASA Astrophysics Data System (ADS)
Semprini, L.; Behrens, S.; Azizian, M.; Sabalowsky, A.; Dolan, M.; Ruiz-Hass, P.; Ingle, J.; Spormann, A.
2005-12-01
Anaerobic reductive dehalogenation of tetrachloroethene (PCE) and trichoroethene (TCE) is a promising technology for the in situ treatment of high concentration source zones in contaminated aquifers. Continuous flow column studies were performed where a mixed dehalogenating culture (Evanite culture) that contains Dehalococcides-like microorganisms was bioaugmented into aquifer solids from the Hanford DOE site. Studies conducted prior to bioaugmentation showed PCE transport was retarded due to sorption onto the aquifer solids. Upon bioaugmentation and with continuous lactate addition, PCE (10 mg/L) was transformed to cis-dichloroethene ( cis-DCE), and enhanced transformation of sorbed PCE was observed. Prolonged production of cis-DCE was associated with iron reducing conditions, while eventual vinyl chloride (VC) reduction to ethene was associated with sulfate reducing conditions. Microbial processes included lactate fermentation to acetate and propionate, iron reduction, sulfate reduction, and reductive dehalogenation, with reductive dehalogenation utilizing 2 to 3% of the electron donor addition. PCE was completely transformed to ethene within a hydraulic residence time of one day. Upon competition of the column tests spatial samples of aquifer solids were analyzed using molecular methods and solids were used in batch microcosm activity tests. Dehalococcoides sp. 16S rRNA gene copy numbers dropped from ~ 74% of total Eubacterial 16S rRNA genes in the original inoculum, to about 0.5 to 4% through out the column, consistent with the estimates of electron donor utilization for dehalogenation reactions. Microcosm tests showed most of PCE transformation activity at the entrance of the column, consistent with the Dehalococcoides sp. 16S rRNA gene copy numbers being highest in that area. Roughly 20% of the Dehalococcoides sp. population in the column possessed a vcrA gene for the respiration of VC to ethene. The vcrA-positive subpopulation decreases to about 5% towards the column outflow, while VC microcosm activity tests show fairly constant rates of VC transformation across the column. The column studies demonstrated that complete transformation of PCE to ethene can be obtained over short spatial and temporal scales.
Berrueta, L A; Fernández-Armentia, M; Bakkali, A; Gonzalo, A; Lucero, M L; Orjales, A
2001-08-25
A matrix solid-phase dispersion (MSPD) procedure for the isolation and HPLC determination of a new antiallergic agent, bilastine, in rat faeces is presented. The effect on recovery of empirical variables such as nature, pH and volume of the washing and elution liquids and nature of the adsorbent has been tested. The best recoveries were attained using an octadecylsilyl sorbent, 10 ml of a 0.1 M NaHCO3-Na2CO3 aqueous buffer of pH 10.0 as washing solvent and 10 ml of methanol as elution solvent. The extracts were evaporated to dryness and reconstituted in mobile phase before their injection into a HPLC system, equipped with a Discovery RP-amide C16 column and a fluorescence detector. The method allows one to reach recoveries of 95.0% within the concentration range 0.05-10 microg/g, with within-day repeatabilities of less than 5% and between-day repeatabilities of less than 9% within this range. This method has been successfully applied to the excretion studies of bilastine in the rat.
Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning
2015-11-11
A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.
Ares, Ana M; Valverde, Silvia; Bernal, José L; Toribio, Laura; Nozal, María J; Bernal, José
2017-10-01
In this study, a new method has been developed to determine flubendiamide in honey using liquid chromatography coupled to a selective mass spectrometry detector (quadrupole-time-of-flight). An efficient sample treatment involving a solid phase extraction with a C 18 sorbent was proposed (average analyte recoveries were between 94 and 104%). Chromatographic analysis (9min) was performed on a C 18 column (Gemini C 18 , 50×2.0mm, 3µm, 110Å). The mobile phase consisted of water and acetonitrile, with a flow rate of 0.5mL/min in gradient elution mode. The method was fully validated in terms of selectivity, limits of detection and quantification, matrix effect, linearity, trueness and precision. Low limits of detection and quantification were obtained, ranging from 0.1 to 0.2µg/kg and 0.4 to 0.6µg/kg, respectively. The method was applied to analyze flubendiamide in honey from different botanic origins (multifloral, rosemary and heather). Copyright © 2017 Elsevier Ltd. All rights reserved.
Carpenter, Julian; Bi, Yuqiang; Hayes, Kim F
2015-01-20
Iron sulfide precipitates formed under sulfate reducing conditions may buffer U(IV) insoluble solid phases from reoxidation after oxidants re-enter the reducing zone. In this study, sediment column experiments were performed to quantify the effect of biogenic mackinawite on U(IV) stability in the presence of nitrite or dissolved oxygen (DO). Two columns, packed with sediment from an abandoned U contaminated mill tailings site near Rifle, CO, were biostimulated for 62 days with an electron donor (3 mM acetate) in the presence (BRS+) and absence (BRS−) of 7 mM sulfate. The bioreduced sediment was supplemented with synthetic uraninite (UO2(s)), sterilized by gamma-irradiation, and then subjected to a sequential oxidation by nitrite and DO. Biogenic iron sulfides produced in the BRS+ column, mostly as mackinawite, inhibited U(IV) reoxidation and mobilization by both nitrite and oxygen. Most of the influent nitrite (0.53 mM) exited the columns without oxidizing UO2, while a small amount of nitrite was consumed by iron sulfides precipitates. An additional 10-day supply of 0.25 mM DO influent resulted in the release of about 10% and 49% of total U in BRS+ and BRS– columns, respectively. Influent DO was effectively consumed by biogenic iron sulfides in the BRS+ column, while DO and a large U spike were detected after only a brief period in the effluent in the BRS– column.
Self-assembly of dendronized perylene bisimides into complex helical columns.
Percec, Virgil; Peterca, Mihai; Tadjiev, Timur; Zeng, Xiangbing; Ungar, Goran; Leowanawat, Pawaret; Aqad, Emad; Imam, Mohammad R; Rosen, Brad M; Akbey, Umit; Graf, Robert; Sekharan, Sivakumar; Sebastiani, Daniel; Spiess, Hans W; Heiney, Paul A; Hudson, Steven D
2011-08-10
The synthesis of perylene 3,4:9,10-tetracarboxylic acid bisimides (PBIs) dendronized with first-generation dendrons containing 0 to 4 methylenic units (m) between the imide group and the dendron, (3,4,5)12G1-m-PBI, is reported. Structural analysis of their self-organized arrays by DSC, X-ray diffraction, molecular modeling, and solid-state (1)H NMR was carried out on oriented samples with heating and cooling rates of 20 to 0.2 °C/min. At high temperature, (3,4,5)12G1-m-PBI self-assemble into 2D-hexagonal columnar phases with intracolumnar order. At low temperature, they form orthorhombic (m = 0, 2, 3, 4) and monoclinic (m = 1) columnar arrays with 3D periodicity. The orthorhombic phase has symmetry close to hexagonal. For m = 0, 2, 3, 4 ,they consist of tetramers as basic units. The tetramers contain a pair of two molecules arranged side by side and another pair in the next stratum of the column, turned upside-down and rotated around the column axis at different angles for different m. In contrast, for m = 1, there is only one molecule in each stratum, with a four-strata 2(1) helical repeat. All molecules face up in one column, and down in the second column, of the monoclinic cell. This allows close and extended π-stacking, unlike in the disruptive up-down alteration from the case of m = 0, 2, 3, 4. Most of the 3D structures were observed only by cooling at rates of 1 °C/min or less. This complex helical self-assembly is representative for other classes of dendronized PBIs investigated for organic electronics and solar cells. © 2011 American Chemical Society
Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro
2016-12-01
Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.
Marchand, D H; Snyder, L R; Dolan, J W
2008-05-16
A total of 371 reversed-phase columns have now been characterized in terms of selectivity, based on five solute-column interactions (the hydrophobic-subtraction model). The present study illustrates the use of these data for interpreting peak-tailing and column stability. New insights are also provided concerning column selectivity as a function of ligand and silica type, and the selection of columns for orthogonal separations is re-examined. Some suggestions for the quality control of reversed-phase columns during manufacture are offered.
Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio
2017-09-29
Pesticide testing of foodstuffs is usually accomplished with generic wide-scope multi-residue methods based on liquid chromatography tandem mass spectrometry (LC-MS/MS). However, this approach does not cover some special pesticides, the so called "single-residue method" compounds, that are hardly compatible with standard reversed-phase (RP) separations due to their specific properties. In this article, we propose a comprehensive strategy for the integration of single residue method compounds and standard multiresidue pesticides within a single run. It is based on the use of a parallel LC column assembly with two different LC gradients performing orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run. Two sample aliquots were simultaneously injected on each column, using different gradients, being the eluents merged post-column prior to mass spectrometry detection. The approach was tested with 41 multiclass pesticides covering a wide range of physicochemical properties across several orders of log K ow (from -4 to +5.5). With this assembly, distinct separation from the void was attained for all the pesticides studied, keeping similar performance in terms of sensitivity, peak area reproducibility (<6 RSD% in most cases) and retention time stability of standard single column approaches (better than±0.1min). The application of the proposed approach using parallel HILIC/RPLC and RPLC/aqueous normal phase (Obelisc) were assessed in leek using LC-MS/MS. For this purpose, a hybrid QuEChERS (Quick, easy, cheap, effective, rugged and safe)/QuPPe (quick method for polar pesticides) method was evaluated based on solvent extraction with MeOH and acetonitrile followed by dispersive solid-phase extraction, delivering appropriate recoveries for most of the pesticides included in the study within the log K ow in the range from -4 to +5.5. The proposed strategy may be extended to other fields such as sport drug testing or environmental analysis, where the same type of variety of analytes featuring poor retention within a single chromatographic separation occurs. Copyright © 2017 Elsevier B.V. All rights reserved.
Fibigr, Jakub; Majorová, Michaela; Kočová Vlčková, Hana; Solich, Petr; Šatínský, Dalibor
2018-03-20
The presented work describes the development and validation of a rapid UHPLC-UV method using a fused core particle column with an RP-Amide stationary phase for the separation and quantitative analysis of caffeoylquinic and di-caffeoylquinic acids in green coffee extracts. Three caffeoylquinic acids (3-caffeoylquinic acid, 4-caffeoylquinic acid, and 5-caffeoylquinic acid) and two di-caffeoylquinic acids (1,3-di-caffeoylquinic acid, and 3,5-di-caffeoylquinic acid) were separated and analyzed in 8 min. That was possible due to the unique selectivity of the RP-Amide stationary phase for the analyzed acids. The retention behavior of all analytes under different compositions of the mobile phase on different columns was evaluated in this study. The optimal chromatographic separation was performed using an Ascentis Express RP-Amide (100 × 2.1 mm) fused-core column with a particle size of 2.7 μm at a temperature of 30 °C. For validation of the newly developed method, acetonitrile was used as mobile phase B and 5% formic acid, filtrated through a 0.22 μm filter, was used as mobile phase A. They were delivered at a flow rate of 0.9 mL min -1 according to the elution gradient program. The detection wavelength was set at 325 nm. A solid-liquid extraction with a solution of methanol and a 5% water solution of formic acid (25 + 75 v/v) using an ultrasonic bath was chosen for the preparation of the available commercial samples of food supplements containing a green coffee extract. Recoveries for all analyzed acids were 98.2-101.0% and the relative standard deviation ranged from 0.3% to 1.4% for intra-day and from 0.3% to 3.0% for inter-day repeatability. The limits of detection were in the range of 0.30-0.53 μg mL -1 . Copyright © 2018. Published by Elsevier B.V.
Fernandez-Torres, R; Consentino, M Olías; Lopez, M A Bello; Mochon, M Callejon
2010-05-15
A new, accurate and sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) as analytical method for the quantitative determination of 11 antibiotics (drugs) and the main metabolites of five of them present in human urine has been worked out, optimized and validated. The analytes belong to four different groups of antibiotics (sulfonamides, tetracyclines, penicillins and anphenicols). The analyzed compounds were sulfadiazine (SDI) and its N(4)-acetylsulfadiazine (NDI) metabolite, sulfamethazine (SMZ) and its N(4)-acetylsulfamethazine (NMZ), sulfamerazine (SMR) and its N(4)-acetylsulfamerazine (NMR), sulfamethoxazole (SMX), trimetroprim (TMP), amoxicillin (AMX) and its main metabolite amoxicilloic acid (AMA), ampicillin (AMP) and its main metabolite ampicilloic acid (APA), chloramphenicol (CLF), thiamphenicol (TIF), oxytetracycline (OXT) and chlortetracycline (CLT). For HPLC analysis, diode array (DAD) and fluorescence (FLD) detectors were used. The separation of the analyzed compounds was conducted by means of a Phenomenex Gemini C(18) (150mm x 4.6mm I.D., particle size 5microm) analytical column with LiChroCART LiChrospher C(18) (4mm x 4mm, particle size 5microm) guard column. Analyzed drugs were determined within 34min using formic acid 0.1% in water and acetonitrile in gradient elution mode as mobile phase. A linear response was observed for all compounds in the range of concentration studied. Two procedures were optimized for sample preparation: a direct treatment with methanol and acetonitrile and a solid phase extraction procedure using Bond Elut Plexa columns. The method was applied to the determination of the analytes in human urine from volunteers under treatment with different pharmaceutical formulations. This method can be successfully applied to routine determination of all these drugs in human urine samples.
Infrared observations and laboratory simulations of interstellar CH_4_ and SO_2_.
NASA Astrophysics Data System (ADS)
Boogert, A. C. A.; Schutte, W. A.; Helmich, F. P.; Tielens, A. G. G. M.; Wooden, D. H.
1997-02-01
Interstellar CH_4_ may consume a fair amount of the carbon budget in dense molecular clouds, but probably less than CO, CH_3_OH, and CO_2_. However, it can only be observed at wavelength regions in the infrared that are heavily affected by the earth atmosphere. With new space and airborne missions (e.g. ISO, SOFIA) in mind we have studied the near infrared absorption spectra of solid and gaseous CH_4_. We obtained laboratory spectra of the ν_4_ deformation mode (1302cm^-1^, 7.68μm) of solid CH_4_ in astrophysically relevant mixtures. We found that the peak position and width of this absorption band vary strongly as a function of molecular environment, compared to temperature and particle shape effects. Hence, observations of this feature will provide a powerful probe of the molecular composition of interstellar ices. Also the gas phase CH_4_ ro-vibrational spectrum of the same band has been calculated. Using observed physical conditions around the protostar W 33A, we show that unresolved gaseous CH_4_ lines are detectable (at the 2-5% level) at a resolution R>1000, when the column density N>=10^16^ cm^-2^. An astrophysically relevant molecule with a very strong transition in the same wavelength regime, is SO_2_. We studied the ν _3_ asymmetric stretching mode (1319 cm^-1^, 7.58 μm) of solid SO_2_ in several mixtures, revealing that the peak position, width and detailed profile of this band are very sensitive to the molecular environment. Besides probing the composition of ice mantles, observations of solid SO_2_ will provide important information on the sulfur budget locked up in grain mantles, which is currently poorly known. We compare the laboratory and calculated spectra of CH_4_ and SO_2_ with previously published ground based spectra and new airborne observations of young stellar objects in the 7-8μm region. W 33A, NGC 7538 : IRS1 and IRS9 show a feature near 7.68μm that is consistent with absorption by solid CH_4_ or the Q-branch of gaseous CH_4_. The column density of solid CH_4_ would be 0.3-4% of solid H_2_O, indicating that solid CH_4_ consumes 0.5+/-0.3% of the cosmic carbon abundance. A gaseous origin would imply a column density of at least this amount, being highly dependent on the assumed temperature of the absorbing gas. A second absorption feature is detected toward W 33A and NGC 7538 : IRS1 at 7.58 μm. The peak position and width of this feature are consistent with the ν_3_ mode of solid SO_2_ in a matrix of solid CH_3_OH or pure SO_2_. The derived column density is 0.1-1% of solid H_2_O, indicating that solid SO_2_ locks up 0.6-6% of the cosmic sulfur abundance. This study shows that 7-8μm spectroscopy of dense molecular clouds, using new airborne and space-based platforms, will provide valuable information on the composition of icy grain mantles and molecular cloud chemistry.
NASA Astrophysics Data System (ADS)
Reichel, Katharina; Schaefer, Sabine; Babin, Doreen; Smalla, Konny; Totsche, Kai Uwe
2016-04-01
Biogeochemical interfaces within the aggregate system of soils are "hot spots" of microbial activity and turnover of organic matter. We explore turnover, release and transport of mobile organic matter (MOM), micro-organisms (bio-colloids) and organo-mineral associations using a novel experimental approach employing two-layer columns experiment with matured soil under unsaturated flow conditions. The top layer was spiked with phenanthrene as a tracer for studying the decomposer communities involved in the decomposition of aromatic compounds that derive from lignin in natural systems. Columns were irrigated with artificial rain water with several flow interrupts of different durations. Physicochemical and chemical parameters as well as the microbial community composition were analysed in effluent samples and in soil slices. Release of MOM from the columns was in general controlled by non-equilibrium. Export of total and dissolved organic matter differed significantly in response to the flow interrupts. Effluent comprised organic and organo-mineral components as well as vital competent cells. By molecular biological methods we were even able to show that bacterial consortia exported are rather divers. Depth distribution of the bacterial communities associated with the immobile solid phase indicated high similarities in bacterial communities of the different depth layers and treatments. According to phenanthrene high affinity to the immobile phases, only a small fraction was subject to downstream transport with a strong decrease of the amount residing at the solid phase Our experiments directly prove that intact and competent microorganisms and even communities can be transported under unsaturated flow conditions. Moreover, we found that the dominant carbon source will impact not only the activity of specific microbial taxa but also their mobilization and transport. While total contribution of microbial organism to the mobile organic matter pool seems to be small, the fact that microbes will be mobilized and passively transported to downstream compartments helps to understand the processes that result in the inhabitation of pristine surfaces, thereby resulting in the establishment biogeochemical interfaces and initiation of aggregation in downstream compartments in the vadose zone.
Zhou, Jiezhao; Chen, Meiling; Li, Ying; Yu, Fanglin; Cheng, Xiaohui; Yang, Yang; Liu, Yan; Xie, Xiangyang; Li, Zhiping; Zhang, Hui; Mei, Xingguo
2017-10-01
Combination of metolazone (0.5 mg) and valsartan (80 mg) has been verified as a promising therapy treatment for hypertension. In order to facilitate to pharmacokinetic research, it needs a method for the simultaneously determination of metolazone and valsartan in biological samples. However, there are no relative reports so far. In order to facilitate to pharmacokinetic research, an on-line solid phase extraction coupled with liquid chromatography-tandem mass spectrometry method for the simultaneous determination of metolazone and valsartan in beagle dog plasma was developed and validated in this study. An on-line solid phase extraction column Retain PEP Javelin (10 mm × 2.1 mm) was used to remove impurities in plasma samples. The metolazone, valsartan and internal standard (losartan) were separated on a Poroshell 120 SB-C18 column (4.6 mm × 50 mm × 2.7 µm) with a gradient elution procedure. Acidified acetonitrile/water mixture was used as a mobile phase. The selected multiple-reaction monitoring mode in positive ion was performed and the parent to the product transitions m/z 366/259, m/z 436.2/291 and m/z 423.4/207 were used to measure the metolazone, valsartan and losartan. The method was linear over the range of 0.1-100 ng/mL and 1-1000 ng/mL for metolazone and valsartan, respectively. This method was validated in terms of specificity, linearity, sensitivity, precision, accuracy, matrix effect, and stability and then successfully applied to pharmacokinetic studies of the metolazone and valsartan combination tablets in beagle dogs.
Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes
2013-11-29
This paper describes a sensitive approach for the determination of 6 perfluoroalkyl carboxylic acids and perfluorooctane sulfonic acid in water. Samples were preconcentrated using an automatic solid-phase extraction module and then manually derivatised and determined by gas chromatography–mass spectrometry. The analytes were derivatised with a isobutyl chloroformate/isobutanol mixture, using 3% N,N-dicyclohexylcarbodiimide in pyridine as the catalyst. From a systematic comparison of several reversed-phase and anion-exchange sorbent materials for the retention of perfluoroalkyl acids, the high-est retention efficiencies (∼100%) were achieved with LiChrolut EN and Discovery DSC-SAX columns.LiChrolut EN was the sorbent selected due to several advantages (sample pH ∼1; sample flow rate,5.5 mL/min; breakthrough volume, 300 mL) over Discovery DSC-SAX (sample pH ∼6; sample flow rate,3.0 mL/min; breakthrough volume, 45 mL), for the retention of the studied compounds. Detection and quantification limits within the range of 0.1–0.5 ng/L and 0.4–1.7 ng/L, respectively, were obtained for a sorbent column of 70 mg of LiChrolut EN and 250 mL of sample, the relative standard deviation being lower than 7%. The method was applied both to the analysis of water collected at the intake (raw) and atthe exit (treated) of two drinking water treatment plants, as well as to various types of water. Few samples were positive for perfluoroalkyl acids and only one acid (perfluoroheptanoic or perfluorooctanoic) was found in each treatment plant. The highest number and concentration of analytes (perfluoroheptanoic,perfluorooctanoic and perfluorodecanoic acid) were found in one wastewater.
HPLC-electrospray mass spectrometric assay for the determination of (R,R)-fenoterol in rat plasma.
Siluk, Danuta; Kim, Hee Seung; Cole, Tyler; Wainer, Irving W
2008-11-04
A fast and specific liquid chromatography-mass spectrometry method for the determination of (R,R)-fenoterol ((R,R)-Fen) in rat plasma has been developed and validated. (R,R)-Fen was extracted from 125 microl of plasma using solid phase extraction and analyzed on Atlantis HILIC Silica 3 microm column. The mobile phase was composed of acetonitrile:ammonium acetate (pH 4.1; 20mM) (85:15, v/v), at a flow rate of 0.2 ml/min. The lower limit of detection (LLOD) was 2 ng/ml . The procedure was validated and applied to the analysis of plasma samples from rats previously administered (R,R)-Fen in an intravenous bolus.
Kuhlenbeck, Debbie L; Eichold, Thomas H; Hoke, Steven H; Baker, Timothy R; Mensen, Robert; Wehmeyer, Kenneth R
2005-01-01
An on-line liquid chromatography/tandem mass spectrometry (LC-MS/MS) procedure, using the Prospekt- 2 system, was developed and used for the determination of the levels of the active ingredients of cough/cold medications in human plasma matrix. The experimental configuration allows direct plasma injection by performing on- line solid phase extraction (SPE) on small cartridge columns prior to elution of the analyte(s) onto the analytical column and subsequent MS/MS detection. The quantitative analysis of three analytes with differing polarities, dextromethorphan (DEX), dextrorphan (DET) and guaifenesin (GG) in human plasma presented a significant challenge. Using stable-isotope-labeled internal standards for each analyte, the Prospekt-2 on-line methodology was evaluated for sensitivity, suppression, accuracy, precision, linearity, analyst time, analysis time, cost, carryover and ease of use. The lower limit of quantitation for the on-line SPE procedure for DEX, DET and GG was 0.05, 0.05 and 5.0 ng mL(-1), respectively, using a 0.1 mL sample volume. The linear range for DEX and DET was 0.05-50 ng mL(-1) and was 5-5,000 ng mL(-1) for GG. Accuracy and precision data for five different levels of QC samples were collected over three separate days. Accuracy ranged from 90% to 112% for all three analytes, while the precision, as measured by the %RSD, ranged from 1.5% to 16.0%
Lintelmann, Jutta; Wu, Xiao; Kuhn, Evelyn; Ritter, Sebastian; Schmidt, Claudia; Zimmermann, Ralf
2018-05-01
A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter. Copyright © 2018 John Wiley & Sons, Ltd.
Degradation of Triphenyltin by a Fluorescent Pseudomonad
Inoue, Hiroyuki; Takimura, Osamu; Fuse, Hiroyuki; Murakami, Katsuji; Kamimura, Kazuo; Yamaoka, Yukiho
2000-01-01
Triphenyltin (TPT)-degrading bacteria were screened by a simple technique using a post-column high-performance liquid chromatography using 3,3′,4′,7-tetrahydroxyflavone as a post-column reagent for determination of TPT and its metabolite, diphenyltin (DPT). An isolated strain, strain CNR15, was identified as Pseudomonas chlororaphis on the basis of its morphological and biochemical features. The incubation of strain CNR15 in a medium containing glycerol, succinate, and 130 μM TPT resulted in the rapid degradation of TPT and the accumulation of approximately 40 μM DPT as the only metabolite after 48 h. The culture supernatants of strain CNR15, grown with or without TPT, exhibited a TPT degradation activity, whereas the resting cells were not capable of degrading TPT. TPT was stoichiometrically degraded to DPT by the solid-phase extract of the culture supernatant, and benzene was detected as another degradation product. We found that the TPT degradation was catalyzed by low-molecular-mass substances (approximately 1,000 Da) in the extract, termed the TPT-degrading factor. The other fluorescent pseudomonads, P. chlororaphis ATCC 9446, Pseudomonas fluorescens ATCC 13525, and Pseudomonas aeruginosa ATCC 15692, also showed TPT degradation activity similar to strain CNR15 in the solid-phase extracts of their culture supernatants. These results suggest that the extracellular low-molecular-mass substance that is universally produced by the fluorescent pseudomonad could function as a potent catalyst to cometabolite TPT in the environment. PMID:10919812
Pyun, Chang-Won; Abd El-Aty, A M; Hashim, M M M; Shim, Jae-Han; Lee, Si-Kyung; Choi, Kang-Duk; Park, Kwan-Ha; Shin, Ho-Chul; Lee, Chiho
2008-03-01
A solid-phase fluorescence immunoassay (SPFIA) that was primarily developed for detection of antibiotic residues in milk was qualitatively applied for the pre-screening of the residues of aminoglycoside antibiotics, streptomycin and dihydrostreptomycin, in meat press juice. The confirmation of both analytes was performed using a validated method of highperformance liquid chromatography with post-column derivatization. The analytical performance was demonstrated by the analysis of pork meat samples spiked at three concentration levels, ranging from 0.25 to 2.5 ppm for each analyte. In general, the recoveries ranged from 80.4 to 81.5% and from 79.6 to 84.4% for streptomycin and dihydrostreptomycin, respectively, with relative standard deviations lower than 6%. The limits of detection were 0.1 and 0.15 ppm for streptomycin and dihydrostreptomycin, respectively, and the limits of quantification of 0.35 and 0.5 ppm are below the maximum residue limits of Codex, the European Union, and the Korean Food and Drug Administration (ranging from 0.5 to 0.6 ppm). Eight real samples collected from the Seoul area were first monitored using SPFIA, and none of them were found positive. These findings are in good accordance with those observed by HPLC analysis. To the best of our knowledge, this is the first report to monitor the aminoglycoside residues in pork meat press juice using SPFIA.
Wang, Weidong; Chen, Bo; Huang, Yuming; Cao, Jia
2010-09-03
The potential of eggshell membrane (ESM) as a novel solid-phase extraction bio-adsorbent was investigated in the present study. The ESM with a unique structure of intricate lattice network showed a predominant ability to capture linear alkylbenzene sulfonates (LAS) as a model of organic pollutants by the hydrophobic interactions between ESM and LAS molecular at pH very close to the isoelectric point of ESM, which was similar to the most widely used trapping mechanism for SPE. Under the optimal conditions, the breakthrough capacities of the ESM packed cartridge for C10-C13 LAS homologues were found to be 30, 53, 50, and 43microgg(-1), respectively. On the basis of high-performance liquid chromatography separation and UV detection of LAS homologues, the proposed system could respond down to 0.027ngmL(-1) of LAS with a linear calibration range from 0.2 to 100ngmL(-1), showing a good LAS enrichment ability of eggshell membrane biomaterial with high sensitivity, and could be successfully used for the detection of residual LAS in environmental water samples. The reproducibility among columns was satisfactory (RSD among columns is less than 10%). A comparison study with ESM, C8 and C18 as adsorbents for LAS demonstrated that ESM-based bio-adsorbent was advantageous over C8 and C18, the widely used traditional adsorbents. 2010 Elsevier B.V. All rights reserved.
Lhotská, Ivona; Holznerová, Anežka; Solich, Petr; Šatínský, Dalibor
2017-12-01
Reaching trace amounts of mycotoxin contamination requires sensitive and selective analytical tools for their determination. Improving the selectivity of sample pretreatment steps covering new and modern extraction techniques is one way to achieve it. Molecularly imprinted polymers as selective sorbent for extraction undoubtedly meet these criteria. The presented work is focused on the hyphenation of on-line molecularly imprinted solid-phase extraction with a chromatography system using a column-switching approach. Making a critical comparison with a simultaneously developed off-line extraction procedure, evaluation of pros and cons of each method, and determining the reliability of both methods on a real sample analysis were carried out. Both high-performance liquid chromatography methods, using off-line extraction on molecularly imprinted polymer and an on-line column-switching approach, were validated, and the validation results were compared against each other. Although automation leads to significant time savings, fewer human errors, and required no handling of toxic solvents, it reached worse detection limits (15 versus 6 μg/L), worse recovery values (68.3-123.5 versus 81.2-109.9%), and worse efficiency throughout the entire clean-up process in comparison with the off-line extraction method. The difficulties encountered, the compromises made during the optimization of on-line coupling and their critical evaluation are presented in detail. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Ting-Ting; Chen, Yi-Hui; Ma, Jun-Feng; Hu, Min-Jie; Li, Ying; Fang, Jiang-Hua; Gao, Hao-Qi
2014-08-01
A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.
Carter, D.S.
1996-01-01
This report describes a method for the determination of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine from soil pore waters by use of solid-phase extractionfollowed by chemical derivatization and gas chromatography/mass spectrometry. The analytes are isolated from the pore-water matrix byextraction onto a graphitized carbon-black cartridge. The cartridge is dried under vacuum, and adsorbed analytes are removed by elution with ethyl acetate followed by dichloromethane/methanol (7:3, volume/volume). Water is removed from the ethyl acetate fraction on an anhydrous sodium sulfate column. The combined fractions are solvent exchanged into acetonitrile, evaporated by use of a nitrogen stream, and derivatized by use of N- methyl-N-(tert-butyldimethylsilyl)- trifluoroacetamide. The derivatized extracts are analyzed by capillary-column gaschromatography/electron-impact mass spectrometry in the scan mode. Estimated method detection limits range from 0.03 to 0.07 micrograms per liter. The mean recoveries of all analytes and surrogates determined at 0.74 to 0.82 micrograms per liter in reagent water in soil pore water were 94 percent and 98 percent, respectively. The mean recoveries of all analytes and surrogates determined at 7.4 to 8.2 micrograms per liter in reagent water and in soil pore water were 96 percent and 97 percent,respectively. Recoveries were 90 percent or higher, regardless of analyte concentration or matrix composition, for all compounds excepthydroxyatrazine, whose recoveries were slightly lower (77 percent) at the low concentration.
A novel superporous agarose medium for high-speed protein chromatography.
Shi, Qing-Hong; Zhou, Xin; Sun, Yan
2005-12-05
A novel superporous agarose (SA) bead characterized by the presence of wide pores has been fabricated by water-in-oil emulsification using solid granules of calcium carbonate as porogenic agent. After cross-linking, the solid granules were removed by dissolving them in hydrochloric acid. Then, the gel was modified with diethylaminoethyl groups to create an anion exchanger, SA-DEAE, for protein adsorption. A homogeneous agarose (HA) bead was also produced and modified with DEAE for comparison. It was found that the porosity of SA-DEAE was about 6% larger than that of HA-DEAE. Moreover, both optical micrographs and confocal laser scanning microscopy (CLSM) of the ion exchangers with adsorbed fluorescein isothiocyanate (FITC) labeled IgG revealed the superporous structure of the SA medium. In addition, the SA-DEAE column had lower backpressure than the HA-DEAE column, confirming the convective flow of mobile phase through the wide pores. Due to the presence of the wide pores, more channels were available for protein transport and, furthermore, more diffusive pores in the agarose network were accessible for the protein approach from different directions. This led to 40% higher protein capacity and two times higher effective pore diffusivity in the SA-DEAE than in HA-DEAE. Moreover, an increase of the efficiency of the SA-DEAE column until a flow rate of 5 cm/min and the independency of the column efficiency at flow rates from 5 to 17.8 cm/min was found, indicating that intraparticle mass transfer was intensified by convective flow at elevated flow rates. Therefore, the chromatographic resolution of IgG and BSA was little affected up to a flow rate of 17.8 cm/min. The results indicate that the SA medium is favorable for high-speed protein chromatography. (c) 2005 Wiley Periodicals, Inc.
Echeverría, S; Borrull, F; Fontanals, N; Pocurull, E
2013-11-15
A method for the quantitative determination of five iodinated X-ray contrast media (ICMs) in sewage was developed by solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry. A fused-core analytical column was successfully applied for the first time for the separation of ICMs. Oasis HLB was selected from the sorbents tested because of its higher recoveries. The optimized method allowed the determination of the ICMs at low ng/L levels in both influent and effluent sewage, with detection limits of 40 ng/L and 10 ng/L for most compounds in influent and effluent sewage, respectively. The five ICMs studied were determined in all samples analysed, with iopromide being the analyte found at the highest concentration (8.9 µg/L), while iopamidol was the analyte found at lowest concentration (1.3 µg/L) in influent sewage. Effluent sewage did not show a significant decrease in ICM concentrations. © 2013 Elsevier B.V. All rights reserved.
[The progress in speciation analysis of trace elements by atomic spectrometry].
Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin
2013-12-01
The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.
Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.
1996-01-01
Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.
Louveau, B; Fernandez, C; Zahr, N; Sauvageon-Martre, H; Maslanka, P; Faure, P; Mourah, S; Goldwirt, L
2016-12-01
A precise and accurate high-performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid-phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP 8 column using a mixture of 0.05 m acetate buffer pH 5.7-acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin. Copyright © 2016 John Wiley & Sons, Ltd.
Bo, Haibo
2007-11-01
A method was developed for the determination of azoxystrobin residues in fruits and vegetables by gas chromatography/mass spectrometry (GC/MS). Azoxystrobin residues were extracted with ethyl acetate-cyclohexane (1 : 1, v/v) by ultrasonication and then they were cleaned up on a silica solid-phase extraction (SPE) column to obtain an extract suitable for analysis by GC/MS in the selective ion monitoring (SIM) mode (the selected ion: m/z 344, 372, 388 and 403). The calibration curves were linear between area and concentration of azoxystrobin from 0.01 to 1.0 mg/kg with the correlation coefficient greater than 0.99. The average recoveries from spiked fruit and vegetable matrixes at three concentrations of 0.01, 0.1, 1.0 mg/kg ranged from 85.2% to 98.2% with relative standard deviation less than 21.5%. The limit of detection was 0.01 mg/kg and the limit of quantity was 0.05 mg/kg in fruit and vegetable matrixes, respectively.
Krogh, M; Grefslie, H; Rasmussen, K E
1997-02-21
This paper describes microextraction and gas chromatographic analysis of diazepam from human plasma. The method was based on immobilisation of 1.5 microliters of 1-octanol on a polyacrylate-coated fiber designed for solid-phase microextraction. The solvent-modified fibre was used to extract diazepam from the samples. The plasma sample was pre-treated to release diazepam from the protein binding. The fibre was inserted into the modified plasma sample, adjusted to pH 5.5 an internal standard was added and the mixture was carefully stirred for 4 min. The fibre with the immobilised solvent and the enriched analytes was injected into the capillary gas chromatograph. The solvent and the extracted analytes were evaporated at 300 degrees C in the split-splitless injection port of the gas chromatograph, separated on a methylsilicon capillary column and detected with a nitrogen-phosphorus detector. The method was shown to be reproducible with a detection limit of 0.10 nmol/ml in human plasma.
Navarro, María; Kontoudakis, Nikolaos; Canals, Joan Miquel; García-Romero, Esteban; Gómez-Alonso, Sergio; Zamora, Fernando; Hermosín-Gutiérrez, Isidro
2017-07-01
A new method for the analysis of ellagitannins observed in oak-aged wine is proposed, exhibiting interesting advantages with regard to previously reported analytical methods. The necessary extraction of ellagitannins from wine was simplified to a single step of solid phase extraction (SPE) using size exclusion chromatography with Sephadex LH-20 without the need for any previous SPE of phenolic compounds using reversed-phase materials. The quantitative recovery of wine ellagitannins requires a combined elution with methanol and ethyl acetate, especially for increasing the recovery of the less polar acutissimins. The chromatographic method was performed using a fused-core C18 column, thereby avoiding the coelution of main ellagitannins, such as vescalagin and roburin E. However, the very polar ellagitannins, namely, the roburins A, B and C, still partially coeluted, and their quantification was assisted by the MS detector. This methodology also enabled the analysis of free gallic and ellagic acids in the same chromatographic run. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Lei; Liu, Kang-Ning; Wen, Ya-Bin; Zhang, Han-Wen; Lu, Ya-Xin; Yin, Zheng
2012-04-15
A fully automated on-line solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with diode array detection (DAD) method was developed for determination of bavachinin in mouse plasma. Analytical process was performed on two reversed-phase columns (SPE cartridge and analytical column) connected via a Valco 6-port switching valve. Plasma samples (10 μL) were injected directly onto a C18 SPE cartridge (MF Ph-1 C18, 10 mm × 4 mm, 5 μm) and the biological matrix was washed out for 2 min with the loading solvent (5 mM NaH(2)PO(4) buffer, pH 3.5) at a flow rate of 1 mL/min. By rotation of the switching valve, bavachinin was eluted from the SPE cartridge in the back-flush mode and transferred to the analytical column (Venusil MP C18, 4.6 mm × 150 mm, 5 μm) by the chromatographic mobile phase consisted of acetonitrile-5mM NaH(2)PO(4) buffer 65/35 (v/v, pH 3.5) at a flow rate of 1 mL/min. The complete cycle of the on-line SPE purification and chromatographic separation of the analyte was 13 min with UV detection performed at 236 nm. Calibration curve with good linearity (r=0.9997) was obtained in the range of 20-4000 ng/mL in mouse plasma. The intra-day and inter-day precisions (RSD) of bavachinin were in the range of 0.20-2.32% and the accuracies were between 98.47% and 102.95%. The lower limit of quantification (LLOQ) of the assay was 20 ng/mL. In conclusion, the established automated on-line SPE-HPLC-DAD method demonstrated good performance in terms of linearity, specificity, detection and quantification limits, precision and accuracy, and was successfully utilized to quantify bavachinin in mouse plasma to support the pharmacokinetic (PK) studies. The PK properties of bavachinin were characterized as rapid oral absorption, high clearance, and poor absolute bioavailability. Copyright © 2012. Published by Elsevier B.V.
Slow equilibration of reversed-phase columns for the separation of ionized solutes.
Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R
2003-10-10
Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas
2017-03-01
An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.
McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping
2018-01-01
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.
Zhao, Rui; Ding, Shi-Jian; Shen, Yufeng; Camp, David G.; Livesay, Eric A.; Udseth, Harold; Smith, Richard D.
2009-01-01
We report on the development and characterization of automated metal-free multiple-column nanoLC instrumentation for sensitive and high-throughput analysis of phosphopeptides with mass spectrometry analysis. The system implements a multiple-column capillary LC fluidic design developed for high-throughput analysis of peptides (Anal. Chem. 2001, 73, 3011–3021), incorporating modifications to achieve broad and sensitive analysis of phosphopeptides. The integrated nanoLC columns (50 µm i.d. × 30 cm containing 5 µm C18 particles) and the on-line solid phase extraction columns (150 µm i.d. × 4 cm containing 5 µm C18 particles) were connected to automatic switching valves with non-metal chromatographic accessories, and other modifications to avoid the exposure of the analyte to any metal surfaces during handling, separation, and electrospray ionization. The nanoLC developed provided a separation peak capacity of ∼250 for phosphopeptides (and ∼400 for normal peptides). A detection limit of 0.4 fmol was obtained when a linear ion trap tandem mass spectrometer (Finnegan LTQ) was coupled to a 50-µm i.d. column of the nanoLC. The separation power and sensitivity provided by the nanoLC-LTQ enabled identification of ∼4600 phosphopeptide candidates from ∼60 µg COS-7 cell tryptic digest followed by IMAC enrichment and ∼520 tyrosine phosphopeptides from ∼2 mg of human T cells digests followed by phosphotyrosine peptide immunoprecipitation. PMID:19217835
Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor
2006-04-15
In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems.
Nonaka, Y; Saito, K; Hanioka, N; Narimatsu, S; Kataoka, H
2009-05-15
A simple and sensitive automated method for determination of aflatoxins (B1, B2, G1, and G2) in nuts, cereals, dried fruits, and spices was developed consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-mass spectrometry (LC-MS). Aflatoxins were separated within 8 min by high-performance liquid chromatography using a Zorbax Eclipse XDB-C8 column with methanol/acetonitrile (60/40, v/v): 5mM ammonium formate (45:55) as the mobile phase. Electrospray ionization conditions in the positive ion mode were optimized for MS detection of aflatoxins. The pseudo-molecular ions [M+H](+) were used to detect aflatoxins in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25draw/eject cycles of 40 microL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted aflatoxins were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC-MS with SIM method, good linearity of the calibration curve (r>0.9994) was obtained in the concentration range of 0.05-2.0 ng/mL using aflatoxin M1 as an internal standard, and the detection limits (S/N=3) of aflatoxins were 2.1-2.8 pg/mL. The in-tube SPME method showed >23-fold higher sensitivity than the direct injection method (10 microL injection volume). The within-day and between-day precision (relative standard deviations) at the concentration of 1 ng/mL aflatoxin mixture were below 3.3% and 7.7% (n=5), respectively. This method was applied successfully to analysis of food samples without interference peaks. The recoveries of aflatoxins spiked into nuts and cereals were >80%, and the relative standard deviations were <11.2%. Aflatoxins were detected at <10 ng/g in several commercial food samples.
NASA Astrophysics Data System (ADS)
Câmara, L. D. T.
2015-09-01
The solvent-gradient simulated moving bed process (SG-SMB) is the new tendency in the performance improvement if compared to the traditional isocratic solvent conditions. In such SG-SMB separation process the modulation of the solvent strength leads to significant increase in the purities and productivity followed by reduction in the solvent consumption. A stepwise modelling approach was utilized in the representation of the interconnected chromatographic columns of the system combined with lumped mass transfer models between the solid and liquid phase. The influence of the solvent modifier was considered applying the Abel model which takes into account the effect of modifier volume fraction over the partition coefficient. The modelling and simulations were carried out and compared to the experimental SG-SMB separation of the amino acids phenylalanine and tryptophan. A lumped mass transfer kinetic model was applied for both the modifier (ethanol) as well as the solutes. The simulation results showed that such simple and global mass transfer models are enough to represent all the mass transfer effect between the solid adsorbent and the liquid phase. The separation performance can be improved reducing the interaction or the mass transfer kinetic effect between the solid adsorbent phase and the modifier. The simulations showed great agreement fitting the experimental data of the amino acids concentrations both at the extract as well as at the raffinate.
Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili
2016-07-01
Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Weiya; Wan, Xin; Li, Lixia; Wang, Chengyun; Jin, Shupei; Xing, Jun
2014-10-01
The short chain chlorinated paraffins (SCCPs) are the additives frequently used in the leather production in China, but they have been put into the list of forbidden chemicals issued by European Union recently. In fact, there is not a commonly recognized method for the determination of the SCCPs in the leather products due to the serious matrix interferences from the leather products and the complex chemical structures of the SCCPs. A method of solid phase extraction coupled with gas chromatography-mass spectrometry (SPE-GC-MS) was established for the determination of the SCCPs in the leather products after the optimization of the SPE conditions. It was found that the interferences from the leather products were thor- oughly separated from the analyte of the SCCPs on a home-made solid phase extraction (SPE) column filled with silica packing while eluted with a mixed solvent of n-hexane-methylene chloride (2:1, v/v). With this method, the recoveries for the SCCPs spiked in the real leather samples varied from 90.47% to 99.00% with the relative standard deviations (RSDs) less than 6.7%, and the limits of detection (LODs) were between 0.069 and 0.110 mg/kg. This method is suitable for qualitative and quantitative analysis of SCCPs in the leather products.
Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, Han J G E
2018-04-01
A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro-column, pH gradient generation, and fraction collection in a single device. Using a sieve micro-valve, anion exchange particles were packed into a microchannel in order to realize a solid-phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro-column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and R-Phycoerythrin (R-PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development. © 2018 The Authors Electrophoresis Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anion-exchange behavior of several alkylsilica reversed-phase columns.
Marchand, D H; Snyder, L R
2008-10-31
Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.
Ashu-Arrah, Benjamin A; Glennon, Jeremy D; Albert, Klaus
2013-07-12
This research uses solid-state nuclear magnetic resonance (NMR) spectroscopy to characterise the nature and amount of different surface species, and chromatography to evaluate phase properties of a pentafluorophenylpropyl (PFPP) bonded silica phase prepared and end-capped using supercritical carbon dioxide (sc-CO2) as a reaction solvent. Under sc-CO2 reaction conditions (at temperature of 100 °C and pressure of 414 bar), a PFPP silica phase was prepared using 3-[(pentafluorophenyl)propyldimethylchlorosilane] within 1h. The bonded PFPP phase was subsequently end-capped with bis-N,O-trimethylsilylacetamide (BSA), hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) within 1h under the same sc-CO2 reaction conditions (100 °C/4141 bar). Elemental microanalysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to provide support data to solid-state NMR and chromatographic evaluation. Results revealed a surface coverage of 2.2 μmol/m(2) for the non-end-capped PFPP silica phase while the PFPP phase end-capped with BSA gave a higher surface coverage (3.9 μmol/m(2)) compared to HMDS (2.9 μmol/m(2)) and TMCS (2.8 μmol/m(2)). (29)Si CP/MAS NMR analysis of the PFPP end-capped with BSA shows a significant decrease in the amount of Q(3) (free silanols) and Q(4) (siloxane groups) species, coupled with the absence of the most reactive Q(2) (geminal silanols) in addition to increased amount of a single resonance peak centred at +13 ppm (MH) corresponding to -Si-O-*Si-CH3 bond. (13)C CP/MAS NMR shows the resonance corresponding to the propyl linkage (CH3CH2CH2-) and methyl groups (Si(CH3)n) confirming successful silanisation and endcapping reactions in sc-CO2. Chromatographic evaluation of the BSA end-capped PFPP phase with Neue text mixture revealed improved chromatographic separation as evidenced in the enhanced retention of hydrophobic markers and decreased retention for basic solutes. Moreover, chromatography revealed a change in column selectivity for the BSA end-capped PFPP phase with dipropylphthalate eluting before naphthalene, indicating decreased silanol groups and increased hydrophobicity. The extend of BSA end-capping as measured by the increase in column efficiency (67,260 N/m vs. 60,480 N/m) on a 2.1 i.d.×50 mm column, methylene group selectivity (α(CH(2)) = 2.27 vs. 2.14) and decreased silanophilic interactions (S=3.7 vs. 4.10) indicate that the increase in carbon loading (3.9 μmol/m(2) vs. 2.2 μmol/m(2)) and improvement in chromatography in good peak shape and symmetry is attributed to end-capping with trimethylsilyl groups. Copyright © 2013 Elsevier B.V. All rights reserved.
Onodera, S; Nagatsuka, A; Rokuhara, T; Asakura, T; Hirayama, N; Suzuki, S
1993-07-16
Amberlite XAD resin and activated carbon columns were tested for their abilities to concentrate trace organic pollutants in chlorinated water. Both XAD-2 and XAD-7 resin columns (20 ml) were capable of adsorbing about 30% of total organic halogen (TOX) present in 20 l of drinking water (pH 7) containing about 100 micrograms/l of TOX, whereas the carbon column (10 ml) adsorbed over 90% of TOX. The adsorption capacity of XAD-7 resin was found to be strongly dependent on the solution pH, as compared with those of XAD-2 and carbon adsorbents. Soxhlet and sonication extractions were also evaluated for their abilities to recover the adsorbed organics from the adsorbents, by measurements of TOX, chromatographable compounds and mutagenicity in the eluates. Soxhlet extraction gave higher recoveries than sonication, as measured with the above indices, but these differences were generally small (ca. 20%), with exception of the carbon extracts. The XAD-2 and XAD-7 extracts of drinking water also showed about 3-4 times higher mutagenic activity than the carbon extracts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criddle, Craig S.; Wu, Weimin
2013-04-17
With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with themore » addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.« less
LIQUID-LIQUID EXTRACTION COLUMNS
Thornton, J.D.
1957-12-31
This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.
Moncrieff, J
1994-03-18
A simple, extractionless method for the determination of dapsone in serum and saliva is described. Reversed-phase high-performance liquid chromatography is used with UV detection at 295 nm or electrochemical detection at 0.7 V. Diazoxide in buffer is the internal standard for UV detection and practolol for electrochemical detection. Sample preparation is minimal with protein precipitation of serum samples whilst saliva samples are simply diluted with addition of an internal standard. Low-level serum and saliva samples are front-cut on-line with a 3 cm laboratory-made precolumn in the loop position on a standard Valco injection valve. Isocratic separation is achieved on a 250 mm x 4.6 mm I.D. stainless-steel Spherisorb S5 ODS-1 column. The mobile phase for high levels of dapsone is acetonitrile-elution buffer (12:88, v/v) at 2 ml/min and a column temperature of 40 degrees C for both serum and saliva separations. For the low-level assays using electrochemical detection and solid-phase clean-up, the mobile phase is acetonitrile-methanol-elution buffer (9:4:87, v/v/v). The UV and electrochemical detection limits are 25 ng/ml and 200 pg/ml, respectively, in both serum and saliva. This simple method is applicable to the routine monitoring of dapsone levels in serum from leprotic patients and electrochemical detection gives a simple, reliable method for the monitoring of trough values in subjects on anti-malarial prophylaxis.
Liquid chromatographic method for determining the concentration of bisazir in water
Scholefield, Ronald J.; Slaght, Karen S.; Allen, John L.
1997-01-01
Barrier dams, traps, and lampricides are the techniques currently used by the Great Lakes Fishery Commission to control sea lampreys (Petromyzon marinus) in the Great Lakes. To augment these control techniques, a sterile-male-release research program was initiated at the Lake Huron Biological Station. Male sea lampreys were sterilized by intraperitoneal injection of the chemical sterilant P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir). An analytical method was needed to quantitate the concentration of bisazir in water and to routinely verify that bisazir (>25 μg/L) does not persist in the treated effluent discharged from the sterilization facility to Lake Huron. A rapid, accurate, and sensitive liquid chromatographic (LC) method was developed for determining bisazir in water. Bisazir was dissolved in Lake Huron water; extracted and concentrated on a C18 solid-phase extraction column; eluted with methanol; and quantitated by reversed-phase LC using a C18 column, a mobile phase of 70% water and 30% methanol (v/v), and UV detection (205 nm). Bisazir retention time was 7-8 min; total run time was about 20 min. Method detection limit for bisazir dissolved in Lake Huron water was about 15 μg/L. Recovery from Lake Huron water fortified with bisazir at 100 μg/L was 94% (95% confidence interval, 90.2-98.2%).
Lhotská, Ivona; Šatínský, Dalibor; Havlíková, Lucie; Solich, Petr
2016-05-01
A new fast and sensitive method based on on-line solid-phase extraction on a fused-core precolumn coupled to liquid chromatography with fluorescence detection has been developed for ochratoxin A (OTA) and citrinin (CIT) determination in lager beer samples. Direct injection of 100 μL filtered beer samples into an on-line SPE-HPLC system enabled fast and effective sample extraction including separation in less than 6 min. Preconcentration of OTA and CIT from beer samples was performed on an Ascentis Express RP C18 guard column (5 × 4.6 mm), particle size 2.7 μm, with a mobile phase of methanol/0.5% aqueous acetic acid pH 2.8 (30:70, v/v) at a flow rate of 2.0 mL min(-1). The flow switch from extraction column to analytical column in back-flush mode was set at 2.0 min and the separation was performed on the fused-core column Ascentis Express Phenyl-Hexyl (100 × 4.6 mm), particle size 2.7 μm, with a mobile phase acetonitrile/0.5% aqueous acetic acid pH 2.8 in a gradient elution at a flow rate of 1.0 mL min(-1) and temperature of 50 °C. Fluorescence excitation/emission detection wavelengths were set at 335/497 nm. The accuracy of the method, defined as the mean recoveries of OTA and CIT from light and dark beer samples, was in the range 98.3-102.1%. The method showed high sensitivity owing to on-line preconcentration; LOQ values were found to be 10 and 20 ng L(-1) for OTA and CIT, respectively. The found values of OTA and CIT in all tested light, dark and wheat beer samples were significantly below the maximum tolerable limits (3.0 μg kg(-1) for OTA and 2000 μg kg(-1) for CIT) set by the European Union.
Cai, Meiqiang; Chen, Xiaohong; Wei, Xiaoqing; Pan, Shengdong; Zhao, Yonggang; Jin, Micong
2014-09-01
A rapid and accurate method by liquid chromatography/tandem mass spectrometry (LC-MS/MS) using positive electrospray was established for the determination of ricinine in cooking oils. The homogenized samples, spiked with (13)C6-labelled ricinine as an internal standard, were extracted using ethanol/water (20:80, v/v) and purified by dispersive solid-phase extraction (dSPE) using primary-secondary amine (PSA) and C18 as adsorbents. The extract was separated in a short C18 reversed-phase column using methanol/water (25:75, v/v) as the mobile phase and detected in multiple reaction monitoring (MRM) mode with the absolute matrix effect of 93.2-102.2%. The alkali-metal adduct ions were discussed and the mass/mass fragmentation pathway was explained. Ricinine showed good linearity in the range of 0.5-50.0 μg/kg with the limit of quantitation 0.5 μg/kg. The recoveries were between 86.0% and 98.3% with the intra- and inter-day RSDs of 2.6-7.0%, 5.5-10.8%, respectively. This method could be applied to the rapid quantification of ricinine in cooking oils. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Alves, Claudete; Santos-Neto, Alvaro J; Fernandes, Christian; Rodrigues, José C; Lanças, Fernando M
2007-10-01
Solid-phase microextraction coupled to liquid chromatography and mass spectrometry (SPME-LC-MS) was used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. SPME was performed by direct extraction on a PDMS/DVB (60 microm) coated fiber, employing a stirring rate of 1200 rpm for 30 min, pH 11.0, and temperature of 30 degrees C. Drug desorption was carried out by exposing the fiber to the liquid chromatography mobile phase for 20 min, using a labmade SPME-LC interface at 50 degrees C. The main variables experimentally influencing LC-MS response were evaluated and mathematically modeled. A rational optimization with fewer experiments was achieved using a factorial design approach. The constructed empirical models were adjusted with 96-98% of explained deviation allowing an adequate data set comprehension. The chromatographic separation was realized using an RP-18 column (150 mm x 2.1 mm, 5 microm particles) and ammonium acetate buffer (0.01 mol/l, pH 5.50) : acetonitrile (50 : 50 v/v) as mobile phase. Low detection levels were achieved with electrospray interface (0.1 ng/ml). The developed method showed specificity, linearity, precision, and limit of quantification adequate to assay tricyclic antidepressant drugs in plasma.
Characterization of retentivity of reversed phase liquid chromatography columns.
Ying, P T; Dorsey, J G
1991-03-01
There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".
Liu, Na; Shi, Yue-e; Li, Mengyan; Zhang, Ting-di; Gao, Song
2015-10-01
A simple and selective high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α-ethynyl estradiol) in environmental matrices. For feces samples, solid-liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid-phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed-phase C18 column gradient-eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10(-2) (estrone), 4.11 × 10(-4) (estradiol), 5.2 × 10(-3) (estriol) and 7.18 × 10(-3) μg/L (17α-ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2-105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity
NASA Technical Reports Server (NTRS)
Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.
2002-01-01
In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were evaluated along with a companion set of tests in normal gravity. The flow rates, fluid properties and packing properties were selected to provide a range of several orders-of-magnitude for the important dimensionless parameters. Additional information is included in the original extended abstract.
Kang, Jing; Han, Lu; Chen, Zhonglin; Shen, Jimin; Nan, Jun; Zhang, Yihua
2014-09-15
In this paper, a novel chemiluminescence (CL) method has been developed for the determination of propyl gallate (PG). The proposed method was based on the enhancing effect of PG on the CL signal of 2-phenyl-4,5-di(2-furyl)-1H-imidazole (PDFI) and K3Fe(CN)6 reaction in an alkaline solution. Under the optimum conditions, the enhanced CL intensity was linearly related to the concentration of PG. The linear range of the calibration curve was 0.05-8 μg/mL, and the corresponding detection limit (3σ) was 0.036 μg/mL. The relative standard deviation for determining 1.0 μg/mL PG was 2.8% (n=11). The proposed method has been successfully applied to the determination of PG in edible oil. The edible oil samples were prepared by the solid-phase extraction (SPE) with a C18 column served as the stationary phase. Furthermore, the possible CL mechanism was also discussed briefly based on the photoluminescence (PL) and CL spectra. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nobilis, M; Pour, M; Kunes, J; Kopecký, J; Kvĕtina, J; Svoboda, Z; Sládková, K; Vortel, J
2001-03-01
Ursodeoxycholic acid (3 alpha,7 beta-dihydroxy-5 beta-cholanoic acid, UDCA) is a therapeutically applicable bile acid widely used for the dissolution of cholesterol-rich gallstones and in the treatment of chronic liver diseases associated with cholestasis. UDCA is more hydrophilic and less toxic than another therapeutically valuable bile acid, chenodeoxycholic acid (CDCA), the 7 alpha-epimer of UDCA. Procedures for sample preparation and HPLC determination of UDCA in blood serum were developed and validated. A higher homologue of UDCA containing an additional methylene group in the side chain was synthetized and used as an internal standard (IS). Serum samples with IS were diluted with a buffer (pH=7). The bile acids and IS were captured using solid phase extraction (C18 cartridges). The carboxylic group of the analytes was derivatized using 2-bromo-2'-acetonaphthone (a detection-oriented derivatization), and reaction mixtures were analyzed (HPLC with UV 245 nm detection; a 125--4 mm column containing Lichrospher 100 C18, 5 microm; mobile phase: acetonitrile--water, 6:4 (v/v)). Following validation, this method was used for pharmacokinetic studies of UDCA in humans.
NASA Astrophysics Data System (ADS)
Zawadowicz, M. A.; Del Negro, L. A.
2010-12-01
Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.
Szultka-Mlynska, Malgorzata; Pomastowski, Pawel; Buszewski, Boguslaw
2018-06-01
A sensitive, rapid and specific analytical method using high performance liquid chromatography coupled with mass spectrometry (HPLC-QqQ-MS) was developed to determine selected antibiotic drugs and their metabolites (amoxicillin, cefotaxime, ciprofloxacin, clindamycin and metronidazole; amoxycilloic acid, 4-hydroxyphenyl glycyl amoxicillin, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, ciprofloxacin N-oxide, N-demethylclindamycin, clindamycin sulfoxide, and hydroxy metronidazole) in human whole blood and vascularized tissue after single oral administration. The samples were prepared by solid phase microextraction with C18 fibers (SPME C18 ) and determined on a GRACE analytical C18 column, Vision HT (50 × 2 mm, 1.5 μm) at the flow rate of 0.4 mL min -1 using water and acetonitrile (containing 0.1% formic acid) as the mobile phase. The proposed method was successfully applied in a pharmacokinetic study of the selected antibiotic drugs and their metabolites in real human samples. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS) was used for identification and qualification analysis of the target compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, H.L.; Word, J.Q.; Kohn, N.P.
1993-10-01
The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testingmore » on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.« less
Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R
2015-09-01
Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
HPLC–electrospray mass spectrometric assay for the determination of (R,R)-fenoterol in rat plasma
Siluk, Danuta; Kim, Hee Seung; Cole, Tyler; Wainer, Irving W.
2008-01-01
A fast and specific liquid chromatography–mass spectrometry method for the determination of (R,R)-fenoterol ((R,R)-Fen) in rat plasma has been developed and validated. (R,R)-Fen was extracted from 125 µl of plasma using solid phase extraction and analyzed on Atlantis HILIC Silica 3 µm column. The mobile phase was composed of acetonitrile:ammonium acetate (pH 4.1; 20 mM) (85:15, v/v), at a flow rate of 0.2 ml/min. The lower limit of detection (LLOD) was 2 ng/ml . The procedure was validated and applied to the analysis of plasma samples from rats previously administered (R,R)-Fen in an intravenous bolus. PMID:18617349
Rozio, M; Fracasso, C; Riva, A; Morazzoni, P; Caccia, S
2005-02-25
A reverse-phase high-performance liquid chromatography method was developed for the determination of hyperforin and its reduced derivatives octahydrohyperforin and tetrahydrohyperforin in rodent plasma. The procedure includes solid-phase extraction from plasma using the Baker 3cc C8 cartridge, resolution on the Symmetry Shield RP8 column (150 mm x 4.6 mm, i.d. 3.5 microm) and UV absorbance detection at 300 nm. The assay was linear over a wide range, with an overall coefficient of variation less than 10% for all compounds. The precision and accuracy were within acceptable limits and the limit of quantitation was sufficient for studies preliminarily assessing the disposition of tetrahydrohyperforin and octahydrohyperforin in the mouse and rat.
Kayillo, Sindy; Dennis, Gary R; Shalliker, R Andrew
2006-09-08
In this manuscript the retention and selectivity of a set of linear and non-linear PAHs were evaluated on five different reversed-phase columns. These phases included C18 and C18 Aqua stationary phases, as well as three phenyl phases: Propyl-phenyl, Synergi polar-RP and Cosmosil 5PBB phase. Overall, the results revealed that the phenyl-type columns offered better separation performance for the linear PAHs, while the separation of the structural isomer PAHs was enhanced on the C18 columns. The Propyl-phenyl column was found to have the highest molecular-stationary phase interactions, as evidenced by the greatest rate of change in 'S' (0.71) as a function of the molecular weight in the PAH homologous series, despite having the lowest surface coverage (3% carbon load) (where S is the slope of a plot of logk versus the solvent composition). In contrast, the C18 Aqua column, having the highest surface coverage (15% carbon load) was found to have the second lowest molecular-stationary phase interactions (rate of change in S=0.61). Interestingly, the Synergi polar-RP column, which also is a phenyl stationary phase behaved more 'C18-like' than 'phenyl-like' in many of the tests undertaken. This is probably not unexpected since all five phases were reversed phase.
Beeston, Michael Philip; Glass, Hylke Jan; van Elteren, Johannes Teun; Slejkovec, Zdenka
2007-09-19
A new method has been developed to analyse the mobility of elements within soils employing counter-current flow soil contacting in a fluidised bed (FB) column. This method alleviates the problem of irreproducible peaks suffered by state-of-the-art micro-column techniques as a result of particle compaction. Reproducible extraction profiles are produced through the leaching of soil with a linear gradient of 0.05 mol L(-1) ammonium sulphate to 0.11 mol L(-1) acetic acid using a high pressure liquid chromatography (HPLC) quaternary pump, and the continuous monitoring of the elements in the leachate with inductively coupled plasma mass spectrometry (ICP-MS). Quantification of the procedure is achieved with an external flow injection (FI) calibration method. Flow rate and FB column length were investigated as critical parameters to the efficiency of the extraction methodology. It was found that an increase in the column length from 10 to 20 cm using a flow rate of 0.15 mL min(-1) produced the same increase in extracted elemental concentration as an increase in flow rate from 0.15 to 0.30 mL min(-1). In both examples, the increase in the concentration of elements leached from the soil may be ascribed to the increase in the concentration gradient between the solid and liquid. The exhaustive nature of the technique defines the maximum leachable concentration within the operationally defined leaching parameters of the exchangeable phase, providing a more accurate assessment of the risk associated with the elements in the soil for the phase providing the greatest risk to the environment. The multi-elemental high sensitivity nature of the on-line detector provides an accurate determination of the associations present between the elements in the soil, and the identification of multiple phases within the exchangeable phase through the presence of multiple peaks in the extraction profiles. It is possible through the deconvolution of these extraction profiles that the concentration corresponding to the peaks identified can be defined.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Robinson, David B.
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
Zhong, W Z; Williams, M G
2000-02-25
A chiral method for the simultaneous analysis of the (+)- and (-)-enantiomers of PNU-83894 and its metabolite, PNU-83892, in plasma was developed to characterize the enantioselective pharmacokinetics of PNU-83894, a potential anticonvulsant candidate. The method involves solid-phase extraction (phenyl column) of the enantiomers from plasma followed by direct enantioselective separation on a beta-cyclodextrin HPLC chiral column and UV detection at 230 nm. The linear range for this method was found to be 12.5 ng/ml to 5.00 microg/ml and the intra- and inter-assay precision and accuracy for each enantiomer were <11% in all cases. The validity of this assay was also demonstrated by its application to the pharmacokinetic evaluation of PNU-83894 in the dog.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
Salloum, Maher; Robinson, David B.
2018-01-30
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
A bioassay for the detection of perchlorate in the ppb range.
Heinnickel, Mark; Smith, Stephen C; Koo, Jonathan; O'Connor, Susan M; Coates, John D
2011-04-01
A bioassay for the determination of ppb (μg·L(-1)) concentrations of perchlorate has been developed and is described herein. The assay uses the enzyme perchlorate reductase (PR) from the perchlorate-reducing organism Dechloromonas agitata in purified and partially purified forms to detect perchlorate. The redox active dye phenazine methosulfate (PMS) is shown to efficiently shuttle electrons to PR from NADH. Perchlorate can be determined indirectly by monitoring NADH oxidization by PR. To lower the detection limit, we have shown that perchlorate can be concentrated on a solid-phase extraction (SPE) column that is pretreated with the cation decyltrimethylammonium bromide (DTAB). Perchlorate is eluted from these columns with a solution of 2 M NaCl and 200 mM morpholine propane sulfonic acid (MOPS, pH 12.5). By washing these columns with 15 mL of 2.5 mM DTAB and 15% acetone, contaminating ions, such as chlorate and nitrate, are removed without affecting the bioassay. Because of the effect of complex matrices on the SPE columns, the method of standard additions is used to analyze tap water and groundwater samples. The efficacy of the developed bioassay was demonstrated by analyzing samples from 2-17000 ppb in deionized lab water, tap water, and contaminated groundwater.
Leaching Behavior Of Mineral Processing Waste: Comparison Of Batch And Column Investigations
In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid–solid ratios (LS) to determ...
Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro
2016-01-01
1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507
Ciogli, Alessia; Simone, Patrizia; Villani, Claudio; Gasparrini, Francesco; Laganà, Aldo; Capitani, Donatella; Marchetti, Nicola; Pasti, Luisa; Massi, Alessandro; Cavazzini, Alberto
2014-06-23
The structural and chromatographic characterization of two novel fluorinated mesoporous materials prepared by covalent reaction of 3-(pentafluorophenyl)propyldimethylchlorosilane and perfluorohexylethyltrichlorosilane with 2.5 μm fully porous silica particles is reported. The adsorbents were characterized by solid state (29)Si, (13)C, and (19)F NMR spectroscopy, low-temperature nitrogen adsorption, elemental analysis (C and F), and various chromatographic measurements, including the determination of adsorption isotherms. The structure and abundance of the different organic surface species, as well as the different silanol types, were determined. In particular, the degree of so-called horizontal polymerization, that is, Si-O-Si bridging parallel to the silica surface due to the reaction, under "quasi-dry" conditions, of trifunctional silanizing agents with the silica surface was quantified. Significant agreement was found between the information provided by solid-state NMR, elemental analysis, and excess isotherms regarding the amount of surface residual silanol groups, on the one hand, and the degree of surface functionalization, on the other. Finally, the kinetic performance of the fluorinated materials as separation media for applications in near-ultrahigh-performance liquid chromatography was evaluated. At reduced velocities of about 5.5 (ca. 600 bar backpressure at room temperature) with 3 mm diameter columns and toluene as test compound, reduced plate heights on the order of 2 were obtained on columns of both adsorbents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crepeau, Kathryn L.; Domagalski, Joseph L.; Kuivila, Kathryn
1994-01-01
Analytical method and quality-assurance practices were developed for a study of the fate and transport of pesticides in the Sacramento-San Joaquin Delta and the Sacramento and San Joaquin River. Water samples were filtered to remove suspended parti- culate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide, and the pesticides were eluted with three 2-milliliter aliquots of hexane:diethyl ether (1:1). The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for analytes determined per 1,500-milliliter samples ranged from 0.006 to 0.047 microgram per liter. Recoveries ranged from 47 to 89 percent for 12 pesticides in organic-free, Sacramento River and San Joaquin River water samples fortified at 0.05 and 0.26 microgram per liter. The method was modified to improve the pesticide recovery by reducing the sample volume to 1,000 milliliters. Internal standards were added to improve quantitative precision and accuracy. The analysis also was expanded to include a total of 21 pesticides. The method detection limits for 1,000-milliliter samples ranged from 0.022 to 0.129 microgram per liter. Recoveries ranged from 38 to 128 percent for 21 pesticides in organic-free, Sacramento River and San Joaquin River water samples fortified at 0.10 and 0.75 microgram per liter.
Modafinil in Forensic and Clinical Toxicology-Case Reports, Analytics and Literature.
Radünz, Lars; Reuter, Hannah; Andresen-Streichert, Hilke
2018-06-01
Modafinil is used because of its wakefulness-promoting properties for treatment of diseases associated with extreme sleepiness (i.e., narcolepsy). Additionally, it is misused as a "cognitive enhancer" to increase alertness and to improve concentration. We present modafinil concentrations in serum samples in five cases of our routine work measured by high-performance liquid chromatography coupled with a photo diode array detector after solid-phase extraction. One sample was analyzed for clinical toxicology purposes. The other four were investigated for the police: three cases of driving under the influence of drugs and one case of bodily harm. Sample preparation consisted of solid-phase extraction using Bond Elut® C18 columns. Papaverine was used as internal standard. Chromatographic separation was carried out using a Polaris C18-A column in an isocratic run. Wavelengths used for UV-detection were 220 nm for modafinil and 239 nm for the internal standard, respectively. The method was validated with a reduced validation design for rare analytes. A six-point-calibration from 0.5 to 5.0 mg/L, covering the therapeutic range (0.9-3.3 mg/L), was used for quantification. Concentrations in serum were in the range of 1.3 to ~34 mg/L (median: 3.6 mg/L; mean: 9.0 mg/L). To our knowledge, there are only few publications concerning the serum concentrations of modafinil in cases of (suspected) misuse, forensic cases or intoxications. In our discussion, the serum concentrations we determined are compared with the levels described in the literature so far.
Pathways of Methylmercury Transfer to the Water Column Across Multiple Estuaries
NASA Astrophysics Data System (ADS)
Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.
2014-12-01
Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-estuary approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of estuaries. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 estuaries in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 estuary in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware River ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple estuaries in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across estuaries, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware River ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was uniformly elevated above water dissolved MeHg in the other estuaries studied. Several estuaries had higher MeHg at low tide suggesting input as water was delivered from the watersheds. We conclude that the relative importance of sources is dependent on the physical (water residence time, water depth) and chemical characteristics (sediment organic carbon content) of the estuary.
NASA Astrophysics Data System (ADS)
Lino, A. C. L.; Dal Fabbro, I. M.
2008-04-01
The conception of a tridimensional digital model of solid figures and plant organs started from topographic survey of virtual surfaces [1], followed by topographic survey of solid figures [2], fruit surface survey [3] and finally the generation of a 3D digital model [4] as presented by [1]. In this research work, i.e. step number [4] tested objects included cylinders, cubes, spheres and fruits. A Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface. Projected grid was named Gd. The difference between Gd and G1 followed by filtration generated de moiré fringes M1 and so on, obtaining the fringes M2, M3 and M4 from Gd. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Tested object was placed on a goniometer and rotate to generate four surfaces topography. These four surveyed surfaces were assembled by means of a SCILAB software, obtaining a three column matrix, corresponding to the object coordinates xi, also having elevation values and coordinates corrected as well. The work includes conclusions on the reliability of the proposed method as well as the setup simplicity and of low cost.
Ruan, Can-Jun; Guo, Wei; Zhou, Miao; Guo, Gui-Xin; Wang, Chuan-Yue; Li, Wen-Biao; de Leon, Jose
2018-07-01
A recent guideline recommends therapeutic drug monitoring for risperidone, paliperidone and olanzapine, which are frequently used second-generation antipsychotics. We developed a simple high-performance liquid chromatography-tandem mass spectrometry coupled with an online solid-phase extraction method that can be used to measure risperidone, paliperidone and olanzapine using small (40 μL) samples. The analytes were extracted from serum samples automatically pre-concentrated and purified by C 8 (5 μm, 2.1 × 30 mm) solid-phase extraction cartridges, then chromatographed on an Xbidge™ C 18 column (3.5 μm, 100 × 2.1 mm) thermostatted at 30°C with a mobile phase consisting of 70% acetonitrile and 30% ammonium hydroxide 1% solution at an isocratic flow rate of 0.3 mL/min, and detected with tandem mass spectrometry. The assay was validated in the concentration range from 2.5 to 160 ng/mL. Intra- and inter-day precision for all analytes was between 1.1 and 8.2%; method accuracy was between 6.6 and 7.6%. The risperidone and paliperidone assay was compared with a high-performance liquid chromatography-ultraviolet assay currently used in our hospital for risperidone and paliperidone therapeutic drug monitoring, and the results of weighted Deming regression analysis showed good agreement. For the olanzapine assay, we compared 20 samples in separate re-assays on different days; all the relative errors were within the 20% recommended limit. Copyright © 2018 John Wiley & Sons, Ltd.
Guan, Y H; van den Heuvel, Remco
2011-08-05
Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Summers, Thomas; Johnson, Viviana V; Stephan, John P; Johnson, Gloria J; Leonard, George
2009-08-01
Massive transfusion of D- trauma patients in the combat setting involves the use of D+ red blood cells (RBCs) or whole blood along with suboptimal pretransfusion test result documentation. This presents challenges to the transfusion service of tertiary care military hospitals who ultimately receive these casualties because initial D typing results may only reflect the transfused RBCs. After patients are stabilized, mixed-field reaction results on D typing indicate the patient's true inherited D phenotype. This case series illustrates the utility of automated gel column agglutination in detecting mixed-field reactions in these patients. The transfusion service test results, including the automated gel column agglutination D typing results, of four massively transfused D- patients transfused D+ RBCs is presented. To test the sensitivity of the automated gel column agglutination method in detecting mixed-field agglutination reactions, a comparative analysis of three automated technologies using predetermined mixtures of D+ and D- RBCs is also presented. The automated gel column agglutination method detected mixed-field agglutination in D typing in all four patients and in the three prepared control specimens. The automated microwell tube method identified one of the three prepared control specimens as indeterminate, which was subsequently manually confirmed as a mixed-field reaction. The automated solid-phase method was unable to detect any mixed fields. The automated gel column agglutination method provides a sensitive means for detecting mixed-field agglutination reactions in the determination of the true inherited D phenotype of combat casualties transfused massive amounts of D+ RBCs.
Goding, Julian C; Ragon, Dorisanne Y; O'Connor, Jack B; Boehm, Sarah J; Hupp, Amber M
2013-07-01
The fatty acid methyl ester (FAME) content of biodiesel fuels has traditionally been determined using gas chromatography with a polar stationary phase. In this study, a direct comparison of the separation of FAMEs present in various biodiesel samples on three polar stationary phases and one moderately polar stationary phase (with comparable column dimensions) was performed. Retention on each column was based on solubility in and polarity of the phase. Quantitative metrics describing the resolution of important FAME pairs indicate high resolution on all polar columns, yet the best resolution, particularly of geometric isomers, is achieved on the cyanopropyl column. In addition, the separation of four C18 monounsaturated isomers was optimized and the elution order determined on each column. FAME composition of various biodiesel fuel types was determined on each column to illustrate (1) chemical differences in biodiesels produced from different feedstocks and (2) chemical similarities in biodiesels of the same feedstock type produced in different locations and harvest seasons.
Kaiser, Philipp; Surmann, Peter; Fuhrmann, Herbert
2009-01-01
Astaxanthin shows peak deformation and reduced peak area response when eluted with methanol and methyl tert-butyl ether on nonendcapped polymeric C30-bonded HPLC phases. The present study tested different column manufacturers, column batches, and ten mobile phase additives including acids, bases, buffers, complexing and antioxidant agents for improvement of peak shape and peak area response. Concerning chromatographic benefits and feasibility, ammonium acetate was found to be the best additive followed by triethylamine for all columns tested. Variation of the mobile phase pH equivalent and the column temperature showed no synergistic effects on peak shape and peak area response. Results indicate that peak tailing and variation of peak area response are due to different on-column effects. Possible mechanisms of the observed phenomenon will be discussed.
Doué, Mickael; West, Caroline; Bichon, Emmanuelle; Le Bizec, Bruno; Lesellier, Eric
2018-06-01
To assess the presence of prohibited anabolic substances used to promote growth in livestock, calf urine is the most relevant matrix. However, the sample preparation methods (required to remove unwanted matrix components and fractionate isobaric species that may be unresolved by gas chromatography- mass spectrometry GC/MS) are long and complex. In this context, semi-preparative supercritical fluid chromatography (SFC) was considered to possibly simplify the sample preparation in reducing the number of procedures. Fifteen stationary phases were screened with SFC combined with UV and evaporative light-scattering detection (ELSD), among which two columns (Cosmosil π-NAP and Princeton DIOL) were retained for their ability to isolate steroid hormones from other matrix components and, for the second column, for the additional possibility to fractionate steroid hormones into different families (estrogens, mono-hydroxylated and di-hydroxylated androgens). The fractions were further analysed with GC/MS showing the benefit of class fractionation. The final method allows for significant time, solvent and money savings compared to the previously widely used method (solid-phase extraction combined with semi-preparative high-performance liquid chromatography). Copyright © 2018 Elsevier B.V. All rights reserved.
β-carboline derivatives and diphenols from soy sauce are in vitro quinone reductase (QR) inducers.
Li, Ying; Zhao, Mouming; Parkin, Kirk L
2011-03-23
A murine hepatoma (Hepa 1c1c7) cellular bioassay was used to guide the isolation of phase II enzyme inducers from fermented soy sauce, using quinone reductase (QR) as a biomarker. A crude ethyl acetate extract, accounting for 8.7% of nonsalt soluble solids of soy sauce, was found to double relative QR specific activity at 25 μg/mL (concentration required to double was defined as a "CD value"). Further silica gel column fractionation yielded 17 fractions, 16 of which exhibited CD values for QR induction of <100 μg/mL. The four most potent fractions were subfractionated by column and preparative thin layer chromatography, leading to the isolation and identification of two phenolic compounds (catechol and daidzein) and two β-carbolines (flazin and perlolyrin), with respective CD values of 8, 35, 42, and 2 μM. Western blots confirmed that the increases in QR activity corresponded to dose-dependent increases in cellular levels of NAD[P]H:quinone oxidoreductase 1 protein by these four QR inducers. To the authors' knowledge, this is the first report on the ability of β-carboline-derived alkaloids to induce phase II enzymes.
Grimmett, E.S.
1964-01-01
This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)
Leaching of heavy metals from E-waste in simulated landfill columns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yadong; Richardson, Jay B.; Mark Bricka, R.
2009-07-15
In recent history the volume of electronic products purchased by consumers has dramatically escalated. As a result this has produced an ever-increasing electronic waste (E-waste) stream, which has generated concerns regarding the E-waste's potential for adversely impacting the environment. The leaching of toxic substances from obsolete personal computers (PCs) and cathode ray tubes (CRTs) of televisions and monitors, which are the most significant components in E-waste stream, was studied using landfill simulation in columns. Five columns were employed. One column served as a control which was filled with municipal solid waste (MSW), two columns were filled with a mixture ofmore » MSW and CRTs, and the other two were filled with MSW and computer components including printed wire boards, hard disc drives, floppy disc drives, CD/DVD drives, and power supply units. The leachate generated from the columns was monitored for toxic materials throughout the two-year duration of the study. Results indicate that lead (Pb) and various other heavy metals that were of environmental and health concern were not detected in the leachate from the simulators. When the samples of the solids were collected from underneath the E-waste in the columns and were analyzed, significant amount of Pb was detected. This indicates that Pb could readily leach from the E-waste, but was absorbed by the solids around the E-waste materials. While Pb was not observed in the leachate in this study, it is likely that the Pb would eventually enter the leachate after a long term transport.« less
Soares, Cristina M Dias; Alves, Rita C; Casal, Susana; Oliveira, M Beatriz P P; Fernandes, José Oliveira
2010-04-01
The present study describes the development and validation of a new method based on a matrix solid-phase dispersion (MSPD) sample preparation procedure followed by GC-MS for determination of acrylamide levels in coffee (ground coffee and brewed coffee) and coffee substitute samples. Samples were dispersed in C(18) sorbent and the mixture was further packed into a preconditioned custom-made ISOLUTE bilayered SPE column (C(18)/Multimode; 1 g + 1 g). Acrylamide was subsequently eluted with water, and then derivatized with bromine and quantified by GC-MS in SIM mode. The MSPD/GC-MS method presented a LOD of 5 microg/kg and a LOQ of 10 microg/kg. Intra and interday precisions ranged from 2% to 4% and 4% to 10%, respectively. To evaluate the performance of the method, 11 samples of ground and brewed coffee and coffee substitutes were simultaneously analyzed by the developed method and also by a previously validated method based in a liquid-extraction (LE) procedure, and the results were compared showing a high correlation between them.
Xiang, Xiaoling; Wang, Liyuan; Shen, Xianghong; Li, Chunsong; Shen, Jianfu; Wu, Pinggu
2017-09-01
To establish the method of determination of 3-monochloropropane-1,2-diol( 3-MCPD) in grease food by gas chromatography-mass spectrometry( GC-MS). 3-MCPD in grease food represented by bean paste was extracted by ultrasound,purified by alkaline earth solid phase extraction column,derivatived using phenylboronic acid( PBA) and detected by GC-MS. The linearity of 3-MCPD ranged from 1-100 ng/mL,with correlation coefficient at 0. 9993.The limits of quantitation( LOQ) in soy sauce,bean paste,pepper oil were 0. 6,0. 5 and7. 0 μg/kg and limits of detection( LOD) were 1. 9,1. 6 and 18. 8 μg/kg,respectively.Average recovery rate and relative standard deviation was 78. 3%-106. 7% and 1. 9%-11. 6%( n = 6), when 3-MCPD was added in grease food at 2. 5-1000 μg/kg. The method has good purification effect and the detection sensitivity and accuracy,and can be used for the determination of 3-MCPD in grease food.
Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek
2018-06-05
Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Shoemaker, Jody A
2002-01-01
One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.
Mendil, Durali; Demirci, Zafer; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa
2017-04-15
A novel and simple solid phase extraction method was improved and recommended for selenium. Silica gel was modified with 2,6-diamino-4-phenil-1,3,5-triazine and characterized by FTIR, SEM and elemental analysis and used adsorbent for column solid phase extraction of selenium ions. The experimental parameters (pH, flow rates, amounts of the modified silica gel, concentration and type of eluent, volume of sample, etc.) on the recoveries of selenium were optimized. Standard reference materials were analyzed for validation of method. The present method was successfully applied to the detection of total selenium in water and microwave digested some food samples with quantitative recoveries (> 95%). The relative standard deviations were<8%. Matrix influences were not observed. The adsorption capacity of modified silica gel was 5.90mgg -1 . The LOD was 0.015μgL -1 . Enrichment factor was obtained as 50 for the introduced method. Copyright © 2016 Elsevier Ltd. All rights reserved.
A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography.
Ibrahim, Mohammed E A; Liu, Yang; Lucy, Charles A
2012-10-19
This paper uses the HILIC selectivity data of Dinh et al. (J. Chromatogr. A 1218 (2011) 5880) to yield simple and easy to understand plots analogous to Neue plots for selectivity in HILIC. The plots categorize 21 previously studied HILIC phases (data from Dinh et al.), 8 additional HILIC columns and 4 reversed phase columns (our data) using selected probes for specific interactions. The relative retention of cytosine vs. uracil is used to probe the "hydrophilicity" of the HILIC phases; adenosine vs. adenine is used to probe the ability of the stationary phase to participate in hydrogen bonding; and benzyltrimethylammonium (BTMA) vs. cytosine is used to probe the cation exchange and anion exchange character of the column. Plots of kBTMA/kcytosine vs. kcytosine/kuracil successfully classify silica, amide, zwitterionic, diol and reverse phase columns in terms of their HILIC behavior. Polymeric columns including polymer substrate and polymer coated columns show low ion exchange character, but vary widely in their hydrophilicity. Alternatively a HILIC-Phase Selectivity Chart, in analogy to the Neue plot, is constructed by plotting log(kBTMA/kcytosine) vs. log(kcytosine). This plot enables classification of HILIC columns that will yield similar or significantly different separations. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of intermediate soil cover on municipal solid waste decomposition.
Márquez-Benavides, L; Watson-Craik, I
2003-01-01
A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.
Hydrodynamic models for slurry bubble column reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gidaspow, D.
1995-12-31
The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore,more » the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.« less
Djurdjevic, Predrag; Laban, Aleksandra; Jelikic-Stankov, Milena
2004-01-01
HPLC determination of fleroxacin in dosage forms was carried out using either reversed-phase column YMC pack ODS-AQ or Supelco LC Hisep shielded hydrophobic phase column, with UV detection at 280 nm. The mobile phase for ODS column consisted of 50:50:0.5 v/v/v and for Hisep column 15:85:0.5 v/v/v acetonitrile-water-triethylamine. The pH of the mobile phase was adjusted to 6.30 for ODS column and to 6.85 for Hisep column, with H3PO4. Linear response was obtained in the concentration range of fleroxacin between 0.01 and 1.30 micrograms/mL. Detection limit was 4.8 ng/mL. Recovery test in the determination of fleroxacin in "Quinodis" tablets (Hoffmann La Roche, nominal mass 400 or 200 mg) was 98-101% for both columns. The effect of the composition and pH of the mobile phase on spectra, retention time and dissociation constants of fleroxacin was discussed. The proposed method could be also used for separation of the photo-degradation products of fleroxacin. Ten degradation products were separated on the ODS-AQ column, thus confirming the suitability of the proposed method for stability study of fleroxacin in pharmaceuticals.
Tracing Water Vapor and Ice During Dust Growth
NASA Astrophysics Data System (ADS)
Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.
2016-12-01
The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.
Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel
2014-08-13
A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.
Wang, Shao-Ting; Wang, Meng-Ya; Su, Xin; Yuan, Bi-Feng; Feng, Yu-Qi
2012-09-18
A novel SiO(2)/TiO(2) composite monolithic capillary column was prepared by sol-gel technology and successfully applied to enrich phosphopeptides as a metal oxide affinity chromatography (MOAC) material. For the monolith preparation, tetramethoxysilane (TMOS) and tetrabutoxytitanium (TBOT) were used as silica and titania source, respectively, and glycerol was introduced to attenuate the activity of titanium precursor, which provided a mild synthetic condition. The prepared monolith was characterized by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results revealed an approximate 1/2 molar ratio of titanium to silica as well as an atom-scale homogeneity in the framework. The scanning electron microscopy (SEM) results demonstrated an excellent anchorage between the column and the inner capillary wall, and nitrogen adsorption-desorption experiments showed a bimodal porosity with a narrow mesopore distribution around 3.6 nm. The prepared monolith was then applied for selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA) as well as human blood serum, nonfat milk, and egg white using an in-tube solid phase microextraction (SPME) system. Our results showed that SiO(2)/TiO(2) composite monolithic capillary column could efficiently enrich the phosphopeptides from complex matrixes. To the best of our knowledge, this is the first attempt for preparing the silica-metal composite monolithic capillary column, which offers the promising application of the monolith on phosphoproteomics study.
NASA Astrophysics Data System (ADS)
Smith, J. T.; Comans, R. N. J.
1996-03-01
In determining the mobility of ions in sediments it is important to take account of the solid phase sorption and speciation. Measurements were made of activity depth profiles of 137Cs from fallout from Nuclear Weapons Testing and from the Chernobyl accident in two lake sediments. The fraction of 137Cs in the aqueous, exchangeably sorbed and "fixed" phases was determined at each depth interval. A model was developed to simulate the transport of 137Cs in these sediments, taking account of changes in sorption properties as the concentration of the competing ammonium ion changes with depth, as well as transfers of activity to less-exchangeable sites on the solids. The model simulations give reasonable agreement with experimental data, and the fitted rate constant for slow transfers to less-exchangeable sites ( T1/2 = 50-125 d) is in agreement with independent measurements. The modelling gave evidence for a reverse reaction from less-exchangeable to exchangeable sites with a half-life of order 10 y. Model results were compared with those generated by a physical mixing model and the standard molecular diffusion model assuming equilibrium sorption to the solid phase. Estimates were made of the remobilisation of Chernobyl 137Cs from these sediments to the water column: predicted rates vary from around 3% of the inventory per year 2 years after the fallout event to 0.04% per year 30 years after the fallout.
Kakimoto, Kensaku; Toriba, Akira; Ohno, Takanori; Ueno, Mariko; Kameda, Takayuki; Tang, Ning; Hayakawa, Kazuichi
2008-05-15
To evaluate human exposure to polycyclic aromatic hydrocarbons (PAHs), we developed a rapid, simple and sensitive method for determining 1-hydroxypyrene-glucuronide (1-OHP-G) in human urine. To improve precision, a deuterated glucuronide was used as an internal standard. The method requires only 1 mL of urine. The urine was treated with a mixed-mode anion-exchange and reversed-phase solid-phase extraction cartridge (Oasis MAX). The analytes were analyzed with a C(18) reversed-phase column with a gradient elution, followed by tandem mass spectrometry with electrospray ionization in negative ion mode. The detection limit of 1-OHP-G (corresponding to a signal-to-noise ratio of 3) was 0.13 fmol/injection. Urinary concentrations of 1-OHP-G determined by this method were strongly correlated (r(2)=0.961) with concentrations of 1-hydroxypyrene by conventional HPLC with fluorescence detection.
[Total analysis of organic rubber additives].
He, Wen-Xuan; Robert, Shanks; You, Ye-Ming
2010-03-01
In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.
Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu
2010-03-01
This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.
Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M
2005-02-25
A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.
Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha
2013-11-08
The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the solutes on combination columns. The method proposed here reduces the need for solvent selection compared with the conventional method and may have broad potential applicability in the preparation of natural products. Copyright © 2013 Elsevier B.V. All rights reserved.
Glufosinate ammonium clean-up procedure from water samples using SPE
NASA Astrophysics Data System (ADS)
Tayeb M., A.; Ismail B., S.; Mardiana-Jansar, K.; Ta, Goh Choo; Agustar, Hani Kartini
2015-09-01
For the determination of glufosinate ammonium residue in soil and water samples, different solid phase extraction (SPE) sorbent efficiency was studied. Four different SPE sorbents i.e.: CROMABOND PS-H+, CROMABOND PS-OH-, ISOLUTE ENV+, Water Sep-Pak and OASIS HLB were used. Sample clean-up performance was evaluated using high performance liquid chromatography (Agilent 1220 infinity LC) with fluorescence detector. Detection of FMO-derivatives was done at λ ex = 260 nm and λ em= 310 nm. OASIS HLB column was the most suitable for the clean-up in view of the overall feasibility of the analysis.
Chang, Ying-Chia; Chen, Wen-Ling; Bai, Fang-Yu; Chen, Pau-Chung; Wang, Gen-Shuh; Chen, Chia-Yang
2012-01-01
For this study, we developed methods of determining ten perfluorinated chemicals in drinking water, milk, fish, beef, and pig liver using high-flow automated solid-phase extraction (SPE) and ultra-high performance liquid chromatography/tandem mass spectrometry. The analytes were separated on a core-shell Kinetex C18 column. The mobile phase was composed of methanol and 10-mM N-methylmorpholine. Milk was digested with 0.5 N potassium hydroxide in Milli-Q water, and was extracted with an Atlantic HLB disk to perform automated SPE at a flow rate ranged from 70 to 86 mL/min. Drinking water was directly extracted by the SPE. Solid food samples were digested in alkaline methanol and their supernatants were diluted and also processed by SPE. The disks were washed with 40% methanol/60% water and then eluted with 0.1% ammonium hydroxide in methanol. Suppression of signal intensity of most analytes by matrixes was lower than 50%; it was generally lower in fish and drinking water but higher in liver. Most quantitative biases and relative standard deviations were lower than 15%. The limits of detection for most analytes were sub-nanograms per liter for drinking water and sub-nanograms per gram for solid food samples. This method greatly shortened the time and labor needed for digestion, SPE, and liquid chromatography. This method has been applied to analyze 14 types of food samples. Perfluorooctanoic acid was found to be the highest among the analytes (median at 3.2-64 ng/g wet weight), followed by perfluorodecanoic acid (0.7-25 ng/g) and perfluorododecanoic acid (0.6-15 ng/g).
Li, Yuanbo; Dong, Fengshou; Liu, Xingang; Xu, Jun; Chen, Xiu; Han, Yongtao; Liang, Xuyang; Zheng, Yongquan
2013-04-15
A novel and sensitive chiral liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous measuring individual enantiomers of 9 pesticides including herbicides, insecticides, and fungicides in soil and water. The separation and determination were performed using reversed-phase chromatography on an amylose chiral stationary phase, a Chiralpak AD-RH column, under gradient elution using a mixture of ACN-2mM ammonium acetate in water as the mobile phase at 0.45 mL/min flow rate. The effects of three cellulose-based columns and three amylose-based columns on the separation were also investigated. The QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the extraction and clean-up of the soil and water samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were undertaken. Under optimal conditions, the mean recoveries for all enantiomers from the soil and water samples were ranged from 77.8% to 106.2% with the relative standard deviations (RSD) less than 14.2%. Good linearity (at least R(2) ≥ 0.9986) was obtained for all studied analytes in the soil and water matrix calibration curves over the range from 2.0 to 125 μg/L. The limits of detection (LOD) for all enantiomers in the soil and water were less than 1.8 μg/kg or μg/L, whereas the limit of quantification (LOQ) did not exceed 5.0 μg/kg or μg/L. The results of the method validation confirm that this proposed method is convenient and reliable for the enantioselective determination of the enantiomers of 9 chiral pesticides in soil and water. Copyright © 2013 Elsevier B.V. All rights reserved.
Growth of second stage mineral in Lytechinus variegatus.
Stock, S R; Seto, Jong; Deymier, A C; Rack, A; Veis, A
2017-10-30
Purpose and Aims: Sea urchin teeth consist of calcite and form in two stages with different magnesium contents. The first stage structures of independently formed plates and needle-prisms define the shape of the tooth, and the columns of the second stage mineral cements the first stage structures together and control the fracture behavior of the mature tooth. This study investigates the nucleation and growth of the second stage mineral. Scanning electron microscopy (SEM) and synchrotron microComputed Tomography characterized the structures of the second phase material found in developing of Lytechinus variegatus teeth. Although the column development is a continuous process, defining four phases of column formation captures the changes that occur in teeth of L. variegatus. The earliest phase consists of small 1-2 µm diameter hemispheres, and the second of 5-10 µm diameter, mound-like structures with a nodular surface, develops from the hemispheres. The mounds eventually bridge the syncytium between adjacent plates and form hyperboloid structures (phase three) that appear like mesas when plates separate during the fracture. The mesa diameter increases with time until the column diameter is significantly larger than its height, defining the fourth phase of column development. Energy dispersive x-ray spectroscopy confirms that the columns contain more magnesium than the underlying plates; the ratios of magnesium to calcium are consistent with compositions derived from x-ray diffraction. Columns grow from both bounding plates. The presence of first phase columns interspersed among third stage mesas indicates very localized control of mineralization.
Salvador, Arnaud; Dubreuil, Didier; Denouel, Jannick; Millerioux, L
2005-06-25
A sensitive LC-MS-MS assay for the quantitative determination of bromocriptine has been developed and validated and is described in this work. The assay involved the extraction of the analyte from 1 ml of human plasma using a solid phase extraction on Oasis MCX cartridges. Chromatography was performed on a Symmetry C18 (2.1 mm x 100 mm, 3.5 microm) column using a mobile phase consisting of 25:75:01 acetonitrile-water-formic acid with a flow rate of 250 microl/min. The linearity was within the concentration range of 2-500 pg/ml. The lower limit of quantification was 2 pg/ml. This method has been demonstrated to be an improvement over existing methods due to its greater sensitivity and specificity.
Wang, Yan-Fei; Gao, Xiao-Feng; Jin, Huo-Xi; Wang, Yang-Guang; Wu, Wei-Jian; Ouyang, Xiao-Kun
2016-09-01
In this work, flumequine (FLU) enantiomers were separated using a Chiralpak OD-H column, with n-hexane-ethanol (20:80, v/v) as the mobile phase at a flow rate of 0.6 mL/min. Solid phase extraction (SPE) was used for cleanup and enrichment. The limit of detection, limit of quantitation, linearity, precision, and intra/interday variation of the chiral high-performance liquid chromatography (HPLC) method were determined. The developed method was then applied to investigate the degradation behavior of FLU enantiomers in mariculture pond water samples. The results showed that the degradation of FLU enantiomers under natural, sterile, or dark conditions was not enantioselective. Chirality 28:649-655, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Column Chromatography To Obtain Organic Cation Sorption Isotherms.
Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A
2016-08-02
Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.
Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine
2018-02-02
A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.
Christiaens, B; Chiap, P; Rbeida, O; Cello, D; Crommen, J; Hubert, Ph
2003-09-25
A new fully automated method for the quantitative analysis of an antiandrogenic substance, cyproterone acetate (CPA), in plasma samples has been developed using on-line solid-phase extraction (SPE) prior to the determination by reversed-phase liquid chromatography (LC). The automated method was based on the use of a precolumn packed with an internal-surface reversed-phase packing material (LiChrospher RP-4 ADS) for sample clean-up coupled to LC analysis on an octadecyl stationary phase using a column-switching system. A 200-microL volume of plasma sample was injected directly on the precolumn packed with restricted access material using a mixture of water-acetonitrile (90:10, v/v) as washing liquid. The analyte was then eluted in the back-flush mode with the LC mobile phase which consisted of a mixture of phosphate buffer, pH 7.0-acetonitrile (54:46, v/v). The elution profiles of CPA and blank plasma samples on the precolumn and the time needed for analyte transfer from the precolumn to the analytical column were determined. Different compositions of washing liquid and mobile phase were tested to reduce the interference of plasma endogenous components. UV detection was achieved at 280 nm. Finally, the developed method was validated using a new approach, namely the application of the accuracy profile based on the interval confidence at 90% of the total measurement error (bias+standard deviation). The limit of quantification of cyproterone acetate in plasma was determined at 15 ng mL(-1). The validated method should be applicable to the determination of CPA in patients treated by at least 50 mg day(-1).
Distinct Iron-binding Ligands in the Upper Water Column at Station ALOHA
NASA Astrophysics Data System (ADS)
Bundy, R.; Boiteau, R.; Repeta, D.
2016-02-01
The distribution and chemical properties of iron-binding organic ligands at station ALOHA were examined using a combination of solid phase extraction (SPE) followed by high pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). HPLC-ICPMS ligand measurements were complemented by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) analysis using salicylaldoxime as the added ligand. By HPLC-ICPMS, we find enhanced concentrations of distinct naturally-occurring polar iron-binding ligands present at the surface and in the chlorophyll maximum. Lower concentrations were found in the subsurface, where a suite of non-polar ligands was detected. Siderophores were present at the deepest depths sampled at station ALOHA, down to 400m. Incubation studies provided evidence for the production of iron-binding ligands associated with nutrient amended phytoplankton growth in surface waters, and as a result of microbial particle remineralization in the subsurface water column. Ligands classes identified via SPE were then compared to CLE-ACSV ligand measurements, as well as the conditional stability constants measured from model polar and non-polar siderophores, yielding insight to the sources of iron-binding ligands throughout the water column at station ALOHA.
Inoue, K; Yoshimura, Y; Makino, T; Nakazawa, H
2000-11-01
Alkylphenols can affect human health because they disrupt the endocrine system. In this study, an analytical method for determining trace amounts of 4-nonylphenol (NP) and 4-octylphenol (OP) in human blood samples was developed. Reversed-phase HPLC with multi-electrode electrochemical coulometric-array detection was used for the determination of NP and OP in plasma and serum samples prepared with a solid-phase extraction method. The separation was achieved using an isocratic mobile phase of 0.7% phosphoric acid-acetonitrile with a C18 reversed phase column. The detection limits of NP and OP were 1.0 and 0.5 ng ml-1, respectively. The recoveries of NP and OP added to human plasma samples were above 70.0% with a relative standard deviation of less than 15.5%. The method was found to be applicable to the determination of NP and OP in various human blood samples such as serum and plasma.
Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases.
Poole, Colin F; Lenca, Nicole
2014-08-29
Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present. Copyright © 2014 Elsevier B.V. All rights reserved.
De Toffoli, Ana L; Fumes, Bruno H; Lanças, Fernando M
2018-02-22
On-line in-tube solid phase microextraction (in-tube SPME) coupled to high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was successfully applied to the determination of selected triazines in water samples. The method based on the employment of a packed column containing graphene oxide (GO) supported on aminopropyl silica (Si) showed that the extraction phase has a high potential for triazines extraction aiming to its physical-chemical properties including ultrahigh specific surface area, good mechanical and thermal stability and high fracture strength. Injection volume and loading time were both investigated and optimized. The method validation using Si-GO to extract and concentrate the analytes showed satisfactory results, good sensitivity, good linearity (0.2-4.0 µg L -1 ) and low detection limits (1.1-2.9 ng L -1 ). The high extraction efficiency was determined with enrichment factors ranging from 1.2-2.9 for the lowest level, 1.3-4.9 intermediate level and 1.2-3.0 highest level (n = 3). Although the analytes were not detected in the real samples evaluated, the method has demonstrated to be efficient through its application in the analysis of spiked triazines in ground and mineral water samples.
Chan, Sue Hay; Lee, Warren; Asmawi, Mohd Zaini; Tan, Soo Choon
2016-07-01
A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Qian; Liu, Xiaoyu; Qiu, Chaokun; Wang, Xiaobao; Ren, Hongmin
2009-07-01
An analytical method was developed for the determination of phoxim residue in the muscle of crucian carp, which involved matrix solid-phase dispersion (MSPD) followed by high performance liquid chromatography (HPLC) with diode array detector. Under optimal conditions, 0.5 g tissue sample was dispersed with 1.5 g Florisil and 0.5 g anhydrous sodium sulphate, transferred to a cartridge. The cartridge was eluted with 25 mL acetone-hexane (40:60, v/v). The phoxim was separated on an ODS column (250 mm x 4.6 mm, 5 microm) with methanol-water (50:50, v/v) as the mobile phase at the flow rate of 0.6 mL/min, then detected by a diode array detector at 270 nm. The injection volume was 20 microL. The linear range of the method was 0.01 - 10 mg/L and the detection limit was 3.3 microg/kg. The average recoveries spiked at the levels of 0.05, 0.1, 1 mg/kg ranged from 88% to 112% with the relative standard deviations (RSDs) of 1.1% -6.3%. The method is quick, simple and can meet the requirement of the analysis of pesticide residues.
Ensafi, Ali A; Shiraz, A Zendegi
2008-02-11
Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.
Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme
2016-07-19
We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Luo, Wensui; Brooks, Scott C
We conducted batch and recirculating column titration tests with contaminated acidic sediments with controlled CO2 in the headspace, and extended the geochemical model by Gu et al. (2003, GCA) to better understand and quantify the reactions governing trace metal fate in the subsurface. The sediment titration curve showed slow pH increase due to strong buffering by Al precipitation and CO2 uptake. Assuming precipitation of basaluminite at low saturation index (SI=-4), and decreasing cation exchange selectivity coefficient (kNa\\Al=0.3), the predictions are close to the observed pH and Al; and the model explains 1) the observed Ca, Mg, and Mn concentration decreasemore » by cation exchange with sorbed Al, and 2) the decrease of U by surface complexation with Fe hydroxides at low pH, and precipitation as liebigite (Ca2UO2(CO3)3:10H2O) at pH>5.5. Without further adjustment geochemical parameters, the model describes reasonably well previous sediment and column titration tests without CO2 in the headspace, as well as the new large column test. The apparent inhibition of U and Ni decrease in the large column can be explained by formation of aqueous carbonate complexes and/or competition with carbonate for surface sites. These results indicated that ignoring labile solid phase Al would underestimate base requirement in titration of acidic aquifers.« less
Hayama, Tadashi; Katoh, Kenji; Aoki, Takayoshi; Itoyama, Miki; Todoroki, Kenichiro; Yoshida, Hideyuki; Yamaguchi, Masatoshi; Nohta, Hitoshi
2012-11-28
A method to measure the concentrations of microcystins (MCs) in water samples has been developed by incorporating pre-column fluorescence derivatization and liquid chromatography (LC). A solid-phase extraction for pretreatment was used to extract the MCs in water samples. The MCs were derivatized with excimer-forming 4-(1-pyrene)butanoic acid hydrazide (PBH). The MCs could then be detected by fluorescence after separation with a pentafluorophenyl (PFP)-modified superficially porous (core shell) particle LC column. The derivatization reactions of MCs with PBH proceeded easily in the presence of 4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium (DMT-MM) as a condensation reagent, and the resulting derivatives could be easily separated on the PFP column. The derivatives were selectively detected at excimer fluorescence wavelengths (440-540 nm). The instrument detection limit and the instrument quantification limit of the MCs standards were 0.4-1.2 μg L(-1) and 1.4-3.9 μg L(-1), respectively. The method was validated at 0.1 and 1.0 μg L(-1) levels in tap and pond water samples, and the recovery of MCs was between 67 and 101% with a relative standard deviation of 11%. The proposed method can be used to quantify trace amounts of MCs in water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka
2014-10-01
Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Gradient stationary phase optimized selectivity liquid chromatography with conventional columns.
Chen, Kai; Lynen, Frédéric; Szucs, Roman; Hanna-Brown, Melissa; Sandra, Pat
2013-05-21
Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation. By combination of different stationary phases, SOSLC offers excellent possibilities for method development under both isocratic and gradient conditions. The so far available commercial SOSLC protocol utilizes dedicated column cartridges and corresponding cartridge holders to build up the combined column of different stationary phases. The present work is aimed at developing and extending the gradient SOSLC approach towards coupling conventional columns. Generic tubing was used to connect short commercially available LC columns. Fast and base-line separation of a mixture of 12 compounds containing phenones, benzoic acids and hydroxybenzoates under both isocratic and linear gradient conditions was selected to demonstrate the potential of SOSLC. The influence of the connecting tubing on the deviation of predictions is also discussed.
Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.
Goll, Johannes; Audo, Gregoire; Minceva, Mirjana
2015-08-07
Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Xiaohong; Yao, Shanshan; Li, Xiaoping; Zhao, Yonggang; Jin, Micong
2012-11-01
Developing a rapid and sensitive analytical method based on ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) with solid-phase extraction (SPE) for the simultaneous determination of nine estrogens (dienestrol, diethylstilbestrol, estrone, hexestrol, 17-alpha-estradiol, 17-beta-estradiol, estriol, 17alpha-ethinylestradiol and estradiol valerate) in eel. After the sample was extracted by acetonitrile and cleaned by Waters Oasis HLB solid-phase extraction cartridge, the UFLC separation was performed on a Shim-pack XR-ODS II column (100 mm x 2.0 mm, 2.2 microm) with a linear gradient elution program of methanol solution containing 0.04% ammonia (v/v) and 0.04% ammonia aqueous solution (v/v) as the mobile phase. Electrospray ionization was applied and operated in the negative multiple reaction monitoring (MRM) mode. The quantitation was used by isotope internal standard dilution technique. The results showed that the limits of quantitation (LOQs, S/N(10) were in the range of 0.07-0.4 microg/kg, the calibration curves were in good linearities for the nine analytes in the range of 0.5-50.0 microg/L with the correlative coefficients (r2) more than 0.998, the recoveries were between 81.0% and 110.0% with the relative standard deviations (RSDs) of 1.92%-8.24%. Additional, the mass spectra characterization of the nine estrogens was discussed and the fragmentation pathways were speculated. The developed method is rapid, sensitive, specific and reproducible, and adapts not only to the simultaneous determination of the nine trace estrogens including the epimer of 17-alpha-estradiol and 17-beta-estradiol but also to the identified detection in other fish tissues.
Staerk, U; Külpmann, W R
2000-08-18
High-temperature headspace solid-phase microextraction (SPME) with simultaneous ("in situ") derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC-MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane-ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride-pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200 degrees C in a blockheater. The SPME fiber is then injected into the GC-MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 microg/l), barbiturates (500 microg/l), benzodiazepines (100 microg/l), benzoylecgonine (150 microg/l), methadone (100 microg/l) and opiates (200 microg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid-liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.
Zhang, Jingui; Zhang, Yi; Zhang, Youting; Ye, Chaohui; Wang, Xiaojie; Ilghari, Dariush; Li, Xiaokun
2012-01-01
Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl4-induced injury in rats compared to rhKGF-1. PMID:22574160
Tranchida, Peter Quinto; Presti, Maria Lo; Costa, Rosaria; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi
2006-01-20
The advantages of using a narrow-bore column in headspace solid-phase microextraction-gas chromatographic (HS-SPME-GC) analysis are investigated. An automated rapid HS-SPME-GC method for the determination of volatile compounds in a complex sample (bergamot essential oil) was developed. A low-capacity (7 microm) SPME fibre was employed, enabling a short equilibration time (15 min). The absorbed volatile compounds were then separated in 12.5 min on a 10 m x 0.1 mm I.D. capillary. The fast GC method was characterized by relatively moderate GC parameters (head pressure: 173 kPa; temperature program rate: 12 degrees C/min). The employment of the low-capacity fibre also suited the reduced sample capacity of the capillary employed, hence column overloading was avoided. Analytical repeatibility was determined in terms of retention times (maximum RSD: 0.32%) and peak areas (maximum RSD: 9.80%). The results obtained were compared to those derived from a conventional HS-SPME-GC (a 30 microm SPME fibre and 0.25 mm I.D. capillary were used) application on the same sample. In this respect, a great reduction of analytical time was obtained both with regard to the conventional SPME equilibration and GC run times, which both required 50 min. Peak resolution was altogether comparable in both applications. Although a slight loss in terms of sensitivity was observed in the rapid approach (generally within the 25-50% range), this did not impair the detection of all peaks of interest. Finally, the selectivities of the 30 and 7 microm fibres were evaluated and, as expected, these were in good agreement.
Luo, Xialin; Li, Gongke; Hu, Yufei
2017-04-01
In this work, a novel NH 2 -MIL-53(Al) incorporated poly(styrene-divinylbenzene-methacrylic acid) (poly(St-DVB-MAA)) monolith was prepared via chemical fabrication. Moreover, it has been efficiently applied to the in-tube solid-phase microextraction (SPME) for online coupling with high-performance liquid chromatography (HPLC) to the direct determination of five estrogens in human urine samples. The NH 2 -MIL-53(Al)-polymer monolith was suitable for in-tube SPME owing to its good permeability, high extraction efficiency, chemical stability, good reproducibility and long lifetime. The extraction conditions including extraction solvent, pH of sample solution, flow rate of extraction and desorption, and desorption volume were investigated. Under the optimum conditions, the enrichment factors were 180-304 and saturated amounts of extraction were 2326-21393 pmol for estriol, 17β-estradiol, estrone, ethinyl estradiol and progesterone, respectively. The adsorption mechanism was also explored which contributed to its strong extraction to target compounds. The proposed method had low limit of detection (2.0-40ng/L) and good linearity (with R 2 between 0.9908 and 0.9978). Four endogenous estrogens were detected in urine samples and the recoveries of all five analytes were ranged from 75.1-120% with relative standard deviations (RSDs) less than 8.7%. The results showed that the proposed online SPME-HPLC method based on NH 2 -MIL-53(Al)-polymer monolithic column was highly sensitive for directly monitoring trace amount of estrogens in human urine sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Turrell, Elizabeth; Stobo, Lesley; Lacaze, Jean-Pierre; Piletsky, Sergey; Piletska, Elena
2008-01-01
The combination of hydrophilic interaction liquid chromatography (HILIC) and liquid chromatography/mass spectrometry (LC/MS) for the determination of paralytic shellfish poisoning (PSP) toxins has been proposed for use in routine monitoring of shellfish. In this study, methods for the detection of multiple PSP toxins [saxitoxin (STX), neosaxitoxin (NEO), decarbamoyl saxitoxin (dcSTX), decarbamoyl neosaxitoxin (dcNEO), gonyautoxins 1-5 (GTX1, GTX2, GTX3, GTX4, GTX5), decarbamoyl gonyautoxins (dcGTX2 and dcGTX3), and the N-sulfocarbamoyl C toxins (C1 and C2)] were optimized using single (MS) and triple quadrupole (MS/MS) instruments. Chromatographic separation of the toxins was achieved by using a TSK-gel Amide-80 analytical column, although superior chromatography was observed through application of a ZIC-HILIC column. Preparative procedures used to clean up shellfish extracts and concentrate PSP toxins prior to analysis were investigated. The capacity of computationally designed polymeric (CDP) materials and HILIC solid-phase extraction (SPE) cartridges to retain highly polar PSP toxins was explored. Three CDP materials and 2 HILIC cartridges were assessed for the extraction of PSP toxins from aqueous solution. Screening of the CDPs showed that all tested polymers adsorbed PSP toxins. A variety of elution procedures were examined, with dilute 0.01% acetic acid providing optimum recovery from a CDP based on 2-(trifluoromethyl)acrylic acid as the monomer. ZIC-HILIC SPE cartridges were superior to the PolyLC equivalent, with recoveries ranging from 70 to 112% (ZIC-HILIC) and 0 to 90% (PolyLC) depending on the PSP toxin. It is proposed that optimized SPE and HILIC-MS methods can be applied for the quantitative determination of PSP toxins in shellfish.
Rosales-Conrado, N; León-González, M E; Pérez-Arribas, L V; Polo-Díez, L M
2008-01-01
Chlorophenoxy acid herbicides are intensively applied to get rid of unwanted plants because of their low cost and selectivity. Due to their toxicity, which depends on their chemical form, the European Community has established legal directives to restrict their use and to control their maximum residue levels in several matrices. Determination of chlorophenoxy acids-2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(2,4-dichlorophenoxy)propanoic acid (2,4-DP), 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB) and 2-(2,4,5-trichlorophenoxy)propanoic acid (2,4,5-TP) in spiked human urine samples has been carried out by capillary LC, after solid-phase extraction on a column packed with silica C18 restricted-access material. Chromatographic analysis was performed in gradient-elution mode at 25 degrees C, with injection of 20 microL low-organic-solvent composition herbicide solutions for focusing purposes on the head of the capillary column, and diode array detection at 232 nm. Urine samples collected during 24 h from healthy and unexposed volunteers were spiked in the concentration range 25-150 microg L(-1); recoveries obtained were between 66 and 100% (n = 6 for each spiked level) and RSDs (relative standard deviations) were between 1 and 5%. Detection limits in the urine samples from volunteers were between 3.5 and 6.0 microg L(-1). The developed methodology has allowed the clean-up and preconcentration of low volumes of untreated human urine without previous treatment, showing the effectiveness of the employed SPE sorbent for extracting the target analytes and ultimately resulting in the reduction of the sample-preparation time.
Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing
2017-02-10
Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Baytak, Sitki; Türker, A Rehber
2006-02-28
Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.
Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.; Barber, Larry B.; Burkhardt, Mark R.
2002-01-01
A method for the determination of 67 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals in wastewater on aquatic organisms. This method also may be useful for evaluating the impact of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are an indicator of wastewater or that have been chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclicaromatic hydrocarbons, and high-use domestic pesticides. Water samples are filtered to remove suspended particulate matter and then are extracted by vacuum through disposable solid-phase cartridges that contain polystyrene-divinylbenzene resin. Cartridges are dried with nitrogen gas, and then sorbed compounds are eluted with dichloromethane-diethyl ether (4:1) and determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 4 micrograms per liter averaged 74 percent ? 7 percent relative standard deviation for all method compounds. Initial method detection limits for single-component compounds (excluding hormones and sterols) averaged 0.15 microgram per liter. Samples are preserved by filtration, the addition of 60 grams NaCl, and storage at 4 degrees Celsius. The laboratory has established a sample-holding time (prior to sample extraction) of 14 days from the date of sample collection until a statistically accepted method can be used to determine the effectiveness of these sample-preservation procedures.
Baytak, Sıtkı; Arslan, Zikri
2015-01-01
This study presents a simple, robust and environmentally friendly solid phase preconcentration procedure for multielement determination by inductively coupled plasma optical emission spectrometry (ICP-OES) using diphenylcarbazone (DPC) impregnated TiO2 nanopowder (n-TiO2). DPC was successfully impregnated onto n-TiO2 in colloidal solution. A number of elements, including Co(II), Cr(III), Cu(II), Fe(III), Mn(II) and Zn(II) were quantitatively preconcentrated from aqueous solutions between pH 8 and 8.5 at a flow rate of 2 mL min−1, and then eluted with 2 mL of 5% (v/v) HNO3. A mini-column packed with 0.12 g DPC impregnated n-TiO2 retained all elements quantitatively from up to 250 mL multielement solution (2.5 μg per analyte) affording an enrichment factor of 125. The limits of detection (LOD) for preconcentration of 50 mL blank solutions (n = 12) were 0.28, 0.15, 0.25, 0.22, 0.12, and 0.10 μg L−1 for Co, Cr, Cu, Fe, Mn, and Zn, respectively. The relative standard deviation (RSD) for five replicate determinations was 0.8, 3.4, 2.6, 2.2, 1.2 and 3.3% for Co, Cr, Cu, Fe, Mn and Zn, respectively, at 5 μg L−1 level. The method was validated with analysis of Freshwater (SRM 1643e) and Lobster hepatopancreas (TORT-2) certified reference materials, and then applied to the determination of the elements from tap water and lake water samples by ICP-OES. PMID:26236403
NASA Astrophysics Data System (ADS)
Zimmermann, Claudia; Schaaf, Wolfgang
2010-05-01
In the initial phase of soil formation interactions between solid and liquid phases and processes like mineral weathering, formation of reactive surfaces and accumulation of organic matter play a decisive role in developing soil properties. As part of the Transregional Collaborative Research Centre (SFB/TRR 38) 'Patterns and processes of initial ecosystem development' in an artificial catchment, these interactions are studied at the catchment 'Chicken Creek' (Gerwin et al. 2009). To link the interactions between soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale, microcosm experiments under controlled laboratory conditions were carried out. Main objectives were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 ° C. In total 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g*cm-3. The columns were automatically irrigated four times a day with 6.6 ml each (corresponding to 600 mm*yr-1). The gaseous phase in the headspace of the microcosms was analysed continuously for CO2 and N2O contents. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. All treatments including a control ran with four replicates over a period of 40 weeks. Two additional microcosms act as pure litter controls where substrate was replaced by glass pearls. Litter and substrate were analysed before and after the experiment. Percolate was continuously collected and analyzed in two weeks intervals for C and N contents (including δ13C), pH and ion concentrations. The results show that the initial phase of the experiment is characterized by intensive leaching of C and N from the litter and transformation as well as leaching from the substrate. Calcium leaching is caused mainly by carbonate dissolution from the substrates. In contrast, magnesium and especially potassium are leached in initially high amounts from the litter, but are strongly retained in the soil. The addition of litter promotes microbial CO2 production as shown by a strong increase of respiration due to easily available organic substances at the beginning of the experiment. Litter of L. corniculatus induced also a high initial peak in N2O emission as well as higher nitrification and NO3-N leaching. Leaching of DOC and TDN was clearly affected by the substrate texture, illustrated by intensive DOC leaching from the sand at the beginning of the experiment but shifting later to higher leaching rates from the loamy sand. References: Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009) The artificial catchment 'Chicken Creek' (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecolological Engineering 35, 1786-1796.
Wright, Bob W; Wright, Cherylyn W
2012-10-26
A novel method is described for the evaluation of irreversible adsorption and column bleed in gas chromatographic (GC) columns using a tandem GC approach. This work specifically determined the degree of irreversible adsorption behavior of specific sulfur and phosphorous containing test probe compounds at levels ranging from approximately 50 picograms (pg) to 1 nanogram (ng) on selected gas chromatographic columns. This method does not replace existing evaluation methods that characterize reversible adsorption but provides an additional tool. The test compounds were selected due to their ease of adsorption and their importance in the specific trace analytical detection methodology being developed. Replicate chromatographic columns with 5% phenylmethylpolysiloxane (PMS), polyethylene glycol (wax), trifluoropropylpolysiloxane (TFP), or 78% cyanopropylpolysiloxane stationary phases from a variety of vendors were evaluated. As expected, the results demonstrate that the different chromatographic phases exhibit differing degrees of irreversible adsorption behavior. The results also indicate that all manufacturers do not produce equally inert columns nor are columns from a given manufacturer identical. The wax-coated columns for the test probes used were more inert as a group than 5% PMS coated columns, and they were more reproducibly manufactured. Both TFP and 78% cyanopropylpolysiloxane columns displayed superior inertness to the test compounds compared to either 5% PMS- or wax-coated columns. Irreversible adsorption behavior was characterized for a limited range of stationary phase film thicknesses. In addition, the method was shown effective for characterizing column bleed and methods to remove bleed components. This method is useful in screening columns for demanding applications and to obtain diagnostic information related to improved preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Han, Young-Soo; Tokunaga, Tetsu K
2014-12-01
Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Pengfei; Deng, Miaoduo; Huang, Peiting; Yu, Jia; Guo, Xingjie; Zhao, Longshan
2016-09-01
This report describes, for the first time, the simultaneous enantioselective determination of proton-pump inhibitors (PPIs-omeprazole, lansoprazole, pantoprazole, and rabeprazole) in environmental water matrices based on solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and chiral liquid chromatography-tandem mass spectrometry. The optimized results of SPE-DLLME were obtained with PEP-2 column using methanol-acetonitrile (1/1, v/v) as elution solvent, dichloroethane, and acetonitrile as extractant and disperser solvent, respectively. The separation and determination were performed using reversed-phase chromatography on a cellulose chiral stationary phase, a Chiralpak IC (250 mm × 4.6 mm, 5 μm) column, under isocratic conditions at 0.6 mL min(-1) flow rate. The analytes were detected in multiple reaction monitoring (MRM) mode by triple quadrupole mass spectrometry. Isotopically labeled internal standards were used to compensate matrix interferences. The method provided enrichment factors of around 500. Under optimal conditions, the mean recoveries for all eight enantiomers from the water samples were 89.3-107.3 % with 0.9-10.3 % intra-day RSD and 2.3-8.1 % inter-day RSD at 20 and 100 ng L(-1) levels. Correlation coefficients (r (2)) ≥ 0.999 were achieved for all enantiomers within the range of 2-500 μg L(-1). The method detection and quantification limits were at very low levels, within the range of 0.67-2.29 ng L(-1) and 2.54-8.68 ng L(-1), respectively. This method was successfully applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in wastewater and river water, making it applicable to the assessment of the enantiomeric fate of PPIs in the environment. Graphical Abstract Simultaneous enantioselective determination of representative proton-pump inhibitors in water samples.
Kataoka, H; Narimatsu, S; Lord, H L; Pawliszyn, J
1999-10-01
The technique of automated in-tube solid-phase microextraction (SPME) coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) was evaluated for the determination of beta-blockers in urine and serum samples. In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary by repeated draw/eject cycles of sample solution. LC/MS analyses of beta-blockers were initially performed by liquid injection onto a LC column. Nine beta-blockers tested in this study gave very simple ESI mass spectra, and strong signals corresponding to [M + H]+ were observed for all beta-blockers. The beta-blockers were separated with a Hypersil BDS C18 column using acetonitrile/methanol/water/acetic acid (15:15:70:1) as a mobile phase. To optimize the extraction of beta-blockers, several in-tube SPME parameters were examined. The optimum extraction conditions were 15 draw/eject cycles of 30 microL of sample in 100 mM Tris-HCl (pH 8.5) at a flow rate of 100 microL/min using an Omegawax 250 capillary (Supelco, Bellefonte, PA). The beta-blockers extracted by the capillary were easily desorbed by mobile-phase flow, and carryover of beta-blockers was not observed. Using in-tube SPME/LC/ESI-MS with selected ion monitoring, the calibration curves of beta-blockers were linear in the range from 2 to 100 ng/mL with correlation coefficients above 0.9982 (n = 18) and detection limits (S/N = 3) of 0.1-1.2 ng/mL. This method was successfully applied to the analysis of biological samples without interference peaks. The recoveries of beta-blockers spiked into human urine and serum samples were above 84 and 71%, respectively. A serum sample from a patient administrated propranolol was analyzed using this method and both propranolol and its metabolites were detected.
Rocco, Anna; Maruška, Audrius; Fanali, Salvatore
2012-03-01
Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R(s) = 1.80 for naproxen to R(s) = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R(s) value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R(s) = 0.89).
Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya
2008-03-01
Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.
Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin
2018-04-01
The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.
Santercole, Viviana; Delmonte, Pierluigi; Kramer, John K G
2012-03-01
Commercial fish oils and foods containing fish may contain trans and/or isomerized fatty acids (FA) produced during processing or as part of prepared foods. The current American Oil Chemists' Society (AOCS) official method for marine oils (method Ce 1i-07) is based on separation by use of poly(ethylene glycol) (PEG) columns, for example Supelcowax-10 or equivalent, which do not resolve most unsaturated FA geometric isomers. Highly polar 100-m cyanopropyl siloxane (CPS) columns, for example SP-2560 and CP Sil 88 are recommended for separation of geometric FA isomers. Complementary separations were achieved by use of two different elution temperature programs with the same CPS column. This study is the first direct comparison of the separations achieved by use of 30-m Supelcowax-10 and 100-m SP-2560 columns for fatty acid methyl esters (FAME) prepared from the same fish oil and fish muscle sample. To simplify the identification of the FA in these fish samples, FA were fractionated on the basis of the number and type of double bonds by silver-ion solid-phase extraction (Ag⁺-SPE) before GC analysis. The results showed that a combination of the three GC separations was necessary to resolve and identify most of the unsaturated FA, FA isomers, and other components of fish products, for example phytanic and phytenic acids. Equivalent chain length (ECL) values of most FAME in fish were calculated from the separations achieved by use of both GC columns; the values obtained were shown to be consistent with previously reported values for the Supelcowax-10 column. ECL values were also calculated for the FA separated on the SP-2560 column. The calculated ECL values were equally valid under isothermal and temperature-programmed elution GC conditions, and were valuable for confirmation of the identity of several unsaturated FAME in the fish samples. When analyzing commercially prepared fish foods, deodorized marine oils, or foods fortified with marine oils it is strongly recommended that quantitative data acquired by use of PEG columns is complemented with data obtained from separations using highly polar CPS columns.
Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.
Masuda, Akiko; Dohmae, Naoshi
2010-11-01
In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.
Medina, A; Magan, N
2012-03-15
In this work we compared the performance of chromatography columns with particles of 5 and 3 μm with the new 2.7 μm solid core particles for the analysis of aflatoxins B1, G1, B2, and G2 using trifluoroacetic acid pre-column derivatization. Three different columns have been used and chromatographic parameters as retention time, resolution, limit of detection (LOD), limit of quantification (LOQ) were obtained from all of them and compared. The results show that comparing with the traditional columns, shorter columns (100 mm × 4.6 mm) with the new solid core particles are suitable for the analysis of these mycotoxins and allowed the reduction of the analysis time by 45.5% and 33.3% with respect to columns with particle size 5 μm (150 mm × 4.6 mm) and 3 μm (150 mm × 4.6 mm) respectively, without any detrimental effect on performance. This leads to the reduction of the analysis costs by saving on organic solvents and increasing the total number of analyses per day. The capability of these columns for analyzing samples, in different culture media, was assessed by analyzing different samples from: yeasts extract sucrose medium, corn meal agar medium and fresh hazelnut media. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Shuowen; Wen, Jun; Cui, Lijun; Zhang, Xiurong; Wei, Hua; Xie, Rui; Feng, Bo; Wu, Yutian; Fan, Guorong
2010-03-11
A novel, simple and rapid high performance liquid chromatographic method has been developed and validated for the determination of sinafloxacin, a new fluoroquinolone, in rat plasma using 96-well protein precipitation, fused-core C(18)-silica column (4.6mmx50mm, 2.7microm) packed with a new solid support, which is made of 2.7microm particles that consist of a 1.7microm solid core covered with a 0.5microm thick shell of porous silica.The chromatographic separation was achieved with a mobile phase of 20:80 (v/v) of acetonitrile and phosphate buffer (pH=3.0) at a flow rate of 1mlmin(-1). Fluorescence detection was employed with lambda(ex) 295nm and lambda(em) 505nm. Lomefloxacin was used as internal standard (IS). The total analysis time was as short as 3min. The method was sensitive with a limit of detection (LOD) of 2ngml(-1), with good linearity (R(2)=0.9996) over the linear range of 5-500ngml(-1). The intra-day and inter-day precision was less than 5.8% and accuracy ranged from 100.3% to 103.5% for quality control (QC) samples at three concentrations of 10, 50 and 400ngml(-1).The fused-core C(18)-silica column method offered high sample throughput, low injection volume and low consumption of organic solvents. The method was successfully employed in the pharmacokinetic study of sinafloxacin formulation product after tail vein injection to healthy rats. Copyright 2009 Elsevier B.V. All rights reserved.
Jiang, Ping; Lucy, Charles A
2016-03-11
Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Soukup, Jan; Jandera, Pavel
2014-12-29
Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. Copyright © 2014 Elsevier B.V. All rights reserved.
Liang, Xiaojing; Wang, Shuai; Liu, Shujuan; Liu, Xia; Jiang, Shengxiang
2012-08-01
An octadecylsilane functionalized graphene oxide/silica stationary phase was fabricated by assembling graphene oxide onto the silica particles through an amide bond and subsequent immobilization of octadecylsilane. The chromatographic properties of the stationary phase were investigated by reversed-phase chromatography with alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenolic compounds as the analytes. All the compounds achieved good separation on the column. The comparison between a C18 commercial column and the new stationary phase indicated that the existence of π-electron system of graphene oxide allows π-π interaction between analyte and octadecylsilane functionalized graphene oxide/silica stationary phase except for hydrophobic interaction, while only hydrophobic interaction presented between analyte and C18 commercial column. This suggests that some analytes can be better separated on the octadecylsilane functionalized graphene oxide/silica column. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for making a non-extractable stationary phase of polymer within a capillary column
Springston, Stephen R.
1990-01-01
A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi
2018-04-27
A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.
Washington, John W; Henderson, W Matthew; Ellington, J Jackson; Jenkins, Thomas M; Evans, John J
2008-02-15
With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary phases, two different liquid chromatography-tandem mass spectrometry (LC/MS/MS) systems, and eight combinations of sample-extract pretreatments, extractions and cleanups on three test soils. For the columns and systems we tested, we achieved the greatest analytical sensitivity for PFCAs using a column with a C(18) stationary phase in a Waters LC/MS/MS. In this system we achieved an instrument detection limit for PFOA of 270 ag/microL, equating to about 14 fg of PFOA on-column. While an elementary acetonitrile/water extraction of soils recovers PFCAs effectively, natural soil organic matter also dissolved in the extracts commonly imparts significant noise that appears as broad, multi-nodal, asymmetric peaks that coelute with several PFCAs. The intensity and elution profile of this noise is highly variable among soils and it challenges detection of low concentrations of PFCAs by decreasing the signal-to-noise contrast. In an effort to decrease this background noise, we investigated several methods of pretreatment, extraction and cleanup, in a variety of combinations, that used alkaline and unbuffered water, acetonitrile, tetrabutylammonium hydrogen sulfate, methyl-tert-butyl ether, dispersed activated carbon and solid-phase extraction. For the combined objectives of complete recovery and minimization of background noise, we have chosen: (1) alkaline pretreatment; (2) extraction with acetonitrile/water; (3) evaporation to dryness; (4) reconstitution with tetrabutylammonium-hydrogen-sulfate ion-pairing solution; (5) ion-pair extraction to methyl-tert-butyl ether; (6) evaporation to dryness; (7) reconstitution with 60/40 acetonitrile/water (v/v); and (8) analysis by LC/MS/MS. Using this method, we detected in all three of our test soils, endogenous concentrations of all of our PFCA analytes, C(6) through C(10)-the lowest concentrations being roughly 30 pg/g of dry soil for perfluorinated hexanoic and decanoic acids in an agricultural soil.
Jirovetz, Leopold; Buchbauer, Gerhard; Ngassoum, Martin Benoit; Geissler, Margit
2002-11-08
The investigation of aroma compounds of the essential oils of dried fruits of black pepper (Piper nigrum) and black and white "Ashanti pepper" (Piper guineense) from Cameroon by means of solid-phase microextraction (SPME) was carried out for the first time to identify the odorous target components responsible for the characteristic odor of these valuable spices and food flavoring products. By means of GC-flame ionization detection (FID) and GC-MS (using different polar columns) the main compounds (concentration >3.0%, calculated as area of GC-FID analysis using a non-polar fused-silica open tubular RSL-200 column) of the SPME headspace samples of P. nigrum (black) and P. guineense (black and white) were found to be: P. nigrum (black)--germacrene D (11.01%), limonene (10.26%), beta-pinene (10.02%), alpha-phellandrene (8.56%), beta-caryophyllene (7.29%), alpha-pinene (6.40%) and cis-beta-ocimene (3.19%); P. guineense (black)--beta-caryophyllene (57.59%), beta-elemene (5.10%), bicyclogermacrene (5.05%) and alpha-humulene (4.86%); and P. guineense (white)--beta-caryophyllene (51.75%), cis-beta-ocimene (6.61%), limonene (5.88%), beta-pinene (4.56%), linalool (3.97%) and alpha-humulene (3.29%). The most intense odor impressions of the essential oils of the various dried pepper fruits were given byprofessional perfumers as follows: P nigrum (black)--fine, pleasant black pepper note; P. guineense (black)--black pepper top-note; and P. guineense (white)--pleasant white pepper note. These analytical results for the SPME headspace samples of three different pepper species from Cameroon are in accordance with the olfactoric data of the corresponding essential oils. A GC-sniffing technique was used to correlate the single odor impression of the identified SPME headspace volatiles of the three investigated pepper samples with the following results: themain compounds such as beta-caryophyllene, germacrene D, limonene, beta-pinene, alpha-phellandrene and alpha-humulene, as well as minor constituents such as delta-carene, beta-phellandrene, isoborneol, alpha-guaiene, sarisan, elemicin, calamenene, caryophyllene alcohol, isoelemicin, T-muurolol, cubenol and bulnesol, are of greatest importance for the characteristic pepper odor notes of these three Piper samples. Further aroma impressions can be attributed to mono- and sesquiterpenes, hexane, octane and nonane derivatives.
Zarejousheghani, Mashaalah; Fiedler, Petra; Möder, Monika; Borsdorf, Helko
2014-11-01
A novel approach for the selective extraction of organic target compounds from water samples has been developed using a mixed-bed solid phase extraction (mixed-bed SPE) technique. The molecularly imprinted polymer (MIP) particles are embedded in a network of silica gel to form a stable uniform porous bed. The capabilities of this method are demonstrated using atrazine as a model compound. In comparison to conventional molecularly imprinted-solid phase extraction (MISPE), the proposed mixed-bed MISPE method in combination with gas chromatography-mass spectrometry (GC-MS) analysis enables more reproducible and efficient extraction performance. After optimization of operational parameters (polymerization conditions, bed matrix ingredients, polymer to silica gel ratio, pH of the sample solution, breakthrough volume plus washing and elution conditions), improved LODs (1.34 µg L(-1) in comparison to 2.25 µg L(-1) obtained using MISPE) and limits of quantification (4.5 µg L(-1) for mixed-bed MISPE and 7.5 µg L(-1) for MISPE) were observed for the analysis of atrazine. Furthermore, the relative standard deviations (RSDs) for atrazine at concentrations between 5 and 200 µg L(-1) ranged between 1.8% and 6.3% compared to MISPE (3.5-12.1%). Additionally, the column-to-column reproducibility for the mixed-bed MISPE was significantly improved to 16.1%, compared with 53% that was observed for MISPE. Due to the reduced bed-mass sorbent and at optimized conditions, the total amount of organic solvents required for conditioning, washing and elution steps reduced from more than 25 mL for conventional MISPE to less than 2 mL for mixed-bed MISPE. Besides reduced organic solvent consumption, total sample preparation time of the mixed-bed MISPE method relative to the conventional MISPE was reduced from more than 20 min to less than 10 min. The amount of organic solvent required for complete elution diminished from 3 mL (conventional MISPE) to less than 0.4 mL with the mixed-bed technique shows its inherent potential for online operation with an analytical instrument. In order to evaluate the selectivity and matrix effects of the developed mixed-bed MISPE method, it was applied as an extraction technique for atrazine from environmental wastewater and river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.
Eagling, Jane; Worsfold, Paul J; Blake, William H; Keith-Roach, Miranda J
2013-08-01
There is concern that sea level rise associated with projected climate change will lead to the inundation, flooding and erosion of soils and sediments contaminated with radionuclides at coastal nuclear sites, such as Dounreay (UK), with seawater. Here batch and column experiments were designed to simulate these scenarios and sequential extractions were used to identify the key radionuclide solid phase associations. Strontium was exchangeable and was mobilised rapidly by ion exchange with seawater Mg(2+) in both batch and column experiments. In contrast, U was more strongly bound to the sediments and mobilisation was initially limited by the influence of the sediment on the pH of the water. Release was only observed when the pH increased above 6.9, suggesting that the formation of soluble U(VI)-carbonate species was important. Under dynamic flow conditions, long term release was significant (47%), but controlled by slow desorption kinetics from a range of binding sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Marcia A.; Cote, Raymond O.; Torczynski, John Robert
The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter inmore » the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow, Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates.« less
Plakas, S M; el Said, K R; Jester, E L; Bencsath, F A; Hayton, W L
1997-01-01
A liquid chromatographic (LC) method was developed for determination of acriflavine (ACR) and proflavine (PRO) residues in channel catfish muscle. Residues were extracted with acidified methanol solution, and extracts were cleaned up with C18 solid-phase extraction columns. Residue concentrations were determined on an LC cyano column, with spectrophotometric detection at 454 nm. Catfish muscle was individually fortified with ACR (purified from commercial product) and PRO at concentrations of 5, 10, 20, 40, and 80 ppb (5 replicates per level). Mean recoveries from fortified muscle at each level ranged from 86 to 95%, with relative standard deviations (RSDs) of 2.5 to 5.7%. The method was applied to incurred residues of ACR and PRO in muscle after waterborne exposure of channel catfish to commercial acriflavine (10 ppm total dye for 4 h). RSDs for incurred residues of ACR and PRO were in the same range as those for fortified muscle. Low residue concentrations (< 1% of exposure water concentration) suggested poor absorption of ACR and PRO in catfish.
King, J W; King, L J
1996-01-01
Because of the increase in use of the newer benzodiazepines, we explored the opportunity to develop a gas chromatographic-mass spectrometric (GC-MS) method that encompasses most of the widely prescribed benzodiazepines in use today. The benzodiazepines included in our study are nordiazepam, oxazepam, temazepam, lorazepam, alpha-hydroxyalprazolam, alpha-hydroxytriazolam, desalkylflurazepam, and 2-hydroxyethylflurazepam. Using 1.0 mL of urine as the matrix, we added the enzyme Glusulase and incubated the specimens for 2 h to obtain the free drugs. The hydrolyzed samples were then loaded onto a Toxi-Lab Spec VC MP3 column containing a 15-mg disc. On-disc derivatization was accomplished by adding N-methyl-N-(t-butyldimethylsilyl) trifluroacetamide (MTBSTFA) with 1% TBDMSCI to the disc. The derivatives were then placed in a GC vial and analyzed by GC-MS in the selected ion monitoring mode. These results were then compared to confirmed positives by the traditional acid hydrolysis GC-MS method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, L.; Ntarlagiannis, D.; Yee, N.
2008-10-01
There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupledmore » with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.« less
Yang, Yinhui; Chang, Zhengfeng; Yang, Xiaohong; Qi, Meiling; Wang, Jinliang
2018-08-03
Herein we report a propeller-like hexaphenylbenzene-based hydrocarbon material (denoted as BT) as the stationary phase for capillary gas chromatography (GC). The statically-coated BT capillary column showed a high column efficiency of 4340 plates m -1 and weak polarity. Owing to its unique conformation, π-electron toroidal delocalization and intrinsic microporosity, the BT stationary phase exhibited interesting selectivity for aromatic compounds over alkanes. Compared with the graphene (G) column, the BT column showed much prolonged retention and high selectivity for aromatic isomers, especially methylnaphthalenes, dimethylnaphthalenes and phenanthrene/anthracene, mainly because of its propeller-like conformation with rich intercalation effects. Moreover, it exhibited good column repeatability (intra-day, inter-day) and reproducibility (between-column) with RSD values on the retention times less than 0.08% for intra-day, 0.32% for inter-day and 3.8% for between-column, respectively. Also, it showed good potential for determination of minor isomer impurities in real samples. To the best of our knowledge, this work presents the first example of employing an neat aromatic hydrocarbon material as the GC stationary phase with high selectivity for analytes of a wide ranging polarity. Copyright © 2018 Elsevier B.V. All rights reserved.
Dubois, M; Fluchard, D; Sior, E; Delahaut, P
2001-04-05
We present an electrospray high-performance liquid chromatographic tandem mass spectrometric (HPLC-MS-MS) method capable of determining in several tissues (muscle, kidney, liver), eggs and milk the following five macrolides: tylosin, tilmicosin, spiramycin, josamycin, erythromycin. Roxithromycin was used as an internal standard. The method uses extraction in a Tris buffer at pH 10.5, followed by protein precipitation with sodium tungstate and clean-up on an Oasis solid-phase extraction column. The HPLC separation was performed on a Purospher C18 column (125 x 3 mm I.D.) protected by a guard column, with a gradient of aqueous 0.1 M ammonium acetate-acetonitrile as the mobile phase at a flow-rate of 0.7 ml min(-1). Protonated molecules served as precursor ions for electrospray ionisation in the positive ion mode and four product ions were chosen for each analyte for multiple reaction monitoring (MRM). A validation study was conducted to confirm the five macrolides by MRM HPLC-MS-MS analysis of a negative control and fortified samples. All of the samples analysed were confirmed with four ions. The ion ratio reproducibility limit ranged from 2.4 to 15%. All compounds could be detected and quantified at half-maximum residue limits (MRLs). The method is specific, quantitative and reproducible enough to conform to European Union recommendations within the concentration range 0.5 MRL-2 MRL (accuracy: 80 to 110%, relative standard deviation: 2 to 13%). This whole method allows extraction and analysis of up to 50 samples per day.
Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge.
Silver, Matthew; Selke, Stephanie; Balsaa, Peter; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph
2018-06-18
Infiltration of treated wastewater (TWW) to recharge depleted aquifers, often referred to as managed aquifer recharge, is a solution to replenish groundwater resources in regions facing water scarcity. We present a mass balance approach to infer the amounts of five pharmaceuticals (carbamazepine, diclofenac, fenoprofen, gemfibrozil, and naproxen) degraded in column experiments based on concentrations of pharmaceuticals in the aqueous and solid (sorbed) phases. Column experiments were conducted under three different conditions: continuous infiltration, wetting and drying cycles, and wetting and drying cycles with elevated concentrations of antibiotics (which may reduce microbially aided degradation of other compounds). A mass balance comparing pharmaceutical mass in the water phase over the 16-month duration of the experiments to mass sorbed to the soil was used to infer the mass of pharmaceuticals degraded. Results show sorption as the main attenuation mechanism for carbamazepine. About half of the mass of diclofenac was degraded with wetting and drying cycles, but no significant degradation was found for continuous infiltration, while 32% of infiltrated mass sorbed. Fenoprofen was degraded in the shallow and aerobic part of the soil, but degradation appeared to cease beyond 27 cm depth. Gemfibrozil attenuated through a combination of degradation and sorption, with slight increases in attenuation with depth from both mechanisms. Naproxen degraded progressively with depth, resulting in attenuation of >90% of the mass. In the column with elevated concentrations of antibiotics, the antibiotics attenuated to about 50% or less of inflow concentrations by 27 cm depth and within this zone, less degradation of the other compounds was observed. Copyright © 2018 Elsevier B.V. All rights reserved.
Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.
Ikegami, Tohru; Tanaka, Nobuo
2016-06-12
Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak; Cooper, Bill; Kostka,
2014-01-01
A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observedmore » a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.« less
Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek
2018-02-01
A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.
Kaykhaii, Massoud; Yahyavi, Hossain; Hashemi, Mohammad; Khoshroo, Mohammad Reza
2016-07-01
Determination of malondialdehyde (MDA) in human blood plasma is important because of its role as a biomarker of lipid peroxidation in biological and medical sciences. In this work, a miniaturized graphene-based pipette tip solid-phase extraction technique was developed for very efficient extraction of MDA as its dithiobarbituric acid (TBA) adduct from human plasma. Two milligrams of graphene as sorbent were placed into a pipette tip and MDA-TBA compound was extracted and preconcentrated by it, after 4 repeated aspirating/dispensing cycles, then the column was eluted with 80 μL of dimethyl sulfoxide by 4 repeated aspirating/dispensing cycles and elusion was measured spectrofluorimetrically. Various effective parameters such as type and volume of eluent solvent, temperature, sample volume, number of cycles of extraction and desorption, derivatization reaction time, and pH of the sample solution were investigated and optimized. Under optimum conditions, a linear calibration curve was obtained in the range of 0.5-90 μg L(-1) (r (2) = 0.991) with a detection limit of 0.3 μg L(-1). The relative standard deviations for 8 replicate measurements of 10 and 40 μg L(-1) of MDA were found to be 4.51 and 3.78 % respectively. The developed protocol was successfully applied to the determination of MDA in a human blood plasma sample. Graphical Abstract A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry.
Azzouz, Abdelmonaim; Ballesteros, Evaristo
2014-09-19
A novel analytical method using a continuous solid-phase extraction system in combination with gas chromatography-mass spectrometry for the simultaneous separation and determination of endocrine disrupting compounds (EDCs) is reported. The method was applied to major EDCs of various types including parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in water. Samples were preconcentrated by using an automatic solid-phase extraction module containing a sorbent column, and retained analytes eluted with acetonitrile for derivatization with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane. A number of variables potentially influencing recovery of the target compounds such as the type of SPE sorbent (Silica gel, Florisil, RP-C18, Amberlite XAD-2 and XAD-4, Oasis HLB and LiChrolut EN), eluent and properties of the water including pH and ionic strength, were examined. LiChrolut EN was found to be the most efficient sorbent for retaining the analytes, with ∼100% efficiency. The ensuing method was validated with good analytical results including low limits of detection (0.01-0.08ng/L for 100mL of sample) and good linearity (r(2)>0.997) throughout the studied concentration ranges. The method exhibited good accuracy (recoveries of 90-101%) and precision (relative standard deviations less than 7%) in the determination of EDCs in drinking, river, pond, well, swimming pool and waste water. Waste water samples were found to contain the largest number and highest concentrations of analytes (3.2-390ng/L). Copyright © 2014 Elsevier B.V. All rights reserved.
Vasylechko, Volodymyr O; Gryshchouk, Galyna V; Zakordonskiy, Victor P; Vyviurska, Olga; Pashuk, Andriy V
2015-01-01
In spite of the fact that terbium is one of the rarest elements in the Earth's crust, it is frequently used for the production of high technological materials. At the result, an effective combination of sample preparation procedure and detection method for terbium ions in different matrices is highly required. The solid-phase extraction procedure with natural Transcarpathian clinoptilolite thermally activated at 350 °C was used to preconcentrate trace amounts of terbium ions in aqueous solutions for a final spectrophotometric determination with arsenazo III. Thermogravimetric investigations confirmed the existence of relations between changes that appeared during dehydratation of calcined zeolite and its sorption affinity. Since the maximum of sorption capacity towards terbium was observed at pH 8.25, a borate buffer medium (2.5 · 10(-4) М) was used to maintain ionic force and solution acidity. Terbium was quantitatively removed from the solid-phase extraction column with a 1.0 M solution of sodium chloride (pH 2.5). The linearity of the proposed method was evaluated in the range of 2.5-200 ng · mL(-1) with detection limit 0.75 ng · mL(-1). Due to acceptable recoveries (93.3-102.0 %) and RSD values (6-7.1) from spiked tap water, the developed method can be successfully applied for the determination of trace amounts of terbium ions in the presence of major components of water. Graphical abstractSorption of terbium(III) ions on clinoptilolite.
Evaluation of the phase ratio for three C18 high performance liquid chromatographic columns.
Caiali, Edvin; David, Victor; Aboul-Enein, Hassan Y; Moldoveanu, Serban C
2016-02-26
For a chromatographic column, phase ratio Φ is defined as the ratio between the volume of the stationary phase Vst and the void volume of the column V0, and it is an important parameter characterizing the HPLC process. Although apparently simple, the evaluation of Φ presents difficulties because there is no sharp boundary between the mobile phase and the stationary phase. In addition, the boundary depends not only on the nature of the stationary phase, but also on the composition of the mobile phase. In spite of its importance, phase ratio is seldom reported for commercially available HPLC columns and the data typically provided by the vendors about the columns do not provide key information that would allow the calculation of Φ based on Vst and V0 values. A different procedure for the evaluation of Φ is based on the following formula: log k'j=a log Kow,j+log Φ, where k'j is the retention factor for a compound j that must be a hydrocarbon, Kow,j is the octanol/water partition coefficient, and a is a proportionality constant. Present study describes the experimental evaluation of Φ based on the measurement of k'j for the compounds in the homologous series between benzene and butylbenzene for three C18 columns: Gemini C18, Luna C18 both with 5 μm particles, and a Chromolith Performance RP-18. The evaluation was performed for two mobile phase systems at different proportions of methanol/water and acetonitrile/water. The octanol/water partition coefficients were obtained from the literature. The results obtained in the study provide further support for the new procedure for the evaluation of phase ratio. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for making a non-extractable stationary phase of polymer within a capillary column
Springston, S.R.
1990-10-30
A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.
Plenis, Alina; Olędzka, Ilona; Bączek, Tomasz
2013-05-05
This paper focuses on a comparative study of the column classification system based on the quantitative structure-retention relationships (QSRR method) and column performance in real biomedical analysis. The assay was carried out for the LC separation of moclobemide and its metabolites in human plasma, using a set of 24 stationary phases. The QSRR models established for the studied stationary phases were compared with the column test performance results under two chemometric techniques - the principal component analysis (PCA) and the hierarchical clustering analysis (HCA). The study confirmed that the stationary phase classes found closely related by the QSRR approach yielded comparable separation for moclobemide and its metabolites. Therefore, the QSRR method could be considered supportive in the selection of a suitable column for the biomedical analysis offering the selection of similar or dissimilar columns with a relatively higher certainty. Copyright © 2013 Elsevier B.V. All rights reserved.
Ogawa, Tadashi; Hattori, Hideki; Kaneko, Rina; Ito, Kenjiro; Iwai, Masayo; Mizutani, Yoko; Arinobu, Tetsuya; Ishii, Akira; Suzuki, Osamu; Seno, Hiroshi
2010-01-01
A rapid and sensitive method for analysis of blonanserin in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry is presented. After pretreatment of a plasma sample by solid-phase extraction, blonanserin was analyzed by the system with a C(18) column. This method gave satisfactory recovery rates, reproducibility, and good linearity of calibration curve in the range of 0.01-10.0 ng/mL for quality control samples spiked with blonanserin. The detection limit was as low as 1 pg/mL. This method seems very useful in forensic and clinical toxicology and pharmacokinetic studies.
Detection of endogenous boldenone in the entire male horses.
Ho, Emmie N M; Yiu, Kenneth C H; Tang, Francis P W; Dehennin, Louis; Plou, Philippe; Bonnaire, Yves; Wan, Terence S M
2004-09-05
Boldenone (1,2-dehydrotestosterone) is a common veterinary anabolic agent. Its structure is very similar to testosterone. Testosterone is endogenous in the horse, whereas there has been no report concerning the detection of endogenous boldenone. This paper reports the direct observation of sulphate conjugate of boldenone in equine urine from entires. The detection procedures involved solid-phase extraction, immunoaffinity column (IAC) purification, and then LC-MS-MS analysis on a Q-ToF instrument. The identification of boldenone sulphate has provided direct evidence for the endogenous nature of boldenone in entire male horses. Quantification data for the normal level of boldenone in Hong Kong racehorses will also be discussed.
NASA Technical Reports Server (NTRS)
Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.
2002-01-01
We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.
Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.
Thomas, Paul M; Foster, Gregory D
2005-01-01
Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.
Ishii, A; Seno, H; Suzuki, O; Hattori, H; Kumazawa, T
1997-01-01
A simple and sensitive method for determination of N,N-dimethyltryptamine (DMT) by gas chromatography (GC) with surface ionization detection (SID) is presented. Whole blood or urine, containing DMT and gramine (internal standard), was subjected to solid-phase extraction with a Sep-Pak C18 cartridge before analysis by GC-SID. The calibration curve was linear in the DMT range of 1.25-20 ng/mL blood or urine. The detection limit of DMT was about 0.5 ng/mL (10 pg on-column). The recovery of both DMT and gramine spiked in biological fluids was above 86%.
NASA Astrophysics Data System (ADS)
Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.
2016-01-01
A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.
Baranowska, Irena; Wojciechowska, Iwona; Solarz, Natalia; Krutysza, Ewa
2014-01-01
This paper reports the development of a method for simultaneously determining five preservatives in cosmetics, cleaning agents and pharmaceuticals by fast liquid chromatography. Methylisothiazolinone, methylchloroisothiazolinone, benzyl alcohol, sodium benzoate and methylparaben were separated on a Chromolith Fast Gradient reversed-phase 18e column using gradient elution with acetonitrile and a 0.1% aqueous solution of formic acid, with a run time of 3 min. The preparation of solid and liquid samples included ultrasonic extraction with methanol with recoveries ranging from 69 to 119%. The developed method was used to analyze samples of cosmetics (66 samples), cleaning agents (five samples) and pharmaceutical industry products (17 samples).
Zhang, Juzhou; Ji, Shuilin; Cai, Huimei; Li, Jing; Wang, Yongxin; Wang, Jingqiu
2017-11-08
A novel analytical method was developed for the simultaneous determination of six fluorescent whitening agents (FWAs:FWA 135, FWA 184, FWA 185, FWA 199, FWA 378 and FWA 393) in paper and plastic food packaging materials by high performance liquid chromatography with fluorescence detection (HPLC-FLD). The sample was extracted with mixed solution of chloroform and acetonitrile (3:7, v/v), then cleaned up by HLB solid phase extraction column. Qualitative and quantitative analyses were carried out by HPLC. The sample was separated on a Phenomenex C18 column using acetonitrile and 5 mmol/L ammonium acetate aqueous solution as mobile phases. The results indicated that the linear range of FWA393 was 15-1500 μg/L and the linear ranges of the other five FWAs were 5-500 μg/L with correlation coefficients greater than 0.999. The recoveries in spiked samples were between 80.4% and 125.0% with RSDs ( n =6) of 1%-13%. Furthermore, this method was applied to analyze 12 samples in the market to verify the practicality of the method. The method showed the advantages of simplicity, high recovery and good precision, and is suitable for the detection of the six fluorescent whitening agents in food packaging materials.
49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...
49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...
49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...
49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...
49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...
Liu, You-Yu; Hu, Xia-Lin; Bao, Yi-Fan; Yin, Da-Qiang
2018-02-12
A confirmatory method for the simultaneous detection of 29 pharmaceuticals in fish muscle and plasma was developed by using solid-phase extraction combined with ultra high performance liquid chromatography and tandem mass spectrometry. Fish samples were extracted with methanol and enriched using Oasis HLB solid-phase extraction columns in one step. Twenty-nine target pharmaceuticals were quantified by the internal standard method and the calibration curves showed good linearity in a wide range with determination coefficients of greater than 0.913. The detection limits of the pharmaceuticals ranged from 0.01 to 2.00 μg/kg (μg/L). The applicability of the method was checked by precision and recovery experiments. The average recoveries of the 29 pharmaceuticals were between 61 and 111%, and all the relative standard deviations were below 25%. Our reported method has been demonstrated to be sensitive, convenient, rapid and reliable for the simultaneous determination of 29 pharmaceuticals in fish muscle and plasma. Real sample determination showed that 25 and 9 of the 29 compounds were detected in fish muscle and plasma, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Determination of some metal ions in various meat and baby food samples by atomic spectrometry.
Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol
2016-04-15
In this paper, we report a simple and rapid solid phase extraction system for the separation/preconcentration and determination of Cd(II), Co(II), Cu(II), Fe(III), Cr(III), Pb(II), and Zn(II) ions by flame atomic absorption spectrometry (FAAS). This method is based upon the retention of metal ions on a column packed with poly[N-(3-methyl-1H-indole-1-yl)]-2-methacrylamide-co-2-acrylamido-2-methyl-1-propane sulphonic acid-co divinylbenzene] (MMAD) resin as a solid-phase extraction (SPE) sorbent at pH 8. At the optimized conditions, the limits of detection (3 s/b) between 0.12 and 1.6 μg L(-1), preconcentration factor of 100, and the relative standard deviation of ⩽1.8% were achieved (n=10). The accuracy of the method was verified by analyzing certified reference materials (CRMs) and performing recovery experiments. The developed method was successfully applied to the various natural water, meat products and baby food samples. The recoveries of analyte ions were found in added real samples and CRMs from 95% to 102%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhong, Zhixiong; Li, Gongke; Luo, Zhibin; Liu, Zhe; Shao, Yijuan; He, Wanwen; Deng, Jianchao; Luo, Xingling
2015-08-12
A carboxylated graphene oxide/polyvinyl chloride (CGO/PVC) material was prepared as a sorbent for the selective extraction of sulphonamides from complex sample. After being dispersed in buffer solution, sample was transferred into the prefabricated solid-phase extraction (SPE) column, which integrated extraction and cleanup into one single-step. A multi-response optimization based on the Box-Behnken design was used to optimize factors affecting extraction efficiency. Compared with the commonly commercial sorbents including MCX, WCX and C18, CGO/PVC hybrid material had higher extraction selectivity and capacity to sulphonamides. The limits of detection and quantification for seven target compounds were in the range of 3.4-7.1 μg/L and 11.4-23.7 μg/L, respectively. The self-assembly SPE cartridge was successfully used to enrich seven analytes in anti-acne cosmetics prior to ion chromatography detection with good recoveries of 87.8-102.0% and relative standard deviations of 1.2-6.4%, implying that this method was suitable for routine analysis of cosmetics. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Jing; Liu, Zhaojin; An, Baochao; Lu, Yan; Xu, Qun
2012-10-01
An on-line solid phase extraction (SPE) system was used to eliminate the interferences sufficiently and fulfill the simple and sensitive determination of diquat and paraquat in tap and pond water. This on-line SPE system used two SPE cartridges. One was an Acclaim Mixed-Mode WAX-1 cartridge for the elimination of anionic interferences; the other one was an Acclaim Mixed-Mode WCX-1 cartridge for the enrichment of diquat and paraquat and the elimination of co-enriched cationic interferences. The baseline separation of diquat and paraquat was achieved on an Acclaim Trinity P1 column. A dual-gradient high performance liquid chromatographic (HPLC) system provided an efficient platform to fulfill the on-line SPE and separation, and the system operated under automatic control of chromatography data system software. The complete analysis only required 16 min, and the detection limits of the method were 0.12 microg/L for diquat and 0.10 microg/L for paraquat. The method is simple, rapid and sensitive, and can be applied to the determination of diquat and paraquat in drinking water and environmental water.
Schenck, F J; Calderon, L; Podhorniak, L V
1996-01-01
A rapid, multiresidue solid-phase extraction (SPE) technique for determination of organochlorine pesticide and polychlorinated biphenyl (PCB) residues in nonfatty fish was modified for use with fatty fish. In the modified procedures, samples are extracted with acetonitrile, and the extract is cleaned up with both C18 and Florisil SPE columns. Residues are determined by gas chromatography with electron capture detection. The original method was modified for use with fatty fish by reducing the amount of tissue extracted and by using an improved Florisil SPE cleanup. Recovery data are presented for 24 fortified organochlorine pesticide residues (0.12 ppm) and 3 fortified PCB residues (0.80 ppm) from flounder, bluefish, and shad samples, which contained 0.8, 5.4, and 22.6% fat, respectively. For the 3 types of fish, recoveries of 23 of 24 fortified organochlorine pesticide residues ranged from 55 to 129%, and recoveries of 3 fortified PCB residues ranged from 55 to 104%. There were no significant differences in recovery based on fish species and/or fat content for the majority of residues studied. This SPE method and the official AOAC method yielded comparable results for fish containing incurred organochlorine residues.
Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam
2018-02-01
A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.
2004-01-01
Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.
Hu, Gaofei; Zhu, Yan; Hernandez, Marta; Koutchma, Tatiana; Shao, Suqin
2016-02-01
A headspace solid phase microextraction (HS-SPME) procedure followed by gas chromatography-flame ionisation detector (GC-FID) analysis was developed and validated for the simultaneous analysis of furan, 2-methylfuran and 2-pentylfuran from juice samples. Extraction at 32 °C for 20 min with stirring at 600 rpm and NaCl concentration 15% (W/V) was the optimal HS-SPME condition for all the three compounds by using a carboxen/polydimethylsiloxane fused silica fibre (75 μm). The extracted compounds were base line separated on a SPB-1 GC column within 12 min. The relative standard deviations of all analytes were less than 6.7%. The recovery rates were between 90.2% and 110.1%. The limits of detection and limits of quantification were 0.056-0.23 ng/mL and 0.14-0.76 ng/mL, respectively. The results showed that the developed method was sensitive, precise, accurate and robust for the determination of furan, 2-methylfuran and 2-pentylfuran in complex matrices without interferences from other components. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Qiu, Huidong; Sun, Dongdi; Gunatilake, Sameera R; She, Jinyan; Mlsna, Todd E
2015-09-01
An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction. The extraction procedure (including loading, washing, and eluting) used a flow rate of 1.0mL/min, and dicyandiamide was eluted with 20mL of a methanol/acetonitrile mixture (V/V=2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge (with activated carbon). Separation was achieved on a ZIC(®)-Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) (50mm×2.1mm, 3.5μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions (R(2)>0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations (RSDs, n=3) were below 6.1% with a detection limit of 5.0ng/mL for stream water samples. Copyright © 2015. Published by Elsevier B.V.
The efficiency of photodissociation for molecules in interstellar ices
NASA Astrophysics Data System (ADS)
Kalvāns, J.
2018-05-01
Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.
Soylak, Mustafa; Unsal, Yunus Emre; Yilmaz, Erkan; Tuzen, Mustafa
2011-08-01
A new solid phase extraction method is described for sensitive and selective determination of trace levels of rhodamine B in soft drink, food and industrial waste water samples. The method is based on the adsorption of rhodamine B on the Sepabeads SP 70 resin and its elution with 5 mL of acetonitrile in a mini chromatographic column. Rhodamine B was determined by using UV visible spectrophotometry at 556 nm. The effects of different parameters such as pH, amount of rhodamine B, flow rates of sample and eluent solutions, resin amount, and sample volume were investigated. The influences of some alkali, alkali earth and transition metals on the recoveries of rhodamine B were investigated. The preconcentration factor was found 40. The detection limit based on three times the standard deviation of the reagent blank for rhodamine B was 3.14 μg L⁻¹. The relative standard deviations of the procedure were found as 5% in 1×10⁻⁵ mol L⁻¹ rhodamine B. The presented procedure was successfully applied to real samples including soft drink, food and industrial waste water and lipstick samples. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brede, C; Skjevrak, I; Herikstad, H; Anensen, E; Austvoll, R; Hemmingsen, T
2002-05-01
A straightforward method was established for the determination of migration contaminants in olive oil with a special focus on the two can-coating migration compounds bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE). The preferred sample preparation was a single liquid-liquid extraction of compounds from the oil into 20% (v/v) methanol in acetonitrile, followed by clean-up with solid-phase extraction on aminopropyl bonded to silica. This purification procedure selectively removed all free fatty acids from the extracts without removing phenolic compounds of interest. The solid-phase extraction columns were used many times by implementing a procedure of washing out the strongly retained fatty acids with 2% acetic acid in methanol. Gas chromatography coupled with full scan (m/z 33-700) electron ionization mass spectrometry was used for the determination of several model compounds in olive oil samples. BADGE and BFDGE could be determined in the 0.05-2 mg kg(-1) range in oil samples with a relative SD of <6% (six replicates). The method was used in an enforcement campaign for the Norwegian Food Control Authority to analyse vegetable oil samples from canned fish-in-oil.
Schuster, Georg; Lindner, Wolfgang
2011-06-01
Novel saccharide-based stationary phases were developed by applying non-enzymatic browning (Maillard Reaction) on aminopropyl silica material. During this process, the reducing sugars glucose, lactose, maltose, and cellobiose served as "ligand primers". The reaction cascade using cellobiose resulted in an efficient chromatographic material which further served as our model Chocolate HILIC column. (Chocolate refers to the fact that these phases are brownish.) In this way, an amine backbone was introduced to facilitate convenient manipulation of selectivity by additional attractive or repulsive ionic solute-ligand interactions in addition to the typical HILIC retention mechanism. In total, six different test sets and five different mobile phase compositions were investigated, allowing a comprehensive evaluation of the new polar column. It became evident that, besides the so-called HILIC retention mechanism based on partition phenomena, additional adsorption mechanisms, including ionic interactions, take place. Thus, the new column is another example of a HILIC-type column characterized by mixed-modal retention increments. The glucose-modified materials exhibited the relative highest overall hydrophobicity of all grafted Chocolate HILIC columns which enabled retention of lipophilic analytes with high water content mobile phases.
Monolithic stationary phases with a longitudinal gradient of porosity.
Urban, Jiří; Hájek, Tomáš; Svec, Frantisek
2017-04-01
The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Freeze drying for gas chromatography stationary phase deposition
Sylwester, Alan P [Livermore, CA
2007-01-02
The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.