Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.
Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru
2015-11-10
The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.
Prediction of the As-Cast Structure of Al-4.0 Wt Pct Cu Ingots
NASA Astrophysics Data System (ADS)
Ahmadein, Mahmoud; Wu, M.; Li, J. H.; Schumacher, P.; Ludwig, A.
2013-06-01
A two-stage simulation strategy is proposed to predict the as-cast structure. During the first stage, a 3-phase model is used to simulate the mold-filling process by considering the nucleation, the initial growth of globular equiaxed crystals and the transport of the crystals. The three considered phases are the melt, air and globular equiaxed crystals. In the second stage, a 5-phase mixed columnar-equiaxed solidification model is used to simulate the formation of the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition, grain size distribution, macrosegregation, etc. The five considered phases are the extradendritic melt, the solid dendrite, the interdendritic melt inside the equiaxed grains, the solid dendrite, and the interdendritic melt inside the columnar grains. The extra- and interdendritic melts are treated as separate phases. In order to validate the above strategy, laboratory ingots (Al-4.0 wt pct Cu) are poured and analyzed, and a good agreement with the numerical predictions is achieved. The origin of the equiaxed crystals by the "big-bang" theory is verified to play a key role in the formation of the as-cast structure, especially for the castings poured at a low pouring temperature. A single-stage approach that only uses the 5-phase mixed columnar-equiaxed solidification model and ignores the mold filling can predict satisfactory results for a casting poured at high temperature, but it delivers false results for the casting poured at low temperature.
Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori
2017-02-01
Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.
NASA Astrophysics Data System (ADS)
Wu, M.; Ahmadein, M.; Kharicha, A.; Ludwig, A.; Li, J. H.; Schumacher, P.
2012-07-01
Empirical knowledge about the formation of the as-cast structure, mostly obtained before 1980s, has revealed two critical issues: one is the origin of the equiaxed crystals; one is the competing growth of the columnar and equiaxed structures, and the columnar-to-equiaxed transition (CET). Unfortunately, the application of empirical knowledge to predict and control the as-cast structure was very limited, as the flow and crystal transport were not considered. Therefore, a 5-phase mixed columnar-equiaxed solidification model was recently proposed by the current authors based on modeling the multiphase transport phenomena. The motivation of the recent work is to determine and evaluate the necessary modeling parameters, and to validate the mixed columnar-equiaxed solidification model by comparison with laboratory castings. In this regard an experimental method was recommended for in-situ determination of the nucleation parameters. Additionally, some classical experiments of the Al-Cu ingots were conducted and the as-cast structural information including distinct columnar and equiaxed zones, macrosegregation, and grain size distribution were analysed. The final simulation results exhibited good agreement with experiments in the case of high pouring temperature, whereas disagreement in the case of low pouring temperature. The reasons for the disagreement are discussed.
Incorporation of fragmentation into a volume average solidification model
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.
2018-01-01
In this study, a volume average solidification model was extended to consider fragmentation as a source of equiaxed crystals during mixed columnar-equiaxed solidification. The formulation suggested for fragmentation is based on two hypotheses: the solute-driven remelting is the dominant mechanism; and the transport of solute-enriched melt through an interdendritic flow in the columnar growth direction is favorable for solute-driven remelting and is the necessary condition for fragment transportation. Furthermore, a test case with Sn-10 wt%Pb melt solidifying vertically downward in a 2D domain (50 × 60 mm2) was calculated to demonstrate the model’s features. Solidification started from the top boundary, and a columnar structure developed initially with its tip growing downward. Furthermore, thermo-solutal convection led to fragmentation in the mushy zone near the columnar tip front. The fragments transported out of the columnar region continued to grow and sink, and finally settled down and piled up in the bottom domain. The growing columnar structure from the top and pile-up of equiaxed crystals from the bottom finally led to a mixed columnar-equiaxed structure, in turn leading to a columnar-to-equiaxed transition (CET). A special macrosegregation pattern was also predicted, in which negative segregation occurred in both columnar and equiaxed regions and a relatively strong positive segregation occurred in the middle domain near the CET line. A parameter study was performed to verify the model capability, and the uncertainty of the model assumption and parameter was discussed.
Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order
Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...
2017-10-04
Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less
Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang
Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less
Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition
NASA Astrophysics Data System (ADS)
Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.
Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.
Pérez-Gregorio, Víctor; Giner, Ignacio; López, M Carmen; Gascón, Ignacio; Cavero, Emma; Giménez, Raquel
2012-06-01
A new luminescent ionic liquid crystal, called Ipz-2, has been synthesised and its mesophase behaviour and also at the air-liquid interface has been studied and compared with Ipz, another ionic pyrazole derivative, with a similar molecular structure, previously studied. The X-ray diffraction pattern shows that Ipz-2 exhibits hexagonal columnar mesomorphism, while Ipz adopts lamellar mesophases. Langmuir films of both compounds are flat and homogeneous at large areas per molecule, but create different supramolecular structures under further compression. Ipz-2 Langmuir films have been transferred onto solid substrates, and Atomic Force Microscopy (AFM) images of the Langmuir-Blodgett films have shown that large columnar structures hundreds of nm in diameter are formed on top of the initial monolayer, in contrast with well-defined trilayer LB films obtained for Ipz. Our results show that Ipz-2 has a tendency to stack in columnar arrangements both in liquid crystalline bulk and in Langmuir and Langmuir-Blodgett films. Copyright © 2012 Elsevier Inc. All rights reserved.
Architecture of Columnar Nacre, and Implications for Its Formation Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Rebecca A.; Olabisi, Ronke M.; Coppersmith, Susan N.
2007-06-29
We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.
Lehmann, Matthias; Maier, Philipp
2015-08-10
Hexasubstituted C3 -symmetric benzenes with three oligophenylenevinylene (OPV) arms and three pyridyl or phenyl substituents are shape-persistent star mesogens that are sterically crowded in the center. Such molecular structures possess large void spaces between their arms, which have to be filled in condensed phases. For the neat materials, this is accomplished by an exceptional formation of dimers and short-range helical packing in columnar mesophases. The mesophase is thermodynamically stable for the pyridyl compound. Only this derivative forms filled star-shaped supermesogens in the presence of various carboxylic acids. The latter do not arrange as dimers, but as monomers along the columnar stacks. In this liquid crystal (LC) phase, the guests are completely enclosed by the hosts. Therefore, the host can be regarded as a new LC endoreceptor, which allows the design of columnar functional structures in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Stefan-Kharicha, Mihaela; Kharicha, Abdellah; Wu, Menghuai; Ludwig, Andreas
2018-02-01
The influence of the melt flow on the solidification structure is bilateral. The flow plays an important role in the solidification pattern, via the heat transfer, grain distribution, and segregations. On the other hand, the crystal structure, columnar or equiaxed, impacts the flow, via the thermosolutal convection, the drag force applied by the crystals on the melt flow, etc. As the aim of this research was to further explore the solidification-flow interaction, experiments were conducted in a cast cell (95 * 95 * 30 mm3), in which an ammonium chloride-water solution (between 27 and 31 wt pct NH4Cl) was observed as it solidified. The kinetic energy (KE) of the flow and the average flow velocity were calculated throughout the process. Measurements of the volume extension of the mush in the cell and the velocity of the solid front were also taken during the solidification experiment. During the mainly columnar experiments (8 cm liquid height) the flow KE continuously decreased over time. However, during the later series of experiments at higher liquid height (9.5 cm), the flow KE evolution presented a strong peak shortly after the start of solidification. This increase in the total flow KE correlated with the presence of falling equiaxed crystals. Generally, a clear correlation between the strength of the flow and the occurrence of equiaxed crystals was evident. The analysis of the results strongly suggests a fragmentation origin of equiaxed crystals appearing in the melt. The transition from purely columnar growth to a strongly equiaxed rain (CET) was found to be triggered by (a) the magnitude of the coupling between the flow intensity driven by the equiaxed crystals, and (b) the release and transport of the fragments by the same flow recirculating within the mushy zone.
NASA Astrophysics Data System (ADS)
Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay
2018-03-01
Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.
NASA Astrophysics Data System (ADS)
Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay
2018-06-01
Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.
Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials
NASA Technical Reports Server (NTRS)
Walker, K. P.; Jordan, E. H.
1985-01-01
A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.
Design and Synthesis of Novel Discotic Liquid Crystals
NASA Astrophysics Data System (ADS)
Kayal, Himadri Sekhar
Columnar mesophases of discotic liquid crystals (DLCs) have attracted much attention as organic semiconductors and have been tested as active materials in light-emitting diodes, photovoltaic solar cells, and field-effect transistors. However, devices based on DLCs have shown lower performance than devices based on polymeric and small molecule glass semiconductors, despite their superior charge conducting and advantages self-organizing properties. Most DLCs also require relatively complex processing conditions for the preparation of electronic devices, which is another significant disadvantage. Consequently, new types of DLCs are sought-after to overcome these limitations and described in this thesis are new types of discotic materials and their synthesis. Chapters 2 and 3 describe star-shaped discotic molecules for donor-acceptor columnar structures and as novel flexible core discotic molecules. Presented are the first examples of star-shaped heptamers of donor and acceptor discotic molecules which have six hexaalkoxy triphenylene ligands and a hexaazatriphenylene hexacarboxylate core or a hexaazatriphenylene hexaamide core. The hexaazatriphenylene cores were chosen because of their electron deficient character while the hexaalkoxy triphenylenes are known to be electron rich. Envisioned is the formation of super-columns in which the heptamers stack on top of each other and generate a material with electron acceptor and electron donor channels separated by aliphatic chains. This is an important difference to previously reported donor-acceptor star-shaped structures that were connected via conjugated linkers and do not form separate columnar stacks. Star-shaped DLCs based on small aromatic groups linked together by short flexible spacers may represent a novel type of discotic core structure that does not require peripheral flexible chains. Softening of the core by the spacer group is expected to sufficiently lower melting points and not interfere with the columnar stacking as long as a disc-shaped structure can be adopted. Presented here are synthetic approaches towards novel hexa(thiophen-2-yl)alkyl)benzene derivatives as star-shaped hetero-heptamer discotic cores. New ionic and polymerizable discotic liquid crystals based on the commercial dye tetraazaporphyrin are presented in Chapters 4 and 5. Both areas have been given little attention despite their importance for the preparation of stable films for devices. Tetraazaporphyrins containing azide and acetylene groups at the end of aliphatic spacers have been prepared and cross-linked by cycloaddition (click chemistry). Some derivatives form columnar mesophases and could be thermally cross-linked in their columnar mesophase and their copper catalyzed cross-linking in Langmuir and Langmuir-Blodgett layers was also successful.
Lv, Jinman; Shang, Zhen; Tan, Yang; Vázquez de Aldana, Javier Rodríguez; Chen, Feng
2017-08-07
We report the surface cladding-like waveguide fabricated by the cooperation of the ultrafast laser writing and the ion irradiation. The ultrafast laser writes tracks near the surface of the Nd:YAG crystal, constructing a semi-circle columnar structure with a decreased refractive index of - 0.00208. Then, the Nd:YAG crystal is irradiated by the Carbon ion beam, forming an enhanced-well in the semi-circle columnar with an increased refractive index of + 0.0024. Tracks and the enhanced-well consisted a surface cladding-like waveguide. Utilizing this cladding-like waveguide as the gain medium for the waveguide lasing, optimized characterizations were observed compared with the monolayer waveguide. This work demonstrates the refractive index of the Nd:YAG crystal can be well tailored by the cooperation of the ultrafast laser writing and the ion irradiation, which provides an convenient way to fabricate the complex and multilayered photonics devices.
Generalized Ellipsometry on Complex Nanostructures and Low-Symmetry Materials
NASA Astrophysics Data System (ADS)
Mock, Alyssa Lynn
In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with monoclinic and triclinic symmetries. A model eigendielectric displacement vector approach is developed, described and utilized to characterize monoclinic materials. Materials are investigated in spectral regions spanning from the far-infrared to the vacuum ultraviolet. Examples are demonstrated for phonon mode determination in cadmium tungstate and yttrium silicate and for band-to-band transitions in gallia (beta-Ga2O3) single crystals. Furthermore, the anisotropic optical properties of an emerging class of spatially coherent heterostructure materials with nanostructure dimensions are investigated. The so-called anisotropic effective medium approximation for slanted columnar thin films is extended to the concept of slanted columnar heterostructure thin films as well as core-shell heterostructure thin films. Examples include the determination of band-to-band transitions, phonon modes and oxidation properties of cobalt-oxide core shell structures and gas-liquid-solid distribution during controlled adsorption of organic solvents in silicon slanted columnar thin films.
Investigations of electromagnetic scattering by columnar ice crystals
NASA Technical Reports Server (NTRS)
Weil, H.; Senior, T. B. A.
1976-01-01
An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.
Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase
NASA Astrophysics Data System (ADS)
Saito, Shohei; Nobusue, Shunpei; Tsuzaka, Eri; Yuan, Chunxue; Mori, Chigusa; Hara, Mitsuo; Seki, Takahiro; Camacho, Cristopher; Irle, Stephan; Yamaguchi, Shigehiro
2016-07-01
Liquid crystal (LC) provides a suitable platform to exploit structural motions of molecules in a condensed phase. Amplification of the structural changes enables a variety of technologies not only in LC displays but also in other applications. Until very recently, however, a practical use of LCs for removable adhesives has not been explored, although a spontaneous disorganization of LC materials can be easily triggered by light-induced isomerization of photoactive components. The difficulty of such application derives from the requirements for simultaneous implementation of sufficient bonding strength and its rapid disappearance by photoirradiation. Here we report a dynamic molecular LC material that meets these requirements. Columnar-stacked V-shaped carbon frameworks display sufficient bonding strength even during heating conditions, while its bonding ability is immediately lost by a light-induced self-melting function. The light-melt adhesive is reusable and its fluorescence colour reversibly changes during the cycle, visualizing the bonding/nonbonding phases of the adhesive.
Structure and optical properties of evaporated films of the Cr- and V-group metals
NASA Technical Reports Server (NTRS)
Nestell, J. E., Jr.; Christy, R. W.; Cohen, M. H.; Ruben, G. C.
1980-01-01
Thin films of Cr, Mo, and W rapidly evaporated in high vacuum (5 x 10 to the -7th torr) onto room-temperature substrates show anomalously low reflectance (compared to bulk samples). From electron and X-ray diffraction and electron microscopy, the normal bcc crystal structure is found, but with very fine grains. Columnar grains about 100 A in diameter were separated by a less dense grain-boundary network about 10-A wide. The measured optical conductivity agrees with an inhomogeneous-medium model that assumes the normal crystalline conductivity for the grain interiors, with model parameters that correlate to the observed columnar grain size. In contrast, V and Nb films rapidly evaporated onto room-temperature substrates have the reflectance of bulk crystalline material. On liquid-nitrogen temperature substrates, however, V and Nb have normal bcc crystal structure but with small flat-plate grains, and the same model, with appropriate parameters, accounts for the optical conductivity. The difference between these two groups apparently depends on residual gases segregated at the grain boundaries in the Cr-group films.
An unusual type of polymorphism in a liquid crystal
Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan; ...
2018-02-19
Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less
An unusual type of polymorphism in a liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan
Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, S. G.; Zhang, S. F.; Gao, M. C.
2013-08-22
For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking faultmore » energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.« less
Silicon crystals: Process for manufacturing wafer-like silicon crystals with a columnar structure
NASA Technical Reports Server (NTRS)
Authier, B.
1978-01-01
Wafer-like crystals suitable for making solar cells are formed by pouring molten Si containing suitable dopants into a mold of the desired shape and allowing it to solidify in a temperature gradient, whereby the large surface of the melt in contact with the mold is kept at less than 200 D and the free surface is kept at a temperature of 200-1000 D higher, but below the melting point of Si. The mold can also be made in the form of a slit, whereby the 2 sides of the mold are kept at different temperatures. A mold was milled in the surface of a cylindrical graphite block 200 mm in diameter. The granite block was induction heated and the bottom of the mold was cooled by means of a water-cooled Cu plate, so that the surface of the mold in contact with one of the largest surfaces of the melt was held at approximately 800 D. The free surface of the melt was subjected to thermal radiation from a graphite plate located 2 mm from the surface and heated to 1500 D. The Si crystal formed after slow cooling to room temperature had a columnar structure and was cut with a diamond saw into wafers approximately 500 mm thick. Solar cells prepared from these wafers had efficiencies of 10 to 11%.
Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin
1990-01-01
Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.
[Preparation and Performance of Ultrafast γ-CuI Scintillation Conversion Screen].
Xia, Ming; Gu, Mu; Liu, Xiao-lin; Liu, Bo; Huang, Shi-ming; Ni, Chen
2015-04-01
Micro-columnar structured γ-CuI scintillation conversion screen with columnar diameter in the micrometer and thickness about 17 µm were prepared by thermal evaporation method on quartz substrates with different temperatures. X-ray excited luminescence spectra of the screens show two peaks located at 430 nm and near 700 nm, which correspond to the fast and slow emission components, respectively. The fast one dominated. The intensity of 430 nm peak decreased as the substrate temperature rose from 170 °C to 210 °C. At the same time the intensity of 700 nm band increased. The changes may be attributed to the iodine loss from screen caused by the substrate temperature. The phenomenon of iodine loss was observed by the Rutherford backscattering experiment. The crystal structure of the screens presents (111) preferred orientation, which is independent of the substrate temperature. As the temperature rose to 210 °C, two weak additional peaks of (220) and (420) γ-CuI crystal planes in X-ray diffraction patterns appeared due to the increase in kinetic energy of CuI molecules. The scanning electron microscopy images of the screens showed that the columnar structure was improved when the substrate temperature increased from 170 °C to 190 °C, but it would be degenerated when the temperature continued to rise to 210 °C because of the surface and bulk diffusion effects of the depositing molecules. Finally, the spatial resolution of the γ-CuI scintillation screens was measured by knife-edge method, and they are 4.5, 7.2 and 5.6lp · mm(-1) for the screens prepared at the substrates temperatures of 170, 190 and 210 °C, respectively. The result shows that micro-column structure could improve the spatial resolution of γ-CuI scintillation screen.
Crystal-Packing Trends for a Series of 6,9,12,15,18-Pentaaryl-1-hydro[60]fullerenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Robert D.; Halim, Merissa; Khan, Saeed I.
2012-06-11
The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes and the solid-state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic “badminton shuttlecock” shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non-stacked structures with, for example, dimeric, layered, diamondoid, or feather-in-cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para-substituents on the aryl groups. The seriesmore » of pentaarylfullerenes was characterized by single-crystal X-ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.« less
NASA Astrophysics Data System (ADS)
Zheng, Huifeng; Wang, Weiqi; Liu, Yangqiao; Sun, Jing
2017-03-01
Compact, pinhole-free and PbI2-free perovskite films, are desirable for high-performance perovskite solar cells (PSCs), especially if large columnar grains are obtained in which the adverse effects of grain boundaries will be minimized. However, the conventional solid-state reaction methods, originated from the two-step method, failed to grow columnar grains of CH3NH3PbI3 in a facile way. Here, we demonstrate a strategy for growing large columnar grains of CH3NH3PbI3, by less-crystallized nanoporous PbI2 (ln-PbI2) film enhanced solid-state reaction method. We demonstrated columnar grains were obtainable only when ln-PbI2 films were applied. Therefore, the replacement of compact PbI2 by ln-PbI2 in the solid-sate reaction, leads to higher power conversion efficiency, better reproducibility, better stability and less hysteresis. Furthermore, by systematically investigating the effects of annealing temperature and duration, we found that an annealing temperature ≥120 °C was also critical for growing columnar grains. With the optimal process, a champion efficiency of 16.4% was obtained and the average efficiency reached 14.2%. Finally, the mechanism of growing columnar grains was investigated, in which a VPb″ -assisted hooping model was proposed. This work reveals the origins of grain growth in the solid-state reaction method, which will contribute to preparing high quality perovskite films with much larger columnar grains.
Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing.
Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin
2017-10-25
Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.
Yuki, T; Amano, Y; Kushiyama, Y; Takahashi, Y; Ose, T; Moriyama, I; Fukuhara, H; Ishimura, N; Koshino, K; Furuta, K; Ishihara, S; Adachi, K; Kinoshita, Y
2006-05-01
Pit pattern diagnosis is important for endoscopic detection of dysplastic Barrett's lesions, though using magnification endoscopy can be difficult and laborious. We investigated the usefulness of a modified crystal violet chromoendoscopy procedure and utilised a new pit pattern classification for diagnosis of dysplastic Barrett's lesions. A total of 1,030 patients suspected of having a columnar lined oesophagus were examined, of whom 816 demonstrated a crystal violet-stained columnar lined oesophagus. The early group of patients underwent 0.05% crystal violet chromoendoscopy, while the later group was examined using 0.03% crystal violet with 3.0% acetate. A targeted biopsy of the columnar lined oesophagus was performed using crystal violet staining after making a diagnosis of closed or open type pit pattern with a newly proposed system of classification. The relationship between type of pit pattern and histologically identified dysplastic Barrett's lesions was evaluated. Dysplastic Barrett's lesions were identified in biopsy samples with an open type pit pattern with a sensitivity of 96.0%. Further, Barrett's mucosa with the intestinal predominant mucin phenotype was closely associated with the open type pit pattern (sensitivity 81.9%, specificity 95.6%). The new pit pattern classification for diagnosis of Barrett's mucosa was found to be useful for identification of cases with dysplastic lesions and possible malignant potential using a crystal violet chromoendoscopic procedure.
Amarante, Tatiana R; Almeida Paz, Filipe A; Gago, Sandra; Gonçalves, Isabel S; Pillinger, Martyn; Rodrigues, Alírio E; Abrantes, Marta
2009-09-16
The oxodiperoxo complex MoO(O2)(2)(tbbpy) (tbbpy = 4,4'-di-tert-butyl-2,2'- bipyridine) was isolated from the reaction of MoO2Cl(2)(tbbpy) in water under microwaveassisted heating at 120 masculineC for 4 h. The structure of the oxodiperoxo complex was determined by single crystal X-ray diffraction. The Mo(VI) centre is seven-coordinated with a geometry which strongly resembles a highly distorted bipyramid. Individual MoO(O2)(2)(tbbpy) complexes are interdigitated along the [010] direction to form a column. The crystal structure is formed by the close packing of the columnar-stacked complexes. Interactions between neighbouring columns are essentially of van der Waals type mediated by the need to effectively fill the available space.
Díaz, E; Elgueta, E; Sanchez, S A; Barberá, J; Vergara, J; Parra, M; Dahrouch, M
2017-03-01
Tetra- and hexacatenar amide compounds containing a linear centrosymmetric benzobisthiazole core were synthesized with good yields. These compounds were characterized and their structures confirmed by elemental analysis, and FT-IR, Maldi mass and NMR spectroscopy. All compounds exhibited excellent thermal stability up to 330 °C. The tetracatenar series containing a double substitution in the meta positions did not show mesomorphic behaviour, whereas the hexacatenar and tetracatenar series having a double substitution in the meta and para positions showed liquid crystal properties with optical textures typical of columnar mesophases corroborated by POM analysis. The mesomorphic properties were dependent on the length, number and position of alkoxy chains attached at the end of the rigid core. XRD studies of the hexacatenar series showed the hexagonal columnar structure of the mesophases. Photoluminescence properties in solution were observed in the visible region, with good quantum yields. In the solid state, these compounds behave as blue emitters and they are able to change colour with acid or base addition. The hexacatenar benzobisthiazole compound with an alkoxy chain of 14 carbons presented properties of a supergelator in chloroform, leading to the formation of a fluorescent organogel material with fluorescence emission in the blue region.
NASA Astrophysics Data System (ADS)
Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis
2014-10-01
A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.
Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites
NASA Astrophysics Data System (ADS)
Boström, Hanna L. B.; Hill, Joshua A.; Goodwin, Andrew L.
We introduce columnar shifts---collective rigid-body translations---as a structural degree of freedom relevant to the phase behaviour of molecular perovskites ABX$_{\\textrm3}$ (X = molecular anion). Like the well-known octahedral tilts of conventional perovskites, shifts also preserve the octahedral coordination geometry of the B-site cation in molecular perovskites, and so are predisposed to influencing the low-energy dynamics and displacive phase transitions of these topical systems. We present a qualitative overview of the interplay between shift activation and crystal symmetry breaking, and introduce a generalised terminology to allow characterisation of simple shift distortions, drawing analogy to the "Glazer notation" for octahedral tilts. We apply our approach to the interpretation of a representative selection of azide and formate perovskite structures, and discuss the implications for functional exploitation of shift degrees of freedom in negative thermal expansion materials and hybrid ferroelectrics.
Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing
Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin
2017-01-01
Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time. PMID:29068408
Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; ...
2015-09-07
The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less
Wibowo, Arief C; Malliakas, Christos D; Liu, Zhifu; Peters, John A; Sebastian, Maria; Chung, Duck Young; Wessels, Bruce W; Kanatzidis, Mercouri G
2013-06-17
We investigated an antimony chalcohalide compound, SbSeI, as a potential semiconductor material for X-ray and γ-ray detection. SbSeI has a wide band gap of 1.70 eV with a density of 5.80 g/cm(3), and it crystallizes in the orthorhombic Pnma space group with a one-dimensional chain structure comprised of infinite zigzag chains of dimers [Sb2Se4I8]n running along the crystallographic b axis. In this study, we investigate conditions for vertical Bridgman crystal growth using combinations of the peak temperature and temperature gradients as well as translation rate set in a three-zone furnace. SbSeI samples grown at 495 °C peak temperature and 19 °C/cm temperature gradient with 2.5 mm/h translation rate produced a single phase of columnar needlelike crystals aligned along the translational direction of the growth. The ingot sample exhibited an n-type semiconductor with resistivity of ∼10(8) Ω·cm. Photoconductivity measurements on these specimens allowed us to determine mobility-lifetime (μτ) products for electron and hole carriers that were found to be of similar order of magnitude (∼10(-4) cm(2)/V). Further, the SbSeI ingot with well-aligned, one-dimensional columnar needlelike crystals shows an appreciable response of Ag Kα X-ray.
Yb7Ni4InGe12: a quaternary compound having mixed valent Yb atoms grown from indium flux.
Subbarao, Udumula; Jana, Rajkumar; Chondroudi, Maria; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G; Peter, Sebastian C
2015-03-28
The new intermetallic compound Yb7Ni4InGe12 was obtained as large silver needle shaped single crystals from reactive indium flux. Single crystal X-ray diffraction suggests that Yb7Ni4InGe12 crystallizes in the Yb7Co4InGe12 structure type, and tetragonal space group P4/m and lattice constants are a = b = 10.291(2) Å and c = 4.1460(8) Å. The crystal structure of Yb7Ni4InGe12 consists of columnar units of three different types of channels filled with the Yb atoms. The crystal structure of Yb7Ni4InGe12 is closely related to Yb5Ni4Ge10. The effective magnetic moment obtained from the magnetic susceptibility measurements in the temperature range 200-300 K is 3.66μB/Yb suggests mixed/intermediate valence behavior of ytterbium atoms. X-ray absorption near edge spectroscopy (XANES) confirms that Yb7Ni4InGe12 exhibits mixed valence.
Influence of columnar defects on the thermodynamic properties of BSCCO
NASA Astrophysics Data System (ADS)
van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.
1996-03-01
Amorphous columnar defects strongly affect the reversible magnetization of Bi2Sr2CaCu2O8+δ single crystals both in the vortex solid, where the change reflects the change in vortex energy due to pinning, and in the vortex liquid, where the randomly positioned columns disrupt the interaction between superconducting fluctuations.
NASA Astrophysics Data System (ADS)
Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.
2017-12-01
Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.
Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji
2014-07-01
A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Petford-Long, Amanda K.; Jakubovics, J. P.
1994-11-01
Co/Pd multilayer films (MLFs) are of interest because of their potential application as high-density magneto-optical recording media. Co/Pd MLFs with varying Co and Pd layer thicknesses were grown by sputter-deposition onto (100) Si wafers. X-ray diffraction and high resolution electron microscopy were used to study the microstructure of the films, and Lorentz microscopy was used to analyze their magnetic domain structure. The films show an fcc crystal structure with a compromised lattice parameter and a strong (111) crystallographic texture in the growth direction. The compromised interplanar spacing parallel to the surface increased with decreasing thickness ratio (t(sub Co)/t(sub Pd), and the columnar grain size decreased with increasing Pd layer thickness. Films with t(sub Co) = 0.35 nm and t(sub Pd) = 2.8 nm (columnar grain diameter 20 nm) showed promising magnetic properties, namely a high perpendicular magnetic anisotropy (1.85x10(exp 5) J/cu m), with a perpendicular coercivity of 98.7 kA/m, a perpendicular remanence ratio of 99%, and a perpendicular coercivity ratio of 88%. The magnetic domains were uniform and of a narrow stripe type, confirming the perpendicular easy axis of magnetization. The Curie temperature was found to be about 430 C. Films of pure Co and Pd, grown for comparison, also showed columnar grain structure with grain-sizes of the same order as those seen in the MLFs. In addition the Pd films showed a (111) textured fcc structure.
Modelling the growth of feather crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, H.J.; Hunt, J.D.; Evans, P.V.
1997-02-01
An existing numerical model of dendritic growth has been adapted to model the growth of twinned columnar dendrites (feather crystals) in a binary aluminium alloy, Examination of the effect of dendrite tip angle on growth has led to an hypothesis regarding the stability of a pointed tip morphology in these crystals.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh
1991-01-01
The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components.
NASA Astrophysics Data System (ADS)
Liu, Ji-li; Huang, Hai-you; Xie, Jian-xin
2016-10-01
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol-1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%-9%) and high martensitic transformation critical stress (443-677 MPa) is obtained through the application of the appropriate aging treatments.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lindsay, Sean S.
2011-01-01
Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.
NASA Technical Reports Server (NTRS)
Gandin, Charles-Andre; Ratke, Lorenz
2008-01-01
The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.
1988-09-01
1000. Extensive post -test optical analysis allowed Antenna polarization and height, and sigaal stacking estimation of the size distribution and number of...to 10 C higher under natural activated sludge. A design example is presented for conditions than in the wind tunnel studies. Results each case. All...typically limitations of the methcd are presented, examples are columnar type crystal structure. The remaining 2i% shown, and notes on user instructions are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohri, Maryam, E-mail: mmohri@ut.ac.ir; Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe; Nili-Ahmadabadi, Mahmoud
The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure ofmore » the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.« less
Crystalline structures of particles interacting through the harmonic-repulsive pair potential
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2017-09-01
The behavior of identical particles interacting through the harmonic-repulsive pair potential has been studied in 3D using molecular dynamics simulations at a number of different densities. We found that at many densities, as the temperature of the systems decreases, the particles crystallize into complex structures whose formation has not been anticipated in previous studies on the harmonic-repulsive pair potential. In particular, at certain densities, crystallization into the structure I a 3 ¯ d (space group #230) with 16 particles in the unit cell occupying Wyckoff special positions (16b) was observed. This crystal structure has not been observed previously in experiments or in computer simulations of single component atomic or soft matter systems. At another density, we observed a liquid which is rather stable against crystallization. Yet, we observed crystallization of this liquid into the monoclinic C2/c (space group #15) structure with 32 particles in the unit cell occupying four different non-special Wyckoff (8f) sites. In this structure particles located at different Wyckoff sites have different energies. From the perspective of the local atomic environment, the organization of particles in this structure resembles the structure of some columnar quasicrystals. At a different value of the density, we did not observe crystallization at all despite rather long molecular dynamics runs. At two other densities, we observed the formation of the β S n distorted diamond structures instead of the expected diamond structure. Possibly, we also observed the formation of the R 3 ¯ c hexagonal lattice with 24 particles per unit cell occupying non-equivalent positions.
Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.
1996-07-01
The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.
NASA Astrophysics Data System (ADS)
Tancret, N.; Obbade, S.; Bettahar, N.; Abraham, F.
1996-07-01
The mixed-valence PbPt2O4compound was synthesized both by solid state reaction between stoichiometric amounts of PbO and Pt heated at 650-750°C for 1 week and by chemical attack of Pb2PtO4. It decomposes to PbO and Pt at 750°C. The crystal structure was completely solved from direct methods and difference Fourier maps from powder X-ray diffraction data. The unit cell is triclinic (space groupP1,Z= 2) witha= 6.1161(2) Å,b= 6.6504(2) Å,c= 5.5502(2) Å, α = 97.178(2)°, β = 108.803(2)°, and γ = 115.241(2)°. The structural model was refined using the Rietveld profile technique and led to the reliability factorsRwp= 0.118,Rp= 0.086,RBragg= 0.029,RF= 0.018, and χ2= 1.51. The structure of PbPt2O4appears to be a unique one involving both Pt4+in octahedral coordination and Pt2+or partially oxidized platinum in square-planar coordination. The PbPt2O4structure consists of columnar-stacked PtO4groups extending along thecaxis of the unit cell. These columnar stacks are held by other planar PtO4groups to constitute Pt3O8sheets. These sheets are linked together by PtO6octahedra to form a three-dimensional framework. Lead atoms are surrounded by six oxygens forming a distorted octahedron. Metallic conductivity in PbPt2O4is consistent with short Pt-Pt bonds in the columnar stacks of PtO4groups along thecaxis direction (dPt-Pt= 2.78 Å).
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.
Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W
2018-04-25
Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Holt, Lucy A.; Bushby, Richard J.; Evans, Stephen D.; Burgess, Andrew; Seeley, Gordon
2008-03-01
The presence of 1% (w/w) of methylbenzene thiol coated gold nanoparticles increases the conductivity of the discotic liquid crystal 2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (HAT6) by about two orders of magnitude in all three phases (crystal, columnar liquid crystal, and isotropic liquid). However, when a field (above a certain critical value) is applied to the isotropic phase, the conductivity rapidly increases by another three or four orders of magnitude after which the higher conductivity is maintained regardless of phase, field, or temperature. This increase in conductivity is attributed to the formation of chains of gold nanoparticles. A similar phenomenon is observed for 1% (w/w) gold nanoparticles in the isotropic phase of hexadecane. However, the liquid crystal/nanoparticle mixture preserves its high conductivity when it is cooled into the crystalline phase whereas that of the hexadecane/nanoparticle mixture is lost. In hexadecane, crystal grain boundaries are expected to form in a random fashion and this disrupts the conductive pathways. However, if HAT6 crystallizes via the homeotropically aligned columnar phase, the grain boundaries form predominantly surface to surface (electrode to electrode) so that the conductive nanoparticle chains are trapped in a stabilizing solid matrix.
NASA Astrophysics Data System (ADS)
Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.
1992-12-01
Binuclear copper (II) carboxylates, Cu2(CnH2n+1O2)4, crystallize at room temperature in layered systems in which planes of polar cores are separated by a double layer of alkyl chains. These compounds are mesomorphic in nature above ca. 100 °C. Pseudopolymeric chains of regularly stacked binuclear cores are located at the nodes of a two-dimensional hexagonal lattice and are surrounded by disordered aliphatic chains. The transition from the crystal to the columnar mesophase is characterized by a change in the repeat distance of the binuclear cores along the pseudopolymeric axis. In the crystalline phase, these cores are all oriented in the same direction with a repeat distance of 5.2 Å in the columnar mesophase, the polar cores are perpendicular to the columnar axis and superposed in a fourfold helicoidal fashion, at least on a local scale, with a repeat distance of 4.7 Å. We present here the effect of pressure on these anisotropic systems in a direction parallel to the columnar axis, and in the plane of the two-dimensional lattice. In a first part, we report the pressure-volume-temperature (P-V-T) relationship of these compounds (n=12, 18, and 24) in the temperature range from 30 to 200 °C, and in the pressure range from 1 to 2000 bars. Isothermal compressibility and isobaric expansion are determined in the crystalline and mesomorphic phases. In the mesophase, pressure-volume isotherms can be described by the Tait equation, as in most liquids or molten polymers. In a second part, we discuss the x-ray-diffraction experiments performed under pressure. In the mesophase, the area of the two-dimensional lattice decreases with increasing pressure and, at sufficiently high pressure, the columnar mesophase transforms into a crystalline lamellar phase. By combining P-V-T and x-ray results, we deduce an increase of the stacking period of the binuclear cores as a function of increasing pressure.
Microstructural and mechanical characteristics of Ni–Cr thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petley, Vijay; Sathishkumar, S.; Thulasi Raman, K.H.
2015-06-15
Highlights: • Ni–Cr thin films of varied composition deposited by DC magnetron co-sputtering. • Thin film with Ni–Cr: 80–20 at% composition exhibits most distinct behavior. • The films were tensile tested and exhibited no cracking till the substrate yielding. - Abstract: Ni–Cr alloy thin films have been deposited using magnetron co-sputtering technique at room temperature. Crystal structure was evaluated using GIXRD. Ni–Cr solid solution upto 40 at% of Cr exhibited fcc solid solution of Cr in Ni and beyond that it exhibited bcc solid solution of Ni in Cr. X-ray diffraction analysis shows formation of (1 1 1) fiber texturemore » in fcc and (2 2 0) fiber texture in bcc Ni–Cr thin films. Electron microscopy in both in-plane and transverse direction of the film surface revealed the presence of columnar microstructure for films having Cr upto 40 at%. Mechanical properties of the films are evaluated using nanoindentation. The modulus values increased with increase of Cr at% till the film is fcc. With further increase in Cr at% the modulus values decreased. Ni–Cr film with 20 at% Ni exhibits reduction in modulus and is correlated to the poor crystallization of the film as reflected in XRD analysis. The Ni–Cr thin film with 80 at% Ni and 20 at% Cr exhibited the most distinct columnar structure with highest electrical resistivity, indentation hardness and elastic modulus.« less
NASA Astrophysics Data System (ADS)
Parthasarathi, Srividhya; Shankar Rao, D. S.; Prabhu, Rashmi; Yelamaggad, C. V.; Krishna Prasad, S.
2017-10-01
We present the first investigation of the influence of chirality on the thermal and electric properties in a biologically important homomeric dipeptide that exhibits a hexagonal columnar liquid crystal mesophase. The peptide employed has two chiral centres, and thus the two possible enantiopures are the (R,R) and (S,S) forms having opposite chirality. The measurements reported the span of the binary phase space between these two enantiopures. Any point in the binary diagram is identified by the enantiomeric excess Xee (the excess content of the R,R enantiopure over its S,S counterpart). We observe that the magnitude of Xee plays a pivotal role in governing the properties as evidenced by X-ray diffraction (XRD), electric polarization (Ps), dielectric relaxation spectroscopy (DRS) measurements, and the isotropic-columnar transition temperature. For example, XRD shows that while other features pointing to a hexagonal columnar phase remain the same, additional short-range ordering, indicating correlated discs within the column, is present for the enantiopures (Xee = ±1) but not for the racemate (Xee = 0). Similarly, an electric-field driven switching whose profile suggests the phase structure to be antiferroelectric is seen over the entire binary space, but the magnitude is dependent on Xee; interestingly the polarization direction is axial, i.e., along the column axis. DRS studies display two dielectric modes over a limited temperature range and one mode (mode 2) connected with the antiferroelectric nature of the columnar structure covering the entire mesophase. The relaxation frequency and the thermal behaviour of mode 2 are strongly influenced by Xee. The most attractive effect of chirality is its influence on the polar order, a measure of which is the magnitude of the axial polarization. This result can be taken to be a direct evidence of the manifestation of molecular recognition and the delicate interplay between chiral perturbations and the magnitude of the polar order, a feature attractive from the viewpoint of devices based on, e.g., remnant polarization—a currently hot topic. To add further dimension to the work, the DRS measurements are also extended to elevated pressures.
NASA Astrophysics Data System (ADS)
Liu, Huan; Xuan, Weidong; Xie, Xinliang; Li, Chuanjun; Wang, Jiang; Yu, Jianbo; Li, Xi; Zhong, Yunbo; Ren, Zhongming
2017-09-01
The effect of an axial magnetic field on the solidification structure in directionally solidified Ni-21.5Al-0.4Zr-0.1B (at. pct) alloy was investigated. The experimental results indicated that the application of a high magnetic field caused the deformation of dendrites and the occurrence of columnar-to-equiaxed transition (CET). The magnetic field tended to orient the 〈001〉 crystal direction of the equiaxed grains along the magnetic field direction. The bulk solidification experiment under a high magnetic field showed that the crystal exhibited magnetic crystalline anisotropy. Further, the thermoelectric (TE) magnetic force and TE magnetic convention were analyzed by three-dimensional (3-D) numerical simulations. The results showed that the maximum value of TE magnetic force localized in the vicinity of the secondary dendrite arm root, which should be responsible for the dendrite break and CET. Based on the high-temperature creep mechanism, a simple model was proposed to describe the magnetic field intensity needed for CET: B ≥ kG^{ - 1.5} R^{1.25} . The model is in good agreement with the experiment results. The experimental results should be attributed to the combined action of TE magnetic effects and the magnetic moment.
Growth and dislocation studies of β-HMX.
Gallagher, Hugh G; Sherwood, John N; Vrcelj, Ranko M
2014-01-01
The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in "hot-spot" detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]. Graphical abstractEtch pits on the twinned (010) face of β-HMX.
Microstructure and phase behavior in colloids and liquid crystals
NASA Astrophysics Data System (ADS)
Lohr, Matthew Alan
This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these patterns appears to be tied to the relative free energy costs of splay and bend deformations in the precursor nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. This work provides first examples of quasi-2D micropatterning of LC films in the columnar phase and the first micropatterning of lyotropic LC films in general, as well as demonstrating alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties.
Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.
Ching, W Y; Rulis, Paul; Misra, A
2009-10-01
We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.
Sakamoto, Takeshi; Ogawa, Takafumi; Nada, Hiroki; Nakatsuji, Koji; Mitani, Masato; Soberats, Bartolome; Kawata, Ken; Yoshio, Masafumi; Tomioka, Hiroki; Sasaki, Takao; Kimura, Masahiro; Henmi, Masahiro; Kato, Takashi
2018-01-01
Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.
Single crystal growth of 67%BiFeO 3 -33%BaTiO 3 solution by the floating zone method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Y.; Zheng, H.; Krogstad, M. J.
The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects ofmore » CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.« less
Single crystal growth of 67%BiFeO3-33%BaTiO3 solution by the floating zone method
NASA Astrophysics Data System (ADS)
Rong, Y.; Zheng, H.; Krogstad, M. J.; Mitchell, J. F.; Phelan, D.
2018-01-01
The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects of CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.
Stibnite vein from Dębowina near Bardo (polish Sudetes)
NASA Astrophysics Data System (ADS)
Kotula, Piotr
2013-09-01
In the contact zone of the Bardo Structure and Kłodzko-Złoty Stok Intrusion and Kłodzko Metamorphic, metasomatic orebearing quartz-carbonate veins rich in Sb, Zn, Cu, Ag, Au, Pb are present. In 1771 the mine ,,Reiche Silber Gluck” within stibnite vein was founded in Dębowina near Bardo. Its entrance was discovered again in 2007. The stibnite vein is mainly build of stibnite and sphalerite and of quartz and dolomite rich in Mn. Stibnite crystallizes as columnar or forming radiate centres and aciculars. Its crystals reach size to 2 mm. Sphalerite appears as individual anhedral and polymineralic grained concentrations reaching size to 2,5 mm. Earlier pyrite and arsenopyrite crystallized - they occur locally in this deposit. There were found also in the deposit tetrahedrite rich in Ag, what wasn't reported earlier in studies from the mine in Dębowina.
Ogawa, Takafumi; Nakatsuji, Koji; Mitani, Masato; Soberats, Bartolome; Kawata, Ken; Yoshio, Masafumi; Tomioka, Hiroki; Sasaki, Takao; Kimura, Masahiro
2017-01-01
Abstract Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self‐organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self‐organized sub‐nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub‐nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability. PMID:29375969
Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases
NASA Astrophysics Data System (ADS)
Shcherbina, M. A.; Chvalun, S. N.
2018-06-01
The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.
Liquid crystal organization of self-assembling cyclic peptides.
Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa
2014-01-21
Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.
Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores
NASA Astrophysics Data System (ADS)
Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick
2018-02-01
Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.
Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong
2015-01-01
Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180
Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong
2015-05-01
Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.
NASA Astrophysics Data System (ADS)
Mei, Xianxiu; Liu, Xiaofei; Wang, Cunxia; Wang, Younian; Dong, Chuang
2012-12-01
In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y2O3-stablized ZrO2 thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the "sealing" of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 μs, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm2, and pulsed numbers 30. 1050 °C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm2, ZrO2 ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the "sealing" effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm2, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal insulation performance of irradiated coating was improved.
Method for fabricating high aspect ratio structures in perovskite material
Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria
2003-10-28
A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.
Columnar Self-Assembly of Electron-Deficient Dendronized Bay-Annulated Perylene Bisimides.
Gupta, Ravindra Kumar; Shankar Rao, Doddamane S; Prasad, S Krishna; Achalkumar, Ammathnadu S
2018-03-07
Three new heteroatom bay-annulated perylene bisimides (PBIs) have been synthesized by microwave-assisted synthesis in excellent yield. N-annulated and S-annulated perylene bisimides exhibited columnar hexagonal phase, whereas Se-annulated perylene bisimide exhibited low temperature columnar oblique phase in addition to the high temperature columnar hexagonal phase. The cup shaped bay-annulated PBIs pack into columns with enhanced intermolecular interactions. In comparison to PBI, these molecules exhibited lower melting and clearing temperature, with good solubility. A small red shift in the absorption was seen in the case of N-annulated PBI, whereas S- and Se-annulated PBIs exhibited blue-shifted absorption spectra. Bay-annulation increased the HOMO and LUMO levels of the N-annulated perylene bisimide, whereas a slight increase in the LUMO level and a decrease in the HOMO levels were observed in the case of S- and Se-annulated perylene bisimides, in comparison to the simple perylene bisimide. The band gaps of PBI and PBI-N were almost same, whereas an increase in the band gaps were observed in the case of S- and Se-annulated PBIs. The tendency to freeze in the ordered glassy columnar phase for PBI-N and PBI-S will help to overcome the charge traps due to crystallization, which are detrimental to one-dimensional charge carrier mobility. These solution processable electron deficient columnar semiconductors possessing good thermal stability may form an easily accessible promising class of n-type materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Premature melt solidification during mold filling and its influence on the as-cast structure
NASA Astrophysics Data System (ADS)
Wu, M.; Ahmadein, M.; Ludwig, A.
2018-03-01
Premature melt solidification is the solidification of a melt during mold filling. In this study, a numerical model is used to analyze the influence of the pouring process on the premature solidification. The numerical model considers three phases, namely, air, melt, and equiaxed crystals. The crystals are assumed to have originated from the heterogeneous nucleation in the undercooled melt resulting from the first contact of the melt with the cold mold during pouring. The transport of the crystals by the melt flow, in accordance with the socalled "big bang" theory, is considered. The crystals are assumed globular in morphology and capable of growing according to the local constitutional undercooling. These crystals can also be remelted by mixing with the superheated melt. As the modeling results, the evolutionary trends of the number density of the crystals and the volume fraction of the solid crystals in the melt during pouring are presented. The calculated number density of the crystals and the volume fraction of the solid crystals in the melt at the end of pouring are used as the initial conditions for the subsequent solidification simulation of the evolution of the as-cast structure. A five-phase volume-average model for mixed columnar-equiaxed solidification is used for the solidification simulation. An improved agreement between the simulation and experimental results is achieved by considering the effect of premature melt solidification during mold filling. Finally, the influences of pouring parameters, namely, pouring temperature, initial mold temperature, and pouring rate, on the premature melt solidification are discussed.
Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy
NASA Astrophysics Data System (ADS)
Hotea, V.; Juhasz, J.; Cadar, F.
2017-05-01
This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.
NASA Astrophysics Data System (ADS)
Bai, Long; Hang, Ruiqiang; Gao, Ang; Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin; Zhao, Lingzhou; Chu, Paul K.
2015-11-01
Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium-silver (Ti-Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti-Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti-Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti-Ag coatings.
Non-equlibrium relaxation of vortex lines in disordered type-II superconductors
NASA Astrophysics Data System (ADS)
Dobramysl, Ulrich; Assi, Hiba; Pleimling, Michel; T&äUber, Uwe C.
2013-03-01
Vortex matter in disordered type-II superconductors display a remarkable wealth of behavior, ranging from hexagonally arranged crystals and a vortex liquid to glassy phases. The type and strength of the disorder has a profound influence on the structural properties of the vortex matter: Randomly distributed weak point pinning sites lead to the destruction of long range order and a Bragg glass phase; correlated, columnar disorder can yield a Bose glass phase with infinite tilt modulus. We employ a three-dimensional elastic line model and apply a Langevin molecular dynamics algorithm to simulate the dynamics of vortex lines in a dissipative medium. We investigate the relaxation of a system of lines that were initially prepared in an out-of-equilibrium state and characterize the transient behavior via two-time quantities. We vary the disorder type and strength and compare our results for random and columnar disorder. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebensohn, Ricardo A; Montagnat, Maurine; Mansuy, Philippe
2008-01-01
A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals.more » The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir
2015-08-14
Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, wemore » demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.« less
NASA Astrophysics Data System (ADS)
Javadi, M.; Abdi, Y.
2015-08-01
Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.
Assembly, Elasticity, and Structure of Lyotropic Chromonic Liquid Crystals and Disordered Colloids
NASA Astrophysics Data System (ADS)
Davidson, Zoey S.
This dissertation describes experiments which explore the structure and dynamics in two classes of soft materials: lyotropic chromonic liquid crystals and colloidal glasses and super-cooled liquids. The first experiments found that the achiral LCLCs, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG) both exhibit spontaneous mirror symmetry breaking in the nematic phase driven by a giant elastic anisotropy of their twist modulus compared to their splay and bend moduli. Resulting structures of the confined LCLCs display interesting director configurations due to interplay of topologically required defects and twisted director fields. At higher concentrations, the LCLC compounds form columnar phases. We studied the columnar phase confined within spherical drops and discovered and understood configurations of the LC that sometimes led to non-spherical droplet shapes. The second experiments with SSY LCLCs confined in hollow cylinders uncovered director configurations which were driven in large measure by an exotic elastic modulus known as saddle-splay. We measured this saddle-splay modulus in a LCLC for the first time and found it to be more than 50 times greater than the twist elastic modulus. This large relative value of the saddle-splay modulus violates a theoretical result/assumption known as the Ericksen inequality. A third group of experiments on LCLCs explored the drying process of sessile drops containing SSY solutions, including evaporation dynamics, morphology, and deposition patterns. These drops differ from typical, well-studied evaporating colloidal drops primarily due to the LCLC's concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, creating surface tension gradients and significant density and viscosity variation within the droplet. Thus, the drying multiphase drops exhibit new convective currents, drop morphologies, deposition patterns, as well as a novel ordered crystalline phase. Finally, experiments in colloidal glasses and super-cooled liquids were initiated to probe the relationship between structure and dynamics in their constituent particles. The displacements of individual particles in the colloids can be decomposed into small cage fluctuations and large rearrangements into new cages. We found a correlation between the rate of rearrangement and the local cage structure associated with each particle. Particle trajectories of a two-dimensional binary mixture of soft colloids are captured by video microscopy. We use a machine learning method to calculate particle "softness'', which indicates the likelihood of rearrangement based on many radial structural features for each particle. We measured the residence time between consecutive rearrangements and related probability distribution functions (PDFs). The softness-dependent conditional PDF is well fit by an exponential with decay time decreasing monotonically with increasing softness. Using these data and a simple thermal activation model, we determined activation energies for rearrangements.
Lyotropic chromonic liquid crystals as materials for optical and biosensing applications
NASA Astrophysics Data System (ADS)
Tortora, L.; Park, H.-S.; Antion, K.; Finotello, D.; Lavrentovich, O. D.
2007-02-01
Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with rigid polyaromatic cores and ionic groups at the periphery that form aggregates while in water. Most of the LCLCs are not toxic to the biological cells and can be used as an amplifying medium in real-time biosensors. The detector is based on the principle that the immune aggregates growing in the LCLC bulk trigger the director distortions. Self-assembly of LCLC molecules into oriented structures allows one to use them in various structured films. For example, layer-by-layer electrostatic deposition produces monomolecular layers and stacks of layers of LCLC with long-range in-plane orientational order which sets them apart from the standard Langmuir-Blodgett films. We demonstrate that divalent and multivalent salts as well as acidic and basic materials that alter pH of the LCLC water solutions, are drastically modifying the phase diagrams of LCLC, from shifting the phase transition temperatures by tens of degrees, to causing condensation of the LCLC aggregates into more compact structures, such as birefringent bundles or formation of a columnar hexagonal phase from the nematic phase.
Ho, Ming-Shou; Partridge, Benjamin E; Sun, Hao-Jan; Sahoo, Dipankar; Leowanawat, Pawaret; Peterca, Mihai; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Heiney, Paul A; Hsu, Chain-Shu; Percec, Virgil
2016-12-12
Synthesis, structural, and retrostructural analysis of a library containing 16 self-assembling perylene (PBI), 1,6,7,12-tetrachloroperylene (Cl 4 PBI), naphthalene (NBI), and pyromellitic (PMBI) bisimides functionalized with environmentally friendly AB 3 chiral racemic semifluorinated minidendrons at their imide groups via m = 0, 1, 2, and 3 methylene units is reported. These semifluorinated compounds melt at lower temperatures than homologous hydrogenated compounds, permitting screening of all their thermotropic phases via structural analysis to discover thermodynamically controlled helical crystallization from propeller-like, cogwheel, and tilted molecules as well as lamellar-like structures. Thermodynamically controlled helical crystallization was discovered for propeller-like PBI, Cl 4 PBI and NBI with m = 0. Unexpectedly, assemblies of twisted Cl 4 PBIs exhibit higher order than those of planar PBIs. PBI with m = 1, 2, and 3 form a thermodynamically controlled columnar hexagonal 2D lattice of tilted helical columns with intracolumnar order. PBI and Cl 4 PBI with m = 1 crystallize via a recently discovered helical cogwheel mechanism, while NBI and PMBI with m = 1 form tilted helical columns. PBI, NBI and PMBI with m = 2 generate lamellar-like structures. 3D and 2D assemblies of PBI with m = 1, 2, and 3, NBI with m = 1 and PMBI with m = 2 exhibit 3.4 Å π-π stacking. The library approach applied here and in previous work enabled the discovery of six assemblies which self-organize via thermodynamic control into 3D and 2D periodic arrays, and provides molecular principles to predict the supramolecular structure of electronically active components.
Simulation and observation of line-slip structures in columnar structures of soft spheres
NASA Astrophysics Data System (ADS)
Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
Simulation and observation of line-slip structures in columnar structures of soft spheres.
Winkelmann, J; Haffner, B; Weaire, D; Mughal, A; Hutzler, S
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
Columnar joint morphology and cooling rate: A starch-water mixture experiment
NASA Astrophysics Data System (ADS)
Toramaru, A.; Matsumoto, T.
2004-02-01
An analogue experiment using a starch-water mixture has been carried out in order to understand the effect of cooling rate on the morphological characteristics of a basalt columnar joint. If the contraction of material is essential for the formation of columnar joint structure, the water loss rate by desiccation (hereafter referred to as desiccation rate) in the experiment is analogous to the cooling rate in solidifying basalt. In the experiment the desiccation rate is controlled by varying the distance between the starch-water mixture and a lamp used as the heat source. We find that there are three regimes in the relation between joint formation and desiccation rate: (1) At desiccation rates higher than ˜1.4 × 10-2 (g cm-2 h-1) (normal columnar joint regime), the average cross-sectional area S of a column is inversely proportional to the average desiccation rate, > (i.e., S ∝ >-δ, with δ = 1). (2) Between that desiccation rate and a critical desiccation rate, 0.8 × 10-2 (g/cm2h), S approaches infinity as > decreases close to a critical desiccation rate (i.e., exponent δ monotonically increases from unity to infinity) (critical regime). (3) Below the critical desiccation rate, no columnar structure forms (no columnar joint regime forms). Applying the present experimental result to the formation of basalt column, the basalt columnar cross-sectional area is inversely proportional to the cooling rate with factors including elasticity, crack growth coefficient, thermal expansion, glass transition temperature, and crack density ratio at stress maximum. Also, it can be predicted that there exists a critical cooling rate below which the columnar joint does not form; the presence of a critical regime between the normal columnar jointing and no columnar jointing during a certain cooling rate range can also be predicted. We find that at higher cooling rate the preferred column shape is a pentagon, whereas at lower cooling rate it is a hexagon.
NASA Astrophysics Data System (ADS)
Llamazares, J. L. Sánchez; Quintana-Nedelcos, A.; Ríos-Jara, D.; Sánchez-Valdes, C. F.; García-Fernández, T.; García, C.
2016-03-01
We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni50.6Mn36.3Sn13.1 as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L21-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures ( 3-6 K) but to a significant rise of 73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances.
Matsuno, Taisuke; Kamata, Sho; Sato, Sota; Yokoyama, Atsutoshi; Sarkar, Parantap; Isobe, Hiroyuki
2017-11-20
A carbonaceous dumbbell was able to spontaneously glue two tubular receptors to form a unique two-wheeled composite through van der Waals interactions, thus forcing the wheel components into contact with each other at the edges. In the present study, two tubular receptors with enantiomeric carbon networks were assembled on the dumbbell joint, and the handedness of the receptors was discriminated, thus leading to the self-sorting of homomeric receptors from a mixture of enantiomeric tubes. The crystal structures of the composites revealed the structural origins of the molecular recognition driven by van der Waals forces as well as the presence of a columnar array of C 120 molecules in a 1:1 composite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A numerical study of zone-melting process for the thermoelectric material of Bi2Te3
NASA Astrophysics Data System (ADS)
Chen, W. C.; Wu, Y. C.; Hwang, W. S.; Hsieh, H. L.; Huang, J. Y.; Huang, T. K.
2015-06-01
In this study, a numerical model has been established by employing a commercial software; ProCAST, to simulate the variation/distribution of temperature and the subsequent microstructure of Bi2Te3 fabricated by zone-melting technique. Then an experiment is conducted to measure the temperature variation/distribution during the zone-melting process to validate the numerical system. Also, the effects of processing parameters on crystallization microstructure such as moving speed and temperature of heater are numerically evaluated. In the experiment, the Bi2Te3 powder are filled into a 30mm diameter quartz cylinder and the heater is set to 800°C with a moving speed 12.5 mm/hr. A thermocouple is inserted in the Bi2Te3 powder to measure the temperature variation/distribution of the zone-melting process. The temperature variation/distribution measured by experiment is compared to the results of numerical simulation. The results show that our model and the experiment are well matched. Then the model is used to evaluate the crystal formation for Bi2Te3 with a 30mm diameter process. It's found that when the moving speed is slower than 17.5 mm/hr, columnar crystal is obtained. In the end, we use this model to predict the crystal formation of zone-melting process for Bi2Te3 with a 45 mm diameter. The results show that it is difficult to grow columnar crystal when the diameter comes to 45mm.
Phases and structures of sunset yellow and disodium cromoglycate mixtures in water.
Yamaguchi, Akihiro; Smith, Gregory P; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Zhu, Chenhui; Clark, Noel A
2016-01-01
We study phases and structures of mixtures of two representative chromonic liquid crystal materials, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG), in water. A variety of combinations of isotropic, nematic (N), and columnar (also called M) phases are observed depending on their concentrations, and a phase diagram is made. We find a tendency for DSCG-rich regions to show higher-order phases while SSY-rich regions show lower-order ones. We observe uniform mesophases only when one of the materials is sparse in the N phases. Their miscibility in M phases is so low that essentially complete phase separation occurs. X-ray scattering and spectroscopy studies confirm that SSY and DSCG molecules do not mix when they form chromonic aggregates and neither do their aggregates when they form M phases.
Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; ...
2015-12-15
Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. Furthermore, the broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskitemore » NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.« less
Yang, Shuo; Du, Dong; Chang, Baohua
2018-02-04
In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.
Yang, Shuo; Du, Dong
2018-01-01
In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains. PMID:29401715
Retaining {1 0 0} texture from initial columnar grains in 6.5 wt% Si electrical steels
NASA Astrophysics Data System (ADS)
Liang, Ruiyang; Yang, Ping; Mao, Weimin
2017-11-01
6.5 wt% Si electrical steel is a superior soft magnetic material with excellent magnetic properties which highly depends on texture. In this study, based on the heredity of 〈0 0 1〉 orientation in columnar grains, columnar grains are used as the initial material to prepare non-oriented 6.5 wt% Si electrical steel with excellent magnetic properties. EBSD and XRD techniques are adopted to explore the structure and texture evolution during hot rolling, warm rolling, cold rolling and annealing. The results show that, due to the heredity of "structure and texture" from the initial strong {1 0 0} columnar grains, annealed sheet with {1 0 0}〈0 0 1〉 texture had better magnetic properties, which can be used as non-oriented high-silicon electrical steel. Both preferred cube grain nucleation in deformed {1 1 3}〈3 6 1〉 grains in subsurface and coarse {1 0 0}〈0 0 1〉 deformed grains in center layer show the effect of initial columnar grains with {1 0 0} texture.
Two-dimensional liquid crystalline growth within a phase-field-crystal model.
Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng
2015-07-01
By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.
Multifunctional Parylene-C Microfibrous Thin Films
NASA Astrophysics Data System (ADS)
Chindam, Chandraprakash
Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all columnar muFTFs and bulk films. The static hydrophobicity of columnar muFTFs was found to be anisotropic and can be maximized by a proper choice of monomer deposition angle. In contrast, the hydrophobicity of bulk film is isotropic. 2. Mechanical properties: Dynamic storage and loss moduli of columnar muFTFs were determined in the 1 to 80 Hz frequency range for temperatures between -40 °C and 125 °C in one of two orthogonal directions lying wholly in the substrate plane: either (i) normal or (ii) parallel to the morphologically significant plane of the muFTF. The storage and loss moduli for normal loading did not exceed their counterparts for parallel loading. All columnar muFTFs were found to be softer than a bulk film. In both bulk and columnar forms, Parylene C was found to be rheologically not simple. 3. Relative permittivity: The charge-storage and absorption properties measured for the columnar muFTFs in the 100 Hz-1 MHz frequency range over temperatures between -40 °C and 125 °C were lower than the bulk film. Internal surfaces of the columnar muFTFs were found to increase the charge-storage capacity. The lower charge-storage capability of columnar muFTFs suggests their possible applications as interlayer dielectrics. The frequency dependence of the relative permittivity of the columnar muFTFs was identified in terms of the Hashin-Shrtikmann model. The elastodynamic bandgaps of Parylene-C muFTFs as phononic crystals were computationally determined for the columnar, chevronic, and chiral muFTFs. Microfibers were arranged either on a square or a hexagonal lattice with the host medium as either water or air. Following are the significant findings: 1. All bandgaps were observed to lie in the 0.01-162.9-MHz regime. The upper limit of the frequency of bandgaps was the highest for the columnar muFTFs and the lowest for the chiral muFTFs. More bandgaps were found to exist when the host medium is water than air. The presence of complete bandgaps suggests their use as bulk-acoustic-wave and surface-acoustic-wave filters. The softness of the Parylene-C muFTFs makes them mechanically tunable, and their bandgaps can be exploited in multiband ultrasonic filters. An investigation was made to demonstrate Parylene-C muFTFs as circular-polarization filters. 1. The relative permittivity of bulk Parylene C was determined as a function of frequency between 15 THz and 149 THz. Potential application of chiral muFTFs as reflectors of thermal energy was identified. The circular Bragg regime for chiral muFTFs of Parylene C was identified as 31.8-35.2 THz, making them useful as circular-polarization band-rejection filters.
NASA Astrophysics Data System (ADS)
Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul
2018-04-01
A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .
Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël
2015-09-01
Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.
Electronic delocalization in discotic liquid crystals: a joint experimental and theoretical study.
Crispin, Xavier; Cornil, Jérôme; Friedlein, Rainer; Okudaira, Koji Kamiya; Lemaur, Vincent; Crispin, Annica; Kestemont, Gaël; Lehmann, Matthias; Fahlman, Mats; Lazzaroni, Roberto; Geerts, Yves; Wendin, Göran; Ueno, Nobuo; Brédas, Jean-Luc; Salaneck, William R
2004-09-29
Discotic liquid crystals emerge as very attractive materials for organic-based (opto)electronics as they allow efficient charge and energy transport along self-organized molecular columns. Here, angle-resolved photoelectron spectroscopy (ARUPS) is used to investigate the electronic structure and supramolecular organization of the discotic molecule, hexakis(hexylthio)diquinoxalino[2,3-a:2',3'-c]phenazine, deposited on graphite. The ARUPS data reveal significant changes in the electronic properties when going from disordered to columnar phases, the main feature being a decrease in ionization potential by 1.8 eV following the appearance of new electronic states at low binding energy. This evolution is rationalized by quantum-chemical calculations performed on model stacks containing from two to six molecules, which illustrate the formation of a quasi-band structure with Bloch-like orbitals delocalized over several molecules in the column. The ARUPS data also point to an energy dispersion of the upper pi-bands in the columns by some 1.1 eV, therefore highlighting the strongly delocalized nature of the pi-electrons along the discotic stacks.
Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B.; Nys, Yves; Gautron, Joël
2015-01-01
Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed. PMID:26306314
NASA Astrophysics Data System (ADS)
Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.
2017-07-01
We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.
ISS-Experiments of Columnar-to-Equiaxed Transition in Solidification Processing
NASA Technical Reports Server (NTRS)
Sturz, Laszlo; Zimmermann, Gerhard; Gandin, Charles, Andre; Billia, Bernard; Magelinck, Nathalie; Nguyen-Thi, Henry; Browne, David John; Mirihanage, Wajira U.; Voss, Daniela; Beckermann, Christoph;
2012-01-01
The main topic of the research project CETSOL in the framework of the Microgravity Application Promotion (MAP) programme of the European Space Agency (ESA) is the investigation of the transition from columnar to equiaxed grain growth during solidification. Microgravity environment allows for suppression of buoyancy-driven melt flow and for growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution will present first experimental results obtained in microgravity using hypo-eutectic AlSi alloys in the Materials Science Laboratory (MSL) on-board the International Space Station (ISS). The analysis of the experiments confirms the existence of a columnar to equiaxed transition, especially in the refined alloy. Temperature evolution and grain structure analysis provide critical values for the position, the temperature gradient and the solidification velocity at the columnar to equiaxed transition. These data will be used to improve modeling of solidification microstructures and grain structure on different lengths scales.
Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari
2016-01-01
The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967
Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods
NASA Astrophysics Data System (ADS)
Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula
2014-07-01
The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.
Analytical ultrasonics for structural materials
NASA Technical Reports Server (NTRS)
Kupperman, D. S.
1986-01-01
The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.
NASA Astrophysics Data System (ADS)
Xing, Hui; Dong, Xianglei; Wang, Jianyuan; Jin, Kexin
2018-04-01
In this study, a thin-interface phase-field model was employed to study the orientation dependence of the columnar dendritic growth with sidebranching behaviors in directional solidification. It was found that the dimensionless tip undercooling increases with the increase of misorientation angle for three pulling velocities. The primary spacing is found to be a function of misorientation angle, and the dimensionless primary spacing with respect to the misorientation angle follows the orientation correction given by Gandin and Rappaz (Acta. Metall. 42:2233-2246, 1994). For the analysis of the dendritic tip, the two-dimensional (2-D) form of the nonaxisymmetric needle crystal was used to determine the radius of the tilted columnar dendrite. Based on the definitions of open side and constrained side of the dendrite, the analysis of the width active sidebranches and the dendritic area in 2-D with respect to the distance from the dendritic tip was carried out to investigate the asymmetrical dendrite envelop and sidebranching behaviors on the two sides in directional solidification. The obtained prefactor and exponent with respect to misorientation angle are discussed, showing that the sidebranching behaviors of a tilted columnar dendritic array obey a similar power-law relationship with that of a free dendritic growth.
Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.
2017-10-01
We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.
X-ray study of mesomorphism of bent-core and chromonic mesogens
NASA Astrophysics Data System (ADS)
Joshi, Leela Pradhan
The discovery of thermotropic biaxial nematic phase in bent-core mesogens, have engendered interest in these systems. Also, it undergoes optical switching about 100 times faster than conventional uniaxial nematic liquid crystal. Azo-substituted bent-core compounds, A131 and A103, were investigated as both offer an opportunity to observe their structures and phase transitions from the uniaxial nematic (Nu) to biaxial nematic (Nb) phase and from Nb to the underlying smectic-C (SmC) phase. Plank-like molecular systems are also expected to form Nb phase. Chromonic liquid crystals formed by aqueous solutions of plank-like dye molecules are interesting for their unique self-assembly and structural evolution. They have applications in optical element, coloring in food and textiles, and etc. Both systems were investigated with synchrotron x-ray scattering, polarizing optical microscopy, and differential scanning calorimetry. Temperature dependence of d-spacing and positional order correlations along the director clearly mark the phase boundaries where Nu-Nb transition was approximately 27° below the clearing point. Positional order correlation length of A131 increased from 1.5 in Nu to 3.3 molecular lengths in Nb phase, before it jumps by a factor of at least 5 in SmC phase. The lack of large discontinuous changes in the structural parameters and the subtle signatures in heat capacity establish the second order nature of Nu-Nb and Nb-SmC phase transitions. The chromonic system investigation results provide quantitative information of structural properties in nematic and columnar mesophases. We studied water solutions of (achiral) sunset yellow dye and (chiral and achiral) dihydrochloride salts of perylenebis-dicarboxydiimide. Positional order correlation lengths measurements, parallel and perpendicular to the aggregate axis, revealed that they increase with concentration and decrease with temperature. Temperature dependence of correlation lengths yielded the scission energy to be 1.8 (+/-0.1) x10-20J and 1.5 (+/-0.08) x10-20J in the nematic and columnar phases. The aggregates' small aspect ratio (2.5) is inconsistent with the Onsager model for the formation of an orientationally ordered phase, which strongly suggests more complicated aggregate-shape than simple cylindrical objects as postulated by Laventovich, et al.
Nanostructuring superconductors by ion beams: A path towards materials engineering
NASA Astrophysics Data System (ADS)
Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto
2013-07-01
The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.
Study of structural and optical properties of ZnS zigzag nanostructured thin films
NASA Astrophysics Data System (ADS)
Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein
2015-11-01
Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.
NASA Astrophysics Data System (ADS)
Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo
2017-07-01
The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and columnar and equiaxial crystallization. According to the obtained results, the formation of the orbicular granitoid of Caldera may have initiated 1) during the generation of a magmatic fracture in the crystallization front of the Relincho pluton, where the water released by the host crystal mush was dissolved in the new batch of dioritic magma. 2) The high influx of water-rich liquids induced superheating conditions in the newly intruding magma that became a depolymerized liquid, where the only solid particules were the small irregular fragments of the host mush dragged from the fracture walls. 3) Volatile exsolution promoted crystallization under undercooling conditions. 4) Undercooling and nucleation around the core (cold germs) involved the physical and geochemical fractionation between two sub-systems: a gabbroic sub-system that comprises the solid paragénesis with a residual water-rich liquid and a granodioritic sub-system. 5) The orbicules, including core and inner shell, behaved as viscous bodies (crystals + residual liquid) floating in the granodioritic magma. 6) Higher undercooling rates occurred at the starting stage, close to the liquidus, promoting columnar crystallization around the cores and formation of the shells. Conversely, in the granodioritic matrix sub-system, equiaxial crystallization was promoted by low relative crystallization rates. 7) The rest of the crystallization process evolved later in the outer shell and the matrix, as suggested by the poikilitic textures observed in both sides of the orbicule contact, and under conditions close to the solidus of both sub-systems (shell and matrix). The water-rich residual liquid expelled during the orbicular shell crystallization was mingled with the partially crystallized matrix magma, generating the pegmatitic domains with large Kfs megacrysts.
Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-01-01
The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.
Morphology of the epithelium of the lower rectum and the anal canal in the adult human.
Tanaka, Eiichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Akashi, Yuichi; Kawahara, Katsunobu; Shimada, Tatsuo
2012-06-01
The anal canal is an important body part clinically. However, there is no agreement about the epithelium of the anal canal, the anal transitional zone (ATZ) epithelium in particular. The aim of this study is to clarify the structure of the epithelium of the human lower rectum and anal canal. Intact rectum and anus obtained from patients who underwent surgery for rectal carcinoma were examined by light and scanning electron microscopy (LM and SEM). By LM, three types of epithelium were observed in the anal canal: simple columnar epithelium, stratified squamous epithelium, and stratified columnar epithelium. The lower rectum was composed of simple columnar epithelium. SEM findings showed stratified squamous epithelium that consisted of squamous cells with microridges, changing to simple columnar epithelium consisting of columnar cells with short microvilli at the anorectal line. LM and SEM observations in a one-to-one ratio revealed that the area of stratified columnar epithelium based on LM corresponded to the anal crypt and sinus. In conclusion, the epithelium of the human anal canal was fundamentally composed of simple columnar epithelium and stratified squamous epithelium. We found no evidence of the ATZ.
Columnar to Nematic Mesophase Transition: Binary Mixtures of Copper Soaps with Hydrocarbons
NASA Astrophysics Data System (ADS)
Seghrouchni, R.; Skoulios, A.
1995-09-01
Copper (II) soaps are known to produce columnar mesophases at high temperatures. The polar groups of the soap molecules are stacked over one another within columns surrounded by the paraffin chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. Upon addition of a hydrocarbon, the mesophases swell homogeneously. The hydrocarbon molecules locate themselves among the disordered chains of the soap molecules, the columnar cores remain perfectly unchanged, keeping a constant intra-columnar stacking period, and the hexagonal lattice expands in proportion to the amount of hydrocarbon added to the system. Beyond a certain degree of swelling, the columnar mesophases suddenly turn into a nematic mesophase through a first-order phase transition. The structural elements that align parallel to the nematic director are the very same molecular columns that are involved in the columnar mesophases. The columnar to nematic mesophase transition was studied systematically as a function of the molecular size of the soaps and hydrocarbons used as diluents and discussed on a molecular level, emphasizing such aspects as the persistence length of the paraffin chains and the location of the solvent molecules among the columns.
Fine Structure Study of the Plasma Coatings B4C-Ni-P
NASA Astrophysics Data System (ADS)
Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.
2017-12-01
The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.
Control of interfacial properties of Pr-oxide/Ge gate stack structure by introduction of nitrogen
NASA Astrophysics Data System (ADS)
Kato, Kimihiko; Kondo, Hiroki; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki
2011-06-01
We have demonstrated the control of interfacial properties of Pr-oxide/Ge gate stack structure by the introduction of nitrogen. From C- V characteristics of Al/Pr-oxide/Ge 3N 4/Ge MOS capacitors, the interface state density decreases without the change of the accumulation capacitance after annealing. The TEM and TED measurements reveal that the crystallization of Pr-oxide is enhanced with annealing and the columnar structure of cubic-Pr 2O 3 is formed after annealing. From the depth profiles measured using XPS with Ar sputtering for the Pr-oxide/Ge 3N 4/Ge stack structure, the increase in the Ge component is not observed in a Pr-oxide film and near the interface between a Pr-oxide film and a Ge substrate. In addition, the N component segregates near the interface region, amorphous Pr-oxynitride (PrON) is formed at the interface. As a result, Pr-oxide/PrON/Ge stacked structure without the Ge-oxynitride interlayer is formed.
Changes in solidified microstructures
NASA Technical Reports Server (NTRS)
Wallace, J. F.
1984-01-01
The properties and casting behavior of metals are significantly affected by their cast structure. This structure is optimized by producing columnar versus equiaxed grains and coarse versus fine grains by controlling solidification conditions. The transition from columnar to equiaxed grains is favored by: constitutional supercooling with effective nucleation of free dendrites; melting off and transport of dendrite tips and arms; mechanical vibration; falling down of free dendrites from a chilled top surface; and induced flow in the solidifying structure by oscillation of rotation.
The avian prechordal head region: a morphological study.
Seifert, R; Jacob, M; Jacob, H J
1993-01-01
The axial mesoderm of the anterior head region was investigated in young chick and quail embryos by light and electron microscopy. Semithin sections showed that the axial head mesoderm consists of the head process and prechordal mesoderm. At the anterior end of the prechordal mesoderm, a group of columnar epithelial cells formed a pit-like structure. The bases of these columnar cells extended to the neural plate, thus limiting the prechordal mesoderm anteriorly. The cells lining the pit-like structure at its anterior end joined a cell accumulation made up of cells of mesenchymal character. Electron microscopy revealed that the columnar cells forming the pit-like structure were covered by a basal lamina which was discontinuous on its anterior aspect. No basal lamina was recognisable between the columnar epithelial cells and mesenchymal cells joining them anteriorly. The columnar epithelial cells bordering the prechordal mesoderm anteriorly were therefore assumed to be part of the endodermal germ layer. In agreement with the findings of other authors, it is proposed to term these axially located columnar cells of the endoderm the prechordal plate and to distinguish them from the prechordal mesoderm arising during gastrulation. For the mesenchymal cell accumulation anterior to the prechordal plate, participation in the formation of the prosencephalic mesenchyme is assumed. This implies that the definitive endodermal germ layer, like the ectodermal one represented by the neural crest, may also be able to contribute to mesenchyme formation in the head. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 PMID:8270478
Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.
Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji
2012-10-01
In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.
Anomalous columnar order of charged colloidal platelets
NASA Astrophysics Data System (ADS)
Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.
2012-01-01
Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.
Study on the growth mechanism and optical properties of sputtered lead selenide thin films
NASA Astrophysics Data System (ADS)
Sun, Xigui; Gao, Kewei; Pang, Xiaolu; Yang, Huisheng; Volinsky, Alex A.
2015-11-01
Lead selenide thin films with different microstructure were deposited on Si (1 0 0) substrates using magnetron sputtering at 50 °C, 150 °C and 250 °C, respectively. The crystal structure of the sputtered PbSe thin films varies from amorphous crystalline to columnar grain, and then to double-layer (nano-crystalline layer and columnar grain layer) structure as the deposition temperature increases, which is due to the dominating growth mode of the thin films changes from Frank-van der Merwe (or layer-by-layer) growth mode at 50 °C to Volmer-Weber (or 3D island) growth mode at 150 °C, and then to Stranski-Krastanow (or 3D island-on-wetting-layer) growth mode at 250 °C. The growth mechanism of the sputtered PbSe thin films is mainly dominated by the surface and strain energy contributions. Moreover, the strain energy contribution is more prominent when the deposition temperature is less than 180 °C, while, the surface energy contribution is more prominent when the deposition temperature is higher than 180 °C. The absorption spectra of the sputtered PbSe thin films are in 3.1-5 μm range. Besides, the sputtered PbSe thin film prepared at 250 °C has two different optical band gaps due to its unique double-layer structure. According to the theoretical calculation results, the variation of the band gap with the deposition temperature is determined by the shift of the valence band maximum with the lattice constant.
Compression driven 2D nematic phase in a columnar Langmuir monolayer
NASA Astrophysics Data System (ADS)
El Abed, A.; Goldmann, M.
2012-08-01
Langmuir films of pyramidic liquid crystals were studied using surface pressure versus molecular area isotherms and synchrotron grazing incidence X-ray diffraction. The used molecule, named 3BCN/14, consists of a pyramidal central core to which are bound symmetrically six lateral C14 alkyl chains. These molecules spread spontaneously at the air-water interface in a metastable side-on phase which relax rapidly upon compression towards a stable edge-on phase. Our results suggest that the new edge-on phase consists of an in-plane organization of columns which are made of about 11 stacked edge-on molecules. This structure remains stable after several expansion-compression cycles. Comparing these results with those obtained previously on two other pyramidic liquid crystals with shorter and longer lateral alkyl chains, C9 and C15 respectively, we attribute the formation of the obtained 2D nematic phase to a suitable lateral chains length which allow for the establishing of strong short smectic order within of the 3BCN/14 columns.
Stability of smectic phases in hard-rod mixtures
NASA Astrophysics Data System (ADS)
Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis
2005-09-01
Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some approximations, have shown to become thermodynamically stable prior to crystallization. Specifically we focus on the relative stability between smectic and columnar phases, a question not fully addressed in previous work. Our analysis is based on two complementary perspectives: on the one hand, an extended Onsager theory, which includes the full orientational degrees of freedom but with spatial and orientational correlations being treated in an approximate manner; on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate that the restricted-orientation approximation enhances the stability of columnar phases so as to preempt smectic order completely while, in the framework of the extended Onsager model, with full orientational degrees of freedom taken into account, columnar phases may preempt a large region of smectic stability in some mixtures, but some smectic order still persists.
In-situ study of athermal reversible photocrystallization in a chalcogenide glass
NASA Astrophysics Data System (ADS)
Benekou, Vasiliki; Strizik, Lukas; Wagner, Tomas; Yannopoulos, Spyros N.; Greer, A. Lindsay; Orava, Jiri
2017-11-01
The time-resolved Raman measurements reveal a three-stage mechanism of the photostructural changes in Ge25.0Ga9.5Sb0.5S65.0 (containing 0.5 at. % of Er3+) glass under continuous-above-bandgap illumination. These changes are reversible and effectively athermal, in that the local temperature rises to about 60% of the glass-transition temperature and the phase transitions take place in the glass/crystal and not in an equilibrium liquid. In the early stages of illumination, the glassy-network dimensionality changes from a predominantly 3-D to a mixture of 2-D/1-D represented by an increase in the fraction of edge-sharing tetrahedra and the emergence of homonuclear (semi)metallic bonds. This incubation period of the structural rearrangements, weakly thermally activated with an energy of ˜0.16 eV, facilitates a reversible photocrystallization. The photocrystallization rate in the glass is comparable to that achieved by thermal crystallization from supercooled liquid at large supercooling. Almost complete re-amorphization can be achieved in about an hour by reducing the incident laser-power density by a factor of ten. Glass-ceramic composites—with varying glass-to-crystal fraction—can be obtained by ceasing the illumination during re-amorphization. Microstructural imaging reveals photoinduced mass transport and the formation of columnar-porous structures. This shows the potential for a bond-specific engineering of glassy structures for photonic applications with a spatial resolution unachievable by thermal annealing.
Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs
NASA Astrophysics Data System (ADS)
He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei
2008-09-01
YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.
NASA Astrophysics Data System (ADS)
Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin
2014-08-01
Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.
Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.
Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng
2016-11-26
TiN/SiO x duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiO x . Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiO x layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.
Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.
Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng
2013-01-14
Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.
Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; George, T.; Pike, W. T.
1992-01-01
We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.
Columnar organization of orientation domains in V1
NASA Astrophysics Data System (ADS)
Liedtke, Joscha; Wolf, Fred
In the primary visual cortex (V1) of primates and carnivores, the functional architecture of basic stimulus selectivities appears similar across cortical layers (Hubel & Wiesel, 1962) justifying the use of two-dimensional cortical models and disregarding organization in the third dimension. Here we show theoretically that already small deviations from an exact columnar organization lead to non-trivial three-dimensional functional structures. We extend two-dimensional random field models (Schnabel et al., 2007) to a three-dimensional cortex by keeping a typical scale in each layer and introducing a correlation length in the third, columnar dimension. We examine in detail the three-dimensional functional architecture for different cortical geometries with different columnar correlation lengths. We find that (i) topological defect lines are generally curved and (ii) for large cortical curvatures closed loops and reconnecting topological defect lines appear. This theory extends the class of random field models by introducing a columnar dimension and provides a systematic statistical assessment of the three-dimensional functional architecture of V1 (see also (Tanaka et al., 2011)).
NASA Astrophysics Data System (ADS)
Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.
1992-12-01
EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.
Fatigue Crack Propagation in Freshwater Ice
1993-07-01
1987). Mechanics of brittle cracking of crystal lattices and interfaces. In Chemistry and Physics of Fracture, (R.M. Latanison and R.H. Jones, Eds...iI Figure 17: Crack Growth in Columnar Ice at Low Frequency Nixon and Weber DAALO.3-89-K-0069 33 I I I I 225 200 175 E 150 12532 -N| C" 1003 qCD - 75
Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries
NASA Astrophysics Data System (ADS)
Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan
2017-05-01
Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.
NASA Astrophysics Data System (ADS)
Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei
2018-04-01
Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.
Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.
Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang
2017-11-01
Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process. Copyright © 2017 Elsevier B.V. All rights reserved.
Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina
Wright, Heather M.; Lesti, Chiara; Cas, Ray A.F.; Porreca, Massimiliano; Viramonte, Jose G.; Folkes, Christopher B.; Giordano, Guido
2011-01-01
Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
NASA Astrophysics Data System (ADS)
Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.
2017-08-01
During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.
Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell
NASA Astrophysics Data System (ADS)
Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam
2012-02-01
Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.
Remote Sensing of Crystal Shapes in Ice Clouds
NASA Technical Reports Server (NTRS)
van Diedenhoven, Bastiaan
2017-01-01
Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally inconsistent with the data and thus crystal impurity, distortion or surface roughness is prevalent. However, conclusions about the dominating ice shapes are often inconclusive and contradictory and are highly dependent on the limited selection of shapes included in the investigations. Since ice crystal optical properties are mostly determined by the aspect ratios of the crystal components and their microscale structure, it is advised that remote sensing applications focus on the variation of these ice shape characteristics, rather than on the macroscale shape or habit. Recent studies use databases with nearly continuous ranges of crystal component aspect ratio and-or roughness levels to infer the variation of ice crystal shape from satellite and airborne remote sensing measurements. Here, the rationale and results of varying strategies for the remote sensing of ice crystal shape are reviewed. Observed systematic variations of ice crystal geometry with location, cloud height and atmospheric state suggested by the data are discussed. Finally, a prospective is given on the future of the remote sensing of ice cloud particle shapes.
NASA Astrophysics Data System (ADS)
Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori
2018-03-01
Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.
NASA Astrophysics Data System (ADS)
Shakirov, T.; Paul, W.
2018-04-01
What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.
Roles of microstructures on deformation response of 316 stainless steel made by 3D printing
NASA Astrophysics Data System (ADS)
Pham, Minh-Son; Hooper, Paul
2017-10-01
One of the main challenges in additive manufacturing (AM) of metals is to manufacture high quality materials and ensure the performance of AM materials in service duties. This challenge can only be solved when the relationships between build process parameters, microstructure and deformation behaviour are understood. This present study is part of holistic efforts at Imperial College to reveal such relationships. In this study, we present our study of porosity condition, grain morphology, texture and metastable phases in AM stainless steel 316. To provide samples for mechanical and microstructural study, cylindrical samples of stainless steel 316 were printed by powder-bed laser melting with a bi-directional hatch pattern. Scanning electron microscopy and electron backscattered diffraction were used to investigate fine microstructures (such as grain morphology, texture and crystal phases) after 3D printing and deformation. Subsequently, a detailed 3D structure of columnar grains in as-printed 316 steel is constructed thanks to microscopic observation. Most of grains in as-built samples have a spherical bowl morphology, and being stacked on others to form the columnar structure. Examinations on microstructures show that the small sub-grains in as-printed samples is likely responsible for high yield strength at room temperature (significantly higher than that of conventional steel). In addition, residual stresses after rapid cooling probably promote the deformation-induced twinning that assists the plasticity during deformation, leading to a good ductility of the AM steel (almost as same as that of conventional 316 steel). Currently, a more detailed study is being undertaken to confirm this hypothesis.
NASA Astrophysics Data System (ADS)
An, Lingling; Jing, Min; Xiao, Bo; Bai, Xiao-Yan; Zeng, Qing-Dao; Zhao, Ke-Qing
2016-09-01
Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. Project supported by the National Natural Science Foundation of China (Grant Nos. 51273133 and 51443004).
NASA Astrophysics Data System (ADS)
Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.
The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.
Hu, Chenglong; Hong, Wenhu; Xu, Xiaojing; Tang, Sufang; Du, Shanyi; Cheng, Hui-Ming
2017-10-13
Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. Microstructure characterization indicates that the SiC growth includes an initial amorphous SiC zone, a gradual crystallization of SiC and grow-up of nano-crystal, and a columnar grain region. The sandwich structure, rapid deposition rate and growth characteristics are attributed to the formation of thermal gradient and the establishment of electromagnetic field in the E-CVI process. The composite possesses low density of 1.84 g/cm 3 , high flexural strength of 325 MPa, and low linear ablation rate of 0.38 μm/s under exposure to 5-cycle oxyacetylene flame for 1000 s at ~1700 °C.
NASA Technical Reports Server (NTRS)
Senior, T. B. A.; Weil, H.
1977-01-01
Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.
An ancient underground water tunnel as a proxy for environmental change
NASA Astrophysics Data System (ADS)
Sabri, Raghid; Merkel, Broder
2014-05-01
Carbonate samples taken from a Roman water tunnel in Nablus, Palestine, were investigated with respect to geochemistry and mineralogy. This tunnel runs under the Roman Cardo of Neapolis and dates back to the 2nd century. Carbonate deposits samples were taken from the sidewall of the tunnel. Thin sections of the deposits were made along the growth axis and were analyzed using optical microscope and scanning electron microscope (SEM) and showed alternated lamination with dark and light zones. The microstructures of the deposits show a range of change of crystal formation change. It is also obvious that at one layer the crystals are pure with columnar fabric while the next layer has many impurities with mosaic fabric. This means, that the columnar layer had a sufficient time to grow, where the mosaic layer had only limited time. On the other hand, thirty seven points in the carbonate deposits around 40mm along the growth axis were measured using SEM. The measurement showed that C, Ca and O value fluctuates between each two measurement points. Si, Cl and Mg values also fluctuate but with reduced intensity and unpredicted pattern. The high fluctuation can be referred to seasonal change of the water quantity and quality. On the other hand, the low fluctuation values are referred to extreme events.
Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan
2009-01-01
The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598
Dual gauge field theory of quantum liquid crystals in three dimensions
NASA Astrophysics Data System (ADS)
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan
2017-10-01
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt
NASA Astrophysics Data System (ADS)
Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong
2013-10-01
Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.
Columnar to Nematic Mesophase Transition: Binary Mixtures of Unlike Copper Soaps
NASA Astrophysics Data System (ADS)
Seghrouchni, R.; Skoulios, A.
1995-10-01
Copper (II) soaps are known to produce columnar mesophases at high temperature. The polar groups of the soap molecules are stacked over one another within columns surrounded by the alkyl chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. The present work studies the mesomorphic behaviour of binary mixtures of copper soaps using differential scanning calorimetry, polarizing microscopy, and X-ray diffraction. When the soaps are of comparable molecular sizes the mixtures are homogeneous and columnar at all compositions. The columns of the two soaps, remaining intact in the mixture, are distributed randomly on the nodes of a hexagonal Bravais lattice. Crystallographic homogeneity is obtained by transfer of methylene groups from cell to cell. When, on the other hand, the soaps are different enough in molecular sizes, the columnar structure of the mixtures is interrupted in the middle range of compositions for the benefit of a nematic one. The transfer of methylene groups gets indeed harder to achieve and the distortion of the hexagonal units cells becomes important. The columnar to nematic phase transition is discussed on a molecular and a topological level.
NASA Astrophysics Data System (ADS)
Valova-Zaharevskaya, E. G.; Popova, E. N.; Deryagina, I. L.; Abdyukhanov, I. M.; Tsapleva, A. S.
2018-03-01
The goal of the present study is to characterize the growth kinetics and structural parameters of the Nb3Sn layers formed under various regimes of the diffusion annealing of bronze-processed Nb/Cu-Sn composites. The structure of the superconducting layers is characterized by their thickness, average size of equiaxed grains and by the ratio of fractions of columnar and equiaxed grains. It was found that at higher diffusion annealing temperatures (above 650°C) thicker superconducting layers are obtained, but the average sizes of equiaxed Nb3Sn grains even under short exposures (10 h) are much larger than after the long low-temperature annealing. At the low-temperature (575 °C) annealing the relative fraction of columnar grains increases with increasing annealing time. Based on the data obtained, optimal regimes of the diffusion annealing can be chosen, which would on the one hand ensure complete transformation of Nb into Nb3Sn of close to the stoichiometric composition, and on the other hand prevent the formation of coarse and columnar grains.
NASA Astrophysics Data System (ADS)
Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M.; Arruda, Ellen M.; Kotov, Nicholas A.
2017-03-01
Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability—especially when juxtaposed with the diversity of other tissues—suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels—we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth’s normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.
Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY
2008-10-21
A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin
2017-08-01
Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.
Pedrosa, Paulo; Ferreira, Armando; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain; Lanceros-Mendez, Senentxu; Vaz, Filipe
2018-06-11
Inclined, zigzag and spiral TiAg films were prepared by GLancing Angle Deposition (GLAD), using two distinct Ti and Ag targets with a particle incident angle of 80º and Ag contents ranging from 20 to 75 at. %. The effect of increasing Ag incorporation and columnar architecture change on the morphological, structural and electrical properties of the films was investigated. It is shown that inclined columnar features (β = 47º) with high porosity were obtained for 20 at. % Ag, with the column angle sharply decreasing (β = 21º) for 50 at. % Ag, and steeply increasing afterwards until 37º for the film with 75 at. % Ag. The sputtered films exhibit a rather well-crystallized structure for Ag contents ≥ 50 at. %, with a TiAg (111) preferential growth. No significant oxidation was detected in all films, except for the one with 20 at. % Ag, after two 298-473-298 K temperature cycles in air. The calculated temperature coefficient of resistivity (TCR) values vary between 1.4 and 5.5×10-4 K-1. Nano-sculptured spiral films exhibit consistently higher resistivity (ρ = 1.5×10-6 Ω m) and TCR values (2.9×10-4 K-1) than the inclined one with the same Ag content (ρ = 1.2×10-6 Ω m and TCR = 2.0×10-4 K-1). No significant changes are observed in the zigzag films concerning these properties. The effective anisotropy Aeff at 473 K changes from 1.3 to 1.7 for the inclined films. Spiral films exhibit an almost completely isotropic behavior with Aeff = 1.1. Ag-rich TiAg core + shell Janus-like columns were obtained with increasing Ag concentrations. © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, Amparo, E-mail: anavarro@ujaen.es; Fernández-Liencres, M. Paz; Peña-Ruiz, Tomás
2016-08-07
Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier comparedmore » to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.« less
Navarro, Amparo; Fernández-Liencres, M Paz; Peña-Ruiz, Tomás; García, Gregorio; Granadino-Roldán, José M; Fernández-Gómez, Manuel
2016-08-07
Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier compared to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.
NASA Astrophysics Data System (ADS)
Jung, Sung Suk; Sohn, Il
2012-12-01
The crystallization behavior of a calcium-aluminate system with various MgO content from 2.5 to 7.5 wt pct and CaO/Al2O3 ratios between 0.8 and 1.2 has been examined using a confocal laser scanning microscope (CLSM). CCT (continuous cooling transformation) and time temperature transformation (TTT) diagrams were constructed to identify the primary crystal phase of slag at different compositions and at cooling rates between 25 and 800 K/minutes. In the slag at a CaO/Al2O3 ratio of 1.0, crystallization temperature increased during isothermal and continuous cooling with higher MgO content, and the shortest incubation time was observed at 5 wt pct MgO. When MgO content was fixed to be 5 wt pct, crystallization temperature increased with lower CaO/Al2O3 ratio. According to the slag composition, cooling rates and temperature, the primary phase could be CA, or C5A3, or C3A, or C3MA2, or MgO, and the crystal morphology changes from dendrites to faceted crystals to columnar crystals in this composition range.
Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids
NASA Astrophysics Data System (ADS)
Bose, Tushar Kanti; Saha, Jayashree
2014-05-01
The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.
Tschierske, Carsten; Ungar, Goran
2016-01-04
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis, crystal structures and luminescence properties of two metal carboxyphosphonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chaonan; Feng, Pingjing; Li, Jintang, E-mail: leejt@xmu.edu.cn
2017-05-15
Two metal carboxyphosphonates, [Co{sub 2}(OOCC{sub 5}H{sub 3}NPO{sub 3}){sub 2·}(H{sub 2}O){sub 3}] (Compound1) and Zn{sub 3}[OOCC{sub 6}H{sub 3}CH(OH)PO{sub 3}]{sub 2·}2H{sub 2}O (Compound2) were successfully synthesized under the hydrothermal reactions. In compound 1, two (Co1-NO{sub 5}) octahedra link the (CPO{sub 3}) by sharing the corner, which link the two (Co2-O{sub 6}) octahedra. From a-axis the six clusters form the layer. Each layer is linked through hydrogen bond. In compound 2, the (Zn-O{sub 4}) tetrahedron and (CPO{sub 3}) tetrahedron are corner-shared, which arrange in line. From a-axis, each line forms the columnar. The thermal and luminescence properties of these compounds were investigated. -more » Graphical abstract: The synthesis conditions of the two compounds and the crystal morphology. Compound 1 shows the layer and the compound 2 shows the pillared-layer. - Highlights: • Two new carboxyphosphonate ligands have been prepared. • Using the two ligands, two metal carboxyphosphonates have been synthesized. • The two MOFs may be candidates for fluorescent materials.« less
Nanoparticles in discotic liquid crystals
NASA Astrophysics Data System (ADS)
Kumar, Sandeep
The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.
Smectic phase in suspensions of gapped DNA duplexes
Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; ...
2016-11-15
Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, in spite of the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue thatmore » this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. These results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals.« less
NASA Astrophysics Data System (ADS)
Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Fan, Ailan; Qin, Lin; Tang, Bin
2012-07-01
TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.
Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility
NASA Astrophysics Data System (ADS)
Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis
2008-09-01
Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.
Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility.
Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis
2008-09-07
Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.
NASA Astrophysics Data System (ADS)
Li, Ji-heng; Yuan, Chao; Mu, Xing; Bao, Xiao-qian; Gao, Xue-xu
2018-04-01
The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1at% NbC-doped Fe83Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300°C and 12.0% at 500°C of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300°C and 46.6% at 500°C. In the slabs for rolling, the introduction of <001>-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.
Dual gauge field theory of quantum liquid crystals in three dimensions
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...
2017-10-09
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emergemore » whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.« less
Dual gauge field theory of quantum liquid crystals in three dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emergemore » whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.« less
Gavrish, Sergey P; Lampeka, Yaroslaw D; Pritzkow, Hans; Lightfoot, Philip
2010-09-07
The crystal structures of the palladium(II) complexes of the open-chain and macrocyclic ligands PdL(1).3H(2)O, PdL(2).6H(2)O and PdL(3).5H(2)O have been determined (H(2)L(1) = 1,4,8,11-tetraazaundecane-5,7-dione, H(2)L(2) = 1,4,8,11-tetraazacyclotetradecane-5,7-dione, H(2)L(3) = 1,4,8,11-tetraazacyclotridecane-5,7-dione). The coordination polyhedra of the palladium(II) ions in all complexes are formed by two deprotonated amide and two amine donors with Pd-N distances being similar in PdL(1) and PdL(2) and substantially shorter in PdL(3). A detailed analysis of the (1)H NMR spectra of the macrocyclic complexes supports the formation in aqueous solution of only N-meso isomers of both compounds in agreement with the X-ray data. The spectra of the palladium(II) macrocyclic complexes are shifted downfield as a whole as compared to those of the nickel(II) analogues with the shifts being essentially non-uniform. The latter feature can be related to the differences in magnetic anisotropy of the M-N bonds. The maxima of d-d absorption bands of the palladium(II) complexes demonstrate weaker dependence on the macrocycle size as compared to those of the nickel(II) analogues. Both macrocyclic compounds PdL(2).6H(2)O and PdL(3).5H(2)O are characterized by lamellar crystal structures consisting of interleaved layers formed by macrocyclic units and by water molecules with similar metal complex layers and different 2D water sheets. A columnar crystal structure is inherent for PdL(1).3H(2)O with the water molecules present as discrete (H(2)O)(3) clusters.
Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu
2012-05-09
Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.
Effect of CeO2 on TiC Morphology in Ni-Based Composite Coating
NASA Astrophysics Data System (ADS)
Cai, Yangchuan; Luo, Zhen; Chen, Yao
2018-03-01
The TiC/Ni composite coating with different content of CeO2 was fabricated on the Cr12MoV steel by laser cladding. The microstructure of cladding layers with the different content of CeO2 from the bottom to the surface is columnar crystal, cellular crystal, and equiaxed crystal. When the content of CeO2 is 0 %, the cladding layer has a coarse and nonuniform microstructure and TiC particles gathering in the cladding layer, and then the wear resistance was reduced. Appropriate rare-earth elements refined and homogenised the microstructure and enhanced the content of carbides, precipitated TiC particles and original TiC particles were spheroidised and refined, the wear resistance of the cladding layer was improved significantly. Excessive rare-earth elements polluted the grain boundaries and made the excessive burning loss of TiC particles that reduced the wear resistance of the cladding layer.
Strategy for Texture Management in Metals Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less
Strategy for Texture Management in Metals Additive Manufacturing
Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.; ...
2017-01-31
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less
2017-01-01
Block molecules belong to a rapidly growing research field in materials chemistry in which discrete macromolecular architectures bridge the gap between block copolymers (BCP) and liquid crystals (LCs). The merging of characteristics from both BCP and LCs is expected to result in exciting breakthroughs, such as the discovery of unexpected morphologies or significant shrinking of domain spacings in materials that possess the high definition of organic molecules and the processability of polymers. Here we report the bulk self-assembly of two families of monodisperse block molecules comprised of naphthalenediimides (NDIs) and oligodimethylsiloxanes (ODMS). These materials are characterized by waxy texture, strong long-range order, and very low mobility, typical properties of conformationally disordered crystals. Our investigation unambiguously reveals that thermodynamic immiscibility and crystallization direct the self-assembly of ODMS-based block molecules. We show that a synergy of high incompatibility between the blocks and crystallization of the NDIs causes nanophase separation, giving access to hexagonally packed columnar (Colh) and lamellar (LAM) morphologies with sub-10 nm periodicities. The domain spacings can be tuned by mixing molecules with different ODMS lengths and the same number of NDIs, introducing an additional layer of control. X-ray scattering experiments reveal macrophase separation whenever this constitutional bias is not observed. Finally, we highlight our “ingredient approach” to obtain perfect order in sub-10 nm structured materials with a simple strategy built on a crystalline “hard” moiety and an incompatible “soft” ODMS partner. Following this simple rule, our recipe can be extended to a number of systems. PMID:28380290
On the geological origin of Devils Tower (WY, USA)
NASA Astrophysics Data System (ADS)
Zavada, P.; Dedecek, P.; Holloway, S. D.; Chang, J. C.; Crain, K.; Keller, G. R.
2011-12-01
The Devils Tower is an exceptional igneous rock formation and a dominating landmark of the northern plains in Wyoming (USA). It rises 250 m above the surrounding sedimentary formations. Previous hypotheses suggested that the Devils Tower was originally part of a magmatic intrusion; volcanic conduit, magmatic stock or a laccolith. Our review of the geological evidence suggests that the Devils Tower is a remnant of an eroded lava lake that filled a broad phreatomagmatic volcano crater. Our hypothesis is based on a detailed study of a similar phonolite landmark in Czech Republic, called Boren, and analogue modeling, finite element numerical modeling of cooling for various shapes of volcanic bodies, and results of field and gravity surveys of the area. The Devils Tower together with a group of five phonolite bodies called Missouri Buttes, located 6 km NW from the Devils Tower, represent the easternmost products of the Tertiary tectonomagmatic events related to the lithospheric-scale uplift of the Black hills monocline. The phreatomagmatic deposits in the surroundings of the Missouri Buttes and the Devils Tower suggest that these phonolite bodies were originally emplaced into phreatomagmatic maar-diatreme volcanoes. To reveal the original shape of the Devils Tower, we employed the analogue modeling using plaster of Paris as analogue for phonolite magma to study internal fabrics and shapes of extrusive/intrusive magmatic bodies emplaced into the maar-diatreme volcanoes. Then, the resulting shapes of analogue magmatic bodies were used for the Finite Element thermal numerical models of their cooling using the thermophysical parameters of the phonolite magma and the rock units surrounding the Devils Tower and Missouri Buttes. Because the columnar joints grow perpendicular to the isotherms in cooling igneous and volcanic bodies, we analyzed the match between the thermal structure of the FE models and the columnar jointing pattern on the Devils Tower. The best fit of the thermal structure and the inverted fan columnar jointing pattern on Devils Tower was found for one of the models that produced a lava lake filling the entire maar crater of the phreatomagmatic volcano. The Devils Tower represents the central part of the lake just above the feeding conduit. After emplacement and solidification of the lava lake, erosion first removed the weakly consolidated phreatomagmatic deposits in the tuff ring around the lake. Then the lava body eroded laterally due to the formation of ice in the columnar joints, pushing columns away from the neighboring columns into the open space. The remnant of the solidified lake (Devils Tower) represents a structure, which is resistant to this kind of erosion, because its base is formed by columns that lean against each other and towards the center of the Tower. In contrast, the Missouri Buttes most probably represent a remnant of a branched intrusion producing several extrusive domes on the maar-crater periphery that can form by subsequent emplacement of different magma batches (e.g. from a stratified magma chamber), each with relatively lower yield strength owing to decreasing crystal content.
NASA Astrophysics Data System (ADS)
Venkatesh, Lakshmi Narayanan; Suresh Babu, Pitchuka; Gundakaram, Ravi Chandra; Doherty, Roger D.; Joshi, Shrikant V.; Samajdar, Indradev
2017-04-01
Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of <0001> direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/ a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.
Water availability and the competitive effect of a columnar cactus on its nurse plant
NASA Astrophysics Data System (ADS)
Flores-Martínez, Arturo; Ezcurra, Exequiel; Sánchez-Colón, Salvador
1998-02-01
A field study was conducted in a semi-arid tropical ecosystem in Mexico to test whether competition for soil water is the causal mechanism underlying the negative effect of the columnar cactus Neobuxbaumia tetetzo on its nurse plant Mimosa luisana and to examine how this relationship varies over time. The effect of irrigation was evaluated by recording the production of leaves, modules (i.e. internodes with an axillary bud), inflorescences and fruits in shrubs growing either isolated or associated with juvenile or adult columnar cacti. 4 001 of water, in five doses of 801 each every 15 d, were added to the treatment plants; no water other than rainfall was added to control plants. Additionally, to evaluate how the effect of the columnar cacti on the shrubs may vary among years we made a comparison of the production of plant structures between 2 years of contrasting rainfall. The irrigation treatment increased the production of modules, inflorescences and fruits, but not of leaves. Shrub response to watering was also dependent on class of association: those associated with juvenile cacti showed a higher response to irrigation than any other treatment. Our results show that water addition increases the production of structures and partially reduces the negative effect of the cactus on nurse shrub, thus supporting the hypothesis of competition for water. The negative effect of the cacti on their nurse plants was present during both years of observations, but the intensity of the negative effect varies from relatively wet to dry years. The results are discussed in relation to how temporal changes in resource availability affect the results of competitive interactions and the importance of this mechanism in the structure and dynamics of this dryland community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.
Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less
Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.; ...
2017-09-11
Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less
NASA Astrophysics Data System (ADS)
Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin
2018-01-01
The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.
Ostapko, Jakub; Kelm, Anna; Kijak, Michał; Leśniewska, Barbara; Waluk, Jacek
2018-04-19
The synthesis of 23-oxahemiporphycene, the first monooxa analogue of hemiporphycene, a structural isomer of porphyrin, is reported. Its generation under McMurry reaction conditions is surprisingly accompanied by the appearance of a formyl derivative of oxacorrole, 21-oxacorrole-5-carbaldehyde. A mechanism for the formation of the latter is proposed, relying on pinacol rearrangement of titanium pinacolate. The structures of the most stable tautomeric forms are established for both compounds based on IR and NMR spectra combined with DFT calculations. Spectral and photophysical characteristics are compared with those of structurally similar macrocycles. Replacement of one nitrogen by oxygen in hemiporphycene has only a minor impact. In contrast, for corrole it leads to the enhancement of stability and to strongly reduced rates of nonradiative deactivation of the lowest excited singlet state. This is explained by the planarity of oxacorroles, achieved by removing one of the inner hydrogen atoms from the inner cavity. Unusual crystal packing is observed for the protonated form of 23-oxahemiporphycene, which exhibits a π-π stacked columnar alignment of positively charged macrocycle units. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase behavior and transitions of self-assembling nano-structured materials
NASA Astrophysics Data System (ADS)
Duan, Hu
Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.
Fluorescent lamp unit with magnetic field generating means
Grossman, Mark W.; George, William A.
1989-01-01
A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.
Fluorescent lamp unit with magnetic field generating means
Grossman, M.W.; George, W.A.
1989-08-08
A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweiacker, K. W.; Liu, Can; Gordillo, M. A.
Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less
Zweiacker, K. W.; Liu, Can; Gordillo, M. A.; ...
2017-12-05
Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less
NASA Astrophysics Data System (ADS)
Ares, A. E.; Gassa, L. M.; Gueijman, S. F.; Schvezov, C. E.
2008-04-01
The columnar to equiaxed transition (CET) has been examined for many years and the significance of CET has been treated in several articles. Experimental observations in different alloy systems have shown that the position of the transition is dependent on parameters like cooling rate, velocity of the liquidus and solidus fronts, local solidification time, temperature gradients and recalescence. The dendritic structure in alloys results in microsegregation of solute species which affects significantly the mechanical properties of the material. The main parameters characterizing the microstructure and the length range of microsegregation is the spacing which is classified as primary, secondary and tertiary. Properties like mechanical resistance and ductility are influenced by the dimensions and continuity of the primary branches, while the secondary and tertiary branches permit the isolation of interdendritic phases which can deteriorate the mechanical behavior of the material. Since the morphology and dimensions of the dendritic structure is related to the solidification parameters mentioned above, for each type of alloy it is essential to correlate dimensions and solidification conditions in order to control the structure. The objective of the present research consists on studying the influence of solidification thermal parameters with the type of structure (columnar, equiaxial or with the CET); and with grain size and dendritic spacing (primary and secondary) in Zn-Al (ZA) alloys (Zn—4 wt%Al, Zn—16 wt%Al and Zn—27 wt%Al, weight percent). Also, correlate the thermal parameters, type of structure, grain size and dendritic spacing with the corrosion resistance of these alloys.
Go, Edna May L; Tsang, Julia Y S; Ni, Yun-Bi; Yu, Alex M; Mendoza, Paulo; Chan, Siu-Ki; Lam, Christopher C; Lui, Philip C; Tan, Puay-Hoon; Tse, Gary M
2012-11-01
Columnar cell lesions of the breast include columnar cell changes without atypia and columnar cell changes with atypia. The latter frequently coexist and share molecular changes with low-grade carcinoma in situ and invasive carcinoma, suggesting that columnar cell changes may be precursors to progression of low-grade advanced lesions. In this study, we assessed chromosomal aberrations at 16q, hallmark for low-grade lesions, in columnar cell changes with or without atypia and their adjacent carcinoma in situ by fluorescent in situ hybridization using 3 region-specific probes spanning the entire chromosomal arm. The results were correlated with the histomorphological features of the corresponding lesions. Forty-four percent of low-grade carcinoma in situ and 31% of high-grade carcinoma in situ were associated with columnar cell changes with atypia, suggesting a link between columnar cell changes with atypia and low-grade carcinoma in situ. For the genetic aberrations, heterozygous deletion of 16q was present in 56% of low-grade carcinoma in situ but only in 19% of high-grade carcinoma in situ. Conversely, aneuploidy was found mostly in high-grade carcinoma in situ (88%). Twenty percent of columnar cell changes with atypia but none of the columnar cell changes without atypia showed heterozygous deletion of 16q. Interestingly, the same changes in 16q were observed in the columnar cell changes and their associated low-grade carcinoma in situ lesions. These findings demonstrated a genetic commonality between columnar cell changes with atypia and low-grade carcinoma in situ and substantiated the precursor role of columnar cell changes with atypia for low-grade carcinoma in situ but not high-grade carcinoma in situ of the breast. Copyright © 2012 Elsevier Inc. All rights reserved.
Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J
2012-07-16
Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianbin
The microstructure and mechanical properties of resistance-spot-welded A5052 aluminum alloy and DP 600 dual-phase steel joint were studied. The fusion zone (FZ) and heat-affected zone (HAZ) of DP 600 exhibited lath martensite and ferrite-martensite structures, respectively. The microstructure of FZ and HAZ in the A5052 side was composed of cellular crystals and the boundary region of FZ exhibited a columnar crystal morphology. A Fe{sub 2}Al{sub 5} intermetallic compound (IMC) layer with 3.3 μm thickness was found adjacent to the DP 600 side, whereas a needle-shaped Fe{sub 4}Al{sub 13} IMC layer with length of 0.67 μm to 15.8 μm was foundmore » adjacent to the aluminum alloy side. The maximum tensile shear load of the A5052/DP 600 joint was 5.5 KN, with a corresponding molten nugget diameter of 6.3 mm. The fracture morphology of the optimized A5052/DP 600 joint was mainly an elongated dimple fracture accompanied by cleavage fracture. - Highlights: •A5052 and DP 600 with large gaps in properties were investigated by RSW. •The microstructures of RSW joints in DP 600/A5052 were examined detailedly. •The micro/macro-characteristics and strength relations of joints were analyzed.« less
The role of basal cells in adhesion of columnar epithelium to airway basement membrane.
Evans, M J; Plopper, C G
1988-08-01
In this report, we present a new concept of the role of the basal cell in airway epithelium. Previously, the basal cell was thought to be the progenitor cell for the columnar epithelium. However, several studies have shown that this concept may not be correct. The morphologic aspects of the basal cell suggest that it could play a role in adhesion of the columnar epithelium to the basement membrane. Basal cells form attachments with columnar cells (desmosomes) and with the basement membrane (hemidesmosomes). Columnar cells do not form hemidesmosome attachments with the basement membrane. Basal cells could strengthen the adhesion of columnar cells to the basement membrane by forming hemidesmosome attachments to the basement membrane and desmosome attachments with adjacent columnar cells. Incidental evidence from 2 existing publications concerning airway microanatomy support this concept. As columnar cells grow taller, the proportion of the cell surface in contact with the basement membrane becomes progressively smaller, and thus the cell surface area related to adhesion also becomes smaller. It was found that the number of basal cells per millimeter of basement membrane was closely related to the height of the columnar cell epithelium (r = 0.98), but not to the number of columnar cells (r = 0.42). The consistency of the relationship between increased columnar cell height (and thus decreased surface area for adhesion) and the number of basal cells present (r = 0.98) supports the concept that the basal cell plays a role in adhesion of columnar cells to the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.
NASA Technical Reports Server (NTRS)
Gerber, H.; DeMott, P. J.; Rogers, D. C.
1995-01-01
The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.
Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)
NASA Astrophysics Data System (ADS)
Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.
2015-01-01
The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.
NASA Astrophysics Data System (ADS)
Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.
2016-03-01
A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.
NASA Astrophysics Data System (ADS)
Zhao, W.; Zha, G. C.; Kong, F. X.; Wu, M. L.; Feng, X.; Gao, S. Y.
2017-05-01
A Ti-6Al-4V alloy clad plate with a Tribaloy 700 alloy laser-clad layer is subjected to incremental shear deformation, and we evaluate the structural evolution and mechanical properties of the specimens. Results indicate the significance of the incremental shear deformation on the strengthening effect. The wear resistance and Vickers hardness of the laser-clad layer are enhanced due to increased dislocation density. The incremental shear deformation can increase the bonding strength of the laser-clad layer and the corresponding substrate and can break the columnar crystals in the laser-clad layer near the interface. These phenomena suggest that shear deformation eliminates the defects on the interface of the laser-clad layer and the substrate. Substrate hardness is evidently improved, and the strengthening effect is caused by the increased dislocation density and shear deformation. This deformation can then transform the α- and β-phases in the substrate into a high-intensity ω-phase.
Comparative analysis of the Flavobacterium columnare genomovar I and II genomes
USDA-ARS?s Scientific Manuscript database
Columnaris disease caused by Gram-negative rod Flavobacterium columnare is one of the most common diseases of catfish. F. columnare is also a common problem in other cultured fish species worldwide. F. columnare has three major genomovars; we have sequenced a representative strain from genomovar I (...
NASA Astrophysics Data System (ADS)
Yang, Zhenhua; Li, Hongfei; Nam, Chang-Yong; Kisslinger, Kim; Satija, Sushil; Rafailovich, Miriam
Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their advantages such as mechanical flexibility. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes. Here we report a self-assembled columnar structure formed by phase separation between (PCDTBT) and polystyrene (PS) for the active layer morphology optimization. The BHJ solar cell device based on this structure is promising for exhibiting higher performance due to the shorter carrier transportation pathway and larger interfacial area between donor and acceptor. The surface morphology is investigated with atomic force microscopy (AFM) and the columnar structure is studied by investigation of cross-section of the blend thin film of PCDTBT and PS under the transmission electron microscopy (TEM). The different morphological structures formed via phase segregation are correlated with the performance of the BHJ solar cells.
NASA Astrophysics Data System (ADS)
Qi, Jianwei; Chen, Zhangbo; Han, Wenjun; He, Danfeng; Yang, Yiming; Wang, Qingliang
2017-09-01
Functionally graded HA/Ti coatings were deposited on silicon and Ti6Al4V substrate by radio-frequency (RF) magnetron sputtering. The effect of RF-power, negative bias and heat-treatment on the microstructure, mechanical and electrochemical properties of the coatings were characterized by SEM, XRD, FTIR, AFM Nanoindentation and electrochemical workstation. The obtained results showed that the as-deposited HA/Ti coatings were characteristic of amorphous structure, which transformed into a crystal structure after heat-treatment, and reformed O-H peak. The content of crystallization was increasing with the increase of negative bias. A dense, homogenous, smooth and featured surface, and columnar cross-section structure was observed in SEM observation. AFM results showed that the surface roughness became higher after heat-treatment, and increased with increasing RF-power. The mechanical test indicated that the coating had a higher nanohardness (9.1 GPa) in the case of -100 V and 250 W than that of Ti6Al4V substrate, and a critical load as high as 17 ± 3.5 N. The electrochemical test confirmed the HA/Ti coating served as a stable protecting barrier in improving the corrosion resistance, which the corrosion current density was 1.3% of Ti6Al4V, but it was significantly influenced by RF-power and negative bias. The contact angle test demonstrated that all the coatings exhibited favorable hydrophilic properties, and it decreased by 20-25% compared to that untreated samples. Thus all results indicated that magnetron sputtering is a promising way for fabricating a better biocompatible ceramic coating by adjusting deposition parameters and post-deposition heat treatments.
Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.
Qian, B; Saeidi, K; Kvetková, L; Lofaj, F; Xiao, C; Shen, Z
2015-12-01
CrCoMo alloy specimens were successfully fabricated using selective laser melting (SLM). The aim of this study was to carefully investigate microstructure of the SLM specimens in order to understand the influence of their structural features inter-grown on different length scales ranging from nano- to macro-levels on their mechanical properties. Two different sets of processing parameters developed for building the inner part (core) and the surface (skin) of dental prostheses were tested. Microstructures were characterized by SEM, EBSD and XRD analysis. The elemental distribution was assessed by EDS line profile analysis under TEM. The mechanical properties of the specimens were measured. The microstructures of both specimens were characterized showing formation of grains comprised of columnar sub-grains with Mo-enrichment at the sub-grain boundaries. Clusters of columnar sub-grains grew coherently along one common crystallographic direction forming much larger single crystal grains which are intercrossing in different directions forming an overall dendrite-like microstructure. Three types of microstructural defects were occasionally observed; small voids (<10 μm), fine cracks at grain boundaries (<10 μm) and cracks at weld line boundaries (>10 μm). Despite the presence of these defects, the yield and the ultimate tensile strength (UTS) were 870 and 430MPa and 1300MPa and 1160MPa, respectively, for the skin and core specimens which are higher than casted dental alloy. Although the formation of microstructural defects is hard to be avoided during the SLM process, the SLM CoCrMo alloys can achieve improved mechanical properties than their casted counterparts, implying they are "defect-tolerant". Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.
2017-04-01
By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.
Yield surface evolution for columnar ice
NASA Astrophysics Data System (ADS)
Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu
A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.
Striped Data Server for Scalable Parallel Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Jin; Gutsche, Oliver; Mandrichenko, Igor
A columnar data representation is known to be an efficient way for data storage, specifically in cases when the analysis is often done based only on a small fragment of the available data structures. A data representation like Apache Parquet is a step forward from a columnar representation, which splits data horizontally to allow for easy parallelization of data analysis. Based on the general idea of columnar data storage, working on the [LDRD Project], we have developed a striped data representation, which, we believe, is better suited to the needs of High Energy Physics data analysis. A traditional columnar approachmore » allows for efficient data analysis of complex structures. While keeping all the benefits of columnar data representations, the striped mechanism goes further by enabling easy parallelization of computations without requiring special hardware. We will present an implementation and some performance characteristics of such a data representation mechanism using a distributed no-SQL database or a local file system, unified under the same API and data representation model. The representation is efficient and at the same time simple so that it allows for a common data model and APIs for wide range of underlying storage mechanisms such as distributed no-SQL databases and local file systems. Striped storage adopts Numpy arrays as its basic data representation format, which makes it easy and efficient to use in Python applications. The Striped Data Server is a web service, which allows to hide the server implementation details from the end user, easily exposes data to WAN users, and allows to utilize well known and developed data caching solutions to further increase data access efficiency. We are considering the Striped Data Server as the core of an enterprise scale data analysis platform for High Energy Physics and similar areas of data processing. We have been testing this architecture with a 2TB dataset from a CMS dark matter search and plan to expand it to multiple 100 TB or even PB scale. We will present the striped format, Striped Data Server architecture and performance test results.« less
The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles
Berezhnoy, Nikolay V.; Liu, Ying; Allahverdi, Abdollah; Yang, Renliang; Su, Chun-Jen; Liu, Chuan-Fa; Korolev, Nikolay; Nordenskiöld, Lars
2016-01-01
The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed. PMID:27119633
NASA Astrophysics Data System (ADS)
Mondal, A.; Shougaijam, B.; Goswami, T.; Dhar, J. C.; Singh, N. K.; Choudhury, S.; Chattopadhay, K. K.
2014-04-01
Ordered and perpendicular columnar arrays of In2O3 were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In2O3 columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ˜400 nm and ˜100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In2O3 columns have a high band to band transition at ˜3.75 eV. The ultraviolet and green emissions were obtained from the In2O3 columnar arrays. The P-N junction was formed between In2O3 and P-type Si substrate. The GLAD synthesized In2O3 film exhibits low current conduction compared to In2O3 TF. However, the Si/GLAD-In2O3 detector shows ˜1.5 times enhanced photoresponsivity than that of Si/In2O3 TF.
NASA Astrophysics Data System (ADS)
Burke, Christopher; Reddy, Abhiram; Prasad, Ishan; Grason, Gregory
Block copolymer (BCP) melts form a number of symmetric microphases, e.g. columnar or double gyroid phases. BCPs with a block composed of chiral monomers are observed to form bulk phases with broken chiral symmetry e.g. a phase of hexagonally ordered helical mesodomains. Other new structures may be possible, e.g. double gyroid with preferred chirality which has potential photonic applications. One approach to understanding chirality transfer from monomer to the bulk is to use self consistent field theory (SCFT) and incorporate an orientational order parameter with a preference for handed twist in chiral block segments, much like the texture of cholesteric liquid crystal. Polymer chains in achiral BCPs exhibit orientational ordering which couples to the microphase geometry; a spontaneous preference for ordering may have an effect on the geometry. The influence of a preference for chiral polar (vectorial) segment order has been studied to some extent, though the influence of coupling to chiral tensorial (nematic) order has not yet been developed. We present a computational approach using SCFT with vector and tensor order which employs well developed pseudo-spectral methods. Using this we explore how tensor order influences which structures form, and if it can promote chiral phases.
Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel
2015-06-01
Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.
Residual stress in obliquely deposited MgF2 thin films.
Jaing, Cheng-Chung; Liu, Ming-Chung; Lee, Cheng-Chung; Cho, Wen-Hao; Shen, Wei-Ting; Tang, Chien-Jen; Liao, Bo-Huei
2008-05-01
MgF(2) films with a columnar microstructure are obliquely deposited on glass substrates by resistive heating evaporation. The columnar angles of the films increases with the deposition angle. Anisotropic stress does not develop in the films with tilted columns. The residual stresses in the films depend on the deposition and columnar angles in a columnar microstructure.
Evidence of Liquid Crystal-Assisted Abiotic Ligation of Nucleic Acids
NASA Astrophysics Data System (ADS)
Fraccia, Tommaso P.; Zanchetta, Giuliano; Rimoldi, Valeria; Clark, Noel A.; Bellini, Tommaso
2015-06-01
The emergence of early life must have been marked by the appearance in the prebiotic era of complex molecular structures and systems, motivating the investigation of conditions that could not only facilitate appropriate chemical synthesis, but also provide the mechanisms of molecular selection and structural templating necessary to pilot the complexification toward specific molecular patterns. We recently proposed and demonstrated that these functions could be afforded by the spontaneous ordering of ultrashort nucleic acids oligomers into Liquid Crystal (LC) phases. In such supramolecular assemblies, duplex-forming oligomers are held in average end-to-end contact to form chemically discontinuous but physically continuous double helices. Using blunt ended duplexes, we found that LC formation could both provide molecular selection mechanisms and boost inter-oligomer ligation. This paper provides an essential extension to this notion by investigating the catalytic effects of LC ordering in duplexes with mutually interacting overhangs. Specifically, we studied the influence of LC ordering of 5'-hydroxy-3'-phosphate partially self-complementary DNA 14mers with 3'-CG sticky-ends, on the efficiency of non-enzymatic ligation reaction induced by water-soluble carbodiimide EDC as condensing agent. We investigated the ligation products in mixtures of DNA with poly-ethylene glycol (PEG) at three PEG concentrations at which the system phase separates creating DNA-rich droplets that organize into isotropic, nematic LC and columnar LC phases. We observe remarkable LC-enhanced chain lengthening, and we demonstrate that such lengthening effectively promotes and stabilizes LC domains, providing the kernel of a positive feedback cycle by which LC ordering promotes elongation, in turn stabilizing the LC ordering.
Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo
2013-09-01
The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.
Krost, Clemens; Petersen, Romina; Lokan, Stefanie; Brauksiepe, Bastienne; Braun, Peter; Schmidt, Erwin R
2013-02-01
The columnar phenotype of apple trees (Malus x domestica) is characterized by a compact growth habit with fruit spurs instead of lateral branches. These properties provide significant economic advantages by enabling high density plantings. The columnar growth results from the presence of a dominant allele of the gene Columnar (Co) located on chromosome 10 which can appear in a heterozygous (Co/co) or homozygous (Co/Co) state. Although two deep sequencing approaches could shed some light on the transcriptome of columnar shoot apical meristems (SAMs), the molecular mechanisms of columnar growth are not yet elaborated. Since the influence of phytohormones is believed to have a pivotal role in the establishment of the phenotype, we performed RNA-Seq experiments to study genes associated with hormone homeostasis and clearly affected by the presence of Co. Our results provide a molecular explanation for earlier findings on the hormonal state of columnar apple trees. Additionally, they allow hypotheses on how the columnar phenotype might develop. Furthermore, we show a statistically approved enrichment of differentially regulated genes on chromosome 10 in the course of validating RNA-Seq results using additional gene expression studies.
Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.
Jaing, Cheng-Chung
2011-03-20
This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.
Percec, Virgil; Bera, Tushar K; Glodde, Martin; Fu, Qiongying; Balagurusamy, Venkatachalapathy S K; Heiney, Paul A
2003-02-17
The synthesis and structural analysis of the twin-dendritic benzamide 10, based on the first-generation, self-assembling, tapered dendrons 3,4,5-tris(4'-dodecyloxybenzyloxy)benzoic acid and 3,4,5-tris(4'-dodecyloxybenzyloxy)-1-aminobenzene, and the polymethacrylate, 20, which contains 10 as side groups, are presented. Benzamide 10 self-assembles into a supramolecular cylindrical dendrimer that self-organizes into a columnar hexagonal (Phi(h)) liquid crystalline (LC) phase. Polymer 20 self-assembles into an imperfect four-cylinder-bundle supramolecular dendrimer, and creates a giant vesicular supercylinder that self-organizes into a columnar nematic (N(c)) LC phase which displays short-range hexagonal order. In mixtures of 20 and 10, 10 acts as a guest and 20 as a host to create a perfect four-cylinder-bundle host-guest supramolecular dendrimer that coorganizes with 10. A diversity of Phi(h), simple rectangular columnar (Phi(r-s)) and centered rectangular columnar (Phi(r-c)), superlattices are produced at different ratios between 20 and 10. This diversity of LC lattices and superlattices is facilitated by the architecture of the twin-dendritic building block, polymethacrylate, the host-guest supramolecular assembly, and by hydrogen bonding along the center of the supramolecular cylinders generated from 10 and 20.
Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK
Durham, John W.; Rabiei, Afsaneh
2015-01-01
Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength. PMID:27713592
Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Dutta, Shankar; Prakash, Ravi; Raman, R.; Kapoor, Ashok Kumar; Kaur, Davinder
2018-02-01
This paper reports on the comparison of residual stresses in AlN thin films sputter-deposited in identical conditions on Si (100) (110) and (111) substrates. The deposited films are of polycrystalline wurtzite structure with preferred orientation along the (002) direction. AlN film on the Si (111) substrate showed a vertical columnar structure, whereas films on Si (100) and (110) showed tilted columnar structures. Residual stress in the AlN films is estimated by x-ray diffraction (XRD), infra-red absorption method and wafer curvature technique. Films residual stress are found compressive and values are in the range of - 650 (± 50) MPa, - 730 (± 50) MPa and - 300 (± 50) MPa for the AlN films grown on Si (100), (110) and (111) substrates, respectively, with different techniques. The difference in residual stresses can be attributed to the microstructure of the films and mismatch between in plane atomic arrangements of the film and substrates.
NASA Astrophysics Data System (ADS)
Liu, Kun; Li, Yajiang; Wang, Juan
2016-10-01
The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (-196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (-196 °C).
Characteristics of Ni-Cr-Fe laser clad layers on EA4T steel
NASA Astrophysics Data System (ADS)
Chen, Wenjing; Chen, Hui; Wang, Yongjing; Li, Congchen; Wang, Xiaoli
2017-07-01
The Ni-Cr-Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, γ phase, M23C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.
NASA Astrophysics Data System (ADS)
Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu
2018-01-01
The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.
Development of exothermically cast single-crystal Mar-M 247 and derivative alloys
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Hoppin, G. S., III; Phipps, C. M.; Harris, K.; Schwer, R. E.
1980-01-01
A low-cost, exothermic directional-solidification (DS) process was developed to produce single-crystal (SC) Mar-M 247 high-pressure turbine blades. Stress-rupture data indicated that SC Mar-M 247 provides only marginal improvements in longitudinal strength relative to the columnar grained DS material. Removal of grain boundary strengthening elements (B, C, Zr, Hf) from the Mar-M 247 composition (which are also melting point depressants) permitted the alloy to be solutioned at significantly higher temperatures. An order of magnitude improvement in rupture life relative to SC Mar-M 247 was observed for several derivative alloys at 103.5 MPa (15 KSI) and 1093 C. Rupture lives of the modified SC alloys were significantly affected by both alloy purity and heat treatment. Critical aspects of vacuum induction refining, exothermic casting technology, alloy development and heat treatment, which contributed to this new class of turbine blades, are reviewed
Discovery of columnar jointing on Mars
Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.
2009-01-01
We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia-Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas. ?? 2009 The Geological Society of America.
The discovery of columnar jointing on Mars
Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.; ,
2009-01-01
We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia–Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas.
Simulation Computation of 430 Ferritic Stainless Steel Solidification
NASA Astrophysics Data System (ADS)
Pang, Ruipeng; Li, Changrong; Wang, Fuming; Hu, Lifu
The solidification structure of 430 ferritic stainless steel has been calculated in the solidification process by using 3D-CAFE model under the condition of water cooling. The calculated results consistent with those obtained from experiment. Under watercooling condition, the solidification structure consists of chilled layer, columnar grain zone, transition zone and equiaxed grain zone.
NASA Astrophysics Data System (ADS)
Eremina, Galina M.; Smolin, Alexey Yu.; Shilko, Evgeny V.
2017-12-01
Metal-ceramic materials are characterized by high mechanical and tribological properties. The surface treatment of the composite by an electron beam in inert gas plasma leads to a qualitative and quantitative change in its microstructure as well as to a change in mechanical properties of the components: a columnar structure forms in the modified layer. Different treatment regimes result in different concentrations of inclusions in the surface layer. In this paper, the effect of the volume concentration of inclusions on the integral mechanical properties of a dispersion-strengthened NiCr-TiC composite is studied on the basis of 3D numerical simulation. The results of computer simulation show that the change in concentration significantly affects the integral mechanical characteristics of the composite material as well as the nature of the nucleation and development of damages in it.
Erratum to: Psammoma bodies in two types of human ovarian tumours: a mineralogical study
NASA Astrophysics Data System (ADS)
Meng, Fanlu; Wang, Changqiu; Li, Yan; Lu, Anhuai; Mei, Fang; Liu, Jianying; Du, Jingyun; Zhang, Yan
2015-06-01
Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.
Psammoma bodies in two types of human ovarian tumours: a mineralogical study
NASA Astrophysics Data System (ADS)
Fanlu, Meng; Changqiu, Wang; Yan, Li; Anhuai, Lu; Fang, Mei; Jianying, Liu; Jingyun, Du; Yan, Zhang
2015-06-01
Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4 2-)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.
Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy
NASA Technical Reports Server (NTRS)
George, T.; Fathauer, R. W.
1992-01-01
The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.
Columnar domains and anisotropic growth laws in dipolar systems.
Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay
2017-06-01
Magnetic and dielectric solids are well-represented by the Ising model with dipolar interactions (IM+DI). The latter are long-ranged, fluctuating in sign, and anisotropic. Equilibrium studies have revealed novel consequences of these complicated interactions, but their effect on nonequilibrium behavior is not explored. We perform a deep temperature quench to study the kinetics of domain growth in the d=3 IM+DI. Our main observations are (i) the emergence of columnar domains along the z axis (Ising axis) with a transient periodicity in the xy plane; (ii) anisotropic growth laws: ℓ_{ρ}(t)∼t^{ϕ}; ℓ_{z}(t)∼t^{ψ}, where ρ[over ⃗]=(x,y) and ℓ is the characteristic length scale; (iii) generalized dynamical scaling for the correlation function: C(ρ,z;t)=g(ρ/ℓ_{ρ},z/ℓ_{z}); and (iv) an asymptotic Porod tail in the corresponding structure factor: S(k_{ρ},0;t)∼k_{ρ}^{-3}; S(0,k_{z};t)∼k_{z}^{-2}. Our results explain the experimentally observed columnar morphologies in a wide range of dipolar systems, and they have important technological implications.
Effect of grain-boundary flux pinning in MgB 2 with columnar structure
NASA Astrophysics Data System (ADS)
Kim, D. H.; Hwang, T. J.; Cha, Y. J.; Seong, W. K.; Kang, W. N.
2009-10-01
We studied the flux pinning properties by grain boundaries in MgB 2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities ( Jcs) and reduced resistances when an external magnetic field ( B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.
Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D
2015-11-01
Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.
Digital mammography: more microcalcifications, more columnar cell lesions without atypia.
Verschuur-Maes, Anoek H J; van Gils, Carla H; van den Bosch, Maurice A A J; De Bruin, Peter C; van Diest, Paul J
2011-09-01
The incidence of columnar cell lesions in breast core needle biopsies since full-field digital mammography in comparison with screen-filmed mammography was analyzed. As tiny microcalcifications characterize columnar cell lesions at mammography, we hypothesized that more columnar cell lesions are diagnosed since full-field digital mammography due to its higher sensitivity for microcalcifications. In all, 3437 breast core needle biopsies performed in three hospitals and resulting from in total 55 159 mammographies were revised: 1424 taken in the screen-filmed mammography and 2013 in the full-field digital mammography period. Between the screen-filmed mammography and full-field digital mammography periods, we compared the proportion of mammographies that led to core needle biopsies, the mammographic indication for core needle biopsies (density, microcalcifications, or both) and the proportion of columnar cell lesions with or without atypia. The columnar cell lesions were graded according to Schnitt, and we included atypical ductal hyperplasia arising in the context of columnar cell lesions. Proportions were compared using χ(2) tests and prevalence ratios were adjusted for age and hospital. We found that more core needle biopsies per mammogram were taken in the full-field digital mammography period (7.6%) compared with the screen-filmed mammography period (5.0%, P<0.0001). Microcalcifications were more often diagnosed with full-field digital mammography than with screen-filmed mammography (adjusted prevalence ratio: 1.14, confidence interval 95%: 1.01-1.28). Core needle biopsies from the full-field digital mammography era showed more columnar cell lesions (10.8%) than those from the screen-filmed mammography era (4.9%; adjusted prevalence ratio: 1.93, confidence interval 95%: 1.48-2.51), particularly due to more columnar cell lesions without atypia (8.2% respectively 2.8%) while the proportion of columnar cell lesions with atypia remained nearly constant (2.0 vs 2.6%). In conclusion, since the implementation of full-field digital mammography, more microcalcifications are seen at mammography, more often resulting in core needle biopsies, which especially yields more columnar cell lesions without atypia.
Synthesis and characterization of cadmium-calcium hydroxyapatite solid solutions
NASA Astrophysics Data System (ADS)
Zhao, Xin; Zhu, Yi-nian; Dai, Liu-qin
2014-06-01
A series of cadmium-calcium hydroxyapatite solid solutions was prepared by an aqueous precipitation method. By various means, the characterizations confirmed the formation of continuous solid solutions over all ranges of Cd/(Cd+Ca) atomic ratio. In the results, both lattice parameters a and c display slight deviations from Vegard's rule when the Cd/(Cd+Ca) atomic ratio is greater than 0.6. The particles change from smaller acicular to larger hexagonal columnar crystals as the Cd/(Cd+Ca) atomic ratio increases from 0-0.60 to 0.60-1.00. The area of the phosphate peak for symmetric P-O stretching decreases with the increase in Cd/(Cd+Ca) atomic ratio, and the peak disappears when the Cd/(Cd+Ca) atomic ratio is greater than 0.6; the two phosphate peaks of P-O stretching gradually merge together for the Cd/(Cd+Ca) atomic ratio near 0.60. These variations can be explained by a slight tendency of larger Cd ions to occupy M(2) sites and smaller Ca ions to prefer M(1) sites in the structure.
Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T
2018-01-22
Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.
NASA Astrophysics Data System (ADS)
Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Turk, K.; Kubo, M.
2007-12-01
Gypsum (CaSO4·H2O) is an important phase in biogeochemistry and sedimentology as a mineral sink for sulfur, a paleoclimatic indicator, and an endolithic niche for phototrophic and chemotrophic bacteria. Sulfate deposits are also important targets of exploration for evidence of habitable environments and life on Mars. Gypsum deposits from a range of sedimentary environments at the Guerrero Negro crystallizer ponds and sabkha settings were investigated for microscale structure and composition to differentiate fabrics formed under microbial influence from those formed under abiogenic conditions. Sub-sedimentary gypsum forms in sabkha environments as mm to cm scale selenite discs (termed bird beak gypsum; Warren, 2006) and selenite disc aggregates. Selenite discs and other sub-sedimentary gypsum are characterized by a sinuous axial microtexture and poikilitically enclosed detrital particles. Sub-aqueous gypsum forms as cements, granules (termed gypsooids), and massive botryoidal crusts that line the sediment water interface and margins of managed crystallizer ponds and natural anchialine pools. Sub-aqueous gypsum exhibits a wide range of textures and mineral/biofilm associations that include amorphous to euhedral, tabular, needle and lensoidal morphologies. Elemental sulfur forms rinds on prismatic, growth aligned gypsum twins and reticulate magnesian carbonate is interspersed with both twinned crystals and rosette aggregates in stratified sub-aqueous environments. Intracrystalline biofilms and cell material was observed in association with nearly all sub-aqueous morphologies but only scarce evidence has been found for intercrystalline microbial communities. Columnar microbial communities living in anchialine pools were found to host precipitation of mm scale gypsum granules in their EPS matrix. Fine scale gypsum textures are unlikely to persist through diagenetic alteration, but understanding their primary associations with sulfur and carbonates is necessary for interpreting sulfates or their replacement phases in the ancient record.
Fish mucus alters the Flavobacterium columnare transcriptome
USDA-ARS?s Scientific Manuscript database
Columnaris disease which is caused by Flavobacterium columnare severely impacts the production of freshwater finfish species. Due to the impact on the aquaculture industry, research efforts to better understand the biological processes of F. columnare including the formation of biofilms and their co...
A statistical model to predict total column ozone in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.
2016-03-01
This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.
Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate
NASA Astrophysics Data System (ADS)
Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.
2018-01-01
We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.
The anatomy of a freezing lead
NASA Astrophysics Data System (ADS)
Gow, Anthony J.; Meese, Debra A.; Perovich, Donald K.; Tucker, Walter B.
1990-10-01
Winter leads are regions of intense ice growth with resultant large fluxes of heat to the atmosphere and salt to the ocean. They constitute a major source of new ice in the Arctic basin. During the 1988 drift phase of the Coordinated Eastern Arctic Experiment we were afforded a unique opportunity to conduct a detailed, long-term study of a freezing lead. Measurements were made from September 17 to November 18, during which time the ice grew from open water to a thickness of 0.56 m. Cores were removed from the lead ice on a routine basis and analyzed for ice temperature, salinity, density, and structure. From these measurements the derived quantities of brine volume, porosity, heat flux to the atmosphere, and salt flux to the ocean were computed. In addition to this 2-month time series study of ice cores, the spatial variation in lead ice properties was investigated on September 30. Thin-section studies of ice structure indicated that the upper 0.05-0.15 m of the ice sheet was granular and that the lower portion was columnar. Typically, a portion of the granular layer was snow ice. Once the transition from granular to columnar ice had occurred, granular ice did not reappear. As the ice grew thicker the c axes of the ice crystals became aligned within the horizontal plane. This alignment direction corresponded closely with the inferred direction of the current at the ice/water interface. Vertical temperature profiles in the ice were approximately linear. Salinity profiles were usually C-shaped with bulk salinities ranging from 9 to 6‰, before stabilizing at 6‰ for ice thicker than 0.35 m. Core data were used to compute the flux of heat to the atmosphere and the flux of salt to the ocean for seven time intervals during the experiment. Heat fluxes ranged from 89 to 29 W/m2 with an average of 50 W m-2, roughly 3 times the corresponding value from multiyear ice. The flux of salt from the lead ice to the ocean varied from 0.51 to 0.06 kg m-2 d-1, averaging 0.21 kg m-2 d-1.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Cui, Li; Miao, Jianjun
2006-03-01
A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.
Disclosing the temperature of columnar jointing in lavas.
Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B
2018-04-12
Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.
NASA Astrophysics Data System (ADS)
Pacheco, Fernando Estevão Rodrigues Crincoli; Caxito, Fabricio de Andrade; Moraes, Lucia Castanheira de; Marangoni, Yara Regina; Santos, Roberto Paulo Zanon dos; Pedrosa-Soares, Antonio Carlos
2018-04-01
The Serra Geral Formation constitutes a continental magmatic province on the southern part of South America within the Paraná basin. Basaltic magmatism of the Serra Geral Formation occurred as extrusions at around 134.5 to 131.5 My ago. The formation is part of the Paraná-Etendeka large igneous province, spanning South America and southwestern Africa. The main extrusion mechanism was probably through fissures related to extensional regime during the breakup of Gondwana in the Cretaceous. Basaltic ring structures (BRS) with tens of meters of diameter, cropping out downstream of Grande river at Água Vermelha hydroelectric dam in southern Triângulo Mineiro region, enable the study of the mechanism of extrusion. The origin of the BRS has been subject to differing interpretations in the past, either collapsed lava flows or central conduits. Detailed geological mapping at 1:1000 scale, stratigraphic, petrographic and gravimetric analysis of the most well preserved of the BRS, with a 200 m diameter, has enabled the description of thirteen different basalt lava flows, along with single a central lava lake and a ring dyke structure. The central flow, interpreted as a preserved lava lake, comprises vesicle- and amygdale-rich basalt, spatter, ropy and degassing structures. The most basal of the thirteen lava flows has massive basalt containing geodes filled with quartz. Above, the lava flows show massive basalt with vertical columnar jointing where is possible to identify the top and bottom of each individual flow, with gentle dips towards the perimeter of the structure. A prominent ring dyke dipping towards the lava lake presents horizontal columnar jointing and cuts the basal and central flows. The gravimetric analysis shows a weak negative Bouguer anomaly on the center of the BRS. The proposed model describes the volcanism of the region in three main steps: (1) fissure flow occurs with lava input; (2) this lava cools and crystallizes cementing most of the fissures, promoting the formation of localized central conduits; and (3) the presence of dissolved gas in lava produces ring and radial fractures around the solidified lava lake. The magma uses some of the ring fissures to ascend and the following lava flows assume the ring shape of the dyke vent. Thus, the BRS in Água Vermelha region can be interpreted as remnants of central conduits representing the late stage magmatism of the Serra Geral Formation.
NASA Astrophysics Data System (ADS)
Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing
2014-10-01
Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Manidipto; Saha, Saptarshi; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com
2015-04-15
The present study elaborately discussed the effect of different modes of metal transfer (i.e., short circuit mode, spray mode and pulse mode) on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals. Electron backscattered diffraction (EBSD) analysis was used to study the grain growth direction and grain structure in weld metals. The changes in grain structure and grain growth direction were found to be essentially varied with the weld pool shape and acting forces induced by modes of metal transfer at a constant welding speed. Short circuit mode of metal transfer owing to highermore » Marangoni force (M{sub a}) and low electromagnetic force (R{sub m}) promotes the lower weld pool volume (Γ) and higher weld pool maximum radius (r{sub m}). Short circuit mode also shows curved and tapered columnar grain structures and the grain growth preferentially occurred in <001> direction. In contrast, spray mode of metal transfer increases the Γ and reduces the r{sub m} values due to very high R{sub m} and typically reveals straight and broad columnar grain structures with preferential growth direction in <111>. In the pulse mode of metal transfer relatively high M{sub a} and R{sub m} simultaneously increase the weld pool width and the primary penetration which might encourage relatively complex grain growth directions in the weld pool and cause a shift of major intensity from <001> to <111> direction. It can also be concluded that the fusion zone grain structure and direction of grain growth are solely dependent on modes of metal transfer and remain constant for a particular mode of metal transfer irrespective of filler wire used. - Highlights: • Welded joints of LNiASS were prepared by varying modes of metal transfer. • Weld pool shape, grain structure and grain growth direction were studied. • Short circuit mode shows curved and tapered grain growth in <001> direction. • Spray mode shows straight and broad columnar grain growth in <111> direction. • Pulse mode shows complex grain growth with a shift in growth direction.« less
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the etiological agent of columnaris disease, causes significant losses in fish worldwide. In this study, F. columnare infection prevalence was assessed in representative Great Lakes fish species. Over 2,000 wild, feral, and hatchery-propagated salmonids, percids, centrarc...
NASA Astrophysics Data System (ADS)
Lino-Zapata, F. M.; Yan, H. L.; Ríos-Jara, D.; Sánchez Llamazares, J. L.; Zhang, Y. D.; Zhao, X.; Zuo, L.
2018-01-01
The kinetic arrest (KA) of martensitic transformation (MT) observed in Ni45Co5Mn36.8In13.2 melt-spun ribbons has been studied. These alloy ribbons show an ordered columnar-like grain microstructure with the longer grain axis growing perpendicular to ribbon plane and transform martensitically from a single austenitic (AST) parent phase with the L21-type crystal structure to a monoclinic incommensurate 6 M modulated martensite (MST). Results show that the volume fraction of austenite frozen into the martensitic matrix is proportional to the applied magnetic field. A fully arrest of the structural transition is found for a magnetic field of 7 T. The metastable character of the non-equilibrium field-cooled glassy state was characterized by introducing thermal and magnetic field fluctuations or measuring the relaxation of magnetization. The relaxation of magnetization from a field-cooled kinetically arrested state at 5 and 7 T follows the Kohlrausch-Williams-Watts (KWW) stretched exponential function with a β exponent around 0.95 indicating the weak metastable nature of the system under the strong magnetic fields. The relationship between the occurrence of exchange bias and the frozen fraction of AST into the MST matrix was studied.
Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)
NASA Astrophysics Data System (ADS)
Igumenov, I. K.; Aksenov, A. N.
2017-12-01
Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neiman, Aleksei A., E-mail: nasa@ispms.tsc.ru; Lotkov, Aleksandr I.; Gudimova, Ekaterina Y.
The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...
VIRULENCE OF Flavobacterium columnare GENOMOVARS IN RAINBOW TROUT (Oncorhynchus mykiss)
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the causative agent of columnaris disease and is responsible for significant economic losses in aquaculture. F. columnare is a Gram-negative bacterium, and five genetic types or genomovars have been described based on restriction fragment length polymorphism of the 16S rR...
USDA-ARS?s Scientific Manuscript database
Columnaris disease, caused by the Gram-negative bacterium Flavobacterium columnare, is one of the most prevalent fish diseases worldwide. An exceptionally high level of genetic diversity among isolates of F. columnare has long been recognized, whereby six established genomovars have been described t...
USDA-ARS?s Scientific Manuscript database
The efficacy of potassium permanganate (KMnO4) as a prophylactic and therapeutic treatment for subacute infection of Flavobacterium columnare was demonstrated in experimentally infected channel catfish, Ictalurus punctatus. Catfish experimentally infected with F. columnare to mimic a subacute infec...
Structural studies in columnar basalts from crystallographic and magnetic fabrics
NASA Astrophysics Data System (ADS)
Tiphaine, Boiron; Jérôme, Bascou; Pierre, Camps; Eric, Ferre; Claire, Maurice; Bernard, Guy; Marie-Christine, Gerbe
2010-05-01
The purpose of this study is to better characterize the columnar and the associated microstructure development in basalt flows. The thermal contraction (O'Reilly, 1879) is the main hypothesis to explain the columnar formation. However, neither the structures which appear in basalt flow constituted of three levels (Tomkeieff, 1940) nor circular and radial structures within the prisms (for which weathering nor fracturing can account for) can be explained by the thermal contraction theory alone. An early structuring process during solidification (Guy and Le Coze, 1990) could play for a part that must be discussed (Guy, 2010). We studied two recent basalt flows (75 000 years) from the French Massif Central, in which the three flow levels are clearly observed. In the first basalt flow (La Palisse, Ardèche), the emission centre and the flow direction are known. In the second one (Saint Arcons d'Allier, Haute Loire), the prismatic columns are particularly well developed. In order to characterize the flow structure at different scales, from the flow to the grain scale, anisotropy of magnetic susceptibility (AMS) measurements were performed. The AMS data were coupled with crystallographic preferred orientation measurements of magnetite, plagioclase and clinopyroxene using Electron Backscattered Diffraction (EBSD) and image analyses from perpendicular thin sections. Magnetic mineralogy studies of the La Palisse basalts, in particular the thermomagnetic curves, indicate that the main carrier of AMS is high-Ti titanomagnetite (Tc≈130°C). AMS measurements of about a hundred samples show a higher degree of AMS (P parameter) in the middle level in comparison to the base. Inversely, the bulk magnetic susceptibility (Km) is higher at the flow base. Distinctive parameters for the different levels of the basaltic flows could be then provided by AMS measurements.. Moreover, the comparison between AMS and EBSD data indicate that the magnetic susceptibility carried by the magnetic grains is controlled by the crystallographic orientation of plagioclase and then related to the direction lava flow. In addition, an AMS study carried out on a prism section shows that Km and P magnetic parameters increase from the core to the rim of the prism. The analysis of hysteresis parameters on the same samples indicates that the magnetic grains are larger in size in the core than on the rim. This suggests processes inducing a magnetic grain size arrangement before the prism formation. References O'Reilly J.P (1879)Explanatory notes and discussion on the nature of the prismatic forms of a group of columnar basalts, Giant's Causeway. Trans. Roy. Irish Acad. Tomkeieff S.I, (1940)The basalt lavas of the Giant's Causeway district of the Northern Ireland. Bull. Volc vol 2, pp 89-146. Guy B. and Le Coze J. (1990) Reflections about columnar jointing in basalts: the instability of the planar solidification front, C.R.Acad.Sc. Paris, 311, II, 943-949. Guy B (2010) Basalt columns: Large scale constitutional supercooling? Comments on the paper by John Gilman (JVGR, 2009) and presentation of some new data, JVG to appear.
Lörinc, Ester; Öberg, Stefan
2012-07-01
A multipotential stem cell, possibly located in the submucosal gland ducts, has been suggested as the origin of metaplastic mucosa in the oesophagus. The topographic distribution of these glands and their excretory ducts (SMG) within the columnar lined oesophagus (CLO) is largely unknown. The aim of this study was to examine the distribution of SMG in relation to the type of overlying epithelium in patients with CLO. Seven oesophageal resection specimens were examined histologically in toto. The median frequency of SMG was similar in the metaplastic segments (0.12 SMG/mm) and the normal squamous segments (0.10 SMG/mm). Within the metaplastic segments, the median frequency of SMG beneath the squamous islands was significantly higher than that observed under the columnar lined parts (0.22 versus 0.08 SMG/mm, P = 0.046), There was a strong accumulation of SMG at the squamo-columnar transition zones (0.53 SMG/mm), which was significantly greater than that found in the columnar and squamous parts (P = 0.001 and 0.002, respectively). The relative accumulation of SMG beneath squamous islands and the squamo-columnar junctions within the metaplastic segment supports the hypothesis that both metaplastic columnar mucosa and neosquamous epithelium originate from a progenitor in the SMG. © 2012 Blackwell Publishing Ltd.
Suebsing, Rungkarn; Kampeera, Jantana; Sirithammajak, Sarawut; Withyachumnarnkul, Boonsirm; Turner, Warren; Kiatpathomchai, Wansika
2015-03-01
Flavobacterium columnare, the causative agent of columnaris disease in fish, affects many economically important freshwater fish species. A colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein (LAMP-calcein) was developed and used to detect the presence of F. columnare in farmed tilapia (Nile Tilapia Oreochromis niloticus and red tilapia [Nile Tilapia × Mozambique Tilapia O. mossambicus]) and rearing water. The detection method, based on a change in color from orange to green, could be performed within 45 min at 63°C. The method was highly specific, as it had no cross-detections with 14 other bacterial species, including other fish pathogens and two Flavobacterium species. The method has a minimum detection limit of 2.2 × 10(2) F. columnare CFU; thus, it is about 10 times more sensitive than conventional PCR. With this method, F. columnare was detected in gonad, gill, and blood samples from apparently healthy tilapia broodstock as well as in samples of fertilized eggs, newly hatched fry, and rearing water. The bacteria isolated from the blood were further characterized biochemically and found to be phenotypically identical to F. columnare. The amplified products from the LAMP-calcein method had 97% homology with the DNA sequence of F. columnare.
Bader, J A; Nusbaum, K E; Shoemaker, C A
2003-08-01
The early entry of the fish pathogen Flavobacterium columnare and enhancement by abrasion was studied in channel catfish, Ictalurus punctatus (Rafinesque), using the polymerase chain reaction and a species-specific primer set for a bacterial 16S rRNA gene product. Evaluations were conducted following an abrasion bath immersion challenge with F. columnare. Abrasion, a practice which has historically been used prior to bacterial challenge, had significant effects on the early entry of the pathogen and on cumulative percent survival (CPS). The FvpF1-FvpR1 primer set was useful in detecting the early entry of F. columnare in mucus, skin, gill, blood, liver and trunk kidney tissues in both abraded and unabraded fish following immersion challenge at 29 +/- 2 degrees C. Bacteria were detected earlier in all tissues in abraded fish, except in the trunk kidney. These differences were not significant, except in the case of blood. Mucus, skin and gill tissues were positive for F. columnare earliest regardless of treatment (after 5 min in abraded fish and after 15 min in unabraded fish). CPS following challenge with F. columnare was significantly affected by abrasion, which supports the use of abrasion for the F. columnare challenge model for channel catfish.
Microstructure study of ZnO thin films on Si substrate grown by MOCVD
NASA Astrophysics Data System (ADS)
Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang
2007-08-01
The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.
Ultra-fast LuI{sub 3}:Ce scintillators for hard x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marton, Zsolt, E-mail: zmarton@rmdinc.com; Miller, Stuart R.; Ovechkina, Elena
We have developed ultra-fast cerium-coped lutetium-iodide (LuI{sub 3}:Ce) films thermally evaporated as polycrystalline, structured scintillator using hot wall epitaxy (HWE) method. The films have shown a 13 ns decay compared to the 28 ns reported for crystals. The fast speed coupled with its high density (∼5.6 g/cm{sup 3}), high effective atomic number (59.7), and the fact that it can be vapor deposited in a columnar form makes LuI{sub 3}:Ce an attractive candidate for high frame rate, high-resolution, hard X-ray imaging. In crystal form, LuI{sub 3}:Ce has demonstrated bright (>100,000 photons/MeV) green (540 nm) emission, which is well matched to commercialmore » CCD/CMOS sensors and is critical for maintaining high signal to noise ratio in light starved applications. Here, we report on the scintillation properties of films and those for corresponding crystalline material. The vapor grown films were integrated into a high-speed CMOS imager to demonstrate high-speed radiography capability. The films were also tested at Advanced Photon Source, Argonne National Laboratory beamline 1-ID under hard X-ray irradiation. The data show a factor of four higher efficiency than the reference LuAG:Ce scintillators, high image quality, and linearity of scintillation response over a wide energy range. The films were employed to perform hard X-ray microtomography, the results of which will also be discussed.« less
Immunohistochemical expression of CK7, CK5/6, CK19, and p63 in Warthin tumor.
Dăguci, Luminiţa; Stepan, A; Mercuţ, Veronica; Dăguci, C; Bătăiosu, Marilena; Florescu, Alma
2012-01-01
Our study included a number of 24 cases with Warthin tumor, diagnosed between 2007-2011, which were analyzed in terms of clinical, histopathological and immunohistochemistry point of view, using CK7, CK5/6, CK19, and p63 antibodies. Warthin tumor is most often a tumor with a slow evolution, painless, usually affecting males (M/F 3.2/1) in the seventh decade of life. Histopathologically, it is distinguished the predominance of the typical forms of the tumor, with a balanced ratio epithelium/stroma. The immunostaining for CK7 showed positivity in all the investigated cases both in the columnar luminal cells and basal cells. The immunostaining for CK5/6 was positive in all the investigated cases in bilayer epithelial basal cells, both in the structure of the cysts and the papillae. In the case of the immunostaining for p63 we noticed limited nuclear positivity in the basal cells, while the columnar cells' nucleus were negative. The immunohistochemical study of the bilayer epithelial component of Warthin tumor showed different immunstaining of the two types of epithelia, the oncocytary columnar and the basal on, similar to those found in the salivary gland ducts.
NASA Astrophysics Data System (ADS)
Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie
2010-03-01
Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the causative agent of columnaris disease and severely affects various freshwater fish species worldwide. Here, we described the phenotypic and genetic characterization of F. columnare isolates isolated from farmed red tilapia in Thailand. Additionally, the virulence as w...
Complete genome sequence of the fish pathogen Flavobacterium columnare strain C#2
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is a Gram-negative bacterial pathogen that causes columnaris disease of freshwater fish. Flavobacterium columnare strain C#2 was isolated from a diseased warm water fish and is typed as genomovar II. The genome consists of a single 3.33 Mb circular chromosome with 2,689 pred...
Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase.
Wolters, Pieter J; Schouten, Henk J; Velasco, Riccardo; Si-Ammour, Azeddine; Baldi, Paolo
2013-12-01
Understanding the genetic mechanisms controlling columnar-type growth in the apple mutant 'Wijcik' will provide insights on how tree architecture and growth are regulated in fruit trees. In apple, columnar-type growth is controlled by a single major gene at the Columnar (Co) locus. By comparing the genomic sequence of the Co region of 'Wijcik' with its wild-type 'McIntosh', a novel non-coding DNA element of 1956 bp specific to Pyreae was found to be inserted in an intergenic region of 'Wijcik'. Expression analysis of selected genes located in the vicinity of the insertion revealed the upregulation of the MdCo31 gene encoding a putative 2OG-Fe(II) oxygenase in axillary buds of 'Wijcik'. Constitutive expression of MdCo31 in Arabidopsis thaliana resulted in compact plants with shortened floral internodes, a phenotype reminiscent of the one observed in columnar apple trees. We conclude that MdCo31 is a strong candidate gene for the control of columnar growth in 'Wijcik'. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong
2016-12-01
In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.
Srivastava, Supriya; Liew, Mei Shan; McKeon, Frank; Xian, Wa; Yeoh, Khay Guan; Ho, Khek Yu; Teh, Ming
2014-02-01
Barrett's oesophagus is a premalignant condition, predisposing to oesophageal adenocarcinoma. However, some adenocarcinoma may arise in columnar lined oesophagus without goblet cells. Our aim was to evaluate the biological properties of non-goblet columnar lined oesophagus only and elucidate its relationship with Barrett's oesophagus and associated neoplasia. Endoscopic biopsies from patients with Barrett's oesophagus (n=30), non-goblet columnar lined oesophagus (n=14), Barrett's oesophagus associated high grade dysplasia (n=6) and adenocarcinoma (n=4) were selected. Immunostaining for villin, claudin 3 and MUC4 was performed. Statistical analysis was performed and a p value <0.05 was considered significant. Villin and MUC4 were positive in 42%, 100% each and 50% in non-goblet columnar lined oesophagus, Barrett's oesophagus, high grade dysplasia and adenocarcinoma respectively, while claudin 3 was 100% positive in all the groups. In non-goblet columnar lined oesophagus, six cases that were villin immunopositive, showed positive expression for claudin 3 and/or MUC4 and there was no difference from the high grade dysplasia or adenocarcinoma (p>0.05). Our results indicate that a subset of non-goblet columnar lined oesophagus shows an intestinal phenotype representing an early stage of Barrett's oesophagus. This subset probably harbours the potential to change into adenocarcinoma in the long term. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the causative agent of columnaris disease and causes tremendous morbidity and mortality of farmed fish globally. Previously, we identified a potential lectin-mediator (a rhamnose-binding lectin; RBL1a) of F. columnare adhesion and showed higher RBL1a expression in suscept...
USDA-ARS?s Scientific Manuscript database
The efficacy of potassium permanganate (KMnO4) against early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus) was evaluated. Fish were experimentally challenged, by waterborne exposure for 2 h to F. columnare after cutaneous abrasion, an...
de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco
2013-01-01
Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.
NASA Astrophysics Data System (ADS)
Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina
2017-12-01
The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.
Plant virus directed fabrication of nanoscale materials and devices
2015-03-26
stringent coating processes as well as yield novel materials with unique conductive and mesoscale structures (Fowler et al., 2001; Niu et al., 2007a...steel and then coated by ELD with conductive nickel or cobalt. Several fabrication methods including atomic layer deposition, sputtering, electro...novel columnar nanowire structure that when coatedwith conductive nickel provides a forest of nanoscale electrodes that can be coated with silicon by
NASA Astrophysics Data System (ADS)
Zhao, W.; Zha, G. C.; Xi, M. Z.; Gao, S. Y.
2018-03-01
A synchronous rolling method was proposed to assist laser multilayer cladding, and the effects of this method on microstructure, microhardness, and wear resistance were studied. Results show that the microstructure and mechanical properties of the traditional cladding layer exhibit periodic inhomogeneity. Synchronous rolling breaks the columnar dendrite crystals to improve the uniformity of the organization, and the residual plastic energy promotes the precipitation of strengthening phases, as CrB, M7C3, etc. The hardness and wear resistance of the extruded cladding layer increase significantly because of the grain refinement, formation of dislocations, and dispersion strengthening. These positive significances of synchronous rolling provide a new direction for laser cladding technology.
de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco
2013-01-01
Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426
Mucinous breast carcinoma with tall columnar cells.
Tsoukalas, N; Kiakou, M; Tolia, M; Kostakis, I D; Galanopoulos, M; Nakos, G; Tryfonopoulos, D; Kyrgias, G; Koumakis, G
2018-05-01
Mucinous carcinoma of the breast represents 1%-4% of all breast cancers. The World Health Organization classification divides this type of tumour into three different subtypes: mucinous carcinoma, mucinous carcinoma with tall columnar cells (mucinous cystadenocarcinoma and columnar cell mucinous carcinoma) and signet ring cell carcinoma. A 74-year-old woman presented a tumour with inflammatory features in the upper outer quadrant of her left breast, 7 cm in diameter. The core biopsy showed infiltrating ductal carcinoma of no specific type. The tumour-node-metastasis clinical staging was T4cN3M0 (Stage IIIC). She received neoadjuvant chemotherapy, underwent left mastectomy with radical axillary resection and subsequently received radiotherapy and chemotherapy. The histological examination of the surgical specimen revealed two solid tumors in the tail of Spence, which corresponded to adenocarcinoma with high columnar cells. The patient died 16 months after the diagnosis, suffering from pulmonary metastases and anterior chest wall infiltration. A review of the literature revealed only 21 reports of mucinous carcinoma of the breast with tall columnar cells, including our case. This is only the third time that the specific histological type of columnar cell mucinous carcinoma has been reported in the literature.
Radiating columnar joints in Gyeongju, Korea as a educational site
NASA Astrophysics Data System (ADS)
Woo, H.; Kim, J. H.; Jang, Y. D.
2015-12-01
Gyeongju is located in the central eastern part of South Korea. There are various directional columnar joint sets in Tertiary trachytic basalt formation along the shore. In particular, rare radiating columnar joints occur in this area. Columnar joints are parallel, prismatic columns that are formed as a result of contraction during the rapid cooling of lava flow, forming a three dimensional fracture network. In general, the radius and direction of the rock column represent the cooling rate and surface respectively. Radiating direction of columns here indicates that dome- or lobe-shaped lava was cooled from its surface to the core during the viscous lava flow. The fact that the trachytic textures of plagioclase laths are indistinct suggests that the radiating columnar joints are equivalent to the frontal end of the lava lobes. This area is currently has a shore trail course, which is being developed into a picturesque educational park. There are corresponding information boards on the trail near each type of columnar joints to explain not only the forming process and geological mechanisms but the importance of nature conservation to visitors, especially students. A variety of educational materials and educational programs linked to regular school curriculum are also being developed.
Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li
2017-10-01
We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lavery, Danielle L; Martinez, Pierre; Gay, Laura J; Cereser, Biancastella; Novelli, Marco R; Rodriguez-Justo, Manuel; Meijer, Sybren L; Graham, Trevor A; McDonald, Stuart A C; Wright, Nicholas A; Jansen, Marnix
2016-06-01
Barrett's oesophagus commonly presents as a patchwork of columnar metaplasia with and without goblet cells in the distal oesophagus. The presence of metaplastic columnar epithelium with goblet cells on oesophageal biopsy is a marker of cancer progression risk, but it is unclear whether clonal expansion and progression in Barrett's oesophagus is exclusive to columnar epithelium with goblet cells. We developed a novel method to trace the clonal ancestry of an oesophageal adenocarcinoma across an entire Barrett's segment. Clonal expansions in Barrett's mucosa were identified using cytochrome c oxidase enzyme histochemistry. Somatic mutations were identified through mitochondrial DNA sequencing and single gland whole exome sequencing. By tracing the clonal origin of an oesophageal adenocarcinoma across an entire Barrett's segment through a combination of histopathological spatial mapping and clonal ordering, we find that this cancer developed from a premalignant clonal expansion in non-dysplastic ('cardia-type') columnar metaplasia without goblet cells. Our data demonstrate the premalignant potential of metaplastic columnar epithelium without goblet cells in the context of Barrett's oesophagus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Structure and interactions in biomaterials based on membrane-biopolymer self-assembly
NASA Astrophysics Data System (ADS)
Koltover, Ilya
Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity < 0.04° ) multilayers of fused bR membranes permitted, for the first time, application of powerful interface-sensitive x-ray scattering techniques to a membrane-protein system. (ii) Interactions between the particles chemically attached or absorbed onto the surfaces of flexible giant phospholipid vesicles. Using video-enhanced light microscopy we have observed a membrane-distortion induced attraction between the particles with the interaction range of the order of particle diameter. Fluid membranes decorated with many particles exhibited: (i) a finite-sized two-dimensional closed packed aggregates and (ii) a one-dimensional ring-like aggregates. (iii) Structure, stability and interactions in the cationic lipid-DNA complexes. Cationic liposomes complexed with DNA are among the most promising synthetic non-viral carriers of DNA vectors currently used in gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.
The Integration of Nanoscale Techniques for an Improved Battery Technology
2012-06-08
anodized aluminum oxide ( AAO ) membranes that were 13...nanoporous anodized aluminum oxide ( AAO ) substrate [13]. During sputtering, thickened columnar growths form around the pores of the substrate...investigates an interpenetrating network structure where ―tubes‖ of polymer electrolyte are placed in the nanopores of anodic aluminum oxide ( AAO
Pfeiler, Edward; Johnson, Sarah; Richmond, Maxi Polihronakis; Markow, Therese A
2013-12-01
Dozens of arthropod species are known to feed and breed in the necrotic tissues (rots) of columnar cacti in the Sonoran Desert. Because the necrotic patches are ephemeral, the associated arthropods must continually disperse to new cacti and therefore the populations of any given species are expected to show very little local genetic differentiation. While this has been found to be true for the cactophilic Drosophila, the evolutionary histories and characteristics of other arthropods inhabiting the same necrotic patches, especially the beetles, have yet to be examined. Here we used nucleotide sequence data from segments of the mitochondrial 16S rRNA and cytochrome c oxidase subunit I (COI) genes to examine population structure and demographic history of three sympatric beetle species (Coleoptera: Histeridae and Staphylinidae) collected on senita cactus (Lophocereus schottii) from six widely-separated localities on the Baja California peninsula of northwestern Mexico. Two histerids, Iliotona beyeri and Carcinops gilensis, and an unidentified staphylinid, Belonuchus sp., showed little or no population structure over a broad geographic area on the peninsula, consistent with the prediction that these beetles should show high dispersal ability. Demographic tests revealed varying levels of historical population expansion among the beetle species analyzed, which are discussed in light of their ecologies and concurrent biogeographic events. Additionally, phylogenetic analyses of COI sequences in Carcinops collected on a variety of columnar cacti from both peninsular and mainland Mexico localities revealed several species-level partitions, including a putative undescribed peninsular species that occurred sympatrically with C. gilensis on senita. Copyright © 2013 Elsevier Inc. All rights reserved.
Wu, M; Li, J; Ludwig, A; Kharicha, A
2014-09-01
Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm 2 ) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, William H.; Nandwana, Peeyush; Kirka, Michael M.
In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powdermore » bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.« less
Research on non-direct reflection columnar microstructure
NASA Astrophysics Data System (ADS)
Wu, B. Q.; Wang, X. Z.; Dong, L. H.
2015-10-01
To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
NASA Astrophysics Data System (ADS)
Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Therese, H. A.
2018-02-01
We report the effect of sputtering power (200 W - 350 W) on the structural, topographical and magnetic properties of Co2FeSi (CFS) films deposited at ambient temperatures as compared to the films which were either annealed at 300 °C or were subjected to Electron beam Rapid Thermal Annealed (ERTA) treatment. The structural and morphological analyses reveal changes in their crystalline phases and particle sizes. All the as-deposited and annealed CFS films showed A2 phase crystal structure. Whereas the CFS film sputtered at 350 W followed by ERTA displayed the fully ordered L21 structure. The particles are spherical in shape and their sizes increased gradually with increase in the sputtering power of the as-deposited and annealed CFS films. However, ERTA CFS films had spherical as well as columnar (elongated) shaped grains and their grain sizes increased nonlinearly with sputtering power. M-H studies on as-deposited, annealed and ERTA CFS films show ferromagnetic responses. The comparatively stronger ferromagnetic response was observed for the ERTA samples with low saturation field which depends on the enrichment of fine crystallites in these films. This indicates that, apart from higher sputtering powers used for deposition of CFS films, ERTA process plays a significant role in the enhancement of their magnetic responses. 350 W ERTA film has the considerable saturation magnetization (∼816 emu/cc), coercivity (∼527 Oe) and a good squareness values at 100 K than at 300 K, which could originate from the spin wave excitation effect. Further, the optimized parameters to achieve a CFS film with good structural and magnetic properties are discussed from the perspective of spintronics.
NASA Astrophysics Data System (ADS)
Steuer, Susanne; Singer, Robert F.
2014-07-01
Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).
Deng, Wen; An, Yulong; Hou, Guoliang; Li, Shuangjian; Zhou, Huidi; Chen, Jianmin
2018-09-01
Inconel 718 was used as the substrate and preheated at different temperatures to deposit yttrium stabilized zirconia (denoted as YSZ) coatings by atmospheric plasma spraying. The microstructure of the as-deposited YSZ coatings and those after cavitation-erosion tests were characterized by field emission scanning electron microscopy, Raman spectroscopy, and their hardness and toughness as well as cavitation-erosion resistance were evaluated in relation to the effect of substrate preheating temperature. Results indicate that the as-deposited YSZ coatings exhibit typical layered structure and consist of columnar crystals. With the increase of the substrate preheating temperature, the compactness and cohesion strength of coatings are obviously enhanced, which result in the increases in the hardness, elastic modulus and toughness as well as cavitation-erosion resistance of the ceramic coatings therewith. Particularly, the YSZ coating deposited at a substrate preheating temperature of 800 °C exhibits the highest hardness and toughness as well as the strongest lamellar interfacial bonding and cavitation-erosion resistance (its cavitation-erosion life is as much as 8 times than that of deposited at room temperature). Copyright © 2018 Elsevier B.V. All rights reserved.
Role of microstructure and doping on the mechanical strength and toughness of polysilicon thin films
Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis
2015-03-24
We investigated the role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm ×more » 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Moreover, the removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.« less
Petersen, Romina; Krost, Clemens
2013-07-01
Plant architecture is regulated by a complex interplay of some key players (often transcription factors), phytohormones and other signaling molecules such as microRNAs. The columnar growth habit of apple trees is a unique form of plant architecture characterized by thick and upright stems showing a compaction of internodes and carrying short fruit spurs instead of lateral branches. The molecular basis for columnar growth is a single dominant allele of the gene Columnar, whose identity, function and gene product are unknown. As a result of marker analyses, this gene has recently been fine-mapped to chromosome 10 at 18.51-19.09 Mb [according to the annotation of the apple genome by Velasco (2010)], a region containing a cluster of quantitative trait loci associated with plant architecture, but no homologs to the well-known key regulators of plant architecture. Columnar apple trees have a higher auxin/cytokinin ratio and lower levels of gibberellins and abscisic acid than normal apple trees. Transcriptome analyses corroborate these results and additionally show differences in cell membrane and cell wall function. It can be expected that within the next year or two, an integration of these different research methodologies will reveal the identity of the Columnar gene. Besides enabling breeders to efficiently create new apple (and maybe related pear, peach, cherry, etc.) cultivars which combine desirable characteristics of commercial cultivars with the advantageous columnar growth habit using gene technology, this will also provide new insights into an elevated level of plant growth regulation.
Recavarren, Rosemary A; Chivukula, Mamatha; Carter, Gloria; Dabbs, David J
2009-10-10
The significance of association between cancer and its microenvironment has been increasingly recognized. It has been shown in animal models that interaction between neoplastic epithelial cells and adjacent stroma can modulate tumor behavior. Carcinoma associated stromal cells can transform normal epithelial cells into neoplastic cells. In breast, columnar cell lesions are non-obligate precursors of low grade ductal carcinoma in situ. Columnar cell lesions can be seen intimately associated with PASH-like-stroma, a lesion we termed as CCPLS. Our aim is to investigate epithelial-stromal interactions in CCPLS and compare them to PASH without columnar cell lesions in breast core needle biopsies. Normal terminal duct lobular unit (TDLU) epithelium was seen in association with columnar cell lesions as well as PASH. Eight (8) cases of each category were examined by a panel of immunostains: CD117 (C-kit), CD34, CD105, bFGF, AR, ER-beta, MIB-1. We observed a markedly decreased expression of c-kit in columnar cell lesions compared to TDLU-epithelium. CD105 showed a quantitative increase in activated vessels in CCPLS compared to PASH. A subset of CCPLS and PASH were androgen receptor positive. A strong nuclear positivity for ER-beta is observed in the epithelium and stroma of all CCPLS cases. We conclude that (1) activated blood vessels predominate in CCPLS; (2) A molecular alteration is signified by c-kit loss in columnar cell lesions; (3) ER-beta and androgen receptor positivity indicate CCPLS are hormonally responsive lesions. Our study suggests an intimate vascular and hormone dependent epithelial-stromal interaction exists in CCPLS lesions.
Cooperative effect of pH-dependent ion transport within two symmetric-structured nanochannels.
Meng, Zheyi; Chen, Yang; Li, Xiulin; Xu, Yanglei; Zhai, Jin
2015-04-15
A novel and simple design is introduced to construct bichannel nanofluid diodes by combining two poly(ethylene terephthalate) (PET) films with columnar nanochannel arrays varying in size or in surface charge. This type of bichannel device performs obvious ion current rectification, and the pH-dependent tunability and degree of rectification can be improved by histidine modification. The origin of the ion current rectification and its pH-dependent tunability are attributed to the cooperative effect of the two columnar half-channels and the applied bias on the mobile ions. As a result of surface groups on the bichannel being charged with different polarities or degrees at different pH values, the function of the bichannel device can be converted from a nanofluid diode to a normal nanochannel or to a reverse diode.
Biological plywood film formation from para-nematic liquid crystalline organization.
Aguilar Gutierrez, Oscar F; Rey, Alejandro D
2017-11-15
In vitro non-equilibrium chiral phase ordering processes of biomacromolecular solutions offer a systematic and reproducible way of generating material architectures found in Nature, such as biological plywoods. Accelerated progress in biomimetic engineering of mesoscopic plywoods and other fibrous structures requires a fundamental understanding of processing and transport principles. In this work we focus on collagen I based materials and structures to find processing conditions that lead to defect-free collagen films displaying the helicoidal plywood architecture. Here we report experimentally-guided theory and simulations of the chiral phase ordering of collagen molecules through water solvent evaporation of pre-aligned dilute collagen solutions. We develop, implement and a posteriori validate an integrated liquid crystal chiral phase ordering-water transport model that captures the essential features of spatio-temporal chiral structure formation in shrinking film domains due to directed water loss. Three microstructural (texture) modes are identified depending on the particular value of the time-scale ratio defined by collagen rotational diffusion to water translational diffusion. The magnitude of the time scale ratio provides the conditions for the synchronization of the helical axis morphogenesis with the increase in the mesogen concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected films. The predictions of the integrated model are in qualitative agreement with experimental results and can potentially guide solution processing of other bio-related mesogenic solutions that seek to mimic the architecture of biological fibrous composites.
NASA Astrophysics Data System (ADS)
Dey, Tanusri; Praveena, Koduru Sri Shanthi; Pal, Sarbani; Mukherjee, Alok Kumar
2017-06-01
Three oxime ether derivatives, (E)-3-methoxy-4-(prop-2-ynyloxy)-benzaldehyde-O-prop-2-ynyl-oxime (C14H13NO3) (2), benzophenone-O-prop-2-ynyl-oxime (C16H13NO) (3) and (E)-2-chloro-6-methylquinoline-3-carbaldehyde-O-prop-2-ynyl-oxime (C14H11ClN2O) (4), have been synthesized and their crystal structures have been determined. The DFT optimized molecular geometries in 2-4 agree closely with those obtained from the crystallographic study. An interplay of intermolecular Csbnd H⋯O, Csbnd H⋯N, Csbnd H⋯Cl and Csbnd H···π(arene) hydrogen bonds and π···π interactions assembles molecules into a 2D columnar architecture in 2, a 1D molecular ribbon in 3 and a 3D framework in 4. Hirshfeld surface analysis showed that the structures of 2 and 3 are mainly characterized by H⋯H, H⋯C and H⋯O contacts but some contribution of H⋯N and H⋯Cl contacts is also observed in 4. Hydrogen-bond based interactions in 2-4 have been complemented by calculating molecular electrostatic potential (MEP) surfaces. The electronic structures of molecules reveal that the estimated band gap in 3, in which both aldehyde hydrogen atoms of formaldehyde-O-prop-2-ynyl-oxime (1) have been substituted by two benzene rings, is higher than that of 2 and 4 with only one aldehyde hydrogen atom replaced.
Bahlawane, N; Struckmeier, U; Kasper, T S; Osswald, P
2007-01-01
Chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD) have been employed to develop alumina thin films in order to protect thermocouples from catalytic overheating in flames and to minimize the intrusion presented to the combustion process. Alumina films obtained with a CVD process using AlCl(3) as the precursor are dense, not contaminated, and crystallize in the corundum structure, while MOCVD using Al(acetyl acetone)(3) allows the growth of corundum alumina with improved growth rates. These films, however, present a porous columnar structure and show some carbon contamination. Therefore, coated thermocouples using AlCl(3)-CVD were judged more suitable for flame temperature measurements and were tested in different fuels over a typical range of stoichiometries. Coated thermocouples exhibit satisfactory measurement reproducibility, no temporal drifts, and do not suffer from catalytic effects. Furthermore, their increased radiative heat loss (observed by infrared spectroscopy) allows temperature measurements over a wider range when compared to uncoated thermocouples. A flame with a well-known temperature profile established with laser-based techniques was used to determine the radiative heat loss correction to account for the difference between the apparent temperature measured by the coated thermocouple and the true flame temperature. The validity of the correction term was confirmed with temperature profile measurements for several flames previously studied in different laboratories with laser-based techniques.
Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad
2018-08-01
Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.
Kang, Minjung; Han, Heung Nam; Kim, Cheolhee
2018-04-23
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.
Kang, Minjung; Han, Heung Nam
2018-01-01
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...
2017-02-12
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
NASA Astrophysics Data System (ADS)
Mackay, Tom G.; Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
Three numerical studies were undertaken involving the interactions of plane waves with topological insulators. In each study, the topologically insulating surface states of the topological insulator were represented through a surface admittance. Canonical boundary-value problems were solved for the following cases: (i) Dyakonov surface-wave propagation guided by the planar interface of a columnar thin film and an isotropic dielectric topological insulator; (ii) Dyakonov-Tamm surface-wave propagation guided by the planar interface of a structurally chiral material and an isotropic dielectric topological insulator; and (iii) reflection and transmission due to the planar interface of a topologically insulating columnar thin film and vacuum. The nonzero surface admittance resulted in asymmetries in the wave speeds and decay constants of the surface waves in studies (i) and (ii). The nonzero surface admittance resulted in asymmetries in the reflectances and transmittances in study (iii).
Characteristic morphological and frictional changes in sputtered MoS/sub 2 films
NASA Technical Reports Server (NTRS)
Spalvins, T.
1984-01-01
Three microstructural growth stages of sputtered MoS2 films were identified with respect to film thickness: (1) ridge formation during nucleation, (2) an equiaxed transition zone, and (3) a columnar-fiber-like structure. Each of these growth stages are characterized in terms of microcrystallite size, shape, and orientation. The effective lubricating film thickness is established in terms of the microstructural growth stages during sliding experiments. The film has a tendency to break up within the columnar zone. Actual lubrication is performed by the remaining film which is 0.18 to 0.22 microns thick. Also a visual screening is proposed to evaluate the integrity of the as-sputtered MoS2 film. The lubricating properties are identified with respect to optical changes before and after wiping. The orientation of the microcrystallites are responsible for the optical reflective changes observed.
NASA Astrophysics Data System (ADS)
Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.
2013-06-01
This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.
Functional trade-offs in succulent stems predict responses to climate change in columnar cacti.
Williams, David G; Hultine, Kevin R; Dettman, David L
2014-07-01
Columnar cacti occur naturally in many habitats and environments in the Americas but are conspicuously dominant in very dry desert regions. These majestic plants are widely regarded for their cultural, economic, and ecological value and, in many ecosystems, support highly diverse communities of pollinators, seed dispersers, and frugivores. Massive amounts of water and other resources stored in the succulent photosynthetic stems of these species confer a remarkable ability to grow and reproduce during intensely hot and dry periods. Yet many columnar cacti are potentially under severe threat from environmental global changes, including climate change and loss of habitat. Stems in columnar cacti and other cylindrical-stemmed cacti are morphologically diverse; stem volume-to-surface area ratio (V:S) across these taxa varies by almost two orders of magnitude. Intrinsic functional trade-offs are examined here across a broad range of V:S in species of columnar cacti. It is proposed that variation in photosynthetic gas exchange, growth, and response to stress is highly constrained by stem V:S, establishing a mechanistic framework for understanding the sensitivity of columnar cacti to climate change and drought. Specifically, species that develop stems with low V:S, and thus have little storage capacity, are expected to express high mass specific photosynthesis and growth rates under favourable conditions compared with species with high V:S. But the trade-off of having little storage capacity is that low V:S species are likely to be less tolerant of intense or long-duration drought compared with high V:S species. The application of stable isotope measurements of cactus spines as recorders of growth, water relations, and metabolic responses to the environment across species of columnar cacti that vary in V:S is also reviewed. Taken together, our approach provides a coherent theory and required set of observations needed for predicting the responses of columnar cacti to climate change. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Huang, Nan; Sun, Chao; Zhu, Mingwei; Zhang, Bin; Gong, Jun; Jiang, Xin
2011-07-01
ZnO:Al thin films with Al incorporation of 0-20 at.% were deposited through the sol-gel technique. Such a film undergoes a significant microstructure development, from columnar to granular structures and then nanorod arrays with increasing Al content. The important role of Al incorporation level in the microstructure evolution was determined using scanning electron microscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. At low Al level, the transition from columnar to granular grains can be attributed to the coarsening barrier resulting from the introduction of Al into the matrix. However, oriented structures of ZnO nanorod arrays are formed at a high Al level. TEM investigation reveals that a nanorod with smooth morphology at the top and rough morphology at the bottom has a single-crystalline wurtzite structure, which is the aggregation of nanoparticles of a few nanometers in size formed through the orientation attachment mechanism followed by epitaxial growth on the aggregated particles. Finally, the physical properties of the ZnO films with different degrees of Al concentration are discussed. Such detailed microstructure studies may aid the understanding of the doping effect process on the growth of a film, which is essential to altering its physical or chemical properties.
The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.
2018-03-01
As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.
Columnar processing in primate pFC: evidence for executive control microcircuits.
Opris, Ioan; Hampson, Robert E; Gerhardt, Greg A; Berger, Theodore W; Deadwyler, Sam A
2012-12-01
A common denominator for many cognitive disorders of human brain is the disruption of neural activity within pFC, whose structural basis is primarily interlaminar (columnar) microcircuits or "minicolumns." The importance of this brain region for executive decision-making has been well documented; however, because of technological constraints, the minicolumnar basis is not well understood. Here, via implementation of a unique conformal multielectrode recording array, the role of interlaminar pFC minicolumns in the executive control of task-related target selection is demonstrated in nonhuman primates performing a visuomotor DMS task. The results reveal target-specific, interlaminar correlated firing during the decision phase of the trial between multielectrode recording array-isolated minicolumnar pairs of neurons located in parallel in layers 2/3 and layer 5 of pFC. The functional significance of individual pFC minicolumns (separated by 40 μm) was shown by reduced correlated firing between cell pairs within single minicolumns on error trials with inappropriate target selection. To further demonstrate dependence on performance, a task-disrupting drug (cocaine) was administered in the middle of the session, which also reduced interlaminar firing in minicolumns that fired appropriately in the early (nondrug) portion of the session. The results provide a direct demonstration of task-specific, real-time columnar processing in pFC indicating the role of this type of microcircuit in executive control of decision-making in primate brain.
Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil
2016-11-09
Perylene bisimide derivatives (PBIs) are known to form only columnar or lamellar assemblies. There is no known example of a PBI self-assembling into a supramolecular sphere. Therefore, periodic and quasiperiodic arrays generated from spherical assemblies produced from PBIs are also not known. Here, a PBI functionalized at its imide groups with a second generation self-assembling dendron is reported to self-assemble into supramolecular spheres. These spheres self-organize in a body-centered cubic (BCC) periodic array, rarely encountered for self-assembling dendrons but often encountered in block copolymers. These supramolecular spheres also assemble into a columnar hexagonal array in which the supramolecular columns are unexpectedly and unprecedentedly made from spheres. At lower temperature, two additional columnar hexagonal phases consisting of symmetric and asymmetric tetrameric crowns of PBI are observed. Structural and retrostructural analysis via X-ray diffraction (XRD), molecular modeling, molecular simulation, and solid state NMR suggests that inversion of the symmetric tetrameric crowns at high temperature mediates their transformation into supramolecular spheres. The tetrameric crowns of PBIs are able to form an isotropic sphere in the cubic phase due to rapid molecular motion at high temperature, unobservable by XRD but demonstrated by solid state NMR studies. This mechanism of hierarchical self-organization of PBI into supramolecular spheres is most probably general and can be applied to other related planar molecules to generate new functions.
The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.
2018-06-01
As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.
Attwood, S E; Ball, C S; Barlow, A P; Jenkinson, L; Norris, T L; Watson, A
1993-01-01
Patients with Barrett's columnar lined lower oesophagus have severe acid gastrooesophageal reflux and may develop complications, including ulceration, stricture, and carcinoma. The aim of this study was to establish if a relationship exists between the pH profile in the oesophagus and stomach and the development of complications in patients with Barrett's columnar lined lower oesophagus. Twenty four hour ambulatory oesophageal pH monitoring was performed in 26 patients with Barrett's columnar lined lower oesophagus and combined with 24 hour ambulatory gastric pH monitoring in 16. Ten of the 26 with Barrett's columnar lined lower oesophagus had complications including stricture (eight), deep ulceration (one), and carcinoma (one). Oesophageal acid exposure (% time < pH 4) was similar in patients with or without complications (19.2% v 19.3% p > 0.05). Oesophageal alkaline exposure (% time > pH 7) was greater in patients with complications (24.2% v 8.4% p > 0.05). Of the 16 patients who underwent gastric pH monitoring there was a clear relationship between gastric and oesophageal alkalinisation in 13. These results support the hypothesis that complications in Barrett's columnar lined lower oesophagus develop in association with increased exposure of the oesophagus to an alkaline environment which appears to be secondary to duodenogastric reflux. The routine use of 24 hour ambulatory gastric pH monitoring in conjunction with oesophageal pH monitoring can help identify those patients at risk. PMID:8432439
Mucosal polyamine metabolism in the columnar lined oesophagus.
Gray, M R; Wallace, H M; Goulding, H; Hoffman, J; Kenyon, W E; Kingsnorth, A N
1993-01-01
Mucosal ornithine decarboxylase activity and polyamine content has been proposed as a possible marker for malignant potential in gastrointestinal mucosa. Polyamine content and histological findings were examined in 107 pairs of endoscopic biopsy specimens taken from gastric fundus, fundic and specialised Barrett's oesophagus and Barrett's adenocarcinoma. The content of putrescine (median nmol/mg protein, range) the primary product of ornithine decarboxylase showed a progressive increase from gastric fundus (0.41, 0.15-1.5); fundic (0.45, 0.01-4.08); specialised Barrett's oesophagus (0.54, 0.01-2.0); dysplastic columnar lined oesophagus (0.56, 0.31-3.1) to adenocarcinoma (1.23, 0.29-8.98). Adenocarcinoma putrescine content was significantly greater than gastric fundus (p < 0.018) and fundic (p < 0.03). Mucosal spermine, spermidine, and total polyamine values were greater in gastric fundus than fundic, specialised Barrett's oesophagus, and dysplastic columnar lined oesophagus (all p < 0.001) suggesting failure to further metabolise putrescine to its higher polyamines in the metaplastic epithelium. Although metaplastic columnar lined oesophagus shows significant differences in polyamine metabolic activity from the stomach the important distinction between specialised and dysplastic columnar lined oesophagus cannot be made by measuring the polyamine content. PMID:8504955
Lörinc, Ester; Mellblom, Lennart; Öberg, Stefan
2015-12-01
To characterize the immunophenotypic relationship between the squamous and the glandular compartments in the oesophagus of patients with columnar-lined oesophagus (CLO). Eight tissue blocks from three oesophageal resection specimens from patients who underwent oesophagectomy for adenocarcinoma of the oesophagus were selected for immunohistochemical analysis. The markers of intestinal differentiation [CK20, CDX2 and MUC2] were all expressed in the expected pattern, solely in the glandular compartment of the resection specimens. CK4, CK17 and lysozyme were expressed in both the glandular and the squamous compartments. In addition, CK17 expression was found on both the squamous and glandular margins of the squamocolumnar transformation zones and in the submucosal gland (SMG) intraglandular and excretory ducts. There is an immunophenotypic relationship between the squamous and the glandular compartments of the CLO, with expression of lysozyme, CK4 and CK17 in both squamous and columnar cells. These overlapping immunophenotypes indicate similar differentiation paths, and link the SMG unit with the columnar metaplasia and the neosquamous islands in CLO. Our findings support the theory of a cellular origin of CLO and neosquamous islands from the SMG unit. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kimura, N.; Iwashita, N.; Masuda, T.
2009-04-01
1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0.0005 to 0.2 mm/min, respectively. Pressure and relative humidity were set to room conditions. Tourmaline was chosen for testing (as representative of columnar accessory minerals embedded within metamorphic tectonites) because this is the only mineral for which crystals are available of sufficient size and quality. A total of 120 prism-shaped tourmaline test pieces (dimensions, 2×2×12 mm) were prepared from a single tourmaline block collected from Minas Gerais, Brazil. The flexural strength of tourmaline shows a clear decrease with decreasing crosshead speed at ambient temperature (with n ≈ 15 as the static fatigue parameter); however, this trend weakens with increasing temperature (n > 50); that is, the influence of static fatigue on the strength of tourmaline decreases with increasing temperature. A comparable result has been reported for glass materials because of difficulties in the absorption of moisture on sample surfaces under high-temperature conditions. The fabric pattern of fracture planes developed in tourmaline specimens in the present study, which show rectilinear scratches, arrests, or Wallner lines on smooth surfaces, is similar to that observed for glass materials. 3. Fractography of naturally deformed minerals A ‘striation-like' pattern resulting from cyclic fatigue fracture was observed by scanning electron microscope (SEM) analysis of a natural fracture plane developed within marble-hosted amphibole. The sample was collected from the eastern flank of the Red River shear zone (Luc Yen district), northern Vietnam. The brittle fracturing of amphibole (open fractures were filled by calcite, which deforms plastically) is considered to have occurred at 6 km depth at 25 Ma, based on geological criteria. 4. Order of stress magnitude in continental crust at the depth of the brittle-plastic transition zone Assuming that the fracture behaviour of columnar accessory minerals during the development of microboudinage is independent of the mineral species, the above results raise the possibility that the fracturing of columnar accessory minerals at deep crustal levels is governed by cyclic fatigue, possibly attributed to mechanical degradation rather than stress corrosion associated with water molecules, and that the fracture behaviour of columnar accessory minerals is similar to that of glass materials. Thus, cyclic fatigue studies of glass materials are expected to provide a good reference for approximate estimates of the fatigue limit of columnar accessory minerals. According to the literature, the fatigue limit for many glass materials is approximately 10% of the ultimate tensile strength. Taking into account the influence of fatigue fracture, the obtained magnitudes of palaeodifferential stress at crustal depths of 10-20 km, as estimated using the microboudinage technique, are in the low tens of megapascals (e.g., 10 MPa at 9 km depth, as obtained from metacherts within high-pressure rocks in Japan; 25 MPa at 12 km depth, as obtained from metachert within a metamorphic sole in the UAE; 9 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in China; and 14 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in Turkey). These values are much lower than those obtained from laboratory measurements.
Exploring Redox States, Doping and Ordering of Electroactive Star-Shaped Oligo(aniline)s.
Mills, Benjamin M; Fey, Natalie; Marszalek, Tomasz; Pisula, Wojciech; Rannou, Patrice; Faul, Charl F J
2016-11-14
We have prepared a simple star-shaped oligo(aniline) (TDPB) and characterised it in detail by MALDI-TOF MS, UV/Vis/NIR spectroscopy, time-dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π-conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid-doped TDPB shows behaviour similar to discotic liquid crystals, with X-ray scattering investigations revealing columnar self-assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star-shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Yifei; Zuo, Jian -Min
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less
Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June
2013-01-01
A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.
De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia
2015-12-29
Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that-in this highly columnar cortex-task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.
Heliotropism in modern stromatolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awramik, S.M.
1985-01-01
Three different examples of modern microbial mats and stromatolites have been discovered that exhibit a preferred orientation towards specular sunlight. In Hamelin Pool of Shark Bay, Western Australia, subtidal decimeter-sized discrete columns and intertidal centimeter-sized tufts were found pointing north. In thermal spring effluents and pools of Yellowstone National Park, columnar and conical centimeter-sized microbial structures were found to be inclined to the south. None of these inclined structures show growth orientation in response to prevailing fluid directions. Each example occurs in markedly different environments and each has different photosynthetic microbes: (1) the subtidal Shark Bay columns are dominated bymore » surficial diatoms: (2) the intertidal Shark Bay tufts constructed by a filamentous cyanobacterium; and (3) the cones and columns in Yellowstone are built by filamentous flexibacteria and cyanobacteria. Sunlight must be considered a major driving force in stromatolite morphogenesis. Extrapolation of these modern heliotropic columnar stromatolites to fossil examples supports the paleolatitude hypothesis of Vologdin (1961) and of Nordeng (1963) and the days per year hypothesis of Vanyo and Awramik (1982). Taken together, and especially when combined with paleomagnetic analyses, the procedures yield an impressive array of data on Earth and Earth-Sun-Moon histories.« less
A Laboratory Study of Vortical Structures in Rotating Convection Plumes
NASA Astrophysics Data System (ADS)
Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team
2015-11-01
A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).
2017-01-01
Nanosheet Ca2Nb3O10 (CNOns) layers were deposited on ultralow expansion glass substrates by the Langmuir–Blodgett method to obtain preferential (001)-oriented growth of Pb(Zr0.52Ti0.48)O3 (PZT) thin films using pulsed laser deposition (PLD) to enhance the ferroelectric and piezoelectric properties of the films. The PLD deposition temperature and repetition frequency used for the deposition of the PZT films were found to play a key role in the precise control of the microstructure and therefore of the ferroelectric and piezoelectric properties. A film deposited at a high repetition frequency has a columnar grain structure, which helps to increase the longitudinal piezoelectric coefficient (d33f). An enhanced d33f value of 356 pm V–1 was obtained for 2-μm-thick PZT films on CNOns/glass substrates. This high value is ascribed to the preferential alignment of the crystalline [001] axis normal to the substrate surface and the open columnar structure. Large displacement actuators based on such PZT films grown on CNOns/glass substrates should be useful in smart X-ray optics applications. PMID:28952313
Complexation of polyoxometalates with cyclodextrins.
Wu, Yilei; Shi, Rufei; Wu, Yi-Lin; Holcroft, James M; Liu, Zhichang; Frasconi, Marco; Wasielewski, Michael R; Li, Hui; Stoddart, J Fraser
2015-04-01
Although complexation of hydrophilic guests inside the cavities of hydrophobic hosts is considered to be unlikely, we demonstrate herein the complexation between γ- and β-cyclodextrins (γ- and β-CDs) with an archetypal polyoxometalate (POM)--namely, the [PMo12O40](3-) trianion--which has led to the formation of two organic-inorganic hybrid 2:1 complexes, namely [La(H2O)9]{[PMo12O40]⊂[γ-CD]2} (CD-POM-1) and [La(H2O)9] {[PMo12O40]⊂[β-CD]2} (CD-POM-2), in the solid state. The extent to which these complexes assemble in solution has been investigated by (i) (1)H, (13)C, and (31)P NMR spectroscopies and (ii) small- and wide-angle X-ray scattering, as well as (iii) mass spectrometry. Single-crystal X-ray diffraction reveals that both complexes have a sandwich-like structure, wherein one [PMo12O40](3-) trianion is encapsulated by the primary faces of two CD tori through intermolecular [C-H···O═Mo] interactions. X-ray crystal superstructures of CD-POM-1 and CD-POM-2 show also that both of these 2:1 complexes are lined up longitudinally in a one-dimensional columnar fashion by means of [O-H···O] interactions. A beneficial nanoconfinement-induced stabilizing effect is supported by the observation of slow color changes for these supermolecules in aqueous solution phase. Electrochemical studies show that the redox properties of [PMo12O40](3-) trianions encapsulated by CDs in the complexes are largely preserved in solution. The supramolecular complementarity between the CDs and the [PMo12O40](3-) trianion provides yet another opportunity for the functionalization of POMs under mild conditions by using host-guest chemistry.
NASA Astrophysics Data System (ADS)
Jones, Brian
2010-12-01
A wave-cut notch that is deeply incised into the vertical cliff faces of Cayman Brac is adorned with stalactites, stalagmites, and columns. The prefix "notch" is applied to each type of speleothem in order to distinguish them from cave speleothems. These speleothemic deposits must have formed since the highstand, ~ 125,000 years ago, which was responsible for the development of the notch. The laminated notch speleothems are formed largely of aragonite (small and large crystals) and calcite (columnar, fiber, and grain-coating mats) along with minor amounts of dolomite, a Mg-Si precipitate (kerolite?), gypsum, and halite. Laminae, typically < 2 mm thick, are commonly bounded by dissolution discontinuities that truncate the older laminae and their formative aragonite and calcite crystals. The patchy tan, grey, to green surface coloration of the notch speleothems reflects the random distribution of the subaerial biofilms, which are formed of a diverse array of filamentous and non-filamentous microbes. The notch speleothems are the integrated product of precipitation and dissolution that was, in some places, microbially mediated. Interpretations based on their mineralogy and internal structures indicate that the composition of the formative waters must have temporally fluctuated with periods of precipitation being interrupted by periods of dissolution. The microbes that formed the subaerial biofilms may have influenced some of these processes. The aragonite, calcite, and kerolite (?) probably formed as evaporation and loss of Ca through precipitation progressively increased the Mg:Ca and the Si/(Ca + Mg) ratios. The dolomite, gypsum, and halite probably formed during early diagenesis during the evaporation of seawater that percolated into the interiors of the notch speleothems.
Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel
NASA Astrophysics Data System (ADS)
Hao, Xian-Jie; Feng, Xia-Ting; Yang, Cheng-Xiang; Jiang, Quan; Li, Shao-Jun
2016-04-01
Due to the time dependency of the crack propagation, columnar jointed rock masses exhibit marked time-dependent behaviour. In this study, in situ measurements, scanning electron microscope (SEM), back-analysis method and numerical simulations are presented to study the time-dependent development of the excavation damaged zone (EDZ) around underground diversion tunnels in a columnar jointed rock mass. Through in situ measurements of crack propagation and EDZ development, their extent is seen to have increased over time, despite the fact that the advancing face has passed. Similar to creep behaviour, the time-dependent EDZ development curve also consists of three stages: a deceleration stage, a stabilization stage, and an acceleration stage. A corresponding constitutive model of columnar jointed rock mass considering time-dependent behaviour is proposed. The time-dependent degradation coefficient of the roughness coefficient and residual friction angle in the Barton-Bandis strength criterion are taken into account. An intelligent back-analysis method is adopted to obtain the unknown time-dependent degradation coefficients for the proposed constitutive model. The numerical modelling results are in good agreement with the measured EDZ. Not only that, the failure pattern simulated by this time-dependent constitutive model is consistent with that observed in the scanning electron microscope (SEM) and in situ observation, indicating that this model could accurately simulate the failure pattern and time-dependent EDZ development of columnar joints. Moreover, the effects of the support system provided and the in situ stress on the time-dependent coefficients are studied. Finally, the long-term stability analysis of diversion tunnels excavated in columnar jointed rock masses is performed.
Okada, Kazuma; Wada, Masato; Moriya, Shigeki; Katayose, Yuichi; Fujisawa, Hiroko; Wu, Jianzhong; Kanamori, Hiroyuki; Kurita, Kanako; Sasaki, Harumi; Fujii, Hiroshi; Terakami, Shingo; Iwanami, Hiroshi; Yamamoto, Toshiya; Abe, Kazuyuki
2016-11-01
Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant 'McIntosh Wijcik', which was discovered as a bud mutation from 'McIntosh', exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in 'McIntosh Wijcik' but not in 'McIntosh'. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in 'McIntosh Wijcik' is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.
Thermoelectric and Structural Characterization of Al-Doped ZnO/Y₂O₃ Multilayers.
Mele, P; Saini, S; Tiwari, A; Hopkins, P E; Miyazaki, K; Ichinose, A; Niemelä, J; Karppinen, M
2017-03-01
The influence of Y2O3 nanolayers on thermoelectric performance and structure of 2% Al-doped ZnO (AZO) thin films has been studied. Multilayers based on five 50 nm thick AZO layers alternated with few nanometers thick Y2O3 layers were prepared by pulsed laser deposition on Al2O3 single crystals by alternate ablation of AZO target and Y2O3 target. The number of laser shots on Y2O3 target was maintained very low (5, 10 and 15 pulses in three separate experiments. The main phase (AZO) presents polycrystalline orientation and typical columnar growth not affected by the presence of Y2O3 nanolayers. The multilayer with 15 laser shots of Y2O3 showed best thermoelectric performance with electrical conductivity σ 48 S/cm and Seebeck coefficient S = −82 μV/K, which estimate power factor (S2·σ) about 0.03 × 10−3 W m−1 K−2 at 600 K. The value of thermal conductivity (κ) was found 10.03 W m−1 K−1 at 300 K, which is one third of typical value previously reported for bulk AZO. The figure of merit, ZT = S2·σ·T/κ, is calculated 9.6 × 10−4 at 600 K. These results demonstrated the feasibility of nanoengineered defects insertion for the depression of thermal conductivity.
Pyromellitamide aggregates and their response to anion stimuli.
Webb, James E A; Crossley, Maxwell J; Turner, Peter; Thordarson, Pall
2007-06-06
The N,N',N'',N'''-1,2,4,5-tetra(ethylhexanoate) pyromellitamide is found to be capable of both intermolecular aggregation and binding to small anions. It is synthesized by aminolysis of pyromellitic anhydride with ethanolamine, followed by a reaction with hexanoyl chloride. The single-crystal X-ray structure of the pyromellitamide shows that it forms one-dimensional columnar stacks through an intermolecular hydrogen-bonding network. It also forms self-assembled gels in nonpolar solvents, presumably by a hydrogen-bonding network similar to the solid-state structure as shown by IR and XRD studies. Aggregation by intermolecular hydrogen bonding of the pyromellitamide is also observed by NMR and IR in solution. Fitting of NMR dilution data for pyromellitamide in d6-acetone to a cooperative aggregation model gave KE=232 M-1 and positive cooperativity of aggregation (rho=0.22). The pyromellitamide binds to a range of small anions with the binding strength decreasing in the order chloride>acetate>bromide>nitrate approximately iodide. The data indicate that the pyromellitamide binds two anions and that it displays negative cooperativity. The intermolecular aggregation of the pyromellitamide can also be altered using small anion stimuli; anion addition to preformed self-assembled pyromellitamide gels causes their collapse. The kinetics of anion-induced gel collapse are qualitatively correlated to the binding affinities of the same anions in solution. The cooperative anion binding properties and the sensitivity of the self-assembled gels formed by pyromellitamide toward anions could be useful in the development of sensors and switching/releasing devices.
Columnar lined Barrett's oesophagus.
Sharma, Neel; Ho, Khek Yu
2015-12-01
Over the past few years, the definition of Barrett's oesophagus has altered with no real agreement on histological understanding. This article highlights the increasing confusion regarding Barrett's oesophagus with a focus on the all-too-frequently ignored aspect of the columnar lined oesophagus.
Mixed-Substituent Cyclophosphazenes with Calamitic and Polycatenar Mesogens.
Jiménez, J; Callizo, L; Serrano, J L; Barberá, J; Oriol, L
2017-07-17
A synthetic strategy has been developed to prepare liquid crystalline cyclotriphosphazenes that have two different types of mesogenic units linked to the same phosphorus atom. Hexachlorocyclotriphosphazene, N 3 P 3 Cl 6 , was reacted with 3 mol of the calamitic unit 4-cyano-4'-hydroxybiphenyl to give a mixture of compounds in which the nongem-trans-trisubstituted derivative N 3 P 3 Cl 3 (OC 6 H 4 C 6 H 4 {CN}-p) 3 was the major product. The substitution of all three chlorine atoms in this nongeminal compound gave rise to the hydroxyl-functional phosphazenes, nongem-trans-N 3 P 3 (OC 6 H 4 C 6 H 4 {CN}-p) 3 (OC 6 H 4 {OH}-p) 3 or nongem-trans-N 3 P 3 (OC 6 H 4 C 6 H 4 {CH 3 }-p) 3 (OC 6 H 4 {OH}-p) 3 , from which the second mesogenic unit, a polycatenar one, was introduced. The chemical structure of the resulting materials, deduced from spectroscopic and MALDI-TOF techniques, was in accordance with monodisperse, fully functionalized cyclotriphosphazenes. Mesomorphism is highly dependent on the terminal group of the calamitic units, and liquid crystal phases were only detected on the cyano-derivatives. The calamitic or columnar nature of the mesophase depends on the number of alkyl chains of the polycatenar moieties.
Water hardness influences Flavobacterium columnare pathogenesis in channel catfish
USDA-ARS?s Scientific Manuscript database
Studies were conducted to determine aspects of water chemistry responsible for large differences in pathogenesis and mortality rates in challenges of channel catfish Ictalurus punctatus with Flavobacterium columnare; challenges were conducted in water supplying the Stuttgart National Aquaculture Res...
Formalin treatment of Trichondina sp. reduced Flavobacterium columnare infection in tilapia
USDA-ARS?s Scientific Manuscript database
Bacterium Flavobacterium columnare and protozoan Trichodina spp. are common pathogens of cultured fish. Recent studies on parasite-bacterium interaction show evidence that concurrent infections increase severity of some infectious diseases, especially bacterial diseases. The effect of parasite treat...
Qiu-Yan, Jiang; Jin-Ling, Song; Hai-Xia, Mo
2012-01-01
To study the molecular biological effects of Guilin Watermelon Frost (GWF) on the mRNA expressions of basic fibroblast growth factor (bFGF) in patients with uterine uterine cervical columnar ectopy. One hundred and sixty patients with uterine cervical columnar ectopy were assigned to two groups by the random digit table. Patients in the treatment group were treated with local spray of GWF, while those in the control group were local applied with bFGF-collagen sponge. The mRNA expressions of bFGF of the uterine tissue were detected in the two groups before and after treatment using RT-PCR. Before treatment the mRNA expression of bFGF in the uterine cervical columnar ectopy was 0.55 +/- 0.10 in the treatment group and 0.58 +/- 0.13 in the control group, without insignificant difference (P > 0.05). After treatment it significantly increased in the two groups, being 0.82 +/- 0.17 and 0.78 +/- 0.15 respectively, showing statistical difference from before treatment (P < 0.01). But no statistical difference existed between the two groups after treatment (P > 0.05). GWF showed enhancement on the mRNA expressions of bFGF in patients with uterine cervical columnar ectopy.
Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong
2015-02-23
A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi
NASA Astrophysics Data System (ADS)
Tripathi, S.; De, Rajnarayan; Maidul Haque, S.; Divakar Rao, K.; Misal, J. S.; Prathap, C.; Das, S. C.; Patidar, Manju M.; Ganesan, V.; Sahoo, N. K.
2018-01-01
Present communication focuses on a relatively less explored direction of producing rough polytetrafluoroethylene (PTFE) surfaces for possible hydrophobic applications. The experiments were carried out to make rough PTFE films without losing much of the transmission, which is an important factor while designing futuristic solar cell protection covers. After annealing temperature optimization, as grown RF magnetron sputtered PTFE films (prepared at 160 W RF power) were subjected to vacuum annealing at 200 °C for different time durations ranging from 1 to 4 h. The films show morphological evolution exhibiting formation and growth of columnar nanostructures that are responsible for roughening of the films due to annealing induced molecular migration and rearrangement. In agreement with this, qualitative analysis of corresponding x-ray reflectivity data shows modification in film thickness, which may again be attributed to the growth of columns at the expense of the atoms of remaining film molecules. However, the observations reveal that the film annealed at 200 °C for 2 h gives a combination of patterned columnar structures and reasonable transmission of >85% (in 500-1000 nm wavelength range), both of which are deteriorated when the films are annealed either at high temperature beyond 200 °C or for long durations >3 h. In addition, attenuated total reflection-Fourier transform infrared spectroscopy results reveal that the molecular bonds remain intact upon annealing at any temperature within the studied range indicating the stable nature of the films.
Self-assembled lipid bilayer materials
Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.
2005-11-08
The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.
Gene expression analysis between planktonic and biofilm states of Flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...
Sickeningly sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry, continual efforts to better understand basic mechanisms that contribute to disease...
NASA Astrophysics Data System (ADS)
Sharma, Manohar K.; Kumar, Abhishek; Verma, Mahendra K.; Chakraborty, Sagar
2018-04-01
In this paper, we investigate the properties of rapidly rotating decaying turbulence using numerical simulations and phenomenological modeling. We find that as the turbulent flow evolves in time, the Rossby number decreases to ˜10-3, and the flow becomes quasi-two-dimensional with strong coherent columnar structures arising due to the inverse cascade of energy. We establish that a major fraction of energy is confined in Fourier modes (±1, 0, 0) and (0, ±1, 0) that correspond to the largest columnar structure in the flow. For wavenumbers (k) greater than the enstrophy dissipation wavenumber (kd), our phenomenological arguments and numerical study show that the enstrophy flux and spectrum of a horizontal cross section perpendicular to the axis of rotation are given by ɛωexp (-C (k/kd ) 2 ) and C ɛω2 /3k-1exp (-C (k/kd ) 2 ) , respectively; for this 2D flow, ɛω is the enstrophy dissipation rate, and C is a constant. Using these results, we propose a new form for the energy spectrum of rapidly rotating decaying turbulence: E (k ) =C ɛω2 /3k-3exp (-C (k/kd ) 2 ) . This model of the energy spectrum is based on wavenumber-dependent enstrophy flux, and it deviates significantly from power law energy spectrum reported earlier.
NASA Astrophysics Data System (ADS)
Lintang, Hendrik O.; Jalani, Mohamad Azani; Yuliati, Leny
2017-11-01
We highlight that columnar assembly of self-assembled templates was successfully utilized using sol-gel technique of mesostructured silica for the quality improvement of transparent mesoporous film nanocomposites with a hexagonal structure through appropriate heat treatment methods and self-assembled templates in the removal of organic components. In contrast to the reported mesostructured silica film nanocomposites containing columnar assembly of trinuclear gold(I) pyrazolate complex ([Au3Pz3]C10TEG/silicahex) with calcination at 450 °C, mesostructured silica film nanocomposites from self-assembled template of triphenylene bearing amphiphilic decoxy triethylene glycol side chains (TPC10TEG/silicahex) can be completely collapsed upon calcination at 450 °C. This hexagonal structure can be only preserved with calcination at 250 °C although intensity of its main diffraction peak of d100 at 2θ of 3.70° was significantly decreased. On the other hands, thermal hydrogen reduction at the same temperature was found to be the best heat treatment to preserve the quality of mesoporous silica film nanocomposites with decreasing in intensity of diffraction peak up to 30%. Such phenomenon might be caused by slow decomposition of organic components with the presence of hydrogen gas upon heating to shrinkage the silica wall from interpenetration of ethylene glycol segments of the side chains and to open bonding of benzene ring from the core.
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.
Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D
2017-02-13
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD
Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.
2017-01-01
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=−5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the ‘parent’ ones suggests the possibility of ‘spontaneous’ nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025294
Yamashita, Yoshiko; Ichihara, Shu; Moritani, Suzuko; Yoon, Han-Seung; Yamaguchi, Masahiro
2016-06-01
Columnar cell lesions of the breast encompass columnar cell change/hyperplasia (CCC/CCH) and flat epithelial atypia (FEA). These have attracted researchers because emerging data suggest that FEA may represent the earliest histologically detectable non-obligate precursor of breast cancer. However, it is occasionally difficult to distinguish FEA from CCC/CCH because of similar histology. Although the nuclei of FEA are frequently described as relatively round compared with those of CCC/CCH, there are few morphometric studies to support this statement. The aim of this study was to provide objective data as to the nuclear shape in columnar cell lesions. As a shape descriptor, we adopted ellipticity that is defined by the formula 2b/2a, where a is the length of the long axis of the ellipse and b is the length of the short axis. Contrary to circularity, ellipticity reflects the overall configuration of an ellipse irrespective of surface irregularity. Our image analysis included generating whole slide images, extracting glandular cell nuclei, measuring nuclear ellipticity, and superimposing graded colors based on execution of results on the captured images. A total of 7917 nuclei extracted from 22 FEA images and 5010 nuclei extracted from 13 CCC/CCH images were analyzed. There was a significant difference in nuclear roundness between FEA and CCC/CCH with mean ellipticity values of 0.723 and 0.679, respectively (p < 0.001, Welch's t test). Furthermore, FEA with malignancy had significantly rounder nuclei than FEA without malignancy (p < 0.001). Our preliminary results suggest that nuclear ellipticity is a key parameter in reproducibly classifying columnar cell lesions of the breast.
Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus.
Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A; Wang, Timothy C; Sepulveda, Antonia R; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen
2017-10-26
In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63 + KRT5 + KRT7 + ) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63 + KRT5 + KRT7 + basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.
Prasad, Yogendra; Arpana; Kumar, Dinesh; Sharma, A K
2011-03-01
This investigation was aimed to find out appropriate strategy against antibiotic resistant bacterial fish pathogen, F. columnare. This pathogen was found persistently associated with fishes causing columnaris disease and ensuing mass mortality in hatchery and culture system of Sub - Himalayan region. Nine lytic F. columnare phages (FCP1 - FCP9) specific to its fifteen isolates were isolated from the water and bottom sediments of various geo-climatic regions of North India. The F. columnare phage FCP1 (made of hexagonal head and non contractile long tail belonging to family Podovariedae, a member of DNA virus) exhibited broader host range to lyse 9 out of 15 isolates of F. columnare. Therapeutic ability of FCP1 phage was assessed in C. batrachus inoculated intramuscularly (im) with virulent bacterial isolate FC8 and post inoculated (PI) with FCP1 phage (@ 10(8) : 10(6):: cfu : pfu) through intramuscular (im), immersion (bath) and oral (phage impregnated feed) treatment. Significant (p < 0.001) reduction (less than 10(-3) cfu ml(-1)) in host bacterium in the sera, gill, liver and kidney of challenged fishes was noted after 6 hr of phage treatment. Quantum of phage played a significant role in bringing down bacterial population as in the sera of dose 1 (@ 4.55 x 10(6) pfu ml(-1)) and dose 2 (@ 9.15 x 10(6) pfu ml(-1)) treated fishes mean log10 cfu value reduced by 3 logs (58.39%) and 5 logs (73.77%) at 96 hr, respectively. Phage treatment led to disappearance of gross symptoms, negative bacteriological test, detectable phage and 100% survival in experimentally infected C. batrachus. Result of this study provides evidence of profound lytic impact of FCP1 phage and represents its interesting therapeutic importance against antibiotic resistant F. columnare.
Wu, Qianru; Lu, Jiping; Liu, Changmeng; Fan, Hongli; Shi, Xuezhi; Fu, Jie; Ma, Shuyuan
2017-07-04
Wire arc additive manufacturing (WAAM) technique is a cost-competitive and efficient technology to produce large structure components in industry domains. Mechanical properties are mainly dominated by the microstructure of the components, which is deeply affected by the molten pool size. In this work, to investigate the effect of the molten pool size on microstructure and mechanical properties of the components, a series of Ti-6Al-4V alloy blocks with different width of molten pool (WMP) ranging from 7 mm to 22 mm were deposited by adjusting the wire feed speed (WFS) from 100 cm/min to 500 cm/min. It is interesting to find that the macrostructure changes from columnar grains to equiaxial grains, and then returns to large columnar grains with the increase of WMP, which is mainly caused by the different cooling rates and thermal gradients. Nonetheless, the tensile properties of the components have a tendency to decline with the increase of WMP.
Wu, Qianru; Lu, Jiping; Liu, Changmeng; Fan, Hongli; Shi, Xuezhi; Fu, Jie; Ma, Shuyuan
2017-01-01
Wire arc additive manufacturing (WAAM) technique is a cost-competitive and efficient technology to produce large structure components in industry domains. Mechanical properties are mainly dominated by the microstructure of the components, which is deeply affected by the molten pool size. In this work, to investigate the effect of the molten pool size on microstructure and mechanical properties of the components, a series of Ti-6Al-4V alloy blocks with different width of molten pool (WMP) ranging from 7 mm to 22 mm were deposited by adjusting the wire feed speed (WFS) from 100 cm/min to 500 cm/min. It is interesting to find that the macrostructure changes from columnar grains to equiaxial grains, and then returns to large columnar grains with the increase of WMP, which is mainly caused by the different cooling rates and thermal gradients. Nonetheless, the tensile properties of the components have a tendency to decline with the increase of WMP. PMID:28773107
Improvement of perpendicular anisotropy of columnar FePt-ZrO2-C films with FePt insert layer
NASA Astrophysics Data System (ADS)
Dong, Kaifeng; Mo, Wenqin; Jin, Fang; Song, Junlei; Cheng, Weimin; Wang, Haiwei
2018-05-01
The effects of various thicknesses of FePt insert layer on the microstructure and magnetic properties of FePt-ZrO2-C thin films have been investigated. It is found that with inserting 0.4 nm FePt films between the TiON intermediate layer and FePt-ZrO2-C layer, the perpendicular anisotropy indicated by Hc⊥/Hc//ratio would increase from 4 to 13.1, suggesting the perpendicular anisotropy could be improved a lot with using FePt insert layer. Simultaneously, the FePt grains of FePt-ZrO2-C thin films maintained columnar structure and the grain isolation could also be improved in a certain degree. With further increase of the FePt insert layer thickness, although the perpendicular anisotropy was still larger than that without FePt insert layer, the grain size of the FePt-ZrO2-C films would increase and the isolation would be deteriorated.
Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries
NASA Astrophysics Data System (ADS)
Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan
2017-09-01
Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.
Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test
NASA Astrophysics Data System (ADS)
Schlegel, N.; Sebold, D.; Sohn, Y. J.; Mauer, G.; Vaßen, R.
2015-10-01
To increase the efficiency of turbines for the power generation and the aircraft industry, advanced thermal barrier coatings (TBCs) are required. They need to be long-term stable at temperatures higher than 1200 °C. Nowadays, yttria partially stabilized zirconia (YSZ) is applied as standard TBC material. But its long-term application at temperatures higher than 1200 °C leads to detrimental phase changes and sintering effects. Therefore, new materials have to be investigated, for example, complex perovskites. They provide high melting points, high thermal expansion coefficients and thermal conductivities of approx. 2.0 W/(m K). In this work, the complex perovskite La(Al1/4Mg1/2Ta1/4)O3 (LAMT) was investigated. It was deposited by the suspension plasma spraying (SPS) process, resulting in a columnar microstructure of the coating. The coatings were tested in thermal cycling gradient tests and they show excellent results, even though some phase decomposition was found.
Metal Matrix Composites Directionally Solidified
NASA Astrophysics Data System (ADS)
Ares, Alicia Esther; Schvezov, Carlos Enrique
The present work is focus on studying the dendritic solidification of metal matrix composites, MMCs, (using zinc-aluminum, ZA, alloys as matrix and the addition of SiC and Al2O3 particles). The compounds were obtained by as-cast solidification, under continuous stirring and in a second stage were directionally solidified in order to obtain different dendritic growth (columnar, equiaxed and columnar-to-equiaxed transition (CET)). The results in MMCs were compared with those obtained in directional solidification of ZA alloys, primarily with regard to structural parameters. The size and evolution of microstructure, according to the size of the MMCs particles and the variation of the thermal parameters was analyzing. In general it was found that the size of the microstructure (secondary dendritic spacing) decreases with the increase of particles in the matrix. When cooling rate increases, particle size decreases, and a higher cooling rate causes finer and more homogeneous dendrites Also, the segregation which was found in the matrix of the composites was significantly less than in the case of ZA alloys.
NASA Technical Reports Server (NTRS)
Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.
2014-01-01
Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.
Antibacterial activity of acylglucinol derivatives against Flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
Columnaris disease is one of the most common bacterial diseases of pond-raised channel catfish (Ictalurus punctatus) in the southeastern United States of America. The Gram-negative, rod-shaped bacterium Flavobacterium columnare is the cause of columnaris disease. Direct economic losses to catfish pr...
Ungeremine and its hemisynthetic analogues as bactericides against Flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
The Gram-negative bacterium Flavobacterium columunare is the cause of colmunaris disease in channel catfish (Ictalurus punctatus). In a previous study, the betaine-type alkaloid ungeremine, 1 obtained from Pancratium maritimum L. was found to have strong antibacterial activity against F. columnare. ...
USDA-ARS?s Scientific Manuscript database
Intensive aquaculture practices and exposure to environmental stressors can trigger outbreaks of Flavobacterium columnare, a bacterial pathogen that causes columnaris disease in commercially important fish including Golden Shiners. A rapid assessment of the bacterial load is essential to prevent out...
Modeling of Dendritic Evolution of Continuously Cast Steel Billet with Cellular Automaton
NASA Astrophysics Data System (ADS)
Wang, Weiling; Ji, Cheng; Luo, Sen; Zhu, Miaoyong
2018-02-01
In order to predict the dendritic evolution during the continuous steel casting process, a simple mechanism to connect the heat transfer at the macroscopic scale and the dendritic growth at the microscopic scale was proposed in the present work. As the core of the across-scale simulation, a two-dimensional cell automaton (CA) model with a decentered square algorithm was developed and parallelized. Apart from nucleation undercooling and probability, a temperature gradient was introduced to deal with the columnar-to-equiaxed transition (CET) by considering its variation during continuous casting. Based on the thermal history, the dendritic evolution in a 4 mm × 40 mm region near the centerline of a SWRH82B steel billet was predicted. The influences of the secondary cooling intensity, superheat, and casting speed on the dendritic structure of the billet were investigated in detail. The results show that the predicted equiaxed dendritic solidification of Fe-5.3Si alloy and columnar dendritic solidification of Fe-0.45C alloy are consistent with in situ experimental results [Yasuda et al. Int J Cast Metals Res 22:15-21 (2009); Yasuda et al. ISIJ Int 51:402-408 (2011)]. Moreover, the predicted dendritic arm spacing and CET location agree well with the actual results in the billet. The primary dendrite arm spacing of columnar dendrites decreases with increasing secondary cooling intensity, or decreasing superheat and casting speed. Meanwhile, the CET is promoted as the secondary cooling intensity and superheat decrease. However, the CET is not influenced by the casting speed, owing to the adjusting of the flow rate of secondary spray water. Compared with the superheat and casting speed, the secondary cooling intensity can influence the cooling rate and temperature gradient in deeper locations, and accordingly exerts a more significant influence on the equiaxed dendritic structure.
Influence of native catfish mucus on Flavobacterium columnare growth and proteolytic activity
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to 1) characterize the terminal glycosylation pattern (TGP) of catfish mucus, 2) determine t...
USDA-ARS?s Scientific Manuscript database
Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, continues to be a major problem worldwide in aquaculture settings. Despite the far-reaching negative impacts of columnaris disease, safe and efficacious preventatives and curatives for this disease remain limited. In th...
USDA-ARS?s Scientific Manuscript database
A recently developed attenuated vaccine (17-23) for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates. First, we were interested in elucidating the host responses generated by a viru...
Evaluation of the antibody response to the LV-359-01 strain of flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease produces substantial mortality worldwide among numerous freshwater farmed finfish species. As aquaculture production continues to increase the frequency of columnaris disease will only continue to rise. Add to this an increase in re...
Moisture adsorption in optical coatings
NASA Technical Reports Server (NTRS)
Macleod, H. Angus
1988-01-01
The thin film filter is a very large aperture component which is exceedingly useful because of its small size, flexibility and ease of mounting. Thin film components, however, do have defects of performance and especially of stability which can cause problems in systems, particularly where long-term measurements are being made. Of all of the problems, those associated with moisture absorption are the most serious. Moisture absorption occurs in the pore-shaped voids inherent in the columnar structure of the layers. Ion-assisted deposition is a promising technique for substantially reducing moisture adsorption effects in thin film structures.
Growth studies at bulk III-Vs by image processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donecker, J.; Hempel, G.; Kluge, J.
1996-12-01
The patterns of inhomogeneities in GaAs and InP are studied by scattering and diffraction of light. An adapted version of laser scattering tomography is used for observations with short exposure times and large fields. The information about the three-dimensional distribution of the scatterers in GaAs are evaluated by video travels through the crystal and images of intensities added in interesting directions. Near-infrared transmission and striation distance mapping act like special data compression techniques due to their optical principles. In general, columnar extension of cellular patterns and striations could not be detected in s.i. GaAs. Long-range correlations exist for lineages andmore » slip lines. The comparison with the behavior of striations in doped InP cannot confirm the idea that cellular patterns in GaAs originate from constitutional supercooling during solidification.« less
Meng, Yifei; Zuo, Jian-Min
2016-09-01
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can be extended to multiphase nanocrystalline materials as well. Thus, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.
Locating the optimal internal jugular target site for central venous line placement.
Giordano, Chris R; Murtagh, Kevin R; Mills, Jaime; Deitte, Lori A; Rice, Mark J; Tighe, Patrick J
2016-09-01
Historically, the placement of internal jugular central venous lines has been accomplished by using external landmarks to help identify target-rich locations in order to steer clear of dangerous structures. This paradigm is largely being displaced, as ultrasound has become routine practice, raising new considerations regarding target locations and risk mitigation. Most human anatomy texts depict the internal jugular vein as a straight columnar structure that exits the cranial vault the same size that it enters the thoracic cavity. We dispute the notion that the internal jugulars are cylindrical columns that symmetrically descend into the thoracic cavity, and purport that they are asymmetric conical structures. The primary aim of this study was to evaluate 100 consecutive adult chest and neck computed tomography exams that were imaged at an inpatient hospital. We measured the internal jugular on the left and right sides at three different levels to look for differences in size as the internal jugular descends into the thoracic cavity. We revealed that as the internal jugular descends into the thorax, the area of the vessel increases and geometrically resembles a conical structure. We also reconfirmed that the left internal jugular is smaller than the right internal jugular. Understanding that the largest target area for central venous line placement is the lower portion of the right internal jugular vein will help to better target vascular access for central line placement. This is the first study the authors are aware of that depicts the internal jugular as a conical structure as opposed to the commonly depicted symmetrical columnar structure frequently illustrated in anatomy textbooks. This target area does come with additional risk, as the closer you get to the thoracic cavity, the greater the chances for lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Powell, D.B.; Palm, R.C.; MacKenzie, A.P.; Winton, J.R.
2009-01-01
The effects of temperature, ionic strength, and new cryopreservatives derived from polar ice bacteria were investigated to help accelerate the development of economical, live attenuated vaccines for aquaculture. Extracts of the extremophile Gelidibacter algens functioned very well as part of a lyophilization cryoprotectant formulation in a 15-week storage trial. The bacterial extract and trehalose additives resulted in significantly higher colony counts of columnaris bacteria (Flavobacterium columnare) compared to nonfat milk or physiological saline at all time points measured. The bacterial extract combined with trehalose appeared to enhance the relative efficiency of recovery and growth potential of columnaris in flask culture compared to saline, nonfat milk, or trehalose-only controls. Pre-lyophilization temperature treatments significantly affected F. columnare survival following rehydration. A 30-min exposure at 0 ??C resulted in a 10-fold increase in bacterial survival following rehydration compared to mid-range temperature treatments. The brief 30 and 35 ??C pre-lyophilization exposures appeared to be detrimental to the rehydration survival of the bacteria. The survival of F. columnare through the lyophilization process was also strongly affected by changes in ionic strength of the bacterial suspension. Changes in rehydration constituents were also found to be important in promoting increased survival and growth. As the sodium chloride concentration increased, the viability of rehydrated F. columnare decreased. ?? 2009 Elsevier Inc.
Significance of grain sliding mechanisms for ductile deformation of rocks
NASA Astrophysics Data System (ADS)
Dimanov, A.; Bourcier, M.; Gaye, A.; Héripré, E.; Bornert, M.; Raphanel, J.; Ludwig, W.
2013-12-01
Ductile shear zones at depth present polyphase and heterogeneous rocks and multi-scale strain localization patterns. Most strain concentrates in ultramylonitic layers, which exhibit microstructural signatures of several concomitant deformation mechanisms. The latter are either active in volume (dislocation creep), or in the vicinity and along interfaces (grain sliding and solution mass transfer). Because their chronology of appearance and interactions are unclear, inference of the overall rheology seems illusory. We have therefore characterized over a decade the rheology of synthetic lower crustal materials with different compositions and fluid contents, and for various microstructures. Non-Newtonian flow clearly related to dominant dislocation creep. Conversely, Newtonian behavior involved grain sliding mechanisms, but crystal plasticity could be identified as well. In order to clarify the respective roles of these mechanisms we underwent a multi-scale investigation of the ductile deformation of rock analog synthetic halite with controlled microstructures. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X ray computed tomography, allowing for digital image correlation (DIC) techniques and retrieval of full strain field. Crystal plasticity dominated, as evidenced by physical slip lines and DIC computed slip bands. Crystal orientation mapping allowed to identify strongly active easy glide {110} <110> systems. But, all other slip systems were observed as well, and especially near interfaces, where their activity is necessary to accommodate for the plastic strain incompatibilities between neighboring grains. We also evidenced grain boundary sliding (GBS), which clearly occurred as a secondary, but necessary, accommodation mechanism. The DIC technique allowed the quantification of the relative contribution of each mechanism. The amount of GBS clearly increased with decreasing grain size. Finite element (FE) modeling of the viscoplastic polycrystalline behavior was started on the basis of our experimental data for coarse grained microstructures (c.a. 400 microns, with < 10 % GBS activity), considering an extruded columnar structure in depth and single crystal flow laws from literature. The results show that the computed strain fields do not sufficiently match the experimentally measured ones. The reasons for the discrepancies are likely related to the activity of GBS (which was not accounted for) and to the influence of the real microstructure at depth (underlying grains and orientations of interfaces), which strongly condition the surface response. Our major conclusion about ductile deformation of rocks is that crystal plasticity and GBS are not really dissociable. They appear as co-operative mechanisms, due to pronounced plastic anisotropy of minerals.
USDA-ARS?s Scientific Manuscript database
The pond-raised channel catfish (Ictalurus punctatus) industry in the United States of America can incur losses of over a $100 million annually due to bacterial diseases including columnaris disease caused by Flavobacterium columnare. One management approach available to catfish producers is the use...
USDA-ARS?s Scientific Manuscript database
Arkansas baitfish farms routinely struggle with columnaris disease, which is caused by Flavobacterium columnare. Columnaris is ubiquitous in fathead minnows (Pimephales promelas) especially after harvest while they are being held in vats and during the transport prior to being sold. Columnaris disea...
The stress hormone cortisol: a (co)regulator of biofilm formation in Flavobacterum columnare?
USDA-ARS?s Scientific Manuscript database
Previously, we demonstrated a direct effect of cortisol on Flavobacterium columnare, a notorious fish pathogenic bacterium, engendering a new perspective to bacteria-host communication in aquaculture. As stressed fish harbour increased cortisol levels in the skin and gill mucus, highly virulent F. c...
The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...
USDA-ARS?s Scientific Manuscript database
Aeromonas hydrophila and Flavobacterium columnare, the etiological agents of motile aeromonas septicemia (MAS) and columnaris disease, respectively, have been recently causing crippling moralities to the sunshine bass, Morone chrysops female X Morone saxatilis male (Percichthyidae), industry in the ...
USDA-ARS?s Scientific Manuscript database
Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...
USDA-ARS?s Scientific Manuscript database
A multi-laboratory broth microdilution method trial was performed to standardize the specialized test conditions required for fish pathogens Flavobacterium columnare and F. pyschrophilum. Nine laboratories tested the quality control (QC) strains Escherichia coli ATCC 25922 and Aeromonas salmonicid...
USDA-ARS?s Scientific Manuscript database
A recently developed attenuated vaccine (17-23) for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates (Mohammed et al. 2013). We were interested in examining the mechanisms of this p...
Evaluating innate resistance to Flavobacterium Columnare in rainbow trout (Oncorhynchus mykiss)
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare (Fc) is the causative agent for columnaris disease and a problem for several fish species. Recently, columnaris has been recognized as an emerging problem in farmed trout cultured within the Hagerman valley of Idaho. A long term breeding program at the NCCCWA has produced ...
NASA Astrophysics Data System (ADS)
Warmont, Franck; Hébert, Sylvie; Hardy, Vincent; Martin, Christine; Simon, Charles; Provost, Jackie
1997-12-01
Columnar defects can be introduced in high T_c superconductors by irradiation with high energy heavy ions. The concentration of these artificial pinning centers with a well characterized morphology is easily controlled. The pinning efficiency of these defects has been often demonstrated, mainly from magnetization measurements. In the present work, measurements of the electrical resistance along the c axis, R_c(T), in the presence of columnar defects are presented. They show the ability of these defects to prevent the thermal fluctuations effects. The measurements have been performed on the same crystal before and after the heavy ion irradiation. L'irradiation aux ions lourds de haute énergie permet d'introduire des défauts colonnaires amorphes dans les supraconducteurs à haute T_c. Ces centres de pinning artificiel, de morphologie connue, sont introduits en concentration facile à maîtriser. L'efficacité de ces défauts a été très souvent démontrée à partir de mesures d'aimantation. L'étude présentée ici : mesure de la résistance selon l'axe c, R_c(T), en présence de défauts colonnaires parallèles à l'axe c, montre que ces défauts sont capables de s'opposer efficacement à l'effet des fluctuations thermiques. Les mesures ont été faites sur le même monocristal avant et après l'irradiation.
Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size
NASA Technical Reports Server (NTRS)
Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.
2013-01-01
We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.
Recent developments in plasma spray processes for applications in energy technology
NASA Astrophysics Data System (ADS)
Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.
2017-03-01
This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.
Self-assembled electrical materials from contorted aromatics
NASA Astrophysics Data System (ADS)
Xiao, Shengxiong
This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity studies of core-cladding HBCs in thin films. Physical properties, such as charge generation, separation/recombination, and transport in HBCs liquid crystalline thin films were discussed. Chapter 8 describes the synthesis and electrical properties of the second generation of contorted aromatics octabenzocircumbiphenyl (OBC). The significant finding about OBCs is that they can be reversibly protonated with Bronsted acids. The significance of those results is that the conductance of the semiconductive thin film could be controlled and attenuated by doping with acid, which can lead to switchable electronics. Chapter 9 presents our studies of extending the HBC synthetic strategies to the formation of other curved aromatics using "wet chemistry". First a series of nonplanar polycyclic aromatic hydrocarbons was made starting from the olefination of pentacenequinone. Then we utilize chemical reactivity, X-ray crystallography, and DFT calculations to explore three types of olefins of increasing structural complexity. Chapter 10 discusses the transformation of HBCs into bowl-shaped molecules on ruthenium metal surfaces. Surface chemistry studies using scanning tunneling microscopy (STM), reflectance absorbance infrared spectroscopy (RAIRS), and temperature-programmed desorption (TPD) characterization methods, referred to as "dry chemistry", showed the formation of an aromatic hemisphere, which is the end cap of a (6,6) arm-chair single-walled carbon nanotube.
Morin, M.; Morehouse, L. G.
1974-01-01
Light and electron microscopy findings in the jejunal mucosa of the normal feeder pig and feeder pigs infected with transmissible gastroenteritis (TGE) virus are reported. Villi in the mid jejunum of the normal feeder pig were elongated, finger shaped and covered with a layer of columnar absorptive cells with a well developed and regular brush border. Severe lesions of villous atrophy were present in all jejunal segments of feeder swine killed 96 hours post infection with TGE virus. Atrophic villi were covered by flat to cuboidal cells with a poorly developed brush border in some areas. In other segments, cells varied in appearance from sub-columnar to columnar type of near normal appearance. The ultrastructure of the jejunal absorptive cells in the normal feeder pig was found to be similar to that described for the jejunal cells of other adult mammals. There were no significant indications of high pinocytotic activity. The epithelial cells covering the atrophic villi of TGE infected pigs had a fine structure similar to that described for the crypt cells, ranging in appearance from very immature to moderately differentiated cells. Microvilli were very short, decreased markedly in number and irregular in arrangement. The terminal web was poorly developed. Strands of rough endoplasmic reticulum were markedly diminished and an increase in free ribosomes was noted. The significance of these observations in explaining pathogenesis of TGE in feeder pigs is discussed. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8. PMID:4277743
Liu, Yu; Fan, Zhi; Zhang, Heng-Yi; Yang, Ying-Wei; Ding, Fei; Liu, Shuang-Xi; Wu, Xue; Wada, Takehiko; Inoue, Yoshihisa
2003-10-31
A series of 6-O-(p-substituted phenyl)-modified beta-cyclodextrin derivatives, i.e., 6-O-(4-bromophenyl)-beta-CD (1), 6-O-(4-nitrophenyl)-beta-CD (2), 6-O-(4-formylphenyl)-beta-CD (3), 6-phenylselenyl-6-deoxy-beta-CD (4), and 6-O-(4-hydroxybenzoyl)-beta-CD (5), were synthesized, and their inclusion complexation behavior in aqueous solution and self-assembling behavior in the solid state were comparatively studied by NMR spectroscopy, microcalorimetry, crystallography, and scanning tunneling microscopy. Interestingly, (seleno)ethers 1-4 and ester 5 displayed distinctly different self-assembling behavior in the solid state, affording a successively threading head-to-tail polymeric helical structure for the (seleno)ethers or a mutually penetrating tail-to-tail dimeric columnar channel structure for the ester. Combining the present and previous structures reported for the relevant beta-CD derivatives, we further deduce that the pivot heteroatom, through which the aromatic substituent is tethered to beta-CD, plays a critical role in determining the helix structure, endowing the 2-fold and 4-fold axes to the N/O- and S/Se-pivoted beta-CD aggregates, respectively. This means that one can control the self-assembling orientation, alignment, and helicity in the solid state by finely tuning the pivot atom and the tether length. Further NMR and calorimetric studies on the self-assembling behavior in aqueous solution revealed that the dimerization step is the key to the formation of linear polymeric supramolecular architecture, which is driven by favorable entropic contributions.
USDA-ARS?s Scientific Manuscript database
The antibacterial activities of crude extracts obtained from the aerial portions and roots of Peganum harmala L. were evaluated against the common fish pathogenic bacteria species Edwardsiella ictaluri, Flavobacterium columnare, and Streptococcus iniae using a rapid bioassay. Enteric septicemia of c...
USDA-ARS?s Scientific Manuscript database
Although it is generally accepted that elevated ammonia levels in the water increase mortalities of Flavobacterium columnare infected fish, recent observation at our laboratory indicated otherwise. Two trials were conducted to determine the effect of a single immersion flush treatment of total ammo...
USDA-ARS?s Scientific Manuscript database
In peach [Prunus persica (L.) Batsch], trees showing columnar [also termed pillar or broomy] growth habit are of interest for high density production systems. While the selection of the columnar homozygote (pillar) phenotype (brbr) can be carried out prior to field planting, the intermediate hetero...
There must be something in the water (for F. columnare pathogenesis)
USDA-ARS?s Scientific Manuscript database
Why can we routinely produce columnaris infections in our lab, while the lab on the other side of the ditch can't? Anecdotal reports suggest that tannins may inhibit F. columnare. Do tannins in their water prevent this, or are other water chemistry parameters involved? In the first experiment, tw...
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...
USDA-ARS?s Scientific Manuscript database
An opportunistic study was conducted to determine the effects of two chemical therapeutants on channel catfish (CCF) Ictalurus punctatus concurrently infected Flavobacterium columnare and Ichthyobodo necator. Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were investigated for their abil...
USDA-ARS?s Scientific Manuscript database
Columnaris disease, caused by the bacteria Flavobacterium columnare, is one of the most serious bacterial infections affecting the aquaculture industry today. Columnaris is transmitted horizontally from fish to fish. The disease is highly contagious and may be spread through contaminated nets, speci...
Efficacy of a modified live Flavobacterium columnare vaccine in fish.
Shoemaker, Craig A; Klesius, Phillip H; Drennan, John D; Evans, Joyce J
2011-01-01
Flavobacterium columnare is an aquatic bacterium that is responsible for columnaris disease. This aquatic pathogen has a worldwide distribution and is highly infectious to both warm and cold water fish. A modified live F. columnare vaccine was developed by repeated passage of a virulent strain on increasing concentrations of rifampicin that resulted in attenuation. Here we report vaccination/challenge trials to evaluate efficacy and safety. In separate laboratory trials, immersion vaccination of channel catfish (Ictalurus punctatus) fry between 10 to 48 days post hatch (DPH) with experimental vaccine or licensed product resulted in relative percent survival (RPS) between 57-94% following challenge. Similarly, a vaccination/challenge trial using largemouth bass (Micropterus salmoides) fry at 10 DPH was performed using various doses of licensed product under laboratory conditions. Results demonstrated safety of the vaccine and significant protection following challenge with RPS values between 74-94%, depending on vaccine dose. Together, these trials demonstrate the vaccine administered to early life-stage channel catfish and largemouth bass is safe and reduces mortality following challenge with F. columnare. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Peng, Cheng-Jien
The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.
Barony, G M; Tavares, G C; Assis, G B N; Luz, R K; Figueiredo, H C P; Leal, C A G
2015-11-17
Flavobacterium columnare is responsible for disease outbreaks in freshwater fish farms. Several Brazilian native fish have been commercially exploited or studied for aquaculture purposes, including Amazon catfish Leiarius marmoratus × Pseudoplatystoma fasciatum and pacamã Lophiosilurus alexandri. This study aimed to identify the aetiology of disease outbreaks in Amazon catfish and pacamã hatcheries and to address the genetic diversity of F. columnare isolates obtained from diseased fish. Two outbreaks in Amazon catfish and pacamã hatcheries took place in 2010 and 2011. Four F. columnare strains were isolated from these fish and identified by PCR. The disease was successfully reproduced under experimental conditions for both fish species, fulfilling Koch's postulates. The genomovar of these 4 isolates and of an additional 11 isolates from Nile tilapia Oreochromis niloticus was determined by 16S rRNA restriction fragment length polymorphism PCR. The genetic diversity was evaluated by phylogenetic analysis of the 16S rRNA gene and repetitive extragenic palindromic PCR (REP-PCR). Most isolates (n = 13) belonged to genomovar II; the remaining 2 isolates (both from Nile tilapia) were assigned to genomovar I. Phylogenetic analysis and REP-PCR were able to demonstrate intragenomovar diversity. This is the first report of columnaris in Brazilian native Amazon catfish and pacamã. The Brazilian F. columnare isolates showed moderate diversity, and REP-PCR was demonstrated to be a feasible method to evaluate genetic variability in this bacterium.
NASA Astrophysics Data System (ADS)
Yabuta, H.; Kaji, N.; Shimada, M.; Aiba, T.; Takada, K.; Omura, H.; Mukaide, T.; Hirosawa, I.; Koganezawa, T.; Kumomi, H.
2014-06-01
We report on microscopic structures and electrical and optical properties of sputter-deposited amorphous indium-gallium-zinc oxide (a-IGZO) films. From electron microscopy observations and an x-ray small angle scattering analysis, it has been confirmed that the sputtered a-IGZO films consist of a columnar structure. However, krypton gas adsorption measurement revealed that boundaries of the columnar grains are not open-pores. The conductivity of the sputter-deposited a-IGZO films shows a change as large as seven orders of magnitude depending on post-annealing atmosphere; it is increased by N2-annealing and decreased by O2-annealing reversibly, at a temperature as low as 300°C. This large variation in conductivity is attributed to thermionic emission of carrier electrons through potential barriers at the grain boundaries, because temperature dependences of the carrier density and the Hall mobility exhibit thermal activation behaviours. The optical band-gap energy of the a-IGZO films changes between before and after annealing, but is independent of the annealing atmosphere, in contrast to the noticeable dependence of conductivity described above. For exploring other possibilities of a-IGZO, we formed multilayer films with an artificial periodic lattice structure consisting of amorphous InO, GaO, and ZnO layers, as an imitation of the layer-structured InGaZnO4 homologous phase. The hall mobility of the multilayer films was almost constant for thicknesses of the constituent layer between 1 and 6 Å, suggesting rather small contribution of lateral two-dimensional conduction It increased with increasing the thickness in the range from 6 to 15 Å, perhaps owing to an enhancement of two-dimensional conduction in InO layers.
NASA Astrophysics Data System (ADS)
Freitas, Andre L. M.; Souza, Flavio L.
2017-11-01
This work describes the design of a microwave-assisted method using hydrothermal conditions to fabricate pure and Sn-doped hematite photoelectrodes with varied synthesis time and additional thermal treatment under air and N2 atmosphere. The hematite photoelectrode formed under N2 atmosphere, with Sn deposited on its surface—which is represented by material synthesized at 4 h —exhibits the highest performance. Hence, Sn addition followed by high temperature annealing conducted in an oxygen-deficient atmosphere seems to create oxygen vacancies, and to prevent the segregation of dopant to form the SnO2 phase at the hematite crystal surface, reducing its energy and suppressing the grain growth. The increased donor number density provided by the oxygen vacancies (confirmed by x-ray photoelectron data), and a possible reduction in the grain boundary energy or hematite crystal interface might favor charge separation, and increase the electron transfer through the hematite into the back contact (FTO substrate). In consequence, the light-induced water oxidation reaction efficiency of Sn-hematite photoelectrodes was significantly increased in comparison with pure ones, even though the vertical rod morphology was not preserved. This finding provides a novel insight into intentional Sn addition, revealing that dopant segregation at the hematite crystal surface (or at the grain boundaries) could—by increasing the electron mobility—be the more relevant factor in developing active hematite photoelectrodes than the control of columnar morphology.
NASA Astrophysics Data System (ADS)
Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.
2009-10-01
Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.
NASA Astrophysics Data System (ADS)
Kaspi, Yohai
This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary vorticity gradient is in the opposite direction, due to the spherical geometry in the interior. We further study these interior dynamics using a simplified barotropic annulus model, which shows that the planetary vorticity radial variation causes the eddy angular momentum flux divergence, which drives the superrotating equatorial flow. In addition we study the interaction of the interior dynamics with a stable exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane, where the columnar interior is therefore represented by a negative beta effect. We find that baroclinic instability of even a weak shear can drive strong, stable multiple zonal jets. For this model we find an analytic nonlinear solution, truncated to one growing mode, that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. Finally, given the density field from our 3D convection model we derive the high order gravitational spectra of Jupiter, which is a measurable quantity for the upcoming JUNO mission to Jupiter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.
2012-12-01
The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.
Dimensions and aspect ratios of natural ice crystals
Um, J.; McFarquhar, G. M.; Hong, Y. P.; ...
2015-04-15
During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the L– W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less
Dimensions and aspect ratios of natural ice crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, J.; McFarquhar, G. M.; Hong, Y. P.
During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the L– W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less
Physical characteristics of summer sea ice across the Arctic Ocean
Tucker, W. B.; Gow, A.J.; Meese, D.A.; Bosworth, H.W.; Reimnitz, E.
1999-01-01
Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4??? at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76??N to almost none in mid-August at 88??N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark
2017-12-01
In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.
USDA-ARS?s Scientific Manuscript database
Two major problems in the channel catfish (Ictalurus punctatus) aquaculture industry have been high disease losses to enteric septicemia of catfish (ESC), caused by the bacterium Edwardsiella ictaluri and columnaris disease, caused by the bacterium Flavobacterium columnare. Methods to control these...
USDA-ARS?s Scientific Manuscript database
Vaccination remains a viable alternative for bacterial disease protection in fish; however additional work is required to understand the mechanisms of adaptive immunity in the channel catfish. To assess the humoral immune response to Flavobacterium columnare; a group of channel catfish were first im...
Draft genome sequence of the fish pathogen Flavobacterium columnare strain CSF-298-10
USDA-ARS?s Scientific Manuscript database
We announce the genome assembly of Flavobacterium columnare strain CSF-298-10, a strain isolated from an outbreak of Columnaris disease at a commercial trout farm in Snake River Valley Idaho, USA. The complete genome consists of 13 contigs totaling 3,284,579 bp, average G+C content of 31.5% and 2933...
Meng, Yifei; Zuo, Jian -Min
2016-07-04
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.
2005-01-01
Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.
NASA Astrophysics Data System (ADS)
Zhu, M. W.; Wang, Z. J.; Chen, Y. N.; Zhang, Z. D.
2011-12-01
In the present work, lanthanum nickel oxide (LNO) thin films were prepared by the sol-gel method and different thermal treatments were adopted by adjusting the preheating treatment. The microstructure, crystal orientation, chemical composition and electrical properties of LNO films were analyzed to elucidate the relationship between the microstructure and the transport properties of the films. The results show that equiaxed grains predominate the microstructure of the films with pyrolysis step. Without the pyrolysis step, columnar grains are formed in the films, accompanied with an improvement in crystallinity and strengthening of the (100)-orientation. Furthermore, the metal-insulator transition temperature decreases for the films without the pyrolysis step. The effect of film microstructure on its electrical properties was discussed in terms of the existence of internal stress and the improved crystallinity.
Metal-assisted chemical etching using sputtered gold: a simple route to black silicon
NASA Astrophysics Data System (ADS)
Kurek, Agnieszka; Barry, Seán T.
2011-08-01
We report an accessible and simple method of producing 'black silicon' with aspect ratios as high as 8 using common laboratory equipment. Gold was sputtered to a thickness of 8 nm using a low-vacuum sputter coater. The structures were etched into silicon substrates using an aqueous H2O2/HF solution, and the gold was then removed using aqua regia. Ultrasonication was necessary to produce columnar structures, and an etch time of 24 min gave a velvety, non-reflective surface. The surface features after 24 min etching were uniformly microstructured over an area of square centimetres.
Granifo, Juan; Suarez, Sebastián; Baggio, Ricardo
2015-01-01
The centrosymmetric dinuclear complex bis(μ-3-carboxy-6-methylpyridine-2-carboxylato)-κ3 N,O 2:O 2;κ3 O 2:N,O 2-bis[(2,2′-bipyridine-κ2 N,N′)(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methylpyridine-2,3-dicarboxylic acid (mepydcH2) and 2,2′-bipyridine in methanol. The asymmetric unit consists of a CdII cation bound to a μ-κ3 N,O 2:O 2-mepydcH− anion, an N,N′-bidentate 2,2′-bipyridine group and an O-monodentate nitrate anion, and is completed with a methanol solvent molecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH− carboxylate O atom to complete the dinuclear complex molecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octahedral coordination geometry about the CdII atom, the Cd—O and Cd—N distances in this complex are surprisingly similar. The crystal structure consists of O—H⋯O hydrogen-bonded chains parallel to a, further bound by C—H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form interstitial columnar voids that are filled by the methanol solvent molecules. These in turn interact with the complex molecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH− ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ3 coordination mode found in the title compound. PMID:26396748
NASA Astrophysics Data System (ADS)
Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.
2018-02-01
The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.
Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties.
Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun
2013-09-25
VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550 °C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5 °C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films.
Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties
Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun
2013-01-01
VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550°C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5°C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films. PMID:24067743
Vapor and liquid optical monitoring with sculptured Bragg microcavities
NASA Astrophysics Data System (ADS)
Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria C.; González-Elipe, Agustín. R.; Yubero, Francisco
2017-08-01
Sculptured porous Bragg Microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength dependent optical retarders. This optical behavior is attributed to a self-structuration mechanism involving a fence-bundling association of nanocolumns as observed by Focused Ion Beam Scanning Electron Microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems have been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. This type of self-associated nanostructures has been incorporated to microfluidic chips for free label vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical characterization of vapor and liquids of different refractive index and aqueous solutions of glucose flowing through the microfluidic chips are described.
Laser rapid forming technology of high-performance dense metal components with complex structure
NASA Astrophysics Data System (ADS)
Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin
2005-01-01
Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.
Formation of anomalous eutectic in Ni-Sn alloy by laser cladding
NASA Astrophysics Data System (ADS)
Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong
2018-02-01
Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.
NASA Astrophysics Data System (ADS)
Lindsay, Sean; Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Murphy, J. R.
2012-10-01
In cometary comae, the crystalline silicate forsterite (Mg2SiO4) is the dominant crystalline component. Within the 8 - 40 micron spectral range, the crystal shape has been demonstrated to have a measurable effect on the crystalline features’ shape and peak wavelength locations. We present discrete dipole approximation (DDA) absorption efficiencies for a variety of forsterite grain shapes to demonstrate: a) that the 10, 11, 19, 23, and 33.5 micron resonances are sensitive to grain shape; b) spectral trends are associated with variations in crystallographic axial ratios; and c) that groups of similar grain shapes (shape classes) have distinct spectral features. These computations are performed using DDSCAT v7.0 run on the NASA Advanced Supercomputing (NAS) facility Pleiades. We generate synthetic spectral energy distribution (SED) fits to the Infrared Space Observatory (ISO) SWS spectra for the coma of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.8 AU. Hale-Bopp is best fit by equant grain shapes whereas rounded grain shapes fit significantly poorer than crystals with sharp edges with well-defined faces. Moreover, crystals that are not significantly elongated along a crystallographic axis fit better. By comparison with Kobatake et al. (2008) condensation experiments and Takigawa et al. (2009) evaporation experiments, our analyses suggest that the forsterite crystals in the coma of Hale-Bopp predominantly are high temperature condensates. The laboratory experiments show that grain shape and grain formation temperature, and hence disk environment, are causally linked. Specifically, the Kobatake et al. (2008) condensation experiment reveals three shape classes associated with temperature: 1) ‘Bulky’ grains (1300 K < T < 1700 K), 2) ‘Platy’ grains (1000 K < T < 1300 K), and 3) columnar/needle grains (T < 1000 K). We construct DDA grain shape analogs to these shape classes to connect grain shapes to distinguishable spectral signatures and crystal formation environments.
Criscuolo, Alexis; Chesneau, Olivier; Clermont, Dominique; Bizet, Chantal
2018-04-05
Flavobacterium columnare strain PH-97028 (=CIP 109753) is a genomovar III reference strain that was isolated from a diseased Ayu fish in Japan. We report here the analysis of the first available genomovar III sequence of this species to aid in identification, epidemiological tracking, and virulence studies. Copyright © 2018 Criscuolo et al.
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted to assess different therapeutants against a mixed infection of Aeromonas hydrophila and Flavobacterium columnare in sunshine bass (SB) (Morone chrysops female x Morone saxatilis male). Experiment 1 assessed the efficacy of copper sulfate (CuSO4), florfenicol-medicated...
Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain.
Welsh, F A; Vannucci, R C; Brierley, J B
1982-01-01
Cerebral hypoxia-ischemia was produced in 7-day postnatal rats by unilateral carotid artery ligation combined with systemic hypoxia (8% O2). Levels of high energy phosphates, which were only slightly altered in the contralateral hemisphere, were nearly depleted in the ipsilateral hemisphere during the 3-h hypoxic insult. With hypoxia of between 1 and 3 hours' duration, columnar alterations of cortical NADH fluorescence occurred in the same location and regional pattern as did histologic damage demonstrated previously (Rice et al., 1981). In regions exhibiting columns of NADH fluorescence, there was no evidence of a columnar reduction of high energy phosphates as levels of ATP and phosphocreatine were nearly zero. Recovery from 3 h of hypoxia was accompanied by partial and regionally heterogeneous restoration of ATP within the ipsilateral hemisphere. Columnar variations of NADH fluorescence were not detected in the recovery period; rather, regions with impaired restitution of high energy phosphates exhibited NADH fluorescence that was diminished diffusely compared to the contralateral hemisphere. The correlation between depressed NADH fluorescence and depleted ATP, present as cortical columns during hypoxia and as larger regions during recovery, suggests that decreased formation of NADH may be limiting the resynthesis of high energy phosphates.
2012-01-01
In the present work, the characterization of cobalt-porous silicon (Co-PSi) hybrid systems is performed by a combination of magnetic, spectroscopic, and structural techniques. The Co-PSi structures are composed by a columnar matrix of PSi with Co nanoparticles embedded inside, as determined by Transmission Electron Microscopy (TEM). The oxidation state, crystalline structure, and magnetic behavior are determined by X-Ray Absorption Spectroscopy (XAS) and Alternating Gradient Field Magnetometry (AGFM). Additionally, the Co concentration profile inside the matrix has been studied by Rutherford Backscattering Spectroscopy (RBS). It is concluded that the PSi matrix can be tailored to provide the Co nanoparticles with extra protection against oxidation. PMID:22938050
NASA Astrophysics Data System (ADS)
Vanghi, V.; Frisia, S.; Borsato, A.
2017-08-01
The genesis of calcite coralloid speleothems from Lamalunga cave (Southern Italy) is here investigated from a purely petrographic perspective, which constitutes the basis for any subsequent chemical investigation. Lamalunga cave coralloids formed on bones and debris on the floor of the cave. They consist of elongated columnar crystals whose elongation progressively increases from the flanks to the tips of the coralloid, forming a succession of lens-shaped layers, which may be separated by micrite or impurity-rich layers. Organic molecules are preferentially concentrated toward the centre of convex lenses as highlighted by epifluorescence. Their occurrence on cave floor, lens-shaped morphology and concentration of impurities toward the apex of the convex lenses supports the hypothesis that their water supply was hydroaerosol, generated by the fragmentation of cave drips. Evaporation and degassing preferentially occurred on tips, enhancing the digitated morphology and trapping the organic molecules and impurities, carried by the hydroaerosol, between the growing crystals which became more elongated. Micrite layers, that cap some coralloid lenses, likely identify periods when decreasing in hydroaerosol resulted in stronger evaporation and higher supersaturation with respect to calcite of the parent film of fluid. This interpretation of coralloid formation implies that these speleothems can be used to extract hydroclimate information.
A new caddisfly genus (Trichoptera, Odontoceridae) from Vietnam
Arefina-Armitage, Tatiana I.; Armitage, Brian J.
2010-01-01
Abstract Cephalopsyche, a new genus of caddisfly (Trichoptera, Odontoceridae), is described from Vietnam. Two new species are placed in the genus: Cephalopsyche gorgona sp. n. and Cephalopsyche neboissi sp. n. The adult male and female of each species exhibit distinct sexual dimorphism, especially in head morphology. In males, there are hinged, chamber-like structures on the vertex of the head, containing filamentous, columnar tissue when exposed. Descriptions and illustrations of both species are provided. PMID:21594025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, Gregory; Sadovskyy, Ivan A.; Glatz, Andreas
For many technological applications of superconductors the performance of a material is determined by the highest current it can carry losslessly-the critical current. In turn, the critical current can be controlled by adding nonsuperconducting defects in the superconductor matrix. Here we report on systematic comparison of different local and global optimization strategies to predict optimal structures of pinning centers leading to the highest possible critical currents. We demonstrate performance of these methods for a superconductor with randomly placed spherical, elliptical, and columnar defects.
NASA Astrophysics Data System (ADS)
Ruffino, F.; Torrisi, V.
2017-11-01
Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.
NASA Astrophysics Data System (ADS)
Patterson, Burkley Delesdernier
Hafnium Dioxide (HfO2) has an extraordinary high bulk modulus, high hardness, high chemical stability, high melting point and high thermal stability. This material can be used as protective coatings for application involving high temperature environments. HfO2 films were fabricated on Si using high-rate reactive high-power impulse magnetron sputtering (HiPIMS) using different deposition-averaged target power density and voltage pulse durations t1. Five HfO2 films were prepared with (1) t1 = 25 mus, =7.6 Wcm-2 (T25S7), (2) t 1 = 100 mus, =7.2 Wcm-2 (T100S7), (3) t1 = 200 mus, =7.3 Wcm-2 (T200S7), (4) t1 = 200 mus, =18 Wcm-2 (T200S18) and (5) t1 = 200 mus, =54 Wcm-2 (T200S54). Atomic force microscopy (AFM) images of the T200S54, T200S18 and T200S7 films exhibit a coarser granular structure with a similar grain size varying from 25 nm to 120 nm in diameter and an average grain size of ˜70 nm. AFM images of the T25S7 and T100S7 films show smaller granular structures compared to the other three films. Transmission electron microscopy (TEM) studies show that all films are composed of an interlayer next to the Si interface followed by a nano-columnar structure layer. The interlayer structure of the films consists of a population of lower density nanoscale regions. A reduction in t1 and in films T200S54, T200S18, T200S7 and T100S7 caused an increase in the interlayer thickness and a decrease in the width of the nano-columnar structures from ˜46 nm to ˜21 nm. This microstructural change was accompanied by a concomitant change of the grain boundary structure from tight and interlocking in films T200S54 and T200S18, to rough and thicker (˜1 nm) boundaries in films T200S7 and T100S7. Film T25S7 exhibited an entirely different microstructure composed of a multilayered interlayer (˜3 nm) and nano-columnar (˜15 nm) structure. Films prepared with large t1 (200 mus) have a monoclinic HfO 2 structure and that with small t1 (25 mus) an orthorhombic HfO 2 structure. Film prepared with an intermediate t1 value (100 mus) exhibited a mixture of both monoclinic and orthorhombic phases. A high hardness of 17.6-17.0 GPa was shown for films with a monoclinic HfO2 structure. The films exhibited a refractive index of 2.02-2.11 and an extinction coefficient between ≥≤2x10-3 and 0.1x10-3 (both at a wavelength of 550 nm). High optical quality was achieved for films T200S54 and T200S18 owing to the presence of a dense microstructure with sharp and interlocking grain boundaries.
Morphological studies of the developing human esophageal epithelium.
Ménard, D
1995-06-15
This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.
Lanlua, Passara; Sricharoenvej, Sirinush; Niyomchan, Apichaya; Chico, Diane E
2007-01-01
Pteropus lylei (Lyle's flying fox), an Old World fruit bat, consumes only ripe fruit, which contains low protein and sodium. The carpophagous diet of P. lylei presents an adaptive challenge for salivary glands to conserve sufficient nutrition for living. Therefore, the parotid glands in both sexes were investigated by using light microscopy and transmission electron microscopy. No structural difference was observed in the parotid glands between sexes. The acinar cell contained dense serous secretory granules, prominent luminal microvilli and intercellular canaliculi. The intercalated duct exhibited simple cuboidal epithelium with no secretory granule. Striated duct consisted of simple columnar epithelium with basal striation, numerous elongated mitochondria, and apical vesicles. In the interlobular duct, simple tall columnar epithelium and apocrine secretion were found. The interlobar and excretory ducts surprisingly contained continuous capillaries that intervened in stratified cuboidal epithelium. In addition, there were several blood vessels around the interlobular, interlobar and excretory ducts. The morphological adaptation of the parotid gland observed in P. lylei enables this species to obtain sufficient nutrients from the preferred consumption of ripe fruit. Serous secretory granule was suitable for digestion of ripe fruit. A well-developed striated duct, continuous capillaries among the epithelial cells of interlobar and excretory ducts, and numerous blood vessels around these ducts enhanced the reabsorption of amino acids and ions. Structural variations in the parotid gland can indicate not only a correlation to diet and survival but also a close relationship of the Old World fruit bat to other kinds of bats.
New liquid crystalline materials based on two generations of dendronised cyclophosphazenes.
Jiménez, Josefina; Laguna, Antonio; Gascón, Elena; Sanz, José Antonio; Serrano, José Luis; Barberá, Joaquín; Oriol, Luis
2012-12-21
A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N(3)P(3)(OC(6)H(4)OH-4)(6)] and using an acetal-protected 2,2-di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first- and second-generation dendrimers, G1-(OH)(12) or G2-(OH)(24), were then condensed in turn with mono- or polycatenar pro-mesogenic acids to study their ability to promote self-assembly into liquid crystalline structures. Reactions were monitored by using (31)P{(1)H} and (1)H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI-TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X-ray diffraction. The dendrimer with 12 4-pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro-mesogenic units with two aromatic rings (A4 vs. A5), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus
Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A.; Wang, Timothy G.; Sepulveda, Antonia R.; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen
2017-01-01
In several organ systems the transitional zone between different types of epithelia is a hotspot for pre-neoplastic metaplasia and malignancy1–3. However, the cell-of-origin for the metaplastic epithelium and subsequent malignancy, remains obscure1–3. In the case of Barrett’s oesophagus (BE), intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells4. Based on different experimental models, several alternative cell types have been proposed as the source of the metaplasia, but in all cases the evidence is inconclusive and no model completely mimics BE with the presence of intestinal goblet cells5–8. Here, we describe a novel transitional columnar epithelium with distinct basal progenitor cells (p63+ KRT5+ KRT7+) in the squamous-columnar junction (SCJ) in the upper gastrointestinal tract of the mouse. We use multiple models and lineage tracing strategies to show that this unique SCJ basal cell population serves as a source of progenitors for the transitional epithelium. Moreover, upon ectopic expression of CDX2 these transitional basal progenitors differentiate into intestinal-like epithelium including goblet cells, thus reproducing Barrett’s metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues, including the anorectal junction, and, importantly, at the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (MLE) believed to be a precursor of BE are both characterized by the expansion of the transitional basal progenitor cells. Taken together our findings reveal the presence of a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+ KRT7+ basal cells in this zone are the cell-of-origin for MLE and BE. PMID:29019984
Differentiation of anchoring junctions in tracheal basal cells in the growing rat.
Evans, M J; Cox, R A; Burke, A S; Moller, P C
1992-02-01
A function of airway basal cells is to attach ciliated and nonciliated columnar cells to the basal lamina. The significance of the basal cell in attachment is related to the height of the columnar epithelium. In taller epithelia, basal cells are more numerous and differentiated with respect to anchoring junctional adhesion mechanisms (desmosomes, hemidesmosomes, and the cytoskeleton) than in shorter epithelia. In this study, we determined if basal cell anchoring junctional adhesion mechanisms differentiated during growth of the airway. Tracheas from five 3-day-old, five 30-day-old, and five 90-day-old rats were prepared for electron microscopy and morphometrically studied by standard techniques. The circumference of the trachea increased from 2.5 +/- 0.2 to 7.5 +/- 0.4 mm during growth. The height of the columnar cell increased from 13.4 +/- 1.5 to 24.6 +/- 3.9 microns, and the number of basal cells per millimeter increased from 3.2 +/- 0.7 to 9.6 +/- 1.8 during growth. The number of desmosomes per basal cell profile increased significantly from 1.5 +/- 0.1 to 2.1 +/- 0.1, as did keratin filament volume density from 0.046 +/- 0.05 to 0.098 +/- 0.032. The amount of hemidesmosome attachment per basal cell did not increase significantly during growth of the airway. These data demonstrate that as tracheas grow in circumference, the columnar cells increase in height, basal cells increase in number, and anchoring junctional adhesion mechanisms differentiate in the basal cells. These changes are closely related to the height of the epithelium and result in maintaining a constant amount of attachment between the columnar epithelium and the basal lamina as the epithelium increases in height.
Suomalainen, L R; Tiirola, M A; Valtonen, E T
2005-01-25
Use of Pseudomonas sp. strain MT5 to prevent and treat Flavobacterium columnare infection was studied in 2 experiments with fingerling rainbow trout Oncorhynchus mykiss. In the first experiment, length heterogeneity analysis of PCR-amplified DNA fragments (LH-PCR) was used to assess the effect of antagonistic baths on the microbial diversity of healthy and experimentally infected fish. In the 148 samples studied, no difference was found between bathed and unbathed fish, and 3 fragment lengths were detected most frequently: 500 (in 75.7% of the samples), 523 (62.2%) and 517 bp (40.5%). The species contributing to these fragment sizes were Pseudomonas sp., Rhodococcus sp. and F. columnare, respectively. A specific PCR for detection of Pseudomonas sp. MT5 was designed, but none of the tissue samples were found to be positive, most likely indicating poor adhesion of the strain during bathing. LH-PCR was found to be a more powerful tool for detecting F. columnare in fish tissue than traditional culture methods (chi2 = 3.9, df = 1, p < 0.05). Antagonistic baths had no effect on the outbreak of infection or on fish mortality. F. columnare was also detected in healthy fish prior to and after experimental infection, indicating that these fish were carriers of the disease. In the second experiment, intensive Pseudomonas sp. MT5 antagonistic baths were given daily to rainbow trout suffering from a natural columnaris infection. Again, the antagonistic bacteria had no effect on fish mortality, which reached 95 % in both control and antagonist-treated groups in 7 d.
Columnaris disease in fish: a review with emphasis on bacterium-host interactions
2013-01-01
Flavobacterium columnare (F. columnare) is the causative agent of columnaris disease. This bacterium affects both cultured and wild freshwater fish including many susceptible commercially important fish species. F. columnare infections may result in skin lesions, fin erosion and gill necrosis, with a high degree of mortality, leading to severe economic losses. Especially in the last decade, various research groups have performed studies aimed at elucidating the pathogenesis of columnaris disease, leading to significant progress in defining the complex interactions between the organism and its host. Despite these efforts, the pathogenesis of columnaris disease hitherto largely remains unclear, compromising the further development of efficient curative and preventive measures to combat this disease. Besides elaborating on the agent and the disease it causes, this review aims to summarize these pathogenesis data emphasizing the areas meriting further investigation. PMID:23617544
Orientation decoding depends on maps, not columns
Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.
2011-01-01
The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017
Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)
2002-01-01
Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.
2012-09-03
described in previous reports [32]. In this experimental technique, the specimen ends are gripped to loadcell and PZT actuator mounted on three dimensional...shown in Figure 3. This was due to the random distribution of columnar grains with different texture where KIC was dependent on one particular grain...Engineering: A, 268 (1-2), pp. 116-126, 1999 [19] C.P. Chen, and M.H. Leipold, "Fracture toughness of silicon", American Ceramics Society Bulletin
USDA-ARS?s Scientific Manuscript database
Sunshine bass (Morone chrysops female ' Morone saxatilis male) naturally infected with Aeromonas hydrophila and Flavobacterium columnare were randomly assigned to six treatments: 1) two treatments of waterborne exposures to copper sulfate (CuSO4), at 2.1 and at 4.2 mg/L (approximately one and two pe...
Do breast columnar cell lesions with atypia need to be excised?
Datrice, Nicole; Narula, Navneet; Maggard, Melinda; Butler, John; Hsiang, David; Baick, Choong; Lane, Karen
2007-10-01
Columnar cell lesion with atypia (CCLA) is a newly recognized pathologic entity seen in breast specimens. The breast cancer risk associated with this finding is unclear, although CCLA had been found adjacent to both in situ and invasive carcinomas, but the incidence is unknown. Breast specimens from patients with a columnar cell lesion were reviewed by a pathologist for atypia. Twenty-one specimens with CCLA were identified [core biopsy (8), excisional biopsy (11), and simple mastectomy (2)]. Six of eight specimens with CCLA on core had adjacent abnormal pathology: infiltrating ductal carcinoma (IDC)/lobular carcinoma in situ (LCIS) (1), ductal carcinoma in situ (DCIS)/LCIS (1), DCIS (1), LCIS (1), and papillomatosis (2). Five of 11 specimens with CCLA on excisional biopsy had adjacent abnormal pathology: IDC (3), DCIS/LCIS (1), and atypical ductal hyperplasia/papilloma (1). Two of two simple mastectomy specimens had CCLA associated with IDC (1) and DCIS (1). Overall, abnormal pathology was found adjacent to CCLA in 62 per cent of specimens (13/21). Breast pathologic specimens containing a columnar cell lesion should be carefully examined for atypia. Surgical excision is warranted for CCLA found on core biopsy. The future risk of breast cancer based on the finding of CCLA alone requires further investigation.
Methylation of DAPK and THBS1 genes in esophageal gastric-type columnar metaplasia
Herrera-Goepfert, Roberto; Oñate-Ocaña, Luis F; Mosqueda-Vargas, José Luis; Herrera, Luis A; Castro, Clementina; Mendoza, Julia; González-Barrios, Rodrigo
2016-01-01
AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori (H. pylori) status in individuals harboring esophageal columnar metaplasia. METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type (non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of death-associated protein kinase (DAPK), thrombospondin-1 (THBS1), cadherin-1 (CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction (MS-PCR) and sodium bisulfite modification protocol. H. pylori cagA status was determined by PCR. RESULTS: In total, 68 subjects (33 females and 35 males), with a mean age of 52 years, were included. H. pylori cagA positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40 (58.8%), 33 (48.5%), 46 (67.6%), and 23 (33.8%) cases of the 68 esophageal samples. H. pylori status was associated with methylation of DAPK (P = 0.003) and THBS1 (P = 0.019). CONCLUSION: DNA methylation occurs in cases of gastric-type (non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cagA positive infection. PMID:27182166
Cabibi, D; Giannone, A G; Mascarella, C; Guarnotta, C; Castiglia, M; Pantuso, G; Fiorentino, E
2014-03-05
Intestinal metaplasia in Barrett's oesophagus (BO) represents an important risk factor for oesophageal adenocarcinoma. Instead, few and controversial data are reported about the progression risk of columnar-lined oesophagus without intestinal metaplasia (CLO), posing an issue about its clinical management. The aim was to evaluate if some immunophenotypic changes were present in CLO independently of the presence of the goblet cells. We studied a series of oesophageal biopsies from patients with endoscopic finding of columnar metaplasia, by performing some immunohistochemical stainings (CK7, p53, AuroraA) combined with histochemistry (Alcian-blue and Alcian/PAS), with the aim of simultaneously assess the histochemical features in cells that shows an aberrant expression of such antigens. We evidenced a cytoplasmic expression of CK7 and a nuclear expression of Aurora A and p53, both in goblet cells of BO and in non-goblet cells of CLO, some of which showing mild dysplasia. These findings suggest that some immunophenotypic changes are present in CLO and they can precede the appearance of the goblet cells or can be present independently of them, confirming the conception of BO as the condition characterized by any extention of columnar epithelium. This is the first study in which a combined immunohistochemical/histochemical method has been applied to Barrett pathology.
NASA Astrophysics Data System (ADS)
Murr, L. E.; Martinez, E.; Gaytan, S. M.; Ramirez, D. A.; Machado, B. I.; Shindo, P. W.; Martinez, J. L.; Medina, F.; Wooten, J.; Ciscel, D.; Ackelid, U.; Wicker, R. B.
2011-11-01
Microstructures and a microstructural, columnar architecture as well as mechanical behavior of as-fabricated and processed INCONEL alloy 625 components produced by additive manufacturing using electron beam melting (EBM) of prealloyed precursor powder are examined in this study. As-fabricated and hot-isostatically pressed ("hipped") [at 1393 K (1120 °C)] cylinders examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive (X-ray) spectrometry (EDS), and X-ray diffraction (XRD) exhibited an initial EBM-developed γ″ (bct) Ni3Nb precipitate platelet columnar architecture within columnar [200] textured γ (fcc) Ni-Cr grains aligned in the cylinder axis, parallel to the EBM build direction. Upon annealing at 1393 K (1120 °C) (hot-isostatic press (HIP)), these precipitate columns dissolve and the columnar, γ, grains recrystallized forming generally equiaxed grains (with coherent {111} annealing twins), containing NbCr2 laves precipitates. Microindentation hardnesses decreased from 2.7 to 2.2 GPa following hot-isostatic pressing ("hipping"), and the corresponding engineering (0.2 pct) offset yield stress decreased from 0.41 to 0.33 GPa, while the UTS increased from 0.75 to 0.77 GPa. However, the corresponding elongation increased from 44 to 69 pct for the hipped components.
Gadolinia doped hafnia (Gd2O3- HfO 2) thermal barrier coatings for gas turbine applications
NASA Astrophysics Data System (ADS)
Gullapalli, Satya Kiran
Thermal efficiency of the gas turbines is influenced by the operating temperature of the hot gas path components. The material used for the hot gas path components can only withstand temperature up to a certain limit. Thermal barrier coatings (TBC) provide the additional thermal protection for these components and help the gas turbine achieve higher firing temperatures. Traditionally available yttria stabilized zirconia (YSZ) TBCs have a limitation up to 1200 C due to their phase transformation. The present work focuses on gadolinia based hafnia (GSH) TBCs to study their potential to replace the YSZ coatings. Different compositions of gadolinia doped hafnia coatings have been deposited using electron beam physical vapor deposition (EB-PVD) technique and characterized using x-ray diffraction (XRD) and scanning electron microscope (SEM). The crystal structure analysis performed using XRD confirmed the stabilization of the high temperature cubic phase of hafnia. Cross sectional analysis confirmed the presence of columnar structure in the coatings which is a signature of the EB-PVD coatings. Mechanical properties of the coatings were investigated using nanoindentation and nano impact testing at both room temperature and high temperature. Indentation tests indicate a reduction in hardness with an increase in temperature and gadolinia content in hafnia. Impact testing reveals the fracture resistance of the coatings as a function of stabilizer content and heat treatment. Thermal measurements and impedance testing was performed on the bulk material to study the effect of gadolinia content. Thermal cycling was performed to study the spallation behavior of the as deposited and aged samples. Finite element models were developed to study the interfacial stress development in the coatings subjected to thermal cycling.
NASA Astrophysics Data System (ADS)
Sarusi, Gabby; Templeman, Tzvi; Hechster, Elad; Nissim, Nimrod; Vitenberg, Vladimir; Maman, Nitzan; Tal, Amir; Solodar, Assi; Makov, Guy; Abdulhalim, Ibrahim; Visoly-Fisher, Iris; Golan, Yuval
2016-04-01
A new concept of short wavelength infrared (SWIR) to visible upconversion integrated imaging device is proposed, modeled and some initial measured results are presented. The device is a hybrid inorganic-organic device that comprises six nano-metric scale sub-layers grown on n-type GaAs substrates. The first layer is a ~300nm thick PbSe nano-columnar absorber layer grown in (111) orientation to the substrate plan (100), with a diameter of 8- 10nm and therefore exhibit quantum confinement effects parallel to the substrate and bulk properties perpendicular to it. The advantage of this structure is the high oscillator strength and hence absorption to incoming SWIR photons while maintaining the high bulk mobility of photo-excited charges along the columns. The top of the PbSe absorber layer is coated with 20nm thick metal layer that serves as a dual sided mirror, as well as a potentially surface plasmon enhanced absorption in the PbSe nano-columns layer. The photo-excited charges (holes and electrons in opposite directions) are drifted under an external applied field to the OLED section (that is composed of a hole transport layer, an emission layer and an electron transport layer) where they recombine with injected electron from the transparent cathode and emit visible light through this cathode. Due to the high absorption and enhanced transport properties this architecture has the potential of high quantum efficiency, low cost and easy implementation in any optical system. As a bench-mark, alternative concept where InGaAs/InP heterojunction couple to liquid crystal optical spatial light modulator (OSLM) structure was built that shows a full upconversion to visible of 1550nm laser light.
NASA Astrophysics Data System (ADS)
Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong
2017-10-01
The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.
Pulsed-Laser Crystallization of Ferroelectric/Piezoelectric Oxide Thin Films
NASA Astrophysics Data System (ADS)
Rajashekhar, Adarsh
Integration of ferroelectric/piezoelectric thin films, such as those of lead zirconate titanate (PZT), with temperature sensitive substrates (complementary metal oxide semiconductors (CMOS), or polymers) would benefit from growth at substrate temperatures below 400°C. However, high temperatures are usually required for obtaining good quality PZT films via conventional routes like rapid thermal processing (>550°C). Those conditions are not compatible either with polymer substrates or completed CMOS circuits and dictate exploration of alternative methods to realize integration with such substrates. In part of this work, factors influencing KrF excimer laser induced crystallization of amorphous sputtered Pb(Zr0.30Ti0.70)O3 thin films at substrate temperatures < 215°C were investigated. (111) Pt/Si substrates were utilized to understand the process window. Laser energy densities studied were in the range 35 - 85 mJ/cm2. The Pb content in the films was varied via the Ar gas pressure (in the range 5 mTorr - 9 mTorr) during sputtering of amorphous films. It was seen that a higher Pb content in the asdeposited films aided nucleation of the perovskite phase. Ozone-containing ambients (10% O3/90% O2) during the annealing promoted the formation of the metastable Pb-rich pyrochlore/fluorite phase, while annealing in pure oxygen produced the perovskite phase at relatively lower annealing laser energy densities. Heterogeneous nucleation from the substrate is favored on utilizing a layer-by-layer growth and crystallization process. Films were also grown on polymers using this method. Ferroelectric switching was demonstrated, but extensive process optimization would be needed to reduce leakage and porosity. Real time laser annealing during growth allows for scaling of the layer-by-layer growth process. A pulsed laser deposition system with in situ laser annealing was thus designed, built, and utilized to grow Pb(Zr 0.52Ti0.48)O3 thin films on a laser crystallized Pb(Zr0.20Ti0.80)O3 seed layer, at a temperature of 370°C. Polycrystalline 1.1 microm thick films exhibited columnar grains with small grain sizes ( 30 nm). The films showed well-saturated hysteresis loops (with a remanent polarization of 25 microC/cm2, and a coercive field of 50 kV/cm) and exhibited loss tangents <2.5% with a permittivity of 730. Film orientation could be controlled via the substrate choice; {111} Pb(Zr0.52Ti0.48)O3 films were grown on oriented (111) Pb(Zr0.30Ti0.70)O3 sol-gel seed layers, while epitaxial {001} films were prepared on (100) SrTiO 3 single crystals. In order to study the microstructure evolution in these films, in situ pulsed-laser annealing was used to grow crystalline lead zirconate titanate (PbZr0.52Ti0.48O3) thin films at a substrate temperature of 370°C on PbZr0.30Ti 0.70O3-buffered platinized silicon substrates. Transmission electron microscopy (TEM) analysis indicated that the films were well crystallized into columnar grains, but with pores segregated at the grain boundaries. Lateral densification of the grain columns was significantly improved by reducing the partial pressure of oxygen from 120 mTorr to 50 mTorr, presumably due to enhanced adatom mobility at the surface accompanying increased bombardment. It was found that varying the fractional annealing duration with respect to the deposition duration produced little effect on lateral grain growth. However, increasing the fractional annealing duration led to shift of 111 PZT X-ray diffraction peaks to higher 2theta values, suggesting residual in-plane tensile stresses in the films. Thermal simulations were used to understand the annealing process. Evolution of the film microstructure is described in terms of transient heating from the pulsed laser determining the nucleation events, while the energy of the arriving species dictates grain growth/coarsening.
Guerra, Sebastiano; Iehl, Julien; Holler, Michel; Peterca, Mihai; Wilson, Daniela A; Partridge, Benjamin E; Zhang, Shaodong; Deschenaux, Robert; Nierengarten, Jean-François; Percec, Virgil
2015-06-01
Twelve chiral and achiral self-assembling dendrons have been grafted onto a [60]fullerene hexa-adduct core by copper-catalyzed alkyne azide "click" cycloaddition. The structure adopted by these compounds was determined by the self-assembling peripheral dendrons. These twelve dendrons mediate the self-organisation of the dendronized [60]fullerene into a disc-shaped structure containing the [60]fullerene in the centre. The fullerene-containing discs self-organise into helical supramolecular columns with a fullerene nanowire-like core, forming a 2D columnar hexagonal periodic array. These unprecedented supramolecular structures and their assemblies are expected to provide new developments in chiral complex molecular systems and their application to organic electronics and solar cells.
NASA Astrophysics Data System (ADS)
Salamakha, Leonid P.; Sologub, Oksana; Stöger, Berthold; Michor, Herwig; Bauer, Ernst; Rogl, Peter F.
2015-09-01
New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt1-xCux)3Cu2B (x=0.33) forms a B-filled β-Mn-type structure (space group P4132; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt9Cu3B5 (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt9Zn3B5-δ-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt6] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt6] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt6] and [Pt6] trigonal prisms, rotated perpendicularly to the central one. There is no B-B contact as well as Cu-B contact in the structure. The relationships of Pt9Cu3B5 structure with the structure of Ti1+xOs2-xRuB2 as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt1-xCux)3Cu2B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ0HC2(0)WHH of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt9Cu3B5 (Pt9Zn3B5-δ-type structure) from electrical resistivity measurements.
Flat epithelial atypia of the breast: characteristics and behaviors.
Sudarshan, Monisha; Meguerditchian, Ari-Nareg; Mesurolle, Benoit; Meterissian, Sarkis
2011-02-01
Flat epithelial atypia (FEA) increasingly is being recognized as a pathologic entity on core needle biopsies. However, definitive management of this columnar cell lesion remains debatable because its malignant potential is unknown. A PubMed search for "flat epithelial atypia" and "columnar cell lesions" was performed. FEA commonly was encountered in the background of higher-grade lesions such as atypical ductal hyperplasia, ductal carcinoma in situ, and tubular and lobular carcinomas. Its molecular and cytogenetic profile revealed some alterations similar to precancerous lesions. Pure FEA on core needle biopsies was upgraded to higher-grade lesions on subsequent surgical excision. Current management of FEA is best achieved through a multidisciplinary review considering various factors to determine if surgical excision is warranted. Further studies are required to elucidate the malignant potential of this columnar cell lesion. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.; Giroud-Godquin, A. M.; Marchon, J.-C.
1992-12-01
This paper describes observations of the mesomorphic behaviour of mixtures of rhodium eicosanoate or copper dodecanoate with solvents such as toluene, decahydronaphthalene, and (+) camphene. The mesophase found with these compounds at high temperatures turns from columnar to nematic when the weight fraction of the solvent (toluene, decahydronaphthalene is increased beyond a value of about 50%. The binary phase diagram of the copper compound with toluene was experimentally determined using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. The novel feature of the nematic phase is that the basic physical object which align parallel to the nematic director are not individual molecules, but columns of molecules (one-dimensional supramolecular assemblies) which have lost the long-range lateral positional order characteristic of the columnar mesophase. These observations are discussed on the grounds of recent theoretical calculations. Cholesteric-like textures are observed for mixtures of rhodium eicosanoate with the chiral solvent (+) camphene.
Vapor and liquid optical monitoring with sculptured Bragg microcavities
NASA Astrophysics Data System (ADS)
Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria Carmen; González-Elipe, Agustín R.; Yubero, Francisco
2017-10-01
Sculptured porous Bragg microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with a zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength-dependent optical retarders. This optical behavior is attributed to a self-structuration of the stacked layers involving the lateral association of nanocolumns in the direction perpendicular to the main flux of particles during the multilayer film growth, as observed by focused ion beam scanning electron microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids, or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems has been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. The sculptured BMs have been incorporated as microfluidic chips for optical transduction for label-free vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical monitoring of vapor and liquids of different refractive indices and aqueous solutions of glucose flowing through the microfluidic chips are described.
Mechanical and shape memory properties of ferromagnetic Ni2MnGa sputter-deposited films
NASA Astrophysics Data System (ADS)
Ohtsuka, M.; Matsumoto, M.; Itagaki, K.
2003-10-01
The ternary intermetallic compound Ni2MnGa is an intelligent material, which has a shape memory effect and a ferromagnetic property. Use of shape memory alloy films for an actuator of micro machines is very attractive because of its large recovery force. The data of mechanical and shape memory properties of the films are required to use for the actuator. The purpose of this study is to investigate the effects of fabrication conditions and to clarify the relationships between these properties and fabrication conditions of the Ni{2}MnGa films. The Ni{2}MnGa films were deposited with a radio-frequency magnetron sputtering apparatus using a Ni{50}Mn{25}Ga{25} or Ni{52}Mn{24}Ga{24} target. After deposition, the films were annealed at 873sim 1173 K. The asdeposited films were crystalline and had columnar grains. After the heat treatment, the grains widened and the grain boundary became indistinct with increasing heat treatment temperature. MnO and Ni{3} (Mn, Ga) precipitations were observed in the heat-treated films. The mechanical properties of the films were measured by the nanoindentation method. Hardness and elastic modulus of as-deposited films were larger than those of arcmelted bulk alloys. The hardness of the films was affected by the composition, crystal structure, microstructure and precipitation, etc. The elastic modulus of the films was also changed with the heat treatment conditions. The heat-treated films showed a thermal two-way shape memory effect.
Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.
Durham, John W; Allen, Matthew J; Rabiei, Afsaneh
2017-04-01
Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.
Observations of banding in first-year Arctic sea ice
NASA Astrophysics Data System (ADS)
Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.
2004-08-01
Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.
NASA Astrophysics Data System (ADS)
Wu, Zhiwei; Zhou, Fei; Wang, Qianzhi; Zhou, Zhifeng; Yan, Jiwang; Li, Lawrence Kwok-Yan
2015-11-01
CrSiCN coatings with different silicon and carbon contents were deposited on silicon wafers and 316L stainless steels using unbalanced magnetron sputtering via adjusting trimethylsilane (TMS) flow, and their microstructure and mechanical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), X-ray photoelectrons spectroscopy(XPS) and nano-indenter, respectively. The tribological properties of CrSiCN coatings sliding against SiC balls in water were investigated using ball-on-disk tribometer. The results showed that the CrSiCN coatings had fine composite microstructure consisting of nanocrystallites of Cr(C, N) crystal and amorphous phases such as a-Si3N4 and a-C(a-CNx). The typical columnar structures changed from fine cluster to coarse ones when the Si content was beyond 3.4 at.%. With an increase in the TMS flow, the hardness and Young's modulus of Corsican coatings all first increased, and then rapidly decreased, but the compressive stress in the coatings varied in the range of 2.8-4.8 GPa. When the TMS flow was 10 sccm, the CrSiCN coatings exhibited the highest hardness of 21.3 GPa and the lowest friction coefficient (0.11) and wear rate (8.4 × 10-8 mm3/N m). But when the TMS flow was beyond 15 sccm, the tribological properties of CrSiCN coatings in water became poor.
The basic nonuniformity of the cerebral cortex
Herculano-Houzel, Suzana; Collins, Christine E.; Wong, Peiyan; Kaas, Jon H.; Lent, Roberto
2008-01-01
Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244], who found a steady number of approximately 110 neurons underneath a surface area of 750 μm2 (147,000 underneath 1 mm2) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm2 of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons. PMID:18689685
The basic nonuniformity of the cerebral cortex.
Herculano-Houzel, Suzana; Collins, Christine E; Wong, Peiyan; Kaas, Jon H; Lent, Roberto
2008-08-26
Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221-244], who found a steady number of approximately 110 neurons underneath a surface area of 750 microm(2) (147,000 underneath 1 mm(2)) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm(2) of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons.
Biological basis for space-variant sensor design I: parameters of monkey and human spatial vision
NASA Astrophysics Data System (ADS)
Rojer, Alan S.; Schwartz, Eric L.
1991-02-01
Biological sensor design has long provided inspiration for sensor design in machine vision. However relatively little attention has been paid to the actual design parameters provided by biological systems as opposed to the general nature of biological vision architectures. In the present paper we will provide a review of current knowledge of primate spatial vision design parameters and will present recent experimental and modeling work from our lab which demonstrates that a numerical conformal mapping which is a refinement of our previous complex logarithmic model provides the best current summary of this feature of the primate visual system. In this paper we will review recent work from our laboratory which has characterized some of the spatial architectures of the primate visual system. In particular we will review experimental and modeling studies which indicate that: . The global spatial architecture of primate visual cortex is well summarized by a numerical conformal mapping whose simplest analytic approximation is the complex logarithm function . The columnar sub-structure of primate visual cortex can be well summarized by a model based on a band-pass filtered white noise. We will also refer to ongoing work in our lab which demonstrates that: . The joint columnar/map structure of primate visual cortex can be modeled and summarized in terms of a new algorithm the ''''proto-column'''' algorithm. This work provides a reference-point for current engineering approaches to novel architectures for
Columnar jointing - the mechanics of thermal contraction in cooling lavas
NASA Astrophysics Data System (ADS)
Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.
2014-12-01
Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio between strain-to-failure and expansion coefficient suggests that 400 °C of cooling (from the solidus) is require to achieve tensile failure by thermal contraction, supporting the first suite of experiments. We conclude that columnar jointing is not a phenomenon that takes place in molten lava, but rather occurs well within the solid state of volcanic rocks.
Depth-of-interaction estimates in pixelated scintillator sensors using Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Sze, Christina; Bhandari, Harish; Nagarkar, Vivek; Badano, Aldo
2017-01-01
Image quality in thick scintillator detectors can be improved by minimizing parallax errors through depth-of-interaction (DOI) estimation. A novel sensor for low-energy single photon imaging having a thick, transparent, crystalline pixelated micro-columnar CsI:Tl scintillator structure has been described, with possible future application in small-animal single photon emission computed tomography (SPECT) imaging when using thicker structures under development. In order to understand the fundamental limits of this new structure, we introduce cartesianDETECT2, an open-source optical transport package that uses Monte Carlo methods to obtain estimates of DOI for improving spatial resolution of nuclear imaging applications. Optical photon paths are calculated as a function of varying simulation parameters such as columnar surface roughness, bulk, and top-surface absorption. We use scanning electron microscope images to estimate appropriate surface roughness coefficients. Simulation results are analyzed to model and establish patterns between DOI and photon scattering. The effect of varying starting locations of optical photons on the spatial response is studied. Bulk and top-surface absorption fractions were varied to investigate their effect on spatial response as a function of DOI. We investigated the accuracy of our DOI estimation model for a particular screen with various training and testing sets, and for all cases the percent error between the estimated and actual DOI over the majority of the detector thickness was ±5% with a maximum error of up to ±10% at deeper DOIs. In addition, we found that cartesianDETECT2 is computationally five times more efficient than MANTIS. Findings indicate that DOI estimates can be extracted from a double-Gaussian model of the detector response. We observed that our model predicts DOI in pixelated scintillator detectors reasonably well.
A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST
NASA Astrophysics Data System (ADS)
Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei
2017-05-01
Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.
NASA Astrophysics Data System (ADS)
Zheng, Huifeng; Liu, Yangqiao; Sun, Jing
2018-04-01
The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (<100 °C). Here, we comprehensively investigated the effects of non-coordinating solvent vapor on the properties of perovskite film, and obtained micron-sized columnar grains (with an average grain size of 1.4 μm) of CH3NH3PbI3 even at a low temperature of 75 °C when annealed with benzyl alcohol vapor. The perovskite solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.
Bender, Kevin J.; Rangel, Juliana; Feldman, Daniel E.
2011-01-01
The excitatory feedforward projection from layer (L) 4 to L2/3 in rat primary somatosensory (S1) cortex exhibits precise, columnar topography that is critical for columnar processing of whisker inputs. Here, we characterize the development of axonal topography in this projection using single-cell reconstructions in S1 slices. In the mature projection [postnatal day (P) 14 –26], axons of L4 cells extending into L2/3 were confined almost entirely to the home barrel column, consistent with previous results. At younger ages (P8 –11), however, axonal topography was significantly less columnar, with a large proportion of branches innervating neighboring barrel columns representing adjacent whisker rows. Mature topography developed from this initial state by targeted axonal growth within the home column and by growth of barrel columns themselves. Raising rats with all or a subset of whiskers plucked from P8 –9, manipulations that induce reorganization of functional whisker maps and synaptic depression at L4 to L2/3 synapses, did not alter normal anatomical development of L4 to L2/3 axons. Thus, development of this projection does not require normal sensory experience after P8, and deprivation-induced reorganization of whisker maps at this age is unlikely to involve physical remodeling of L4 to L2/3 axons. PMID:14507976
Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy
2012-12-01
Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.
NASA Astrophysics Data System (ADS)
Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin
2017-11-01
Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.
PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps.
Kobayashi, Tatsuya; Chung, Ung-Il; Schipani, Ernestina; Starbuck, Michael; Karsenty, Gerard; Katagiri, Takenobu; Goad, Dale L; Lanske, Beate; Kronenberg, Henry M
2002-06-01
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.
Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J
2009-12-24
In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.
NASA Astrophysics Data System (ADS)
Sato, Kazuhisa; Abe, Seishi
2016-10-01
The microstructure of polycrystalline PbTe1-xSex-ZnSe composite thin films has been studied by scanning transmission electron microscopy and electron diffraction. The films were prepared by the one-step synthesis method using simultaneous evaporation of PbTe and ZnSe. The nanocrystals of PbTe1-xSex are formed in a ZnSe matrix. Tellurium concentration can be tuned by controlling the PbTe evaporation source temperatures between 753 K and 793 K. Binary PbSe nanocrystals were formed at 753 K, while ternary PbTe1-xSex nanocrystals were formed at 793 K. The nanocrystals grow in a granular shape at the initial stage of film growth, and the morphology changes to nanowire-shape as the film grows, irrespective of the Te concentration. The ternary PbTe1-xSex nanocrystals were composed of two phases with different Te concentration; Te-rich (Se-poor) granular crystals were formed near the bottom half parts of the film and Te-poor (Se-rich) nanowires were formed at the upper half parts of the film. Columnar ZnSe crystals contain high-density {111} stacking faults due to the low stacking fault energy of ZnSe. A balance of deposition and re-evaporation on the substrate during the film growth will be responsible for the resultant nanocrystal morphology.
The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy
NASA Astrophysics Data System (ADS)
Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong
2017-10-01
The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.
NASA Astrophysics Data System (ADS)
Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian
2015-08-01
Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.
A wireless power transmission system for implantable devices in freely moving rodents.
Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June
2014-08-01
Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.
Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal
NASA Astrophysics Data System (ADS)
Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.
2014-02-01
The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.
Characteristics of AZ31 Mg alloy joint using automatic TIG welding
NASA Astrophysics Data System (ADS)
Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua
2017-01-01
The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.
Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core-Shell LED Structures
NASA Astrophysics Data System (ADS)
Wang, Xue; Li, Shunfeng; Mohajerani, Matin Sadat; Ledig, Johannes; Wehmann, Hergo-Heinrich; Mandl, Martin; Strassburg, Martin; Steegmüller, Ulrich; Jahn, Uwe; Lähnemann, Jonas; Riechert, Henning; Griffiths, Ian; Cherns, David; Waag, Andreas
2013-06-01
Arrays of dislocation free uniform Ga-polar GaN columns have been realized on patterned SiOx/GaN/sapphire templates by metal organic vapor phase epitaxy using a continuous growth mode. The key parameters and the physical principles of growth of Ga-polar GaN three-dimensional columns are identified, and their potential for manipulating the growth process is discussed. High aspect ratio columns have been achieved using silane during the growth, leading to n-type columns. The vertical growth rate increases with increasing silane flow. In a core-shell columnar LED structure, the shells of InGaN/GaN multi quantum wells and p-GaN have been realized on a core of n-doped GaN column. Cathodoluminescence gives insight into the inner structure of these core-shell LED structures.
Osteochondral graft from the pre-achilles area for replacement of articular surface defects
NASA Astrophysics Data System (ADS)
Kuznetsov, V. V.; Pahomov, I. A.; Prohorenko, V. M.; Sadovoy, M. A.; Korel, A. V.; Zaydman, A. M.; Repin, A. V.; Gudi, S. M.; Korochkin, S. B.
2017-09-01
We substantiate a new technique for obtaining osteochondral autograft to replace osteochondral defects resulting from various lesions of the talar trochlea by means of morphological examination of the following microslides: talar cartilage (cadaver material), cartilage portion of the pre-achilles zone of the calcaneum, lateral femoral condyle, and necrotic area of the talus. Examination of the specimens of the pre-achilles cartilage of the calcaneus revealed a large number of poorly differentiated chondroblasts in the homogeneously stained extracellular matrix; the presence of all zones (superficial zone, zone of columnar structures, and "tidemark"). This is indicative of structural and functional preservation of this cartilage, which therefore can be considered as an autograft material.
Perez, Manolo F; Téo, Mariana F; Zappi, Daniela C; Taylor, Nigel P; Moraes, Evandro M
2011-08-01
Microsatellite primers were developed in Pilosocereus machrisii, a columnar cactus with a patchy distribution in eastern tropical South America, to assess its genetic diversity and population structure. Eleven microsatellite markers were developed, of which one was monomorphic among 51 individuals from two populations. The number of alleles per polymorphic locus ranged from two to eight, and the total number of alleles was 57. From the 11 isolated loci, nine were successfully amplified in the other four Pilosocereus species. The results showed that these markers will be useful for studies of genetic diversity, patterns of gene flow, and population genetic structure in P. machrisii, as well as across other congeneric species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonysamy, A.A., E-mail: alphons.antonysamy@GKNAerospace.com; Meyer, J., E-mail: jonathan.meyer@eads.com; Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk
With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an <001> {sub β} direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong < 001 > {sub β} fibre texturemore » (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a < 001 > fibre texture in the build direction. • This oscillates between a random distribution around the axis and cube reinforcement. • In the skin layer nucleation occurs off the surrounding powder bed and growth occurs inwards. • Simulations show that a weak α-texture results from a random distribution across habit variants.« less
Scales of columnar jointing in igneous rocks: field measurements and controlling factors
NASA Astrophysics Data System (ADS)
Hetényi, György; Taisne, Benoît; Garel, Fanny; Médard, Étienne; Bosshard, Sonja; Mattsson, Hannes B.
2012-03-01
Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons' average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava flows), chemistry plays the major role, resulting in stouter columns in felsic lavas and slenderer columns in mafic lavas.
Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.
2013-04-01
The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.
Single-Photon Emission from InAs/AlGaAs Quantum Dots
NASA Astrophysics Data System (ADS)
Rakhlin, M. V.; Belyaev, K. G.; Klimko, G. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.
2018-04-01
The results of investigation of the radiative characteristics of heterostructures with InAs/AlGaAs quantum dots (QDs) grown by molecular beam epitaxy have been presented. The properties of single QDs were determined by spectroscopy of micro-photoluminescence in cylindrical mesa-structures with a diameter of 200-1000 nm or columnar microresonators with distributed Bragg mirrors. The single-photon nature of the radiation is confirmed by measurements and analysis of the second-order correlation function g 2(τ) in a wide spectral range from 630 to 730 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronchi, C.; Sari, C.
Lenticular pore migration rates in oxide nuclear fuels were measured in out-of-pile heating experiments. It is deduced that those pores which are in part responsible for the formation of columnar grains, are only produced in the absence of relevant amourts of filling gas. Specimens containing important concentrations of He, produced by Pu alpha decay, show columnar grain restructuring by grain boundary migration. Some consequences are drawn concerning the possible role played by lenticular pores in the mechanisms of fission gas release from nuclear fuels. (5 figures) (auth)
NASA Astrophysics Data System (ADS)
Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong
2017-06-01
We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.
Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.
Allen, Frank H; Motherwell, W D Samuel
2002-06-01
The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo
2016-04-06
We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained.
NASA Astrophysics Data System (ADS)
Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori
2016-07-01
The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Badal, Andreu; Badano, Aldo
2012-04-01
The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.
Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru
2016-02-26
Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.
A New Columnar CsI(Tl) Scintillator for iQID detectors
Han, Ling; Miller, Brian W.; Barber, H. Bradford; Nagarkar, Vivek V.; Furenlid, Lars R.
2015-01-01
A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation. PMID:26146444
A New Columnar CsI(Tl) Scintillator for iQID detectors.
Han, Ling; Miller, Brian W; Barber, H Bradford; Nagarkar, Vivek V; Furenlid, Lars R
2014-09-12
A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation.
Vortex Escape from Columnar Defect in a Current-Loaded Superconductor
NASA Astrophysics Data System (ADS)
Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.
2018-06-01
The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.
Williams, Stephanie F; Pulsifer, Drew P; Shaler, Robert C; Ramotowski, Robert S; Brazelle, Shelly; Lakhtakia, Akhlesh
2015-03-01
Both the columnar-thin-film (CTF) and the vacuum-metal-deposition (VMD) techniques for visualizing sebaceous fingermarks require the deposition of a material thereon in a vacuum chamber. Despite that similarity, there are many differences between the two techniques. The film deposited with the CTF technique has a columnar morphology, but the film deposited with the VMD technique comprises discrete islands. A split-print methodology on a variety of fingermarked substrates was used to determine that the CTF technique is superior for developing fingermarks on clear sandwich bags and partial bloody fingermarks on stainless steel. Both techniques are similar in their ability to develop fingermarks on glass but the CTF technique yields higher contrast. The VMD technique is superior for developing fingermarks on white grocery bags and the smooth side of Gloss Finish Scotch Multitask(™) tape. Neither technique worked well for fingermarks on black garbage bags. © 2014 American Academy of Forensic Sciences.
High-speed prediction of crystal structures for organic molecules
NASA Astrophysics Data System (ADS)
Obata, Shigeaki; Goto, Hitoshi
2015-02-01
We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.
NASA Astrophysics Data System (ADS)
Choi, Yongjoo; Ghim, Young Sung
2016-11-01
Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.
Rach, J.J.; Johnson, Aaron H.; Rudacille, J.B.; Schleis, S.M.
2008-01-01
The efficacy of oxytetracycline hydrochloride (OTC-HCl) in controlling external columnaris disease caused by Flavobacterium columnare on fingerling walleyes Sander vitreus and channel catfish Ictalurus punctatus was evaluated in two on-site hatchery trials. Microscopic examination of skin scrapings before treatment confirmed the presence of bacteria with characteristics indicative of F. columnare.in separate trials, walleyes (4.4 g) and channel catfish (1.5 g) were exposed to 60-min static bath treatments of OTC-HCl at 0, 10, and 20 mg/L (walleyes) or 0, 10, 20, and 40 mg/L (channel catfish) on three consecutive days. Each treatment regimen was tested in triplicate, and each replicate contained either 30 walleyes or 55 channel catfish. Posttreatment presumptive disease diagnosis indicated that F. columnare was the disease agent causing the mortality in both species of fish. Walleye survival at 10 d posttreatment was greater in the 10- and 20-mg/L treatment groups than in the control group; however, only the 10-mg/L treatment significantly (P < 0.05) increased walleye survival in comparison with controls. In the channel catfish trial, survival at 10 d posttreatment was significantly (P < 0.05) greater for all OTC-HCl treatment groups relative to controls. Results from these trials indicated that OTC-HCl treatments effectively reduced mortality in walleyes (10 mg/L only) and channel catfish infected with F. columnare. ?? Copyright by the American Fisheries Society 2008.
Pulkkinen, K.; Suomalainen, L.-R.; Read, A. F.; Ebert, D.; Rintamäki, P.; Valtonen, E. T.
2010-01-01
Ecological changes affect pathogen epidemiology and evolution and may trigger the emergence of novel diseases. Aquaculture radically alters the ecology of fish and their pathogens. Here we show an increase in the occurrence of the bacterial fish disease Flavobacterium columnare in salmon fingerlings at a fish farm in northern Finland over 23 years. We hypothesize that this emergence was owing to evolutionary changes in bacterial virulence. We base this argument on several observations. First, the emergence was associated with increased severity of symptoms. Second, F. columnare strains vary in virulence, with more lethal strains inducing more severe symptoms prior to death. Third, more virulent strains have greater infectivity, higher tissue-degrading capacity and higher growth rates. Fourth, pathogen strains co-occur, so that strains compete. Fifth, F. columnare can transmit efficiently from dead fish, and maintain infectivity in sterilized water for months, strongly reducing the fitness cost of host death likely experienced by the pathogen in nature. Moreover, this saprophytic infectiousness means that chemotherapy strongly select for strains that rapidly kill their hosts: dead fish remain infectious; treated fish do not. Finally, high stocking densities of homogeneous subsets of fish greatly enhance transmission opportunities. We suggest that fish farms provide an environment that promotes the circulation of more virulent strains of F. columnare. This effect is intensified by the recent increases in summer water temperature. More generally, we predict that intensive fish farming will lead to the evolution of more virulent pathogens. PMID:19864284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
2016-04-15
This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Development of a pseudo phased array technique using EMATs for DM weld testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, Adam C., E-mail: adam.cobb@swri.org; Fisher, Jay L., E-mail: adam.cobb@swri.org; Shiokawa, Nobuyuki
2015-03-31
Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS materialmore » in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.« less
NASA Astrophysics Data System (ADS)
Gupta, Mohit; Kumara, Chamara; Nylén, Per
2017-08-01
Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.
Spectroscopic ellipsometry of columnar porous Si thin films and Si nanowires
NASA Astrophysics Data System (ADS)
Fodor, Bálint; Defforge, Thomas; Agócs, Emil; Fried, Miklós; Gautier, Gaël; Petrik, Péter
2017-11-01
Columnar mesoporous Si thin films and dense nanowire (SiNW) carpets were investigated by spectroscopic ellipsometry in the visible-near-infrared wavelength range. Porous Si layers were formed by electrochemical etching while structural anisotropy was controlled by the applied current. Layers of highly oriented SiNWs, with length up to 4.1 μm were synthesized by metal-assisted chemical etching. Ellipsometric spectra were fitted with different multi-layered, effective medium approximation-based (EMA) models. Isotropic, in-depth graded, anisotropic and hybrid EMA models were investigated with the help of the root mean square errors obtained from the fits. Ellipsometric-fitted layer thicknesses were also cross-checked by scanning electron microscopy showing an excellent agreement. Furthermore, in the case of mesoporous silicon, characterization also revealed that, at low current densities (<100 mA/cm2), in-depth inhomogeneity shows a more important feature in the ellipsometric spectra than anisotropy. On the other hand, at high current densities (>100 mA/cm2) this behavior turns around, and anisotropy becomes the dominant feature describing the spectra. Characterization of SiNW layers showed a very high geometrical anisotropy. However, the highest fitted geometrical anisotropy was obtained for the layer composed of ∼1 μm long SiNWs indicating that for thicker layers, collapse of the nanowires occurs.