Science.gov

Sample records for combinational circuits based

  1. A combined noise analysis and power supply current based testing of CMOS analog integrated circuits

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok; Pulendra, Vani K.; Yellampalli, Siva

    2005-05-01

    A technique integrating the noise analysis based testing and the conventional power supply current testing of CMOS analog integrated circuits is presented for bridging type faults due to manufacturing defects. The circuit under test (CUT) is a CMOS amplifier designed for operation at +/- 2.5 V and implemented in 1.5 μm CMOS process. The faults simulating possible manufacturing defects have been introduced using the fault injection transistors. The amplifier circuit is analyzed and simulated in SPICE for its performance with and without fault injections. The faults in the CUT are identified by observing the variation in the equivalent noise voltage at the output of CUT. In power supply current testing, the current (IPS) through the power supply voltage, VDD is measured under the application of an AC input stimulus. The effect of parametric variation is taken into consideration by determining the tolerance limit using the Monte-Carlo analysis. The fault is identified if the power supply current, IPS lies outside the deviation given by Monte-Carlo analysis. Simulation results are in close agreement with the corresponding experimental values.

  2. Resistor Combinations for Parallel Circuits.

    ERIC Educational Resources Information Center

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  3. Minutiae matching with privacy protection based on the combination of garbled circuit and homomorphic encryption.

    PubMed

    Li, Mengxing; Feng, Quan; Zhao, Jian; Yang, Mei; Kang, Lijun; Wu, Lili

    2014-01-01

    Biometrics plays an important role in authentication applications since they are strongly linked to holders. With an increasing growth of e-commerce and e-government, one can expect that biometric-based authentication systems are possibly deployed over the open networks in the near future. However, due to its openness, the Internet poses a great challenge to the security and privacy of biometric authentication. Biometric data cannot be revoked, so it is of paramount importance that biometric data should be handled in a secure way. In this paper we present a scheme achieving privacy-preserving fingerprint authentication between two parties, in which fingerprint minutiae matching algorithm is completed in the encrypted domain. To improve the efficiency, we exploit homomorphic encryption as well as garbled circuits to design the protocol. Our goal is to provide protection for the security of template in storage and data privacy of two parties in transaction. The experimental results show that the proposed authentication protocol runs efficiently. Therefore, the protocol can run over open networks and help to alleviate the concerns on security and privacy of biometric applications over the open networks.

  4. Minutiae Matching with Privacy Protection Based on the Combination of Garbled Circuit and Homomorphic Encryption

    PubMed Central

    Li, Mengxing; Zhao, Jian; Yang, Mei; Kang, Lijun; Wu, Lili

    2014-01-01

    Biometrics plays an important role in authentication applications since they are strongly linked to holders. With an increasing growth of e-commerce and e-government, one can expect that biometric-based authentication systems are possibly deployed over the open networks in the near future. However, due to its openness, the Internet poses a great challenge to the security and privacy of biometric authentication. Biometric data cannot be revoked, so it is of paramount importance that biometric data should be handled in a secure way. In this paper we present a scheme achieving privacy-preserving fingerprint authentication between two parties, in which fingerprint minutiae matching algorithm is completed in the encrypted domain. To improve the efficiency, we exploit homomorphic encryption as well as garbled circuits to design the protocol. Our goal is to provide protection for the security of template in storage and data privacy of two parties in transaction. The experimental results show that the proposed authentication protocol runs efficiently. Therefore, the protocol can run over open networks and help to alleviate the concerns on security and privacy of biometric applications over the open networks. PMID:24711729

  5. Superconductive combinational logic circuit using magnetically coupled SQUID array

    NASA Astrophysics Data System (ADS)

    Yamanashi, Y.; Umeda, K.; Sai, K.

    2010-11-01

    In this paper, we propose the development of superconductive combinational logic circuits. One of the difficulties in designing superconductive single-flux-quantum (SFQ) digital circuits can be attributed to the fundamental nature of the SFQ circuits, in which all logic gates have latching functions and are based on sequential logic. The design of ultralow-power superconductive digital circuits can be facilitated by the development of superconductive combinational logic circuits in which the output is a function of only the present input. This is because superconductive combinational logic circuits do not require determination of the timing adjustment and clocking scheme. Moreover, semiconductor design tools can be used to design digital circuits because CMOS logic gates are based on combinational logic. The proposed superconductive combinational logic circuits comprise a magnetically coupled SQUID array. By adjusting the circuit parameters and coupling strengths between neighboring SQUIDs, fundamental combinational logic gates, including the AND, OR, and NOT gates, can be built. We have verified the accuracy of the operations of the fundamental logic gates by analog circuit simulations.

  6. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  7. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Astrophysics Data System (ADS)

    Mach, D. M.; Blakeslee, R.; Bateman, M. G.

    2010-12-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  8. Base drive circuit

    DOEpatents

    Lange, Arnold C.

    1995-01-01

    An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).

  9. Base drive circuit

    DOEpatents

    Lange, A.C.

    1995-04-04

    An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.

  10. Combinational Circuit Obfuscation Through Power Signature Manipulation

    DTIC Science & Technology

    2011-06-01

    hardware descrip- tion files such as VHDL , SPICE netlist are needed for the SPICE-like simulation tools; however, the SID just needs a simple circuit...Time Interval) Figure 3.12: The Summary of Procedure for SPICE Simulation CORGI 3.0 XML Exporter Truth Table Exporter GraphML Exporter VHDL Exporter...encryption system developed by Falkinburg [4]. For installing the obfuscated version of a circuit into the test-bed, the circuit is described in VHDL format

  11. Accurate dynamic power estimation for CMOS combinational logic circuits with real gate delay model.

    PubMed

    Fadl, Omnia S; Abu-Elyazeed, Mohamed F; Abdelhalim, Mohamed B; Amer, Hassanein H; Madian, Ahmed H

    2016-01-01

    Dynamic power estimation is essential in designing VLSI circuits where many parameters are involved but the only circuit parameter that is related to the circuit operation is the nodes' toggle rate. This paper discusses a deterministic and fast method to estimate the dynamic power consumption for CMOS combinational logic circuits using gate-level descriptions based on the Logic Pictures concept to obtain the circuit nodes' toggle rate. The delay model for the logic gates is the real-delay model. To validate the results, the method is applied to several circuits and compared against exhaustive, as well as Monte Carlo, simulations. The proposed technique was shown to save up to 96% processing time compared to exhaustive simulation.

  12. Combining Different Conceptual Change Methods within Four-Step Constructivist Teaching Model: A Sample Teaching of Series and Parallel Circuits

    ERIC Educational Resources Information Center

    Ipek, Hava; Calik, Muammer

    2008-01-01

    Based on students' alternative conceptions of the topics "electric circuits", "electric charge flows within an electric circuit", "how the brightness of bulbs and the resistance changes in series and parallel circuits", the current study aims to present a combination of different conceptual change methods within a four-step constructivist teaching…

  13. Organic reprogrammable circuits based on electrochemically formed diodes.

    PubMed

    Liu, Jiang; Engquist, Isak; Berggren, Magnus

    2014-08-13

    We report a method to construct reprogrammable circuits based on organic electrochemical (EC) p-n junction diodes. The diodes are built up from the combination of the organic conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and a polymer electrolyte. The p-n diodes are defined by EC doping performed at 70 °C, and then stabilized at -30 °C. The reversible EC reaction allows for in situ reprogramming of the polarity of the organic p-n junction, thus enabling us to reconfigure diode circuits. By combining diodes of specific polarities dedicated circuits have been created, such as various logic gates, a voltage limiter and an AC/DC converter. Reversing the EC reaction allows in situ reprogramming of the p-n junction polarity, thus enabling reconfiguration of diode circuits, for example, from an AND gate to an OR gate. The reprogrammable circuits are based on p-n diodes defined from only two layers, the electrodes and then the active semiconductor:electrolyte composite material. Such simple device structures are promising for large-area and fully printed reconfigurable circuits manufactured using common printing tools. The structure of the reported p-n diodes mimics the architecture of and is based on identical materials used to construct light-emitting electrochemical cells (LEC). Our findings thus provide a robust signal routing technology that is easily integrated with traditional LECs.

  14. Chemoelectronic circuits based on metal nanoparticles.

    PubMed

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  15. Chemoelectronic circuits based on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  16. The Effect of Combining Analogy-Based Simulation and Laboratory Activities on Turkish Elementary School Students' Understanding of Simple Electric Circuits

    ERIC Educational Resources Information Center

    Unlu, Zeynep Koyunlu; Dokme, Ibilge

    2011-01-01

    The purpose of this study was to investigate whether the combination of both analogy-based simulation and laboratory activities as a teaching tool was more effective than utilizing them separately in teaching the concepts of simple electricity. The quasi-experimental design that involved 66 seventh grade students from urban Turkish elementary…

  17. Experimental synchronization of single-transistor-based chaotic circuits.

    PubMed

    Fortuna, Luigi; Frasca, Mattia

    2007-12-01

    This work deals with nonautonomous chaotic circuits and, in particular, with the experimental characterization of the synchronization properties of two simple nonautonomous circuits. Two single-transistor chaotic circuits, which are among the simplest chaotic oscillators, are investigated. We studied synchronization of these circuits and found that the most appropriate technique to synchronize two single-transistor chaotic circuits is that based on the design of an inverse circuit.

  18. On testing stuck-open faults in CMOS combinational circuits

    NASA Technical Reports Server (NTRS)

    Chandramouli, R.

    1982-01-01

    Recently it has been found that a class of failure related to a particular technology (CMOS) cannot be modelled as the conventional stuck-at fault model. These failures change the combinational behavior of CMOS logic gates into a sequential one. Such a failure is modelled as a fault, called the Stuck-Open fault (SOP). The object of this paper is to develop a procedure to detect single SOPs in combinational circuits. It is shown, that in general, tests generated for stuck-at faults when applied in a particular sequence will detect all single SOP faults. In case of single redundancy in the network, the SOP fault on the redundant line cannot be detected. When there is reconvergent fan-out in the network, there is a one-one correspondence between the conditions for stuck-at fault and stuck-open fault detectability.

  19. Nonlinear dynamics based digital logic and circuits.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.

  20. Nonlinear dynamics based digital logic and circuits

    PubMed Central

    Kia, Behnam; Lindner, John. F.; Ditto, William L.

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two. PMID:26029096

  1. Printed organic thin-film transistor-based integrated circuits

    NASA Astrophysics Data System (ADS)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  2. Base drive and overlap protection circuit

    DOEpatents

    Gritter, David J.

    1983-01-01

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  3. All-semiconductor metamaterial-based optical circuit board at the microscale

    NASA Astrophysics Data System (ADS)

    Min, Li; Huang, Lirong

    2015-07-01

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  4. All-semiconductor metamaterial-based optical circuit board at the microscale

    SciTech Connect

    Min, Li; Huang, Lirong

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  5. OptCircuit: An optimization based method for computational design of genetic circuits

    PubMed Central

    Dasika, Madhukar S; Maranas, Costas D

    2008-01-01

    Background Recent years has witnessed an increasing number of studies on constructing simple synthetic genetic circuits that exhibit desired properties such as oscillatory behavior, inducer specific activation/repression, etc. It has been widely acknowledged that that task of building circuits to meet multiple inducer-specific requirements is a challenging one. This is because of the incomplete description of component interactions compounded by the fact that the number of ways in which one can chose and interconnect components, increases exponentially with the number of components. Results In this paper we introduce OptCircuit, an optimization based framework that automatically identifies the circuit components from a list and connectivity that brings about the desired functionality. Multiple literature sources are used to compile a comprehensive compilation of kinetic descriptions of promoter-protein pairs. The dynamics that govern the interactions between the elements of the genetic circuit are currently modeled using deterministic ordinary differential equations but the framework is general enough to accommodate stochastic simulations. The desired circuit response is abstracted as the maximization/minimization of an appropriately constructed objective function. Computational results for a toggle switch example demonstrate the ability of the framework to generate the complete list of circuit designs of varying complexity that exhibit the desired response. Designs identified for a genetic decoder highlight the ability of OptCircuit to suggest circuit configurations that go beyond the ones compatible with digital logic-based design principles. Finally, the results obtained from the concentration band detector example demonstrate the ability of OptCircuit to design circuits whose responses are contingent on the level of external inducer as well as pinpoint parameters for modification to rectify an existing (non-functional) biological circuit and restore

  6. The design of PLC circuits based on power electronics topology

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Ouyang, Mingsan

    2011-10-01

    The paper presents a new design method and power lines communication circuit consolidates their power and data in a single bus. This method is based on power electronic topology and can export new application circuit. Our-the bus's principle are briefly introduced. Buck-by considering the circuit transmission line, the characteristics of the steady-state circuit influence and dynamic switch characteristics are analyzed. The validity of this method is verified by the experiment results.

  7. Power density improvement of the power conditioning circuit for combined piezoelectric and electrodynamic generators

    NASA Astrophysics Data System (ADS)

    Zessin, H.; Spies, P.; Mateu, L.

    2016-11-01

    In this study, we report a power management circuit for a combined piezoelectric- electrodynamic generator. A piezoelectric element is bonded to a spring steel cantilever beam and a magnet, used as tip mass, oscillates through a coil. This principle creates the combined generator. A test setup has been created to automate the characterization of the piezoelectric generator and its power management circuit. Three different power management circuits for the piezoelectric part of the combined generator have been analysed: a bridge rectifier, an SSHI circuit with an external inductance and an SSHI circuit which utilizes the coil of the electrodynamic generator as circuit element. The three circuits are compared in terms of their output power, efficiency and power density. The SSHI circuit with an external inductance has the highest output power and efficiency, followed by the SSHI circuit with the electrodynamic generator coil. The power density of the bridge rectifier is the highest but for higher efficiency the power density of the SSHI circuit with the coil of the electromagnetic generator reaches the best results.

  8. Modular packaging technique for combining integrated circuits and discrete components

    NASA Technical Reports Server (NTRS)

    Lacchia, J. F.

    1969-01-01

    Technique for packaging electronic modules interconnects integrated circuits and discrete components by means of beryllium-copper strips in a molded diallyphthalate tray. Simple girder-like construction provides ease of assembly, high rigidity, excellent vibration resistance, and good heat dissipation characteristics.

  9. Efficient G(sup 4)FET-Based Logic Circuits

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2008-01-01

    A total of 81 optimal logic circuits based on four-gate field-effect transistors (G(sup 4)4FETs) have been designed to implement all Boolean functions of up to three variables. The purpose of this development was to lend credence to the expectation that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. A G(sup 4)FET a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G(sup 4)FET can also be regarded as a single device having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of a silicon-on-insulator substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. One such option is to design a G(sup 4)FET to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. Optimal NOT-majority-gate, G(sup 4)FET-based logic-circuit designs were obtained in a comparative study that also included formulation of functionally equivalent logic circuits based on NOR and NAND gates implemented by use of conventional transistors. In the study, the problem of finding the optimal design for each logic function and each transistor type was solved as an integer-programming optimization problem. Considering all 81 non-equivalent Boolean functions included in the study, it was found that in 63% of the cases, fewer logic gates (and, hence, fewer transistors) would be needed in the G(sup 4)FET-based implementations.

  10. Circuit-based interrogation of sleep control.

    PubMed

    Weber, Franz; Dan, Yang

    2016-10-06

    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain.

  11. Logic circuits based on molecular spider systems.

    PubMed

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity.

  12. A parity checker circuit based on microelectromechanical resonator logic elements

    NASA Astrophysics Data System (ADS)

    Hafiz, Md Abdullah Al; Li, Ren; Younis, Mohammad I.; Fariborzi, Hossein

    2017-03-01

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro-resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  13. Cardiovascular Fitness and Energy Expenditure Response during a Combined Aerobic and Circuit Weight Training Protocol

    PubMed Central

    Benito, Pedro J.; Alvarez-Sánchez, María; Díaz, Víctor; Morencos, Esther; Peinado, Ana B.; Cupeiro, Rocio

    2016-01-01

    Objectives The present study describes the oxygen uptake and total energy expenditure (including both aerobic and anaerobic contribution) response during three different circuit weight training (CWT) protocols of equivalent duration composed of free weight exercises, machine exercises, and a combination of free weight exercises intercalating aerobic exercise. Design Controlled, randomized crossover designs. Methods Subjects completed in a randomized order three circuit weight training protocols of the same duration (3 sets of 8 exercises, 45min 15s) and intensity (70% of 15 repetitions maximum). The circuit protocols were composed of free weight exercises, machine exercises, or a combination of free weight exercises with aerobic exercise. Oxygen consumption and lactate concentration were measured throughout the circuit to estimate aerobic and anaerobic energy expenditure respectively. Results Energy expenditure is higher in the combined exercise protocol (29.9±3.6 ml/kg/min), compared with Freeweight (24.2±2.8ml/kg/min) and Machine (20.4±2.9ml/kg/min). The combined exercise protocol produced the highest total energy expenditure but the lowest lactate concentration and perceived exertion. The anaerobic contribution to total energy expenditure was higher in the machine and free weight protocols compared with the combined exercise protocol (6.2%, 4.6% and 2.3% respectively). Conclusions In the proposed protocols, the combined exercise protocol results in the highest oxygen consumption. Total energy expenditure is related to the type of exercise included in the circuit. Anaerobic contributions to total energy expenditure during circuit weight training may be modest, but lack of their estimation may underestimate total energy expenditure. Trial Registration ClinicalTrials.gov NCT01116856 PMID:27832062

  14. A spiking neuron circuit based on a carbon nanotube transistor.

    PubMed

    Chen, C-L; Kim, K; Truong, Q; Shen, A; Li, Z; Chen, Y

    2012-07-11

    A spiking neuron circuit based on a carbon nanotube (CNT) transistor is presented in this paper. The spiking neuron circuit has a crossbar architecture in which the transistor gates are connected to its row electrodes and the transistor sources are connected to its column electrodes. An electrochemical cell is incorporated in the gate of the transistor by sandwiching a hydrogen-doped poly(ethylene glycol)methyl ether (PEG) electrolyte between the CNT channel and the top gate electrode. An input spike applied to the gate triggers a dynamic drift of the hydrogen ions in the PEG electrolyte, resulting in a post-synaptic current (PSC) through the CNT channel. Spikes input into the rows trigger PSCs through multiple CNT transistors, and PSCs cumulate in the columns and integrate into a 'soma' circuit to trigger output spikes based on an integrate-and-fire mechanism. The spiking neuron circuit can potentially emulate biological neuron networks and their intelligent functions.

  15. Dielectric based submillimeter backward wave oscillator circuit

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1984-01-01

    A ladder circuit especially useful in backward wave oscillators operating in the 500 GHz to 2000 GHz range has a waveguide with transversely orientated slabs which contact an upper wall of the waveguide. The edges of the slabs adjacent to the physical center of waveguide are curved segments and stubs of electrically conductive, nonmagnetic material. The ends of slabs include metal layers at opposite ends to provide a conductive leakage path. A ridge bar is attached to the inside of the bottom wall of the waveguide and includes a concave upper surface which partially straddles the electron beam. The novelty of the invention lies in the ladder structure compared of thin, vapor deposited rungs supported on the edge of diamond slabs; each rung having a curved segment which straddles the electron beam together with a ridge bar which also straddles the electron beam.

  16. Rapid Laser Printing of Paper-Based Multilayer Circuits.

    PubMed

    Huang, Gui-Wen; Feng, Qing-Ping; Xiao, Hong-Mei; Li, Na; Fu, Shao-Yun

    2016-09-27

    Laser printing has been widely used in daily life, and the fabricating process is highly efficient and mask-free. Here we propose a laser printing process for the rapid fabrication of paper-based multilayer circuits. It does not require wetting of the paper, which is more competitive in manufacturing paper-based circuits compared to conventional liquid printing process. In the laser printed circuits, silver nanowires (Ag-NWs) are used as conducting material for their excellent electrical and mechanical properties. By repeating the printing process, multilayer three-dimensional (3D) structured circuits can be obtained, which is quite significant for complex circuit applications. In particular, the performance of the printed circuits can be exactly controlled by varying the process parameters including Ag-NW content and laminating temperature, which offers a great opportunity for rapid prototyping of customized products with designed properties. A paper-based high-frequency radio frequency identification (RFID) label with optimized performance is successfully demonstrated. By adjusting the laminating temperature to 180 °C and the top-layer Ag-NW areal density to 0.3 mg cm(-2), the printed RFID antenna can be conjugately matched with the chip, and a big reading range of ∼12.3 cm with about 2.0 cm over that of the commercial etched Al antenna is achieved. This work provides a promising approach for fast and quality-controlled fabrication of multilayer circuits on common paper and may be enlightening for development of paper-based devices.

  17. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer.

    PubMed

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  18. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  19. Self-starting power management circuits for piezoelectric and electret-based electrostatic mechanical energy harvesters

    NASA Astrophysics Data System (ADS)

    Boisseau, S.; Gasnier, P.; Gallardo, M.; Despesse, G.

    2013-12-01

    This paper reports on an innovative power management circuit for piezoelectric and electret-based mechanical energy harvesters able to self-start and to power battery-free Wireless Sensor Nodes (WSN) from scratch without any initial energy. The key elements of this circuit are a depletion-mode MOSFET combined with self-powered Schmitt triggers that enable to switch between (i) a non-optimized passive diode-bridge-capacitor configuration to start the system and (ii) an active power conversion path to maximize the energy extraction from mechanical energy harvesters. A discrete circuit implementing this architecture is presented and its operation is validated on simple piezoelectric and electret-based devices. An ASIC, based on the same architecture, has finally been designed, fabricated and validated.

  20. Base drive circuit for a four-terminal power Darlington

    DOEpatents

    Lee, Fred C.; Carter, Roy A.

    1983-01-01

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  1. Silica Integrated Optical Circuits Based on Glass Photosensitivity

    NASA Technical Reports Server (NTRS)

    Abushagur, Mustafa A. G.

    1999-01-01

    Integrated optical circuits play a major rule in the new photonics technology both in communication and sensing due to their small size and compatibility with integrated circuits. Currently integrated optical circuits (IOCs) are fabricated using similar manufacturing to those used in the semiconductor industry. In this study we are considering a new technique to fabricate IOCs which does not require layers of photolithography, depositing and etching. This method is based on the photosensitivity of germanosilicate glasses. Waveguides and other IOC devises can be patterned in these glasses by exposing them using UV lasers. This exposure by UV light changes the index of refraction of the germanosilicate glass. This technique enjoys both the simplicity and flexibility of design and fabrication with also the potential of being fast and low cost.

  2. Web-Based Trainer for Electrical Circuit Analysis

    ERIC Educational Resources Information Center

    Weyten, L.; Rombouts, P.; De Maeyer, J.

    2009-01-01

    A Web-based system for training electric circuit analysis is presented in this paper. It is centered on symbolic analysis techniques and it not only verifies the student's final answer, but it also tracks and coaches him/her through all steps of his/her reasoning path. The system mimics homework assignments, enhanced by immediate personalized…

  3. Molecular-Based Devices and Circuits

    DTIC Science & Technology

    2008-09-23

    nano-cavities (50nm x 50nm) etched into the Si3N4 layer at the center of the electrode. Subsequently, molecules are self - assembled onto the bottom...various types of self assembled monolayers (SAMs) arranged in vertical configuration (Fig 2) . Each floor consists of different type of molecular layer...modified ferrocene film (Figure 2 compound 1) , and a the protein Azurin (Az). The Fc-based SAM can be used as a candidate for the bottom layer as we have

  4. Antibody-controlled actuation of DNA-based molecular circuits

    NASA Astrophysics Data System (ADS)

    Engelen, Wouter; Meijer, Lenny H. H.; Somers, Bram; de Greef, Tom F. A.; Merkx, Maarten

    2017-02-01

    DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody-epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification.

  5. Motor-related circuit dysfunction in MSA-P: Usefulness of combined whole-brain imaging analysis.

    PubMed

    Tir, Mélissa; Delmaire, Christine; le Thuc, Vianney; Duhamel, Alain; Destée, Alain; Pruvo, Jean-Pierre; Defebvre, Luc

    2009-04-30

    The aim of this study was to evaluate in vivo changes in the brain's macro- and microstructure (notably in the motor system) in the parkinsonian variant of multiple system atrophy (MSA-P) and in Parkinson's disease (PD) and to characterize the cerebral anatomical differences between the two conditions. We used a combination of voxel-based morphometry (VBM) and whole-brain, voxel-based diffusion tensor imaging analysis (VB-DTI). Forty-seven right-handed subjects (14 MSA-P patients, 19 PD patients, and 14 controls) were evaluated using VBM and VB-DTI in an analysis of covariance (ANCOVA) with a significance threshold set to P < 0.005. In MSA-P patients, VBM analysis revealed a lower density of grey matter (GM) in a motor-related circuit (especially in the left primary motor cortex, PMC), relative to PD patients, and in the left supplementary motor area (SMA), relative to controls). Diffusion tensor imaging analysis revealed lower fractional anisotropy (FA) values in the left PMC and the right cerebellum in MSA-P patients, compared with controls. Using a volumetric diffusion technique, our study revealed selective tissue degeneration in motor circuits, regardless of the volume loss detected in VBM and in agreement with pathology reports and clinical motor characteristics. Our findings suggest that MSA-P is characterized by both macro- and microstructural changes in the sensorimotor circuit.

  6. Image-based tracking of optically detunable parallel resonant circuits.

    PubMed

    Eggers, Holger; Weiss, Steffen; Boernert, Peter; Boesiger, Peter

    2003-06-01

    In this work strategies for the robust localization of parallel resonant circuits are investigated. These strategies are based on the subtraction of two images, which ideally differ in signal intensity at the positions of the devices only. To modulate their signal amplification, and thereby generate the local variations, the parallel resonant circuits are alternately detuned and retuned during the acquisition. The integration of photodiodes into the devices permits their fast optical switching. Radial and spiral imaging sequences are modified to provide the data for the two images in addition to those for a conventional image in the same acquisition time. The strategies were evaluated by phantom experiments with stationary and moving catheter-borne devices. In particular, rapid detuning and retuning during the sampling of single profiles is shown to lead to a robust localization. Moreover, this strategy eliminates most of the drawbacks usually associated with image-based tracking, such as low temporal resolution. Image-based tracking may thus become a competitive (if not superior) alternative to projection-based tracking of parallel resonant circuits.

  7. Friction-based energy dissipation unit for circuit breaker

    SciTech Connect

    Kar, R.; Rainer, J.H.

    1995-12-31

    This paper describes a friction-based energy dissipation unit (EDU) that has been designed to introduce supplemental damping into a circuit breaker. The brittle porcelain insulator posts of a 330 kV SF6 breaker were thus subjected to reduced forces from a design earthquake specified to have a peak ground acceleration of 1.05 g. Pull and release tests were performed to determine the dynamic properties, i.e., natural frequency, damping ratio, and mode shapes. Calculations of response of the circuit breaker to the 1940 El Centro N-S component shows that the EDU reduces the bending moment at the base of the porcelain column by a factor of three.

  8. Planar patterned stretchable electrode arrays based on flexible printed circuits

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Boyce, C. M.; Boyce, M. C.; Pruitt, B. L.

    2013-10-01

    For stretchable electronics to achieve broad industrial application, they must be reliable to manufacture and must perform robustly while undergoing large deformations. We present a new strategy for creating planar stretchable electronics and demonstrate one such device, a stretchable microelectrode array based on flex circuit technology. Stretchability is achieved through novel, rationally designed perforations that provide islands of low strain and continuous low-strain pathways for conductive traces. This approach enables the device to maintain constant electrical properties and planarity while undergoing applied strains up to 15%. Materials selection is not limited to polyimide composite devices and can potentially be implemented with either soft or hard substrates and can incorporate standard metals or new nano-engineered conductors. By using standard flex circuit technology, our planar microelectrode device achieved constant resistances for strains up to 20% with less than a 4% resistance offset over 120 000 cycles at 10% strain.

  9. Planar patterned stretchable electrode arrays based on flexible printed circuits

    PubMed Central

    Taylor, R E; Boyce, C M; Boyce, M C; Pruitt, B L

    2013-01-01

    For stretchable electronics to achieve broad industrial application, they must be reliable to manufacture and must perform robustly while undergoing large deformations. We present a new strategy for creating planar stretchable electronics and demonstrate one such device, a stretchable microelectrode array based on flex circuit technology. Stretchability is achieved through novel, rationally designed perforations that provide islands of low strain and continuous low-strain pathways for conductive traces. This approach enables the device to maintain constant electrical properties and planarity while undergoing applied strains up to 15%. Materials selection is not limited to polyimide composite devices and can potentially be implemented with either soft or hard substrates and can incorporate standard metals or new nano-engineered conductors. By using standard flex circuit technology, our planar microelectrode device achieved constant resistances for strains up to 20% with less than a 4% resistance offset over 120,000 cycles at 10% strain. PMID:24244075

  10. Differential Amplifier Circuits Based on Carbon Nanotube Field Effect Transistors (CNTFETs)

    DTIC Science & Technology

    2010-04-01

    Differential Amplifier Circuits Based on Carbon Nanotube Field Effect Transistors ( CNTFETs ) by Matthew Chin and Dr. Stephen Kilpatrick...20783-1197 ARL-TR-5151 April 2010 Differential Amplifier Circuits Based on Carbon Nanotube Field Effect Transistors ( CNTFETs ) Dr...AND SUBTITLE Differential Amplifier Circuits Based on Carbon Nanotube Field Effect Transistors ( CNTFETs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  11. Comprehensive Equivalent Circuit Based Modeling and Model Based Management of Aged Lithium ion Batteries

    NASA Astrophysics Data System (ADS)

    Tong, Shijie

    Energy storage is one of society's grand challenges for the 21st century. Lithium ion batteries (LIBs) are widely used in mobile devices, transportation, and stationary energy storages due to lowering cost combined with excellent power/energy density as well as cycle durability. The need for a battery management system (BMS) arises from a demand to improve cycle life, assure safety, and optimize the full pack performance. In this work, we proposed a model based battery on-line state of charge (SoC) and state of health (SoH) estimator for LIBs. The estimator incorporates a comprehensive Equivalent Circuit Model (ECM) as reference, an Extended Kalman Filter (EKF) as state observer, a Recursive Least Square (RLS) algorithm as parameter identifier, and Parameter Varying Approach (PVA) based optimization algorithms for the parameter function regressions. The developed adaptive estimator was applied to a 10kW smart grid energy storage application using retired electric vehicle batteries. The estimator exhibits a high numerical efficiency as well as an excellent accuracy in estimating SoC and SoH. The estimator also provides a novel method to optimize the correlation between battery open circuit voltage (OCV) and SoC, which further improves states estimation accuracy.

  12. Antibody-controlled actuation of DNA-based molecular circuits

    PubMed Central

    Engelen, Wouter; Meijer, Lenny H. H.; Somers, Bram; de Greef, Tom F. A.; Merkx, Maarten

    2017-01-01

    DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody–epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification. PMID:28211541

  13. Quantum fully homomorphic encryption scheme based on universal quantum circuit

    NASA Astrophysics Data System (ADS)

    Liang, Min

    2015-08-01

    Fully homomorphic encryption enables arbitrary computation on encrypted data without decrypting the data. Here it is studied in the context of quantum information processing. Based on universal quantum circuit, we present a quantum fully homomorphic encryption (QFHE) scheme, which permits arbitrary quantum transformation on any encrypted data. The QFHE scheme is proved to be perfectly secure. In the scheme, the decryption key is different from the encryption key; however, the encryption key cannot be revealed. Moreover, the evaluation algorithm of the scheme is independent of the encryption key, so it is suitable for delegated quantum computing between two parties.

  14. InP-based three-dimensional photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Tsou, Diana; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volumes require high data communication bandwidth over longer distances than short wavelength (850 nm) multi-mode fiber systems can provide. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low cost, high-speed laser modules at 1310 and 1550 nm wavelengths are required. The great success of GaAs 850 nm VCSELs for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with available intrinsic materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits, which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits (PICs) have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform for fabricating InP-based photonic integrated circuits compatible with surface-emitting laser technology. Employing InP transparency at 1310 and 1550 nm wavelengths, we have created 3-D photonic integrated circuits (PICs) by utilizing light beams in both surface normal and in-plane directions within the InP-based structure

  15. Thermionic integrated circuits

    SciTech Connect

    MacRoberts, M.; Brown, D.R.; Dooley, R.; Lemons, R.; Lynn, D.; McCormick, B.; Mombourquette, C.; Sinah, D.

    1986-01-01

    Thermionic integrated circuits combine vacuum-tube technology with integrated-circuit techniques to form integrated vacuum circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments.

  16. Module Seven: Combination Circuits and Voltage Dividers; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn to apply the rules previously learned for series and parallel circuits to more complex circuits called series-parallel circuits, discover the utility of a common reference when making reference to voltage values, and learn how to obtain a required voltage from a voltage divider network. The module is divided…

  17. High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices.

    PubMed

    Gruhler, N; Benz, C; Jang, H; Ahn, J-H; Danneau, R; Pernice, W H P

    2013-12-16

    Hybrid circuits combining traditional nanophotonic components with carbon-based materials are emerging as a promising platform for optoelectronic devices. We demonstrate such circuits by integrating single-layer graphene films with silicon nitride waveguides as a new architecture for broadband optical operation. Using high-quality microring resonators and Mach-Zehnder interferometers with extinction ratios beyond 40 dB we realize flexible circuits for phase-sensitive detection on chip. Hybrid graphene-photonic devices are fabricated via mechanical transfer and lithographic structuring, allowing for prolonged light-matter interactions. Our approach holds promise for studying optical processes in low-dimensional physical systems and for realizing electrically tunable photonic circuits.

  18. Fabrication, electrical characterization, and detection application of graphene-sheet-based electrical circuits.

    PubMed

    Peng, Yitian; Lei, Jianping

    2014-01-01

    The distribution of potential, electric field, and gradient of square of electric field was simulated via a finite element method for dielectrophoresis (DEP) assembly. Then reduced graphene oxide sheets (RGOS)- and graphene oxide sheets (GOS)-based electrical circuits were fabricated via DEP assembly. The mechanically exfoliated graphene sheets (MEGS)-based electrical circuit was also fabricated for comparison. The electrical transport properties of three types of graphene-based electrical circuits were measured. The MEGS-based electrical circuit possesses the best electrical conductivity, and the GOS-based electrical circuit has the poorest electrical conductivity among all three circuits. The three types of electrical circuits were applied for the detection of copper ions (Cu(2+)). The RGOS-based electrical circuit can detect the Cu(2+) when the concentration of Cu(2+) was as low as 10 nM in solution. The GOS-based electrical circuit can only detect Cu(2+) after chemical reduction. The possible mechanism of electron transfer was proposed for the detection. The facile fabrication method and excellent performance imply the RGOS-based electrical circuit has great potential to be applied to metal ion sensors.

  19. Design of signal receiving circuit of Lidar based on APD

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Han, Shaokun; Han, Dalong; Xia, Wenze; Cao, Jingya; Wang, Liang; Zhai, Qian

    2015-08-01

    This paper focuses on the study of Signal Receiving Circuit of Lidar. A signal receiving circuit for a pulsed time-of-flight (TOF) Lidar has been designed. This paper introduces the theories of Lidar and high speed photoelectric detection. The circuit consists of APD array, transimpedance amplifier and differential received amplifier. In the circuit, we use an APD as a photoelectric transformer, AD8015 is used in the circuit because it's wide bandwidth, and single supply transimpedance. The AD8130 is a differential-to-single-ended amplifier with extremely high CMRR at high frequency, therefore it is used to converting differential signals to single-ended signals. In this paper, the laser pulse signal of 905nm wavelength, 20ns pulse width is used to detect experimentally verified. It is tested that the performance of the receiving circuit of Lidar satisfies the request of the principle system.

  20. Mass sensing based on a circuit cavity electromechanical system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.

  1. Improving the quantum cost of NCT-based reversible circuit

    NASA Astrophysics Data System (ADS)

    Montaser, Rasha; Younes, Ahmed; Abdel-Aty, Mahmoud

    2015-04-01

    We describe a scalable protocol for optimizing the quantum cost of the 3-bit reversible circuits built using NCT library. This technique takes into account a group theory approach. The algorithm analyzes the equivalent quantum circuits obtained by decomposing the reversible circuit to its elementary quantum gates and then applies optimization rules to reduce the number of the used elementary quantum gates. We apply the obtained algorithm using different quantum cost metrics that compare favorably with the relevant methods.

  2. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability.

    PubMed

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-08-07

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.

  3. Recurrence-based detection of the hyperchaos-chaos transition in an electronic circuit

    NASA Astrophysics Data System (ADS)

    Ngamga, E. J.; Buscarino, A.; Frasca, M.; Sciuto, G.; Kurths, J.; Fortuna, L.

    2010-12-01

    Some complex measures based on recurrence plots give evidence about hyperchaos-chaos transitions in coupled nonlinear systems [E. G. Souza et al., "Using recurrences to characterize the hyperchaos-chaos transition," Phys. Rev. E 78, 066206 (2008)]. In this paper, these measures are combined with a significance test based on twin surrogates to identify such a transition in a fourth-order Lorenz-like system, which is able to pass from a hyperchaotic to a chaotic behavior for increasing values of a single parameter. A circuit analog of the mathematical model has been designed and implemented and the robustness of the recurrence-based method on experimental data has been tested. In both the numerical and experimental cases, the combination of the recurrence measures and the significance test allows to clearly identify the hyperchaos-chaos transition.

  4. Realizing topological edge states in a silicon nitride microring-based photonic integrated circuit.

    PubMed

    Yin, Chenxuan; Chen, Yujie; Jiang, Xiaohui; Zhang, Yanfeng; Shao, Zengkai; Xu, Pengfei; Yu, Siyuan

    2016-10-15

    Topological edge states in a photonic integrated circuit based on the platform of silicon nitride are demonstrated with a two-dimensional coupled resonator optical waveguide array involving the synthetic magnetic field for photons at near-infrared wavelengths. Measurements indicate that the topological edge states can be observed at certain wavelengths, with light travelling around the boundary of the array. Combined with the induced disorders in fabrication near the edge, the system shows the defect immunity under the topological protection of edge states.

  5. Coupled circuit based representation of piezoelectric structures modeled using the finite volume method.

    PubMed

    Bolborici, V; Dawson, F P

    2016-03-01

    This paper presents the methodology of generating a corresponding electrical circuit for a simple piezoelectric plate modeled with the finite volume method. The corresponding circuit is implemented using a circuit simulation software and the simulation results are compared to the finite volume modeling results for validation. It is noticed that both, the finite volume model and its corresponding circuit, generate identical results. The results of a corresponding circuit based on the finite volume model are also compared to the results of a corresponding circuit based on a simplified analytical model for a long piezoelectric plate, and to finite element simulation results for the same plate. It is observed that, for one control volume, the finite volume model corresponding circuit and the simplified analytical model corresponding circuit generate close results. It is also noticed that the results of the two corresponding circuits are different from the best approximation results obtained with high resolution finite element simulations due to the approximations made in the simplified analytical model and the fact that only one finite volume was used in the finite volume model. The implementation of the circuit can be automated for higher order systems by a program that takes as an input the matrix of the system and the forcing function vector, and returns a net list for the circuit.

  6. Variable Time Base Integrator Circuit for Buffet Signal Measurements

    NASA Technical Reports Server (NTRS)

    Batts, Colossie N.

    1973-01-01

    A measurement circuit to obtain buffet data from wind tunnel models wherein a signal proportional to the average RMS value of buffet data is produced for subsequent recording. Feedback means are employed to suppress the D.C. portion of signals developed by the strain gages during dynamic testing. Automatic recording of gain settings of amplifiers employed in the circuit is also provided.

  7. CNFET-based voltage rectifier circuit for biomedical implantable applications

    NASA Astrophysics Data System (ADS)

    Tu, Yonggen; Qian, Libo; Xia, Yinshui

    2017-02-01

    Carbon nanotube field effect transistor (CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency (VCE) and power conversion efficiency (PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated. It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits. Project supported by the National Natural Science Foundation of China (Nos. 61131001, 61404077, 61571248), the Science and Technology Fund of Zhejiang Province (No. 2015C31090), the Natural Science Foundation of Ningbo (No. 2014A610147), State Key Laboratory of ASIC & System (No. 2015KF006) and the K. C. Wong Magna Fund in Ningbo University.

  8. Comparing and Combining Real and Virtual Experimentation: An Effort to Enhance Students' Conceptual Understanding of Electric Circuits

    ERIC Educational Resources Information Center

    Zacharia, Z. C.

    2007-01-01

    The purpose of this study was to investigate value of combining Real Experimentation (RE) with Virtual Experimentation (VE) with respect to changes in students' conceptual understanding of electric circuits. To achieve this, a pre-post comparison study design was used that involved 88 undergraduate students. The participants were randomly assigned…

  9. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability

    NASA Astrophysics Data System (ADS)

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-07-01

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated. Electronic supplementary information (ESI) available: Video of rolling tests; video of the PFP circuit used as flexible cable in a cell phone; video of the application of the circuit as a RFID tag; a detailed method for synthesizing silver nanowires; details of the PFP technique; folding tests for the circuits; air humidity test for the circuit. See DOI: 10.1039/c4nr00846d

  10. Minimal universal two-qubit controlled-NOT-based circuits

    SciTech Connect

    Shende, Vivek V.; Markov, Igor L.; Bullock, Stephen S.

    2004-06-01

    We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to a global phase. For several quantum gate libraries we prove that gate counts are optimal in the worst and average cases. Our lower and upper bounds compare favorably to previously published results. Temporary storage is not used because it tends to be expensive in physical implementations. For each gate library, the best gate counts can be achieved by a single universal circuit. To compute the gate parameters in universal circuits, we use only closed-form algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in C++.

  11. A novel nanoscaled Schottky barrier based transmission gate and its digital circuit applications

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Loan, Sajad A.; Alamoud, Abdulrahman M.

    2017-04-01

    In this work we propose and simulate a compact nanoscaled transmission gate (TG) employing a single Schottky barrier based transistor in the transmission path and a single transistor based Sajad-Sunil-Schottky (SSS) device as an inverter. Therefore, just two transistors are employed to realize a complete transmission gate which normally consumes four transistors in the conventional technology. The transistors used to realize the transmission path and the SSS inverter in the proposed TG are the double gate Schottky barrier devices, employing stacks of two metal silicides, platinum silicide (PtSi) and erbium silicide (ErSi). It has been observed that the realization of the TG gate by the proposed technology has resulted into a compact structure, with reduced component count, junctions, interconnections and regions in comparison to the conventional technology. The further focus of this work is on the application part of the proposed technology. So for the first time, the proposed technology has been used to realize various combinational circuits, like a two input AND gate, a 2:1 multiplexer and a two input XOR circuits. It has been observed that the transistor count has got reduced by half in a TG, two input AND gate, 2:1 multiplexer and in a two input XOR gate. Therefore, a significant reduction in transistor count and area requirement can be achieved by using the proposed technology. The proposed technology can be also used to perform the compact realization of other combinational and sequential circuitry in future.

  12. Operational Characteristics of an SCR-Based Pulse Generating Circuit

    DTIC Science & Technology

    2014-12-01

    Under positive DC bias, injected electrons accumulate in the 1n region and injected holes accumulate in the 2p region, thereby lowering the barrier... electronics , particularly for power regulation and control, and the provision of excess and low voltage protection and short circuit current protection...as the hole emitter and the bottom n- layer, device cathode (K), as the electron emitter. The behavior of the thyristor in a circuit containing a

  13. A Bidirectional Optical Module Based on Stacked Planar Optical Circuit

    NASA Astrophysics Data System (ADS)

    Mizuno, Rogerio Jun; Aoki, Yasuhiko; Shimada, Yuji; Iga, Kenichi

    2000-03-01

    In this paper, a bidirectional optical module based on a stacked planar optical circuit (SPOC) concept to perform a wavelength division multiplexing (WDM) function is described. The module consists of an optical chip which incorporates planar microlens (PML) arrays and nonpolarizing 1.31/1.55 μm WDM dielectric-multilayer filters. Module design and theoretical estimation of loss tolerance were conducted. From preliminary experiments, the feasibility of SPOC modules was confirmed. A fabricated WDM filter showed a small polarization-dependent loss (PDL) of about 0.48 dB and 0.05 dB for the wavelengths of 1.31 μm and 1.55 μm, respectively. Channel crosstalk and PDL for the SPOC module were characterized by means of discrete filter devices. For the 1.55 μm downstream (1.31 μm downstream/upstream) channel, a crosstalk as low as {-}40 dB ({-}26 dB) and a PDL less than 0.23 dB (0.53 dB) were achieved.

  14. A Step Response Based Mixed-Signal BIST Approach for Continuous-time Linear Circuits

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon; Lala, P. K.

    2001-01-01

    A new Mixed-Signal Built-in self-test approach that is based upon the step response of a reconfigurable (or multifunction) analog block is presented in this paper. The technique requires the overlapping step response of the Circuit Under Test (CUT) for two circuit configurations. Each configuration can be realized by changing the topology of the CUT or by sampling two CUT nodes with differing step responses. The technique can effectively detect both soft and hard faults and does not require an analog-to-digital converter (ADC) and/or digital-to-analog converter(DAC). It also does not require any precision voltage sources or comparators. This approach does not require any additional analog circuits to realize the test signal generator and sample circuits. The paper is concluded with the application of the proposed approach to a circuit found in the work of Epstein et al and two ITC 97 analog benchmark circuits.

  15. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors.

    PubMed

    Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  16. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    PubMed Central

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  17. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  18. Circuit theory and model-based inference for landscape connectivity

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.

    2013-01-01

    Circuit theory has seen extensive recent use in the field of ecology, where it is often applied to study functional connectivity. The landscape is typically represented by a network of nodes and resistors, with the resistance between nodes a function of landscape characteristics. The effective distance between two locations on a landscape is represented by the resistance distance between the nodes in the network. Circuit theory has been applied to many other scientific fields for exploratory analyses, but parametric models for circuits are not common in the scientific literature. To model circuits explicitly, we demonstrate a link between Gaussian Markov random fields and contemporary circuit theory using a covariance structure that induces the necessary resistance distance. This provides a parametric model for second-order observations from such a system. In the landscape ecology setting, the proposed model provides a simple framework where inference can be obtained for effects that landscape features have on functional connectivity. We illustrate the approach through a landscape genetics study linking gene flow in alpine chamois (Rupicapra rupicapra) to the underlying landscape.

  19. Circuit monitors powerline interruptions

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Stricklen, J. O.

    1977-01-01

    Simple circuit when combined with pulse detector detects momentary interruptions of 400-cycle ac signal. Circuit has been used during shock and vibration testing of electronic hardware to determine if tests caused interruptions of normal circuit operation.

  20. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment

    NASA Astrophysics Data System (ADS)

    Ota, Masashi; Sumimura, Asahi; Fukuhara, Masashi; Ishii, Yuya; Fukuda, Mitsuo

    2016-04-01

    All-optical logic circuits using surface plasmon polaritons have a potential for high-speed information processing with high-density integration beyond the diffraction limit of propagating light. However, a number of logic gates that can be cascaded is limited by complicated signal phase adjustment. In this study, we demonstrate a half-adder operation with simple phase adjustment using plasmonic multimode interference (MMI) devices, composed of dielectric stripes on a metal film, which can be fabricated by a complementary metal-oxide semiconductor (MOS)-compatible process. Also, simultaneous operations of XOR and AND gates are substantiated experimentally by combining 1 × 1 MMI based phase adjusters and 2 × 2 MMI based intensity modulators. An experimental on-off ratio of at least 4.3 dB is confirmed using scanning near-field optical microscopy. The proposed structure will contribute to high-density plasmonic circuits, fabricated by complementary MOS-compatible process or printing techniques.

  1. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment.

    PubMed

    Ota, Masashi; Sumimura, Asahi; Fukuhara, Masashi; Ishii, Yuya; Fukuda, Mitsuo

    2016-04-18

    All-optical logic circuits using surface plasmon polaritons have a potential for high-speed information processing with high-density integration beyond the diffraction limit of propagating light. However, a number of logic gates that can be cascaded is limited by complicated signal phase adjustment. In this study, we demonstrate a half-adder operation with simple phase adjustment using plasmonic multimode interference (MMI) devices, composed of dielectric stripes on a metal film, which can be fabricated by a complementary metal-oxide semiconductor (MOS)-compatible process. Also, simultaneous operations of XOR and AND gates are substantiated experimentally by combining 1 × 1 MMI based phase adjusters and 2 × 2 MMI based intensity modulators. An experimental on-off ratio of at least 4.3 dB is confirmed using scanning near-field optical microscopy. The proposed structure will contribute to high-density plasmonic circuits, fabricated by complementary MOS-compatible process or printing techniques.

  2. Memory-Based Structured Application Specific Integrated Circuit (ASIC) Study

    DTIC Science & Technology

    2008-10-01

    phase switching technique," Electronics Letters, vol. 37, no. 14, pp. 875-877, Jul 2001. [10] W. Dally and B. Towles , Principles and Practices of...and A. Alvandpour, "A six-port 57gb/s double-pumped nonblocking router core," VLSI Circuits, 2005. Digest of Technical Papers . 2005 Symposium on, pp

  3. [Modeling and analysis of volume conduction based on field-circuit coupling].

    PubMed

    Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming

    2012-08-01

    Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.

  4. RNA-based gene circuits for cell regulation

    PubMed Central

    KARAGIANNIS, Peter; FUJITA, Yoshihiko; SAITO, Hirohide

    2016-01-01

    A major goal of synthetic biology is to control cell behavior. RNA-mediated genetic switches (RNA switches) are devices that serve this purpose, as they can control gene expressions in response to input signals. In general, RNA switches consist of two domains: an aptamer domain, which binds to an input molecule, and an actuator domain, which controls the gene expression. An input binding to the aptamer can cause the actuator to alter the RNA structure, thus changing access to translation machinery. The assembly of multiple RNA switches has led to complex gene circuits for cell therapies, including the selective killing of pathological cells and purification of cell populations. The inclusion of RNA binding proteins, such as L7Ae, increases the repertoire and precision of the circuit. In this short review, we discuss synthetic RNA switches for gene regulation and their potential therapeutic applications. PMID:27840389

  5. Derandomizing Quantum Circuits with Measurement-Based Unitary Designs

    NASA Astrophysics Data System (ADS)

    Turner, Peter S.; Markham, Damian

    2016-05-01

    Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t , while foregoing adaptive feedforward entirely. Such ensembles—known as t designs—often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.

  6. Gas microstrip detectors based on flexible printed circuit

    SciTech Connect

    Salomon, M.; Crowe, K.; Faszer, W.; Lindsay, P.; Curran Maier, J.M.

    1995-09-01

    Microstrip Gas Detectors (MSGC`s) were introduced some years ago as position sensitive detectors capable of operating at very high rates. The authors have studied the properties of a new type of Gas Microstrip Counter built using flexible printed circuit technology. They describe the manufacturing procedures, the assembly of the device, as well as its operation under a variety of conditions, gases and types of radiation. They also describe two new passivation materials, tantalum and niobium, which produce effective surfaces.

  7. Photonic integrated circuits based on silica and polymer PLC

    NASA Astrophysics Data System (ADS)

    Izuhara, T.; Fujita, J.; Gerhardt, R.; Sui, B.; Lin, W.; Grek, B.

    2013-03-01

    Various methods of hybrid integration of photonic circuits are discussed focusing on merits and challenges. Material platforms discussed in this report are mainly polymer and silica. We categorize the hybridization methods using silica and polymer waveguides into two types, chip-to-chip and on-chip integration. General reviews of these hybridization technologies from the past works are reviewed. An example for each method is discussed in details. We also discuss current status of our silica PLC hybrid integration technology.

  8. Arithmetic Circuit Verification Based on Word-Level Decision Diagrams

    DTIC Science & Technology

    1998-05-01

    such as the Arithmetic Logic Unit (ALU) and the Floating-Point Unit ( FPU ) are important parts of microprocessors. These circuits performs data...be considered to represent an integer X according to some encoding, e.g., unsigned binary, two’s complement, BCD , etc. Figure 2.3 illustrates the...readily for standard functions such as binary addition, a more complex function such as binary to BCD conversion would be difficult to specify at

  9. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  10. CMOS Interface Circuits for Spin Tunneling Junction Based Magnetic Random Access Memories

    SciTech Connect

    Saripalli, Ganesh

    2002-01-01

    Magneto resistive memories (MRAM) are non-volatile memories which use magnetic instead of electrical structures to store data. These memories, apart from being non-volatile, offer a possibility to achieve densities better than DRAMs and speeds faster than SRAMs. MRAMs could potentially replace all computer memory RAM technologies in use today, leading to future applications like instan-on computers and longer battery life for pervasive devices. Such rapid development was made possible due to the recent discovery of large magnetoresistance in Spin tunneling junction devices. Spin tunneling junctions (STJ) are composite structures consisting of a thin insulating layer sandwiched between two magnetic layers. This thesis research is targeted towards these spin tunneling junction based Magnetic memories. In any memory, some kind of an interface circuit is needed to read the logic states. In this thesis, four such circuits are proposed and designed for Magnetic memories (MRAM). These circuits interface to the Spin tunneling junctions and act as sense amplifiers to read their magnetic states. The physical structure and functional characteristics of these circuits are discussed in this thesis. Mismatch effects on the circuits and proper design techniques are also presented. To demonstrate the functionality of these interface structures, test circuits were designed and fabricated in TSMC 0.35μ CMOS process. Also circuits to characterize the process mismatches were fabricated and tested. These results were then used in Matlab programs to aid in design process and to predict interface circuit's yields.

  11. A novel prediction method about single components of analog circuits based on complex field modeling.

    PubMed

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments.

  12. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  13. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    PubMed

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-07

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity.

  14. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  15. Mixed Electromagnetic and Circuit Simulations using Higher-Order Elements and Bases

    SciTech Connect

    Champagne, N J; Rockway, J D; Jandhyala, V

    2003-06-18

    In this paper, an approach to couple higher-order electromagnetic surface integral equations to circuit simulations is presented. Terminals are defined that connect circuit elements to contacts modeled on the distributed electromagnetic domain. A modified charge-current continuity equation is proposed for a generalized KCL connection at the contacts. The distributive electromagnetic integral equations are developed using higher-order bases and elements that allow both better convergence and accuracy for modeling. The resulting scheme enables simultaneous solution of electromagnetic integral equations for arbitrarily-shaped objects and SPICE-like modeling for lumped circuits, and permits design iterations and visualization of the interaction between the two domains.

  16. Fundamental electric circuit elements based on the linear and nonlinear magnetoelectric effects (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sun, Young; Shang, Dashan; Chai, Yisheng; Cao, Zexian; Lu, Jun

    2015-09-01

    From the viewpoint of electric circuit theory, the three fundamental two-terminal passive circuit elements, resistor R , capacitor C, and inductor L, are defined in terms of a relationship between two of the four basic circuit variables, charge q, current i, voltage v, and magnetic flux φ. From a symmetry concern, there should be a fourth fundamental element defined from the relationship between charge q and magnetic flux φ. Here we present both theoretical analysis and experimental evidences to demonstrate that a two-terminal passive device employing the magnetoelectric (ME) effects can exhibit a direct relationship between charge q and magnetic flux φ, and thus is able to act as the fourth fundamental circuit element. The ME effects refer to the induction of electric polarization by a magnetic field or magnetization by an electric field, and have attracted enormous interests due to their promise in many applications. However, no one has linked the ME effects with fundamental circuit theory. Both the linear and nonlinear-memory devices, termed transtor and memtranstor, respectively, have been experimentally realized using multiferroic materials showing strong ME effects. Based on our work, a full map of fundamental two-terminal circuit elements is constructed, which consists of four linear and four nonlinear-memory elements. This full map provides an invaluable guide to developing novel circuit functionalities in the future.

  17. Early detection for short-circuit fault in low-voltage systems based on fractal exponent wavelet analysis

    NASA Astrophysics Data System (ADS)

    Kang, Shanlin; Wang, Bingjun; Kang, Yuzhe

    2006-11-01

    By combining wavelet transform (WT ) with fractal theory, a novel approach is put forward to detect early short-circuit fault. The application of signal denoising based on the statistic rule is brought forward to determine the threshold of each order of wavelet space, and an effective method is proposed to determine the decomposition adaptively, increasing the signal-noise-ratio (SNR). In a view of the inter relationship of wavelet transform and fractal theory, the whole and local fractal exponents obtained from WT coefficients as features are presented for extracting fault signals. The effectiveness of the new algorithm used to extract the characteristic signal is described, which can be realized by the value of the fractal dimensions of those types of short-circuit fault. In accordance with the threshold value of each type of short-circuit fault in each frequency band, the correlation between the type of short-circuit and the fractal dimensions can be figured to perform extraction. This model incorporates the advantages of morphological filter and multi-scale WT to extract the feature of faults meanwhile restraining various noises. Besides, it can be implemented in real time using the available hardware. The effectiveness of this model was verified with the simulation results.

  18. Tunable Low Energy, Compact and High Performance Neuromorphic Circuit for Spike-Based Synaptic Plasticity

    PubMed Central

    Rahimi Azghadi, Mostafa; Iannella, Nicolangelo; Al-Sarawi, Said; Abbott, Derek

    2014-01-01

    Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities. PMID:24551089

  19. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.

    PubMed

    Rahimi Azghadi, Mostafa; Iannella, Nicolangelo; Al-Sarawi, Said; Abbott, Derek

    2014-01-01

    Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities.

  20. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.

    PubMed

    Morita, Kenji; Jitsev, Jenia; Morrison, Abigail

    2016-09-15

    Value-based action selection has been suggested to be realized in the corticostriatal local circuits through competition among neural populations. In this article, we review theoretical and experimental studies that have constructed and verified this notion, and provide new perspectives on how the local-circuit selection mechanisms implement reinforcement learning (RL) algorithms and computations beyond them. The striatal neurons are mostly inhibitory, and lateral inhibition among them has been classically proposed to realize "Winner-Take-All (WTA)" selection of the maximum-valued action (i.e., 'max' operation). Although this view has been challenged by the revealed weakness, sparseness, and asymmetry of lateral inhibition, which suggest more complex dynamics, WTA-like competition could still occur on short time scales. Unlike the striatal circuit, the cortical circuit contains recurrent excitation, which may enable retention or temporal integration of information and probabilistic "soft-max" selection. The striatal "max" circuit and the cortical "soft-max" circuit might co-implement an RL algorithm called Q-learning; the cortical circuit might also similarly serve for other algorithms such as SARSA. In these implementations, the cortical circuit presumably sustains activity representing the executed action, which negatively impacts dopamine neurons so that they can calculate reward-prediction-error. Regarding the suggested more complex dynamics of striatal, as well as cortical, circuits on long time scales, which could be viewed as a sequence of short WTA fragments, computational roles remain open: such a sequence might represent (1) sequential state-action-state transitions, constituting replay or simulation of the internal model, (2) a single state/action by the whole trajectory, or (3) probabilistic sampling of state/action.

  1. A Behavior-Based Circuit Model of How Outcome Expectations Organize Learned Behavior in Larval "Drosophila"

    ERIC Educational Resources Information Center

    Schleyer, Michael; Saumweber, Timo; Nahrendorf, Wiebke; Fischer, Benjamin; von Alpen, Desiree; Pauls, Dennis; Thum, Andreas; Gerber, Bertram

    2011-01-01

    Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a…

  2. SOI-Based High-Voltage, High-Temperature Integrated Circuit Gate Driver for SiC-Based Power FETs

    SciTech Connect

    Huque, Mohammad A; Tolbert, Leon M; Blalock, Benjamin; Islam, Syed K

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimizing system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8-m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  3. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  4. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  5. CMOS-based carbon nanotube pass-transistor logic integrated circuits.

    PubMed

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-02-14

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration.

  6. Surface-Charge-Based Micro-Models--A Solid Foundation for Learning about Direct Current Circuits

    ERIC Educational Resources Information Center

    Hirvonen, P. E.

    2007-01-01

    This study explores how the use of a surface-charge-based instructional approach affects introductory university level students' understanding of direct current (dc) circuits. The introduced teaching intervention includes electrostatics, surface-charge-based micro-models that explain the existence of an electric field inside the current-carrying…

  7. A Multiple-Sessions Interactive Computer-Based Learning Tool for Ability Cultivation in Circuit Simulation

    ERIC Educational Resources Information Center

    Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.

    2011-01-01

    An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…

  8. Encountering the Expertise Reversal Effect with a Computer-Based Environment on Electrical Circuit Analysis

    ERIC Educational Resources Information Center

    Reisslein, Jana; Atkinson, Robert K.; Seeling, Patrick; Reisslein, Martin

    2006-01-01

    This study examined the effectiveness of a computer-based environment employing three example-based instructional procedures (example-problem, problem-example, and fading) to teach series and parallel electrical circuit analysis to learners classified by two levels of prior knowledge (low and high). Although no differences between the…

  9. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-01-01

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  10. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-02-15

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas.

  11. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.

    PubMed

    Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim

    2015-06-01

    Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.

  12. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    SciTech Connect

    Kengne, J.; Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.; Nguomkam Negou, A.

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pair of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.

  13. Efficient QCA Exclusive-or and Multiplexer Circuits Based on a Nanoelectronic-Compatible Designing Approach.

    PubMed

    Chabi, Amir Mokhtar; Sayedsalehi, Samira; Angizi, Shaahin; Navi, Keivan

    2014-01-01

    Quantum-dot cellular automata (QCA) are a transistorless computation approach which encodes binary information via configuration of charges among quantum dots. The fundamental QCA logic primitives are majority and inverter gates which can be utilized to design various QCA circuits. This study presents a novel approach to designing efficient QCA-based circuits based on Boolean expressions achieved from reconfiguration of five-input and three-input majority gates. Whereas the multiplexer and Exclusive-or are the most important fundamental logical circuits in digital systems, designing efficient and single layer structures without coplanar cross-over wiring is advantageous in QCA technology. In order to demonstrate the efficiency and usefulness of the proposed approach, simple and dense multiplexer and Exclusive-or structures are implemented. The proposed designs have significant improvement in terms of area, complexity, latency, and gate count in comparison to previous designs. The correct logical functionalities of presented structures have been authenticated using QCA designer tool.

  14. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  15. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, W.J.

    1981-11-10

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components. 13 figs.

  16. Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou

    This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

  17. A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits

    NASA Astrophysics Data System (ADS)

    Moradi, Behzad; Mirzaei, Abdolreza

    2016-11-01

    A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.

  18. Cell-based top-down design methodology for RSFQ digital circuits

    NASA Astrophysics Data System (ADS)

    Yoshikawa, N.; Koshiyama, J.; Motoori, K.; Matsuzaki, F.; Yoda, K.

    2001-08-01

    We propose a cell-based top-down design methodology for rapid single flux quantum (RSFQ) digital circuits. Our design methodology employs a binary decision diagram (BDD), which is currently used for the design of CMOS pass-transistor logic circuits. The main features of the BDD RSFQ circuits are the limited primitive number, dual rail nature, non-clocking architecture, and small gate count. We have made a standard BDD RSFQ cell library and prepared a top-down design CAD environment, by which we can perform logic synthesis, logic simulation, circuit simulation and layout view extraction. In order to clarify problems expected in large-scale RSFQ circuits design, we have designed a small RSFQ microprocessor based on simple architecture using our top-down design methodology. We have estimated its system performance and compared it with that of the CMOS microprocessor with the same architecture. It was found that the RSFQ system is superior in terms of the operating speed though it requires extremely large chip area.

  19. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform.

    PubMed

    Stanton, Eric J; Heck, Martijn J R; Bovington, Jock; Spott, Alexander; Bowers, John E

    2015-05-04

    We present the design of a novel platform that is able to combine optical frequency bands spanning 4.2 octaves from ultraviolet to mid-wave infrared into a single, low M2 output waveguide. We present the design and realization of a key component in this platform that combines the wavelength bands of 350 nm - 1500 nm and 1500 nm - 6500 nm with demonstrated efficiency greater than 90% in near-infrared and mid-wave infrared. The multi-octave spectral beam combiner concept is realized using an integrated platform with silicon nitride waveguides and silicon waveguides. Simulated bandwidth is shown to be over four octaves, and measured bandwidth is shown over two octaves, limited by the availability of sources.

  20. Circuit design for the retina-like image sensor based on space-variant lens array

    NASA Astrophysics Data System (ADS)

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  1. Ge/Si Integrated Circuit For Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.

    1990-01-01

    Proposed integrated circuit consists of focal-plane array of metal/germanium Schottky-barrier photodetectors on same chip with silicon-based circuits that processes signals from photodetectors. Made compatible with underlying silicon-based circuitry by growing germanium epitaxially on silicon circuit wafers. Metal deposited in ultrahigh vacuum immediately after growth of germanium. Combination of described techniques results in high-resolution infrared-imaging circuits of superior performance.

  2. Integrated Circuit Computer Analysis.

    DTIC Science & Technology

    information on this topic. The most important findings were the method used to identify combinational circuits ( Quine - McCluskey algorithm) and a clearly...defined set of limits on the problem of identifying sequential circuits. Since the Quine - McCluskey algorithm works only for combinational circuits, an

  3. Tools for probing local circuits: high-density silicon probes combined with optogenetics

    PubMed Central

    Buzsáki, György; Stark, Eran; Berényi, Antal; Khodagholy, Dion; Kipke, Daryl R.; Yoon, Euisik; Wise, Kensall

    2015-01-01

    To understand how function arises from the interactions between neurons, it is necessary to use methods that allow the monitoring of brain activity at the single-neuron, single-spike level and the targeted manipulation of the diverse neuron types selectively in a closed-loop manner. Large-scale recordings of neuronal spiking combined with optogenetic perturbation of identified individual neurons has emerged as a suitable method for such tasks in behaving animals. To fully exploit the potential power of these methods, multiple steps of technical innovation are needed. We highlight the current state-of-the-art in electrophysiological recording methods, combined with optogenetics, and discuss directions for progress. In addition, we point to areas where rapid development is in progress and discuss topics where near-term improvements are possible and needed. PMID:25856489

  4. Novel Approach To Synthesis of Logic Circuits Based on Multifunctional Components

    NASA Astrophysics Data System (ADS)

    Crha, Adam; Růžička, Richard; Šimek, Václav

    2016-01-01

    Multifunctional logic continuously becomes an important way how to implement compact and cheap circuits with intrinsic reconfiguration features. Polymorphic electronics concept with its substantial technological independency opens a way to fulfil this objective through the adoption of emerging semiconductor technologies and advanced synthesis methods. The paper comes with a proposal of a novel synthesis method oriented on the exploitation of polymorphic electronics principles. Key part of it is based on Boolean divisor identification and function kernelling technique. The proposed method is evaluated with several test circuits.

  5. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    PubMed Central

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-01-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513

  6. Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit

    NASA Astrophysics Data System (ADS)

    Morita, G.; Nakamura, T.; Muta, I.

    2006-06-01

    A HTS induction motor, with a HTS squirrel-cage rotor, is analysed using an electrical equivalent circuit. The squirrel-cage winding in the rotor consists of rotor bars and end rings, and both are considered to be made of YBCO film conductors. A wide range of electric field versus current density in YBCO film is formulated based on the Weibull function, and analysed as a non-linear resistance in the equivalent circuit. It is shown that starting and accelerating torques of the HTS induction motor are improved drastically compared to those of a conventional induction motor. Furthermore, large synchronous torque can also be realized by trapping the magnetic flux in the rotor circuit because of the persistent current mode.

  7. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    NASA Astrophysics Data System (ADS)

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  8. Transmission line circuit model of a PPy based trilayer mechanical sensor

    NASA Astrophysics Data System (ADS)

    Khalili, Nazanin; Naguib, Hani E.; Kwon, Roy H.

    2015-04-01

    Many efforts have been devoted to modeling the diffusive impedance of conjugated polymer (CP) based actuators using their equivalent electrical circuits. Employing the same methodology, CP based mechanical sensors can also be treated by an equivalent transmission line circuit and their overall impedance can be modeled, correspondingly. Due to the large number of resources to study the electrical circuits, this technique is a practical tool. Therefore, in this study, an equivalent RC-circuit model including electrochemical parameters is determined to obtain a better perception of the sensing mechanism of these mechanical sensors. Conjugated polymers are capable of generating an output current or voltage upon an induced mechanical deformation or force. This observed behavior in polymer based mechanical sensors is considered as the reverse actuation process. Many outstanding properties of the conjugated polymer actuators including their light weight and biocompatibility are still retained by these sensors. Sensors with a trilayer configuration are capable of operating in air in response to a mechanically induced bending deformation. However, due to their nonlinear behavior and multivariable characteristics, it is required to propose a systematic approach in order to optimize their performance and gain the optimal values of their constituent decision variable. Therefore, the proposed mathematical model is used to define the output voltage of the PPy based mechanical sensor along with the sensitivity of the model to the applied frequency of the induced deformation. Applying a multiobjective optimization algorithm, the optimization problem was solved and the tracking ability of the proposed model was then verified.

  9. External cavity based single mode Fabry-Pérot laser diode and its application towards all-optical digital circuits

    NASA Astrophysics Data System (ADS)

    Nakarmi, Bikash; Zhang, Xuping; Won, Yong Hyub

    2012-11-01

    We have proposed a novel approach of realizing all-optical logic gates and combinational circuit using external cavity based single mode Fabry-Pérot laser diodes (SMFP-LDs). Different techniques and critical parameters for injection locking the any one of the modes of SMFP-LDs are discussed. Taking consideration of wavelength detuning and input injected power, we have proposed and demonstrated multi-input injection locking, supporting beam injection locking with the conventional injection locking which are used for demonstrating different logic gates (NAND, AND, XNOR, XOR, NOT, NOR) and digital circuits (Half adder and Comparator). Since we have used SMFP-LDs, there is no requirement of additional probe beam and associated components as required by other optical technologies making the realization simple in configuration, cost effective and power efficient. Clear output waveforms, eye diagrams, risingfalling times and BER are presented to verify the proposed method. All-optical logic units and digital circuit are demonstrated at the data rate of 10 Gbps with the waveform of NRZ signal waveform and measured eye diagram and BER of the PRBS of 231-1 signal. The maximum power penalty among all demonstrated units is below 1.4 dB at the BER of 10-9.

  10. Flatness-based linear output feedback control for disturbance rejection and tracking tasks on a Chua's circuit

    NASA Astrophysics Data System (ADS)

    Sira-Ramírez, H.; Luviano-Juárez, A.; Cortés-Romero, J.

    2012-05-01

    A linear output feedback controller is developed for trajectory tracking problems defined on a modified version of Chua's circuit. The circuit modification considers the introduction of a flat input, i.e. a suitable external control input channel guided by (a) the induction of the flatness property on a measurable output signal of the circuit and (b) the physical viability of the control input. A linear active disturbance rejection control based on a high-gain linear disturbance observer, is implemented on a laboratory prototype. We show that the state-dependent disturbance can be approximately, but arbitrarily closely, estimated through a linear high-gain observer, called a generalised proportional integral (GPI) observer, which contains a linear combination of a sufficient number of extra iterated integrals of the output estimation error. Experimental results are presented in the output reference trajectory tracking of a signal generated by an unrelated chaotic system of the Lorenz type. Laboratory experiments illustrate the proposed linear methodology for effectively controlling chaos.

  11. Model-based predictions of solid state intermetallic compound layer growth in hybrid microelectronic circuits

    SciTech Connect

    Vianco, P.T.; Erickson, K.L.; Hopkins, P.L.

    1997-12-31

    A mathematical model was developed to quantitatively describe the intermetallic compound (IMC) layer growth that takes place between a Sn-based solder and a noble metal thick film conductor material used in hybrid microcircuit (HMC) assemblies. The model combined the reaction kinetics of the solder/substrate interaction, as determined from ancillary isothermal aging experiments, with a 2-D finite element mesh that took account of the porous morphology of the thick film coating. The effect of the porous morphology on the IMC layer growth when compared to the traditional 1-D computations was significant. The previous 1-D calculations under-predicted the nominal IMC layer thickness relative to the 2-D case. The 2-D model showed greater substrate consumption by IMC growth and lesser solder consumption that was determined with the 1-D computation. The new 2-D model allows the design engineer to better predict circuit aging and hence, the reliability of HMC hardware that is placed in the field.

  12. Reliability of Physical Systems: Detection of Malicious Subcircuits (Trojan Circuits) in Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Matrosova, A. Yu.; Kirienko, I. E.; Tomkov, V. V.; Miryutov, A. A.

    2016-12-01

    Reliability of physical systems is provided by reliability of their parts including logical ones. Insertion of malicious subcircuits that can destroy logical circuit or cause leakage of confidential information from a system necessitates the detection of such subcircuits followed by their masking if possible. We suggest a method of finding a set of sequential circuit nodes in which Trojan Circuits can be inserted. The method is based on random estimations of controllability and observability of combinational nodes calculated using a description of sequential circuit working area and an evidence of existence of a transfer sequence for the proper set of internal states without finding the sequence itself. The method allows cutting calculations using operations on Reduced Ordered Binary Decision Diagrams (ROBDDs) that can depend only on the state variables of the circuit. The approach, unlike traditional ones, does not require preliminary sequential circuit simulation but can use its results. It can be used when malicious circuits cannot be detected during sequential circuit verification.

  13. Signal detection circuit design of HCN measurement system based on TDLAS

    NASA Astrophysics Data System (ADS)

    He, Chungui; Zhang, Yujun; Chen, Chen; Lu, Yibing; Liu, Guohua; Gao, Yanwei; You, Kun; He, Ying; Zhang, Kai; Liu, Wenqing

    2016-10-01

    Hydrogen cyanide gas leakage may exist in the petrochemical industry, smelting plant, and other industrial processes, causing serious harm to the environment, and even threatening the safety of personnel. So the continuous detection of HCN gas plays an important role in the prevention of risk in production process and storage environment that existing hydrogen cyanide gas. The Tunable Diode Laser Technology (TDLAS) has advantages of non-contact, high sensitivity, high selectivity, and fast response time, etc., which is one of the ideal method of gas detection technologies and can be used to measure the hydrogen cyanide concentration. This paper studies the HCN detection system based on TDLAS technology, selects the absorption lines of hydrogen cyanide in 6539.12cm-1, and utilizes the center wavelength of 1.529μm distributed feedback (DFB) laser as a light source. It is discussed in detail on technical requirements of a high frequency modulated laser signal detection circuit, including noise level, gain, and bandwidth. Based on the above theory, the high frequency modulation preamplifier circuit and main amplifier circuit are designed for InGaAs photoelectric detector. The designed circuits are calculation analyzed with corresponding formula and simulation analyzed based on the Multisim software.

  14. Thermocouple-Signal-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1991-01-01

    Thermocouple-signal-conditioning circuit acting in conjunction with thermocouple, exhibits electrical behavior of voltage in series with resistance. Combination part of input bridge circuit of controller. Circuit configured for either of two specific applications by selection of alternative resistances and supply voltages. Includes alarm circuit detecting open circuit in thermocouple and provides off-scale output to signal malfunctions.

  15. Integrated electronic circuits and devices based on interactive paper

    NASA Astrophysics Data System (ADS)

    Garnier, Francis

    1997-08-01

    Various organic conjugated materials, e.g. conjugated polymers and short conjugated oligomers, have been up to now proposed as active semiconducting layers in organic-base devices, such as thin film transistors, TFTs, or light emitting diodes. The mode of operation of TFTs shows that a high carrier mobility together with a low conductivity are required for their figure of merit. Experimental results from literature indicate that, whereas conjugated polymers exhibit a low carrier mobility, of the order of 10-4 to 10-5 cm2V-1s-1, conjugated oligomers appear much more promising. It is thus shown that carrier mobility is directly related to the long range structural order in conjugated oligomer films, i.e. to the decrease of grain boundaries, leading to values of the order of 10-1 cm-2V-1s-1, comparable to that of amorphous hydrogenated silicon. Conjugated oligomers are well defined materials, offering various physical and chemical ways for control of the structural organization of thin films made from them. Besides, conductivity in thin films of conjugated oligomers is mainly determined by the purity of the materials, allowing values lower than 10-7 Scm-1, with a high on/off ratio. The low melting and evaporation temperatures of conjugated oligomers, together with the solubility of some of these materials, allows the construction of TFTs by the use of room temperature techniques, following a process compatible with paper technology.

  16. Reconfigurable anisotropy and functional transformations with VO2-based metamaterial electric circuits

    NASA Astrophysics Data System (ADS)

    Savo, Salvatore; Zhou, You; Castaldi, Giuseppe; Moccia, Massimo; Galdi, Vincenzo; Ramanathan, Shriram; Sato, Yuki

    2015-04-01

    We demonstrate an innovative multifunctional artificial material that combines exotic metamaterial properties and the environmentally responsive nature of phase-change media. The tunable metamaterial is designed with the aid of two interwoven coordinate-transformation equations and implemented with a network of thin-film resistors and vanadium dioxide (VO2). The strong temperature dependence of VO2 electrical conductivity results in a significant modification of the resistor network behavior, and we provide experimental evidence for a reconfigurable metamaterial electric circuit that not only mimics a continuous medium, but is also capable of responding to thermal stimulation through dynamic variation of its spatial anisotropy. Upon external temperature change, the overall effective functionality of the material switches between a "truncated cloak" and a "concentrator" for electric currents. Possible applications may include adaptive matching resistor networks, multifunctional electronic devices, and equivalent artificial materials in the magnetic domain. Additionally, the proposed technology could also be relevant for thermal management of integrated circuits.

  17. Materials Integration and Doping of Carbon Nanotube-based Logic Circuits

    NASA Astrophysics Data System (ADS)

    Geier, Michael

    Over the last 20 years, extensive research into the structure and properties of single- walled carbon nanotube (SWCNT) has elucidated many of the exceptional qualities possessed by SWCNTs, including record-setting tensile strength, excellent chemical stability, distinctive optoelectronic features, and outstanding electronic transport characteristics. In order to exploit these remarkable qualities, many application-specific hurdles must be overcome before the material can be implemented in commercial products. For electronic applications, recent advances in sorting SWCNTs by electronic type have enabled significant progress towards SWCNT-based integrated circuits. Despite these advances, demonstrations of SWCNT-based devices with suitable characteristics for large-scale integrated circuits have been limited. The processing methodologies, materials integration, and mechanistic understanding of electronic properties developed in this dissertation have enabled unprecedented scales of SWCNT-based transistor fabrication and integrated circuit demonstrations. Innovative materials selection and processing methods are at the core of this work and these advances have led to transistors with the necessary transport properties required for modern circuit integration. First, extensive collaborations with other research groups allowed for the exploration of SWCNT thin-film transistors (TFTs) using a wide variety of materials and processing methods such as new dielectric materials, hybrid semiconductor materials systems, and solution-based printing of SWCNT TFTs. These materials were integrated into circuit demonstrations such as NOR and NAND logic gates, voltage-controlled ring oscillators, and D-flip-flops using both rigid and flexible substrates. This dissertation explores strategies for implementing complementary SWCNT-based circuits, which were developed by using local metal gate structures that achieve enhancement-mode p-type and n-type SWCNT TFTs with widely separated and

  18. A Physics-Based Heterojunction Bipolar Transistor Model for Integrated Circuit Simulation

    DTIC Science & Technology

    1993-12-01

    base-emitter capacitance; C, is the total base-collector capacitance; g, is the dynamic base-emitter junction conductance; go is the dynamic base...Large-signal junction transistor equivalent circuit (21:61]. gp (’ ’ gE -w CU gm’’ go RE Figure 1.8 Hybrid-if small-signal junction transistor...Forward Base Conductance: ( 3.28 8Ig (3.29) Output (Collector) Conductance: go I V W cow .. S.ax, J(3.30) Transconductance: ga- I V-y• ca- . Both

  19. Modal analysis based equivalent circuit model and its verification for a single cMUT cell

    NASA Astrophysics Data System (ADS)

    Mao, S. P.; Rottenberg, X.; Rochus, V.; Czarnecki, P.; Helin, P.; Severi, S.; Nauwelaers, B.; Tilmans, H. A. C.

    2017-03-01

    This paper presents the lumped equivalent circuit model and its verification of both transmission and reception properties of a single cell capacitive micromachined ultrasonic transducer (cMUT), which is operating in a non-collapse small signal region. The derivation of this equivalent circuit model is based on the modal analysis techniques, harmonic modes are included by using the mode superposition method; and thus a wide frequency range response of the cMUT cell can be simulated by our equivalent circuit model. The importance of the cross modal coupling between different eigenmodes of a cMUT cell is discussed by us for the first time. In this paper the development of this model is only illustrated by a single circular cMUT cell under a uniform excitation. Extension of this model and corresponding results under a more generalized excitation will be presented in our upcoming publication (Mao et al 2016 Proc. IEEE Int. Ultrasonics Symp.). This model is verified by both finite element method (FEM) simulation and experimental characterizations. Results predicted by our model are in a good agreement with the FEM simulation results, and this works for a single cMUT cell operated in either transmission or reception. Results obtained from the model also rather match the experimental results of the cMUT cell. This equivalent circuit model provides an easy and precise way to rapidly predict the behaviors of cMUT cells.

  20. The design of circuit for THz time domain spectroscopy system based on asynchronous optical sampling

    NASA Astrophysics Data System (ADS)

    Wang, Ruike; Zhang, Mile; Li, Yihan; He, Jingsuo; Zhang, Cunlin; Cui, Hailin

    2016-11-01

    Terahertz time domain spectroscopy system (THz-TDS) is the most commonly means of measuring terahertz time-domain spectroscopy. The time delay between the pump and probe laser is an important technology to realize THz time domain spectrum measurement. The translation platform with two mirrors and the mechanical structure is the popular means to adjust the optical path difference between the pump and probe laser to get the time delay of femtosecond pulse. Because of the limit of the mechanical structure and the phase-locked amplifier, this technique can't scan spectrum fast. In order to obtain high quality signal, a long time will be taken to scan spectrum. So a more rapid and convenient time delay technology is required to Instead of the machine translation platform and accomplish the Rapid spectral measurement. Asynchronous optical sampling technique is a way to get the time delay by producing a very small frequency difference between the repetition frequency of two femtosecond lasers. The scanner time will be reduced, because of there is no waste of time, due to mechanical inertia, not only by using the asynchronous optical sampling method to replace the mechanical structure without the influence of vibration. It will greatly increase the degree of integration by using the fiber femtosecond laser and highly integrated circuit to realize optical asynchronous sampling. To solve the problem above, a terahertz time-domain spectroscopy system based on asynchronous sampling is designed in this thesis. The system is based of two femtosecond laser whose repetition frequency is 100MHz.In order to realize asynchronous sampling, the control circuit of the two lasers is the most important. This thesis focuses on the researching, designing and experiment of this circuit. Firstly, the circuit is designed overall. Then the selection of the key device and the designing of the circuit principle is done by myself. Secondly, the test of the circuit to phase locked the master and

  1. Targeting circuits

    PubMed Central

    Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl

    2017-01-01

    Current optogenetic methodology enables precise inhibition or excitation of neural circuits, spanning timescales as needed from the acute (milliseconds) to the chronic (many days or more), for experimental modulation of network activity and animal behavior. Such broad temporal versatility, unique to optogenetic control, is particularly powerful when combined with brain activity measurements that span both acute and chronic timescales as well. This enables, for instance, the study of adaptive circuit dynamics across the intact brain, and tuning interventions to match activity patterns naturally observed during behavior in the same individual. Although the impact of this approach has been greater on basic research than on clinical translation, it is natural to ask if specific neural circuit activity patterns discovered to be involved in controlling adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here we consider the landscape of such ideas related to therapeutic targeting of circuit dynamics, taking note of developments not only in optical but also in ultrasonic, magnetic, and thermal methods. We note the recent emergence of first-in-kind optogenetically-guided clinical outcomes, as well as opportunities related to the integration of interventions and readouts spanning diverse circuit-physiology, molecular, and behavioral modalities. PMID:27104976

  2. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    PubMed

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed.

  3. Student use of model-based reasoning when troubleshooting an electronic circuit

    NASA Astrophysics Data System (ADS)

    Lewandowski, Heather; Stetzer, Mackenzie; van de Bogart, Kevin; Dounas-Frazer, Dimitri

    2016-03-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  4. Student use of model-based reasoning when troubleshooting an electric circuit

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri

    2016-05-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  5. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.

    PubMed

    Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

    2015-02-01

    Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination.

  6. Impact-Based Area Allocation for Yield Optimization in Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Abraham, Billion; Widodo, Arif; Chen, Poki

    2016-06-01

    In analog integrated circuit (IC) layout, area allocation is a very important issue for achieving good mismatch cancellation. However, most IC layout papers focus only on layout strategy to reduce systematic mismatch. In 2006, an outstanding paper presenting area allocation strategy was published to introduce technique for random mismatch reduction. Instead of using general theoretical study to prove the strategy, this research presented close-to-optimum simulations only on case-bycase basis. The impact-based area allocation for yield optimization in integrated circuits is proposed in this chapter. To demonstrate the corresponding strategy, not only a theoretical analysis but also an integral nonlinearity-based yield simulation will be given to derive optimum area allocation for binary weighted current steering digital-to-analog converter (DAC). The result will be concluded to convince IC designers how to allocate area for critical devices in an optimum way.

  7. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs.

    PubMed

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-03-07

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  8. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  9. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2013-05-01

    Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420°C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440°C.

  10. To Compare the Effects of Computer Based Learning and the Laboratory Based Learning on Students' Achievement Regarding Electric Circuits

    ERIC Educational Resources Information Center

    Bayrak, Bekir; Kanli, Uygar; Kandil Ingeç, Sebnem

    2007-01-01

    In this study, the research problem was: "Is the computer based physics instruction as effective as laboratory intensive physics instruction with regards to academic success on electric circuits 9th grade students?" For this research of experimental quality the design of pre-test and post-test are applied with an experiment and a control…

  11. A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms

    PubMed Central

    Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O.

    2016-01-01

    A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems. PMID:28025566

  12. A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms.

    PubMed

    Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O

    2016-12-23

    A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems.

  13. Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives

    PubMed Central

    Wu, Haoyi; Chiang, Sum Wai; Lin, Wei; Yang, Cheng; Li, Zhuo; Liu, Jingping; Cui, Xiaoya; Kang, Feiyu; Wong, Ching Ping

    2014-01-01

    Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuitsweredrastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10−5Ω·cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript. PMID:25182052

  14. Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives

    NASA Astrophysics Data System (ADS)

    Wu, Haoyi; Chiang, Sum Wai; Lin, Wei; Yang, Cheng; Li, Zhuo; Liu, Jingping; Cui, Xiaoya; Kang, Feiyu; Wong, Ching Ping

    2014-09-01

    Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuitsweredrastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10-5Ω.cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript.

  15. The combination of the functionalities of feedback circuits is determinant for the attractors’ number and size in pathway-like Boolean networks

    PubMed Central

    Azpeitia, Eugenio; Muñoz, Stalin; González-Tokman, Daniel; Martínez-Sánchez, Mariana Esther; Weinstein, Nathan; Naldi, Aurélien; Álvarez-Buylla, Elena R.; Rosenblueth, David A.; Mendoza, Luis

    2017-01-01

    Molecular regulation was initially assumed to follow both a unidirectional and a hierarchical organization forming pathways. Regulatory processes, however, form highly interlinked networks with non-hierarchical and non-unidirectional structures that contain statistically overrepresented circuits or motifs. Here, we analyze the behavior of pathways containing non-unidirectional (i.e. bidirectional) and non-hierarchical interactions that create motifs. In comparison with unidirectional and hierarchical pathways, our pathways have a high diversity of behaviors, characterized by the size and number of attractors. Motifs have been studied individually showing that feedback circuit motifs regulate the number and size of attractors. It is less clear what happens in molecular networks that usually contain multiple feedbacks. Here, we find that the way feedback circuits couple to each other (i.e., the combination of the functionalities of feedback circuits) regulate both the number and size of the attractors. We show that the different expected results of epistasis analysis (a method to infer regulatory interactions) are produced by many non-hierarchical and non-unidirectional structures. Thus, these structures cannot be correctly inferred by epistasis analysis. Finally, we show that the combinations of functionalities, combined with other network properties, allow for a better characterization of regulatory structures. PMID:28186191

  16. The combination of the functionalities of feedback circuits is determinant for the attractors' number and size in pathway-like Boolean networks.

    PubMed

    Azpeitia, Eugenio; Muñoz, Stalin; González-Tokman, Daniel; Martínez-Sánchez, Mariana Esther; Weinstein, Nathan; Naldi, Aurélien; Álvarez-Buylla, Elena R; Rosenblueth, David A; Mendoza, Luis

    2017-02-10

    Molecular regulation was initially assumed to follow both a unidirectional and a hierarchical organization forming pathways. Regulatory processes, however, form highly interlinked networks with non-hierarchical and non-unidirectional structures that contain statistically overrepresented circuits or motifs. Here, we analyze the behavior of pathways containing non-unidirectional (i.e. bidirectional) and non-hierarchical interactions that create motifs. In comparison with unidirectional and hierarchical pathways, our pathways have a high diversity of behaviors, characterized by the size and number of attractors. Motifs have been studied individually showing that feedback circuit motifs regulate the number and size of attractors. It is less clear what happens in molecular networks that usually contain multiple feedbacks. Here, we find that the way feedback circuits couple to each other (i.e., the combination of the functionalities of feedback circuits) regulate both the number and size of the attractors. We show that the different expected results of epistasis analysis (a method to infer regulatory interactions) are produced by many non-hierarchical and non-unidirectional structures. Thus, these structures cannot be correctly inferred by epistasis analysis. Finally, we show that the combinations of functionalities, combined with other network properties, allow for a better characterization of regulatory structures.

  17. The combination of the functionalities of feedback circuits is determinant for the attractors’ number and size in pathway-like Boolean networks

    NASA Astrophysics Data System (ADS)

    Azpeitia, Eugenio; Muñoz, Stalin; González-Tokman, Daniel; Martínez-Sánchez, Mariana Esther; Weinstein, Nathan; Naldi, Aurélien; Álvarez-Buylla, Elena R.; Rosenblueth, David A.; Mendoza, Luis

    2017-02-01

    Molecular regulation was initially assumed to follow both a unidirectional and a hierarchical organization forming pathways. Regulatory processes, however, form highly interlinked networks with non-hierarchical and non-unidirectional structures that contain statistically overrepresented circuits or motifs. Here, we analyze the behavior of pathways containing non-unidirectional (i.e. bidirectional) and non-hierarchical interactions that create motifs. In comparison with unidirectional and hierarchical pathways, our pathways have a high diversity of behaviors, characterized by the size and number of attractors. Motifs have been studied individually showing that feedback circuit motifs regulate the number and size of attractors. It is less clear what happens in molecular networks that usually contain multiple feedbacks. Here, we find that the way feedback circuits couple to each other (i.e., the combination of the functionalities of feedback circuits) regulate both the number and size of the attractors. We show that the different expected results of epistasis analysis (a method to infer regulatory interactions) are produced by many non-hierarchical and non-unidirectional structures. Thus, these structures cannot be correctly inferred by epistasis analysis. Finally, we show that the combinations of functionalities, combined with other network properties, allow for a better characterization of regulatory structures.

  18. New circular polarization selective surface concepts based on the Pierrot cell using printed circuit technology

    NASA Astrophysics Data System (ADS)

    Lopez, Humberto Israel

    This M.A.Sc. thesis focuses on finding an alternative method of constructing a circular polarization selective surface (CPSS) based on the Pierrot cell using the standard printed circuit technology. This technique uses a folded flexible substrate, which enables the implementation of the 3D Pierrot cells on a single metal layer defined with precision printed circuit board techniques, without the need for metalized via holes. Different topologies of the CPSS are analyzed in order to make the CPSS more efficient in terms of bandwidth and independence on the direction of propagation of the incident wave. A left-hand CPSS is designed to illustrate the benefits of the proposed approach. The first approach is a simple Pierrot unit cell CPSS which is optimized to have good reflection and transmission coefficients. A prototype is built and then characterized in a test bench operating in the K-band. For the fabricated prototype, the transmission coefficients of plane waves at normal incidence in the right-hand and the left-hand circular polarizations are --0.48 dB and --24 dB respectively. The bandwidth for which the transmission coefficient of the incident left-handed incident wave is greater than --3 dB was of 17.6%. These results are in good agreement with simulations results obtained with HFSS. A second variant considered is a Pierrot cell with a series load in the middle segment. With this cell it is possible to equalize the frequencies giving a better operation in the right- and left-handed circular polarized waves. There is an improvement for the co-pol to cross-pol ratio for the RHCP waves of 10 dB at 20 GHz. The added load does not affect the performance for the left-hand circular polarization, as expected. The third modification is a Pierrot cell at 90 degrees. This cell is designed to allow the combination of two Pierrot cells working at different frequencies on the same substrate in order to increase the frequency bandwidth of the CPSS. Unfortunately, the axial

  19. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    NASA Astrophysics Data System (ADS)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  20. Reconfigurable Special Test Circuit of physics-based IGBT models parameter extraction

    NASA Astrophysics Data System (ADS)

    Rodríguez, Marco A.; Claudio, Abraham; Cotorogea, Maria; González, Leobardo H.; Aguayo, Jesús

    2010-11-01

    Physics-based models of power electronic devices are the most accurate for circuit simulation purposes. However, many parameters of such models are related to device physics and structure and are not directly available for the user. The IGBT is still the most used power semiconductor device for applications at medium power and frequency ranges, due to its good compromise between on-state loss, switching loss, and ease of control. This paper presents a procedure for extracting the most important parameters of the IGBT, with physical background and electrical measurements. The goal is to develop a deeply understanding of the device-structure and to simulate correctly both steady-state and transient period with any circuit simulation software without the IGBT model provided by the manufacturer. The method consists of seven test setups and seven algorithms for extracting 13 physical and structural parameters needed in most physics-based IGBT models; by using only one Reconfigurable Special Test Circuit in order to achieve the different test setups conditions.

  1. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    SciTech Connect

    Robinson, S.

    2014-10-15

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits.

  2. Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers

    NASA Astrophysics Data System (ADS)

    Iordanidis, A. A.; Franck, C. M.

    2008-07-01

    An accurate and robust method for radiative heat transfer simulation for arc applications was presented in the previous paper (part I). In this paper a self-consistent mathematical model based on computational fluid dynamics and a rigorous radiative heat transfer model is described. The model is applied to simulate switching arcs in high voltage gas circuit breakers. The accuracy of the model is proven by comparison with experimental data for all arc modes. The ablation-controlled arc model is used to simulate high current PTFE arcs burning in cylindrical tubes. Model accuracy for the lower current arcs is evaluated using experimental data on the axially blown SF6 arc in steady state and arc resistance measurements close to current zero. The complete switching process with the arc going through all three phases is also simulated and compared with the experimental data from an industrial circuit breaker switching test.

  3. Closed and open breathing circuit function in healthy volunteers during exercise at Mount Everest base camp (5300 m).

    PubMed

    McMorrow, R C N; Windsor, J S; Hart, N D; Richards, P; Rodway, G W; Ahuja, V Y; O'Dwyer, M J; Mythen, M G; Grocott, M P W

    2012-08-01

    We present a randomised, controlled, crossover trial of the Caudwell Xtreme Everest (CXE) closed circuit breathing system vs an open circuit and ambient air control in six healthy, hypoxic volunteers at rest and exercise at Everest Base Camp, at 5300 m. Compared with control, arterial oxygen saturations were improved at rest with both circuits. There was no difference in the magnitude of this improvement as both circuits restored median (IQR [range]) saturation from 75%, (69.5-78.9 [68-80]%) to > 99.8% (p = 0.028). During exercise, the CXE closed circuit improved median (IQR [range]) saturation from a baseline of 70.8% (63.8-74.5 [57-76]%) to 98.8% (96.5-100 [95-100]%) vs the open circuit improvement to 87.5%, (84.1-88.6 [82-89]%; p = 0.028). These data demonstrate the inverse relationship between supply and demand with open circuits and suggest that ambulatory closed circuits may offer twin advantages of supplying higher inspired oxygen concentrations and/or economy of gas use for exercising hypoxic adults.

  4. Biologically based neural circuit modelling for the study of fear learning and extinction

    NASA Astrophysics Data System (ADS)

    Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra

    2016-11-01

    The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.

  5. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits

    PubMed Central

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-01-01

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.10056.001 PMID:26705334

  6. Interface circuit design and control system programming for an EMCCD camera based on Camera Link

    NASA Astrophysics Data System (ADS)

    Li, Bin-hua; Rao, Xiao-hui; Yan, Jia; Li, Da-lun; Zhang, Yi-gong

    2013-08-01

    This paper presents an appropriate solution for self-developed EMCCD cameras based on Camera Link. A new interface circuit used to connect an embedded processor Nios II to the serial communication port of Camera Link in the camera is designed, and a simplified structure diagram is shown. To implement functions of the circuit, in the hardware design, it is necessary to add a universal serial communication component to the Nios II when building the processor and its peripheral components in the Altera SOPC development environment. In the software design, we use C language to write a UART interrupt response routine for instructions and data receiving and transmitting, and a camera control program in the slave computer (Nios II), employ a Sapera LT development library and VC++ to write a serial communication routine, a camera control and image acquisition program in the host computer. The developed camera can be controlled by the host PC, the camera status can return to the PC, and a huge amount of image data can be uploaded at a high speed through a Camera Link cable. A flow chart of the serial communication and camera control program in Nios II is given, and two operating interfaces in the PC are shown. Some design and application skills are described in detail. The test results indicate that the interface circuit and the control programs that we have developed are feasible and reliable.

  7. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  8. Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer.

    PubMed

    Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil

    2015-10-27

    Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%.

  9. Hidden circuits and argumentation

    NASA Astrophysics Data System (ADS)

    Leinonen, Risto; Kesonen, Mikko H. P.; Hirvonen, Pekka E.

    2016-11-01

    Despite the relevance of DC circuits in everyday life and schools, they have been shown to cause numerous learning difficulties at various school levels. In the course of this article, we present a flexible method for teaching DC circuits at lower secondary level. The method is labelled as hidden circuits, and the essential idea underlying hidden circuits is in hiding the actual wiring of DC circuits, but to make their behaviour evident for pupils. Pupils are expected to find out the wiring of the circuit which should enhance their learning of DC circuits. We present two possible ways to utilise hidden circuits in a classroom. First, they can be used to test and enhance pupils’ conceptual understanding when pupils are expected to find out which one of the offered circuit diagram options corresponds to the actual circuit shown. This method aims to get pupils to evaluate the circuits holistically rather than locally, and as a part of that aim this method highlights any learning difficulties of pupils. Second, hidden circuits can be used to enhance pupils’ argumentation skills with the aid of argumentation sheet that illustrates the main elements of an argument. Based on the findings from our co-operating teachers and our own experiences, hidden circuits offer a flexible and motivating way to supplement teaching of DC circuits.

  10. An artificial neural network integrated circuit based on MNOS/CCD principles

    NASA Astrophysics Data System (ADS)

    Sage, J. P.; Thompson, K.; Withers, R. S.

    1986-08-01

    This paper describes the design principles for an implementation of an artificial neural network (ANN) in the form of a silicon integrated circuit based on charge-coupled device (CCD) and metal-nitride-oxide-semiconductor (MNOS) technologies. The significant features of this design are: (1) the synaptic coupling strengths stored in the MNOS devices can take on continuous, analog values and (2) the synaptic weights can be reprogrammed at any time under electrical control and in response to conditions in the network. These features should make possible ANNs that are capable of dynamic, in situ learning.

  11. Design of mid-infrared ultra-wideband metallic absorber based on circuit theory

    NASA Astrophysics Data System (ADS)

    Arik, Kamalodin; Abdollahramezani, Sajjad; Farajollahi, Saeed; Khavasi, Amin; Rejaei, Behzad

    2016-12-01

    An ultra-broadband absorber of light is proposed by using periodic array of ultra-thin metallic ribbons on top of a lossless quarter-wavelength dielectric spacer placed on a metallic reflector. We propose a fully analytical circuit model for the structure, and then the absorber is duly designed based on the impedance matching concept. As a result, normalized bandwidth of 99.5% is realized by the proposed absorbing structure in mid-infrared regime. Performing a numerical optimization algorithm, we could also reach to normalized bandwidth of 103%.

  12. Hybrid integration platform based on silica-on-silicon planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Lin, Wenhua; Sun, C. Jacob; Schmidt, Kevin M.

    2007-02-01

    While silica waveguide PLC products have been deployed in various systems and applications, hybrid integration of semiconductor opto-electronic devices on silica-based planar lightwave circuit (PLC) has become the mainstream platform for small form factor, low-cost and high volume integrated transceiver modules. One of the main benefits of hybrid integration is the wafer-scale process, which greatly reduces chip/module size and assembly cost. This paper reviews the development of this technology, and as an example, presents a hybrid integrated transmitter with four wavelengths on silica PLC chip for LX4 and 10GbE applications.

  13. Hybrid-integrated coherent receiver using silica-based planar lightwave circuit technology

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoi; Choe, Joong-Seon; Choi, Kwang-Seong; Youn, Chun-Ju; Kim, Duk-Jun; Jang, Sun-Hyok; Kwon, Yong-Hwan; Nam, Eun-Soo

    2011-12-01

    A hybrid-integrated coherent receiver module has been achieved using flip-chip bonding technology, consisting of a silica-based 90°-hybrid planar lightwave circuit (PLC) platform, a spot-size converter integrated waveguide photodiode (SSC-WG-PD), and a dual-channel transimpedance amplifier (TIA). The receiver module shows error-free operation up to 40Gb/s and OSNR sensitivity of 11.5 dB for BER = 10-3 at 25 Gb/s.

  14. Volume integrated phase modulator based on funnel waveguides for reconfigurable miniaturized optical circuits.

    PubMed

    Parravicini, J; Martínez Lorente, R; Di Mei, F; Pierangeli, D; Agranat, A J; DelRe, E

    2015-04-01

    We demonstrate the integration of a miniaturized 30(x)  μm×30(y)  μm×2.7(z)  mm electro-optic phase modulator operating in the near-IR (λ=980  nm) based on the electro-activation of a funnel waveguide inside a paraelectric sample of photorefractive potassium lithium tantalate niobate. The modulator forms a basic tassel in the realization of miniaturized reconfigurable optical circuits embedded in a single solid-state three-dimensional chip.

  15. Dual-quadrature coherent receiver for 100G Ethernet applications based on polymer planar lightwave circuit.

    PubMed

    Wang, Jin; Kroh, Marcel; Theurer, Abongwa; Zawadzki, Crispin; Schmidt, Detlef; Ludwig, Reinhold; Lauermann, Matthias; Zhang, Ziyang; Beling, Andreas; Matiss, Andreas; Schubert, Colja; Steffan, Andreas; Keil, Norbert; Grote, Norbert

    2011-12-12

    A dual-quadrature coherent receiver based on a polymer planar lightwave circuit (PLC) is presented. This receiver comprises two separate optical 90°-hybrid chips made of polymer waveguides and hybridly integrated with InGaAs/InP photodiode (PD) arrays. The packaged receiver was successfully operated in 112 Gbit/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments. In back-to-back configuration the OSNR requirement for a BER value of 10(-3) was 15.1 dB which has to be compared to a theoretical limit of 13.8 dB.

  16. Circuit QED bright source for chiral entangled light based on dissipation.

    PubMed

    Quijandría, Fernando; Porras, Diego; García-Ripoll, Juan José; Zueco, David

    2013-08-16

    We present a scalable and tunable framework for the quantum simulation of critical dissipative models based on a circuit QED cavity array interacting with driven superconducting qubits. We will show that the strongly correlated many-body state of the cavities can be mapped into the state of propagating photons in a transmission line. This allows not only for an efficient way of accessing the correlations in the many-body system, but also provides a bright source of chiral entangled light where directionality and entanglement are assisted by collective phenomena and breaking of reflection symmetry.

  17. CIRCUITS FOR CURRENT MEASUREMENTS

    DOEpatents

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  18. Methods for combining a theoretical and an empirical approach in modelling pressure and flow control valves for CAE-programs for fluid power circuits

    NASA Astrophysics Data System (ADS)

    Handroos, Heikki

    An analytical mathematical model for a fluid power valve uses equations based on physical laws. The parameters consist of physical coefficients, dimensions of the internal elements, spring constants, etc. which are not provided by the component manufacturers. The valve has to be dismantled in order to determine their values. The model is only in accordance with a particular type of valve construction and there are a large number of parameters. This is a major common problem in computer aided engineering (CAE) programs for fluid power circuits. Methods for solving this problem by combining a theoretical and an empirical approach are presented. Analytical models for single stage pressure and flow control valves are brought into forms which contain fewer parameters whose values can be determined from measured characteristic curves. The least squares criterion is employed to identify the parameter values describing the steady state of a valve. The steady state characteristic curves that are required data for this identification are quite often provided by the manufacturers. The parameters describing the dynamics of a valve are determined using a simple noncomputational method using dynamic characteristic curves that can be easily measured. The importance of the identification accuracy of the different parameters of the single stage pressure relief valve model is compared using a parameter sensitivity analysis method. A new comparison method called relative mean value criterion is used to compare the influences of variations of the different parameters to a nominal dynamic response.

  19. A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators

    PubMed Central

    Sah, Maheshwar Pd.; Yang, Changju; Kim, Hyongsuk; Chua, Leon

    2012-01-01

    A memristor bridge neural circuit which is able to perform signed synaptic weighting was proposed in our previous study, where the synaptic operation was verified via software simulation of the mathematical model of the HP memristor. This study is an extension of the previous work advancing toward the circuit implementation where the architecture of the memristor bridge synapse is built with memristor emulator circuits. In addition, a simple neural network which performs both synaptic weighting and summation is built by combining memristor emulators-based synapses and differential amplifier circuits. The feasibility of the memristor bridge neural circuit is verified via SPICE simulations. PMID:22737026

  20. A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaopeng; Wang, Yujie; Chen, Zonghai

    2015-11-01

    Estimation of state-of-charge (SOC) is a key criterion to evaluate the battery management system (BMS). Due to the flat open-circuit voltage (OCV)-SOC curve of LiFePO4 batteries, it is a great challenge to estimate the SOC accurately. Here we present a dual-circuit state observer for SOC estimation of LiFePO4 batteries. It is a combination of an open loop based current integrator and a proportional-integral (PI) based state observer. We also employed an easy but practical drifting current corrector to restrain the influence of the drifting current. The experiment results show that error of the estimated SOC is less than 2.5% by the proposed method when the initial SOC is unknown. We proved that with no matrix operations, the proposed method is lighted-weighted and high efficient, which is suitable for embedded systems.

  1. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.

    PubMed

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-04-03

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  2. Fabrication of photonic crystal circuits based on GaN ultrathin membranes by maskless lithography

    NASA Astrophysics Data System (ADS)

    Volciuc, Olesea; Braniste, Tudor; Sergentu, Vladimir; Ursaki, Veaceslav; Tiginyanu, Ion M.; Gutowski, Jürgen

    2015-06-01

    We report on maskless fabrication of photonic crystal (PhC) circuits based on ultrathin (d ~ 15 nm) nanoperforated GaN membranes exhibiting a triangular lattice arrangement of holes with diameters of 150 nm. In recent years, we have proposed and developed a cost-effective technology for GaN micro- and nanostructuring, the so-called surface charge lithography (SCL), which opened wide possibilities for a controlled fabrication of GaN ultrathin membranes. SCL is a maskless approach based on direct writing of negative charges on the surface of a semiconductor by a focused ion beam (FIB). These charges shield the material against photo-electrochemical (PEC) etching. Ultrathin GaN membranes suspended on specially designed GaN microstructures have been fabricated using a technological route based on SCL with two selected doses of ion beam treatment. Calculation of the dispersion law in nanoperforated membranes in the approximation of scalar waves is indicative of the occurrence of surface and bulk modes, and there is a range of frequencies where only surface modes can exist. Advantages of the occurrence of two types of modes in ultrathin nanoperforated GaN membranes from the point of view of their incorporation in photonic and optoelectronic integrated circuits are discussed. Along with this, we present the results of a comparative analysis of persistent photoconductivity (PPC) and optical quenching (OQ) effects occurring in continuous and nanoperforated ultrathin GaN suspended membranes, and assess the mechanisms behind these phenomena.

  3. Some Key Issues in Creating Inquiry-Based Instructional Practices that Aim at the Understanding of Simple Electric Circuits

    NASA Astrophysics Data System (ADS)

    Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno

    2013-04-01

    Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric circuits. In response to these problems, reform initiatives in education strive for a change of the classroom culture, putting emphasis on more authentic contexts and student activities containing elements of inquiry. The challenge then becomes choosing and combining these elements in such a manner that they foster an understanding of theoretical concepts. In this article we reflect on data collected and analyzed from a series of 12 grade 9 physics lessons on simple electric circuits. Drawing from a theoretical framework based on individual (conceptual change based) and socio-cultural views on learning, instruction was designed addressing known conceptual problems and attempting to create a physics (research) culture in the classroom. As the success of the lessons was limited, the focus of the study became to understand which inherent characteristics of inquiry based instruction complicate the process of constructing conceptual understanding. From the analysis of the data collected during the enactment of the lessons three tensions emerged: the tension between open inquiry and student guidance, the tension between students developing their own ideas and getting to know accepted scientific theories, and the tension between fostering scientific interest as part of a scientific research culture and the task oriented school culture. An outlook will be given on the implications for science lessons.

  4. Electrical Circuit Simulation Code

    SciTech Connect

    Wix, Steven D.; Waters, Arlon J.; Shirley, David

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  5. The Strutjet Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.

    1998-01-01

    The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine

  6. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  7. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  8. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  9. Printed circuit technology for fabrication of plastic-based microfluidic devices.

    PubMed

    Sudarsan, Arjun P; Ugaz, Victor M

    2004-06-01

    One of the primary advantages of using plastic-based substrates for microfluidic systems is the ease with which devices can be fabricated with minimal dependence on specialized laboratory equipment. These devices are often produced using soft lithography techniques to cast replicas of a rigid mold or master incorporating a negative image of the desired surface structures. Conventional photolithographic micromachining processes are typically used to construct these masters in either thick photoresist, etched silicon, or etched glass substrates. The speed at which new masters can be produced using these techniques, however, can be relatively slow and often limits the rate at which new device designs can be built and tested. In this paper, we show that inexpensive photosensitized copper clad circuit board substrates can be employed to produce master molds using conventional printed circuit technology. This process offers the benefits of parallel fabrication associated with photolithography without the need for cleanroom facilities, thereby providing a degree of speed and simplicity that allows microfluidic master molds with well-defined and reproducible structural features to be constructed in approximately 30 min in any laboratory. Precise control of channel heights ranging from 15 to 120 microm can be easily achieved through selection of the appropriate copper layer thickness, and channel widths as small as 50 microm can be reproducibly obtained. We use these masters to produce a variety of plastic-based microfluidic channel networks and demonstrate their suitability for DNA electrophoresis and microfluidic mixing studies.

  10. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; Rodriguez, Bryan

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  11. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator

    PubMed Central

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex. PMID:27242416

  12. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator.

    PubMed

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex.

  13. Miniaturized Antennas and Metamaterial-Based Transmission Line Components in Microwave Circuits Applications

    NASA Astrophysics Data System (ADS)

    Chi, Pei-Ling

    This dissertation presents two diversities of miniaturization approaches to the antennas and microwave passive circuit components. The first approach is based on the unique metamaterial transmission line structures. The metamaterial structure or the left-handed structure is an artificial structure that is dispersion engineerable from its constituent parameters. By means of the left-handed transmission lines or the composite right/left-handed (CRLH) transmission lines to replace the conventional microstrip lines, microwave circuit components can be miniaturized via controlling the phase responses at the frequencies of interest, which saves the footprint size. Specifically, this idea was implemented on the dual-band 180°0 and 90° hybrid couplers and both of them demonstrate considerable size reductions in the experiments. On the other hand, the second methodology leading to miniaturization is taking advantage of the slow wave structures. The slow wave structures presented in this dissertation are formed using the capacitive loading periodically. The effective propagation constant beta is enhanced by increasing the effective shunt capacitance in the equivalent circuit model derived from the conventional transmission line theory. The associated guided wavelength is therefore decreased and the same physical structure is capable of operating at lower frequencies. The slow wave structures are employed for compact antenna applications. In particular, the slow wave enhancement factor (SWE), which is defined as the ratio of the loaded to the unloaded propagation constants (beta//beta), is investigated using the loaded unit cell of the equivalent transmission line model and utilized as a design tool for an arbitrary size reduction. It is shown that the SWE agrees very well with miniaturization factor, and therefore load parameters in the circuit model can be readily obtained when a specific size reduction is attempted. Slow wave antennas will be exemplified in the third

  14. Computational investigation of rocket based combined cycle

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-bo; Wang, Zhan-xue; Liu, Zeng-wen

    2013-03-01

    Based on Computational Fluid Dynamic technology, the mixing process of Rocket Based Combined Cycle (RBCC) propulsion system is researched. The idea of RBCC propulsion system means combining rocket engine with ramjet engine effectively, which can flight from sea level to high altitude in wide Mach ranges. In order to analyze how the length of the mixing part affects mixing process, different length of mixing part are researched. As it is indicated, with a constant Mach number, increasing the length of mixing part makes main flow and second flow mix more evenly. Moreover, the length of mixing part has a slight impact on the thrust. Obviously the main consequence of increasing the length of mixing part is promoting the mix of main flow and second flow. Therefore, in order to decrease the weight of aircraft, it is of importance to reduce the length. Through comparing distribution of different cases, when working in the situation of maximum power, the flow in the nozzle of rocket engine is under expansion, while that in the nozzle is fully expanded. Nevertheless, in the case of high altitude and high Mach number, there exists a vortex in the nozzle of rocket engine because of over expansion; meanwhile, the flow in the nozzle is under expansion. Therefore, it is necessary to adjust nozzle throat area in order to increase the thrust of RBCC at high altitude.

  15. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  16. Ribozyme-based insulator parts buffer synthetic circuits from genetic context.

    PubMed

    Lou, Chunbo; Stanton, Brynne; Chen, Ying-Ja; Munsky, Brian; Voigt, Christopher A

    2012-11-01

    Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as 'insulator parts', is screened in Escherichia coli. We find that ribozymes that cleave the 5' untranslated region (5'-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs.

  17. Ribozyme-based insulator parts buffer synthetic circuits from genetic context

    PubMed Central

    Lou, Chunbo; Stanton, Brynne; Chen, Ying-Ja; Munsky, Brian; Voigt, Christopher A

    2014-01-01

    Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression1–4. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit5–9. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as ‘insulator parts’, is screened in Escherichia coli. We find that ribozymes that cleave the 5′ untranslated region (5′-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs. PMID:23034349

  18. Research in computer simulation of integrated circuits

    NASA Astrophysics Data System (ADS)

    Newton, A. R.; Pdederson, D. O.

    1983-07-01

    The performance of the new LSI simulator CLASSIE is evaluated on several circuits with a few hundred to over one thousand semiconductor devices. A more accurate run time prediction formula has been found to be appropriate for circuit simulators. The design decisions for optimal performance under the constraints of the hardware (CRAY-1) are presented. Vector computers have an increased potential for fast, accurate simulation at the transistor level of Large-Scale-Integrated Circuits. Design considerations for a new circuit simulator are developed based on the specifics of the vector computer architecture and of LSI circuits. The simulation of Large-Scale-Integrated (LSI) circuits requires very long run time on conventional circuit analysis programs such as SPICE2 and super-mini computers. A new simulator for LSI circuits, CLASSIE, which takes advantage of circuit hierarchy and repetitiveness, and array processors capable of high-speed floating-point computation are a promising combination. While a large number of powerful design verfication tools have been developed for IC design at the transistor and logic gate levels, there are very few silicon-oriented tools for architectural design and evaluation.

  19. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.

    PubMed

    Edri, Eran; Kirmayer, Saar; Cahen, David; Hodes, Gary

    2013-03-21

    Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There is a dire need for low-cost cells of this type, to drive electrochemical reactions or as the high photon energy cell in a system with spectral splitting. These perovskite materials, although spin-coated from solution, form highly crystalline materials. Their simple synthesis, along with high chemical versatility, allows tuning their electronic and optical properties. By judicious selection of the perovskite lead halide-based absorber, matching organic hole conductor, and contacts, a cell with a ∼ 1.3 V open circuit voltage was made. While further study is needed, this achievement provides a general guideline for additional improvement of cell performance.

  20. Device study, chemical doping, and logic circuits based on transferred aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Patil, Nishant; Lin, Albert; Mitra, Subhasish; Wong, H.-S. Philip; Zhou, Chongwu

    2008-07-01

    In this paper, high-performance back-gated carbon nanotube field-effect transistors based on transferred aligned carbon nanotubes were fabricated and studies found that the on/off ratio can reach 107 and the current density can reach 1.6μA/μm after electrical breakdown. In addition, chemical doping with hydrazine was used to convert the p-type aligned nanotube devices into n-type. These devices were further utilized to demonstrate various logic circuits, including p-type metal-oxide-semiconductor inverters, diode-loaded inverters, complementary metal-oxide-semiconductor inverters, NAND, and NOR gates. This approach could work as the platform for future nanotube-based nanoelectronics.

  1. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications

    PubMed Central

    Vidor, Fábio F.; Meyers, Thorsten; Hilleringmann, Ulrich

    2016-01-01

    Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates. PMID:28335282

  2. Task Allocation of Wasps Governed by Common Stomach: A Model Based on Electric Circuits

    PubMed Central

    2016-01-01

    Simple regulatory mechanisms based on the idea of the saturable ‘common stomach’ can control the regulation of construction behavior and colony-level responses to environmental perturbations in Metapolybia wasp societies. We mapped the different task groups to mutual inductance electrical circuits and used Kirchoff’s basic voltage laws to build a model that uses master equations from physics, yet is able to provide strong predictions for this complex biological phenomenon. Similar to real colonies, independently of the initial conditions, the system shortly sets into an equilibrium, which provides optimal task allocation for a steady construction, depending on the influx of accessible water. The system is very flexible and in the case of perturbations, it reallocates its workforce and adapts to the new situation with different equilibrium levels. Similar to the finding of field studies, decreasing any task groups caused decrease of construction; increasing or decreasing water inflow stimulated or reduced the work of other task groups while triggering compensatory behavior in water foragers. We also showed that only well connected circuits are able to produce adequate construction and this agrees with the finding that this type of task partitioning only exists in larger colonies. Studying the buffer properties of the common stomach and its effect on the foragers revealed that it provides stronger negative feedback to the water foragers, while the connection between the pulp foragers and the common stomach has a strong fixed-point attractor, as evidenced by the dissipative trajectory. PMID:27861633

  3. Task Allocation of Wasps Governed by Common Stomach: A Model Based on Electric Circuits.

    PubMed

    Hilbun, Allison; Karsai, Istvan

    2016-01-01

    Simple regulatory mechanisms based on the idea of the saturable 'common stomach' can control the regulation of construction behavior and colony-level responses to environmental perturbations in Metapolybia wasp societies. We mapped the different task groups to mutual inductance electrical circuits and used Kirchoff's basic voltage laws to build a model that uses master equations from physics, yet is able to provide strong predictions for this complex biological phenomenon. Similar to real colonies, independently of the initial conditions, the system shortly sets into an equilibrium, which provides optimal task allocation for a steady construction, depending on the influx of accessible water. The system is very flexible and in the case of perturbations, it reallocates its workforce and adapts to the new situation with different equilibrium levels. Similar to the finding of field studies, decreasing any task groups caused decrease of construction; increasing or decreasing water inflow stimulated or reduced the work of other task groups while triggering compensatory behavior in water foragers. We also showed that only well connected circuits are able to produce adequate construction and this agrees with the finding that this type of task partitioning only exists in larger colonies. Studying the buffer properties of the common stomach and its effect on the foragers revealed that it provides stronger negative feedback to the water foragers, while the connection between the pulp foragers and the common stomach has a strong fixed-point attractor, as evidenced by the dissipative trajectory.

  4. Novel system for automatic measuring diopter based on ARM circuit block

    NASA Astrophysics Data System (ADS)

    Xue, Feng; Zhong, Lei; Chen, Zhe; Xue, Deng-pan; Li, Xiang-ning

    2009-07-01

    Traditional commercial instruments utilized in vision screening programs cannot satisfy the request for real-time diopter measurement by far, and their success is limited by some defectiveness such as computer-attached, clumsy volume, and low accuracy of parameters measured, etc. In addition, astigmatic eyes cannot be determined in many devices. This paper proposes a new design of diopter measurement system based on SAMSUNG's ARM9 circuit block. There are several contributions in the design. The new developed system has not only the function of automatically measuring diopter, but also the advantages of the low cost, and especially the simplicity and portability. Besides, by placing point sources in three directions, the instrument can determine astigmatic eyes at the same time. Most of the details are introduced as the integrated design of measuring system, interface circuit of embedded system and so on. Through a preliminary experiment, it is proved that the system keeps good feasibility and validity. The maximum deviation of measurement result is 0.344D.The experimental results also demonstrate the system can provide the service needed for real-time applications. The instrument present here is expected to be widely applied in many fields such as the clinic and home healthcare.

  5. Equivalency-processing parallel photonic integrated circuit (EP3IC): equivalence search module based on multiwavelength guided-wave technology.

    PubMed

    Detofsky, A; Choo, P Y; Louri, A

    2000-02-10

    We present an optoelectronic module called the equivalency-processing parallel photonic integrated circuit (EP(3)IC) that is created specifically to implement high-speed parallel equivalence searches (i.e., database word searches). The module combines a parallel-computation model with multiwavelength photonic integrated-circuit technology to achieve high-speed data processing. On the basis of simulation and initial analytical computation, a single-step multicomparand word-parallel bit-parallel equality search can attain an aggregate processing speed of 82 Tbit/s. We outline the theoretical design of the monolithic module and the integrated components and compare this with a functionally identical bulk-optics implementation. This integrated-circuit solution provides relatively low-power operation, fast switching speed, a compact system footprint, vibration tolerance, and ease of manufacturing.

  6. Silicon-on-insulator-based high-voltage, high-temperature integrated circuit gate driver for silicon carbide-based power field effect transistors

    SciTech Connect

    Tolbert, Leon M; Huque, Mohammad A; Blalock, Benjamin J; Islam, Syed K

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimising system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8--m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  7. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1999-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic RBCC engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. The performance of a generic ABCC engine along a flight path (q0 =10 (exp 3) lbf per square ft) shows that the mission averaged-specific impulse is about twice larger than RBCC engine and the dry mass-ratio is about 50% larger. Results of the present ABCC engine performance are based on the assumptions that the flow passage of working fluids is identical to that of RBCC engine and that a nuclear reactor is treated as an energy black box. Preliminary heat transfer calculation shows that the rate of heat transfer to the working fluids is within the limit of turbulent convective heat transfer regimes. The flow passage of realistic ABCC engine must be known for a better prediction of ABCC engine performance. Also, critical heat transfer calculations must be performed for the ejector mode and ramjet mode operations. This is possible only when the details of a reactor configuration are available.

  8. All-optical logic circuits based on the polarization properties of non-degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ashish Ishwar Singh

    2001-10-01

    This thesis investigates a new class of all-optical logic circuits that are based on the polarization properties of non-degenerate Four-Wave Mixing. Such circuits would be used in conjunction with a data modulation format where the information is coded on the states of polarization of the electric field. Schemes to perform multiple triple- product logic functions are discussed and it is shown that higher-level Boolean operations involving several bits can be implemented without resorting to the standard 2-input gates that are based on some form of switching. Instead, an entire hierarchy of more complex Boolean functions can be derived based on the selection rules of multi-photon scattering processes that can form a new classes of primitive building blocks for digital circuits. Possible applications of these circuits could involve some front-end signal processing to be performed all- optically in shared computer back-planes. As a simple illustration of this idea, a circuit performing error correction on a (3,1) Hamming Code is demonstrated. Error-free performance (Bit Error Rate of <10-9) at 2.5 Gbit/s is achieved after single-error correction on the Hamming word with 50 percent errors. The bit-rate is only limited by the bandwidth of available resources. Since Four-Wave Mixing is an ultrafast nonlinearity, these circuits offer the potential of computing at several terabits per second. Furthermore, it is shown that several Boolean functions can be performed in parallel in the same set of devices using different multi-photon scattering processes. The main objective of this thesis is to motivate a new paradigm of thought in digital circuit design. Challenges pertaining to the feasibility of these ideas are discussed.

  9. A Case Study Analysing the Process of Analogy-Based Learning in a Teaching Unit about Simple Electric Circuits

    ERIC Educational Resources Information Center

    Paatz, Roland; Ryder, James; Schwedes, Hannelore; Scott, Philip

    2004-01-01

    The purpose of this case study is to analyse the learning processes of a 16-year-old student as she learns about simple electric circuits in response to an analogy-based teaching sequence. Analogical thinking processes are modelled by a sequence of four steps according to Gentner's structure mapping theory (activate base domain, postulate local…

  10. Investigating the role of model-based reasoning while troubleshooting an electric circuit

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri R.; Van De Bogart, Kevin L.; Stetzer, MacKenzie R.; Lewandowski, H. J.

    2016-06-01

    We explore the overlap of two nationally recognized learning outcomes for physics lab courses, namely, the ability to model experimental systems and the ability to troubleshoot a malfunctioning apparatus. Modeling and troubleshooting are both nonlinear, recursive processes that involve using models to inform revisions to an apparatus. To probe the overlap of modeling and troubleshooting, we collected audiovisual data from think-aloud activities in which eight pairs of students from two institutions attempted to diagnose and repair a malfunctioning electrical circuit. We characterize the cognitive tasks and model-based reasoning that students employed during this activity. In doing so, we demonstrate that troubleshooting engages students in the core scientific practice of modeling.

  11. A correlation based fault detection method for short circuits in battery packs

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Shang, Yunlong; Nguyen, Truong; Mi, Chris

    2017-01-01

    This paper presents a fault detection method for short circuits based on the correlation coefficient of voltage curves. The proposed method utilizes the direct voltage measurements from the battery cells, and does not require any additional hardware or effort in modeling during fault detection. Moreover, the inherent mathematical properties of the correlation coefficient ensure the robustness of this method as the battery pack ages or is imbalanced in real applications. In order to apply this method online, the recursive moving window correlation coefficient calculation is adopted to maintain the detection sensitivity to faults during operation. An additive square wave is designed to prevent false positive detections when the batteries are at rest. The fault isolation can be achieved by identifying the overlapped cell in the correlation coefficients with fault flags. Simulation and experimental results validated the feasibility and demonstrated the advantages of this method.

  12. High open circuit voltages of solar cells based on quantum dot and dye hybrid-sensitization

    SciTech Connect

    Zhao, Yujie; Zhao, Wanyu; Chen, Jingkuo; Li, Huayang; Fu, Wuyou E-mail: fuwy56@163.com; Sun, Guang; Cao, Jianliang; Zhang, Zhanying; Bala, Hari E-mail: fuwy56@163.com

    2014-01-06

    A type of solar cell based on quantum dot (QD) and dye hybrid-sensitized mesoporous TiO{sub 2} film electrode was designed and reported. The electrode was consisted of a TiO{sub 2} nanoparticle (NP) thin film layer sensitized with CdS quantum dot (QD) and an amorphous TiO{sub 2} coated TiO{sub 2} NP thin film layer that sensitized with C106 dye. The amorphous TiO{sub 2} layer was obtained by TiCl{sub 4} post-treatment to improve the properties of solar cells. Research showed that the solar cells fabricated with as-prepared hybrid-sensitized electrode exhibited excellent photovoltaic performances and a fairly high open circuit voltage of 796 mV was achieved.

  13. Low Power Consumption Digital Clock Recovery Circuit Based on Threshold Crossing

    NASA Astrophysics Data System (ADS)

    Perić, Dragana; Perić, Miroslav

    2016-12-01

    In this paper a new structure of digital clock recovery — DCR circuit is presented. The main features of this DCR are: low complexity design, low power consumption and a single system clock operation. Thus, multiple instantiation of this type of DCR on a single chip is not complex. Due to this, such DCR can target application in energy-efficient cognitive radio systems with carrier aggregation. For performance evaluation, we have derived Markov chain based mathematical model for peak-to-peak and root mean square jitter performance analysis. The stability problem of this model, rising from the fact that some phase error states have several orders of magnitude lower probabilities than the others, is solved using mathematical apparatus for symbolic analysis. The mathematical model validity is examined by laboratorial measurements of proposed DCR for 4-PAM signal. The measurement methodology and results are described in details.

  14. Graphene-based tunable non-foster circuit for VHF applications

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Nagarkoti, Deepak Singh; Rajab, Khalid Z.; Hao, Yang

    2016-06-01

    This paper presents a negative impedance converter (NIC) based on graphene field effect transistors (GFETs) for VHF applications. The NIC is designed following Linvill's open circuit stable (OCS) topology. The DC modelling parameters of GFET are extracted from a device measured by Meric et al. [IEEE Electron Devices Meeting, 23.2.1 (2010)] Estimated parasitics are also taken into account. Simulation results from Keysight Advanced Design System (ADS) show good NIC performance up to 200 MHz and the value of negative capacitance is directly proportional to the capacitive load. In addition, it has been shown that by varying the supply voltage the value of negative capacitance can also be tuned. The NIC stability has been tested up to 2 GHz (10 times the maximum operation frequency) using Nyquist stability criterion to ensure there are no oscillation issues.

  15. A Novel Picosecond Pulse Generation Circuit Based on SRD and NLTL.

    PubMed

    Zhou, Jianming; Lu, Qiuyuan; Liu, Fan; Li, Yinqiao

    2016-01-01

    Because of the importance of ultra-wideband (UWB) radar in various applications, short pulse generation in UWB systems has attracted a lot of attention in recent years. In order to shorten the pulse, nonlinear transmission line (NLTL) is imported, which expands the application of step recovery diode (SRD) for pulse generation. Detailed analysis and equations for this SRD and NLTL-based pulse generation are provided and verified by simulation and experimental results. Factors that could cause pulse waveform distortions are also analyzed. The generator circuit presented in this paper generates 130ps and 3.3V pulse, which can be used in UWB radar systems that require sub-nanosecond pulses.

  16. Equivalent-circuit model for slot-effect configuration of an electret-based generator

    NASA Astrophysics Data System (ADS)

    Phu Le, Cuong; Renaud, Michael; Halvorsen, Einar

    2016-11-01

    This paper presents a completely analytical method to build a lumped-model for an electret-based energy harvester. The harvester consists of two patterned electrodes facing movable electret patterns in a slot-effect electrical scheme. A Chebyshev expansion with orthogonal functions to capture singularity effects and Galerkin's method are used to determine fundamental parameters of the equivalent circuit. All important fringing fields in the microscale device are thereby taken into account. For a device example, the calculated parameters of the model agree well with those obtained by finite element modelling. The dynamic behaviour is reproduced by the established model. The advantage of the approach is to allow a fast and full exploration of the design parameters for optimization of the device structure.

  17. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  18. Open access to technology platforms for InP-based photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Ławniczuk, Katarzyna; Augustin, Luc M.; Grote, Norbert; Wale, Michael J.; Smit, Meint K.; Williams, Kevin A.

    2015-04-01

    Open access to generic technology platforms for photonic integrated circuit manufacturing enables low-cost development of application-specific photonic chips for novel or improved products. It brings photonic ICs within reach for many industrial users and research institutes, by moving toward a fabless business model. In the current status, InP-based open access manufacturing services are offered through multi-project wafer runs by Fraunhofer Heinrich Hertz Institut, SMART Photonics, and Oclaro. In this paper, we review state-of-the-art InP photonic integration technology platforms, present examples of complex InP photonic ICs developed in the generic technologies, and give a prospect for further development of these photonic integration platforms.

  19. A Novel Picosecond Pulse Generation Circuit Based on SRD and NLTL

    PubMed Central

    Zhou, Jianming; Lu, Qiuyuan; Liu, Fan; Li, Yinqiao

    2016-01-01

    Because of the importance of ultra-wideband (UWB) radar in various applications, short pulse generation in UWB systems has attracted a lot of attention in recent years. In order to shorten the pulse, nonlinear transmission line (NLTL) is imported, which expands the application of step recovery diode (SRD) for pulse generation. Detailed analysis and equations for this SRD and NLTL-based pulse generation are provided and verified by simulation and experimental results. Factors that could cause pulse waveform distortions are also analyzed. The generator circuit presented in this paper generates 130ps and 3.3V pulse, which can be used in UWB radar systems that require sub-nanosecond pulses. PMID:26919290

  20. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators.

    PubMed

    Tian, Yonghui; Zhao, Yongpeng; Chen, Wenjie; Guo, Anqi; Li, Dezhao; Zhao, Guolin; Liu, Zilong; Xiao, Huifu; Liu, Guipeng; Yang, Jianhong

    2015-10-05

    We report an electro-optic photonic integrated circuit which can perform the exclusive (XOR) logic operation based on two silicon parallel-cascaded microring resonators (MRRs) fabricated on the silicon-on-insulator (SOI) platform. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. Two electrical pulse sequences regarded as two operands of operations are applied to PIN diodes to modulate two MRRs through the free carrier dispersion effect. The final operation result of two operands is output at the Output port in the form of light. The scattering matrix method is employed to establish numerical model of the device, and numerical simulator SG-framework is used to simulate the electrical characteristics of the PIN diodes. XOR operation with the speed of 100Mbps is demonstrated successfully.

  1. Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits.

    PubMed

    Xu, Wangren; Padilla, Willie J; Sonkusale, Sameer

    2012-09-24

    Dielectric and ohmic losses in metamaterials are known to limit their practical use. In this paper, an all-electronic approach for loss compensation in metamaterials is presented. Each unit cell of the meta-material is embedded with a cross-coupled transistor pair based negative differential resistance circuit to cancel these losses. Design, simulation and experimental results for Split Ring Resonator (SRR) metamaterials with and without loss compensation are presented. Results indicate that the quality factor (Q) of the SRR improves by over 400% at 1.6 GHz, showing the effectiveness of the approach. The proposed technique is scalable over a broad frequency range and is limited only by the maximum operating frequency of transistors, which is reaching terahertz in today's semiconductor technologies.

  2. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components.

    PubMed

    Sun, Xishan; Lan, Allan K; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-06-11

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm(3) LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement.

  3. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components

    PubMed Central

    Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-01-01

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761

  4. Genetically encoded optical indicators for the analysis of neuronal circuits.

    PubMed

    Knöpfel, Thomas

    2012-10-01

    In a departure from previous top-down or bottom-up strategies used to understand neuronal circuits, many forward-looking research programs now place the circuit itself at their centre. This has led to an emphasis on the dissection and elucidation of neuronal circuit elements and mechanisms, and on studies that ask how these circuits generate behavioural outputs. This movement towards circuit-centric strategies is progressing rapidly as a result of technological advances that combine genetic manipulation with light-based methods. The core tools of these new approaches are genetically encoded optical indicators and actuators that enable non-destructive interrogation and manipulation of neuronal circuits in behaving animals with cellular-level precision. This Review examines genetically encoded reporters of neuronal function and assesses their value for circuit-oriented neuroscientific investigations.

  5. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    PubMed Central

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-01-01

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW·mm−3·g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670

  6. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    PubMed

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-02-19

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  7. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  8. A biomimetic coupled circuit based microphone array for sound source localization.

    PubMed

    Xu, Huping; Xu, Xiangyuan; Jia, Han; Guan, Luyang; Bao, Ming

    2015-09-01

    An equivalent analog circuit is designed to mimic the coupled ears of the fly Ormia ochracea for sound source localization. This coupled circuit receives two signals with tiny phase difference from a space closed two-microphone array, and produces two signals with obvious intensity difference. The response sensitivity can be adjusted through the coupled circuit parameters. The directional characteristics of the coupled circuit have been demonstrated in the experiment. The miniature microphone array can localize the sound source with low computational burden by using the intensity difference. This system has significant advantages in various applications where the array size is limited.

  9. Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept

    PubMed Central

    Pandya, Killol V.; Kosta, ShivPrasad

    2016-01-01

    Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood –synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits. PMID:27829822

  10. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Sam; Bai, Don; Schmidt, George

    2000-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic scramjet engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. Hydrogen is heated by the reactor and accelerated to produce high-speed ejection velocity. The ejection velocity up 10,000 m/sec is theoretically possible because of high energy density from the reactor and large gas constant of the hydrogen. Oxygen contained in the entrained air reacts with hydrogen and produces propulsive power for ejector mode operation. To provide enough thrust for initial acceleration, relatively large amount of hydrogen must be pumped through the reactor. Amount of oxygen contained in the entrained air may not be sufficient to burn all hydrogen and consequently combustion could occur at the end of exit nozzle. It is assumed that this combustion process is constant-pressure combustion at 1.0 atmospheric pressure and thus not affects the nozzle exit condition.

  11. Permeability retrieval in InP-based waveguide optical device combined with metamaterial.

    PubMed

    Amemiya, Tomohiro; Myoga, Seiji; Shindo, Takahiko; Murai, Eijun; Nishiyama, Nobuhiko; Arai, Shigehisa

    2012-06-15

    An InP-based Mach-Zehnder interferometer combined with a metamaterial layer consisting of a split-ring resonator array was constructed to measure the complex permeability of the metamaterial. At a wavelength of 1.5 μm, the metamaterial showed non-unity relative permeability induced by magnetic interaction with propagating light in the device. This method of measurement would be useful to determine constitutive parameters in such waveguide-based photonic devices, allowing us to design photonic integrated circuits that make use of metamaterials.

  12. Heterostructure-based high-speed/high-frequency electronic circuit applications

    NASA Astrophysics Data System (ADS)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  13. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

    PubMed

    Baeg, Kang-Jun; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge

  14. Non-contact Real-time heart rate measurements based on high speed circuit technology research

    NASA Astrophysics Data System (ADS)

    Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin

    2015-08-01

    In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.

  15. E-Learning System Using Segmentation-Based MR Technique for Learning Circuit Construction

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system using the mixed reality (MR) technique for technical experiments involving the construction of electronic circuits. The proposed system comprises experimenters' mobile computers and a remote analysis system. When constructing circuits, each learner uses a mobile computer to transmit image data from the…

  16. Deep Modeling: Circuit Characterization Using Theory Based Models in a Data Driven Framework

    SciTech Connect

    Bolme, David S; Mikkilineni, Aravind K; Rose, Derek C; Yoginath, Srikanth B; Holleman, Jeremy; Judy, Mohsen

    2017-01-01

    Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilize measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.

  17. A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging.

    PubMed

    Daeichin, Verya; Chen, Chao; Ding, Qing; Wu, Min; Beurskens, Robert; Springeling, Geert; Noothout, Emile; Verweij, Martin D; van Dongen, Koen W A; Bosch, Johan G; van der Steen, Antonius F W; de Jong, Nico; Pertijs, Michiel; van Soest, Gijs

    2016-05-01

    Intravascular photoacoustic (IVPA) imaging can visualize the coronary atherosclerotic plaque composition on the basis of the optical absorption contrast. Most of the photoacoustic (PA) energy of human coronary plaque lipids was found to lie in the frequency band between 2 and 15 MHz requiring a very broadband transducer, especially if a combination with intravascular ultrasound is desired. We have developed a broadband polyvinylidene difluoride (PVDF) transducer (0.6 × 0.6 mm, 52 μm thick) with integrated electronics to match the low capacitance of such a small polyvinylidene difluoride element (<5 pF/mm(2)) with the high capacitive load of the long cable (∼100 pF/m). The new readout circuit provides an output voltage with a sensitivity of about 3.8 μV/Pa at 2.25 MHz. Its response is flat within 10 dB in the range 2 to 15 MHz. The root mean square (rms) output noise level is 259 μV over the entire bandwidth (1-20 MHz), resulting in a minimum detectable pressure of 30 Pa at 2.25 MHz.

  18. High accuracy digital aging monitor based on PLL-VCO circuit

    NASA Astrophysics Data System (ADS)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  19. Highly integrated planar lightwave circuits based on plasmonic and Si nano-waveguides

    NASA Astrophysics Data System (ADS)

    He, Sailing; Han, Zhanghua; Liu, Liu; Dai, Daoxin

    2006-09-01

    Planar lightwave circuits (PLC) based on nanophotonic waveguides are becoming more and more attractive because of their ultrasmall sizes and possibility for realizing large scale monolithic integration with a very high integration density. In this paper we discuss two attractive types of nanophotonic waveguides based on dielectrics or metals. For the dielectric type, a silicon-on-insulator (SOI) strip waveguide is considered, and ultra-compact photonic integrated devices such as polarization-insensitive arrayed waveguide grating (de)multiplexers are obtained. Based on the fact that light can be confined tightly in a single interface between a metal and dielectric, a surface plasmon (SP) waveguide can offer a tight confinement for the light field. The cross-sectional size of an SP waveguide could be pushed down to tens of nanometers, i.e. beyond the diffraction limit. An accurate anaylysis for an SP waveguide formed by a dielectric nano-trench in a metal is presented. A novel subwavelength index-guided multimode plasmonic waveguide is introduced and an ultra-compact MMI power splitter is designed.

  20. Enzyme-based logic gates and circuits-analytical applications and interfacing with electronics.

    PubMed

    Katz, Evgeny; Poghossian, Arshak; Schöning, Michael J

    2017-01-01

    The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Graphical Abstract Various applications and signal-transduction methods are reviewed for enzyme-based logic systems.

  1. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders.

    PubMed

    Wang, Xinjie; Guo, Yuwen; Liu, Jingyang; Qiao, Qi; Liang, Jijun

    2010-12-01

    The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact.

  2. Planar optical integrated circuits based on UV-patternable sol-gel technology

    NASA Astrophysics Data System (ADS)

    Sabattie, Jean-Marc; MacCraith, Brian D.; Mongey, Karen; Charmet, Jerome; O'Dwyer, Kieran; Pez, Mathias M.; Quentel, Francois; Thierry, Dean

    2003-03-01

    Planar lightwave circuits (PLCs) made from photo-patternable sol-gel materials are attracting considerable R&D interest. This is due to the advantages they offer for applications in optical telecommunications and their compatibility with existing silicon technology process equipment. In particular, the ability to produce devices compatible with silica optical fibres using a straightforward, environmentally friendly, photolithographic process is very attractive. The approach is now well-established in the literature and typically involves the incorporation of an acrylate moiety in the sol-gel precursor mixture, thereby providing a photo-polymerisability function. In this work, we report on the fabrication of passive optical components and devices designed for datacomms applications using visible diode lasers or the 1st telecom window. Silica-based sol-gel waveguides have been integrated in an opto-electronic multichip module (OE-MCM) demonstrator for optical interconnect applications. We have fabricated an 8-channel transmitter module for parallel optical interconnects (POI) based on 2 sub-modules: (a) an optical interface sub-assembly based on photo-patterned sol-gel optical waveguides, and (b) an optoelectronic component sub-module comprising an array of VCSELs. We describe here the fabrication, characterization and performance of the optical components and a POI Transmitter chip.

  3. A genetic circuit system based on quorum sensing signaling for directed evolution of quorum-quenching enzymes.

    PubMed

    Kim, Jin-Hyun; Lee, Sang-Chul; Kyeong, Hyun-Ho; Kim, Hak-Sung

    2010-08-16

    Quorum sensing is a cell-cell communication mechanism that is involved in the regulation of biological functions such as luminescence, virulence, and biofilm formation. Quorum-quenching enzymes, which interrupt quorum-sensing signaling through degradation of quorum-sensing molecules, have emerged as a new approach to controlling and preventing bacterial virulence and pathogenesis. In an effort to develop quorum-quenching enzymes with improved catalytic activities, a genetic circuit system based on acylhomoserine-lactone (AHL)-mediated quorum-sensing signaling was constructed. The genetic circuit system was composed of lux-R, lux-I promoter, beta-lactamase, and beta-lactamase inhibitor, and designed to confer antibiotic resistance on host cells expressing an AHL-degrading enzyme, thereby enabling rapid screening of quorum-quenching enzymes. To demonstrate the utility of the genetic circuit system, we attempted the directed evolution of the AHL hydrolase from Bacillus sp. The genetic circuit system was shown to be effective in screening of quorum-quenching enzymes with high catalytic efficiency. From these results it is expected that the genetic circuit system can be widely used for the isolation and directed evolution of quorum-quenching enzymes with greater potential.

  4. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit

    NASA Astrophysics Data System (ADS)

    Aloulou, R.; De Peslouan, P.-O. Lucas; Mnif, H.; Alicalapa, F.; Luk, J. D. Lan Sun; Loulou, M.

    2016-05-01

    Energy Harvesting circuits are developed as an alternative solution to supply energy to autonomous sensor nodes in Wireless Sensor Networks. In this context, this paper presents a micro-power management system for multi energy sources based on a novel design of charge pump circuit to allow the total autonomy of self-powered sensors. This work proposes a low-voltage and high performance charge pump (CP) suitable for implementation in standard complementary metal oxide semiconductor (CMOS) technologies. The CP design was implemented using Cadence Virtuoso with AMS 0.35μm CMOS technology parameters. Its active area is 0.112 mm2. Consistent results were obtained between the measured findings of the chip testing and the simulation results. The circuit can operate with an 800 mV supply and generate a boosted output voltage of 2.835 V with 1 MHz as frequency.

  5. Wireless Charge Based Capacitance Measurement Circuits with On-Chip Spiral Inductor for Radio Frequency Identification Biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Boram; Uno, Shigeyasu; Nakazato, Kazuo

    2012-04-01

    A wireless measuring system of charge based capacitance measurement (CBCM) circuit has been designed and demonstrated for biomedical applications. The radio frequency identification (RFID) chip that includes on-chip spiral inductor tag antenna, and RFID circuit, and CBCM sensor chip are fabricated within standard complementary metal oxide semiconductor (CMOS) process. The capacitance change caused by DNA detection can be converted into the voltage output using capacitance-to-voltage conversion circuit. To confirm the transmission of the capacitance, the poly-capacitor of fixed capacitance and on-chip spiral inductor tag antenna were fabricated using 1.2 µm, 2-metal, 2-poly CMOS technology. As a result of measurement, three different capacitances (34, 141, 564 fF) were detected wirelessly.

  6. Si-nanowire-array-based NOT-logic circuits constructed on plastic substrates using top-down methods.

    PubMed

    Jeon, Youngin; Kang, Jeongmin; Lee, Myeongwon; Moon, Taeho; Kim, Sangsig

    2013-05-01

    Si-nanowire (NW)-array-based NOT-logic circuits were constructed on plastic substrates. The Si-NW arrays were fabricated on a Si wafer through top-down methods, including conventional photolithography and crystallographic wet etching, and transferred onto the plastic substrates. Two field-effect transistors were fabricated on a single Si-NW array composed of five nanowires aligned in parallel and connected in series to form NOT-logic circuits. The excellent flexibility of the fabricated device was confirmed by bending-cycling tests. The voltage-transfer curve of the NOT-logic circuits showed an inverting operation with a logic swing of -92% and voltage gain of -2.5.

  7. Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink

    NASA Astrophysics Data System (ADS)

    Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.

    2017-03-01

    Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.

  8. Turn-on circuits based on standard CMOS technology for active RFID labels

    NASA Astrophysics Data System (ADS)

    Hall, David; Ranasinghe, Damith C.; Jamali, Behnam; Cole, Peter H.

    2005-06-01

    The evolution of RFID Systems has lead to the development of a class hierarchy in which the battery powered labels are a set of higher class labels referred to as active labels. The battery powering active transponders must last for an acceptable time, so the electronics of the label must have very low current consumption in order to prolong the life of the battery. However due to circuit complexity or the desired operating range the electronics may drain the battery more rapidly than desired but use of a turn-on circuit allows the battery to be connected only when communication is needed, thus lengthening the life of the battery. Two solutions available for the development of a turn on circuit use resonance in a label rectification circuit to provide a high sensitivity result. This paper presents the results of experiments conducted to evaluate resonance in a label rectification circuit and the designs of fully integrable turn-on circuits. We have also presented test results showing a successful practical implementation of one of the turn on circuit designs.

  9. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    PubMed

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  10. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits

    PubMed Central

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T.

    2016-01-01

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices. PMID:27145872

  11. AIB-OR: Improving Onion Routing Circuit Construction Using Anonymous Identity-Based Cryptosystems

    PubMed Central

    Wang, Changji; Shi, Dongyuan; Xu, Xilei

    2015-01-01

    The rapid growth of Internet applications has made communication anonymity an increasingly important or even indispensable security requirement. Onion routing has been employed as an infrastructure for anonymous communication over a public network, which provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis. However, existing onion routing protocols usually exhibit poor performance due to repeated encryption operations. In this paper, we first present an improved anonymous multi-receiver identity-based encryption (AMRIBE) scheme, and an improved identity-based one-way anonymous key agreement (IBOWAKE) protocol. We then propose an efficient onion routing protocol named AIB-OR that provides provable security and strong anonymity. Our main approach is to use our improved AMRIBE scheme and improved IBOWAKE protocol in onion routing circuit construction. Compared with other onion routing protocols, AIB-OR provides high efficiency, scalability, strong anonymity and fault tolerance. Performance measurements from a prototype implementation show that our proposed AIB-OR can achieve high bandwidths and low latencies when deployed over the Internet. PMID:25815879

  12. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits

    DOE PAGES

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; ...

    2016-05-05

    Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less

  13. AIB-OR: improving onion routing circuit construction using anonymous identity-based cryptosystems.

    PubMed

    Wang, Changji; Shi, Dongyuan; Xu, Xilei

    2015-01-01

    The rapid growth of Internet applications has made communication anonymity an increasingly important or even indispensable security requirement. Onion routing has been employed as an infrastructure for anonymous communication over a public network, which provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis. However, existing onion routing protocols usually exhibit poor performance due to repeated encryption operations. In this paper, we first present an improved anonymous multi-receiver identity-based encryption (AMRIBE) scheme, and an improved identity-based one-way anonymous key agreement (IBOWAKE) protocol. We then propose an efficient onion routing protocol named AIB-OR that provides provable security and strong anonymity. Our main approach is to use our improved AMRIBE scheme and improved IBOWAKE protocol in onion routing circuit construction. Compared with other onion routing protocols, AIB-OR provides high efficiency, scalability, strong anonymity and fault tolerance. Performance measurements from a prototype implementation show that our proposed AIB-OR can achieve high bandwidths and low latencies when deployed over the Internet.

  14. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits

    SciTech Connect

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T.

    2016-05-05

    Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  15. Effects of circuit-based exercise programs on the body composition of elderly obese women

    PubMed Central

    Bocalini, Danilo Sales; Lima, Lucas S; de Andrade, Socrates; Madureira, Angelo; Rica, Roberta L; dos Santos, Rodrigo Nolasco; Serra, Andrey Jorge; Silva, Jose Antonio; Rodriguez, Daniel; Figueira, Aylton; Pontes, Francisco Luciano

    2012-01-01

    Aim The aim of this study was to investigate the impact of circuit-based exercise on the body composition in obese older women by focusing on physical exercise and body weight (BW) gain control in older people. Methods Seventy older women (>60 years old) voluntarily took part in the study. Participants were randomized into six different groups according to body mass index (BMI): appropriate weight (AW) control (AWC) and trained (AWT) groups, overweight (OW) control (OWC) and trained (OWT) groups, and obesity (O) control (OC) and trained (OT) groups. The exercise program consisted of 50 minutes of exercise three times per week for 12 weeks. The exercises were alternated between upper and lower body using rest between sets for 40 seconds with intensity controlled by heart rate (70% of work). The contraction time established was 5 seconds to eccentric and concentric muscular action phase. The following anthropometric parameters were evaluated: height (m), body weight (BW, kg), body fat (BF, %), fat mass (FM, kg), lean mass (LM, kg), and BMI (kg/m2). Results The values (mean ± standard deviation [SD]) of relative changes to BW (−8.0% ± 0.8%), BF (−21.4% ± 2.1%), LM (3.0% ± 0.3%), and FM (−31.2% ± 3.0%) to the OT group were higher (P < 0.05) than in the AWT (BW: −2.0% ± 1.1%; BF: −4.6% ± 1.8%; FM: −7.0% ± 2.8%; LM: 0.2% ± 1.1%) and OWT (BW: −4.5% ± 1.0%; BF: −11.0% ± 2.2%; FM: −16.1% ± 3.2%; LM: −0.2% ± 1.0%) groups; additionally, no differences were found for C groups. While reduction (P < 0.03) in BMI according to absolute values was observed for all trained groups (AWT: 22 ± 1 versus 21 ± 1; OWT: 27 ± 1 versus 25 ± 1, OT: 34 ± 1 versus 30 ± 1) after training, no differences were found for C groups. Conclusion In summary, circuit-based exercise is an effective method for promoting reduction in anthropometrics parameters in obese older women. PMID:23271901

  16. Remote reset circuit

    DOEpatents

    Gritzo, Russell E.

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  17. Plasmonic and electronic device-based integrated circuits and their characteristics

    NASA Astrophysics Data System (ADS)

    Sakai, H.; Okahisa, S.; Nakayama, Y.; Nakayama, K.; Fukuhara, M.; Kimura, Y.; Ishii, Y.; Fukuda, M.

    2016-11-01

    This paper presents a plasmonic circuit that has been monolithically integrated with electronic devices on a silicon substrate and then discusses the concept behind this circuit. To form the proposed circuit, two plasmonic waveguides and a detector are integrated with metal-oxide-semiconductor field-effect transistors (MOSFETs) on the substrate. In the circuit, intensity signals or coherent plasmonic signals are generated by coherent light at an operating wavelength at which silicon is transparent, and these signals propagate along the waveguides before they are converted into electrical signals by the detector. These electrical intensity and coherent signals then drive the MOSFETs during both DC and AC operation. The measured performances of the devices indicate that surface plasmon polaritons propagate on the metal surface at the speed of light and drive the electronic devices without any absorption in the silicon.

  18. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process.

    PubMed

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-06-15

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu(2)O and beta-PbO(2) in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11h, 20 mA cm(-2), respectively. The recovery percentages of copper and lead under optimum SCWO+EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  19. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate.

    PubMed

    Jung, Suk Won; Shin, Jong Yoon; Pi, Kilwha; Goo, Yong Sook; Cho, Dong-Il Dan

    2016-12-01

    This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW)-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1) mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.

  20. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor.

    PubMed

    Song, Junfeng; Luo, Xianshu; Kee, Jack Sheng; Han, Kyungsup; Li, Chao; Park, Mi Kyoung; Tu, Xiaoguang; Zhang, Huijuan; Fang, Qing; Jia, Lianxi; Yoon, Yong-Jin; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-07-29

    We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source. The effective refractive index change of the sensing microring induced by the sensing target is traced by scanning the supplied electrical power applied onto the tracing microring, and the detected electrical signal is read out by the Ge photodetector. For bulk refractive index sensing, we demonstrate using such OEIC sensing system with a sensitivity of ~15 mW/RIU and a detection limit of 3.9 μ-RIU, while for surface sensing of biotin-streptavidin, we obtain a surface mass sensitivity of S(m) = ~192 µW/ng·mm(-2) and a surface detection limit of 0.3 pg/mm(2). The presented OEIC sensing system is suitable for point-of-care applications.

  1. 50-Gb/s NRZ and RZ Modulator Driver ICs Based on Functional Distributed Circuits

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuyuki; Mamada, Masayuki

    We have developed two modulator driver ICs that are based on the functional distributed circuit (FDC) topology for over 40-Gb/s optical transmission systems using InP HBT technology. The FDC topology enables both a wide bandwidth amplifier and high-speed digital functions. The none-return-to-zero (NRZ) driver IC, which is integrated with a D-type flip-flop, exhibits 2.6-Vp-p (differential output: 5.2Vp-p) output-voltage swings with a high signal quality at 43 and 50Gb/s. The return-to-zero (RZ) driver IC, which is integrated with a NRZ to RZ converter, produces 2.4-Vp-p (differential output: 4.8Vp-p) output-voltage swings and excellent eye openings at 43 and 50Gb/s. Furthermore, we conducted electro-optical modulation experiments using the developed modulator driver ICs and a dual drive LiNbO3 Mach-Zehnder modulator. We were able to obtain NRZ and RZ clear optical eye openings with low jitters and sufficient extinction ratios of more than 12dB, at 43 and 50Gb/s. These results indicate that the FDC has the potential to achieve a large output voltage and create high-speed functional ICs for over-40-Gb/s transmission systems.

  2. Portable Optical Epidural Needle-A CMOS-Based System Solution and Its Circuit Design

    PubMed Central

    Gong, Cihun-Siyong Alex; Lin, Shih-Pin; Mandell, M. Susan; Tsou, Mei-Yung; Chang, Yin; Ting, Chien-Kun

    2014-01-01

    Epidural anesthesia is a common anesthesia method yet up to 10% of procedures fail to provide adequate analgesia. This is usually due to misinterpreting the tactile information derived from the advancing needle through the complex tissue planes. Incorrect placement also can cause dural puncture and neural injury. We developed an optic system capable of reliably identifying tissue planes surrounding the epidural space. However the new technology was too large and cumbersome for practical clinical use. We present a miniaturized version of our optic system using chip technology (first generation CMOS-based system) for logic functions. The new system was connected to an alarm that was triggered once the optic properties of the epidural were identified. The aims of this study were to test our miniaturized system in a porcine model and describe the technology to build this new clinical tool. Our system was tested in a porcine model and identified the epidural space in the lumbar, low and high thoracic regions of the spine. The new technology identified the epidural space in all but 1 of 46 attempts. Experimental results from our fabricated integrated circuit and animal study show the new tool has future clinical potential. PMID:25162150

  3. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator.

    PubMed

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.

  4. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits

    NASA Astrophysics Data System (ADS)

    Gundlach, D. J.; Royer, J. E.; Park, S. K.; Subramanian, S.; Jurchescu, O. D.; Hamadani, B. H.; Moad, A. J.; Kline, R. J.; Teague, L. C.; Kirillov, O.; Richter, C. A.; Kushmerick, J. G.; Richter, L. J.; Parkin, S. R.; Jackson, T. N.; Anthony, J. E.

    2008-03-01

    The use of organic materials presents a tremendous opportunity to significantly impact the functionality and pervasiveness of large-area electronics. Commercialization of this technology requires reduction in manufacturing costs by exploiting inexpensive low-temperature deposition and patterning techniques, which typically lead to lower device performance. We report a low-cost approach to control the microstructure of solution-cast acene-based organic thin films through modification of interfacial chemistry. Chemically and selectively tailoring the source/drain contact interface is a novel route to initiating the crystallization of soluble organic semiconductors, leading to the growth on opposing contacts of crystalline films that extend into the transistor channel. This selective crystallization enables us to fabricate high-performance organic thin-film transistors and circuits, and to deterministically study the influence of the microstructure on the device characteristics. By connecting device fabrication to molecular design, we demonstrate that rapid film processing under ambient room conditions and high performance are not mutually exclusive.

  5. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate

    PubMed Central

    Jung, Suk Won; Shin, Jong Yoon; Pi, Kilwha; Goo, Yong Sook; Cho, Dong-il “Dan”

    2016-01-01

    This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW)-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110×110 μm and a resolution of 32×32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1) mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity. PMID:27916963

  6. Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit.

    PubMed

    Chen, Changming; Niu, Xiaoyan; Han, Chao; Shi, Zuosen; Wang, Xinbin; Sun, Xiaoqiang; Wang, Fei; Cui, Zhanchen; Zhang, Daming

    2014-05-05

    A transparent reconfigurable optical add-drop multiplexer (ROADM) module composed of AWG-based wavelength-channel-selectors monolithically integrated with Mach-Zehnder interferometer (MZI) thermo-optic (TO) waveguide switch arrays and arrayed waveguide true-time-delay (TTD) lines is designed and fabricated using polymer photonic lightwave circuit technology. Negative-type fluorinated photoresist and grafting modified organic-inorganic hybrid materials were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. The delay time basic increments are measured from 140 ps to 20 ps. Proposed novel ROADM is flexible and scalable for the dense wavelength division multiplexing network.

  7. Understanding virulence mechanisms in M. tuberculosis infection via a circuit-based simulation framework.

    SciTech Connect

    May, Elebeoba Eni; Oprea, Tudor I.; Joo, Jaewook; Misra, Milind; Leitao, Andrei; Faulon, Jean-Loup Michel

    2008-08-01

    Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), is a growing international health crisis. Mtb is able to persist in host tissues in a non-replicating persistent (NRP) or latent state. This presents a challenge in the treatment of TB. Latent TB can re-activate in 10% of individuals with normal immune systems, higher for those with compromised immune systems. A quantitative understanding of latency-associated virulence mechanisms may help researchers develop more effective methods to battle the spread and reduce TB associated fatalities. Leveraging BioXyce's ability to simulate whole-cell and multi-cellular systems we are developing a circuit-based framework to investigate the impact of pathogenicity-associated pathways on the latency/reactivation phase of tuberculosis infection. We discuss efforts to simulate metabolic pathways that potentially impact the ability of Mtb to persist within host immune cells. We demonstrate how simulation studies can provide insight regarding the efficacy of potential anti-TB agents on biological networks critical to Mtb pathogenicity using a systems chemical biology approach

  8. Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip.

    PubMed

    Li, Xuelian; Zang, Jianfeng; Liu, Yingshuai; Lu, Zhisong; Li, Qing; Li, Chang Ming

    2013-04-10

    An integrated printed circuit board (PCB) based array sensing chip was developed to simultaneously detect lactate and glucose in mouse serum. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences for high specificity. Low detection limits of 0.6 μM and 5 μM were achieved for lactate and glucose, respectively. This work could be extended to inexpensive array sensing chips with high sensitivity, good specificity and high reproducibility for various sensor applications.

  9. Monolithical integration of polymer-based microfluidic structures on application-specific integrated circuits

    NASA Astrophysics Data System (ADS)

    Chemnitz, Steffen; Schafer, Heiko; Schumacher, Stephanie; Koziy, Volodymyr; Fischer, Alexander; Meixner, Alfred J.; Ehrhardt, Dietmar; Bohm, Markus

    2003-04-01

    In this paper, a concept for a monolithically integrated chemical lab on microchip is presented. It contains an ASIC (Application Specific Integrated Circuit), an interface to the polymer based microfluidic layer and a Pyrex glass cap. The top metal layer of the ASIC is etched off and replaced by a double layer metallization, more suitable to microfluidic and electrophoresis systems. The metallization consists of an approximately 50 nm gold layer and a 10 nm chromium layer, acting as adhesion promoter. A necessary prerequisite is a planarized ASIC topography. SU-8 is used to serve as microfluidic structure because of its excellent aspect ratio. This polymer layer contains reservoirs, channels, mixers and electrokinetic micro pumps. The typical channel cross section is 10μm"10μm. First experimental results on a microfluidic pump, consisting of pairs of interdigitated electrodes on the bottom of the channel and without any moving parts show a flow of up to 50μm per second for low AC-voltages in the range of 5 V for aqueous fluids. The microfluidic system is irreversibly sealed with a 150μm thick Pyrex glass plate bonded to the SU-8-layer, supported by oxygen plasma. Due to capillary forces and surfaces properties of the walls the system is self-priming. The technologies for the fabrication of the microfluidic system and the preparation of the interface between the lab layer and the ASIC are presented.

  10. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  11. Combining ChIP-chip and Expression Profiling to Model the MoCRZ1 Mediated Circuit for Ca2+/Calcineurin Signaling in the Rice Blast Fungus

    PubMed Central

    Kim, Soonok; Hu, Jinnan; Oh, Yeonyee; Park, Jongsun; Choi, Jinhee; Lee, Yong-Hwan; Dean, Ralph A.; Mitchell, Thomas K.

    2010-01-01

    Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip), coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen. PMID:20502632

  12. ADDER CIRCUIT

    DOEpatents

    Jacobsohn, D.H.; Merrill, L.C.

    1959-01-20

    An improved parallel addition unit is described which is especially adapted for use in electronic digital computers and characterized by propagation of the carry signal through each of a plurality of denominationally ordered stages within a minimum time interval. In its broadest aspects, the invention incorporates a fast multistage parallel digital adder including a plurality of adder circuits, carry-propagation circuit means in all but the most significant digit stage, means for conditioning each carry-propagation circuit during the time period in which information is placed into the adder circuits, and means coupling carry-generation portions of thc adder circuit to the carry propagating means.

  13. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation.

    PubMed

    Williams, Leanne M

    2017-01-01

    Complex emotional, cognitive and self-reflective functions rely on the activation and connectivity of large-scale neural circuits. These circuits offer a relevant scale of focus for conceptualizing a taxonomy for depression and anxiety based on specific profiles (or biotypes) of neural circuit dysfunction. Here, the theoretical review first outlines the current consensus as to what constitutes the organization of large-scale circuits in the human brain identified using parcellation and meta-analysis. The focus is on neural circuits implicated in resting reflection (default mode), detection of "salience," affective processing ("threat" and "reward"), "attention," and "cognitive control." Next, the current evidence regarding which type of dysfunctions in these circuits characterize depression and anxiety disorders is reviewed, with an emphasis on published meta-analyses and reviews of circuit dysfunctions that have been identified in at least two well-powered case:control studies. Grounded in the review of these topics, a conceptual framework is proposed for considering neural circuit-defined "biotypes." In this framework, biotypes are defined by profiles of extent of dysfunction on each large-scale circuit. The clinical implications of a biotype approach for guiding classification and treatment of depression and anxiety is considered. Future research directions will develop the validity and clinical utility of a neural circuit biotype model that spans diagnostic categories and helps to translate neuroscience into clinical practice in the real world.

  14. Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector

    NASA Astrophysics Data System (ADS)

    Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho

    2017-04-01

    There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.

  15. Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector.

    PubMed

    Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Ho Jung, Jin

    2017-04-07

    There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a [Formula: see text] array of [Formula: see text] mm(2) SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of [Formula: see text] ps FWHM and an energy resolution of 17.1[Formula: see text] with a pair of [Formula: see text] mm(3) LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a [Formula: see text] array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.

  16. Design infrastructure for Rapid Single Flux Quantum circuits

    NASA Astrophysics Data System (ADS)

    Toepfer, Hannes; Ortlepp, Thomas

    2009-11-01

    Cryoelectronic integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology are promising candidates for realizing systems exhibiting very high performance in combination with very low-power consumption. Like other superconductive logic circuits, they are characterized by a high switching speed. Their unique feature consists in the particular representation of binary information by means of short transient voltage pulses. The development of RSFQ circuits and systems requires a comprehensive design approach, supported by appropriate tools. Within the recent years, a dedicated design infrastructure has been developed in Europe in close association with a foundry for digital RSFQ integrated circuits. As a result, RSFQ technology has matured to such a level that engineering efforts enable the development of integrated circuits. In the contribution, the basic features of the RSFQ circuit design are addressed within the context of technical and infrastructural issues of implementation from a European perspective.

  17. An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.

    PubMed

    Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S

    2016-06-01

    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.

  18. Aggrecan-based extracellular matrix is an integral part of the human basal ganglia circuit.

    PubMed

    Brückner, G; Morawski, M; Arendt, T

    2008-01-24

    The extracellular matrix is known to be involved in neuronal communication and the regulation of plastic changes, and also considered to protect neurons and synapses against damage. The goal of this study was to investigate how major extracellular matrix components (aggrecan, link protein, hyaluronan) constitute the pathways of the nigral system in the human basal ganglia circuit affected by neurodegeneration in Parkinson's disease. Here we show that aggrecan- and link protein-related components form clear regional distribution patterns, whereas hyaluronan is widely distributed in gray and white matter. Two predominant phenotypes of the aggrecan-based matrix can be discriminated: (1) perineuronal nets (PNs) and (2) axonal coats (ACs) encapsulating preterminal fibers and synaptic boutons. Clearly contoured PNs are associated with GABAergic projection neurons in the external and internal division of the globus pallidus, the lateral and reticular part of the substantia nigra, as well as subpopulations of striatal and thalamic inhibitory interneurons. Dopaminergic nigral neurons are devoid of PNs but are contacted to a different extent by matrix-coated boutons forming subnucleus-specific patterns. A very dense network of ACs is characteristic especially of the posterior lateral cell groups of the compact substantia nigra (nigrosome 1). In the subthalamic nucleus and the lateral thalamic nuclei numerous AC-associated axons were attached to principal neurons devoid of PNs. We conclude from the region-specific patterns that the aggrecan-based extracellular matrix is adapted to the fast processing of sensorimotor activities which are the therapeutic target of surgery and deep brain stimulation in the treatment of advanced stages of Parkinson's disease.

  19. Compact and Athermal DQPSK Demodulator with Silica-Based Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Nasu, Yusuke; Sakamaki, Yohei; Hattori, Kuninori; Kamei, Shin; Hashimoto, Toshikazu; Saida, Takashi; Takahashi, Hiroshi; Inoue, Yasuyuki

    We present a full description of a polarization-independent athermal differential quadrature phase shift keying (DQPSK) demodulator that employs silica-based planar lightwave circuit (PLC) technology. Silica-based PLC DQPSK demodulator has good characteristics including low polarization dependence, mass producibility, etc. However delay line interferometer (DLI) of demodulator had the large temperature dependence of its optical characteristics, so it required large power consumption to stabilize the chip temperature by the thermo-electric cooler (TEC). We previously made a quick report about an athermal DLI to reduce a power consumption by removing the TEC. In this paper, we focus on the details of the design and the fabrication method we used to achieve the athermal characteristics, and we describe the thermal stability of the signal demodulation and the reliability of our demodulator. We described two athermalization methods; the athermalization of the transmission spectrum and the athermalization of the polarization property. These methods were successfully demonstrated with keeping a high extinction ratio and a small footprint by introducing a novel interwoven DLI configuration. This configuration can also limit the degradation of the polarization dependent phase shift (PDf) to less than 1/10 that with the conventional configuration when the phase shifters on the waveguide are driven. We used our demodulator and examined its demodulation performance for a 43Gbit/s DQPSK signal. We also verified its long-term reliability and thermal stability against the rapid temperature change. As a result, we confirmed that our athermal demodulator performed sufficiently well for use in DQPSK systems.

  20. Superconducting-semiconducting nanowire hybrid microwave circuits

    NASA Astrophysics Data System (ADS)

    de Lange, G.; van Heck, B.; Bruno, A.; van Woerkom, D.; Geresdi, A.; Plissard, S. R.; Bakkers, E. P. A. M.; Akhmerov, A. R.; Dicarlo, L.

    2015-03-01

    Hybrid superconducting-semiconducting circuits offer a versatile platform for studying quantum effects in mesoscopic solid-state systems. We report the realization of hybrid artificial atoms based on Indium-Arsenide nanowire Josephson elements in a circuit quantum electrodynamics architecture. Transmon-like single-junction devices have gate-tunable transition frequencies. Split-junction devices behave as transmons near zero applied flux and as flux qubits near half flux quantum, wherein states with oppositely flowing persistent current can be driven by microwaves. This flux-qubit like behaviour results from non-sinusoidal current-phase relations in the nanowire Josephson elements. These hybrid microwave circuits are made entirely of magnetic-field compatible materials, offering new opportunities for hybrid experiments combining microwave circuits with polarized spin ensembles and Majorana bound states. We acknowledge funding from Microsoft Research and the Dutch Organization for Fundamental Research on Matter (FOM).

  1. SPOCK: A SPICE based circuit code for modeling pulsed power machines

    SciTech Connect

    Ingermanson, R.; Parks, D.

    1996-12-31

    SPICE is an industry standard electrical circuit simulation code developed by the University of California at Berkeley over the last twenty years. The authors have developed a number of new SPICE devices of interest to the pulsed power community: plasma opening switches, plasma radiation sources, bremsstrahlung diodes, magnetically insulated transmission lines, explosively driven flux compressors. These new devices are integrated into SPICE using S-Cubed`s MIRIAD technology to create a user-friendly circuit code that runs on Unix workstations or under Windows NT or Windows 95. The new circuit code is called SPOCK--``S-Cubed Power Optimizing Circuit Kit.`` SPOCK allows the user to easily run optimization studies by setting up runs in which any circuit parameters can be systematically varied. Results can be plotted as 1-D line plots, 2-D contour plots, or 3-D ``bedsheet`` plots. The authors demonstrate SPOCK`s capabilities on a color laptop computer, performing realtime analysis of typical configurations of such machines as HAWK and ACE4.

  2. A readout integrated circuit based on DBI-CTIA and cyclic ADC for MEMS-array-based focal plane

    NASA Astrophysics Data System (ADS)

    Miao, Liu; Dong, Wu; Zheyao, Wang

    2016-11-01

    A readout integrated circuit (ROIC) for a MEMS (microelectromechanical system)-array-based focal plane (MAFP) intended for imaging applications is presented. The ROIC incorporates current sources for diode detectors, scanners, timing sequence controllers, differential buffered injection-capacitive trans-impedance amplifier (DBI-CTIA) and 10-bit cyclic ADCs, and is integrated with MAFP using 3-D integration technology. A small-signal equivalent model is built to include thermal detectors into circuit simulations. The biasing current is optimized in terms of signal-to-noise ratio and power consumption. Layout design is tailored to fulfill the requirements of 3-D integration and to adapt to the size of MAFP elements, with not all but only the 2 bottom metal layers to complete nearly all the interconnections in DBI-CTIA and ADC in a 40 μm wide column. Experimental chips are designed and fabricated in a 0.35 μm CMOS mixed signal process, and verified in a code density test of which the results indicate a (0.29/-0.31) LSB differential nonlinearity (DNL) and a (0.61/-0.45) LSB integral nonlinearity (INL). Spectrum analysis shows that the effective number of bits (ENOB) is 9.09. The ROIC consumes 248 mW of power at most if not to cut off quiescent current paths when not needed. Project supported by by National Natural Science Foundation of China (No. 61271130), the Beijing Municipal Science and Tech Project (No. D13110100290000), the Tsinghua University Initiative Scientific Research Program (No. 20131089225), and the Shenzhen Science and Technology Development Fund (No. CXZZ20130322170740736).

  3. Low-cost TO-CAN package combined with flexible and hard printed circuit boards for 25-Gb/s optical subassembly modules

    NASA Astrophysics Data System (ADS)

    Jou, Jau-Ji; Shih, Tien-Tsorng; Wu, Cheng-Ying; Su, Zhe-Xian

    2017-02-01

    A low-cost transistor outline-CAN (TO-CAN) package, which is combined with flexible printed circuit board (PCB) and hard PCB, has been developed for a 25-Gb/s optical subassembly module. On the flexible PCB, the transmission line structure used top ground microstrip line, and the wider transmission bandwidth can be obtained. Using ground pads and ground notch technologies, the impedance of connection between flexible PCB and hard PCB was designed to match with the impedances of signal traces of the flexible and hard PCBs. In the TO-CAN package, a TO-46 header was used, and the header needs to closely connect with the flexible PCB. The bandwidth of TO-46 package combined with flexible and hard PCBs can achieve above 23 GHz. The clear 25-Gb/s transmission eye diagram was also measured, and the rise time, fall time, and Q-factor of the eye diagram are 13.78, 13.56 ps, and 8.76, respectively. The TO-46 package combined with flexible and hard PCBs has been verified to be suitable for application in 25-Gb/s optical subassembly modules.

  4. Quaternary Galois field adder based all-optical multivalued logic circuits.

    PubMed

    Chattopadhyay, Tanay; Taraphdar, Chinmoy; Roy, Jitendra Nath

    2009-08-01

    Galois field (GF) algebraic expressions have been found to be promising choices for reversible and quantum implementation of multivalued logic. For the first time to our knowledge, we developed GF(4) adder multivalued (four valued) logic circuits in an all-optical domain. The principle and possibilities of an all-optical GF(4) adder circuit are described. The theoretical model is presented and verified through numerical simulation. The quaternary inverter, successor, clockwise cycle, and counterclockwise cycle gates are proposed with the help of the all-optical GF(4) adder circuit. In this scheme different quaternary logical states are represented by different polarized light. A terahertz optical asymmetric demultiplexer interferometric switch plays an important role in this scheme.

  5. Optimization of the Switch Mechanism in a Circuit Breaker Using MBD Based Simulation

    PubMed Central

    Jang, Jin-Seok; Yoon, Chang-Gyu; Ryu, Chi-Young; Kim, Hyun-Woo; Bae, Byung-Tae; Yoo, Wan-Suk

    2015-01-01

    A circuit breaker is widely used to protect electric power system from fault currents or system errors; in particular, the opening mechanism in a circuit breaker is important to protect current overflow in the electric system. In this paper, multibody dynamic model of a circuit breaker including switch mechanism was developed including the electromagnetic actuator system. Since the opening mechanism operates sequentially, optimization of the switch mechanism was carried out to improve the current breaking time. In the optimization process, design parameters were selected from length and shape of each latch, which changes pivot points of bearings to shorten the breaking time. To validate optimization results, computational results were compared to physical tests with a high speed camera. Opening time of the optimized mechanism was decreased by 2.3 ms, which was proved by experiments. Switch mechanism design process can be improved including contact-latch system by using this process. PMID:25918740

  6. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    PubMed

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-03-29

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  7. Selective Manipulation of Neural Circuits.

    PubMed

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  8. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  9. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    NASA Astrophysics Data System (ADS)

    Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele

    2012-03-01

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg-1. This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25-65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the positive

  10. Translating non-trivial algorithms from the circuit model to the measurement-based quantum computing model

    NASA Astrophysics Data System (ADS)

    Smith, A. Matthew; Alsing, P. M.; Lott, G. E.; Fanto, M. L.

    2015-11-01

    We provide a set of prescriptions for implementing a circuit model algorithm as measurement-based quantum computing algorithm via a large discrete cluster state constructed sequentially, from qubits implemented as single photons. We describe a large optical discrete graph state capable of searching logical 4 and 8 element lists as an example. To do so we have developed several prescriptions based on analytic evaluation of the evolution of discrete cluster states and graph state equations. We describe the cluster state as a sequence of repeated entanglement and measurement steps using a small number of single photons for each step. These prescriptions can be generalized to implement any logical circuit model operation with appropriate single-photon measurements and feed forward error corrections. Such a cluster state is not guaranteed to be optimal (i.e. minimum number of photons, measurements, run time).

  11. Translating non-trivial algorithms from the circuit model to the measurement-based quantum computing model

    NASA Astrophysics Data System (ADS)

    Smith, A. Matthew; Alsing, P. M.; Lott, G. E.; Fanto, M. L.

    2015-06-01

    We provide a set of prescriptions for implementing a circuit model algorithm as measurement-based quantum computing algorithm via a large discrete cluster state constructed sequentially, from qubits implemented as single photons. We describe a large optical discrete graph state capable of searching logical 4 and 8 element lists as an example. To do so we have developed several prescriptions based on analytic evaluation of the evolution of discrete cluster states and graph state equations. We describe the cluster state as a sequence of repeated entanglement and measurement steps using a small number of single photons for each step. These prescriptions can be generalized to implement any logical circuit model operation with appropriate single-photon measurements and feed forward error corrections. Such a cluster state is not guaranteed to be optimal (i.e. minimum number of photons, measurements, run time).

  12. Relay Protection and Automation Systems Based on Programmable Logic Integrated Circuits

    SciTech Connect

    Lashin, A. V. Kozyrev, A. V.

    2015-09-15

    One of the most promising forms of developing the apparatus part of relay protection and automation devices is considered. The advantages of choosing programmable logic integrated circuits to obtain adaptive technological algorithms in power system protection and control systems are pointed out. The technical difficulties in the problems which today stand in the way of using relay protection and automation systems are indicated and a new technology for solving these problems is presented. Particular attention is devoted to the possibility of reconfiguring the logic of these devices, using programmable logic integrated circuits.

  13. Combining Multiple Pairwise Structure-based Alignments

    SciTech Connect

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a new tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.

  14. Difference-Equation/Flow-Graph Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  15. A neuronal circuit for colour vision based on rod-cone opponency.

    PubMed

    Joesch, Maximilian; Meister, Markus

    2016-04-14

    In bright light, cone-photoreceptors are active and colour vision derives from a comparison of signals in cones with different visual pigments. This comparison begins in the retina, where certain retinal ganglion cells have 'colour-opponent' visual responses-excited by light of one colour and suppressed by another colour. In dim light, rod-photoreceptors are active, but colour vision is impossible because they all use the same visual pigment. Instead, the rod signals are thought to splice into retinal circuits at various points, in synergy with the cone signals. Here we report a new circuit for colour vision that challenges these expectations. A genetically identified type of mouse retinal ganglion cell called JAMB (J-RGC), was found to have colour-opponent responses, OFF to ultraviolet (UV) light and ON to green light. Although the mouse retina contains a green-sensitive cone, the ON response instead originates in rods. Rods and cones both contribute to the response over several decades of light intensity. Remarkably, the rod signal in this circuit is antagonistic to that from cones. For rodents, this UV-green channel may play a role in social communication, as suggested by spectral measurements from the environment. In the human retina, all of the components for this circuit exist as well, and its function can explain certain experiences of colour in dim lights, such as a 'blue shift' in twilight. The discovery of this genetically defined pathway will enable new targeted studies of colour processing in the brain.

  16. A modified circuit topology for inductive pulsed power supply based on HTSPPTs

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Zhang, Cunshan; Wang, Teng; Gao, Mingliang; Li, Zhenmei; Zou, Guofeng

    2016-10-01

    High temperature superconducting pulsed power transformer (HTSPPT) provides an efficient method for inductive energy storage and current multiplication. The primary inductor of HTSPPT used for energy storage is made of high temperature superconducting coils, and the secondary inductor used for current pulse generation is made of normal conductor coils. In the initial circuit, the secondary inductor generates current pulse by switching out the coupled primary superconducting inductor. However, during the switching period, the leakage flux caused by imperfect coupling and the sudden change in primary current induce a voltage across the opening switch which exceeds the affordability of modern solid-state switches. In previous studies, a half-cycle oscillatory discharge circuit is proposed to mitigate these problems by using a capacitor to recapture the energy in the leakage flux and to slow down the turnoff of current in the primary. However, there are still some problems should be settled. For example, the output pulse cannot be adjusted, the residual energy cannot be recovered and the capacitor branch circuit may have an impact on the charging process. In the paper, a modified discharge circuit topology is introduced to solve these problems. A multi-module system comprising of several HTSPPTs charging in series connection and discharging in parallel is also designed and simulated. This system can be used to power an electromagnetic emission device.

  17. Same or different? A neural circuit mechanism of similarity-based pattern match decision making.

    PubMed

    Engel, Tatiana A; Wang, Xiao-Jing

    2011-05-11

    The ability to judge whether sensory stimuli match an internally represented pattern is central to many brain functions. To elucidate the underlying mechanism, we developed a neural circuit model for match/nonmatch decision making. At the core of this model is a "comparison circuit" consisting of two distinct neural populations: match enhancement cells show higher firing response for a match than a nonmatch to the target pattern, and match suppression cells exhibit the opposite trend. We propose that these two neural pools emerge from inhibition-dominated recurrent dynamics and heterogeneous top-down excitation from a working memory circuit. A downstream system learns, through plastic synapses, to extract the necessary information to make match/nonmatch decisions. The model accounts for key physiological observations from behaving monkeys in delayed match-to-sample experiments, including tasks that require more than simple feature match (e.g., when BB in ABBA sequence must be ignored). A testable prediction is that magnitudes of match enhancement and suppression neural signals are parametrically tuned to the similarity between compared patterns. Furthermore, the same neural signals from the comparison circuit can be used differently in the decision process for different stimulus statistics or tasks; reward-dependent synaptic plasticity enables decision neurons to flexibly adjust the readout scheme to task demands, whereby the most informative neural signals have the highest impact on the decision.

  18. An Integer Programming-Based Generalized Vehicle Routing Approach for Printed Circuit Board Assembly Optimization

    ERIC Educational Resources Information Center

    Seth, Anupam

    2009-01-01

    Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…

  19. An internal ALD-based high voltage divider and signal circuit for MCP-based photodetectors

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Elagin, Andrey; Elam, Jeffrey W.; Frisch, Henry J.; Genat, Jean-Francois; Gregar, Joseph S.; Mane, Anil U.; Minot, Michael J.; Northrop, Richard; Obaid, Razib; Oberla, Eric; Vostrikov, Alexander; Wetstein, Matthew

    2015-04-01

    We describe a pin-less design for the high voltage (HV) resistive divider of the all-glass LAPPDTM 8 in.-square thin photodetector module. The divider, which distributes high voltage applied to the photocathode to the two micro-channel plates (MCPs) that constitute the amplification stage, is comprised of the two MCPs and three glass mechanical spacers, each of which is coated with a resistive layer using atomic layer deposition (ALD). The three glass grid spacers and the two MCPs form a continuous resistive path between cathode and anode, with the voltages across the MCPs and the spacers determined by the resistance of each. High voltage is applied on an external tab on the top glass window that connects to the photocathode through the metal seal. The DC ground is supplied by microstrips on the bottom glass plate that form the high-bandwidth anode. The microstrips exit the package through the glass-frit seal of the anode base-plate and the package sidewall. The divider is thus completely internal, with no HV pins penetrating the low-profile flat glass package. Measurements of the performance of the divider are presented for the 8 in.-square MCP and spacer package in a custom test fixture and for an assembled externally pumped LAPPDTM prototype with an aluminum photocathode.

  20. An Internal ALD-Based High Voltage Divider and Signal Circuit for MCP-based Photodetectors

    SciTech Connect

    Adams, Bernhard W.; Elagin, Andrey; Elam, Jeffrey W.; Frisch, Henry J.; Genat, Jean-Francois; Gregar, Joseph S.; Mane, Anil U.; Minot, Michael J.; Northrup, Richard; Obaid, Razib; Oberla, Eric; Alexander, Vostrikov; Wetstein, Matthew

    2015-04-21

    We describe a pin-less design for the high voltage (HV) resistive divider of the all-glass LAPPD (TM) 8 in,square thin photodetector module. The divider, which distributes high voltage applied to the photocathode to the two micro-channel plates (MCPs) that constitute the amplification stage, is comprised of the two MCPs and three glass mechanical spacers, each of which is coated with a resistive layer using atomic layer deposition (ALD). The three glass grid spacers and the two MCPs form a continuous resistive path between cathode and anode, with the voltages across the MCPs and the spacers determined by the resistance of each. High voltage is applied on an external tab on the top glass window that connects to the photocathode through the metal seal. The DC ground is supplied by microstrips on the bottom glass plate that form the high-bandwidth anode. The microstrips exit the package through the glass-frit seal of the anode base-plate and the package sidewall. The divider is thus completely internal, with no HV pins penetrating the low-profile flat glass package. Measurements of the performance of the divider are presented for the 8 in.-square MCP and spacer package in a custom test fixture and for an assembled externally pumped LAPPD (TM) prototype with an aluminum photocathode. (C) 2015 Elsevier B.V. All rights reserved.

  1. Hyaluronan Based Heparin Free Coated Open and Closed Extracorporeal Circuits for High Risk Coronary Revascularization

    PubMed Central

    Gunaydin, Serdar; Ucar, Halil Ibrahim; Serter, Tanzer; McCusker, Kevin; Ozcelik, Gokhan; Salman, Nevriye; Yorgancioglu, Ali Cem

    2010-01-01

    Abstract: This prospective randomized study compares the inflammatory response and fibrinolytic activation of fully coated/uncoated and open/closed extracorporeal circuits (ECC) in high risk patients. Over a 2-month period, 48 patients with EuroSCOREs 6 or greater undergoing coronary revascularization were pro spectively randomized to one of the four perfusion protocols: Group 1: Closed and totally hyaluronan based heparin free coated (Vision HFO-GBS-HF™, Gish Biomedical, Rancho Santa Margarita, CA) ECC with a soft-shell coated venous reservoir (SVR11S2-HFC™, Gish Biomedical) and a hard-shell cardiotomy (CAPVRF44, Gish Biomedical) (n = 12); Group 2: Closed and totally uncoated identical ECC with soft-shell uncoated venous reservoir and a hard-shell cardiotomy (n = 12); Group 3: Open, totally hyaluronan based heparin free coated ECC (n = 12); and Group 4: Control-open, uncoated ECC (n = 12). Blood samples were collected at T1: Baseline; T2: 15 minutes after cardiopulmonary bypass (CPB) initiation; T3: before cessation of CPB; T4: 15 minutes after protamine reversal, and T5: in the intensive care unit. Serum IL-6 levels were significantly lower at T2 in all study groups, at T3 for coated groups, and T4 for closed+coated group (p < .05 versus control). Creatine kinase M-band (MB) levels in coronary sinus blood demonstrated well preserved myocardium after CPB in both coated groups versus Control (p < .05). Neutrophil CD11b/CD18 levels were significantly lower for all study groups versus control at T2, for both coated groups at T3 and only for closed+coated group at T4 (p < .05). Postoperative hemorrhage (mL) was 510 ± 40 in closed+coated and 536 ± 40 in open+coated groups (control: 784 ± 48, p ≤ .05). No significant differences in thrombin-antithrombin complex and free plasma hemoglobin were observed. Desorbed protein amount on ECC (mg/dL) was 1.7 ± .01 in closed+coated, 2.01 ± .01 in open+coated, and 3.3 ± .015 in control groups (p ≤ .05). Use of a

  2. Hyaluronan based heparin free coated open and closed extracorporeal circuits for high risk coronary revascularization.

    PubMed

    Gunaydin, Serdar; Ucar, Halil Ibrahim; Serter, Tanzer; McCusker, Kevin; Ozcelik, Gokhan; Salman, Nevriye; Yorgancioglu, Ali Cem

    2010-12-01

    This prospective randomized study compares the inflammatory response and fibrinolytic activation of fully coated/uncoated and open/closed extracorporeal circuits (ECC) in high risk patients. Over a 2-month period, 48 patients with EuroSCOREs 6 or greater undergoing coronary revascularization were prospectively randomized to one of the four perfusion protocols: Group 1: Closed and totally hyaluronan based heparin free coated (Vision HFO-GBS-HF, Gish Biomedical, Rancho Santa Margarita, CA) ECC with a soft-shell coated venous reservoir (SVR11S2-HFC, Gish Biomedical) and a hard-shell cardiotomy (CAPVRF44, Gish Biomedical) (n = 12); Group 2: Closed and totally uncoated identical ECC with soft-shell uncoated venous reservoir and a hard-shell cardiotomy (n = 12); Group 3: Open, totally hyaluronan based heparin free coated ECC (n = 12); and Group 4: Control-open, uncoated ECC (n = 12). Blood samples were collected at T1: Baseline; T2: 15 minutes after cardiopulmonary bypass (CPB) initiation; T3: before cessation of CPB; T4: 15 minutes after protamine reversal, and T5: in the intensive care unit. Serum IL-6 levels were significantly lower at T2 in all study groups, at T3 for coated groups, and T4 for closed+coated group (p < .05 versus control). Creatine kinase M-band (MB) levels in coronary sinus blood demonstrated well preserved myocardium after CPB in both coated groups versus Control (p < .05). Neutrophil CD11b/CD18 levels were significantly lower for all study groups versus control at T2, for both coated groups at T3 and only for closed + coated group at T4 (p < .05). Postoperative hemorrhage (mL) was 510 +/- 40 in closed + coated and 536 +/- 40 in open + coated groups (control: 784 +/- 48, p < .05). No significant differences in thrombin-antithrombin complex and free plasma hemoglobin were observed. Desorbed protein amount on ECC (mg/dL) was 1.7 +/- .01 in closed+coated, 2.01 +/- .01 in open+coated, and 3.3 +/- .015 in control groups (p < or = .05). Use of a closed

  3. SEMICONDUCTOR INTEGRATED CIRCUITS A novel 2.2 Gbps LVDS driver circuit design based on 0.35 μm CMOS

    NASA Astrophysics Data System (ADS)

    Hua, Cai; Ping, Li

    2010-10-01

    This paper presents a novel high-speed low voltage differential signaling (LVDS) driver design for point-to-point communication. The switching noise of the driver was greatly suppressed by adding a charge/discharge circuit and the operating frequency of the circuit was also increased. A simple and effective common-mode feedback circuit was added to stabilize the output common-mode voltage. The proposed driver was implemented in a standard 0.35 μm CMOS process with a die area of 0.15 mm2. The test result shows that the proposed driver works well at 2.2 Gbps with power consumption of only 23 mW and 21.35 ps peak-to-peak jitter under a 1.8 V power supply.

  4. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    PubMed Central

    Kawahito, Shoji; Seo, Min-Woong

    2016-01-01

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972

  5. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors.

    PubMed

    Kawahito, Shoji; Seo, Min-Woong

    2016-11-06

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e(-)rms) when compared with the CMS gain of two (2.4 e(-)rms), or 16 (1.1 e(-)rms).

  6. Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model.

    PubMed

    Li, Jin; Xiong, Bing; Sun, Changzheng; Miao, Di; Luo, Yi

    2015-08-24

    A back-illuminated mesa-structure InGaAs/InP modified uni-traveling-carrier photodiode (MUTC-PD) is fabricated and its frequency response is investigated. A bandwidth of 40 GHz and a saturation photocurrent up to 33 mA are demonstrated. A photocurrent-dependent equivalent circuit model is proposed to analyze the frequency response of the high power MUTC-PDs. The influences of the space-charge screening, self-induced electric field and over-shoot effects are discussed in detail based on the model. Fitted curves obtained from the simple equivalent circuit model are found to be in good agreement with the data measured under different bias voltages and photocurrents.

  7. Low-Power Circuit Techniques for Low-Voltage Pipelined ADCs Based on Switched-Opamp Architecture

    NASA Astrophysics Data System (ADS)

    Ou, Hsin-Hung; Chang, Soon-Jyh; Liu, Bin-Da

    This paper proposes useful circuit structures for achieving a low-voltage/low-power pipelined ADC based on switched-opamp architecture. First, a novel unity-feedback-factor sample-and-hold which manipulates the features of switched-opamp technique is presented. Second, opamp-sharing is merged into switched-opamp structure with a proposed dual-output opamp configuration. A 0.8-V, 9-bit, 10-Msample/s pipelined ADC is designed to verify the proposed circuit. Simulation results using a 0.18-μm CMOS 1P6M process demonstrate the figure-of-merit of this pipelined ADC is only 0.71pJ/step.

  8. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits.

    PubMed

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-09-03

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics.

  9. Tunneling study based on the circuit theory in d-wave superconductors

    NASA Astrophysics Data System (ADS)

    Shigeta, Iduru; Asano, Yasuhiro; Tanaka, Yukio; Ichikawa, Fusao; Kashiwaya, Satoshi

    2006-01-01

    We propose a new interpretation about zero-bias conductance peak (ZBCP) behaviours in high-Tc superconductors. The ZBCP has been frequently observed in many tunneling spectroscopic experiments for unconventional superconductors. The ZBCP mechanism was well understood by the Andreev bound states theory for unconventional superconductors. On the other hand, the circuit theory has been recently developed from conventional superconductors to unconventional superconductors. The ZBCP often appears in this theory as well. Therefore, we have analyzed experimental spectra with the ZBCP of Bi2Sr2CaCu2O8+δ planar tunnel junctions by using both theories for d-wave paring symmetry. The experimental spectra are consistent with those of recent studies on the circuit theory for d-wave superconductors.

  10. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits

    PubMed Central

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-01-01

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics. PMID:26333352

  11. An expert-based model for selecting the most suitable substrate material type for antenna circuits

    NASA Astrophysics Data System (ADS)

    AL-Oqla, Faris M.; Omar, Amjad A.

    2015-06-01

    Quality and properties of microwave circuits depend on all the circuit components. One of these components is the substrate. The process of substrate material selection is a decision-making problem that involves multicriteria with objectives that are diverse and conflicting. The aim of this work was to select the most suitable substrate material type to be used in antennas in the microwave frequency range that gives best performance and reliability of the substrate. For this purpose, a model was built to ease the decision-making that includes hierarchical alternatives and criteria. The substrate material type options considered were limited to fiberglass-reinforced epoxy laminates (FR4 εr = 4.8), aluminium (III) oxide (alumina εr = 9.6), gallium arsenide III-V compound (GaAs εr = 12.8) and PTFE composites reinforced with glass microfibers (Duroid εr = 2.2-2.3). To assist in building the model and making decisions, the analytical hierarchy process (AHP) was used. The decision-making process revealed that alumina substrate material type was the most suitable choice for the antennas in the microwave frequency range that yields best performance and reliability. In addition, both the size of the circuit and the loss tangent of the substrates were found to be the most contributing subfactors in the antenna circuit specifications criterion. Experimental assessments were conducted utilising The Expert Choice™ software. The judgments were tested and found to be precise, consistent and justifiable, and the marginal inconsistency values were found to be very narrow. A sensitivity analysis was also presented to demonstrate the confidence in the drawn conclusions.

  12. Entanglement genesis by ancilla-based parity measurement in 2D circuit QED.

    PubMed

    Saira, O-P; Groen, J P; Cramer, J; Meretska, M; de Lange, G; DiCarlo, L

    2014-02-21

    We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measurement demonstrate that the meter is intrinsically quantum nondemolition. Separate interaction and measurement steps allow the execution of subsequent data-qubit operations in parallel with ancilla measurement, offering time savings over continuous schemes.

  13. Arrayed Waveguide Gratings and Their Application Using Super-High-Δ Silica-Based Planar Lightwave Circuit Technology

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Uetsuka, Hisato

    This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5%-Δ silica-based waveguides is presented. As an application of super-high-Δ AWGs to integrated devices, a flat-passband multi/demultiplexer consisting of an AWG and cascaded MZIs is presented.

  14. Anticipating, complete and lag synchronizations in RC phase-shift network based coupled Chua's circuits without delay

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Senthilkumar, D. V.; Raja Mohamed, I.; Murali, K.; Lakshmanan, M.; Kurths, J.

    2012-06-01

    We construct a new RC phase shift network based Chua's circuit, which exhibits a period-doubling bifurcation route to chaos. Using coupled versions of such a phase-shift network based Chua's oscillators, we describe a new method for achieving complete synchronization (CS), approximate lag synchronization (LS), and approximate anticipating synchronization (AS) without delay or parameter mismatch. Employing the Pecora and Carroll approach, chaos synchronization is achieved in coupled chaotic oscillators, where the drive system variables control the response system. As a result, AS or LS or CS is demonstrated without using a variable delay line both experimentally and numerically.

  15. Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal Binary Decision Diagram Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Tamura, Takahiro; Tamai, Isao; Kasai, Seiya; Sato, Taketomo; Hasegawa, Hideki; Hashizume, Tamotsu

    2006-04-01

    The basic feasibility of constructing hexagonal binary decision diagram (BDD) quantum circuits on GaAs-based selectively grown (SG) nanowires was investigated from viewpoints of electrical connections through embedded nanowires and electrical uniformity of devices formed on nanowires. For this, <\\bar{1}10>- and < 510>-oriented nanowires and hexagonal network structures combining these nanowires were formed on (001) GaAs substrates by selective molecular beam epitaxy (MBE) growth. The width and vertical position of the nanowires could be controlled by growth conditions for both <\\bar{1}10>- and < 510>-directions. By current-voltage (I-V) measurements, good electrical connection was confirmed at the node point where vertical alignment of embedded GaAs nanowire pieces was found to be important. SG quantum wire (QWR) switches formed on the nanowires showed good gate control over a wide temperature range with clear conductance quantization at low temperatures. Good device uniformities were obtained on the test chips, providing a good prospect for future integration. BDD node devices using SG QWR switches showed clear path switching characteristics. Estimated power-delay product values were very small, confirming the feasibility of ultra low-power operation of future circuits.

  16. SEM-contour shape analysis based on circuit structure for advanced systematic defect inspection

    NASA Astrophysics Data System (ADS)

    Toyoda, Yasutaka; Shindo, Hiroyuki; Hojo, Yutaka; Fuchimoto, Daisuke

    2014-04-01

    We have developed a practicable measurement technique that can help to achieve reliable inspections for systematic defects in advanced semiconductor devices. Systematic defects occurring in the design and mask processes are a dominant component of integrated circuit yield loss in nano-scaled technologies. Therefore, it is essential to ensure systematic defects are detected at an early stage of wafer fabrication. In the past, printed pattern shapes have been evaluated by human eyes or by taking manual critical dimension (CD) measurements. However, these operations are sometimes unstable and inaccurate. Last year, we proposed a new technique for taking measurements by using a SEM contour [1]. This technique enables a highly precise quantification of various complex 2D shaped patterns by comparing a contour extracted from a SEM image using a CD measurement algorithm and an ideal pattern. We improved this technique to enable the carrying out of inspections suitable for every pattern structure required for minimizing the process margin. This technique quantifies a pattern shape of a target-layer pattern using information on a multi-layered circuit structure. This enabled it to confirm the existence of a critical defect in a circuit connecting upper/lower-layers. This paper describes the improved technique and the evaluation results obtained in evaluating it in detail.

  17. Promoters Architecture-Based Mechanism for Noise-Induced Oscillations in a Single-Gene Circuit.

    PubMed

    Guisoni, N; Monteoliva, D; Diambra, L

    2016-01-01

    It is well known that single-gene circuits with negative feedback loop can lead to oscillatory gene expression when they operate with time delay. In order to generate these oscillations many processes can contribute to properly timing such delay. Here we show that the time delay coming from the transitions between internal states of the cis-regulatory system (CRS) can drive sustained oscillations in an auto-repressive single-gene circuit operating in a small volume like a cell. We found that the cooperative binding of repressor molecules is not mandatory for a oscillatory behavior if there are enough binding sites in the CRS. These oscillations depend on an adequate balance between the CRS kinetic, and the synthesis/degradation rates of repressor molecules. This finding suggest that the multi-site CRS architecture can play a key role for oscillatory behavior of gene expression. Finally, our results can also help to synthetic biologists on the design of the promoters architecture for new genetic oscillatory circuits.

  18. Evaluation of a MEMS based theft detection circuit for RFID labels

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Damith C.; Cole, Peter H.

    2005-06-01

    In the proliferation of RFID technology anti-theft labels are continuing to evolve. In the functional hierarchy of RFID labels the battery-powered labels are a set of higher class labels referred to as active labels. Often these labels are employed for the tagging of expensive goods, with aim of both tracking and preventing the theft of the item. The battery powering such active labels must have very low internal and external current drain in order to prolong the life of the battery while being in a state of functionality to signal a theft of the labelled item. However due to circuit complexity or the desired operating range the electronics may drain the battery more rapidly than desired and the label may not last the shelf life of the product. The theft detection mechanism presented in this paper conserves power and thus prolongs the battery life of an active anti-theft label. A solution available for the development of such a theft detection circuit uses electroacoustic energy conversion using a MEMS device on a label IC to provide a high sensitivity result. This paper presents the results of an analysis conducted to evaluate the performance and the capabilities of such a theft detection circuit.

  19. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering

    NASA Astrophysics Data System (ADS)

    Dell'Erba, Giorgio; Luzio, Alessandro; Natali, Dario; Kim, Juhwan; Khim, Dongyoon; Kim, Dong-Yu; Noh, Yong-Young; Caironi, Mario

    2014-04-01

    Ambipolar semiconducting polymers, characterized by both high electron (μe) and hole (μh) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μh = 0.29 cm2/V s and μe = 0.001 cm2/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μe = 0.12 cm2/V s and μh = 8 × 10-4 cm2/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.

  20. Promoters Architecture-Based Mechanism for Noise-Induced Oscillations in a Single-Gene Circuit

    PubMed Central

    Guisoni, N.; Monteoliva, D.; Diambra, L.

    2016-01-01

    It is well known that single-gene circuits with negative feedback loop can lead to oscillatory gene expression when they operate with time delay. In order to generate these oscillations many processes can contribute to properly timing such delay. Here we show that the time delay coming from the transitions between internal states of the cis-regulatory system (CRS) can drive sustained oscillations in an auto-repressive single-gene circuit operating in a small volume like a cell. We found that the cooperative binding of repressor molecules is not mandatory for a oscillatory behavior if there are enough binding sites in the CRS. These oscillations depend on an adequate balance between the CRS kinetic, and the synthesis/degradation rates of repressor molecules. This finding suggest that the multi-site CRS architecture can play a key role for oscillatory behavior of gene expression. Finally, our results can also help to synthetic biologists on the design of the promoters architecture for new genetic oscillatory circuits. PMID:26958852

  1. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits.

    PubMed

    Lebar, Tina; Jerala, Roman

    2016-10-21

    Transcriptional activator-like effector (TALE)- and CRISPR/Cas9-based designable recognition domains represent a technological breakthrough not only for genome editing but also for building designed genetic circuits. Both platforms are able to target rarely occurring DNA segments, even within complex genomes. TALE and dCas9 domains, genetically fused to transcriptional regulatory domains, can be used for the construction of engineered logic circuits. Here we benchmarked the performance of the two platforms, targeting the same DNA sequences, to compare their advantages for the construction of designed circuits in mammalian cells. Optimal targeting strands for repression and activation of dCas9-based designed transcription factors were identified; both platforms exhibited good orthogonality and were used to construct functionally complete NOR gates. Although the CRISPR/dCas9 system is clearly easier to construct, TALE-based activators were significantly stronger, and the TALE-based platform performed better, especially for the construction of layered circuits.

  2. A novel approach to predict the pin load distribution of multiple bolt-jointed composite laminate based on the circuit model

    NASA Astrophysics Data System (ADS)

    Yang, Xiankun; Chen, Haoyuan; Cheng, Linan; Zheng, Xitao

    2011-11-01

    The circuit model was applied to predict the pin load distribution of composite multiple bolt-joint structure. The load, flexibility and deformation of the mechanics model were equivalent to the current, resistance and voltage of the circuit model, respectively. Based on the above assumption, it could be found that the Hooke's law and the deformation compatibility equation in the origin mechanics model transformed into the Ohm's law and the voltage balance equation in the new circuit model. This approach translated the complex model of composite multiple bolt-jointed into a simple circuit model which consisted of some series circuits and parallel circuits. The analysis of the new circuit model had formed n-1 independence voltage balance equations and a current balance equation, thus, the current and load of each bolt could be calculated. In the new model, power sources which were added as required in some branch circuits could also simulate the clearance or interference in the origin model. Compared with the result of the multiple bolt-joints composite laminate test, the new approach could make an excellent performance to estimate the load distribution.

  3. A novel approach to predict the pin load distribution of multiple bolt-jointed composite laminate based on the circuit model

    NASA Astrophysics Data System (ADS)

    Yang, Xiankun; Chen, Haoyuan; Cheng, Linan; Zheng, Xitao

    2012-04-01

    The circuit model was applied to predict the pin load distribution of composite multiple bolt-joint structure. The load, flexibility and deformation of the mechanics model were equivalent to the current, resistance and voltage of the circuit model, respectively. Based on the above assumption, it could be found that the Hooke's law and the deformation compatibility equation in the origin mechanics model transformed into the Ohm's law and the voltage balance equation in the new circuit model. This approach translated the complex model of composite multiple bolt-jointed into a simple circuit model which consisted of some series circuits and parallel circuits. The analysis of the new circuit model had formed n-1 independence voltage balance equations and a current balance equation, thus, the current and load of each bolt could be calculated. In the new model, power sources which were added as required in some branch circuits could also simulate the clearance or interference in the origin model. Compared with the result of the multiple bolt-joints composite laminate test, the new approach could make an excellent performance to estimate the load distribution.

  4. Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis.

    PubMed

    Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng

    2017-03-01

    A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity.

  5. MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-01-20

    An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses

  6. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  7. Customized analog circuit design for fiber-based optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Bonnema, Garret T.; Gossage, Kirk W.; Wade, Norman H.; Medford, June; Barton, Jennifer K.

    2006-01-01

    Optical coherence microscopy (OCM) is an interferometric method for acquiring high-resolution, depth-resolved, en face images. In this article we demonstrate a fiber-based OCM system with analog fringe generation and signal demodulation. A high power operational amplifier drives a mirrored piezoelectric stack mounted in the reference arm of the interferometer causing a displacement equal to 0.42 times the light source center wavelength. The drive signal is synchronized with the demodulation frequency of two analog lock-in amplifiers which extract the first and second harmonics of the interferometric component of the signal. Four outputs (X and Y components of first and second harmonics) are acquired with a data-acquisition board and combined to eliminate the slow phase drift in the interferometer. A sample image of carrot tap root is presented. High dynamic range images are obtained at acquisition speeds up to 40000pixels/s.

  8. TRIPPING CIRCUIT

    DOEpatents

    Lees, G.W.; McCormick, E.D.

    1962-05-22

    A tripping circuit employing a magnetic amplifier for tripping a reactor in response to power level, period, or instrument failure is described. A reference winding and signal winding are wound in opposite directions on the core. Current from an ion chamber passes through both windings. If the current increases at too fast a rate, a shunt circuit bypasses one or the windings and the amplifier output reverses polarity. (AEC)

  9. Energy-efficient STDP-based learning circuits with memristor synapses

    NASA Astrophysics Data System (ADS)

    Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.

    2014-05-01

    It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.

  10. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering

    SciTech Connect

    Dell'Erba, Giorgio; Natali, Dario; Luzio, Alessandro; Caironi, Mario E-mail: yynoh@dongguk.edu; Noh, Yong-Young E-mail: yynoh@dongguk.edu

    2014-04-14

    Ambipolar semiconducting polymers, characterized by both high electron (μ{sub e}) and hole (μ{sub h}) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μ{sub h} = 0.29 cm{sup 2}/V s and μ{sub e} = 0.001 cm{sup 2}/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μ{sub e} = 0.12 cm{sup 2}/V s and μ{sub h} = 8 × 10{sup −4} cm{sup 2}/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.

  11. Polymer planar lightwave circuit based hybrid-integrated coherent receiver for advanced modulation signals

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Han, Yang; Liang, Zhongcheng; Chen, Yongjin

    2012-11-01

    Applying coherent detection technique to advanced modulation formats makes it possible to electronically compensate the signal impairments. A key issue for a successful deployment of coherent detection technique is the availability of cost-efficient and compact integrated receivers, which are composed of an optical 90° hybrid mixer and four photodiodes (PDs). In this work, three different types of optical hybrids are fabricated with polymer planar lightwave circuit (PLC), and hybridly integrated with four vertical backside illuminated III-V PDs. Their performances, such as the insertion loss, the transmission imbalance, the polarization dependence and the phase deviation of 90° hybrid will be discussed.

  12. Soft Anisotropic Conductors as Electric Vias for Ga-Based Liquid Metal Circuits.

    PubMed

    Lu, Tong; Wissman, James; Ruthika; Majidi, Carmel

    2015-12-09

    We introduce a method for sealing liquid metal (LM) circuits with soft anisotropic conductors that prevent leaking, while simultaneously allowing for electrical contact with skin and surface mounted electronics. These films are composed of polydimethylsiloxane (PDMS) embedded with vertically aligned columns of ferromagnetic Ag-Ni microparticles. The microparticles are magnetically aligned and support electrical conductivity only through the thickness (z-axis) of the elastomer film. Measurements on 10-40% (by wt) composites show moderate volumetric resistivity (as low as ρ = 0.03 Ω/m) through the thickness and no conductivity between adjacent traces. Functionality is demonstrated with several illustrative applications related to tactile sensing and electronics hardware integration.

  13. NEW APPROACHES: Investigating power, work and effective values in an AC resistive circuit through a microcomputer-based laboratory

    NASA Astrophysics Data System (ADS)

    Trumper, Ricardo; Gelbman, Moshe

    1997-11-01

    Microcomputer-based laboratory (MBL) tools have been developed which interface with a great variety of computers. Students use these tools to collect physical data in real time which can later be manipulated and analysed. This new investigative method together with a high standard of precision enables students to investigate many principles of physics that have not previously been feasible. In this article we describe some examples of experiments designed for high-school students with the help of the MBL Explorer. We mainly analyse power, work and effective (RMS) values in an AC resistive circuit.

  14. A High Efficiency, Miniaturized Ka Band Traveling Wave Tube Based on a Novel Finned Ladder RF Circuit Design

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Wilson, J. D.; Vaden, K. R.; Force, D. A.; Freeman, J. C.; Lesny, G. G.; Kory, C. L.; Chevalier, C. T.; Ebihara, B.; Dayton, J. A.; Williams, W. D. (Technical Monitor)

    2001-01-01

    Space communications architectures are being planned to meet the high rate data distribution requirements of future NASA Enterprise missions. These will require the use of traveling wave tube amplifiers (TWTAs) to provide the high frequency, RF (radio frequency) power and efficiency needed for many of the communications links. A program addressing these requirements is currently underway at NASA Glenn Research Center (GRC) for the development of a high efficiency, 20 watt, 32 GHz TWT of reduced size and weight that is based on a novel high gain n circuit design, termed the 'finned ladder'.

  15. Addressable-Matrix Integrated-Circuit Test Structure

    NASA Technical Reports Server (NTRS)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  16. Biomolecular Network-Based Synergistic Drug Combination Discovery

    PubMed Central

    Li, Xiangyi; Qin, Guangrong; Yang, Qingmin

    2016-01-01

    Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing. PMID:27891522

  17. The modelling of carbon-based supercapacitors: Distributions of time constants and Pascal Equivalent Circuits

    NASA Astrophysics Data System (ADS)

    Fletcher, Stephen; Kirkpatrick, Iain; Dring, Roderick; Puttock, Robert; Thring, Rob; Howroyd, Simon

    2017-03-01

    Supercapacitors are an emerging technology with applications in pulse power, motive power, and energy storage. However, their carbon electrodes show a variety of non-ideal behaviours that have so far eluded explanation. These include Voltage Decay after charging, Voltage Rebound after discharging, and Dispersed Kinetics at long times. In the present work, we establish that a vertical ladder network of RC components can reproduce all these puzzling phenomena. Both software and hardware realizations of the network are described. In general, porous carbon electrodes contain random distributions of resistance R and capacitance C, with a wider spread of log R values than log C values. To understand what this implies, a simplified model is developed in which log R is treated as a Gaussian random variable while log C is treated as a constant. From this model, a new family of equivalent circuits is developed in which the continuous distribution of log R values is replaced by a discrete set of log R values drawn from a geometric series. We call these Pascal Equivalent Circuits. Their behaviour is shown to resemble closely that of real supercapacitors. The results confirm that distributions of RC time constants dominate the behaviour of real supercapacitors.

  18. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    PubMed Central

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  19. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors.

    PubMed

    Graham, Anthony H D; Robbins, Jon; Bowen, Chris R; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  20. Circuit elements at optical frequencies: A synthesis of first principles electronic structure and circuit theories

    NASA Astrophysics Data System (ADS)

    Tang, C.; Ramprasad, R.

    2006-03-01

    We present a new first principles based method to determine the equivalent circuit representations of nanostructured physical systems at optical frequencies. This method involves the determination of the frequency dependent effective permittivity of two constructs: an ordered composite system consisting of physical nano-elements using density functional theory, and an ordered arrangement of impedances using transmission line theory. Matching the calculated effective permittivity functions of these two constructs has enabled a mapping of the physical nano-system to its equivalent circuit. Specifically, we will show that silicon nanowires and carbon nanotubes can be represented as a series combination of inductance, capacitance and resistance. Once this mapping has been reasonably accomplished for a variety of physical systems, the nano-elements can be combined suitably to result in equivalent circuit topologies appropriate for optical and nanoelectronic devices, including left-handed (or negative refractive index) materials.

  1. InP-based photonic integrated circuits for optical performance surveillance, signal conditioning, and bandwidth management in DWDM transmission systems

    NASA Astrophysics Data System (ADS)

    Tolstikhin, Valery I.; Wu, Fang; Logvin, Yury; Densmore, Adam; Pimenov, Kirill; Grabtchak, Serge

    2004-11-01

    This paper reports the design of InP-based monolithic photonic integrated circuits for performance surveillance and bandwidth management in DWDM transmission systems. It is based on a building block approach, which allows a large variety of optical components to be built from a few monolithically integrable elements, by using only one-step epitaxial growth and standard semiconductor fabrication technologies. These include: (i) polarization-compensated echelle diffractive grating (de)multiplexer, along with the elements of passive waveguide circuitry for coupling the light to and directing it through the InP-based photonic chip, and (ii) single-mode vertically integrated waveguide active devices with detecting, attenuating and amplifying features, inserted in the (in)output channels of the planar (de)multiplexer. The paper presents the design and characterization examples of these elements and discusses the related integrated components for controlling / manipulating the DWDM optical signals on a per frequency basis.

  2. Synchronization of coupled single-electron circuits based on nanoparticles and tunneling junctions

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2009-04-01

    We explore theoretically the synchronization properties of a device composed of coupled single-electron circuits whose building blocks are nanoparticles interconnected with tunneling junctions. Elementary nanoscillators can be achieved by a single-electron tunneling cell where the relaxation oscillation is induced by the tunneling. We develop a model to describe the synchronization of the nanoscillators and present sample calculations to demonstrate that the idea is feasible and could readily find applications. Instead of considering a particular system, we analyze the general properties of the device making use of an ideal model that emphasizes the essential characteristics of the concept. We define an order parameter for the system as a whole and demonstrate phase synchronization for sufficiently high values of the coupling resistance.

  3. Spinal locomotor circuits develop using hierarchical rules based on motorneuron position and identity

    PubMed Central

    Hinckley, Christopher A.; Alaynick, William A.; Gallarda, Benjamin W.; Hayashi, Marito; Hilde, Kathryn L.; Driscoll, Shawn P.; Dekker, Joseph D.; Tucker, Haley O.; Sharpee, Tatyana O.; Pfaff, Samuel L.

    2015-01-01

    Summary The coordination of multi-muscle movements originates in the circuitry that regulates the firing patterns of spinal motorneurons. Sensory neurons rely on the musculotopic organization of motorneurons to establish orderly connections, prompting us to examine whether the intraspinal circuitry that coordinates motor activity likewise uses cell position as an internal wiring reference. We generated a motorneuron-specific GCaMP6f mouse line and employed two-photon imaging to monitor the activity of lumbar motorneurons. We show that the central pattern generator neural network coordinately drives rhythmic columnar-specific motorneuron bursts at distinct phases of the locomotor cycle. Using multiple genetic strategies to perturb the subtype identity and orderly position of motorneurons, we found that neurons retained their rhythmic activity - but cell position was decoupled from the normal phasing pattern underlying flexion and extension. These findings suggest a hierarchical basis of motor circuit formation that relies on increasingly stringent matching of neuronal identity and position. PMID:26335645

  4. Note: Printed circuit board based electrically triggered compact rail gap switch.

    PubMed

    Saxena, A K; Kaushik, T C; Goswami, M P; Gupta, Satish C

    2010-05-01

    An electrically triggered rail gap switch has been designed over a commercially available copper clad fiberglass sheet commonly used in making printed circuit boards for applications requiring compact design and direct integration to parallel plate transmission lines. Switch performance has been investigated in terms of its inductance, jitter, and gap closing time. With an electrode separation of 9.0 mm, it has been found to have an inductance of 6 nH, gap closing time of 5 ns, and jitter of about 4-10 ns measured at 95% of self-breakdown voltage. An application of this switch has been demonstrated as an electrically exploding foil accelerator developed over the same board and velocities up to 1.6 km/s have been achieved on Kapton flyers with diameter of 3.0 mm and thickness of 125 microm using a compact 1 microF capacitor bank.

  5. Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction

    NASA Astrophysics Data System (ADS)

    Hofer, Patrick P.; Perarnau-Llobet, Martí; Brask, Jonatan Bohr; Silva, Ralph; Huber, Marcus; Brunner, Nicolas

    2016-12-01

    An implementation of a small quantum absorption refrigerator in a circuit QED architecture is proposed. The setup consists of three harmonic oscillators coupled to a Josephson junction. The refrigerator is autonomous in the sense that it does not require any external control for cooling, but only thermal contact between the oscillators and heat baths at different temperatures. In addition, the setup features a built-in switch, which allows the cooling to be turned on and off. If timing control is available, this enables the possibility for coherence-enhanced cooling. Finally, we show that significant cooling can be achieved with experimentally realistic parameters and that our setup should be within reach of current technology.

  6. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    PubMed

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  7. A bit serial sequential circuit

    NASA Technical Reports Server (NTRS)

    Hu, S.; Whitaker, S.

    1990-01-01

    Normally a sequential circuit with n state variables consists of n unique hardware realizations, one for each state variable. All variables are processed in parallel. This paper introduces a new sequential circuit architecture that allows the state variables to be realized in a serial manner using only one next state logic circuit. The action of processing the state variables in a serial manner has never been addressed before. This paper presents a general design procedure for circuit construction and initialization. Utilizing pass transistors to form the combinational next state forming logic in synchronous sequential machines, a bit serial state machine can be realized with a single NMOS pass transistor network connected to shift registers. The bit serial state machine occupies less area than other realizations which perform parallel operations. Moreover, the logical circuit of the bit serial state machine can be modified by simply changing the circuit input matrix to develop an adaptive state machine.

  8. Rocket Based Combined Cycle (RBCC) Propulsion Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop, was to impart technology information to the propulsion community with respect to hypersonic combined cycle propulsion capabilities. The major recommendation resulting from this technology workshop was as follows: conduct a systems-level applications study to define the desired propulsion system and vehicle technology requirements for LEO launch vehicles. All SSTO and TSTO options using the various propulsion systems (airbreathing combined cycle, rocket-based combined cycle, and all rocket) must be considered. Such a study should be accomplished as soon as possible. It must be conducted with a consistent set of ground rules and assumptions. Additionally, the study should be conducted before any major expenditures on a RBCC technology development program occur.

  9. Trigger Circuit.

    DTIC Science & Technology

    A wire of Nitinol can be stretched up to a given amount and will remain in this stretched state until heated to a critical temperature. When heated...circuit of this invention provides a current pulse for the required time period to heat the Nitinol wire to its critical temperature to thereby restore the...wire to its original length. The circuit includes a high power transistor which is gated on for a controlled time to provide the required power to heat the Nitinol wire to its critical temperature. (Author)

  10. MULTIPLIER CIRCUIT

    DOEpatents

    Chase, R.L.

    1963-05-01

    An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)

  11. Nanoparticle-Based Combination Therapy for Cancer Treatment.

    PubMed

    Yhee, Ji Young; Son, Sejin; Lee, Hyukjin; Kim, Kwangmeyung

    2015-01-01

    In recent years, combination of different types of therapies using nanoparticles has emerged as an advanced strategy for cancer treatment. Most of all, combination of chemotherapeutic drug and siRNA in nanoformulation has shown a great potential, because siRNA-mediated specific gene silencing can compensate for the incomplete anti-cancer actions of chemotherapy. In this article, nanoparticle-based combination therapy for cancer treatment is introduced to be focused on the therapeutic chemical and siRNA combination. It is classified into 3 groups: 1) general chemotherapy combined with siRNA carrying nanoparticle, 2) co-delivery of chemical and siRNA therapeutics within a single nanoparticle, and 3) Use of multiple nanoparticles for chemical and siRNA therapeutics. The purpose of the combination and the mechanisms of anti-cancer action was described according to the categories. Examples of some recent developments of nanotechnology-based chemo- and siRNA- therapeutics combination therapy are summarized for better understanding of its practical application.

  12. Oxaliplatin-based combined-modality therapy for rectal cancer.

    PubMed

    Minsky, Bruce D

    2003-08-01

    There are two conventional treatments for clinically resectable rectal cancer. The first is surgery, and, if the tumor is T3 and/or N1-2, this is followed by postoperative combined-modality therapy. The second, for patients with ultrasound T3 or clinical T4 disease, is preoperative combined-modality therapy followed by surgery and postoperative chemotherapy. In this review, the results of these approaches as well as novel combined-modality approaches using oxaliplatin-based regimens will be presented.

  13. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit

    PubMed Central

    Ho, Emily V.; Klenotich, Stephanie J.; McMurray, Matthew S.; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology. PMID:27861553

  14. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers.

    PubMed

    Hwang, Geon-Tae; Im, Donggu; Lee, Sung Eun; Lee, Jooseok; Koo, Min; Park, So Young; Kim, Seungjun; Yang, Kyounghoon; Kim, Sung June; Lee, Kwyro; Lee, Keon Jae

    2013-05-28

    Biointegrated electronics have been investigated for various healthcare applications which can introduce biomedical systems into the human body. Silicon-based semiconductors perform significant roles of nerve stimulation, signal analysis, and wireless communication in implantable electronics. However, the current large-scale integration (LSI) chips have limitations in in vivo devices due to their rigid and bulky properties. This paper describes in vivo ultrathin silicon-based liquid crystal polymer (LCP) monolithically encapsulated flexible radio frequency integrated circuits (RFICs) for medical wireless communication. The mechanical stability of the LCP encapsulation is supported by finite element analysis simulation. In vivo electrical reliability and bioaffinity of the LCP monoencapsulated RFIC devices are confirmed in rats. In vitro accelerated soak tests are performed with Arrhenius method to estimate the lifetime of LCP monoencapsulated RFICs in a live body. The work could provide an approach to flexible LSI in biointegrated electronics such as an artificial retina and wireless body sensor networks.

  15. Graph-Based Symbolic Technique and Its Application in the Frequency Response Bound Analysis of Analog Integrated Circuits

    PubMed Central

    Tlelo-Cuautle, E.; Rodriguez-Chavez, S.; Palma-Rodriguez, A. A.

    2014-01-01

    A new graph-based symbolic technique (GBST) for deriving exact analytical expressions like the transfer function H(s) of an analog integrated circuit (IC), is introduced herein. The derived H(s) of a given analog IC is used to compute the frequency response bounds (maximum and minimum) associated to the magnitude and phase of H(s), subject to some ranges of process variational parameters, and by performing nonlinear constrained optimization. Our simulations demonstrate the usefulness of the new GBST for deriving the exact symbolic expression for H(s), and the last section highlights the good agreement between the frequency response bounds computed by our variational analysis approach versus traditional Monte Carlo simulations. As a conclusion, performing variational analysis using our proposed GBST for computing the frequency response bounds of analog ICs, shows a gain in computing time of 100x for a differential circuit topology and 50x for a 3-stage amplifier, compared to traditional Monte Carlo simulations. PMID:25136650

  16. Circuit elements at optical frequencies from first principles: A synthesis of electronic structure and circuit theories

    NASA Astrophysics Data System (ADS)

    Ramprasad, R.; Tang, C.

    2006-08-01

    A first principles electronic structure based method is presented to determine the equivalent circuit representations of nanostructured physical systems at optical frequencies, via a mapping of the effective permittivity calculated for a lattice of physical nano-elements using density functional theory to that calculated for a lattice of impedances using circuit theory. Specifically, it is shown that silicon nanowires and carbon nanotubes can be represented as series combinations of inductance, capacitance and resistance. It is anticipated that the generality of this approach will allow for an alternate description of physical systems at optical frequencies, and in the realization of novel opto- and nanoelectronic devices, including negative refractive index materials.

  17. Cellular bases of behavioral plasticity: establishing and modifying synaptic circuits in the Drosophila genetic system.

    PubMed

    Rohrbough, Jeffrey; O'Dowd, Diane K; Baines, Richard A; Broadie, Kendal

    2003-01-01

    Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.

  18. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    PubMed

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  19. Microwave GaAs Integrated Circuits On Quartz Substrates

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  20. Combined Space-Based Observations of Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Scott, R.; Bernard, K.; Thorsteinson, S.

    2016-09-01

    One of the Space Situational Awareness (SSA) science experiments of the NEOSSat mission is to learn the practicalities of combining space-based metric observations with the Sapphire system. To answer this question, an experiment was performed observing clustered Canadian geostationary satellites using both Sapphire and NEOSSat in early 2016. Space-based tracking data was collected during tracking intervals where both NEOSSat and Sapphire had visibility on the geostationary objects enabling astrometric (orbit determination) and photometric (object characterization) observations to be performed. We describe the orbit determination accuracies using live data collected from orbit for different collection cases; a) NEOSSat alone, b) Sapphire alone, and c) Combined observations from both platforms. We then discuss the practicalities of using space-based sensors to reduce risk of orbital collisions of Canadian geostationary satellites by proactively tasking space based sensors in response to conjunction data warnings in GEO.

  1. Advances in the modeling of single electron transistors for the design of integrated circuit.

    PubMed

    Chi, Yaqing; Sui, Bingcai; Yi, Xun; Fang, Liang; Zhou, Hailiang

    2010-09-01

    Single electron transistor (SET) has become a promising candidate for the key device of logic circuit in the near future. The advances of recent 5 years in the modeling of SETs are reviewed for the simulation of SET/hybrid CMOS-SET integrated circuit. Three dominating SET models, Monte Carlo model, master equation model and macro model, are analyzed, tested and compared on their principles, characteristics, applicability and development trend. The Monte Carlo model is suitable for SET structure research and simulation of small scale SET circuit, while the analytical model based on combination with master equation and macro model is suitable to simulate the SET circuit at balanceable efficiency and accuracy.

  2. Piezoelectric resonators and oscillator circuit based on higher-order out-of-plane modes for density-viscosity measurements of liquids

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Manzaneque, T.; Ruiz-Díez, V.; Kucera, M.; Pfusterschmied, G.; Wistrela, E.; Schmid, U.; Sánchez-Rojas, J. L.

    2016-08-01

    We report the use of two AlN-based piezoelectric microresonators for the monitoring of density and viscosity of liquids and its application to detect lubricant oil dilution with diesel fuel. Two devices designed to resonate in the 4th-order roof tile-shaped vibration mode, but with two different anchor schemes, were fabricated and characterized. Interface circuits were designed to convert the one-port impedance into a resonant two-port transfer function. This allowed us to implement a phase locked loop (PLL)-based oscillator circuit based on the resonators, the interface circuit and a commercial lock-in amplifier. Our results demonstrate the performance of the resonators in fluids having viscosities up to 500 mPa · s. The performance of the sensors in terms of sensitivity and resolution are compared for both anchor configurations.

  3. Combine harvester monitor system based on wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  4. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor.

    PubMed

    Current, K Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R C; Schwartz, Jon A; Vykoukal, Jody V; Andrews, Craig

    2005-07-24

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm.

  5. A planar lightwave circuit based micro interrogator and its applications to the interrogation of multiplexed optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Xiao, Gaozhi; Mrad, Nezih; Guo, Honglei; Zhang, Zhiyi; Yao, Jianping

    2008-12-01

    Optical fiber Bragg grating sensors have found potential applications in many fields, but the lack of a simple, field deployable and low cost interrogation system is hindering their deployment. To tackle this, we have developed a micro optical sensor interrogator using a monolithically integrated planar lightwave circuit based echelle diffractive grating demultiplexer and a detector array. The design and development of this device are presented in this paper. It has been found that the measurement range of this micro interrogator is more than 25 nm with better than 1 pm resolution. This paper also reports the applications of the micro interrogator developed to the monitoring of commercial optical fiber Bragg grating (FBG) temperature sensors and mechanical sensors. The results obtained are very satisfactory and in some cases, they are better than those obtained using commercial bench top lab equipment.

  6. Development of a Mass Sensitive Quartz Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit

    PubMed Central

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm2 in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected. PMID:22164037

  7. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.

    PubMed

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.

  8. Insights into electron tunneling across hydrogen-bonded base-pairs in complete molecular circuits for single-stranded DNA sequencing.

    PubMed

    Lee, Myeong H; Sankey, Otto F

    2009-01-21

    We report a first-principles study of electron ballistic transport through a molecular junction containing deoxycytidine-monophosphate (dCMP) connected to metal electrodes. A guanidinium ion and guanine nucleobase are tethered to gold electrodes on opposite sides to form hydrogen bonds with the dCMP molecule providing an electric circuit. The circuit mimics a component of a potential device for sequencing unmodified single-stranded DNA. The molecular conductance is obtained from DFT Green's function scattering methods and is compared to estimates from the electron tunneling decay constant obtained from the complex band structure. The result is that a complete molecular dCMP circuit of 'linker((CH(2))(2))-guanidinium-phosphate-deoxyribose-cytosine-guanine' has a very low conductance (of the order of fS) while the hydrogen-bonded guanine-cytosine base-pair has a moderate conductance (of the order of tens to hundreds of nS). Thus, while the transverse electron transfer through base-pairing is moderately conductive, electron transfer through a complete molecular dCMP circuit is not. The gold Fermi level is found to be aligned very close to the HOMO for both the guanine-cytosine base-pair and the complete molecular dCMP circuit. Results for two different plausible geometries of the hydrogen-bonded dCMP molecule reveal that the conductance varies from fS for an extended structure to pS for a slightly compressed structure.

  9. Development of a W-band Serpentine Waveguide Amplifier based on a UV-LIGA Microfabricated Copper Circuit

    DTIC Science & Technology

    2013-03-01

    circuits to withstand the extreme temperatures of continuous high- power operation, which is a limitation in the mmW regime for the helix -type circuit...through a series of smooth 180-degree bends while exchanging energy with an electron beam, is an alternative to the helix that is amenable to planar...microfabrication. The SWG is a good balance between the wide bandwidth of a helix and the high output power of a coupled-cavity type circuit [4

  10. An optimization-based study of equivalent circuit models for representing recordings at the neuron-electrode interface.

    PubMed

    Thakore, V; Molnar, P; Hickman, J J

    2012-08-01

    Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation, and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization-based study of the point contact models for an extracellular "on-cell" neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, "on-cell" patch, and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated suprathreshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and suprathreshold stimulations of the neuron-electrode junctions revealed that ionic transport at the "on-cell" neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed.

  11. Suppressing effect of calcium-based waste on control of bromine flux during the pyrolysis of printed circuit boards.

    PubMed

    Jie, Guan; Min, Xu; Wu, Wenjie; Zhang, Chenglong; Wang, Jingwei; Bai, Jianfeng

    2012-11-01

    The effect of calcium-based addition on the brominate flux during printed circuit board (PCB) pyrolysis was investigated. It was found that bromine (Br) can be effectively fixed in solid phase during PCB pyrolysis by adding calcium-based waste materials. Phenol and 4-ethylphenol are the major products of pyrolysis. When the two kinds of red mud were used as additive, their content was 85.25 and 84.81%, respectively, which was higher than others. The 2-bromophenol and 2-bromo-4-methyl-benzene are the main Br-containing pyrolysis volatiles. After adding calcium-based additive, these two volatiles were apparently reduced and only small amounts of 2-bromo-4-methyl-benzene were detected in the products, namely 0.71 and 0.86%, respectively for the two kinds of red mud. Hence, no matter from the perspective of product use or simple Br-fixing, the bromine in the three-phase products can be effectively regulated and controlled by adding calcium-based waste residue during PCB pyrolysis. Finally, the Br-fixing mechanism was analysed. As a result, when calcium-based waste materials were added to the PCB pyrolysis it made bromine fix easily in the resident yielding a byproduct that can be further used.

  12. Selecting supplier combination based on fuzzy multicriteria analysis

    NASA Astrophysics Data System (ADS)

    Han, Zhi-Qiu; Luo, Xin-Xing; Chen, Xiao-Hong; Yang, Wu-E.

    2015-07-01

    Existing multicriteria analysis (MCA) methods are probably ineffective in selecting a supplier combination. Thus, an MCA-based fuzzy 0-1 programming method is introduced. The programming relates to a simple MCA matrix that is used to select a single supplier. By solving the programming, the most feasible combination of suppliers is selected. Importantly, this result differs from selecting suppliers one by one according to a single-selection order, which is used to rank sole suppliers in existing MCA methods. An example highlights such difference and illustrates the proposed method.

  13. Automated Design of Quantum Circuits

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  14. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits.

    PubMed

    Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M

    2015-05-01

    Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures.

  15. Simple, one transistor circuit boosts pulse amplitude

    NASA Technical Reports Server (NTRS)

    Keon, T.; Matchett, M. W.

    1966-01-01

    Simple circuit that uses a single transistor to accomplish capacitor storage followed by common-base switching supplies a pulse voltage, higher than that normally available from emitter-follower circuits, to drive a 100-watt transmitter.

  16. An atomtronic dumbell circuit

    NASA Astrophysics Data System (ADS)

    Li, Aijun; Murray, N.; Lanier, C.; Wang, Y.-H.; Clark, C. W.; Edwards, M.

    2014-05-01

    We report on simulations of the behavior of a Bose-Einstein condensate formed in the left well of a ``dumbell'' circuit potential. This quasi-2d potential takes the form of the combination of strong harmonic vertical confinement along with a horizontal-plane potential having dumbell shape. The dumbell consists of two circular wells connected by a channel. We assume that the condensate is initially formed in one of the wells and then is released and allowed to flow down the channel into the other well and possibly back again. We first simulated the behavior of the BEC in this potential using a variational mean-field version of the 3D Gross-Pitaevskii equation (GPE) at zero temperature for dumbell potentials having a range of different channel lengths and widths. We used these results to indentify equivalent ``atomtronic'' circuits such as an RCL circuit with DC battery. We also investigated the effects of finite temperature on the behavior of the condensate in the dumbell potential using the Zaremba-Nikuni-Griffin (ZNG) theory. These results were used to identify the effects of a thermal cloud on the atomtronic circuit operation. Supported in part by NSF grant #1068761 and ARO Atomtronics MURI.

  17. Stability evaluation of short-circuiting gas metal arc welding based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Wang, Kehong; Zhou, Zhilan; Zhou, Xiaoxiao; Fang, Jimi

    2017-03-01

    The arc of gas metal arc welding (GMAW) contains abundant information about its stability and droplet transition, which can be effectively characterized by extracting the arc electrical signals. In this study, ensemble empirical mode decomposition (EEMD) was used to evaluate the stability of electrical current signals. The welding electrical signals were first decomposed by EEMD, and then transformed to a Hilbert–Huang spectrum and a marginal spectrum. The marginal spectrum is an approximate distribution of amplitude with frequency of signals, and can be described by a marginal index. Analysis of various welding process parameters showed that the marginal index of current signals increased when the welding process was more stable, and vice versa. Thus EEMD combined with the marginal index can effectively uncover the stability and droplet transition of GMAW.

  18. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform.

    PubMed

    Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2016-04-07

    A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.

  19. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform†

    PubMed Central

    Sun, Gongchen; Senapati, Satyajyoti

    2016-01-01

    A microfluidic-ion exchange membrane hybrid chip is fabricated by polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (> 100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551

  20. Retropath: automated pipeline for embedded metabolic circuits.

    PubMed

    Carbonell, Pablo; Parutto, Pierre; Baudier, Claire; Junot, Christophe; Faulon, Jean-Loup

    2014-08-15

    Metabolic circuits are a promising alternative to other conventional genetic circuits as modular parts implementing functionalities required for synthetic biology applications. To date, metabolic design has been mainly focused on production circuits. Emergent applications such as smart therapeutics, however, require circuits that enable sensing and regulation. Here, we present RetroPath, an automated pipeline for embedded metabolic circuits that explores the circuit design space from a given set of specifications and selects the best circuits to implement based on desired constraints. Synthetic biology circuits embedded in a chassis organism that are capable of controlling the production, processing, sensing, and the release of specific molecules were enumerated in the metabolic space through a standard procedure. In that way, design and implementation of applications such as therapeutic circuits that autonomously diagnose and treat disease, are enabled, and their optimization is streamlined.

  1. LOGIC CIRCUIT

    DOEpatents

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  2. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model

    NASA Technical Reports Server (NTRS)

    Haid, Daniel A.; Gamble, Eric J.

    2011-01-01

    A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.

  3. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  4. A Bipolar Current Actuated Gate Driver for JFET Based Bidirectional Scalable Solid-State Circuit Breakers

    DTIC Science & Technology

    2010-12-16

    for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...19b. TELEPHONE NUMBER (Include area code) 02/16/2010 Technical Report - Briefing Charts A Bipolar Current Actuated Gate Driver for JFET Based...Approved For Public Release 12/3/2015 No U U U U.S. Army Research, Development and Engineering Command A Bipolar Current Actuated Gate Driver for

  5. Resonant Optical Circuits Based on Coupling Between Whispering Gallery Modes in Dielectric Microresonators

    DTIC Science & Technology

    2007-12-30

    sphere. This level of attenuation is sufficiently small for developing novel photonic devices based on using nanojet -induced modes. Due to subwavelength...sizes of photonic nanojet the chains of spherical cavities can be used as novel microprobes for laser surgery and biochemical sensing. On the other...be submitted to Appl. Phys. Lett. in January 2008. 67 Z. Chen, A. Taflove, and V. Backman, “ Photonic nanojet enhancement of backscattering of light

  6. The colour preference control based on two-colour combinations

    NASA Astrophysics Data System (ADS)

    Hong, Ji Young; Kwak, Youngshin; Park, Du-Sik; Kim, Chang Yeong

    2008-02-01

    This paper proposes a framework of colour preference control to satisfy the consumer's colour related emotion. A colour harmony algorithm based on two-colour combinations is developed for displaying the images with several complementary colour pairs as the relationship of two-colour combination. The colours of pixels belonging to complementary colour areas in HSV colour space are shifted toward the target hue colours and there is no colour change for the other pixels. According to the developed technique, dynamic emotions by the proposed hue conversion can be improved and the controlled output image shows improved colour emotions in the preference of the human viewer. The psychophysical experiments are conducted to investigate the optimal model parameters to produce the most pleasant image to the users in the respect of colour emotions.

  7. A quantum galvanometer with high-energy resolution based on a superconducting interferometer circuit

    SciTech Connect

    Bakhtin, P.A.; Makhov, V.I.; Masalov, V.V.; Sretenskii, V.N.; Tyablikov, A.V.; Vasenkov, A.A.

    1985-07-01

    The authors make a comprehensive analysis of principles of constructing measurement systems based on the superconducting quantum interferometer (SQUID) implemented in integrated form. They note trends of promising applications for galvanometric measurement systems. They describe the two types of SQUID, one-junction and two junction. They analyze the processing and formation of superconducting ion chemical signals and structures. And they present their results in a series of charts and diagrams. They conclude that quantum galvanometry using superconducting microcircuits allows one to propose new experimental studies in microelectronics, the techniques of high-precision measurements, and equipment for metrological work.

  8. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  9. The Circuit Realization of a Neuromorphic Computing System with Memristor-Based Synapse Design

    DTIC Science & Technology

    2013-04-01

    PMOS transistor or an NMOS transistor based on the input signals. When the PMOS transistor is turned on, the synapse output ‘Vout2’ will be...connected to ‘Vdd’, denoting the excitation state. Alternatively, when the NMOS transistor is turned on, the ‘Vout2’ will be pulled down to ground, denoting...Weighted Output Current Table 1. Excitation/Inhibition Synapse Truth Table Vin1/Vin2 +/- Vc P- transistor N- transistor Vout1/Vout2 1 1 0 Pass Cut

  10. The Neural Network Underlying Incentive-Based Learning: Implications for Interpreting Circuit Disruptions in Psychiatric Disorders

    PubMed Central

    Haber, Suzanne N.; Behrens, Timothy E.J.

    2014-01-01

    Coupling stimuli and actions with positive or negative outcomes facilitates the selection of appropriate actions. Several brain regions are involved in the development of goal-directed behaviors and habit formation during incentive-based learning. This Review focuses on higher cognitive control of decision making and the cortical and subcortical structures and connections that attribute value to stimuli, associate that value with choices, and select an action plan. Delineating the connectivity between these areas is fundamental for understanding how brain regions work together to evaluate stimuli, develop actions plans, and modify behavior, as well as for elucidating the pathophysiology of psychiatric diseases. PMID:25189208

  11. Overview of the Turbine Based Combined Cycle Discipline

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Walker, James F.; Pittman, James L.

    2009-01-01

    The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode

  12. Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit.

    PubMed

    Bougioukos, M; Kouloumentas, Ch; Spyropoulou, M; Giannoulis, G; Kalavrouziotis, D; Maziotis, A; Bakopoulos, P; Harmon, R; Rogers, D; Harrison, J; Poustie, A; Maxwell, G; Avramopoulos, H

    2011-06-06

    We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.

  13. Design of a reliable PUF circuit based on R-2R ladder digital-to-analog convertor

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Xuelong, Zhang; Yuejun, Zhang; Jianrui, Li

    2015-07-01

    A novel physical unclonable functions (PUF) circuit is proposed, which relies on non-linear characteristic of analog voltage generated by R-2R ladder DAC. After amplifying the deviation signal, the robustness of the DAC-PUF circuit has increased significantly. The DAC-PUF circuit is designed in TSMC 65 nm CMOS technology and the layout occupies 86.06 × 63.56 μm2. Monte Carlo simulation results show that the reliability of the DAC-PUF circuit is above 98% over a comprehensive range of environmental variation, such as temperature and supply voltage. Project supported by the National Natural Science Foundation of China (Nos. 61474068, 61404076, 61274132), the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), and the K. C. Wong Magna Fund in Ningbo University, China.

  14. Natural addiction: a behavioral and circuit model based on sugar addiction in rats.

    PubMed

    Hoebel, Bartley G; Avena, Nicole M; Bocarsly, Miriam E; Rada, Pedro

    2009-03-01

    The distinction between natural addiction and drug addiction is interesting from many points of view, including scientific and medical perspectives. "Natural addictions" are those based on activation of a physiobehavioral system, such as the one that controls metabolism, foraging, and eating to achieve energy balance. "Drug addictions" activate many systems based on their pharmacology. This review discusses the following questions: (1) When does food produce a natural addiction? Sugar causes signs of addiction if the scheduling conditions are appropriate to cause binge eating. (2) Why does addictive-like behavior result? Bingeing on a 10% sucrose solution repeatedly releases dopamine in the nucleus accumbens, and it delays the release of acetylcholine, thereby postponing satiety. Opioid involvement is shown by withdrawal caused by naloxone or food deprivation. Bingeing, withdrawal, and abstinence-induced motivation are described as the basis for a vicious cycle leading to excessive eating. (3) Which foods can lead to natural addiction? A variety of sugars, saccharin, and sham feeding are compared with bingeing on high-fat diets, which seem to lack sugar's opioid-withdrawal characteristic. (4) How does natural food addiction relate to obesity? Low basal dopamine may be a common factor, leading to "eating for dopamine." (5) In a neural model, the accumbens is depicted as having separate GABA output pathways for approach and avoidance, both controlled by dopamine and acetylcholine. These outputs, in turn, control lateral hypothalamic glutamate release, which starts a meal, and GABA release, which stops it.

  15. Beyond simple models of self-control to circuit-based accounts of adolescent behavior.

    PubMed

    Casey, B J

    2015-01-03

    Adolescence is the transition from childhood to adulthood that begins around the onset of puberty and ends with relative independence from the parent. This developmental period is one when an individual is probably stronger, of higher reasoning capacity, and more resistant to disease than ever before, yet when mortality rates increase by 200%. These untimely deaths are not due to disease but to preventable deaths associated with adolescents putting themselves in harm's way (e.g., accidental fatalities). We present evidence that these alarming health statistics are in part due to diminished self-control--the ability to inhibit inappropriate desires, emotions, and actions in favor of appropriate ones. Findings of adolescent-specific changes in self-control and underlying brain circuitry are considered in terms of how evolutionarily based biological constraints and experiences shape the brain to adapt to the unique intellectual, physical, sexual, and social challenges of adolescence.

  16. Identifying and Characterizing Key Nodes among Communities Based on Electrical-Circuit Networks

    PubMed Central

    Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying

    2014-01-01

    Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes. PMID:24897125

  17. Identifying and characterizing key nodes among communities based on electrical-circuit networks.

    PubMed

    Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying

    2014-01-01

    Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.

  18. RF frequency transparent 90° hybrid based on silicon on insulator photonic circuit

    NASA Astrophysics Data System (ADS)

    Sambaraju, Rakesh; Galan-Conejos, Jose Vicente; Herrera, Javier; Griol, Amadeu; Otón, Claudio; Sanchis, Pablo; Martínez, Alejandro

    2010-05-01

    A simple configuration for achieving a radio frequency transparent 90° hybrid, for broadband QAM wireless systems using silicon photonics is proposed. The device consists of a high Q ring resonator which induces an optical 90° phase shift between two adjacent resonant wavelengths. When these optical carriers are modulated by an RF carrier the resulting device behaves as an RF 90° hybrid. Numerical simulations of the phase shift were performed on a 40 GHz carrier, and to demonstrate the frequency transparency phase shift simulations was also performed at a carrier frequency of 60 GHz. One of the main applications of such a device is the generation of millimeter wave 10 Gb/s wireless based on quadrature amplitude modulation.

  19. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    PubMed

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  20. A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase β

    PubMed Central

    Pei, De-Sheng; Yang, Xiao-Jie; Liu, Wei; Guikema, Jeroen E. J.; Schrader, Carol E.; Strauss, Phyllis R.

    2011-01-01

    DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex+/− mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes. PMID:21172930

  1. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui

    2015-08-01

    To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.

  2. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  3. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    NASA Astrophysics Data System (ADS)

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-02-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. ‘Images’ over a 3.25 × 0.9 mm2 area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  4. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier.

    PubMed

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-11-10

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.

  5. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier

    PubMed Central

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-01-01

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods. PMID:27834902

  6. A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Gouker, Mark A.; Smith, Glenn S.

    1992-05-01

    A moderate-gain, easily constructed, millimeter-wave IC antenna based on the Fresnel zone plate has been developed. The gain and beamwidth of the antenna can be varied by adjusting the diameter and focal length of the zone plate. A theory is developed which accurately predicts the on-axis gain, beamwidth, and sidelobe levels of antennas with zone-plate focal lengths greater than 8-9 lambda. Graphs are presented to aid in the design of other IC zone-plate antennas. The performance of the antenna without the reflector and lambda/4 spacer was investigated. The gain of the antenna with nothing behind the zone plate is found to approach that of the fully configured antenna with the lambda/4 spacer and reflector. The reflection from the open rings which is responsible for this phenomenon is enhanced as the dielectric constant of the substrate is increased. Thus, on substrates with high permittivity the reflector and lambda/4 spacer may not be necessary.

  7. Fluorescence detection test by black printed circuit board based microfluidic channel for polymerase chain reaction.

    PubMed

    Hwang, Ji-Soo; Kim, Yu-Seop; Song, Hye-Jeong; Kim, Jong-Dae; Park, Chan-Young

    2015-01-01

    This paper proposes the optimal structure of a PCB-based micro PCR chip constructed on a PCB substrate using commercial adhesive tapes and plastic covers. The solder mask of the PCB substrate was coated black, and the area where the reaction chamber is attached was legend printed with white silk to minimize the noise during fluorescence detection. The performance of the PCR and fluorescence detection was compared using 6 types of reaction chambers, each made with different double-sided tapes. Three of the chambers were unsuccessful in completing the PCR. The performance of the other three chambers that successfully amplified DNA was compared using Taqman probe for Chlamydia Trachomatis DNA. The amplified product was illuminated diagonally with a blue LED to excite the product just before imaging, and the LED was turned off when the image was captured to prevent quenching of the probe. The images were taken 10 seconds prior to the last extension step for each cycle using a DSLR camera. The experiments were run as a quartet for each three chambers made with different double-sided tape. The results showed that there were significant difference between the three tapes.

  8. A software-based sensor for combined sewer overflows.

    PubMed

    Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W

    2012-01-01

    A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow.

  9. Symbolic Processing Combined with Model-Based Reasoning

    NASA Technical Reports Server (NTRS)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  10. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.

    PubMed

    Yu, Xue; Lian, Wenjing; Zhang, Jiannan; Liu, Hongyun

    2016-06-15

    Herein, poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethylmethacrylate) copolymer films were polymerized on electrode surface with a simple one-step method, and the enzyme horseradish peroxidase (HRP) was embedded in the films simultaneously, which were designated as P(NiPAAm-co-DMEM)-HRP. The films exhibited a reversible structure change with the external stimuli, such as pH, CO2, temperature and SO4(2-), causing the cyclic voltammetric (CV) response of electroactive K3Fe(CN)6 at the film electrodes to display the corresponding multi-stimuli sensitive ON-OFF behavior. Based on the switchable CV property of the system and the electrochemical reduction of H2O2 catalyzed by HRP in the films and mediated by Fe(CN)6(3-) in solution, a 5-input/3-output logic gate was established. To further increase the complexity of the logic system, another enzyme glucose oxidase (GOD) was added into the films, designated as P(NiPAAm-co-DMEM)-HRP-GOD. In the presence of oxygen, the oxidation of glucose in the solution was catalyzed by GOD in the films, and the produced H2O2 in situ was recognized and electrocatalytically reduced by HRP and mediated by Fe(CN)6(3-). Based on the bienzyme films, a cascaded or concatenated 4-input/3-output logic gate system was proposed. The present work combined the multi-responsive interface with bioelectrocatalysis to construct cascaded logic circuits, which might open a new avenue to develop biocomputing elements with more sophisticated functions and design novel glucose biosensors.

  11. Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

    NASA Astrophysics Data System (ADS)

    Jordy, George; Donnelly, Joseph

    2015-05-01

    A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device's space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.

  12. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide

    PubMed Central

    Chang, Ken-Wei; Huang, Chia-Chien

    2016-01-01

    We propose an ultracompact broadband polarization beam splitter (PBS) based on a combined hybrid plasmonic waveguide (HPW). The proposed PBS separates transverse-electric (TE) and transverse-magnetic (TM) modes using a bent lower HPW with vertical nanoscale gaps and a straight upper HPW with a horizontal nanoscale gap, respectively, without relying on an additional coupling region. This design considerably reduces the length of the PBS to the submicron scale (920 nm, the shortest PBS reported to date) while offering polarization extinction ratios (PERs) of ~19 dB (~18 dB) and insertion losses (ILs) of ~0.6 dB (~0.3 dB) for the TE (TM) mode over an extremely broad band of 400 nm (from λ = 1300 nm to 1700 nm, covering entirely second and third telecom windows). The length of the designed PBS can be reduced further to 620 nm while still offering PERs of 15 dB, realizing a densely photonic integrated circuit. Considering the fabrication tolerance, the designed PBS allows for large geometrical deviations of ±20 nm while restricting PER variations to within 1 dB, except for those in the nanoscale gaps smaller than 10nm. Additionally, we also address the input and ouput coupling efficiencies of the proposed PBS. PMID:26786972

  13. Combined Feature Based and Shape Based Visual Tracker for Robot Navigation

    NASA Technical Reports Server (NTRS)

    Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.

    2005-01-01

    We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.

  14. A simple tachometer circuit

    NASA Technical Reports Server (NTRS)

    Dimeff, J.

    1972-01-01

    Electric circuit to measure frequency of repetitive sinusoidal or rectangular wave is presented. Components of electric circuit and method of operation are explained. Application of circuit as tachometer for automobile is discussed.

  15. Memristive Sisyphus circuit for clock signal generation

    NASA Astrophysics Data System (ADS)

    Pershin, Yuriy V.; Shevchenko, Sergey N.; Nori, Franco

    2016-05-01

    Frequency generators are widely used in electronics. Here, we report the design and experimental realization of a memristive frequency generator employing a unique combination of only digital logic gates, a single-supply voltage and a realistic thresholdtype memristive device. In our circuit, the oscillator frequency and duty cycle are defined by the switching characteristics of the memristive device and external resistors. We demonstrate the circuit operation both experimentally, using a memristor emulator, and theoretically, using a model memristive device with threshold. Importantly, nanoscale realizations of memristive devices offer small-size alternatives to conventional quartz-based oscillators. In addition, the suggested approach can be used for mimicking some cyclic (Sisyphus) processes in nature, such as “dripping ants” or drops from leaky faucets.

  16. Memristive Sisyphus circuit for clock signal generation

    PubMed Central

    Pershin, Yuriy V.; Shevchenko, Sergey N.; Nori, Franco

    2016-01-01

    Frequency generators are widely used in electronics. Here, we report the design and experimental realization of a memristive frequency generator employing a unique combination of only digital logic gates, a single-supply voltage and a realistic thresholdtype memristive device. In our circuit, the oscillator frequency and duty cycle are defined by the switching characteristics of the memristive device and external resistors. We demonstrate the circuit operation both experimentally, using a memristor emulator, and theoretically, using a model memristive device with threshold. Importantly, nanoscale realizations of memristive devices offer small-size alternatives to conventional quartz-based oscillators. In addition, the suggested approach can be used for mimicking some cyclic (Sisyphus) processes in nature, such as “dripping ants” or drops from leaky faucets. PMID:27199243

  17. Toward Agent Programs with Circuit Semantics

    NASA Technical Reports Server (NTRS)

    Nilsson, Nils J.

    1992-01-01

    New ideas are presented for computing and organizing actions for autonomous agents in dynamic environments-environments in which the agent's current situation cannot always be accurately discerned and in which the effects of actions cannot always be reliably predicted. The notion of 'circuit semantics' for programs based on 'teleo-reactive trees' is introduced. Program execution builds a combinational circuit which receives sensory inputs and controls actions. These formalisms embody a high degree of inherent conditionality and thus yield programs that are suitably reactive to their environments. At the same time, the actions computed by the programs are guided by the overall goals of the agent. The paper also speculates about how programs using these ideas could be automatically generated by artificial intelligence planning systems and adapted by learning methods.

  18. Auto-programmable impulse neural circuits

    NASA Technical Reports Server (NTRS)

    Watula, D.; Meador, J.

    1990-01-01

    Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.

  19. Photodiode circuits for retinal prostheses.

    PubMed

    Loudin, J D; Cogan, S F; Mathieson, K; Sher, A; Palanker, D V

    2011-10-01

    Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.

  20. Compact model of ferroelectric-gate field-effect transistor for circuit simulation based on multidomain Landau–Kalathnikov theory

    NASA Astrophysics Data System (ADS)

    Asai, Hidehiro; Fukuda, Koichi; Hattori, Junichi; Koike, Hanpei; Miyata, Noriyuki; Takahashi, Mitsue; Sakai, Shigeki

    2017-04-01

    We report a new compact model for a ferroelectric-gate field-effect transistor (FeFET) considering multiple ferroelectric domain structures that can be thermally activated. The dynamics of the electric polarization and the thermal activation rate are calculated on the basis of the Landau–Khalatnikov (LK) theory. We implement this compact model in a circuit simulator, SmartSPICE, using Verilog-A language for analog circuit simulations. The device characteristics of FeFETs reported in experiments are well fitted by our compact model. We also perform the circuit simulation for the inverter utilizing FeFETs by using this compact model. Unlike normal inverters composed of MOSFETs, the switching speed of the inverter changes with the voltage pulse before the operation.

  1. Anti-electromagnetic interference analysis of equivalent circuit of ion channel based on the Hodgkin-Huxley model

    NASA Astrophysics Data System (ADS)

    Chu, J.; Chang, X. L.; Zhao, M.; Man, M. H.; Yuan, L.; Wei, M.

    2013-03-01

    With the continuous improvement of circuit integration and working clock frequency in the electronic system, it is increasingly easy for the system to be affected by electromagnetic waves, and electromagnetic susceptibility and vulnerability become more severe. However, living beings in nature have shown extraordinary compatibility, immunity and adaptability to the electromagnetism at the same time. In addition, the ion channel on the neuron cytomembrane is a typical representation of "bioelectrical immunity". So the Hodgkin-Huxley circuit model with one capacitor in parallel with some power supplies and resistors was adopted to simulate the ion channel on the neuron cytomembrane. Through analysis, the circuit model can be used to simulate some electrical characteristics of biological neuron cells, and then acquire a certain level of anti-electromagnetic interference ability. This method will be useful for improving the reliability, compatibility and anti-interference capability of the electronic system in the complicated electromagnetic environment.

  2. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.

    PubMed

    Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin

    2015-11-01

    In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail.

  3. Topological Properties of Some Integrated Circuits for Very Large Scale Integration Chip Designs

    NASA Astrophysics Data System (ADS)

    Swanson, S.; Lanzerotti, M.; Vernizzi, G.; Kujawski, J.; Weatherwax, A.

    2015-03-01

    This talk presents topological properties of integrated circuits for Very Large Scale Integration chip designs. These circuits can be implemented in very large scale integrated circuits, such as those in high performance microprocessors. Prior work considered basic combinational logic functions and produced a mathematical framework based on algebraic topology for integrated circuits composed of logic gates. Prior work also produced an historically-equivalent interpretation of Mr. E. F. Rent's work for today's complex circuitry in modern high performance microprocessors, where a heuristic linear relationship was observed between the number of connections and number of logic gates. This talk will examine topological properties and connectivity of more complex functionally-equivalent integrated circuits. The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U.S. Government.

  4. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  5. Variational integrators for electric circuits

    SciTech Connect

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-06-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

  6. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  7. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.

    PubMed

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-04

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  8. A 0.8-V 250-MSample/s Double-Sampled Inverse-Flip-Around Sample-and-Hold Circuit Based on Switched-Opamp Architecture

    NASA Astrophysics Data System (ADS)

    Ou, Hsin-Hung; Liu, Bin-Da; Chang, Soon-Jyh

    This paper proposes a low-voltage high-speed sample-and-hold (S/H) structure with excellent power efficiency. Based on the switched-opamp technique, an inverse-flip-around architecture which maximizes the feedback factor is employed in the proposed S/H. A skew-insensitive double-sampling mechanism is presented to increase the throughput by a factor of two while eliminating the timing mismatch associated with double-sampling circuits. Furthermore, a dual-input dual-output opamp is proposed to incorporate double-sampling into the switched-opamp based S/H. This opamp also removes the memory effect in double-sampling circuitry and features fast turn-on time to improve the speed performance in switched-opamp circuits. Simulation results using a 0.13-μm CMOS process model demonstrates the proposed S/H circuit has a total-harmonic-distortion of -67.3dB up to 250MSample/s and a 0.8VPP input range at 0.8V supply. The power consumption is 3.5mW and the figure-of-merit is only 7.4fJ/step.

  9. Simple Autonomous Chaotic Circuits

    NASA Astrophysics Data System (ADS)

    Piper, Jessica; Sprott, J.

    2010-03-01

    Over the last several decades, numerous electronic circuits exhibiting chaos have been proposed. Non-autonomous circuits with as few as two components have been developed. However, the operation of such circuits relies on the non-ideal behavior of the devices used, and therefore the circuit equations can be quite complex. In this paper, we present two simple autonomous chaotic circuits using only opamps and linear passive components. The circuits each use one opamp as a comparator, to provide a signum nonlinearity. The chaotic behavior is robust, and independent of nonlinearities in the passive components. Moreover, the circuit equations are among the algebraically simplest chaotic systems yet constructed.

  10. Understanding the Behaviour of Infinite Ladder Circuits

    ERIC Educational Resources Information Center

    Ucak, C.; Yegin, K.

    2008-01-01

    Infinite ladder circuits are often encountered in undergraduate electrical engineering and physics curricula when dealing with series and parallel combination of impedances, as a part of filter design or wave propagation on transmission lines. The input impedance of such infinite ladder circuits is derived by assuming that the input impedance does…

  11. Solenoid-Simulation Circuit

    NASA Technical Reports Server (NTRS)

    Simon, R. A.

    1986-01-01

    Electrical properties of solenoids imitated for tests of control circuits. Simulation circuit imitates voltage and current responses of two engine-controlling solenoids. Used in tests of programs of digital engine-control circuits, also provides electronic interface with circuits imitating electrical properties of pressure sensors and linear variable-differential transformers. Produces voltages, currents, delays, and discrete turnon and turnoff signals representing operation of solenoid in engine-control relay. Many such circuits used simulating overall engine circuitry.

  12. Degradation of Artemisinin-Based Combination Therapies under Tropical Conditions

    PubMed Central

    Hall, Zoe; Allan, Elizabeth Louise; van Schalkwyk, Donelly Andrew; van Wyk, Albert; Kaur, Harparkash

    2016-01-01

    Poor quality antimalarials, including falsified, substandard, and degraded drugs, are a serious health concern in malaria-endemic countries. Guidelines are lacking on how to distinguish between substandard and degraded drugs. “Forced degradation” in an oven was carried out on three common artemisinin-based combination therapy (ACT) brands to detect products of degradation using liquid chromatography mass spectrometry and help facilitate classification of degraded drugs. “Natural aging” of 2,880 tablets each of ACTs artemether/lumefantrine and artesunate/amodiaquine was undertaken to evaluate their long-term stability in tropical climates. Samples were aged in the presence and absence of light on-site in Ghana and in a stability chamber (London), removed at regular intervals, and analyzed to determine loss of the active pharmaceutical ingredients (APIs) over time and detect products of degradation. Loss of APIs in naturally aged tablets (both in Ghana and the pharmaceutical stability chamber) was 0–7% over 3 years (∼12 months beyond expiry) with low levels of degradation products detected. Using this developed methodology, it was found that a quarter of ACTs purchased in Enugu, Nigeria (concurrent study), that would have been classified as substandard, were in fact degraded. Presence of degradation products together with evidence of insufficient APIs can be used to classify drugs as degraded. PMID:26951346

  13. Rocket-Based Combined Cycle Engine Concept Development

    NASA Technical Reports Server (NTRS)

    Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.

  14. Midbrain circuits for defensive behaviour.

    PubMed

    Tovote, Philip; Esposito, Maria Soledad; Botta, Paolo; Chaudun, Fabrice; Fadok, Jonathan P; Markovic, Milica; Wolff, Steffen B E; Ramakrishnan, Charu; Fenno, Lief; Deisseroth, Karl; Herry, Cyril; Arber, Silvia; Lüthi, Andreas

    2016-06-09

    Survival in threatening situations depends on the selection and rapid execution of an appropriate active or passive defensive response, yet the underlying brain circuitry is not understood. Here we use circuit-based optogenetic, in vivo and in vitro electrophysiological, and neuroanatomical tracing methods to define midbrain periaqueductal grey circuits for specific defensive behaviours. We identify an inhibitory pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal grey that produces freezing by disinhibition of ventrolateral periaqueductal grey excitatory outputs to pre-motor targets in the magnocellular nucleus of the medulla. In addition, we provide evidence for anatomical and functional interaction of this freezing pathway with long-range and local circuits mediating flight. Our data define the neuronal circuitry underlying the execution of freezing, an evolutionarily conserved defensive behaviour, which is expressed by many species including fish, rodents and primates. In humans, dysregulation of this 'survival circuit' has been implicated in anxiety-related disorders.

  15. Power on reset circuit of 915MHz RFID tags

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomin; Cai, Daolin; Fu, Zhongqian; Chen, Houpeng; Song, Zhitang

    Power on reset circuit provides a reset signal for the entire system into normal working condition. When power reaches normal operating voltage and remains stable, power on reset circuit provides one rectangular pulse signal which has a steep edge for the digital baseband part of the tag. After reset, POR circuit is isolated with the follow-up circuits, having good stability. In this paper, we designed two new static ultra-low power consumption power-on reset circuits. The first circuit uses Schmitt triggers for signal threshold detection and a certain delay. The peak current of the first circuit is 31uA, with a static current being 33 pA. The second circuit is based on a clamp circuit and PMOS gate cross-coupled circuit which greatly reduces the static current (190 pA). And the peak current of the second circuit is 21 μA.

  16. Expert system to design communications circuits

    SciTech Connect

    Tolendino, L.F.; Vahle, M.O.

    1986-07-01

    An expert system has been created to aid the design of fiber optic based communications circuits. The design system is based on an Apollo workstation, LISP and CPSL, an in-house developed expert system language. The optical circuit is taken from design specification through hardware selection and circuit routing to the production of detailed schematics and routing guides. A database containing the entire fiber optic trunk system is also maintained.

  17. Semiconductor Quantum Dot Sensitized Solar Cells Based on Ferricyanide/Ferrocyanide Redox Electrolyte Reaching an Open Circuit Photovoltage of 0.8 V.

    PubMed

    Evangelista, Rosemarie M; Makuta, Satoshi; Yonezu, Shota; Andrews, John; Tachibana, Yasuhiro

    2016-06-08

    Semiconductor quantum dot sensitized solar cells (QDSSCs) have rapidly been developed, and their efficiency has recently exceeded 9%. Their performances have mainly been achieved by focusing on improving short circuit photocurrent employing polysulfide electrolytes. However, the increase of open circuit photovoltage (VOC) cannot be expected with QDSSCs based on the polysulfide electrolytes owing to their relatively negative redox potential (around -0.65 V vs Ag/AgCl). Here, we demonstrate enhancement of the open circuit voltage by employing an alternative electrolyte, ferricyanide/ferrocyanide redox couple. The solar cell performance was optimized by investigating the influence of ferricyanide and ferrocyanide concentration on their interfacial charge transfer and transport kinetics. The optimized ferricyanide/ferrocyanide species concentrations (0.01/0.2 M) result in solar energy conversion efficiency of 2% with VOC of 0.8 V. Since the potential difference between the TiO2 conduction band edge at pH 7 and the electrolyte redox potential is about 0.79 V, although the conduction band edge shifts negatively under the negative bias application into the TiO2 electrode, the solar cell with the optimized electrolyte composition has nearly reached the theoretical maximum voltage. This study suggests a promising method to optimize an electrolyte composition for maximizing solar energy conversion efficiency.

  18. Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks.

    PubMed

    Zhao, Yudan; Li, Qunqing; Xiao, Xiaoyang; Li, Guanhong; Jin, Yuanhao; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2016-02-23

    We have proposed and fabricated stable and repeatable, flexible, single-walled carbon nanotube (SWCNT) thin film transistor (TFT) complementary metal-oxide-semiconductor (CMOS) integrated circuits based on a three-dimensional (3D) structure. Two layers of SWCNT-TFT devices were stacked, where one layer served as n-type devices and the other one served as p-type devices. On the basis of this method, it is able to save at least half of the area required to construct an inverter and make large-scale and high-density integrated CMOS circuits easier to design and manufacture. The 3D flexible CMOS inverter gain can be as high as 40, and the total noise margin is more than 95%. Moreover, the input and output voltage of the inverter are exactly matched for cascading. 3D flexible CMOS NOR, NAND logic gates, and 15-stage ring oscillators were fabricated on PI substrates with high performance as well. Stable electrical properties of these circuits can be obtained with bending radii as small as 3.16 mm, which shows that such a 3D structure is a reliable architecture and suitable for carbon nanotube electrical applications in complex flexible and wearable electronic devices.

  19. Circuit breaker lock out assembly

    DOEpatents

    Gordy, W.T.

    1983-05-18

    A lock out assembly for a circuit breaker which consists of a generally step-shaped unitary base with an aperture in the small portion of the step-shaped base and a roughly S shaped retaining pin which loops through the large portion of the step-shaped base. The lock out assembly is adapted to fit over a circuit breaker with the handle switch projecting through the aperture, and the retaining pin projecting into an opening of the handle switch, preventing removal.

  20. Additive manufacturing of hybrid circuits

    SciTech Connect

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  1. Practical combination therapy based on pathophysiology of type 2 diabetes

    PubMed Central

    Levin, Philip A

    2016-01-01

    Type 2 diabetes is a complex, chronic, and progressive condition that often necessitates the use of multiple medications to achieve glycemic goals. Clinical guidelines generally recommend intensifying pharmacotherapy if glycemic goals are not achieved after 3 months of treatment. However, for many patients with type 2 diabetes, treatment intensification is delayed or does not occur. Initiating combination therapy early in the disease course has the potential to delay disease progression and improve patient outcomes. Guidelines generally provide a list of agents that may be used in combination regimens and emphasize individualization of treatment. The purpose of this review is to discuss the rationale for combination therapy, considering treatment effects on pathophysiologic aspects of type 2 diabetes and individual drug profiles. The combination of newer antidiabetes therapies with complementary mechanisms of action provides the opportunity to target multiple sites of tissue, organ, and cellular dysfunction. PMID:27826204

  2. Design and simulation of e-calendar system circuits

    NASA Astrophysics Data System (ADS)

    Liu, Li-jun

    2015-02-01

    The digital calendar circuits controlled by 80C52 have been designed based on Proteus simulation software. The whole design process is made of three parts: hardware circuits, software programming and software simulation. Finally, it shows that the circuit design of hardware and software is correct through Proteus software simulation. The method of circuit design is systematic and practical, which will provide certain design ideas and reference value for display circuit in the future.

  3. ELECTRONIC INTEGRATING CIRCUIT

    DOEpatents

    Englemann, R.H.

    1963-08-20

    An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)

  4. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.

    PubMed

    Brink, S; Nease, S; Hasler, P

    2013-09-01

    Results are presented from several spiking network experiments performed on a novel neuromorphic integrated circuit. The networks are discussed in terms of their computational significance, which includes applications such as arbitrary spatiotemporal pattern generation and recognition, winner-take-all competition, stable generation of rhythmic outputs, and volatile memory. Analogies to the behavior of real biological neural systems are also noted. The alternatives for implementing the same computations are discussed and compared from a computational efficiency standpoint, with the conclusion that implementing neural networks on neuromorphic hardware is significantly more power efficient than numerical integration of model equations on traditional digital hardware.

  5. Ultra-thin and low-power optical interconnect module based on a flexible optical printed circuit board

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Hwan; Lee, Woo-Jin; Kim, Myoung Jin; Jung, Eun Joo; Kim, Gye Won; An, Jong Bae; Jung, Ki Young; Cha, Kyung Soon; Rho, Byung Sup

    2012-07-01

    We describe an ultra-thin and low-power optical interconnect module for mobile electronic devices such as mobile phones and notebooks. The module was fabricated by directly packaging optic and electronic components onto a thin and flexible optical printed circuit board having a size of 70×8×0.25 mm. The completed active module has features of thinness (0.5 mm), small size (7×5 mm), very low total power consumption (15.88 mW), and high data rate transmissions (2.5 Gbps).

  6. MEMS with integrated CMOS read-out circuit based on sub-micrometric cantilevers array for multiple sensing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Villarroya, Maria; Verd, Jaume; Teva, Jordi; Abadal, Gabriel; Figueras, Eduard; Perez-Murano, Francesc; Esteve, Jaume; Barniol, Nuria

    2005-07-01

    A Micro Electro Mechanical System (MEMS) for mass detection is presented. It has been developed by the monolithic integration of the mechanical transducer with the CMOS control circuit. The sensor transducer consists on an array of four resonating cantilevers; oscillation is achieved by electrostatic excitation. The independent control on each cantilever of the arrays allows multiple sensing on a single device. The microresonators are fabricated on polysilicon in a compatibilized process with the front-end CMOS circuitry. The readout of the cantilevers oscillation is achieved by a current amplifier. Expected Mass resolution in air is 80 ag/Hz.

  7. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    PubMed

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  8. Electrical Circuits and Water Analogies

    ERIC Educational Resources Information Center

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  9. Synthetic biology: applying biological circuits beyond novel therapies.

    PubMed

    Dobrin, Anton; Saxena, Pratik; Fussenegger, Martin

    2016-04-18

    Synthetic biology, an engineering, circuit-driven approach to biology, has developed whole new classes of therapeutics. Unfortunately, these advances have thus far been undercapitalized upon by basic researchers. As discussed herein, using synthetic circuits, one can undertake exhaustive investigations of the endogenous circuitry found in nature, develop novel detectors and better temporally and spatially controlled inducers. One could detect changes in DNA, RNA, protein or even transient signaling events, in cell-based systems, in live mice, and in humans. Synthetic biology has also developed inducible systems that can be induced chemically, optically or using radio waves. This induction has been re-wired to lead to changes in gene expression, RNA stability and splicing, protein stability and splicing, and signaling via endogenous pathways. Beyond simple detectors and inducible systems, one can combine these modalities and develop novel signal integration circuits that can react to a very precise pre-programmed set of conditions or even to multiple sets of precise conditions. In this review, we highlight some tools that were developed in which these circuits were combined such that the detection of a particular event automatically triggered a specific output. Furthermore, using novel circuit-design strategies, circuits have been developed that can integrate multiple inputs together in Boolean logic gates composed of up to 6 inputs. We highlight the tools available and what has been developed thus far, and highlight how some clinical tools can be very useful in basic science. Most of the systems that are presented can be integrated together; and the possibilities far exceed the number of currently developed strategies.

  10. Linear integrated circuits

    NASA Astrophysics Data System (ADS)

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  11. Cost optimization in low volume VLSI circuits

    NASA Technical Reports Server (NTRS)

    Cook, K. B., Jr.; Kerns, D. V., Jr.

    1982-01-01

    The relationship of integrated circuit (IC) cost to electronic system cost is developed using models for integrated circuit cost which are based on design/fabrication approach. Emphasis is on understanding the relationship between cost and volume for custom circuits suitable for NASA applications. In this report, reliability is a major consideration in the models developed. Results are given for several typical IC designs using off the shelf, full custom, and semicustom IC's with single and double level metallization.

  12. Sense circuit arrangement

    NASA Technical Reports Server (NTRS)

    Bohning, Oliver D. (Inventor)

    1976-01-01

    A unique, two-node sense circuit is disclosed. The circuit includes a bridge comprised of resistance elements and a differential amplifier. The two-node circuit is suitably adapted to be arranged in an array comprised of a plurality of discrete bridge-amplifiers which can be selectively energized. The circuit is arranged so as to form a configuration with minimum power utilization and a reduced number of components and interconnections therebetween.

  13. Neurotoxicity of NMDA antagonists: a glutamatergic theory of schizophrenia based on selective impairment of local inhibitory feedback circuits

    PubMed Central

    Grunze, Heinz; Bender, Andreas; Wendhof, Stefan; Schäfer, Martin; Rujescu, Dan

    2000-01-01

    Modulation of recurrent inhibition is critical not only for the normal function of highly excitable regions of the brain, especially the limbic system, but may also be a primary determining factor for the viability of neurons in these regions. Standard extracellular and intracellular recordings from in vitro brain slices of rat hippocampi were employed to show that recurrent inhibition onto CA1 neurons can be modulated by N-methyl-D-aspartate (NMDA) antagonists. Besides reducing the amplitude of inhibitory postsynaptic potentials (IPSPs) at resting membrane potential conditions, different NMDA antagonists, including the endogenous substance N-acetyl-L-aspartyl-L-glutamic acid (NAAG), are able to block long-term potentiation (LIP) of recurrent inhibition completely at concentrations that are not sufficient to block LTP of the excitatory drive onto pyramidal neurons. This LTP of recurrent inhibition may play a significant role in stimulus discrimination and learning, as simulated in a biophysical computer model of a basic neuronal circuit. Both the amplitude of the IPSP and LTP of the recurrent inhibitory circuit also undergo developmental changes showing their highest expression and vulnerability to chronic NMDA antagonist injections in juvenile rats. Finally, blocking NMDA receptor-dependent transmission in the recurrent inhibition loop may lead to an overall increased excitability of the neuronal network. This may resemble the positive schizophrenic symptoms observed in man, presumably caused by elevated levels of the endogenous NMDA antagonist NAAG. PMID:22033472

  14. Computer-Based Sentence-Combining Instruction. Final Report.

    ERIC Educational Resources Information Center

    Southwest Regional Laboratory for Educational Research and Development, Los Alamitos, CA.

    As part of a larger investigation into the use of microcomputers in composition instruction, this report focuses on one instructional technique--sentence combining. Consisting of four parts, the report first provides the courseware and operating manual developed from the project. The second part includes specifications for instruction and content.…

  15. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  16. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  17. Genealogy of Chua's Circuit

    NASA Astrophysics Data System (ADS)

    Kennedy, Peter

    2013-01-01

    Since its invention in 1983, Chua's circuit has become a reference circuit for studying bifurcations and chaos. This chapter plots the evolution of the circuit from the original simulations and experimental realization of a five-element topology with a three-segment nonlinear resistor to the latest three-element design comprising a capacitor, an inductor, and a memristor.

  18. A linear circuit analysis program with stiff systems capability

    NASA Technical Reports Server (NTRS)

    Cook, C. H.; Bavuso, S. J.

    1973-01-01

    Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis.

  19. Architecture of enteric neural circuits involved in intestinal motility.

    PubMed

    Costa, M; Brookes, S H

    2008-08-01

    This short review describes the conceptual development in the search for the enteric neural circuits with the initial identifications of the classes of enteric neurons on the bases of their morphology, neurochemistry, biophysical properties, projections and connectivity. The discovery of the presence of multiple neurochemicals in the same nerve cells in specific combinations led to the concept of "chemical coding" and of "plurichemical transmission". The proposal that enteric reflexes are largely responsible for the propulsion of contents led to investigations of polarised reflex pathways and how these may be activated to generate the coordinated propulsive behaviour of the intestine. The research over the past decades attempted to integrate information of chemical neuroanatomy with functional studies, with the development of methods combining anatomical, functional and pharmacological techniques. This multidisciplinary strategy led to a full accounting of all functional classes of enteric neurons in the guinea-pig, and advanced wiring diagrams of the enteric neural circuits have been proposed. In parallel, investigations of the actual behaviour of the intestine during physiological motor activity have advanced with the development of spatio-temporal analysis from video recordings. The relation between neural pathways, their activities and the generation of patterns of motor activity remain largely unexplained. The enteric neural circuits appear not set in rigid programs but respond to different physico-chemical contents in an adaptable way (neuromechanical hypothesis). The generation of the complex repertoire of motor patterns results from the interplay of myogenic and neuromechanical mechanisms with spontaneous generation of migratory motor activity by enteric circuits.

  20. Experimental study of blast mitigating devices based on combined construction

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Silnikov, M. V.; Chernyshov, M. V.

    2016-09-01

    A robust blast inhibiting bin is the most often used device for damage blast effects suppression. In particular, a top open cylindrical bin significantly reduces a fragmentation effect resulted from a detonation of an explosive device placed inside the bin. However, reduction of blast wave overpressure and impulse by such cylindrical bins is not sufficient [1]. A reasonable alternative to endless increase of height and thickness of robust blast inhibiting bins is a development of destructible inhibitors having no solid elements in their structure and, therefore, excluding secondary fragmentation. So, the family of "Fountain" inhibitors [2,3] localizes and suppresses damaging blast effects due to multiphase working system. The present study is analyzing data obtained in testing of prototypes of new combined inhibitors. Their structure combines robust elements (bottoms, side surfaces) with elements responsible for blast loads reduction due to multi-phase working system (top and low transverse embeddings) and fairings impeding wave propagation in undesirable directions.

  1. Mitochondrial ion circuits.

    PubMed

    Nicholls, David G

    2010-01-01

    Proton circuits across the inner mitochondrial membrane link the primary energy generators, namely the complexes of the electron transport chain, to multiple energy utilizing processes, including the ATP synthase, inherent proton leak pathways, metabolite transport and linked circuits of sodium and calcium. These mitochondrial circuits can be monitored in both isolated preparations and intact cells and, for the primary proton circuit techniques, exist to follow both the proton current and proton electrochemical potential components of the circuit in parallel experiments, providing a quantitative means of assessing mitochondrial function and, equally importantly, dysfunction.

  2. A new crank arm based load cell, with built-in conditioning circuit and strain gages, to measure the components of the force applied by a cyclist.

    PubMed

    Pigatto, Andre V; Moura, Karina O A; Favieiro, Gabriela W; Balbinot, Alexandre

    2016-08-01

    This report describes the development of a force platform based on instrumented load cells with built-in conditioning circuit and strain gages to measure and acquire the components of the force that is applied to the bike crank arm during pedaling in real conditions, and save them on a SD Card. To accomplish that, a complete new crank arm 3D solid model was developed in the SolidWorks, with dimensions equivalent to a commercial crank set and compatible with a conventional road bike, but with a compartment to support all the electronics necessary to measure 3 components of the force applied to the pedal during pedaling. After that, a 6082 T6 Aluminum Crankset based on the solid model was made and instrumented with three Wheatstone bridges each. The signals were conditioned on a printed circuit board, made on SMD technology, and acquired using a microcontroller with a DAC. Static deformation analysis showed a linearity error below 0.6% for all six channels. Dynamic analysis showed a natural frequency above 136Hz. A one-factor experiment design was performed with 5 amateur cyclists. ANOVA showed that the cyclist weight causes significant variation on the force applied to the bicycle pedal and its bilateral symmetry.

  3. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes

    NASA Astrophysics Data System (ADS)

    Xu, Weiwei; Liu, Zhen; Zhao, Jianwen; Xu, Wenya; Gu, Weibing; Zhang, Xiang; Qian, Long; Cui, Zheng

    2014-11-01

    In this report printed thin film transistors and logic circuits on flexible substrates are reported. The top-gate thin film transistors were made of the sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) ink as channel material and printed silver lines as top electrodes and interconnect. 5 nm HfOx thin films pre-deposited on PET substrates by atomic layer deposition (ALD) act as the adhesion layers to significantly improve the immobilization efficiency of sc-SWCNTs and environmental stability. The immobilization mechanism was investigated in detail. The flexible partially-printed top-gate SWCNT TFTs display ambipolar characteristics with slightly strong p-type when using 50 nm HfOx thin films as dielectric layer, as well as the encapsulation layer by atomic layer deposition (ALD) at 120 °C. The hole mobility, on/off ratio and subthreshold swing (SS) are ~46.2 cm2 V-1 s-1, 105 and 109 mV per decade, respectively. Furthermore, partially-printed TFTs show small hysteresis, low operating voltage (2 V) and high stability in air. Flexible partially-printed inverters show good performance with voltage gain up to 33 with 1.25 V supply voltage, and can work at 10 kHz. The frequency of flexible partially-printed five-stage ring oscillators can reach 1.7 kHz at supply voltages of 2 V with per stage delay times of 58.8 μs. This work paves a way to achieve printed SWCNT advanced logic circuits and systems on flexible substrates.In this report printed thin film transistors and logic circuits on flexible substrates are reported. The top-gate thin film transistors were made of the sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) ink as channel material and printed silver lines as top electrodes and interconnect. 5 nm HfOx thin films pre-deposited on PET substrates by atomic layer deposition (ALD) act as the adhesion layers to significantly improve the immobilization efficiency of sc-SWCNTs and environmental stability. The immobilization mechanism

  4. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect

    Liang, Shibo; Zhang, Zhiyong Si, Jia; Zhong, Donglai; Peng, Lian-Mao

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  5. Extraction of circuital parameters of organic solar cells using the exact solution based on Lambert W-function

    NASA Astrophysics Data System (ADS)

    Del Pozo, G.; Romero, B.; Arredondo, B.

    2012-06-01

    The electrical behavior of organic solar cell (OSC) has been analyzed using a simple circuital model consisting on an ideal diode together with a series and parallel resistances (RS and RP respectively). Applying Kirchhoff's Laws to the circuit leads to a transcendental equation that can be solved numerically without approximations using the Lambert W function. Theoretical expression has been fitted to experimental current-voltage (I-V) curves under forward bias, obtaining fairly accurate values for the electrical parameters. This model has been validated comparing the extracted parameters for dark and illumination conditions of different devices. Results show good agreement for RS, and ideality factor (η). Electrical parameters obtained in this work are also compared to those ones extracted using an approximated method often employed by other authors 1. We conclude that approximated method leads to reasonable good values for RS, RP and η. However, in the case of Rp the voltage range chosen to fit the data with the exact method must be constrained to the fourth quadrant, where the role of parallel resistance is more critical. To validate the model, a bunch of organic solar cells with structure ITO/ poly(3,4-ethylenedioxythiophene)-poly (4-styrene sulfonate (PEDOT:PSS)/ poly(3-hexylthiophene) (P3HT): 1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM)/Al has been fabricated in inert atmosphere. Different active layers were deposited varying the P3HT:PCBM ratio (1:0.64, 1:1, 1:1.55) and the active layer thickness (ranging from 100 to 280 nm). Devices are encapsulated inside the glove-box prior its characterization outside the glove-box. Electro optical characterization has been performed with a halogen lamp. Values extracted for RS range from 142 Ω to 273 Ω, values for RP range from 25 kΩ to 331 kΩ. Ideality factor ranges from 5 to 17.

  6. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes.

    PubMed

    Xu, Weiwei; Liu, Zhen; Zhao, Jianwen; Xu, Wenya; Gu, Weibing; Zhang, Xiang; Qian, Long; Cui, Zheng

    2014-12-21

    In this report printed thin film transistors and logic circuits on flexible substrates are reported. The top-gate thin film transistors were made of the sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) ink as channel material and printed silver lines as top electrodes and interconnect. 5 nm HfOx thin films pre-deposited on PET substrates by atomic layer deposition (ALD) act as the adhesion layers to significantly improve the immobilization efficiency of sc-SWCNTs and environmental stability. The immobilization mechanism was investigated in detail. The flexible partially-printed top-gate SWCNT TFTs display ambipolar characteristics with slightly strong p-type when using 50 nm HfO(x) thin films as dielectric layer, as well as the encapsulation layer by atomic layer deposition (ALD) at 120 °C. The hole mobility, on/off ratio and subthreshold swing (SS) are ∼ 46.2 cm(2) V(-1) s(-1), 10(5) and 109 mV per decade, respectively. Furthermore, partially-printed TFTs show small hysteresis, low operating voltage (2 V) and high stability in air. Flexible partially-printed inverters show good performance with voltage gain up to 33 with 1.25 V supply voltage, and can work at 10 kHz. The frequency of flexible partially-printed five-stage ring oscillators can reach 1.7 kHz at supply voltages of 2 V with per stage delay times of 58.8 μs. This work paves a way to achieve printed SWCNT advanced logic circuits and systems on flexible substrates.

  7. Analysis of signal processing in vestibular circuits with a novel light-emitting diodes-based fluorescence microscope.

    PubMed

    Direnberger, Stephan; Banchi, Roberto; Brosel, Sonja; Seebacher, Christian; Laimgruber, Stefan; Uhl, Rainer; Felmy, Felix; Straka, Hans; Kunz, Lars

    2015-05-01

    Optical visualization of neural network activity is limited by imaging system-dependent technical tradeoffs. To overcome these constraints, we have developed a powerful low-cost and flexible imaging system with high spectral variability and unique spatio-temporal precision for simultaneous optical recording and manipulation of neural activity of large cell groups. The system comprises eight high-power light-emitting diodes, a camera with a large metal-oxide-semiconductor sensor and a high numerical aperture water-dipping objective. It allows fast and precise control of excitation and simultaneous low noise imaging at high resolution. Adjustable apertures generated two independent areas of variable size and position for simultaneous optical activation and image capture. The experimental applicability of this system was explored in semi-isolated preparations of larval axolotl (Ambystoma mexicanum) with intact inner ear organs and central nervous circuits. Cyclic galvanic stimulation of semicircular canals together with glutamate- and γ-aminobutyric acid (GABA)-uncaging caused a corresponding modulation of Ca(2+) transients in central vestibular neurons. These experiments revealed specific cellular properties as well as synaptic interactions between excitatory and inhibitory inputs, responsible for spatio-temporal-specific sensory signal processing. Location-specific GABA-uncaging revealed a potent inhibitory shunt of vestibular nerve afferent input in the predominating population of tonic vestibular neurons, indicating a considerable impact of local and commissural inhibitory circuits on the processing of head/body motion-related signals. The discovery of these previously unknown properties of vestibular computations demonstrates the merits of our novel microscope system for experimental applications in the field of neurobiology.

  8. Design of millimeter-wave MEMS-based reconfigurable front-end circuits using the standard CMOS technology

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chan; Hsieh, Sheng-Chi; Chen, Chien-Hsun; Huang, Chin-Yen; Yao, Chun-Han; Lin, Chun-Chi

    2011-12-01

    This paper describes the designs of three reconfigurable CMOS-MEMS front-end components for V-/W-band applications. The suspended MEMS structure is released through post-CMOS micromachining. To achieve circuit reconfigurability, dual-state and multi-state fishbone-beam-drive actuators are proposed herein. The reconfigurable bandstop is fabricated in a 0.35 µm CMOS process with the chip size of 0.765 × 0.98 mm2, showing that the stop-band frequency can be switched from 60 to 50 GHz with 40 V actuation voltage. The measured isolation is better than 38 dB at 60 GHz and 34 dB at 50 GHz, respectively. The bandpass filter-integrated single-pole single-throw switch, using the 0.18 µm CMOS process, demonstrates that insertion loss and return loss are better than 6.2 and 15 dB from 88 to 100 GHz in the on-state, and isolation is better than 21 dB in the off-state with an actuation voltage of 51 V. The chip size is 0.7 × 1.04 mm2. The third component is a reconfigurable slot antenna fabricated in a 0.18 µm CMOS process with the chip size of 1.2 × 1.2 mm2. By utilizing the multi-state actuators, the frequencies of this antenna can be switched to 43, 47, 50.5, 54, 57.5 GHz with return loss better than 20 dB. Those circuits demonstrate good RF performance and are relatively compact by employing several size miniaturizing techniques, thereby enabling a great potential for the future single-chip transceiver.

  9. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    NASA Astrophysics Data System (ADS)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  10. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    PubMed

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  11. Quasi-Linear Circuit

    NASA Technical Reports Server (NTRS)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  12. Logic circuits from zero forcing.

    PubMed

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  13. Nanoparticle Based Combination Treatments for Targeting Multiple Hallmarks of Cancer.

    PubMed

    VanDyke, D; Kyriacopulos, P; Yassini, B; Wright, A; Burkhart, E; Jacek, S; Pratt, M; Peterson, C R; Rai, P

    Treatment of cancer remains one of the most challenging tasks facing the healthcare system. Cancer affects the lives of millions of people and is often fatal. Current treatment methods include surgery, chemotherapy, radiation therapies or some combinations of these. However, recurrence is a major problem. These treatments can be invasive with severe side effects. Inefficacies in treatments are a result of the complex and variable biology of cancerous cells. Malignant tumor cells and normal functioning cells share many of the same biological characteristics but the main difference is that in cancer cells there is in an overuse and over expression of these biological characteristics. These pertinent characteristics can be grouped into eight hallmarks, as illustrated by Hanahan and Weinberg. These characteristics include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming energy metabolism, and evading immune destruction. In order to provide a noninvasive, effective treatment, delivery methods must be explored in order to transport cytotoxic agents used for targeting the hallmarks of cancer in a safer and more effective fashion. The use of nanoparticles as drug delivery carriers provides an effective method in which multiple cytotoxic agents can be safely delivered to cancer tissue to simultaneously target multiple hallmarks. By targeting multiple hallmarks of cancer at once, the efficacy of cancer treatments could be improved drastically. This review explores the uses and efficacy of combination therapies using nanoparticles that can simultaneously target multiple hallmarks of cancer.

  14. Nanoparticle Based Combination Treatments for Targeting Multiple Hallmarks of Cancer

    PubMed Central

    VanDyke, D; Kyriacopulos, P; Yassini, B; Wright, A; Burkhart, E; Jacek, S; Pratt, M; Peterson, CR; Rai, P

    2016-01-01

    Treatment of cancer remains one of the most challenging tasks facing the healthcare system. Cancer affects the lives of millions of people and is often fatal. Current treatment methods include surgery, chemotherapy, radiation therapies or some combinations of these. However, recurrence is a major problem. These treatments can be invasive with severe side effects. Inefficacies in treatments are a result of the complex and variable biology of cancerous cells. Malignant tumor cells and normal functioning cells share many of the same biological characteristics but the main difference is that in cancer cells there is in an overuse and over expression of these biological characteristics. These pertinent characteristics can be grouped into eight hallmarks, as illustrated by Hanahan and Weinberg. These characteristics include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming energy metabolism, and evading immune destruction. In order to provide a noninvasive, effective treatment, delivery methods must be explored in order to transport cytotoxic agents used for targeting the hallmarks of cancer in a safer and more effective fashion. The use of nanoparticles as drug delivery carriers provides an effective method in which multiple cytotoxic agents can be safely delivered to cancer tissue to simultaneously target multiple hallmarks. By targeting multiple hallmarks of cancer at once, the efficacy of cancer treatments could be improved drastically. This review explores the uses and efficacy of combination therapies using nanoparticles that can simultaneously target multiple hallmarks of cancer. PMID:27547592

  15. Formal hardware verification of digital circuits

    NASA Technical Reports Server (NTRS)

    Joyce, J.; Seger, C.-J.

    1991-01-01

    The use of formal methods to verify the correctness of digital circuits is less constrained by the growing complexity of digital circuits than conventional methods based on exhaustive simulation. This paper briefly outlines three main approaches to formal hardware verification: symbolic simulation, state machine analysis, and theorem-proving.

  16. Electronic switches and control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The innovations in this updated series of compilations dealing with electronic technology represents a carefully selected collection of items on electronic switches and control circuits. Most of the items are based on well-known circuit design concepts that have been simplified or refined to meet NASA's demanding requirement for reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes.

  17. Chua's Circuit: Control and Synchronization

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  18. Cellular Signaling Circuits Interfaced with Synthetic, Post-Translational, Negating Boolean Logic Devices

    PubMed Central

    2014-01-01

    A negating functionality is fundamental to information processing of logic circuits within cells and computers. Aiming to adapt unutilized electronic concepts to the interrogation of signaling circuits in cells, we first took a bottom-up strategy whereby we created protein-based devices that perform negating Boolean logic operations such as NOT, NOR, NAND, and N-IMPLY. These devices function in living cells within a minute by precisely commanding the localization of an activator molecule among three subcellular spaces. We networked these synthetic gates to an endogenous signaling circuit and devised a physiological output. In search of logic functions in signal transduction, we next took a top–down approach and computationally screened 108 signaling pathways to identify commonalities and differences between these biological pathways and electronic circuits. This combination of synthetic and systems approaches will guide us in developing foundations for deconstruction of intricate cell signaling, as well as construction of biomolecular computers. PMID:25000210

  19. PMGA and its application in area and power optimization for ternary FPRM circuit

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Kangping, Li; Huihong, Zhang

    2016-01-01

    Based on the research of population migration algorithms (PMAs), a population migration genetic algorithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY13F040003), the National Natural Science Foundation of China (Nos. 61234002, 61306041), and the K. C. Wong Magna Fund in Ningbo University.

  20. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.

    PubMed

    Close, Gael F; Yasuda, Shinichi; Paul, Bipul; Fujita, Shinobu; Wong, H-S Philip

    2008-02-01

    Due to their excellent electrical properties, metallic carbon nanotubes are promising materials for interconnect wires in future integrated circuits. Simulations have shown that the use of metallic carbon nanotube interconnects could yield more energy efficient and faster integrated circuits. The next step is to build an experimental prototype integrated circuit using carbon nanotube interconnects operating at high speed. Here, we report the fabrication of the first stand-alone integrated circuit combining silicon transistors and individual carbon nanotube interconnect wires on the same chip operating above 1 GHz. In addition to setting a milestone by operating above 1 GHz, this prototype is also a tool to investigate carbon nanotubes on a silicon-based platform at high frequencies, paving the way for future multi-GHz nanoelectronics.

  1. Quantum interference in plasmonic circuits.

    PubMed

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  2. Superconductive signal-processing circuits

    NASA Astrophysics Data System (ADS)

    Vanduzer, Theodore

    1994-08-01

    This work addresses new signal processing circuits using the special features of superconductivity. A novel flash-type analog-to-digital converter based on a comparator invented in the preceding contract period was demonstrated. The comparator was shown to be useful as a logic gate and an encoder was designed with it. A high-resolution delta-sigma analog-to-digital converter was devised with superconductive components in spite of the lack of an analog integrator in this technology. Positive theoretical results are being followed up experimentally. A simple flux-shuttle single-flux-quantum shift register was devised and several different readout schemes were studied. A six-bit-long version was successfully tested at 1 GHz. A decoder that takes in a five-bit word to select one of 32 output lines was completed. The design involved very tight limitations on current and power. The decoder was combined with a serial-to-parallel converter and operated at 2 GHz. A study of the appropriate architectures for various types of superconductive or Josephson digital technology was developed: an inductance-extraction program.

  3. Microprocessors as a Vehicle for Teaching Circuit Analysis.

    ERIC Educational Resources Information Center

    Neu, Emil C.

    1982-01-01

    Based on the premise that most engineering students will own their own microcomputers, discusses the teaching of circuit analysis, possible directions to be taken in hardware analysis, and impact on the mathematics related to circuit analysis. (SK)

  4. From synapses to behavior: development of a sensory-motor circuit in the leech.

    PubMed

    Marin-Burgin, Antonia; Kristan, William B; French, Kathleen A

    2008-05-01

    The development of neuronal circuits has been advanced greatly by the use of imaging techniques that reveal the activity of neurons during the period when they are constructing synapses and forming circuits. This review focuses on experiments performed in leech embryos to characterize the development of a neuronal circuit that produces a simple segmental behavior called "local bending." The experiments combined electrophysiology, anatomy, and FRET-based voltage-sensitive dyes (VSDs). The VSDs offered two major advantages in these experiments: they allowed us to record simultaneously the activity of many neurons, and unlike other imaging techniques, they revealed inhibition as well as excitation. The results indicated that connections within the circuit are formed in a predictable sequence: initially neurons in the circuit are connected by electrical synapses, forming a network that itself generates an embryonic behavior and prefigures the adult circuit; later chemical synapses, including inhibitory connections, appear, "sculpting" the circuit to generate a different, mature behavior. In this developmental process, some of the electrical connections are completely replaced by chemical synapses, others are maintained into adulthood, and still others persist and share their targets with chemical synaptic connections.

  5. Recognition of chemical entities: combining dictionary-based and grammar-based approaches

    PubMed Central

    2015-01-01

    Background The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. Results The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. Conclusions We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named

  6. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  7. A Pressure Sensing System for Heart Rate Monitoring with Polymer-Based Pressure Sensors and an Anti-Interference Post Processing Circuit

    PubMed Central

    Shu, Yi; Li, Cheng; Wang, Zhe; Mi, Wentian; Li, Yuxing; Ren, Tian-Ling

    2015-01-01

    Heart rate measurement is a basic and important issue for either medical diagnosis or daily health monitoring. In this work great efforts have been focused on realizing a portable, comfortable and low cost solution for long-term domestic heart rate monitoring. A tiny but efficient measurement system composed of a polymer-based flexible pressure sensor and an analog anti-interference readout circuit is proposed; manufactured and tested. The proposed polymer-based pressure sensor has a linear response and high sensitivity of 13.4 kPa−1. With the circuit’s outstanding capability in removing interference caused by body movement and the highly sensitive flexible sensor device, comfortable long-term heart rate monitoring becomes more realistic. Comparative tests prove that the proposed system has equivalent capability (accuracy: <3%) in heart rate measurement to the commercial product. PMID:25648708

  8. S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities

    NASA Astrophysics Data System (ADS)

    Suryavanshi, Saurabh V.; Pop, Eric

    2016-12-01

    We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to intrinsic FET behavior, the model includes contact resistance, traps and impurities, quantum capacitance, fringing fields, high-field velocity saturation, and self-heating, the latter being found to play an important role. The model is calibrated with state-of-the-art experimental data for n- and p-type 2D-FETs, and it can be used to analyze device properties for sub-100 nm gate lengths. Using the experimental fit, we demonstrate the feasibility of circuit simulations using properly scaled devices. The complete model is implemented in SPICE-compatible Verilog-A, and a downloadable version is freely available at the nanoHUB.org.

  9. Analysis of MIS equivalent electrical circuit of Au/Pd/Ti-SiO2-GaAs structure based on DLTS measurements

    NASA Astrophysics Data System (ADS)

    Kochowski, S.; Drewniak, Ł.; Nitsch, K.; Paszkiewicz, R.; Paszkiewicz, B.

    2013-08-01

    In this paper MIS equivalent electrical circuit of Au/Pd/Ti-SiO2-GaAs has been analyzed by a comparison of the results obtained from admittance and DLTS spectroscopy. Two groups of peaks with different magnitude and different gate voltage dependence have been observed in DLTS and admittance spectra. Based on the analysis of the peaks behavior, it has been concluded that they are associated with the response of bulk traps and interface states, respectively. In order to characterize bulk traps and interface states responsible for the occurrence of two groups of peaks in normalized conductance spectra we have used the equivalent circuit with two CPE-R branches. The time constant values estimated for both peaks from admittance analysis have been compared with the time constant determined from DLTS analysis. Some discrepancies have been noted between the time constants obtained for interface states whereas the time constants for bulk traps were compatible. It has been also demonstrated that when conductance peaks overlap, the admittance experimental data can be fitted by the equivalent electrical model with only one CPE-R branch. However, in this case incomplete information about the analyzed process has been obtained despite the fact that all model validity criteria can be fulfilled and the model seems to be correct.

  10. Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction

    NASA Astrophysics Data System (ADS)

    Feng, Tianheng; Yang, Lin; Zhao, Xiaowei; Zhang, Huidong; Qiang, Jiaxi

    2015-05-01

    In battery management system (BMS), equivalent-circuit model (ECM) is commonly used to simulate battery dynamics. However, there always is a contradiction between model simplicity and accuracy. A simple model is usually unable to reflect all the dynamic effects of the battery, which may bring errors to parameter identification. A complex model, however, always has too many parameters to be identified and may have parameter divergence problem. This paper tries to solve this problem with a novel ECM by adding a moving average (MA) noise to the one resistor-capacity (RC) circuit model. It can accurately capture the battery dynamics and retain a simple topology. A recursive extended least squares (RELS) algorithm is applied to online identify the ECM parameters, which shows a high accuracy in the experiments. In addition, a battery state-of-power (SOP) prediction algorithm is derived based on the proposed ECM. It considers both the voltage and current limitations of the battery, and offers a two-level prediction of the battery peak power capabilities.

  11. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  12. Lag synchronization of Rossler system and Chua circuit via a scalar signal

    NASA Astrophysics Data System (ADS)

    Li, Chuandong; Liao, Xiaofeng

    2004-08-01

    In this Letter, a chaotic lag synchronization scheme is proposed based on combining a nonlinear with lag-in-time observer design. Our approach leads to a systematic methodology, which guarantees the synchronization of a wide class of chaotic systems via a scalar signal. The proposed technique has been applied to synchronize two well-known chaotic systems: Rossler's system and Chua circuit.

  13. Combining mariculture and seawater-based solar ponds

    SciTech Connect

    Lowrey, P.; Ford, R.; Collando, F.; Morgan, J.; Frusti, E. . Dept. of Mechanical Engineering)

    1990-05-01

    Solar ponds have been thoroughly studied as a means to produce electricity or heat, but there may be comparable potential to use solar ponds to produce optimized environments for the cultivation of some aquaculture crops. For this, conventional brine-based solar ponds could be used. This strategy would probably be most suitable at desert sites where concentrated brine was abundant, pond liners might not be needed, and the crop produced could be shipped to market. Generally, a heat exchanger would be required to transfer heat from the solar pond into the culture ponds. Culture ponds could therefore use either fresh or marine water. In contrast, this paper explores seawater-based solar ponds. These are solar ponds which use seawater in the bottom storage zone and fresh water in the upper convective zone. Because the required temperature elevations for mariculture are only about 10{degrees}C, seawater-based solar ponds are conceivable. Seawater-based ponds should be very inexpensive because, by the shore, salt costs would be negligible and a liner might be unnecessary.

  14. Investigation of 6T SRAM memory circuit using high-k dielectrics based nano scale junctionless transistor

    NASA Astrophysics Data System (ADS)

    Charles Pravin, J.; Nirmal, D.; Prajoon, P.; Mohan Kumar, N.; Ajayan, J.

    2017-04-01

    In this paper the Dual Metal Surround Gate Junctionless Transistor (DMSGJLT) has been implemented with various high-k dielectric. The leakage current in the device is analysed in detail by obtaining the band structure for different high-k dielectric material. It is noticed that with increasing dielectric constant the device provides more resistance for the direct tunnelling of electron in off state. The gate oxide capacitance also shows 0.1 μF improvement with Hafnium Oxide (HfO2) than Silicon Oxide (SiO2). This paved the way for a better memory application when high-k dielectric is used. The Six Transistor (6T) Static Random Access Memory (SRAM) circuit implemented shows 41.4% improvement in read noise margin for HfO2 than SiO2. It also shows 37.49% improvement in write noise margin and 30.16% improvement in hold noise margin for HfO2 than SiO2.

  15. Wideband vibrational electromagnetic energy harvesters with nonlinear polyimide springs based on rigid-flex printed circuit boards technology

    NASA Astrophysics Data System (ADS)

    Chiu, Yi; Hong, Hao-Chiao; Hsu, Wei-Hung

    2016-12-01

    A wideband vibrational electromagnetic energy harvester employing nonlinear spring effects is proposed and demonstrated. The harvesters were designed and fabricated by commercial rigid-flex printed circuit boards technology. Rigid FR-4 boards were used for mechanical support and coil winding, whereas flexible polyimide films were patterned for mechanical springs and mass platforms. Two sets of coils were patterned and fabricated in the harvester with an internal coil resistance of about 16 Ω each. Two rare-earth magnets were attached to the central platform as shuttle mass. The total dimension of the harvester was 20 × 20 × 4 mm3. In vibration tests, nonlinearity could be observed even at 0.1 grms vibration level due to the spring hardening effect. The frequency for peak induced voltage increased from 187 Hz at low vibration to 382 Hz at 5 grms vibration. The effective half-power bandwidth increased from 8 Hz at 0.1 grms to 32 Hz at 1 grms and 52 Hz at 5 grms due to the hysteresis in frequency response. For a matched load and 1 grms vibration at 250 Hz, the maximum output power was 160 nW, corresponding to a power density of 100 nW cm-3.

  16. Low cost design of microprocessor EDAC circuit

    NASA Astrophysics Data System (ADS)

    Li, Hao; Lixin, Yu; Heping, Peng; Wei, Zhuang

    2015-11-01

    An optimization method of error detection and correction (EDAC) circuit design is proposed. The method involves selecting or constructing EDAC codes of low cost hardware, associated with operation scheduling implementation based on 2-input XOR gates structure, and two actions for reducing hardware cells, which can reduce the delay penalties and area costs of the EDAC circuit effectively. The 32-bit EDAC circuit hardware implementation is selected to make a prototype, based on the 180 nm process. The delay penalties and area costs of the EDAC circuit are evaluated. Results show that the time penalty and area cost of the EDAC circuitries are affected with different parity-check matrices and different hardware implementation for the EDAC codes with the same capability of correction and detection code. This method can be used as a guide for low-cost radiation-hardened microprocessor EDAC circuit design and for more advanced technologies.

  17. Switching Circuit for Shop Vacuum System

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1987-01-01

    No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.

  18. Flexible composite film for printed circuit board

    NASA Technical Reports Server (NTRS)

    Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.

    1982-01-01

    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.

  19. Modeling cortical circuits.

    SciTech Connect

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  20. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.