Nonparametric Combinatorial Sequence Models
NASA Astrophysics Data System (ADS)
Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa
This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.
Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4
NASA Astrophysics Data System (ADS)
Evensen, Erik; Joseph-McCarthy, Diane; Weiss, Gregory A.; Schreiber, Stuart L.; Karplus, Martin
2007-07-01
Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these "random" methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.
Tumor-targeting peptides from combinatorial libraries*
Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S.
2018-01-01
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges infighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. PMID:27210583
Tumor-targeting peptides from combinatorial libraries.
Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S
2017-02-01
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. Copyright © 2017. Published by Elsevier B.V.
Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh
2016-01-01
Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775
Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.
Müller-Molina, Arnoldo J; Schöler, Hans R; Araúzo-Bravo, Marcos J
2012-01-01
To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.
Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery
Müller-Molina, Arnoldo J.; Schöler, Hans R.; Araúzo-Bravo, Marcos J.
2012-01-01
To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory “DNA words.” From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of “DNA words,” newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters. PMID:23209563
Besalú, Emili
2016-01-01
The Superposing Significant Interaction Rules (SSIR) method is described. It is a general combinatorial and symbolic procedure able to rank compounds belonging to combinatorial analogue series. The procedure generates structure-activity relationship (SAR) models and also serves as an inverse SAR tool. The method is fast and can deal with large databases. SSIR operates from statistical significances calculated from the available library of compounds and according to the previously attached molecular labels of interest or non-interest. The required symbolic codification allows dealing with almost any combinatorial data set, even in a confidential manner, if desired. The application example categorizes molecules as binding or non-binding, and consensus ranking SAR models are generated from training and two distinct cross-validation methods: leave-one-out and balanced leave-two-out (BL2O), the latter being suited for the treatment of binary properties. PMID:27240346
Dynamic combinatorial libraries: new opportunities in systems chemistry.
Hunt, Rosemary A R; Otto, Sijbren
2011-01-21
Combinatorial chemistry is a tool for selecting molecules with special properties. Dynamic combinatorial chemistry started off aiming to be just that. However, unlike ordinary combinatorial chemistry, the interconnectedness of dynamic libraries gives them an extra dimension. An understanding of these molecular networks at systems level is essential for their use as a selection tool and creates exciting new opportunities in systems chemistry. In this feature article we discuss selected examples and considerations related to the advanced exploitation of dynamic combinatorial libraries for their originally conceived purpose of identifying strong binding interactions. Also reviewed are examples illustrating a trend towards increasing complexity in terms of network behaviour and reversible chemistry. Finally, new applications of dynamic combinatorial chemistry in self-assembly, transport and self-replication are discussed.
Li, Yang Eric; Xiao, Mu; Shi, Binbin; Yang, Yu-Cheng T; Wang, Dong; Wang, Fei; Marcia, Marco; Lu, Zhi John
2017-09-08
Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP-RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.
The combinatorial control of alternative splicing in C. elegans
2017-01-01
Normal development requires the right splice variants to be made in the right tissues at the right time. The core splicing machinery is engaged in all splicing events, but which precise splice variant is made requires the choice between alternative splice sites—for this to occur, a set of splicing factors (SFs) must recognize and bind to short RNA motifs in the pre-mRNA. In C. elegans, there is known to be extensive variation in splicing patterns across development, but little is known about the targets of each SF or how multiple SFs combine to regulate splicing. Here we combine RNA-seq with in vitro binding assays to study how 4 different C. elegans SFs, ASD-1, FOX-1, MEC-8, and EXC-7, regulate splicing. The 4 SFs chosen all have well-characterised biology and well-studied loss-of-function genetic alleles, and all contain RRM domains. Intriguingly, while the SFs we examined have varied roles in C. elegans development, they show an unexpectedly high overlap in their targets. We also find that binding sites for these SFs occur on the same pre-mRNAs more frequently than expected suggesting extensive combinatorial control of splicing. We confirm that regulation of splicing by multiple SFs is often combinatorial and show that this is functionally significant. We also find that SFs appear to combine to affect splicing in two modes—they either bind in close proximity within the same intron or they appear to bind to separate regions of the intron in a conserved order. Finally, we find that the genes whose splicing are regulated by multiple SFs are highly enriched for genes involved in the cytoskeleton and in ion channels that are key for neurotransmission. Together, this shows that specific classes of genes have complex combinatorial regulation of splicing and that this combinatorial regulation is critical for normal development to occur. PMID:29121637
Su, Zhangli
2016-01-01
Combinatorial patterns of histone modifications are key indicators of different chromatin states. Most of the current approaches rely on the usage of antibodies to analyze combinatorial histone modifications. Here we detail an antibody-free method named MARCC (Matrix-Assisted Reader Chromatin Capture) to enrich combinatorial histone modifications. The combinatorial patterns are enriched on native nucleosomes extracted from cultured mammalian cells and prepared by micrococcal nuclease digestion. Such enrichment is achieved by recombinant chromatin-interacting protein modules, or so-called reader domains, which can bind in a combinatorial modification-dependent manner. The enriched chromatin can be quantified by western blotting or mass spectrometry for the co-existence of histone modifications, while the associated DNA content can be analyzed by qPCR or next-generation sequencing. Altogether, MARCC provides a reproducible, efficient and customizable solution to enrich and analyze combinatorial histone modifications. PMID:26131849
Velagapudi, Sai Pradeep; Pushechnikov, Alexei; Labuda, Lucas P; French, Jonathan M; Disney, Matthew D
2012-11-16
There are many potential RNA drug targets in bacterial, viral, and human transcriptomes. However, there are few small molecules that modulate RNA function. This is due, in part, to a lack of fundamental understanding about RNA-ligand interactions including the types of small molecules that bind to RNA structural elements and the RNA structural elements that bind to small molecules. In an effort to better understand RNA-ligand interactions, we diversified the 2-aminobenzimidazole core (2AB) and probed the resulting library for binding to a library of RNA internal loops. We chose the 2AB core for these studies because it is a privileged scaffold for binding RNA based on previous reports. These studies identified that N-methyl pyrrolidine, imidazole, and propylamine diversity elements at the R1 position increase binding to internal loops; variability at the R2 position is well tolerated. The preferred RNA loop space was also determined for five ligands using a statistical approach and identified trends that lead to selective recognition.
Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C
2015-03-23
Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.
Jiménez-Moreno, Ester; Montalvillo-Jiménez, Laura; Santana, Andrés G; Gómez, Ana M; Jiménez-Osés, Gonzalo; Corzana, Francisco; Bastida, Agatha; Jiménez-Barbero, Jesús; Cañada, Francisco Javier; Gómez-Pinto, Irene; González, Carlos; Asensio, Juan Luis
2016-05-25
Development of strong and selective binders from promiscuous lead compounds represents one of the most expensive and time-consuming tasks in drug discovery. We herein present a novel fragment-based combinatorial strategy for the optimization of multivalent polyamine scaffolds as DNA/RNA ligands. Our protocol provides a quick access to a large variety of regioisomer libraries that can be tested for selective recognition by combining microdialysis assays with simple isotope labeling and NMR experiments. To illustrate our approach, 20 small libraries comprising 100 novel kanamycin-B derivatives have been prepared and evaluated for selective binding to the ribosomal decoding A-Site sequence. Contrary to the common view of NMR as a low-throughput technique, we demonstrate that our NMR methodology represents a valuable alternative for the detection and quantification of complex mixtures, even integrated by highly similar or structurally related derivatives, a common situation in the context of a lead optimization process. Furthermore, this study provides valuable clues about the structural requirements for selective A-site recognition.
Xiao, Wenwu; Wang, Yan; Lau, Edmond Y.; Luo, Juntao; Yao, Nianhuan; Shi, Changying; Meza, Leah; Tseng, Harry; Maeda, Yoshiko; Kumaresan, Pappanaicken; Liu, Ruiwu; Lightstone, Felice C.; Takada, Yoshikazu; Lam, Kit S.
2012-01-01
The αvβ3 integrin, expressed on the surface of various normal and cancer cells, is involved in numerous physiological processes such as angiogenesis, apoptosis, and bone resorption. Because this integrin plays a key role in angiogenesis and metastasis of human tumors, αvβ3 integrin ligands are of great interest to advances in targeted-therapy and cancer imaging. In this report, one-bead-one-compound (OBOC) combinatorial libraries containing the RGD motif were designed and screened against K562 myeloid leukemia cells that had been transfected with human αvβ3 integrin gene. Cyclic peptide LXW7 was identified as a leading ligand with a build-in handle that binds specifically to αvβ3 and showed comparable binding affinity (IC50 = 0.68±0.08 μM) to some of the well-known RGD “head-to-tail” cyclic pentapeptide ligands reported in the literature. The biotinylated form of LXW7 ligand showed similar binding strength as LXW7 against αvβ3 integrin, whereas biotinylated RGD cyclopentapeptide ligands revealed a 2 to 8 fold weaker binding affinity than their free forms. LXW7 was able to bind to both U-87MG glioblastoma and A375M melanoma cell lines, both of which express high levels of αvβ3 integrin. In vivo and ex vivo optical imaging studies with biotinylated-ligand/streptavidin-Cy5.5 complex in nude mice bearing U-87MG or A375M xenografts revealed preferential uptake of biotinylated LXW7 in tumor. When compared with biotinylated RGD cyclopentapeptide ligands, biotinylated LXW7 showed higher tumor uptake but lower liver uptake. PMID:20858725
Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density
Coronnello, Claudia; Hartmaier, Ryan; Arora, Arshi; Huleihel, Luai; Pandit, Kusum V.; Bais, Abha S.; Butterworth, Michael; Kaminski, Naftali; Stormo, Gary D.; Oesterreich, Steffi; Benos, Panayiotis V.
2012-01-01
MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential tool for miRNA-related studies. PMID:23284279
Exact model reduction of combinatorial reaction networks
Conzelmann, Holger; Fey, Dirk; Gilles, Ernst D
2008-01-01
Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs) to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks. PMID:18755034
Velegapudi, Sai Pradeep; Pushechnikov, Alexei; Labuda, Lucas P.; French, Jonathan M.; Disney, Matthew D.
2012-01-01
There are many potential RNA drug targets in bacterial, viral, and the human transcriptomes. However, there are few small molecules that modulate RNA function. This is due, in part, to a lack of fundamental understanding about RNA-ligand interactions including the types of small molecules that bind to RNA structural elements and the RNA structural elements that bind to small molecules. In an effort to better understand RNA-ligand interactions, we diversified the 2-aminobenzimidazole core (2AB) and probed the resulting library for binding to a library of RNA internal loops. We chose the 2AB core for these studies because it is a privileged scaffold for binding RNA based on previous reports. These studies identified that N-methyl pyrrolidine, imidazole, and propylamine diversity elements at the R1 position increase binding to internal loops; variability at the R2 position is well tolerated. The preferred RNA loop space was also determined for five ligands using a statistical approach and identified trends that lead to selective recognition. PMID:22958065
Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor.
Velagapudi, Sai Pradeep; Disney, Matthew D
2014-03-21
The RNA motifs that bind guanidinylated kanamycin A (G Kan A) and guanidinylated neomycin B (G Neo B) were identified via two-dimensional combinatorial screening (2DCS). The results of these studies enabled the "bottom-up" design of a small molecule inhibitor of oncogenic microRNA-10b.
Combinatorial Libraries of Arrayable Single-Chain Antibodies
NASA Astrophysics Data System (ADS)
Benhar, Itai
Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.
Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnash, Kimberly D.; The, Juliana; Norris-Drouin, Jacqueline L.
The function of EED within polycomb repressive complex 2 (PRC2) is mediated by a complex network of protein–protein interactions. Allosteric activation of PRC2 by binding of methylated proteins to the embryonic ectoderm development (EED) aromatic cage is essential for full catalytic activity, but details of this regulation are not fully understood. EED’s recognition of the product of PRC2 activity, histone H3 lysine 27 trimethylation (H3K27me3), stimulates PRC2 methyltransferase activity at adjacent nucleosomes leading to H3K27me3 propagation and, ultimately, gene repression. By coupling combinatorial chemistry and structure-based design, we optimized a low-affinity methylated jumonji, AT-rich interactive domain 2 (Jarid2) peptide tomore » a smaller, more potent peptidomimetic ligand (K d = 1.14 ± 0.14 μM) of the aromatic cage of EED. Our strategy illustrates the effectiveness of applying combinatorial chemistry to achieve both ligand potency and property optimization. Furthermore, the resulting ligands, UNC5114 and UNC5115, demonstrate that targeted disruption of EED’s reader function can lead to allosteric inhibition of PRC2 catalytic activity.« less
Mondal, Milon; Radeva, Nedyalka; Fanlo‐Virgós, Hugo; Otto, Sijbren; Klebe, Gerhard
2016-01-01
Abstract Fragment‐based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit‐identification strategy for biological targets. We report the synergistic combination of fragment linking and DCC to identify inhibitors of the aspartic protease endothiapepsin. Based on X‐ray crystal structures of endothiapepsin in complex with fragments, we designed a library of bis‐acylhydrazones and used DCC to identify potent inhibitors. The most potent inhibitor exhibits an IC50 value of 54 nm, which represents a 240‐fold improvement in potency compared to the parent hits. Subsequent X‐ray crystallography validated the predicted binding mode, thus demonstrating the efficiency of the combination of fragment linking and DCC as a hit‐identification strategy. This approach could be applied to a range of biological targets, and holds the potential to facilitate hit‐to‐lead optimization. PMID:27400756
Nature and function of insulator protein binding sites in the Drosophila genome
Schwartz, Yuri B.; Linder-Basso, Daniela; Kharchenko, Peter V.; Tolstorukov, Michael Y.; Kim, Maria; Li, Hua-Bing; Gorchakov, Andrey A.; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom A.; Riddle, Nicole C.; Jung, Youngsook L.; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi I.; Park, Peter J.; Savitsky, Mikhail; Karpen, Gary H.; Pirrotta, Vincenzo
2012-01-01
Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes. PMID:22767387
Dissection of combinatorial control by the Met4 transcriptional complex.
Lee, Traci A; Jorgensen, Paul; Bognar, Andrew L; Peyraud, Caroline; Thomas, Dominique; Tyers, Mike
2010-02-01
Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinatorial system, we systematically deleted each category of cofactor(s) and analyzed Met4-activated transcription on a genome-wide scale. We defined a core regulon for Met4, consisting of 45 target genes. Deletion of both Met31 and Met32 eliminated activation of the core regulon, whereas loss of Met28 or Cbf1 interfered with only a subset of targets that map to distinct sectors of the sulfur metabolic network. These transcriptional dependencies roughly correlated with the presence of Cbf1 promoter motifs. Quantitative analysis of in vivo promoter binding properties indicated varying levels of cooperativity and interdependency exists between members of this combinatorial system. Cbf1 was the only cofactor to remain fully bound to target promoters under all conditions, whereas other factors exhibited different degrees of regulated binding in a promoter-specific fashion. Taken together, Met4 cofactors use a variety of mechanisms to allow differential transcription of target genes in response to various cues.
Cave, John W; Xia, Li; Caudy, Michael
2011-01-01
In Drosophila melanogaster, achaete (ac) and m8 are model basic helix-loop-helix activator (bHLH A) and repressor genes, respectively, that have the opposite cell expression pattern in proneural clusters during Notch signaling. Previous studies have shown that activation of m8 transcription in specific cells within proneural clusters by Notch signaling is programmed by a "combinatorial" and "architectural" DNA transcription code containing binding sites for the Su(H) and proneural bHLH A proteins. Here we show the novel result that the ac promoter contains a similar combinatorial code of Su(H) and bHLH A binding sites but contains a different Su(H) site architectural code that does not mediate activation during Notch signaling, thus programming a cell expression pattern opposite that of m8 in proneural clusters.
Xiao, Wenwu; Wang, Yan; Lau, Edmond Y; Luo, Juntao; Yao, Nianhuan; Shi, Changying; Meza, Leah; Tseng, Harry; Maeda, Yoshiko; Kumaresan, Pappanaicken; Liu, Ruiwu; Lightstone, Felice C; Takada, Yoshikazu; Lam, Kit S
2010-10-01
The αvβ3 integrin, expressed on the surface of various normal and cancer cells, is involved in numerous physiologic processes such as angiogenesis, apoptosis, and bone resorption. Because this integrin plays a key role in angiogenesis and metastasis of human tumors, αvβ3 integrin ligands are of great interest to advances in targeted therapy and cancer imaging. In this report, one-bead one-compound (OBOC) combinatorial libraries containing the arginine-glycine-aspartic acid (RGD) motif were designed and screened against K562 myeloid leukemia cells that had been transfected with the human αvβ3 integrin gene. Cyclic peptide LXW7 was identified as a leading ligand with a built-in handle that binds specifically to αvβ3 and showed comparable binding affinity (IC(50) = 0.68 ± 0.08 μmol/L) to some of the well-known RGD "head-to-tail" cyclic pentapeptide ligands reported in the literature. The biotinylated form of LXW7 ligand showed similar binding strength as LXW7 against αvβ3 integrin, whereas biotinylated RGD cyclopentapeptide ligands revealed a 2- to 8-fold weaker binding affinity than their free forms. LXW7 was able to bind to both U-87MG glioblastoma and A375M melanoma cell lines, both of which express high levels of αvβ3 integrin. In vivo and ex vivo optical imaging studies with the biotinylated ligand/streptavidin-Cy5.5 complex in nude mice bearing U-87MG or A375M xenografts revealed preferential uptake of biotinylated LXW7 in tumor. When compared with biotinylated RGD cyclopentapeptide ligands, biotinylated LXW7 showed higher tumor uptake but lower liver uptake.
A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtaugh, Megan L.; Fanning, Sean W.; Sharma, Tressa M.
2012-09-05
There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein-protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton-linkage dictate that the presence of multiple ionizable groups, which undergo a pK{sub a} change on protein binding, are necessary to result in highly pH-dependent binding. To test this hypothesis, a novelmore » combinatorial histidine library was developed where every possible combination of histidine and wild-type residue is sampled throughout the interface of a model anti-RNase A single domain VHH antibody. Antibodies were coselected for high-affinity binding and pH-sensitivity using an in vitro, dual-function selection strategy. The resulting antibodies retained near wild-type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine 'hot-spots,' which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH-sensitive protein affinity reagents for a number of different applications.« less
Molecular mechanisms of floral organ specification by MADS domain proteins.
Yan, Wenhao; Chen, Dijun; Kaufmann, Kerstin
2016-02-01
Flower development is a model system to understand organ specification in plants. The identities of different types of floral organs are specified by homeotic MADS transcription factors that interact in a combinatorial fashion. Systematic identification of DNA-binding sites and target genes of these key regulators show that they have shared and unique sets of target genes. DNA binding by MADS proteins is not based on 'simple' recognition of a specific DNA sequence, but depends on DNA structure and combinatorial interactions. Homeotic MADS proteins regulate gene expression via alternative mechanisms, one of which may be to modulate chromatin structure and accessibility in their target gene promoters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Lavarello, Chiara; Inglese, Elvira; Bruschi, Maurizio; Ghiggeri, Gian Marco; Boschetti, Egisto; Righetti, Pier Giorgio
2015-01-01
Combinatorial peptide ligand libraries (CPLLs) tend to bind complex molecules such as dyes due to their aromatic, heterocyclic, hydrophobic, and ionic nature that may affect the protein capture specificity. In this experimental work Alcian Blue 8GX, a positively charged phthalocyanine dye well-known to bind to glycoproteins and to glucosaminoglycans, was adsorbed on a chemically modified CPLL solid phase, and the behavior of the resulting conjugate was then investigated. The control and dye-adsorbed beads were used to harvest the human urinary proteome at physiological pH, this resulting in a grand total of 1151 gene products identified after the capture. Although the Alcian Blue-modified CPLL incremented the total protein capture by 115 species, it particularly enriched some families among the harvested proteins, such as glycoproteins and nucleotide-binding proteins. This study teaches that it is possible, via the two combined harvest mechanisms, to drive the CPLL capture toward the enrichment of specific protein categories.
Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.
Kast, David J; Yang, Changsong; Disanza, Andrea; Boczkowska, Malgorzata; Madasu, Yadaiah; Scita, Giorgio; Svitkina, Tatyana; Dominguez, Roberto
2014-04-01
The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.
Gong, Xinqi; Wang, Panwen; Yang, Feng; Chang, Shan; Liu, Bin; He, Hongqiu; Cao, Libin; Xu, Xianjin; Li, Chunhua; Chen, Weizu; Wang, Cunxin
2010-11-15
Protein-protein docking has made much progress in recent years, but challenges still exist. Here we present the application of our docking approach HoDock in CAPRI. In this approach, a binding site prediction is implemented to reduce docking sampling space and filter out unreasonable docked structures, and a network-based enhanced combinatorial scoring function HPNCscore is used to evaluate the decoys. The experimental information was combined with the predicted binding site to pick out the most likely key binding site residues. We applied the HoDock method in the recent rounds of the CAPRI experiments, and got good results as predictors on targets 39, 40, and 41. We also got good results as scorers on targets 35, 37, 40, and 41. This indicates that our docking approach can contribute to the progress of protein-protein docking methods and to the understanding of the mechanism of protein-protein interactions. © 2010 Wiley-Liss, Inc.
A Combinatorial Platform for the Optimization of Peptidomimetic Methyl-Lysine Reader Antagonists
NASA Astrophysics Data System (ADS)
Barnash, Kimberly D.
Post-translational modification of histone N-terminal tails mediates chromatin compaction and, consequently, DNA replication, transcription, and repair. While numerous post-translational modifications decorate histone tails, lysine methylation is an abundant mark important for both gene activation and repression. Methyl-lysine (Kme) readers function through binding mono-, di-, or trimethyl-lysine. Chemical intervention of Kme readers faces numerous challenges due to the broad surface-groove interactions between readers and their cognate histone peptides; yet, the increasing interest in understanding chromatin-modifying complexes suggests tractable lead compounds for Kme readers are critical for elucidating the mechanisms of chromatin dysregulation in disease states and validating the druggability of these domains and complexes. The successful discovery of a peptide-derived chemical probe, UNC3866, for the Polycomb repressive complex 1 (PRC1) chromodomain Kme readers has proven the potential for selective peptidomimetic inhibition of reader function. Unfortunately, the systematic modification of peptides-to-peptidomimetics is a costly and inefficient strategy for target-class hit discovery against Kme readers. Through the exploration of biased chemical space via combinatorial on-bead libraries, we have developed two concurrent methodologies for Kme reader chemical probe discovery. We employ biased peptide combinatorial libraries as a hit discovery strategy with subsequent optimization via iterative targeted libraries. Peptide-to-peptidomimetic optimization through targeted library design was applied based on structure-guided library design around the interaction of the endogenous peptide ligand with three target Kme readers. Efforts targeting the WD40 reader EED led to the discovery of the 3-mer peptidomimetic ligand UNC5115 while combinatorial repurposing of UNC3866 for off-target chromodomains resulted in the discovery of UNC4991, a CDYL/2-selective ligand, and UNC4848, a MPP8 and CDYL/2 ligand. Ultimately, our efforts demonstrate the generalizability of a peptidomimetic combinatorial platform for the optimization of Kme reader ligands in a target class manner.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-11-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-01-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis. Images PMID:1438192
Architecture of the human regulatory network derived from ENCODE data.
Gerstein, Mark B; Kundaje, Anshul; Hariharan, Manoj; Landt, Stephen G; Yan, Koon-Kiu; Cheng, Chao; Mu, Xinmeng Jasmine; Khurana, Ekta; Rozowsky, Joel; Alexander, Roger; Min, Renqiang; Alves, Pedro; Abyzov, Alexej; Addleman, Nick; Bhardwaj, Nitin; Boyle, Alan P; Cayting, Philip; Charos, Alexandra; Chen, David Z; Cheng, Yong; Clarke, Declan; Eastman, Catharine; Euskirchen, Ghia; Frietze, Seth; Fu, Yao; Gertz, Jason; Grubert, Fabian; Harmanci, Arif; Jain, Preti; Kasowski, Maya; Lacroute, Phil; Leng, Jing Jane; Lian, Jin; Monahan, Hannah; O'Geen, Henriette; Ouyang, Zhengqing; Partridge, E Christopher; Patacsil, Dorrelyn; Pauli, Florencia; Raha, Debasish; Ramirez, Lucia; Reddy, Timothy E; Reed, Brian; Shi, Minyi; Slifer, Teri; Wang, Jing; Wu, Linfeng; Yang, Xinqiong; Yip, Kevin Y; Zilberman-Schapira, Gili; Batzoglou, Serafim; Sidow, Arend; Farnham, Peggy J; Myers, Richard M; Weissman, Sherman M; Snyder, Michael
2012-09-06
Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.
Mondal, Milon; Radeva, Nedyalka; Fanlo-Virgós, Hugo; Otto, Sijbren; Klebe, Gerhard; Hirsch, Anna K H
2016-08-01
Fragment-based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit-identification strategy for biological targets. We report the synergistic combination of fragment linking and DCC to identify inhibitors of the aspartic protease endothiapepsin. Based on X-ray crystal structures of endothiapepsin in complex with fragments, we designed a library of bis-acylhydrazones and used DCC to identify potent inhibitors. The most potent inhibitor exhibits an IC50 value of 54 nm, which represents a 240-fold improvement in potency compared to the parent hits. Subsequent X-ray crystallography validated the predicted binding mode, thus demonstrating the efficiency of the combination of fragment linking and DCC as a hit-identification strategy. This approach could be applied to a range of biological targets, and holds the potential to facilitate hit-to-lead optimization. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Chemical genomics in plant biology.
Sadhukhan, Ayan; Sahoo, Lingaraj; Panda, Sanjib Kumar
2012-06-01
Chemical genomics is a newly emerged and rapidly progressing field in biology, where small chemical molecules bind specifically and reversibly to protein(s) to modulate their function(s), leading to the delineation and subsequent unravelling of biological processes. This approach overcomes problems like lethality and redundancy of classical genetics. Armed with the powerful techniques of combinatorial synthesis, high-throughput screening and target discovery chemical genomics expands its scope to diverse areas in biology. The well-established genetic system of Arabidopsis model allows chemical genomics to enter into the realm of plant biology exploring signaling pathways of growth regulators, endomembrane signaling cascades, plant defense mechanisms and many more events.
Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.
Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario
2016-08-08
DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.
Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development
Kazemian, Majid; Pham, Hannah; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh
2013-01-01
Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein–protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101
Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.
Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh
2013-09-01
Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.
Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng
2017-01-01
The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928–0.988, = 0.894–0.954, RMSE = 0.002–0.412, s = 0.001–0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967, = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery. PMID:28059133
Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng
2017-01-06
The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2 = 0.928-0.988, = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2 = 0.967, = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.
NASA Astrophysics Data System (ADS)
Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng
2017-01-01
The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928-0.988, = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967, = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.
Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, B. K.; Castagnoli, L.; Biosciences Division
This unit describes the process and analysis of affinity selecting bacteriophage M13 from libraries displaying combinatorial peptides fused to either a minor or major capsid protein. Direct affinity selection uses target protein bound to a microtiter plate followed by purification of selected phage by ELISA. Alternatively, there is a bead-based affinity selection method. These methods allow one to readily isolate peptide ligands that bind to a protein target of interest and use the consensus sequence to search proteomic databases for putative interacting proteins.
Discovery of DNA repair inhibitors by combinatorial library profiling
Moeller, Benjamin J.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih
2011-01-01
Small molecule inhibitors of DNA repair are emerging as potent and selective anti-cancer therapies, but the sheer magnitude of the protein networks involved in DNA repair processes poses obstacles to discovery of effective candidate drugs. To address this challenge, we used a subtractive combinatorial selection approach to identify a panel of peptide ligands that bind DNA repair complexes. Supporting the concept that these ligands have therapeutic potential, we show that one selected peptide specifically binds and non-competitively inactivates DNA-PKcs, a protein kinase critical in double-strand DNA break repair. In doing so, this ligand sensitizes BRCA-deficient tumor cells to genotoxic therapy. Our findings establish a platform for large-scale parallel screening for ligand-directed DNA repair inhibitors, with immediate applicability to cancer therapy. PMID:21343400
Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons
Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni; ...
2016-09-21
The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissivemore » chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach gives a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.« less
Schröter, Christian; Günther, Ralf; Rhiel, Laura; Becker, Stefan; Toleikis, Lars; Doerner, Achim; Becker, Janine; Schönemann, Andreas; Nasu, Daichi; Neuteboom, Berend; Kolmar, Harald; Hock, Björn
2015-01-01
There is growing interest in the fast and robust engineering of protein pH-sensitivity that aims to reduce binding at acidic pH, compared to neutral pH. Here, we describe a novel strategy for the incorporation of pH-sensitive antigen binding functions into antibody variable domains using combinatorial histidine scanning libraries and yeast surface display. The strategy allows simultaneous screening for both, high affinity binding at pH 7.4 and pH-sensitivity, and excludes conventional negative selection steps. As proof of concept, we applied this strategy to incorporate pH-dependent antigen binding into the complementary-determining regions of adalimumab. After 3 consecutive rounds of separate heavy and light chain library screening, pH-sensitive variants could be isolated. Heavy and light chain mutations were combined, resulting in 3 full-length antibody variants that revealed sharp, reversible pH-dependent binding profiles. Dissociation rate constants at pH 6.0 increased 230- to 780-fold, while high affinity binding at pH 7.4 in the sub-nanomolar range was retained. Furthermore, binding to huFcRn and thermal stability were not affected by histidine substitutions. Overall, this study emphasizes a generalizable strategy for engineering pH-switch functions potentially applicable to a variety of antibodies and further proteins-based therapeutics.
Selvaraj, Chandrabose; Omer, Ankur; Singh, Poonam; Singh, Sanjeev Kumar
2015-01-01
Retroviruses HIV-1 and HTLV-1 are chiefly considered to be the most dangerous pathogens in Homo sapiens. These two viruses have structurally unique protease (PR) enzymes, which are having common function of its replication mechanism. Though HIV PR drugs failed to inhibit HTLV-1 infections, they emphatically emphasise the need for designing new lead compounds against HTLV-1 PR. Therefore, we tried to understand the binding level interactions through the charge environment present in both ligand and protein active sites. The domino effect illustrates that libraries of purvalanol-A are attuned to fill allosteric binding site of HTLV-1 PR through molecular recognition and shows proper binding of ligand pharmacophoric features in receptor contours. Our screening evaluates seven compounds from purvalanol-A libraries, and these compounds' pharmacophore searches for an appropriate place in the binding site and it places well according to respective receptor contour surfaces. Thus our result provides a platform for the progress of more effective compounds, which are better in free energy calculation, molecular docking, ADME and molecular dynamics studies. Finally, this research provided novel chemical scaffolds for HTLV-1 drug discovery.
Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins
Arvola, René M.
2017-01-01
ABSTRACT Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control. PMID:28318367
Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins.
Arvola, René M; Weidmann, Chase A; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2017-11-02
Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control.
Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam
2015-06-05
Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J; Höppener, Jo W M; Monasterio, Alberto; Casal, J Ignacio; Meloen, Rob H
2009-12-04
The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH(2)) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (K(d) values in micromolar range) and the parental monoclonal antibodies (K(d) values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity.
Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J.; Höppener, Jo W. M.; Monasterio, Alberto; Casal, J. Ignacio; Meloen, Rob H.
2009-01-01
The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH2) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (Kd values in micromolar range) and the parental monoclonal antibodies (Kd values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity. PMID:19808684
Das, Mohua; Tianming, Yang; Jinghua, Dong; Prasetya, Fransisca; Yiming, Xie; Wong, Kendra; Cheong, Adeline; Woon, Esther C Y
2018-06-19
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically-templated DCC employ only a single biomolecule in directing the self-assembly process. To expand the scope and potential of DCC, herein, we developed a novel multi-protein DCC strategy which combines the discriminatory power of zwitterionic 'thermal-tag' with the sensitivity of differential scanning fluorimetry. This strategy enables the discovery of ligands against several proteins of interest concurrently. It is remarkably sensitive and could differentiate the binding of ligands to structurally-similar subfamily members, which is extremely challenging to achieve. Through this approach, we were able to simultaneously identify subfamily-selective probes against two clinically important epigenetic enzymes, FTO (7; IC₅₀ = 2.6 µM) and ALKBH3 (8; IC₅₀ = 3.7 µM). To our knowledge, this is the first report of a subfamily-selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins, thus it shall be of widespread scientific interest. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A combinatorial approach to protein docking with flexible side chains.
Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter
2002-01-01
Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.
Manipulating Combinatorial Structures.
ERIC Educational Resources Information Center
Labelle, Gilbert
This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…
Programming gene expression with combinatorial promoters
Cox, Robert Sidney; Surette, Michael G; Elowitz, Michael B
2007-01-01
Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters. PMID:18004278
Scaffold diversification enhances effectiveness of a superlibrary of hyperthermophilic proteins.
Hussain, Mahmud; Gera, Nimish; Hill, Andrew B; Rao, Balaji M
2013-01-18
The use of binding proteins from non-immunoglobulin scaffolds has become increasingly common in biotechnology and medicine. Typically, binders are isolated from a combinatorial library generated by mutating a single scaffold protein. In contrast, here we generated a "superlibrary" or "library-of-libraries" of 4 × 10(8) protein variants by mutagenesis of seven different hyperthermophilic proteins; six of the seven proteins have not been used as scaffolds prior to this study. Binding proteins for five different model targets were successfully isolated from this library. Binders obtained were derived from five out of the seven scaffolds. Strikingly, binders from this modestly sized superlibrary have affinities comparable or higher than those obtained from a library with 1000-fold higher sequence diversity but derived from a single stable scaffold. Thus scaffold diversification, i.e., randomization of multiple different scaffolds, is a powerful alternate strategy for combinatorial library construction.
Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.
Li, Jianwei; Nowak, Piotr; Otto, Sijbren
2013-06-26
Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.
Liao, Chenzhong; Liu, Bing; Shi, Leming; Zhou, Jiaju; Lu, Xian-Ping
2005-07-01
Based on the structural characters of PPAR modulators, a virtual combinatorial library containing 1226,625 compounds was constructed using SMILES strings. Selected ADME filters were employed to compel compounds having poor drug-like properties from this library. This library was converted to sdf and mol2 files by CONCORD 4.0, and was then docked to PPARgamma by DOCK 4.0 to identify new chemical entities that may be potential drug leads against type 2 diabetes and other metabolic diseases. The method to construct virtual combinatorial library using SMILES strings was further visualized by Visual Basic.net that can facilitate the needs of generating other type virtual combinatorial libraries.
De Kumar, Bony; Parker, Hugo J.; Paulson, Ariel; Parrish, Mark E.; Pushel, Irina; Singh, Narendra Pratap; Zhang, Ying; Slaughter, Brian D.; Unruh, Jay R.; Florens, Laurence; Zeitlinger, Julia; Krumlauf, Robb
2017-01-01
Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins. PMID:28784834
Brylinski, Michal; Waldrop, Grover L
2014-04-02
As the spread of antibiotic resistant bacteria steadily increases, there is an urgent need for new antibacterial agents. Because fatty acid synthesis is only used for membrane biogenesis in bacteria, the enzymes in this pathway are attractive targets for antibacterial agent development. Acetyl-CoA carboxylase catalyzes the committed and regulated step in fatty acid synthesis. In bacteria, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. Fragment-based screening revealed that amino-oxazole inhibits biotin carboxylase activity and also exhibits antibacterial activity against Gram-negative organisms. In this report, we redesigned previously identified lead inhibitors to expand the spectrum of bacteria sensitive to the amino-oxazole derivatives by including Gram-positive species. Using 9,411 small organic building blocks, we constructed a diverse combinatorial library of 1.2×10⁸ amino-oxazole derivatives. A subset of 9×10⁶ of these compounds were subjected to structure-based virtual screening against seven biotin carboxylase isoforms using similarity-based docking by eSimDock. Potentially broad-spectrum antibiotic candidates were selected based on the consensus ranking by several scoring functions including non-linear statistical models implemented in eSimDock and traditional molecular mechanics force fields. The analysis of binding poses of the top-ranked compounds docked to biotin carboxylase isoforms suggests that: (1) binding of the amino-oxazole anchor is stabilized by a network of hydrogen bonds to residues 201, 202 and 204; (2) halogenated aromatic moieties attached to the amino-oxazole scaffold enhance interactions with a hydrophobic pocket formed by residues 157, 169, 171 and 203; and (3) larger substituents reach deeper into the binding pocket to form additional hydrogen bonds with the side chains of residues 209 and 233. These structural insights into drug-biotin carboxylase interactions will be tested experimentally in in vitro and in vivo systems to increase the potency of amino-oxazole inhibitors towards both Gram-negative as well as Gram-positive species.
DNA-Encoded Dynamic Combinatorial Chemical Libraries.
Reddavide, Francesco V; Lin, Weilin; Lehnert, Sarah; Zhang, Yixin
2015-06-26
Dynamic combinatorial chemistry (DCC) explores the thermodynamic equilibrium of reversible reactions. Its application in the discovery of protein binders is largely limited by difficulties in the analysis of complex reaction mixtures. DNA-encoded chemical library (DECL) technology allows the selection of binders from a mixture of up to billions of different compounds; however, experimental results often show low a signal-to-noise ratio and poor correlation between enrichment factor and binding affinity. Herein we describe the design and application of DNA-encoded dynamic combinatorial chemical libraries (EDCCLs). Our experiments have shown that the EDCCL approach can be used not only to convert monovalent binders into high-affinity bivalent binders, but also to cause remarkably enhanced enrichment of potent bivalent binders by driving their in situ synthesis. We also demonstrate the application of EDCCLs in DNA-templated chemical reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Kumar, Bony; Parker, Hugo J; Paulson, Ariel; Parrish, Mark E; Pushel, Irina; Singh, Narendra Pratap; Zhang, Ying; Slaughter, Brian D; Unruh, Jay R; Florens, Laurence; Zeitlinger, Julia; Krumlauf, Robb
2017-09-01
Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins. © 2017 De Kumar et al.; Published by Cold Spring Harbor Laboratory Press.
Structure-based design of combinatorial mutagenesis libraries
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-01-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189
Structure-based design of combinatorial mutagenesis libraries.
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-05-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. © 2015 The Protein Society.
Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer
Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.
2013-01-01
Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265
Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H
2010-11-15
Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication. Published by Elsevier Ltd.
A Combinatorial H4 Tail Library to Explore the Histone Code
Garske, Adam L.; Craciun, Gheorghe; Denu, John M.
2008-01-01
Histone modifications modulate chromatin structure and function. A posttranslational modification-randomized, combinatorial library based on the first twenty-one residues of histone H4 was designed for systematic examination of proteins that interpret a histone code. The 800-member library represented all permutations of most known modifications within the N-terminal tail of histone H4. To determine its utility in a protein-binding assay, the on-bead library was screened with an antibody directed against phosphoserine 1 of H4. Among the hits, 59/60 sequences were phosphorylated at S1, while 30/30 of those selected from the non-hits were unphosphorylated. A 512-member version of the library was then used to determine the binding specificity of the double tudor domain of hJMJD2A, a histone demethylase involved in transcriptional repression. Global linear least squares fitting of modifications from the identified peptides (40 hits and 34 non-hits) indicated that methylation of K20 was the primary determinant for binding, but that phosphorylation/acetylation on neighboring sites attenuated the interaction. To validate the on-bead screen, isothermal titration calorimetry was performed with thirteen H4 peptides. Dissociation constants ranged from 1 mM - 1μM and corroborated the screening results. The general approach should be useful for probing the specificity of any histone-binding protein. PMID:18616348
Dissolving variables in connectionist combinatory logic
NASA Technical Reports Server (NTRS)
Barnden, John; Srinivas, Kankanahalli
1990-01-01
A connectionist system which can represent and execute combinator expressions to elegantly solve the variable binding problem in connectionist networks is presented. This system is a graph reduction machine utilizing graph representations and traversal mechanisms similar to ones described in the BoltzCONS system of Touretzky (1986). It is shown that, as combinators eliminate variables by introducing special functions, these functions can be connectionistically implemented without reintroducing variable binding. This approach 'dissolves' an important part of the variable binding problem, in that a connectionist system still has to manipulate complex data structures, but those structures and their manipulations are rendered more uniform.
Graphene-based aptamer logic gates and their application to multiplex detection.
Wang, Li; Zhu, Jinbo; Han, Lei; Jin, Lihua; Zhu, Chengzhou; Wang, Erkang; Dong, Shaojun
2012-08-28
In this work, a GO/aptamer system was constructed to create multiplex logic operations and enable sensing of multiplex targets. 6-Carboxyfluorescein (FAM)-labeled adenosine triphosphate binding aptamer (ABA) and FAM-labeled thrombin binding aptamer (TBA) were first adsorbed onto graphene oxide (GO) to form a GO/aptamer complex, leading to the quenching of the fluorescence of FAM. We demonstrated that the unique GO/aptamer interaction and the specific aptamer-target recognition in the target/GO/aptamer system were programmable and could be utilized to regulate the fluorescence of FAM via OR and INHIBIT logic gates. The fluorescence changed according to different input combinations, and the integration of OR and INHIBIT logic gates provided an interesting approach for logic sensing applications where multiple target molecules were present. High-throughput fluorescence imagings that enabled the simultaneous processing of many samples by using the combinatorial logic gates were realized. The developed logic gates may find applications in further development of DNA circuits and advanced sensors for the identification of multiple targets in complex chemical environments.
Castanotto, Daniela; Sakurai, Kumi; Lingeman, Robert; Li, Haitang; Shively, Louise; Aagaard, Lars; Soifer, Harris; Gatignol, Anne; Riggs, Arthur; Rossi, John J.
2007-01-01
Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs. PMID:17660190
Understanding Single-Stranded Telomere End Binding by an Essential Protein
2000-08-01
BioPharma Inc., 1885 33rd Street, Boulder, CO 80301 Traditional sequential medicinal chemistry methods have been augmented by combinatorial synthesis...on the same wells that were being analyzed in parallel by RP-HPLC/UV for purity. The sampling protocol for purity determination at Array BioPharma is
Immobilized OBOC combinatorial bead array to facilitate multiplicative screening.
Xiao, Wenwu; Bononi, Fernanda C; Townsend, Jared; Li, Yuanpei; Liu, Ruiwu; Lam, Kit S
2013-07-01
One-bead-one-compound (OBOC) combinatorial library screening has been broadly utilized for the last two decades to identify small molecules, peptides or peptidomimetics targeting variable screening probes such as cell surface receptors, bacteria, protein kinases, phosphatases, proteases etc. In previous screening methods, library beads were suspended in solution and screened against one single probe. Only the positive beads were tracked and isolated for additional screens and finally selected for chemical decoding. During this process, the remaining negative beads were not tracked and discarded. Here we report a novel bead immobilization method such that a bead library array can be conveniently prepared and screened in its entirety, sequentially many times with a series of distinct probes. This method not only allows us to increase the screening efficiency but also permits us to determine the binding profile of each and every library bead against a large number of target receptors. As proof of concept, we serially screened a random OBOC disulfide containing cyclic heptapeptide library with three water soluble dyes as model probes: malachite green, bromocresol purple and indigo carmine. This multiplicative screening approach resulted in a rapid determination of the binding profile of each and every bead respective to each of the three dyes. Beads that interacted with malachite green only, bromocresol purple only, or both indigo carmine and bromocresol purple were isolated, and their peptide sequences were determined with microsequencer. Ultimately, the novel OBOC multiplicative screening approach could play a key role in the enhancement of existing on-bead assays such as whole cell binding, bacteria binding, protein binding, posttranslational modifications etc. with increased efficiency, capacity, and specificity.
Middha, Sushil Kumar; Goyal, Arvind Kumar; Faizan, Syed Ahmed; Sanghamitra, Nethramurthy; Basistha, Bharat Chandra; Usha, Talambedu
2013-11-01
Type 2 diabetes is an inevitably progressive disease, with irreversible beta cell failure. Glycogen synthase kinase and Glukokinase, two important enzymes with diverse biological actions in carbohydrate metabolism, are promising targets for developing novel antidiabetic drugs. A combinatorial structure-based molecular docking and pharmacophore modelling study was performed with the compounds of Hippophae salicifolia and H. rhamnoides as inhibitors. Docking with Discovery Studio 3.5 revealed that two compounds from H. salicifolia, viz Lutein D and an analogue of Zeaxanthin, and two compounds from H. rhamnoides, viz Isorhamnetin-3-rhamnoside and Isorhamnetin-7-glucoside, bind significantly to the GSK-3 beta receptor and play a role in its inhibition; whereas in the case of Glucokinase, only one compound from both the plants, i.e. vitamin C, had good binding characteristics capable of activation. The results help to understand the type of interactions that occur between the ligands and the receptors. Toxicity predictions revealed that none of the compounds had hepatotoxic effects and had good absorption as well as solubility characteristics. The compounds did not possess plasma protein-binding, crossing blood-brain barrier ability. Further, in vivo and in vitro studies need to be performed to prove that these compounds can be used effectively as antidiabetic drugs.
Balancing focused combinatorial libraries based on multiple GPCR ligands
NASA Astrophysics Data System (ADS)
Soltanshahi, Farhad; Mansley, Tamsin E.; Choi, Sun; Clark, Robert D.
2006-08-01
G-Protein coupled receptors (GPCRs) are important targets for drug discovery, and combinatorial chemistry is an important tool for pharmaceutical development. The absence of detailed structural information, however, limits the kinds of combinatorial design techniques that can be applied to GPCR targets. This is particularly problematic given the current emphasis on focused combinatorial libraries. By linking an incremental construction method (OptDesign) to the very fast shape-matching capability of ChemSpace, we have created an efficient method for designing targeted sublibraries that are topomerically similar to known actives. Multi-objective scoring allows consideration of multiple queries (actives) simultaneously. This can lead to a distribution of products skewed towards one particular query structure, however, particularly when the ligands of interest are quite dissimilar to one another. A novel pivoting technique is described which makes it possible to generate promising designs even under those circumstances. The approach is illustrated by application to some serotonergic agonists and chemokine antagonists.
Epitope mapping: the first step in developing epitope-based vaccines.
Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael
2007-01-01
Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies' specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a 'B-cell epitope-based vaccine', the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen:antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For epitope mapping, computational algorithms have been developed, such as Mapitope, which has recently been found to be effective in mapping conformational discontinuous epitopes. The pros and cons of various approaches towards epitope mapping are also discussed.
Potyrailo, Radislav A; Chisholm, Bret J; Morris, William G; Cawse, James N; Flanagan, William P; Hassib, Lamyaa; Molaison, Chris A; Ezbiansky, Karin; Medford, George; Reitz, Hariklia
2003-01-01
Coupling of combinatorial chemistry methods with high-throughput (HT) performance testing and measurements of resulting properties has provided a powerful set of tools for the 10-fold accelerated discovery of new high-performance coating materials for automotive applications. Our approach replaces labor-intensive steps with automated systems for evaluation of adhesion of 8 x 6 arrays of coating elements that are discretely deposited on a single 9 x 12 cm plastic substrate. Performance of coatings is evaluated with respect to their resistance to adhesion loss, because this parameter is one of the primary considerations in end-use automotive applications. Our HT adhesion evaluation provides previously unavailable capabilities of high speed and reproducibility of testing by using a robotic automation, an expanded range of types of tested coatings by using the coating tagging strategy, and an improved quantitation by using high signal-to-noise automatic imaging. Upon testing, the coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Using our HT methodology, we have developed several coatings leads. These HT screening results for the best coating compositions have been validated on the traditional scales of coating formulation and adhesion loss testing. These validation results have confirmed the superb performance of combinatorially developed coatings over conventional coatings on the traditional scale.
Tron, Adriana E.; Bertoncini, Carlos W.; Palena, Claudia M.; Chan, Raquel L.; Gonzalez, Daniel H.
2001-01-01
Four groups of plant homeodomain proteins contain a dimerization motif closely linked to the homeodomain. We here show that two sunflower homeodomain proteins, Hahb-4 and HAHR1, which belong to the Hd-Zip I and GL2/Hd-Zip IV groups, respectively, show different binding preferences at a defined position of a pseudopalindromic DNA-binding site used as a target. HAHR1 shows a preference for the sequence 5′-CATT(A/T)AATG-3′, rather than 5′-CAAT(A/T)ATTG-3′, recognized by Hahb-4. To analyze the molecular basis of this behavior, we have constructed a set of mutants with exchanged residues (Phe→Ile and Ile→Phe) at position 47 of the homeodomain, together with chimeric proteins between HAHR1 and Hahb-4. The results obtained indicate that Phe47, but not Ile47, allows binding to 5′-CATT(A/T)AATG-3′. However, the preference for this sequence is determined, in addition, by amino acids located C-terminal to residue 53 of the HAHR1 homeodomain. A double mutant of Hahb-4 (Ile47→Phe/Ala54→Thr) shows the same binding behavior as HAHR1, suggesting that combinatorial interactions of amino acid residues at positions 47 and 54 of the homeodomain are involved in establishing the affinity and selectivity of plant dimeric homeodomain proteins with different DNA target sequences. PMID:11726696
Rational design of peptide affinity ligands for the purification of therapeutic enzymes.
Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj
2018-04-25
Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
ERIC Educational Resources Information Center
Pulvermuller, Friedemann
2010-01-01
Neuroscience has greatly improved our understanding of the brain basis of abstract lexical and semantic processes. The neuronal devices underlying words and concepts are distributed neuronal assemblies reaching into sensory and motor systems of the cortex and, at the cognitive level, information binding in such widely dispersed circuits is…
NASA Astrophysics Data System (ADS)
Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.
Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.
Godet, Angélique N; Guergnon, Julien; Maire, Virginie; Croset, Amélie; Garcia, Alphonse
2010-04-01
Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1))V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. In this study, we demonstrate that DPT-AIF(1), a peptide containing the AIF(562-571) sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1) provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1) a bi-partite cell penetrating peptide containing APAF-1(122-131), a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571) and APAF-1(122-131) sequences contain a common R/Kx((0,1))V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2) and DPT-APAF(2) that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2) also suppressed cell penetration. These results indicate that the combinatorial PP1c docking motif R/Kx((0,1))V/IxFxxR/KxR/K, deduced from AIF(562-571) and APAF-1(122-131) sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.
Anusuya, Shanmugam; Gromiha, M Michael
2017-10-01
Dengue is an important public health problem in tropical and subtropical regions of the world. Neither vaccine nor an antiviral medication is available to treat dengue. This insists the need of drug discovery for dengue. In order to find a potent lead molecule, RNA-dependent RNA polymerase which is essential for dengue viral replication is chosen as a drug target. As Quercetin showed antiviral activity against several viruses, quercetin derivatives developed by combinatorial library synthesis and mined from PubChem databases were screened for a potent anti-dengue viral agent. Our study predicted Quercetin 3-(6″-(E)-p-coumaroylsophoroside)-7-rhamnoside as a dengue polymerase inhibitor. The results were validated by molecular dynamics simulation studies which reveal water bridges and hydrogen bonds as major contributors for the stability of the polymerase-lead complex. Interactions formed by this compound with residues Trp795, Arg792 and Glu351 are found to be essential for the stability of the polymerase-lead complex. Our study demonstrates Quercetin 3-(6″-(E)-p-coumaroylsophoroside)-7-rhamnoside as a potent non-nucleoside inhibitor for dengue polymerase.
Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.
Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping
2012-04-25
A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.
Lohmann, Ingrid
2012-01-01
In multi-cellular organisms, spatiotemporal activity of cis-regulatory DNA elements depends on their occupancy by different transcription factors (TFs). In recent years, genome-wide ChIP-on-Chip, ChIP-Seq and DamID assays have been extensively used to unravel the combinatorial interaction of TFs with cis-regulatory modules (CRMs) in the genome. Even though genome-wide binding profiles are increasingly becoming available for different TFs, single TF binding profiles are in most cases not sufficient for dissecting complex regulatory networks. Thus, potent computational tools detecting statistically significant and biologically relevant TF-motif co-occurrences in genome-wide datasets are essential for analyzing context-dependent transcriptional regulation. We have developed COPS (Co-Occurrence Pattern Search), a new bioinformatics tool based on a combination of association rules and Markov chain models, which detects co-occurring TF binding sites (BSs) on genomic regions of interest. COPS scans DNA sequences for frequent motif patterns using a Frequent-Pattern tree based data mining approach, which allows efficient performance of the software with respect to both data structure and implementation speed, in particular when mining large datasets. Since transcriptional gene regulation very often relies on the formation of regulatory protein complexes mediated by closely adjoining TF binding sites on CRMs, COPS additionally detects preferred short distance between co-occurring TF motifs. The performance of our software with respect to biological significance was evaluated using three published datasets containing genomic regions that are independently bound by several TFs involved in a defined biological process. In sum, COPS is a fast, efficient and user-friendly tool mining statistically and biologically significant TFBS co-occurrences and therefore allows the identification of TFs that combinatorially regulate gene expression. PMID:23272209
1994-01-01
Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685
Nanotube Interactions with Nanoparticles and Peptides
2008-01-01
combinatorial phage display technique. We find a tryptophan rich binding motif to nanotubes on solid silicon substrates. The motif resembles an alpha helix...CHAPTER 2. DIELECTROPHORESIS AND PHAGE DISPLAY 2.1. Dielectrophoresis (DEP) 12 2.2. Phage display 14 References...104 5.3. Conclusions 105 5.4. Experimental Section 105 5.4.1. Nanotube synthesis 105 5.4.2. Phage display
Sahib, Mouayad A.; Gambardella, Luca M.; Afzal, Wasif; Zamli, Kamal Z.
2016-01-01
Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly. PMID:27829025
The LATL as locus of composition: MEG evidence from English and Arabic.
Westerlund, Masha; Kastner, Itamar; Al Kaabi, Meera; Pylkkänen, Liina
2015-02-01
Neurolinguistic investigations into the processing of structured sentences as well as simple adjective-noun phrases point to the left anterior temporal lobe (LATL) as a leading candidate for basic linguistic composition. Here, we characterized the combinatory profile of the LATL over a variety of syntactic and semantic environments, and across two languages, English and Arabic. The contribution of the LATL was investigated across two types of composition: the optional modification of a predicate (modification) and the satisfaction of a predicate's argument position (argument saturation). Target words were presented during MEG recordings, either in combinatory contexts (e.g. "eats meat") or in non-combinatory contexts (preceded by an unpronounceable consonant string, e.g. "xqkr meat"). Across both languages, the LATL showed increased responses to words in combinatory contexts, an effect that was robust to composition type and word order. Together with related findings, these results solidify the role of the LATL in basic semantic composition. Copyright © 2014 Elsevier Inc. All rights reserved.
DNA Assembly Techniques for Next Generation Combinatorial Biosynthesis of Natural Products
Cobb, Ryan E.; Ning, Jonathan C.; Zhao, Huimin
2013-01-01
Natural product scaffolds remain important leads for pharmaceutical development. However, transforming a natural product into a drug entity often requires derivatization to enhance the compound’s therapeutic properties. A powerful method by which to perform this derivatization is combinatorial biosynthesis, the manipulation of the genes in the corresponding pathway to divert synthesis towards novel derivatives. While these manipulations have traditionally been carried out via restriction digestion/ligation-based cloning, the shortcomings of such techniques limit their throughput and thus the scope of corresponding combinatorial biosynthesis experiments. In the burgeoning field of synthetic biology, the demand for facile DNA assembly techniques has promoted the development of a host of novel DNA assembly strategies. Here we describe the advantages of these recently-developed tools for rapid, efficient synthesis of large DNA constructs. We also discuss their potential to facilitate the simultaneous assembly of complete libraries of natural product biosynthetic pathways, ushering in the next generation of combinatorial biosynthesis. PMID:24127070
Velagapudi, Sai Pradeep; Disney, Matthew D
2013-10-15
RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site. Copyright © 2013 Elsevier Ltd. All rights reserved.
Velagapudi, Sai Pradeep; Disney, Matthew D.
2013-01-01
RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3 × 3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure–activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif–aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site. PMID:23719281
Beaver, Joshua E; Peacor, Brendan C; Bain, Julianne V; James, Lindsey I; Waters, Marcey L
2015-03-21
Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.
Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides.
Chokhawala, Harshal A; Huang, Shengshu; Lau, Kam; Yu, Hai; Cheng, Jiansong; Thon, Vireak; Hurtado-Ziola, Nancy; Guerrero, Juan A; Varki, Ajit; Chen, Xi
2008-09-19
Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.
Di Rienzo, Lorenzo; Milanetti, Edoardo; Lepore, Rosalba; Olimpieri, Pier Paolo; Tramontano, Anna
2017-01-01
We describe here a superposition free method for comparing the surfaces of antibody binding sites based on the Zernike moments and show that they can be used to quickly compare and cluster sets of antibodies. The clusters provide information about the nature of the bound antigen that, when combined with a method for predicting the number of direct antibody antigen contacts, allows the discrimination between protein and non-protein binding antibodies with an accuracy of 76%. This is of relevance in several aspects of antibody science, for example to select the framework to be used for a combinatorial antibody library. PMID:28338016
Alternative Affinity Ligands for Immunoglobulins.
Kruljec, Nika; Bratkovič, Tomaž
2017-08-16
The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.
Functional group placement in protein binding sites: a comparison of GRID and MCSS
NASA Astrophysics Data System (ADS)
Bitetti-Putzer, Ryan; Joseph-McCarthy, Diane; Hogle, James M.; Karplus, Martin
2001-10-01
One approach to combinatorial ligand design begins by determining optimal locations (i.e., local potential energy minima) for functional groups in the binding site of a target macromolecule. MCSS and GRID are two methods, based on significantly different algorithms, which are used for this purpose. A comparison of the two methods for the same functional groups is reported. Calculations were performed for nonpolar and polar functional groups in the internal hydrophobic pocket of the poliovirus capsid protein, and on the binding surface of the src SH3 domain. The two approaches are shown to agree qualitatively; i.e., the global characteristics of the functional group maps generated by MCSS and GRID are similar. However, there are significant differences in the relative interaction energies of the two sets of minima, a consequence of the different functional form used to evaluate polar interactions (electrostatics and hydrogen bonding) in the two methods. The single sphere representation used by GRID affords only positional information, supplemented by the identification of hydrogen bonding interactions. By contrast, the multi-atom representation of most MCSS groups yields in both positional and orientational information. The two methods are most similar for small functional groups, while for larger functional groups MCSS yields results consistent with GRID but superior in detail. These results are in accord with the somewhat different purposes for which the two methods were developed. GRID has been used mainly to introduce functionalities at specific positions in lead compounds, in which case the orientation is predetermined by the structure of the latter. The orientational information provided by MCSS is important for its use in the de novo design of large, multi-functional ligands, as well as for improving lead compounds.
Tan, Jing; Song, Xinmi; Fu, Xiaobin; Wu, Fan; Hu, Fuliang; Li, Hongliang
2018-08-05
In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH < 0, ΔS > 0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (K A ) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods. Copyright © 2018 Elsevier B.V. All rights reserved.
High-throughput screening for combinatorial thin-film library of thermoelectric materials.
Watanabe, Masaki; Kita, Takuji; Fukumura, Tomoteru; Ohtomo, Akira; Ueno, Kazunori; Kawasaki, Masashi
2008-01-01
A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.
Naqvi, Tatheer; Warden, Andrew C.; French, Nigel; Sugrue, Elena; Carr, Paul D.; Jackson, Colin J.; Scott, Colin
2014-01-01
Phosphotriesterases (PTEs) have been isolated from a range of bacterial species, including Agrobcaterium radiobacter (PTEAr), and are efficient enzymes with broad substrate ranges. The turnover rate of PTEAr for the common organophosphorous insecticide malathion is lower than expected based on its physical properties; principally the pka of its leaving group. In this study, we rationalise the turnover rate of PTEAr for malathion using computational docking of the substrate into a high resolution crystal structure of the enzyme, suggesting that malathion is too large for the PTEAr binding pocket. Protein engineering through combinatorial active site saturation testing (CASTing) was then used to increase the rate of malathion turnover. Variants from a CASTing library in which Ser308 and Tyr309 were mutated yielded variants with increased activity towards malathion. The most active PTEAr variant carried Ser308Leu and Tyr309Ala substitutions, which resulted in a ca. 5000-fold increase in k cat/K M for malathion. X-ray crystal structures for the PTEAr Ser308Leu\\Tyr309Ala variant demonstrate that the access to the binding pocket was enhanced by the replacement of the bulky Tyr309 residue with the smaller alanine residue. PMID:24721933
Combinatorial chemical bath deposition of CdS contacts for chalcogenide photovoltaics
Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; ...
2016-08-01
Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se 2 (CIGSe) and Cu 2ZnSnSe 4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps ofmore » CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. Finally, the results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.
2010-04-15
Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with amore » fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.« less
Hydroxyapatite-binding peptides for bone growth and inhibition
Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA
2011-09-20
Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.
Criticism of EFSA's scientific opinion on combinatorial effects of 'stacked' GM plants.
Bøhn, Thomas
2018-01-01
Recent genetically modified plants tend to include both insect resistance and herbicide tolerance traits. Some of these 'stacked' GM plants have multiple Cry-toxins expressed as well as tolerance to several herbicides. This means that non-target organisms in the environment (biodiversity) will be co-exposed to multiple stressors simultaneously. A similar co-exposure may happen to consumers through chemical residues in the food chain. EFSA, the responsible unit for minimizing risk of harm in European food chains, has expressed its scientific interest in combinatorial effects. However, when new data showed how two Cry-toxins acted in combination (added toxicity), and that the same Cry-toxins showed combinatorial effects when co-exposed with Roundup (Bøhn et al., 2016), EFSA dismissed these new peer-reviewed results. In effect, EFSA claimed that combinatorial effects are not relevant for itself. EFSA was justifying this by referring to a policy question, and by making invalid assumptions, which could have been checked directly with the lead-author. With such approach, EFSA may miss the opportunity to improve its environmental and health risk assessment of toxins and pesticides in the food chain. Failure to follow its own published requests for combinatorial effects research, may also risk jeopardizing EFSA's scientific and public reputation. Copyright © 2017. Published by Elsevier Ltd.
Context-dependent control of alternative splicing by RNA-binding proteins
Fu, Xiang-Dong; Ares, Manuel
2015-01-01
Sequence-specific RNA-binding proteins (RBPs) bind to pre-mRNA to control alternative splicing, but it is not yet possible to read the ‘splicing code’ that dictates splicing regulation on the basis of genome sequence. Each alternative splicing event is controlled by multiple RBPs, the combined action of which creates a distribution of alternatively spliced products in a given cell type. As each cell type expresses a distinct array of RBPs, the interpretation of regulatory information on a given RNA target is exceedingly dependent on the cell type. RBPs also control each other’s functions at many levels, including by mutual modulation of their binding activities on specific regulatory RNA elements. In this Review, we describe some of the emerging rules that govern the highly context-dependent and combinatorial nature of alternative splicing regulation. PMID:25112293
Minovski, Nikola; Perdih, Andrej; Solmajer, Tom
2012-05-01
The virtual combinatorial chemistry approach as a methodology for generating chemical libraries of structurally-similar analogs in a virtual environment was employed for building a general mixed virtual combinatorial library with a total of 53.871 6-FQ structural analogs, introducing the real synthetic pathways of three well known 6-FQ inhibitors. The druggability properties of the generated combinatorial 6-FQs were assessed using an in-house developed drug-likeness filter integrating the Lipinski/Veber rule-sets. The compounds recognized as drug-like were used as an external set for prediction of the biological activity values using a neural-networks (NN) model based on an experimentally-determined set of active 6-FQs. Furthermore, a subset of compounds was extracted from the pool of drug-like 6-FQs, with predicted biological activity, and subsequently used in virtual screening (VS) campaign combining pharmacophore modeling and molecular docking studies. This complex scheme, a powerful combination of chemometric and molecular modeling approaches provided novel QSAR guidelines that could aid in the further lead development of 6-FQs agents.
Wang, Chao; Wei, Zhiyi
2017-01-01
Ankyrins together with their spectrin partners are the master organizers of micron-scale membrane domains in diverse tissues. The 24 ankyrin (ANK) repeats of ankyrins bind to numerous membrane proteins, linking them to spectrin-based cytoskeletons at specific membrane microdomains. The accessibility of the target binding groove of ANK repeats must be regulated to achieve spatially defined functions of ankyrins/target complexes in different tissues, though little is known in this regard. Here we systemically investigated the autoinhibition mechanism of ankyrin-B/G by combined biochemical, biophysical and structural biology approaches. We discovered that the entire ANK repeats are inhibited by combinatorial and quasi-independent bindings of multiple disordered segments located in the ankyrin-B/G linkers and tails, suggesting a mechanistic basis for differential regulations of membrane target bindings by ankyrins. In addition to elucidating the autoinhibition mechanisms of ankyrins, our study may also shed light on regulations on target bindings by other long repeat-containing proteins. PMID:28841137
A mass action model of a Fibroblast Growth Factor signaling pathway and its simplification.
Gaffney, E A; Heath, J K; Kwiatkowska, M Z
2008-11-01
We consider a kinetic law of mass action model for Fibroblast Growth Factor (FGF) signaling, focusing on the induction of the RAS-MAP kinase pathway via GRB2 binding. Our biologically simple model suffers a combinatorial explosion in the number of differential equations required to simulate the system. In addition to numerically solving the full model, we show that it can be accurately simplified. This requires combining matched asymptotics, the quasi-steady state hypothesis, and the fact subsets of the equations decouple asymptotically. Both the full and simplified models reproduce the qualitative dynamics observed experimentally and in previous stochastic models. The simplified model also elucidates both the qualitative features of GRB2 binding and the complex relationship between SHP2 levels, the rate SHP2 induces dephosphorylation and levels of bound GRB2. In addition to providing insight into the important and redundant features of FGF signaling, such work further highlights the usefulness of numerous simplification techniques in the study of mass action models of signal transduction, as also illustrated recently by Borisov and co-workers (Borisov et al. in Biophys. J. 89, 951-966, 2005, Biosystems 83, 152-166, 2006; Kiyatkin et al. in J. Biol. Chem. 281, 19925-19938, 2006). These developments will facilitate the construction of tractable models of FGF signaling, incorporating further biological realism, such as spatial effects or realistic binding stoichiometries, despite a more severe combinatorial explosion associated with the latter.
Potter, Ross M; Maestas, Diane C; Cimino, Daniel F; Prossnitz, Eric R
2006-05-01
Adaptation, defined as the diminution of receptor signaling in the presence of continued or repeated stimulation, is critical to cellular function. G protein-coupled receptors (GPCRs) undergo multiple adaptive processes, including desensitization and internalization, through phosphorylation of cytoplasmic serine and threonine residues. However, the relative importance of individual and combined serine and threonine residues to these processes is not well understood. We examined this mechanism in the context of the N-formyl peptide receptor (FPR), a well-characterized member of the chemoattractant/chemokine family of GPCRs critical to neutrophil function. To evaluate the contributions of individual and combinatorial serine and threonine residues to internalization, desensitization, and arrestin2 binding, 30 mutant forms of the FPR, expressed in the human promyelocytic U937 cell line, were characterized. We found that residues Ser(328), Ser(332), and Ser(338) are individually critical, and indeed sufficient, for internalization, desensitization, and arrestin2 binding, but that the presence of neighboring threonine residues can inhibit these processes. Additionally, we observed no absolute correlation between arrestin binding and either internalization or desensitization, suggesting the existence of arrestin-independent mechanisms for these processes. Our results suggest C-terminal serine and threonine residues of the FPR represent a combinatorial code, capable of both positively and negatively regulating signaling and trafficking. This study is among the first detailed analyses of a complex regulatory site in a GPCR, and provides insight into GPCR regulatory mechanisms.
Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.
Straume, M; Johnson, M L
1988-02-23
We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)
Kumaresan, Pappanaicken R; Devaraj, Sridevi; Huang, Wenzhe; Lau, Edmond Y; Liu, Ruiwu; Lam, Kit S; Jialal, Ishwarlal
2013-06-01
Numerous studies have shown that high C-reactive protein (CRP) levels predict cardiovascular disease and augur a poor prognosis in patients with acute coronary syndromes. Much in vitro and in vivo data support of a role for CRP in atherogenesis. There is an urgent need to develop inhibitors that specifically block the biological effects of CRP in vivo. The one-bead-one-compound (OBOC) combinatorial library method has been used to discover ligands against several biological targets. In this study, we use a novel fluorescence-based screening method to screen an OBOC combinatorial library for the discovery of peptides against human CRP. Human CRP was labeled with fluorescein isothiocyanate (FITC) and human serum albumin (HuSA) was labeled with phycoerythrin (PE) and used for screening. The OBOC library LWH-01 was synthesized on TentaGel resin beads using a standard solid-phase "split/mix" approach. By subtraction screening, eight peptides that bind specifically to CRP and not to HuSA were identified. In human aortic endothelial cells (HAECs) incubated with CRP, inhibitors CRPi-2, CRPi-3, and CRPi-6 significantly inhibited CRP-induced superoxide, cytokine release, and nuclear factor-κB (NFκB) activity. Molecular docking studies demonstrate that CRPi-2 interacts with the two Ca(2+) ions in the single subunit of CRP. The binding of CRPi-2 is reminiscent of choline binding. Future studies will examine the utility of this inhibitor in animal models and clinical trials.
Madritsch, Christoph; Gadermaier, Elisabeth; Roder, Uwe W.; Lupinek, Christian; Valenta, Rudolf; Flicker, Sabine
2015-01-01
The timothy grass pollen allergen Phl p 1 belongs to the group 1 of highly cross-reactive grass pollen allergens with a molecular mass of ~25–30 kDa. Group 1 allergens are recognized by >95% of grass pollen allergic patients. We investigated the IgE recognition of Phl p 1 using allergen-specific IgE-derived single-chain variable Ab fragments (IgE-ScFvs) isolated from a combinatorial library constructed from PBMCs of a grass pollen–allergic patient. IgE-ScFvs reacted with recombinant Phl p 1 and natural group 1 grass pollen allergens. Using synthetic Phl p 1–derived peptides, the binding sites of two ScFvs were mapped to the N terminus of the allergen. In surface plasmon resonance experiments they showed comparable high-affinity binding to Phl p 1 as a complete human IgE-derived Ab recognizing the allergens’ C terminus. In a set of surface plasmon resonance experiments simultaneous allergen recognition of all three binders was demonstrated. Even in the presence of the three binders, allergic patients’ polyclonal IgE reacted with Phl p 1, indicating high-density IgE recognition of the Phl p 1 allergen. Our results show that multiple IgE Abs can bind with high density to Phl p 1, which may explain the high allergenic activity and sensitizing capacity of this allergen. PMID:25637023
Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.
Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M
2012-04-10
Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society
Experimental Design for Combinatorial and High Throughput Materials Development
NASA Astrophysics Data System (ADS)
Cawse, James N.
2002-12-01
In the past decade, combinatorial and high throughput experimental methods have revolutionized the pharmaceutical industry, allowing researchers to conduct more experiments in a week than was previously possible in a year. Now high throughput experimentation is rapidly spreading from its origins in the pharmaceutical world to larger industrial research establishments such as GE and DuPont, and even to smaller companies and universities. Consequently, researchers need to know the kinds of problems, desired outcomes, and appropriate patterns for these new strategies. Editor James Cawse's far-reaching study identifies and applies, with specific examples, these important new principles and techniques. Experimental Design for Combinatorial and High Throughput Materials Development progresses from methods that are now standard, such as gradient arrays, to mathematical developments that are breaking new ground. The former will be particularly useful to researchers entering the field, while the latter should inspire and challenge advanced practitioners. The book's contents are contributed by leading researchers in their respective fields. Chapters include: -High Throughput Synthetic Approaches for the Investigation of Inorganic Phase Space -Combinatorial Mapping of Polymer Blends Phase Behavior -Split-Plot Designs -Artificial Neural Networks in Catalyst Development -The Monte Carlo Approach to Library Design and Redesign This book also contains over 200 useful charts and drawings. Industrial chemists, chemical engineers, materials scientists, and physicists working in combinatorial and high throughput chemistry will find James Cawse's study to be an invaluable resource.
Coding of odors by temporal binding within a model network of the locust antennal lobe.
Patel, Mainak J; Rangan, Aaditya V; Cai, David
2013-01-01
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin-Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics
NASA Astrophysics Data System (ADS)
Linder, Mats; Johansson, Adam Johannes; Olsson, Tjelvar S. G.; Liebeschuetz, John; Brinck, Tore
2012-09-01
A novel computational Diels-Alderase design, based on a relatively rare form of carboxylesterase from Geobacillus stearothermophilus, is presented and theoretically evaluated. The structure was found by mining the PDB for a suitable oxyanion hole-containing structure, followed by a combinatorial approach to find suitable substrates and rational mutations. Four lead designs were selected and thoroughly modeled to obtain realistic estimates of substrate binding and prearrangement. Molecular dynamics simulations and DFT calculations were used to optimize and estimate binding affinity and activation energies. A large quantum chemical model was used to capture the salient interactions in the crucial transition state (TS). Our quantitative estimation of kinetic parameters was validated against four experimentally characterized Diels-Alderases with good results. The final designs in this work are predicted to have rate enhancements of ≈103-106 and high predicted proficiencies. This work emphasizes the importance of considering protein dynamics in the design approach, and provides a quantitative estimate of the how the TS stabilization observed in most de novo and redesigned enzymes is decreased compared to a minimal, `ideal' model. The presented design is highly interesting for further optimization and applications since it is based on a thermophilic enzyme ( T opt = 70 °C).
Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal
2014-01-01
We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709
2002-01-01
shown that engineered viruses can recognize specific semiconductor surfaces through the selection by combinatorial phage display method. These specific... phage display libraries. The screening method selected for binding affinity of a population of random peptides displayed as part of the pIII minor coat...shorter spacing than expected distance ( M13 phage length: 880 nm) corresponds to the length scale imposed by the phage which formed the tilted
Tailoring gas sensor arrays via the design of short peptides sequences as binding elements.
Mascini, Marcello; Pizzoni, Daniel; Perez, German; Chiarappa, Emilio; Di Natale, Corrado; Pittia, Paola; Compagnone, Dario
2017-07-15
A semi-combinatorial virtual approach was used to prepare peptide-based gas sensors with binding properties towards five different chemical classes (alcohols, aldehydes, esters, hydrocarbons and ketones). Molecular docking simulations were conducted for a complete tripeptide library (8000 elements) versus 58 volatile compounds belonging to those five chemical classes. By maximizing the differences between chemical classes, a subset of 120 tripeptides was extracted and used as scaffolds for generating a combinatorial library of 7912 tetrapeptides. This library was processed in an analogous way to the former. Five tetrapeptides (IHRI, KSDS, LGFD, TGKF and WHVS) were chosen depending on their virtual affinity and cross-reactivity for the experimental step. The five peptides were covalently bound to gold nanoparticles by adding a terminal cysteine to each tetrapeptide and deposited onto 20MHz quartz crystal microbalances to construct the gas sensors. The behavior of peptides after this chemical modification was simulated at the pH range used in the immobilization step. ΔF signals analyzed by principal component analysis matched the virtually screened data. The array was able to clearly discriminate the 13 volatile compounds tested based on their hydrophobicity and hydrophilicity molecules as well as the molecular weight. Copyright © 2016 Elsevier B.V. All rights reserved.
Tsurushita, N; Fu, H; Warren, C
1996-06-12
New phage display vectors for in vivo recombination of immunoglobulin (Ig) heavy (VH) and light (VL) chain variable genes, to make single-chain Fv fragments (scFv), were constructed. The VH and VL genes of monoclonal antibody (mAb) EP-5C7, which binds to both human E- and P-selectin, were cloned into a pUC19-derived plasmid vector, pCW93, and a pACYC184-derived phagemid vector, pCW99, respectively. Upon induction of Cre recombinase (phage P1 recombinase), the VH and VL genes were efficiently recombined into the same plasmid via the two loxP sites (phage P1 recombination sites), one located downstream from a VH gene in pCW93 and another upstream from a VL gene in pCW99. In the resulting phagemid, the loxP sequence also encodes a polypeptide linker connecting the VH and VL domains to form a scFv of EP-5C7. Whether expressed on the phage surface or as a soluble form, the EP-5C7 scFv showed specific binding to human E- and P-selectin. This phagemid vector system provides a way to recombine VH and VL gene libraries efficiently in vivo to make extremely large Ig combinatorial libraries.
Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.
2013-01-01
Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119
Statistical significance of combinatorial regulations
Terada, Aika; Okada-Hatakeyama, Mariko; Tsuda, Koji; Sese, Jun
2013-01-01
More than three transcription factors often work together to enable cells to respond to various signals. The detection of combinatorial regulation by multiple transcription factors, however, is not only computationally nontrivial but also extremely unlikely because of multiple testing correction. The exponential growth in the number of tests forces us to set a strict limit on the maximum arity. Here, we propose an efficient branch-and-bound algorithm called the “limitless arity multiple-testing procedure” (LAMP) to count the exact number of testable combinations and calibrate the Bonferroni factor to the smallest possible value. LAMP lists significant combinations without any limit, whereas the family-wise error rate is rigorously controlled under the threshold. In the human breast cancer transcriptome, LAMP discovered statistically significant combinations of as many as eight binding motifs. This method may contribute to uncover pathways regulated in a coordinated fashion and find hidden associations in heterogeneous data. PMID:23882073
Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort.
Jeschek, Markus; Gerngross, Daniel; Panke, Sven
2016-03-31
Rational flux design in metabolic engineering approaches remains difficult since important pathway information is frequently not available. Therefore empirical methods are applied that randomly change absolute and relative pathway enzyme levels and subsequently screen for variants with improved performance. However, screening is often limited on the analytical side, generating a strong incentive to construct small but smart libraries. Here we introduce RedLibs (Reduced Libraries), an algorithm that allows for the rational design of smart combinatorial libraries for pathway optimization thereby minimizing the use of experimental resources. We demonstrate the utility of RedLibs for the design of ribosome-binding site libraries by in silico and in vivo screening with fluorescent proteins and perform a simple two-step optimization of the product selectivity in the branched multistep pathway for violacein biosynthesis, indicating a general applicability for the algorithm and the proposed heuristics. We expect that RedLibs will substantially simplify the refactoring of synthetic metabolic pathways.
Synthesis and cell-free cloning of DNA libraries using programmable microfluidics
Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud
2016-01-01
Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354
Xing, Li; McDonald, Joseph J; Kolodziej, Steve A; Kurumbail, Ravi G; Williams, Jennifer M; Warren, Chad J; O'Neal, Janet M; Skepner, Jill E; Roberds, Steven L
2011-03-10
Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.
Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13
Sheth, Rushikesh; Barozzi, Iros; Langlais, David; ...
2016-12-13
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on the genome-wide profiling of HOXA13 and HOXD13 in vivo binding and changes of the transcriptome and chromatin state in the transition from the early to the late-distal limb developmental program, as well as in Hoxa13–/–; Hoxd13–/– limbs. Ourmore » results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules.« less
Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila
Benton, Richard; Vannice, Kirsten S.; Gomez-Diaz, Carolina; Vosshall, Leslie B.
2009-01-01
Summary Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a novel family of iGluR-related genes in Drosophila, which we name Ionotropic Receptors (IRs). These receptors do not belong to the well-described Kainate, AMPA, or NMDA classes of iGluRs, and have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Mis-expression of IRs induces novel odor responses in ectopic neurons. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues. PMID:19135896
The Construction of Venn Diagrams.
ERIC Educational Resources Information Center
Grunbaum, Branko
1984-01-01
The study and use of "Venn diagrams" can lead to many interesting problems of a geometric, topological, or combinatorial character. The general nature of these diagrams is discussed and two new results are formulated. (JN)
Lin, En-Chiang; Cole, Jesse J; Jacobs, Heiko O
2010-11-10
This article reports and applies a recently discovered programmable multimaterial deposition process to the formation and combinatorial improvement of 3D nanostructured devices. The gas-phase deposition process produces charged <5 nm particles of silver, tungsten, and platinum and uses externally biased electrodes to control the material flux and to turn deposition ON/OFF in selected domains. Domains host nanostructured dielectrics to define arrays of electrodynamic 10 × nanolenses to further control the flux to form <100 nm resolution deposits. The unique feature of the process is that material type, amount, and sequence can be altered from one domain to the next leading to different types of nanostructures including multimaterial bridges, interconnects, or nanowire arrays with 20 nm positional accuracy. These features enable combinatorial nanostructured materials and device discovery. As a first demonstration, we produce and identify in a combinatorial way 3D nanostructured electrode designs that improve light scattering, absorption, and minority carrier extraction of bulk heterojunction photovoltaic cells. Photovoltaic cells from domains with long and dense nanowire arrays improve the relative power conversion efficiency by 47% when compared to flat domains on the same substrate.
NATURAL PRODUCTS: A CONTINUING SOURCE OF NOVEL DRUG LEADS
Cragg, Gordon M.; Newman, David J.
2013-01-01
1. Background Nature has been a source of medicinal products for millennia, with many useful drugs developed from plant sources. Following discovery of the penicillins, drug discovery from microbial sources occurred and diving techniques in the 1970s opened the seas. Combinatorial chemistry (late 1980s), shifted the focus of drug discovery efforts from Nature to the laboratory bench. 2. Scope of Review This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases. It is clear Nature will continue to be a major source of new structural leads, and effective drug development depends on multidisciplinary collaborations. 3. Major Conclusions The explosion of genetic information led not only to novel screens, but the genetic techniques permitted the implementation of combinatorial biosynthetic technology and genome mining. The knowledge gained has allowed unknown molecules to be identified. These novel bioactive structures can be optimized by using combinatorial chemistry generating new drug candidates for many diseases. 4 General Significance: The advent of genetic techniques that permitted the isolation / expression of biosynthetic cassettes from microbes may well be the new frontier for natural products lead discovery. It is now apparent that biodiversity may be much greater in those organisms. The numbers of potential species involved in the microbial world are many orders of magnitude greater than those of plants and multi-celled animals. Coupling these numbers to the number of currently unexpressed biosynthetic clusters now identified (>10 per species) the potential of microbial diversity remains essentially untapped. PMID:23428572
A community resource benchmarking predictions of peptide binding to MHC-I molecules.
Peters, Bjoern; Bui, Huynh-Hoa; Frankild, Sune; Nielson, Morten; Lundegaard, Claus; Kostem, Emrah; Basch, Derek; Lamberth, Kasper; Harndahl, Mikkel; Fleri, Ward; Wilson, Stephen S; Sidney, John; Lund, Ole; Buus, Soren; Sette, Alessandro
2006-06-09
Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.
Cheng, Chia-Yang; Chu, Chia-Han; Hsu, Hung-Wei; Hsu, Fang-Rong; Tang, Chung Yi; Wang, Wen-Ching; Kung, Hsing-Jien; Chang, Pei-Ching
2014-01-01
Post-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation (ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding of protein-DNA interactions on a genomic-wide scale. However, current ChIP-seq peak calling tools are not sufficiently sensitive and are unable to simultaneously identify post-translational modified TFs based on ChIP-seq analysis; this is largely due to the wide-spread presence of multiple modified TFs. Using SUMO-1 modification as an example; we describe here an improved approach that allows the simultaneous identification of the particular genomic binding regions of all TFs with SUMO-1 modification. Traditional peak calling methods are inadequate when identifying multiple TF binding sites that involve long genomic regions and therefore we designed a ChIP-seq processing pipeline for the detection of peaks via a combinatorial fusion method. Then, we annotate the peaks with known transcription factor binding sites (TFBS) using the Transfac Matrix Database (v7.0), which predicts potential SUMOylated TFs. Next, the peak calling result was further analyzed based on the promoter proximity, TFBS annotation, a literature review, and was validated by ChIP-real-time quantitative PCR (qPCR) and ChIP-reChIP real-time qPCR. The results show clearly that SUMOylated TFs are able to be pinpointed using our pipeline. A methodology is presented that analyzes SUMO-1 ChIP-seq patterns and predicts related TFs. Our analysis uses three peak calling tools. The fusion of these different tools increases the precision of the peak calling results. TFBS annotation method is able to predict potential SUMOylated TFs. Here, we offer a new approach that enhances ChIP-seq data analysis and allows the identification of multiple SUMOylated TF binding sites simultaneously, which can then be utilized for other functional PTM binding site prediction in future.
NASA Astrophysics Data System (ADS)
Yang, Frances Fan
Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent disease worldwide. One-bead one-compound (OBOC) combinatorial technology is a powerful method to identify peptidomimetic ligands against a variety of receptors on cell surfaces. We therefore hypothesized that cancer specific ligands against OSCC might be identified and can be conjugated to optical dyes or nanocarriers to develop theranostic agents against OSCC. Material and methods: Different OSCC cell lines were incubated with OBOC libraries and beads with cell binding were sorted and then screened with normal human cells to identify peptide-beads binding to different OSCC cell lines but not binding to normal human cells. The molecular probes of OSCC were developed by biotinylating the carboxyl end of the ligands. OSCC theranostic agents were developed by decorating LLY13 with NPs and evaluated by using orthotopic bioluminescent oral cancer model. Results: Six OSCC specific ligands were discovered. Initial peptide-histochemistry study indicated that LLY12 and LLY13 were able to specifically detect OSCC cells grown on chamber slides at the concentration of 1 muM. In addition, LLY13 was found to penetrate into the OSCC cells and accumulate in the cytoplasm, and nucleus. After screened with a panel of integrin antibodies, only anti-alpha3 antibody was able to block most of OSCC cells binding to the LLY13 beads. OSCC theranostic agents developed using targeting LLY13 micelles (25+/- 4nm in diameter) were more efficient in binding to HSC-3 cancer cells compared to non-targeting micelles. Ex vivo images demonstrated that xenografts from the mice with targeting micelles appeared to have higher signals than the non-targeting groups. Conclusion: LLY13 has promising in vitro and in vivo targeting activity against OSCC. In addition, LLY13 is also able to penetrate into cancer cells via endocytosis. Initial study indicated that alpha3 integrin might partially be the corresponding receptor involved for LLY13's binding to oral cancer cells. OSCC ligands developed from this study may become potential candidates for the development of OSCC targeted theranostic agents.
Developing recombinant antibodies for biomarker detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.
2010-10-01
Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune librariesmore » provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.« less
Combinatorial influence of environmental parameters on transcription factor activity.
Knijnenburg, T A; Wessels, L F A; Reinders, M J T
2008-07-01
Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.
One step DNA assembly for combinatorial metabolic engineering.
Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan
2014-05-01
The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Bakhshinejad, Babak; Zade, Hesam Motaleb; Shekarabi, Hosna Sadat Zahed; Neman, Sara
2016-12-01
Phage display is known as a powerful methodology for the identification of targeting ligands that specifically bind to a variety of targets. The high-throughput screening of phage display combinatorial peptide libraries is performed through the affinity selection method of biopanning. Although phage display selection has proven very successful in the discovery of numerous high-affinity target-binding peptides with potential application in drug discovery and delivery, the enrichment of false-positive target-unrelated peptides (TUPs) without any actual affinity towards the target remains a major problem of library screening. Selection-related TUPs may emerge because of binding to the components of the screening system rather than the target. Propagation-related TUPs may arise as a result of faster growth rate of some phage clones enabling them to outcompete slow-propagating clones. Amplification of the library between rounds of biopanning makes a significant contribution to the selection of phage clones with propagation advantage. Distinguishing nonspecific TUPs from true target binders is of particular importance for the translation of biopanning findings from basic research to clinical applications. Different experimental and in silico approaches are applied to assess the specificity of phage display-derived peptides towards the target. Bioinformatic tools are playing a rapidly growing role in the analysis of biopanning data and identification of target-irrelevant TUPs. Recent progress in the introduction of efficient strategies for TUP detection holds enormous promise for the discovery of clinically relevant cell- and tissue-homing peptides and paves the way for the development of novel targeted diagnostic and therapeutic platforms in pharmaceutical areas.
Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin
2017-08-01
Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.
2014-01-01
Background A number of microtubule disassembly blocking agents and inhibitors of tubulin polymerization have been elements of great interest in anti-cancer therapy, some of them even entering into the clinical trials. One such class of tubulin assembly inhibitors is of arylthioindole derivatives which results in effective microtubule disorganization responsible for cell apoptosis by interacting with the colchicine binding site of the β-unit of tubulin close to the interface with the α unit. We modelled the human tubulin β unit (chain D) protein and performed docking studies to elucidate the detailed binding mode of actions associated with their inhibition. The activity enhancing structural aspects were evaluated using a fragment-based Group QSAR (G-QSAR) model and was validated statistically to determine its robustness. A combinatorial library was generated keeping the arylthioindole moiety as the template and their activities were predicted. Results The G-QSAR model obtained was statistically significant with r2 value of 0.85, cross validated correlation coefficient q2 value of 0.71 and pred_r2 (r2 value for test set) value of 0.89. A high F test value of 65.76 suggests robustness of the model. Screening of the combinatorial library on the basis of predicted activity values yielded two compounds HPI (predicted pIC50 = 6.042) and MSI (predicted pIC50 = 6.001) whose interactions with the D chain of modelled human tubulin protein were evaluated in detail. A toxicity evaluation resulted in MSI being less toxic in comparison to HPI. Conclusions The study provides an insight into the crucial structural requirements and the necessary chemical substitutions required for the arylthioindole moiety to exhibit enhanced inhibitory activity against human tubulin. The two reported compounds HPI and MSI showed promising anti cancer activities and thus can be considered as potent leads against cancer. The toxicity evaluation of these compounds suggests that MSI is a promising therapeutic candidate. This study provided another stepping stone in the direction of evaluating tubulin inhibition and microtubule disassembly degeneration as viable targets for development of novel therapeutics against cancer. PMID:25521775
Integral presentations of Catalan numbers
NASA Astrophysics Data System (ADS)
Dana-Picard, Thierry
2010-01-01
We compute in three different ways the same definite parametric integral. By-products are the derivation of a combinatorial identity and two integral presentations of Catalan numbers. One of them leads to a presentation using the γ function.
Integral Presentations of Catalan Numbers
ERIC Educational Resources Information Center
Dana-Picard, Thierry
2010-01-01
We compute in three different ways the same definite parametric integral. By-products are the derivation of a combinatorial identity and two integral presentations of Catalan numbers. One of them leads to a presentation using the [gamma] function.
Differential Effector Engagement by Oncogenic KRAS. | Office of Cancer Genomics
KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines.
Velagapudi, Sai Pradeep; Seedhouse, Steven J.; French, Jonathan
2011-01-01
RNA is an important therapeutic target, however, RNA targets are generally underexploited due to a lack of understanding of the small molecules that bind RNA and the RNA motifs that bind small molecules. Herein, we describe the identification of the RNA internal loops derived from a 4096-member 3×3 nucleotide loop library that are the most specific and highest affinity binders to a series of four designer, drug-like benzimidazoles. These studies establish a potentially general protocol to define the highest affinity and most specific RNA motif targets for heterocyclic small molecules. Such information could be used to target functionally important RNAs in genomic sequence. PMID:21604752
A Review on Recent Patents and Applications of Inorganic Material Binding Peptides.
Thota, Veeranjaneyulu; Perry, Carole C
2017-01-01
Although the popularity of using combinatorial display techniques for recognising unique peptides having high affinity for inorganic (nano) particles has grown rapidly, there are no systematic reviews showcasing current developments or patents on binding peptides specific to these materials. In this review, we summarize and discuss recent progress in patents on material binding peptides specifically exploring inorganic nano surfaces such as metals, metal oxides, minerals, carbonbased materials, polymer based materials, magnetic materials and semiconductors. We consider both the peptide display strategies used and the exploitation of the identified peptides in the generation of advanced nanomaterials. In order to get a clear picture on the number of patents and literature present to date relevant to inorganic material binding biomolecules and their applications, a thorough online search was conducted using national and worldwide databases. The literature search include standard bibliographic databases while patents included EPO Espacenet, WIPO patent scope, USPTO, Google patent search, Patent lens, etc. along with commercial databases such as Derwent and Patbase. Both English and American spellings were included in the searches. The initial number of patents found related to material binders were 981. After reading and excluding irrelevant patents such as organic binding peptides, works published before 2001, repeated patents, documents not in English etc., 51 highly relevant patents published from 2001 onwards were selected and analysed. These patents were further separated into six categories based on their target inorganic material and combinatorial library used. They include relevant patents on metal, metal oxide or combination binding peptides (19), magnetic and semiconductor binding peptides (8), carbon based (3), mineral (5), polymer (8) and other binders (9). Further, how these material specific binders have been used to synthesize simple to complex bio- or nano-materials, mediate the controlled biomineralization process, direct self-assembly and nanofabrication of ordered structures, facilitate the immobilization of functional biomolecules and construct inorganic-inorganic or organic-inorganic nano hybrids are concisely described. From analysis of recent literature and patents, we clearly show that biomimetic material binders are in the vanguard of new design approaches for novel nanomaterials with improved/ controlled physical and chemical properties that have no adverse effect on the structural or functional activities of the nanomaterials themselves. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Molecular codes for neuronal individuality and cell assembly in the brain
Yagi, Takeshi
2012-01-01
The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron's contribution through its incorporation into “cell assemblies” and neural networks. In development, each neuron expresses diverse cellular recognition molecules that permit the formation of the appropriate neural cell assemblies to elicit various brain functions. The mechanism for generating neuronal assemblies and networks must involve molecular codes that give neurons individuality and allow them to recognize one another and join appropriate networks. The extensive molecular diversity of cell-surface proteins on neurons is likely to contribute to their individual identities. The clustered protocadherins (Pcdh) is a large subfamily within the diverse cadherin superfamily. The clustered Pcdh genes are encoded in tandem by three gene clusters, and are present in all known vertebrate genomes. The set of clustered Pcdh genes is expressed in a random and combinatorial manner in each neuron. In addition, cis-tetramers composed of heteromultimeric clustered Pcdh isoforms represent selective binding units for cell-cell interactions. Here I present the mathematical probabilities for neuronal individuality based on the random and combinatorial expression of clustered Pcdh isoforms and their formation of cis-tetramers in each neuron. Notably, clustered Pcdh gene products are known to play crucial roles in correct axonal projections, synaptic formation, and neuronal survival. Their molecular and biological features induce a hypothesis that the diverse clustered Pcdh molecules provide the molecular code by which neuronal individuality and cell assembly permit the combinatorial explosion of networks that supports enormous processing capability and plasticity of the brain. PMID:22518100
Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W
2006-05-12
The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.
A combinatorial perspective of the protein inference problem.
Yang, Chao; He, Zengyou; Yu, Weichuan
2013-01-01
In a shotgun proteomics experiment, proteins are the most biologically meaningful output. The success of proteomics studies depends on the ability to accurately and efficiently identify proteins. Many methods have been proposed to facilitate the identification of proteins from peptide identification results. However, the relationship between protein identification and peptide identification has not been thoroughly explained before. In this paper, we devote ourselves to a combinatorial perspective of the protein inference problem. We employ combinatorial mathematics to calculate the conditional protein probabilities (protein probability means the probability that a protein is correctly identified) under three assumptions, which lead to a lower bound, an upper bound, and an empirical estimation of protein probabilities, respectively. The combinatorial perspective enables us to obtain an analytical expression for protein inference. Our method achieves comparable results with ProteinProphet in a more efficient manner in experiments on two data sets of standard protein mixtures and two data sets of real samples. Based on our model, we study the impact of unique peptides and degenerate peptides (degenerate peptides are peptides shared by at least two proteins) on protein probabilities. Meanwhile, we also study the relationship between our model and ProteinProphet. We name our program ProteinInfer. Its Java source code, our supplementary document and experimental results are available at: >http://bioinformatics.ust.hk/proteininfer.
Boehm, Markus; Wu, Tong-Ying; Claussen, Holger; Lemmen, Christian
2008-04-24
Large collections of combinatorial libraries are an integral element in today's pharmaceutical industry. It is of great interest to perform similarity searches against all virtual compounds that are synthetically accessible by any such library. Here we describe the successful application of a new software tool CoLibri on 358 combinatorial libraries based on validated reaction protocols to create a single chemistry space containing over 10 (12) possible products. Similarity searching with FTrees-FS allows the systematic exploration of this space without the need to enumerate all product structures. The search result is a set of virtual hits which are synthetically accessible by one or more of the existing reaction protocols. Grouping these virtual hits by their synthetic protocols allows the rapid design and synthesis of multiple follow-up libraries. Such library ideas support hit-to-lead design efforts for tasks like follow-up from high-throughput screening hits or scaffold hopping from one hit to another attractive series.
Tran, Tuan; Disney, Matthew D
2012-01-01
RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here, we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (among a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole and pyridinium chemotypes allow for specific recognition of RNA motifs. As targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses.
Tran, Tuan; Disney, Matthew D.
2012-01-01
RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (amongst a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole, and pyridinium chemotypes allow for specific recognition of RNA motifs. Since targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses. PMID:23047683
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that aremore » not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
SPM for functional identification of individual biomolecules
NASA Astrophysics Data System (ADS)
Ros, Robert; Schwesinger, Falk; Padeste, Celestino; Plueckthun, Andreas; Anselmetti, Dario; Guentherodt, Hans-Joachim; Tiefenauer, Louis
1999-06-01
The identification of specific binding molecules is of increasing interest in the context of drug development based on combinatorial libraries. Scanning Probe Microscopy (SPM) is the method of choice to image and probe individual biomolecules on a surface. Functional identification of biomolecules is a first step towards screening on a single molecule level. As a model system we use recombinant single- chain Fv fragment (scFv) antibody molecules directed against the antigen fluorescein. The scFv's are covalently immobilized on a flat gold surface via the C-terminal cysteine, resulting in a high accessibility of the binding site. The antigen is immobilized covalently via a long hydrophilic spacer to the silicon nitride SPM-tip. This arrangement allows a direct measurement of binding forces. Thus, closely related antibody molecules differing in only one amino acid at their binding site could be distinguished. A novel SPM-software has been developed which combines imaging, force spectroscopic modes, and online analysis. This is a major prerequisite for future screening methods.
Giovannoli, Cristina; Spano, Giulia; Di Nardo, Fabio; Anfossi, Laura; Baggiani, Claudio
2017-01-01
Patulin is a water-soluble mycotoxin produced by several species of fungi. Governmental bodies have placed it under scrutiny for its potential negative health effects, and maximum residue limits are fixed in specific food matrices to protect consumers’ health. Confirmatory analysis of patulin in complex food matrices can be a difficult task, and sample clean-up treatments are frequently necessary before instrumental analyses. With the aim of simplifying the clean-up step, we prepared a 256-member combinatorial polymeric library based on 16 functional monomers, four cross-linkers and four different porogenic solvents. The library was screened for the binding towards patulin in different media (acetonitrile and citrate buffer at pH 3.2), with the goal of identifying polymer formulations with good binding properties towards the target compound. As a proof of concept, a methacrylic acid-co-pentaerithrytole tetraacrylate polymer prepared in chloroform was successfully used as a solid-phase extraction material for the clean-up and extraction of patulin from apple juice. Clean chromatographic patterns and acceptable recoveries were obtained for juice spiked with patulin at concentration levels of 25 (64 ± 12%), 50 (83 ± 5.6%) and 100 μg L−1 (76 ± 4.5%). The within-day and between-day reproducibility evaluated at a concentration level of 25 μg L−1 were 5.6 and 7.6%, respectively. PMID:28531103
Librado, Pablo; Rozas, Julio
2013-01-01
Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins (OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane. Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor genes is not dominated by reduced levels of expression noise. Indeed, the stochastic fluctuations in the OBP transcript abundance may have a critical role in the combinatorial nature of the olfactory coding process.
Gadermaier, E; Marth, K; Lupinek, C; Campana, R; Hofer, G; Blatt, K; Smiljkovic, D; Roder, U; Focke-Tejkl, M; Vrtala, S; Keller, W; Valent, P; Valenta, R; Flicker, S
2018-01-09
Recombinant hypoallergenic allergen derivatives have been used in clinical immunotherapy studies, and clinical efficacy seems to be related to the induction of blocking IgG antibodies recognizing the wild-type allergens. However, so far no treatment-induced IgG antibodies have been characterized. To clone, express, and characterize IgG antibodies induced by vaccination with two hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1 in a nonallergic subject. A phage-displayed combinatorial single-chain fragment (ScFv) library was constructed from blood of the immunized subject and screened for Bet v 1-reactive antibody fragments. ScFvs were tested for specificity and cross-reactivity to native Bet v 1 and related pollen and food allergens, and epitope mapping was performed. Germline ancestor genes of the antibody were analyzed with the ImMunoGeneTics (IMGT) database. The affinity to Bet v 1 and cross-reactive allergens was determined by surface plasmon resonance measurements. The ability to inhibit patients' IgE binding to ELISA plate-bound allergens and allergen-induced basophil activation was assessed. A combinatorial ScFv library was obtained from the vaccinated donor after three injections with the Bet v 1 fragments. Despite being almost in germline configuration, ScFv (clone H3-1) reacted with high affinity to native Bet v 1 and homologous allergens, inhibited allergic patients' polyclonal IgE binding to Bet v 1, and partially suppressed allergen-induced basophil activation. Immunization with unfolded hypoallergenic allergen derivatives induces high-affinity antibodies even in nonallergic subjects which recognize the folded wild-type allergens and inhibit polyclonal IgE binding of allergic patients. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.
Chimeric Rhinoviruses Displaying MPER Epitopes Elicit Anti-HIV Neutralizing Responses
Yi, Guohua; Lapelosa, Mauro; Bradley, Rachel; Mariano, Thomas M.; Dietz, Denise Elsasser; Hughes, Scott; Wrin, Terri; Petropoulos, Chris; Gallicchio, Emilio; Levy, Ronald M.; Arnold, Eddy; Arnold, Gail Ferstandig
2013-01-01
Background The development of an effective AIDS vaccine has been a formidable task, but remains a critical necessity. The well conserved membrane-proximal external region (MPER) of the HIV-1 gp41 glycoprotein is one of the crucial targets for AIDS vaccine development, as it has the necessary attribute of being able to elicit antibodies capable of neutralizing diverse isolates of HIV. Methodology/Principle Findings Guided by X-ray crystallography, molecular modeling, combinatorial chemistry, and powerful selection techniques, we designed and produced six combinatorial libraries of chimeric human rhinoviruses (HRV) displaying the MPER epitopes corresponding to mAbs 2F5, 4E10, and/or Z13e1, connected to an immunogenic surface loop of HRV via linkers of varying lengths and sequences. Not all libraries led to viable chimeric viruses with the desired sequences, but the combinatorial approach allowed us to examine large numbers of MPER-displaying chimeras. Among the chimeras were five that elicited antibodies capable of significantly neutralizing HIV-1 pseudoviruses from at least three subtypes, in one case leading to neutralization of 10 pseudoviruses from all six subtypes tested. Conclusions Optimization of these chimeras or closely related chimeras could conceivably lead to useful components of an effective AIDS vaccine. While the MPER of HIV may not be immunodominant in natural infection by HIV-1, its presence in a vaccine cocktail could provide critical breadth of protection. PMID:24039745
Sun, Hong; Guns, Tias; Fierro, Ana Carolina; Thorrez, Lieven; Nijssen, Siegfried; Marchal, Kathleen
2012-01-01
Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method ‘CPModule’. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC. PMID:22422841
Multiobjective optimization of combinatorial libraries.
Agrafiotis, D K
2002-01-01
Combinatorial chemistry and high-throughput screening have caused a fundamental shift in the way chemists contemplate experiments. Designing a combinatorial library is a controversial art that involves a heterogeneous mix of chemistry, mathematics, economics, experience, and intuition. Although there seems to be little agreement as to what constitutes an ideal library, one thing is certain: only one property or measure seldom defines the quality of the design. In most real-world applications, a good experiment requires the simultaneous optimization of several, often conflicting, design objectives, some of which may be vague and uncertain. In this paper, we discuss a class of algorithms for subset selection rooted in the principles of multiobjective optimization. Our approach is to employ an objective function that encodes all of the desired selection criteria, and then use a simulated annealing or evolutionary approach to identify the optimal (or a nearly optimal) subset from among the vast number of possibilities. Many design criteria can be accommodated, including diversity, similarity to known actives, predicted activity and/or selectivity determined by quantitative structure-activity relationship (QSAR) models or receptor binding models, enforcement of certain property distributions, reagent cost and availability, and many others. The method is robust, convergent, and extensible, offers the user full control over the relative significance of the various objectives in the final design, and permits the simultaneous selection of compounds from multiple libraries in full- or sparse-array format.
Combinatorial influence of environmental parameters on transcription factor activity
Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.
2008-01-01
Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711
HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing
Preußner, Marco; Schreiner, Silke; Hung, Lee-Hsueh; Porstner, Martina; Jäck, Hans-Martin; Benes, Vladimir; Rätsch, Gunnar; Bindereif, Albrecht
2012-01-01
CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4–6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4–6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons. PMID:22402488
Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina
2016-01-01
Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805
An Introduction to Simulated Annealing
ERIC Educational Resources Information Center
Albright, Brian
2007-01-01
An attempt to model the physical process of annealing lead to the development of a type of combinatorial optimization algorithm that takes on the problem of getting trapped in a local minimum. The author presents a Microsoft Excel spreadsheet that illustrates how this works.
Ghorab, Hamida; Lammi, Carmen; Arnoldi, Anna; Kabouche, Zahia; Aiello, Gilda
2018-01-15
An investigation on the proteome of the sweet kernel of apricot, based on equalisation with combinatorial peptide ligand libraries (CPLLs), SDS-PAGE, nLC-ESI-MS/MS, and database search, permitted identifying 175 proteins. Gene ontology analysis indicated that their main molecular functions are in nucleotide binding (20.9%), hydrolase activities (10.6%), kinase activities (7%), and catalytic activity (5.6%). A protein-protein association network analysis using STRING software permitted to build an interactomic map of all detected proteins, characterised by 34 interactions. In order to forecast the potential health benefits deriving from the consumption of these proteins, the two most abundant, i.e. Prunin 1 and 2, were enzymatically digested in silico predicting 10 and 14 peptides, respectively. Searching their sequences in the database BIOPEP, it was possible to suggest a variety of bioactivities, including dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme I (ACE) inhibition, glucose uptake stimulation and antioxidant properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Roberts, Gareth; Lewandowski, Jirka; Galantucci, Bruno
2015-08-01
Communication systems are exposed to two different pressures: a pressure for transmission efficiency, such that messages are simple to produce and perceive, and a pressure for referential efficiency, such that messages are easy to understand with their intended meaning. A solution to the first pressure is combinatoriality--the recombination of a few basic meaningless forms to express an infinite number of meanings. A solution to the second is iconicity--the use of forms that resemble what they refer to. These two solutions appear to be incompatible with each other, as iconic forms are ill-suited for use as meaningless combinatorial units. Furthermore, in the early stages of a communication system, when basic referential forms are in the process of being established, the pressure for referential efficiency is likely to be particularly strong, which may lead it to trump the pressure for transmission efficiency. This means that, where iconicity is available as a strategy, it is likely to impede the emergence of combinatoriality. Although this hypothesis seems consistent with some observations of natural language, it was unclear until recently how it could be soundly tested. This has changed thanks to the development of a line of research, known as Experimental Semiotics, in which participants construct novel communication systems in the laboratory using an unfamiliar medium. We conducted an Experimental Semiotic study in which we manipulated the opportunity for iconicity by varying the kind of referents to be communicated, while keeping the communication medium constant. We then measured the combinatoriality and transmission efficiency of the communication systems. We found that, where iconicity was available, it provided scaffolding for the construction of communication systems and was overwhelmingly adopted. Where it was not available, however, the resulting communication systems were more combinatorial and their forms more efficient to produce. This study enriches our understanding of the fundamental design principles of human communication and contributes tools to enrich it further. Copyright © 2015 Elsevier B.V. All rights reserved.
Koide, Shohei; Sidhu, Sachdev S.
2010-01-01
Summary Combinatorial libraries built with severely restricted chemical diversity have yielded highly functional synthetic binding proteins. Structural analyses of these minimalist binding sites have revealed the dominant role of large tyrosine residues for mediating molecular contacts and of small serine/glycine residues for providing space and flexibility. The concept of using limited residue types to construct optimized binding proteins mirrors findings in the field of small molecule drug development, where it has been proposed that most drugs are built from a limited set of side chains presented by diverse frameworks. The physicochemical properties of tyrosine make it the amino acid that is most effective for mediating molecular recognition, and protein engineers have taken advantage of these characteristics to build tyrosine-rich protein binding sites that outperform natural proteins in terms of affinity and specificity. Knowledge from preceding studies can be used to improve current designs, and thus, synthetic protein libraries will continue to evolve and improve. In the near future, it seems likely that synthetic binding proteins will supersede natural antibodies for most purposes, and moreover, synthetic proteins will enable many new applications beyond the scope of natural proteins. PMID:19298050
On the Integration of Logic Programming and Functional Programming.
1985-06-01
be performed with simple handtools and devices. However, if the problem is more complex, say involving the cylinders, camshaft , or drive train, then...f(x,x) with f(y, g(y)), and would bind x to g(x) (Ref. 7]. The problem, of course, is that the attempt to prune the search tree allows circularity...combinatorial-explosion, since the search trees generated can grow very unpredictably (Re£. 19: p. 2293. Somewhat akin to the halting problem, it means that a
Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila
Chakraborty, Tuhin Subhra; Siddiqi, Obaid
2016-01-01
Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303
Chacon, Diego; Beck, Dominik; Perera, Dilmi; Wong, Jason W H; Pimanda, John E
2014-01-01
The BloodChIP database (http://www.med.unsw.edu.au/CRCWeb.nsf/page/BloodChIP) supports exploration and visualization of combinatorial transcription factor (TF) binding at a particular locus in human CD34-positive and other normal and leukaemic cells or retrieval of target gene sets for user-defined combinations of TFs across one or more cell types. Increasing numbers of genome-wide TF binding profiles are being added to public repositories, and this trend is likely to continue. For the power of these data sets to be fully harnessed by experimental scientists, there is a need for these data to be placed in context and easily accessible for downstream applications. To this end, we have built a user-friendly database that has at its core the genome-wide binding profiles of seven key haematopoietic TFs in human stem/progenitor cells. These binding profiles are compared with binding profiles in normal differentiated and leukaemic cells. We have integrated these TF binding profiles with chromatin marks and expression data in normal and leukaemic cell fractions. All queries can be exported into external sites to construct TF-gene and protein-protein networks and to evaluate the association of genes with cellular processes and tissue expression.
Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L
2011-04-22
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.
Effect of the Implicit Combinatorial Model on Combinatorial Reasoning in Secondary School Pupils.
ERIC Educational Resources Information Center
Batanero, Carmen; And Others
1997-01-01
Elementary combinatorial problems may be classified into three different combinatorial models: (1) selection; (2) partition; and (3) distribution. The main goal of this research was to determine the effect of the implicit combinatorial model on pupils' combinatorial reasoning before and after instruction. Gives an analysis of variance of the…
Hegde, Mahesh; Mantelingu, Kempegowda; Pandey, Monica; Pavankumar, Chottanahalli S; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C
2016-10-01
Cancer is a multifactorial disease, which makes it difficult to cure. Since more than one defective cellular component is often involved during oncogenesis, combination therapy is gaining prominence in the field of cancer therapeutics. The purpose of this study was to investigate the combinatorial effects of a novel PARP inhibitor, P10, and HDAC inhibitor, SAHA, in leukemic cells. Combinatorial effects of P10 and SAHA were tested using propidium iodide staining in different leukemic cells. Further, flowcytometry-based assays such as calcein-AM/ethidium homodimer staining, annexin-FITC/PI staining, and JC-1 staining were carried out to elucidate the mechanism of cell death. In addition, cell-cycle analysis, immunocytochemistry studies, and western blotting analysis were conducted to check the combinatorial effect in Nalm6 cells. Propidium iodide staining showed that P10 in combination with SAHA induced cell death in Nalm6 cells, in which PARP expression and activity is high with a combination index of <0.2. Annexin-FITC/PI staining, JC-1 staining, and other biochemical assays revealed that P10 in combination with SAHA induced apoptosis by causing a change in mitochondrial membrane potential in >65 % cells. Importantly, combinatorial treatment induced S phase arrest in 40-45 % cells due to DNA damage and plausible replicative stress. Finally, we demonstrated that treatment with P10 led to DNA strand breaks, which were further potentiated by SAHA (p < 0.01), leading to activation of apoptosis and increased cell death in PARP-positive leukemic cells. Our study reveals that coadministration of PARP inhibitor with SAHA could be used as a combination therapy against leukemic cells that possess high levels of intrinsic PARP activity.
NASA Astrophysics Data System (ADS)
Whaley, Sandra Renee
A peptide combinatorial approach, also known as phage display, was used to isolate peptides with the ability to bind semiconductor (GaAs, GaN, and InP) and magnetic (Fe2O3 and Fe3O4) materials. The commercially available combinatorial libraries contain randomized peptides either twelve (Ph.D-12(TM)) or seven (Ph.D-C7C(TM)) amino acids in length. The peptides are displayed on the pIII protein of M13 bacteriophage, which have been imaged by atomic force microscopy and transmission electron microscopy. After seven rounds of phage selection with a constrained seven amino acid sequence library (Ph.D-C7C(TM)), two sequences were isolated for binding Fe3O4 (MG-127 and MG-78). The haematite surface was screened with the same library and four unique sequences were isolated after six rounds of selection (HM-95, HM-101, HM-103, and HM-111). According to binding experiments (MG-78 v. MG-127 on Fe3O 4, MG-127 v. HM-95 on Fe3O4 and Fe2O 3, and MG-127 v. HM-95 on gamma-Fe2O3), the MG-127 clone had the highest affinity for iron oxide surfaces (magnetite, haematite, and maghemite) among the clones tested. The Fe3O 4 clone MG-127 displayed the ability to organize Fe3O 4 nanoparticles along bundles of phage. The synthetic peptide analog of this clone was used in the organization of nanoparticles onto the surface of latex beads. The surfaces of the III-V semiconductors were studied using x-ray photoelectron spectroscopy to determine their reactivity in the aqueous conditions used for phage selection. The GaN surface was shown to oxidize the least under these conditions, aiding in the ability to isolate a consensus amino acid sequence responsible for binding to this surface. The G1-3 clone isolated for binding the GaAs (100) surface displayed preferential binding to the GaAs (100) surface over Si (100), GaAs (111) A, GaAs (111) B, and AlGaAs. The synthetic peptide analog of the G12-3 clone was found to preferentially bind to GaAs (100) over either GaAs (111) surfaces or InP (100). This peptide was used to immobilize 10 nm gold particles onto the surface of GaAs within ten minutes. From these results we have shown that it is possible to isolate peptides with high affinities for binding technologically relevant materials, even those not found in nature. These peptides can be used for the organization of pre-formed nanoparticles in solution and on the surface of semiconductor materials.
Fernandes, Cláudia S M; Pina, Ana Sofia; Dias, Ana M G C; Branco, Ricardo J F; Roque, Ana Cecília Afonso
2014-09-30
The green fluorescent protein (GFP) is widely employed to report on a variety of molecular phenomena, but its selective recovery is hampered by the lack of a low-cost and robust purification alternative. This work reports an integrated approach combining rational design and experimental validation toward the optimization of a small fully-synthetic ligand for GFP purification. A total of 56 affinity ligands based on a first-generation lead structure were rationally designed through molecular modeling protocols. The library of ligands was further synthesized by solid-phase combinatorial methods based on the Ugi reaction and screened against Escherichia coli extracts containing GFP. Ligands A4C2, A5C5 and A5C6 emerged as the new lead structures based on the high estimated theoretical affinity constants and the high GFP binding percentages and enrichment factors. The elution of GFP from these adsorbents was further characterized, where the best compromise between mild elution conditions, yield and purity was found for ligands A5C5 and A5C6. These were tested for purifying a model GFP-fusion protein, where ligand A5C5 yielded higher protein recovery and purity. The molecular interactions between the lead ligands and GFP were further assessed by molecular dynamics simulations, showing a wide range of potential hydrophobic and hydrogen-bond interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia
2015-10-15
Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging. ©2015 American Association for Cancer Research.
A new approach to the rationale discovery of polymeric biomaterials
Kohn, Joachim; Welsh, William J.; Knight, Doyle
2007-01-01
This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176
Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.
Li, Nan; Ainsworth, Richard I; Ding, Bo; Hou, Tingjun; Wang, Wei
2015-07-27
Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of highly active anti-retroviral therapy (HAART) that block the catalytic site of HIV protease, thus preventing maturation of the HIV virion. However, with two decades of PI prescriptions in clinical practice, drug-resistant HIV mutants have now been found for all of the PI drugs. Therefore, the continuous development of new PI drugs is crucial both to combat the existing drug-resistant HIV strains and to provide treatments for future patients. Here we purpose an HIV PI drug design strategy to select candidate PIs with binding energy distributions dominated by interactions with conserved protease residues in both wild-type and various drug-resistant mutants. On the basis of this strategy, we have constructed a virtual screening pipeline including combinatorial library construction, combinatorial docking, MM/GBSA-based rescoring, and reranking on the basis of the binding energy distribution. We have tested our strategy on lopinavir by modifying its two functional groups. From an initial 751 689 candidate molecules, 18 candidate inhibitors were selected using the pipeline for experimental validation. IC50 measurements and drug resistance predictions successfully identified two ligands with both HIV protease inhibitor activity and an improved drug resistance profile on 2382 HIV mutants. This study provides a proof of concept for the integration of MM/GBSA energy analysis and drug resistance information at the stage of virtual screening and sheds light on future HIV drug design and the use of virtual screening to combat drug resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta
Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with atmore » least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.« less
Integration of language and sensor information
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Weijers, Bertus
2003-04-01
The talk describes the development of basic technologies of intelligent systems fusing data from multiple domains and leading to automated computational techniques for understanding data contents. Understanding involves inferring appropriate decisions and recommending proper actions, which in turn requires fusion of data and knowledge about objects, situations, and actions. Data might include sensory data, verbal reports, intelligence intercepts, or public records, whereas knowledge ought to encompass the whole range of objects, situations, people and their behavior, and knowledge of languages. In the past, a fundamental difficulty in combining knowledge with data was the combinatorial complexity of computations, too many combinations of data and knowledge pieces had to be evaluated. Recent progress in understanding of natural intelligent systems, including the human mind, leads to the development of neurophysiologically motivated architectures for solving these challenging problems, in particular the role of emotional neural signals in overcoming combinatorial complexity of old logic-based approaches. Whereas past approaches based on logic tended to identify logic with language and thinking, recent studies in cognitive linguistics have led to appreciation of more complicated nature of linguistic models. Little is known about the details of the brain mechanisms integrating language and thinking. Understanding and fusion of linguistic information with sensory data represent a novel challenging aspect of the development of integrated fusion systems. The presentation will describe a non-combinatorial approach to this problem and outline techniques that can be used for fusing diverse and uncertain knowledge with sensory and linguistic data.
Partners in crime: The role of tandem modules in gene transcription.
Sharma, Rajal; Zhou, Ming-Ming
2015-09-01
Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.
Phage selection of peptide "microantibodies".
Fujiwara, Daisuke; Fujii, Ikuo
2013-01-01
A bioactive peptide capable of inhibiting protein-protein interactions has the potential to be a molecular tool for biological studies and a therapeutic by disrupting aberrant interactions involved in diseases. We have developed combinatorial libraries of peptides with helix-loop-helix structure, from which the isolated peptides have the constrained structure to reduce entropy costs in binding, resulting in high binding affinities for target molecules. Previously, we designed a de novo peptide of helix-loop-helix structure that we termed a "microantibody." Using the microantibody as a library scaffold, we have constructed a phage-display library to successfully isolate molecular-targeting peptides against a cytokine receptor (granulocyte colony-stimulating factor receptor), a protein kinase (Aurora-A), and a ganglioside (GM1). Protocols in this article describe a general procedure for the library construction and the library screening.
2010-01-01
Background Cardiovascular disease (CVD) is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC) were incubated overnight with control media with dimethylsulfoxide (DMSO) vehicle (1% v/v) or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL), which included Agaricus bisporus (white button and crimini), Lentinula edodes (shiitake), Pleurotus ostreatus (oyster), and Grifola frondosa (maitake). Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL) for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM). AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p < 0.05) VCAM-1, ICAM-1, and E-selectin-1 expression, whereas other test mushrooms significantly modulated AM expression singly, collectively, or combinatorially. All mushrooms, however, significantly reduced binding of monocytes to both quiescent and cytokine-stimulated monolayers. Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD. PMID:20637088
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-01-01
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI: http://dx.doi.org/10.7554/eLife.17096.001 PMID:27482653
Huang, Xiaoqiang; Han, Kehang; Zhu, Yushan
2013-01-01
A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph-theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions. PMID:23649589
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; ...
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
Struffi, Paolo; Corado, Maria; Kaplan, Leah; Yu, Danyang; Rushlow, Christine; Small, Stephen
2011-01-01
Despite years of study, the precise mechanisms that control position-specific gene expression during development are not understood. Here, we analyze an enhancer element from the even skipped (eve) gene, which activates and positions two stripes of expression (stripes 3 and 7) in blastoderm stage Drosophila embryos. Previous genetic studies showed that the JAK-STAT pathway is required for full activation of the enhancer, whereas the gap genes hunchback (hb) and knirps (kni) are required for placement of the boundaries of both stripes. We show that the maternal zinc-finger protein Zelda (Zld) is absolutely required for activation, and present evidence that Zld binds to multiple non-canonical sites. We also use a combination of in vitro binding experiments and bioinformatics analysis to redefine the Kni-binding motif, and mutational analysis and in vivo tests to show that Kni and Hb are dedicated repressors that function by direct DNA binding. These experiments significantly extend our understanding of how the eve enhancer integrates positive and negative transcriptional activities to generate sharp boundaries in the early embryo. PMID:21865322
Deppisch, Nina; Ruf, Peter; Eißler, Nina; Lindhofer, Horst; Mocikat, Ralph
2017-01-01
Combinatorial approaches of immunotherapy hold great promise for the treatment of malignant disease. Here, we examined the potential of combining an immune checkpoint inhibitor and trifunctional bispecific antibodies (trAbs) in a preclinical melanoma mouse model using surrogate antibodies of Ipilimumab and Catumaxomab, both of which have already been approved for clinical use. The specific binding arms of trAbs redirect T cells to tumor cells and trigger direct cytotoxicity, while the Fc region activates accessory cells eventually giving rise to a long-lasting immunologic memory. We show here that T cells redirected to tumor cells by trAbs strongly upregulate CTLA-4 expression in vitro and in vivo. This suggested that blocking of CTLA-4 in combination with trAb treatment enhances T-cell activation in a tumor-selective manner. However, when mice were challenged with melanoma cells and subsequently treated with antibodies, there was only a moderate beneficial effect of the combinatorial approach in vivo with regard to direct tumor destruction in comparison to trAb therapy alone. By contrast, a significantly improved vaccination effect was obtained by CTLA-4 blocking during trAb-dependent immunization. This resulted in enhanced rejection of melanoma cells given after pre-immunization. The improved immunologic memory induced by the combinatorial approach correlated with an increased humoral antitumor response as measured in the sera and an expansion of CD4+ memory T cells found in the spleens. PMID:27966460
Deppisch, Nina; Ruf, Peter; Eißler, Nina; Lindhofer, Horst; Mocikat, Ralph
2017-01-17
Combinatorial approaches of immunotherapy hold great promise for the treatment of malignant disease. Here, we examined the potential of combining an immune checkpoint inhibitor and trifunctional bispecific antibodies (trAbs) in a preclinical melanoma mouse model using surrogate antibodies of Ipilimumab and Catumaxomab, both of which have already been approved for clinical use. The specific binding arms of trAbs redirect T cells to tumor cells and trigger direct cytotoxicity, while the Fc region activates accessory cells eventually giving rise to a long-lasting immunologic memory. We show here that T cells redirected to tumor cells by trAbs strongly upregulate CTLA-4 expression in vitro and in vivo. This suggested that blocking of CTLA-4 in combination with trAb treatment enhances T-cell activation in a tumor-selective manner. However, when mice were challenged with melanoma cells and subsequently treated with antibodies, there was only a moderate beneficial effect of the combinatorial approach in vivo with regard to direct tumor destruction in comparison to trAb therapy alone. By contrast, a significantly improved vaccination effect was obtained by CTLA-4 blocking during trAb-dependent immunization. This resulted in enhanced rejection of melanoma cells given after pre-immunization. The improved immunologic memory induced by the combinatorial approach correlated with an increased humoral antitumor response as measured in the sera and an expansion of CD4+ memory T cells found in the spleens.
Staquicini, Fernanda I.; Ozawa, Michael G.; Moya, Catherine A.; Driessen, Wouter H.P.; Barbu, E. Magda; Nishimori, Hiroyuki; Soghomonyan, Suren; Flores, Leo G.; Liang, Xiaowen; Paolillo, Vincenzo; Alauddin, Mian M.; Basilion, James P.; Furnari, Frank B.; Bogler, Oliver; Lang, Frederick F.; Aldape, Kenneth D.; Fuller, Gregory N.; Höök, Magnus; Gelovani, Juri G.; Sidman, Richard L.; Cavenee, Webster K.; Pasqualini, Renata; Arap, Wadih
2010-01-01
The management of CNS tumors is limited by the blood-brain barrier (BBB), a vascular interface that restricts the passage of most molecules from the blood into the brain. Here we show that phage particles targeted with certain ligand motifs selected in vivo from a combinatorial peptide library can cross the BBB under normal and pathological conditions. Specifically, we demonstrated that phage clones displaying an iron-mimic peptide were able to target a protein complex of transferrin and transferrin receptor (TfR) through a non-canonical allosteric binding mechanism and that this functional protein complex mediated transport of the corresponding viral particles into the normal mouse brain. We also showed that, in an orthotopic mouse model of human glioblastoma, a combination of TfR overexpression plus extended vascular permeability and ligand retention resulted in remarkable brain tumor targeting of chimeric adeno-associated virus/phage particles displaying the iron-mimic peptide and carrying a gene of interest. As a proof of concept, we delivered the HSV thymidine kinase gene for molecular-genetic imaging and targeted therapy of intracranial xenografted tumors. Finally, we established that these experimental findings might be clinically relevant by determining through human tissue microarrays that many primary astrocytic tumors strongly express TfR. Together, our combinatorial selection system and results may provide a translational avenue for the targeted detection and treatment of brain tumors. PMID:21183793
Elder, D
1984-06-07
The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.
Targeting a KH-domain protein with RNA decoys.
Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A
2002-09-01
RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins.
Targeting a KH-domain protein with RNA decoys.
Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A
2002-01-01
RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins. PMID:12358435
Effective DNA Inhibitors of Cathepsin G by In Vitro Selection
Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio
2008-01-01
Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843
Pérez-Victoria, José M.; Cortés-Selva, Fernando; Parodi-Talice, Adriana; Bavchvarov, Boris I.; Pérez-Victoria, F. Javier; Muñoz-Martínez, Francisco; Maitrejean, Mathias; Costi, M. Paola; Barron, Denis; Di Pietro, Attilio; Castanys, Santiago; Gamarro, Francisco
2006-01-01
Miltefosine (hexadecylphosphocholine) is the first orally active drug approved for the treatment of leishmaniasis. We have previously shown the involvement of LtrMDR1, a P-glycoprotein-like transporter belonging to the ATP-binding cassette superfamily, in miltefosine resistance in Leishmania. Here we show that overexpression of LtrMDR1 increases miltefosine efflux, leading to a decrease in drug accumulation in the parasites. Although LtrMDR1 modulation might be an efficient way to overcome this resistance, a main drawback associated with the use of P-glycoprotein inhibitors is related to their intrinsic toxicity. In order to diminish possible side effects, we have combined suboptimal doses of modulators targeting both the cytosolic and transmembrane domains of LtrMDR1. Preliminary structure-activity relationships have allowed us to design a new and potent flavonoid derivative with high affinity for the cytosolic nucleotide-binding domains. As modulators directed to the transmembrane domains, we have selected one of the most potent dihydro-β-agarofuran sesquiterpenes described, and we have also studied the effects of two of the most promising, latest-developed modulators of human P-glycoprotein, zosuquidar (LY335979) and elacridar (GF120918). The results show that this combinatorial strategy efficiently overcomes P-glycoprotein-mediated parasite miltefosine resistance by increasing intracellular miltefosine accumulation without any side effect in the parental, sensitive, Leishmania line and in different mammalian cell lines. PMID:16940108
ERIC Educational Resources Information Center
Scott, William L.; Denton, Ryan E.; Marrs, Kathleen A.; Durrant, Jacob D.; Samaritoni, J. Geno; Abraham, Milata M.; Brown, Stephen P.; Carnahan, Jon M.; Fischer, Lindsey G.; Glos, Courtney E.; Sempsrott, Peter J.; O'Donnell, Martin J.
2015-01-01
The Distributed Drug Discovery (D3) program trains students in three drug discovery disciplines (synthesis, computational analysis, and biological screening) while addressing the important challenge of discovering drug leads for neglected diseases. This article focuses on implementation of the synthesis component in the second-semester…
Generalized Success-Breeds-Success Principle Leading to Time-Dependent Informetric Distributions.
ERIC Educational Resources Information Center
Egghe, Leo; Rousseau, Ronald
1995-01-01
Reformulates the success-breeds-success (SBS) principle in informetrics in order to generate a general theory of source-item relationships. Topics include a time-dependent probability, a new model for the expected probability that is compared with the SBS principle with exact combinatorial calculations, classical frequency distributions, and…
The disadvantage of combinatorial communication.
Lachmann, Michael; Bergstrom, Carl T.
2004-01-01
Combinatorial communication allows rapid and efficient transfer of detailed information, yet combinatorial communication is used by few, if any, non-human species. To complement recent studies illustrating the advantages of combinatorial communication, we highlight a critical disadvantage. We use the concept of information value to show that deception poses a greater and qualitatively different threat to combinatorial signalling than to non-combinatorial systems. This additional potential for deception may represent a strategic barrier that has prevented widespread evolution of combinatorial communication. Our approach has the additional benefit of drawing clear distinctions among several types of deception that can occur in communication systems. PMID:15556886
The disadvantage of combinatorial communication.
Lachmann, Michael; Bergstrom, Carl T
2004-11-22
Combinatorial communication allows rapid and efficient transfer of detailed information, yet combinatorial communication is used by few, if any, non-human species. To complement recent studies illustrating the advantages of combinatorial communication, we highlight a critical disadvantage. We use the concept of information value to show that deception poses a greater and qualitatively different threat to combinatorial signalling than to non-combinatorial systems. This additional potential for deception may represent a strategic barrier that has prevented widespread evolution of combinatorial communication. Our approach has the additional benefit of drawing clear distinctions among several types of deception that can occur in communication systems.
Goyal, Sukriti; Grover, Sonam; Dhanjal, Jaspreet Kaur; Tyagi, Chetna; Goyal, Manisha; Grover, Abhinav
2014-06-01
Tumour suppressor p53 is known to play a central role in prevention of tumour development, DNA repair, senescence and apoptosis which is in normal cells maintained by negative feedback regulator MDM2 (Murine Double Minute 2). In case of dysfunctioning of this regulatory loop, tumour development starts thus resulting in cancerous condition. Inhibition of p53-MDM2 binding would result in activation of the tumour suppressor. In this study, a novel robust fragment-based QSAR model has been developed for piperidinone derived compounds experimentally known to inhibit p53-MDM2 interaction. The QSAR model developed showed satisfactory statistical parameters for the experimentally reported dataset (r(2)=0.9415, q(2)=0.8958, pred_r(2)=0.8894 and F-test=112.7314), thus judging the robustness of the model. Low standard error values (r(2)_se=0.3003, q(2)_se=0.4009 and pred_r(2)_se=0.3315) confirmed the accuracy of the developed model. The regression equation obtained constituted three descriptors (R2-DeltaEpsilonA, R1-RotatableBondCount and R2-SssOCount), two of which had positive contribution while third showed negative correlation. Based on the developed QSAR model, a combinatorial library was generated and activities of the compounds were predicted. These compounds were docked with MDM2 and two top scoring compounds with binding affinities of -10.13 and -9.80kcal/mol were selected. The binding modes of actions of these complexes were analyzed using molecular dynamics simulations. Analysis of the developed fragment-based QSAR model revealed that addition of unsaturated electronegative groups at R2 site and groups with more rotatable bonds at R1 improved the inhibitory activity of these potent lead compounds. The detailed analysis carried out in this study provides a considerable basis for the design and development of novel piperidinone-based lead molecules against cancer and also provides mechanistic insights into their mode of actions. Copyright © 2014 Elsevier Inc. All rights reserved.
An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis
Kariolis, Mihalis S.; Miao, Yu Rebecca; Jones, Douglas S.; ...
2014-09-21
Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl ‘decoy receptor’ that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high affinity Axl variant caused structural alterations in side chains across the Gas6/Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc-fusion, the engineered decoy receptor bound tomore » Gas6 with femtomolar affinity, an 80-fold improvement compared to the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Additionally, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.« less
Alignment of RNA molecules: Binding energy and statistical properties of random sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com
2012-02-15
A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less
Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G
2016-02-25
Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis and binding studies of Alzheimer ligands on solid support.
Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas
2007-05-11
Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.
Yang, Fan; Liu, Ruiwu; Kramer, Randall; Xiao, Wenwu; Jordan, Richard; Lam, Kit S
2012-12-01
Oral squamous cell carcinoma has a low five-year survival rate, which may be due to late detection and a lack of effective tumor-specific therapies. Using a high throughput drug discovery strategy termed one-bead one-compound combinatorial library, the authors identified six compounds with high binding affinity to different human oral squamous cell carcinoma cell lines but not to normal cells. Current work is under way to develop these ligands to oral squamous cell carcinoma specific imaging probes or therapeutic agents.
A compositional approach to building applications in a computational environment
NASA Astrophysics Data System (ADS)
Roslovtsev, V. V.; Shumsky, L. D.; Wolfengagen, V. E.
2014-04-01
The paper presents an approach to creating an applicative computational environment to feature computational processes and data decomposition, and a compositional approach to application building. The approach in question is based on the notion of combinator - both in systems with variable binding (such as λ-calculi) and those allowing programming without variables (combinatory logic style). We present a computation decomposition technique based on objects' structural decomposition, with the focus on computation decomposition. The computational environment's architecture is based on a network with nodes playing several roles simultaneously.
Rapid NMR Assignments of Proteins by Using Optimized Combinatorial Selective Unlabeling.
Dubey, Abhinav; Kadumuri, Rajashekar Varma; Jaipuria, Garima; Vadrevu, Ramakrishna; Atreya, Hanudatta S
2016-02-15
A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tripeptides surrounding the labeled residues from specific 2D NMR spectra in a combinatorial manner. The methodology directly yields sequence specific assignments, without requiring a contiguously stretch of amino acid residues to be linked, and is applicable to deuterated proteins. We show that a 2D [(15) N,(1) H] HSQC spectrum with two 2D spectra can result in ∼50 % assignments. The methodology was applied to two proteins: an intrinsically disordered protein (12 kDa) and the 29 kDa (268 residue) α-subunit of Escherichia coli tryptophan synthase, which presents a challenging case with spectral overlaps and missing peaks. The method can augment existing approaches and will be useful for applications such as identifying active-site residues involved in ligand binding, phosphorylation, or protein-protein interactions, even prior to complete resonance assignments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flachbartova, Z; Pulzova, L; Bencurova, E; Potocnakova, L; Comor, L; Bednarikova, Z; Bhide, M
2016-01-01
The aim of the study was to isolate and characterize novel antimicrobial peptides from peptide phage library with antimicrobial activity against multidrug resistant Listeria monocytogenes. Combinatorial phage-display library was used to affinity select peptides binding to the cell surface of multidrug resistant L. monocytogenes. After several rounds of affinity selection followed by sequencing, three peptides were revealed as the most promising candidates. Peptide L2 exhibited features common to antimicrobial peptides (AMPs), and was rich in Asp, His and Lys residues. Peptide L3 (NSWIQAPDTKSI), like peptide L2, inhibited bacterial growth in vitro, without any hemolytic or cytotoxic effects on eukaryotic cells. L1 peptide showed no inhibitory effect on Listeria. Structurally, peptides L2 and L3 formed random coils composed of α-helix and β-sheet units. Peptides L2 and L3 exhibited antimicrobial activity against multidrug resistant isolates of L. monocytogenes with no haemolytic or toxic effects. Both peptides identified in this study have the potential to be beneficial in human and veterinary medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.
Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.
2011-01-01
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151
Scott-Phillips, Thomas C; Blythe, Richard A
2013-11-06
In a combinatorial communication system, some signals consist of the combinations of other signals. Such systems are more efficient than equivalent, non-combinatorial systems, yet despite this they are rare in nature. Why? Previous explanations have focused on the adaptive limits of combinatorial communication, or on its purported cognitive difficulties, but neither of these explains the full distribution of combinatorial communication in the natural world. Here, we present a nonlinear dynamical model of the emergence of combinatorial communication that, unlike previous models, considers how initially non-communicative behaviour evolves to take on a communicative function. We derive three basic principles about the emergence of combinatorial communication. We hence show that the interdependence of signals and responses places significant constraints on the historical pathways by which combinatorial signals might emerge, to the extent that anything other than the most simple form of combinatorial communication is extremely unlikely. We also argue that these constraints can be bypassed if individuals have the socio-cognitive capacity to engage in ostensive communication. Humans, but probably no other species, have this ability. This may explain why language, which is massively combinatorial, is such an extreme exception to nature's general trend for non-combinatorial communication.
Solubilization of a membrane protein by combinatorial supercharging.
Hajduczki, Agnes; Majumdar, Sudipta; Fricke, Marie; Brown, Isola A M; Weiss, Gregory A
2011-04-15
Hydrophobic and aggregation-prone, membrane proteins often prove too insoluble for conventional in vitro biochemical studies. To engineer soluble variants of human caveolin-1, a phage-displayed library of caveolin variants targeted the hydrophobic intramembrane domain with substitutions to charged residues. Anti-selections for insolubility removed hydrophobic variants, and positive selections for binding to the known caveolin ligand HIV gp41 isolated functional, folded variants. Assays with several caveolin binding partners demonstrated the successful folding and functionality by a solubilized, full-length caveolin variant selected from the library. This caveolin variant allowed assay of the direct interaction between caveolin and cavin. Clustered along one face of a putative helix, the solubilizing mutations suggest a structural model for the intramembrane domain of caveolin. The approach provides a potentially general method for solubilization and engineering of membrane-associated proteins by phage display.
On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks
Solé, Ricard; Amor, Daniel R.; Valverde, Sergi
2016-01-01
It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a “black hole” of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime. PMID:26821277
On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.
Solé, Ricard; Amor, Daniel R; Valverde, Sergi
2016-01-01
It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.
Searching Fragment Spaces with feature trees.
Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger
2009-02-01
Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.
LAS0811: from combinatorial chemistry to activation of antioxidant response element.
Zhu, Ming; Baek, Hyounggee; Liu, Ruiwu; Song, Aimin; Lam, Kit; Lau, Derick
2009-01-01
The antioxidant response element (ARE) and its transcription factor, nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), are potential targets for cancer chemoprevention. We sought to screen small molecules synthesized with combinatorial chemistry for activation of ARE. By high-throughput screening of 9400 small molecules from 10 combinatorial chemical libraries using HepG2 cells with an ARE-driven reporter, we have identified a novel small molecule, 1,2-dimethoxy-4,5-dinitrobenzene (LAS0811), as an activator of the ARE. LAS0811 upregulated the activity of NAD(P)H:quinone oxidoreductase 1 (NQO1), a representative antioxidative enzyme regulated by ARE. It enhanced production of an endogenous reducing agent, glutathione (GSH). In addition, LAS0811 induced expression of heme oxygenase 1 (HO1), which is an ARE-regulated enzyme with anti-inflammatory activity. Furthermore, LAS0811 reduced cell death due to the cytotoxic stress of a strong oxidant, t-butyl hydroperoxide (t-BOOH). Mechanistically, LAS0811 upregulated the expression of Nrf2 and promoted its translocation into the nuclei leading to subsequent ARE activation. Taken together, LAS0811 is a novel activator of the ARE and its associated detoxifying genes and, thus, a potential agent for cancer chemoprevention.
LAS0811: From Combinatorial Chemistry to Activation of Antioxidant Response Element
Zhu, Ming; Baek, Hyounggee; Liu, Ruiwu; Song, Aimin; Lam, Kit; Lau, Derick
2009-01-01
The antioxidant response element (ARE) and its transcription factor, nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), are potential targets for cancer chemoprevention. We sought to screen small molecules synthesized with combinatorial chemistry for activation of ARE. By high-throughput screening of 9400 small molecules from 10 combinatorial chemical libraries using HepG2 cells with an ARE-driven reporter, we have identified a novel small molecule, 1,2-dimethoxy-4,5-dinitrobenzene (LAS0811), as an activator of the ARE. LAS0811 upregulated the activity of NAD(P)H:quinone oxidoreductase 1 (NQO1), a representative antioxidative enzyme regulated by ARE. It enhanced production of an endogenous reducing agent, glutathione (GSH). In addition, LAS0811 induced expression of heme oxygenase 1 (HO1), which is an ARE-regulated enzyme with anti-inflammatory activity. Furthermore, LAS0811 reduced cell death due to the cytotoxic stress of a strong oxidant, t-butyl hydroperoxide (t-BOOH). Mechanistically, LAS0811 upregulated the expression of Nrf2 and promoted its translocation into the nuclei leading to subsequent ARE activation. Taken together, LAS0811 is a novel activator of the ARE and its associated detoxifying genes and, thus, a potential agent for cancer chemoprevention. PMID:19794825
ERIC Educational Resources Information Center
Abramovich, Sergei; Pieper, Anne
1996-01-01
Describes the use of manipulatives for solving simple combinatorial problems which can lead to the discovery of recurrence relations for permutations and combinations. Numerical evidence and visual imagery generated by a computer spreadsheet through modeling these relations can enable students to experience the ease and power of combinatorial…
Heuristics of Twelfth Graders Building Isomorphisms
ERIC Educational Resources Information Center
Powell, Arthur B.; Maher, Carolyn A.
2003-01-01
This report analyzes the discursive interactions of four students to understand what heuristic methods they develop as well as how and why they build isomorphisms to resolve a combinatorial problem set in a non-Euclidian context. The findings suggest that results of their heuristic actions lead them to build isomorphisms that in turn allow them to…
Shlamkovich, Tomer; Aharon, Lidan; Barton, William A; Papo, Niv
2017-05-16
In many human cancers, the receptor tyrosine kinase (RTK) Tie2 plays important roles in mediating proliferation, survival, migration and angiogenesis. Thus, molecules that could potently inhibit activation of the Tie2 receptor would have a significant impact on cancer therapy. Nevertheless, attempts to develop Tie2-targeted inhibitors have met with little success, and there is currently no FDA-approved therapeutic selectively targeting Tie2. We used a combinatorial protein engineering approach to develop a new generation of angiopoietin (Ang)2-derived Tie2 antagonists as potential cancer therapeutics and as tools to study angiogenesis. The construct for designing a yeast surface display (YSD) library of potential antagonists was an Ang2 binding domain (Ang2-BD) that retains Tie2 binding ability but prevents ligand multimerization and receptor dimerization and activation. This mutant library was then screened by quantitative high-throughput flow cytometric sorting to identify Ang2-BD variants with increased expression, stability and affinity to Tie2. The selected variants were recombinantly expressed and showed high affinity to soluble and cellular Tie2 and strongly inhibited both Tie2 phosphorylation and endothelial capillary tube formation and cell invasion compared to the parental Ang2-BD. The significance of the study lies in the insight it provides into the sequence-structure-function relationships and mechanism of action of the antagonistic Ang mutants. The approach of using a natural protein ligand as a molecular scaffold for engineering high-affinity agents can be applied to other ligands to create functional protein antagonists against additional biomedical targets.
Nour, Hany F; Islam, Tuhidul; Fernández-Lahore, Marcelo; Kuhnert, Nikolai
2012-12-30
Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest. Copyright © 2012 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko
2004-01-01
A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.
The role of the left anterior temporal lobe in semantic composition vs. semantic memory.
Westerlund, Masha; Pylkkänen, Liina
2014-05-01
The left anterior temporal lobe (LATL) is robustly implicated in semantic processing by a growing body of literature. However, these results have emerged from two distinct bodies of work, addressing two different processing levels. On the one hand, the LATL has been characterized as a 'semantic hub׳ that binds features of concepts across a distributed network, based on results from semantic dementia and hemodynamic findings on the categorization of specific compared to basic exemplars. On the other, the LATL has been implicated in combinatorial operations in language, as shown by increased activity in this region associated with the processing of sentences and of basic phrases. The present work aimed to reconcile these two literatures by independently manipulating combination and concept specificity within a minimal MEG paradigm. Participants viewed simple nouns that denoted either low specificity (fish) or high specificity categories (trout) presented in either combinatorial (spotted fish/trout) or non-combinatorial contexts (xhsl fish/trout). By combining these paradigms from the two literatures, we directly compared the engagement of the LATL in semantic memory vs. semantic composition. Our results indicate that although noun specificity subtly modulates the LATL activity elicited by single nouns, it most robustly affects the size of the composition effect when these nouns are adjectivally modified, with low specificity nouns eliciting a much larger effect. We conclude that these findings are compatible with an account in which the specificity and composition effects arise from a shared mechanism of meaning specification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bakker, Iske; Macgregor, Lucy J; Pulvermüller, Friedemann; Shtyrov, Yury
2013-05-01
A controversial issue in neuro- and psycholinguistics is whether regular past-tense forms of verbs are stored lexically or generated productively by the application of abstract combinatorial schemas, for example affixation rules. The success or failure of models in accounting for this particular issue can be used to draw more general conclusions about cognition and the degree to which abstract, symbolic representations and rules are psychologically and neurobiologically real. This debate can potentially be resolved using a neurophysiological paradigm, in which alternative predictions of the brain response patterns for lexical and syntactic processing are put to the test. We used magnetoencephalography (MEG) to record neural responses to spoken monomorphemic words ('hide'), pseudowords ('smide'), regular past-tense forms ('cried') and ungrammatical (overregularised) past-tense forms ('flied') in a passive listening oddball paradigm, in which lexically and syntactically modulated stimuli are known to elicit distinct patterns of the mismatch negativity (MMN) brain response. We observed an enhanced ('lexical') MMN to monomorphemic words relative to pseudowords, but a reversed ('syntactic') MMN to ungrammatically inflected past tenses relative to grammatical forms. This dissociation between responses to monomorphemic and bimorphemic stimuli indicates that regular past tenses are processed more similarly to syntactic sequences than to lexically stored monomorphemic words, suggesting that regular past tenses are generated productively by the application of a combinatorial scheme to their separately represented stems and affixes. We suggest discrete combinatorial neuronal assemblies, which bind classes of sequentially occurring lexical elements into morphologically complex units, as the neurobiological basis of regular past tense inflection. Copyright © 2013 Elsevier Inc. All rights reserved.
Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules
Faure, Andre J.; Schmidt, Dominic; Watt, Stephen; Schwalie, Petra C.; Wilson, Michael D.; Xu, Huiling; Ramsay, Robert G.; Odom, Duncan T.; Flicek, Paul
2012-01-01
The cohesin protein complex contributes to transcriptional regulation in a CTCF-independent manner by colocalizing with master regulators at tissue-specific loci. The regulation of transcription involves the concerted action of multiple transcription factors (TFs) and cohesin's role in this context of combinatorial TF binding remains unexplored. To investigate cohesin-non-CTCF (CNC) binding events in vivo we mapped cohesin and CTCF, as well as a collection of tissue-specific and ubiquitous transcriptional regulators using ChIP-seq in primary mouse liver. We observe a positive correlation between the number of distinct TFs bound and the presence of CNC sites. In contrast to regions of the genome where cohesin and CTCF colocalize, CNC sites coincide with the binding of master regulators and enhancer-markers and are significantly associated with liver-specific expressed genes. We also show that cohesin presence partially explains the commonly observed discrepancy between TF motif score and ChIP signal. Evidence from these statistical analyses in wild-type cells, and comparisons to maps of TF binding in Rad21-cohesin haploinsufficient mouse liver, suggests that cohesin helps to stabilize large protein–DNA complexes. Finally, we observe that the presence of mirrored CTCF binding events at promoters and their nearby cohesin-bound enhancers is associated with elevated expression levels. PMID:22780989
Norris, Vic; Krylov, Sergey N.; Agarwal, Pratul K.; White, Glenn J.
2017-01-01
The construction of switchable, radiation-controlled, aptameric enzymes alias swenzymes is, in principle, feasible. We propose a strategy to make such catalysts from two (or more) aptamers each selected to bind specifically to one of the substrates in, for example, a two-substrate reaction. Construction of a combinatorial library of candidate swenzymes entails selecting a set of a million aptamers that bind one substrate and a second set of a million aptamers that bind the second substrate; the aptamers in these sets are then linked pairwise by a linker so bringing together the substrates. In the presence of the substrates, some linked aptamer pairs catalyze the reaction when exposed to external energy in the form of a specific frequency of low intensity, non-ionizing electromagnetic or acoustic radiation. Such swenzymes are detected via a separate, product-capturing, aptamer that changes conformation on capturing the product; this altered conformation allows it (1) to bind to every potential swenzyme in its vicinity (thereby giving a higher probability of capture to the swenzymes that generate the product) and (2) to bind to a sequence on a magnetic bead (thereby permitting purification of the swenzyme plus product-capturing aptamer by precipitation). Attempts to implement the swenzyme strategy may help elucidate fundamental problems in enzyme catalysis. PMID:28448969
Synthetic, Switchable Enzymes.
Norris, Vic; Krylov, Sergey N; Agarwal, Pratul K; White, Glenn J
2017-01-01
The construction of switchable, radiation-controlled, aptameric enzymes - "swenzymes" - is, in principle, feasible. We propose a strategy to make such catalysts from 2 (or more) aptamers each selected to bind specifically to one of the substrates in, for example, a 2-substrate reaction. Construction of a combinatorial library of candidate swenzymes entails selecting a set of a million aptamers that bind one substrate and a second set of a million aptamers that bind the second substrate; the aptamers in these sets are then linked pairwise by a linker, thus bringing together the substrates. In the presence of the substrates, some linked aptamer pairs catalyze the reaction when exposed to external energy in the form of a specific frequency of low-intensity, nonionizing electromagnetic or acoustic radiation. Such swenzymes are detected via a separate product-capturing aptamer that changes conformation on capturing the product; this altered conformation allows it (1) to bind to every potential swenzyme in its vicinity (thereby giving a higher probability of capture to the swenzymes that generate the product) and (2) to bind to a sequence on a magnetic bead (thereby permitting purification of the swenzyme plus product-capturing aptamer by precipitation). Attempts to implement the swenzyme strategy may help elucidate fundamental problems in enzyme catalysis. © 2017 S. Karger AG, Basel.
Asessing for Structural Understanding in Childrens' Combinatorial Problem Solving.
ERIC Educational Resources Information Center
English, Lyn
1999-01-01
Assesses children's structural understanding of combinatorial problems when presented in a variety of task situations. Provides an explanatory model of students' combinatorial understandings that informs teaching and assessment. Addresses several components of children's structural understanding of elementary combinatorial problems. (Contains 50…
Biologically-Inspired Peptide Reagents for Enhancing IMS-MS Analysis of Carbohydrates
NASA Astrophysics Data System (ADS)
Bohrer, Brian C.; Clemmer, David E.
2011-09-01
The binding properties of a peptidoglycan recognition protein are translated via combinatorial chemistry into short peptides. Non-adjacent histidine, tyrosine, and arginine residues in the protein's binding cleft that associate specifically with the glycan moiety of a peptidoglycan substrate are incorporated into linear sequences creating a library of 27 candidate tripeptide reagents (three possible residues permutated across three positions). Upon electrospraying the peptide library and carbohydrate mixtures, some noncovalent complexes are observed. The binding efficiencies of the peptides vary according to their amino acid composition as well as the disaccharide linkage and carbohydrate ring-type. In addition to providing a charge-carrier for the carbohydrate, peptide reagents can also be used to differentiate carbohydrate isomers by ion mobility spectrometry. The utility of these peptide reagents as a means of enhancing ion mobility analysis of carbohydrates is illustrated by examining four glucose-containing disaccharide isomers, including a pair that is not resolved by ion mobility alone. The specificity and stoichiometry of the peptide-carbohydrate complexes are also investigated. Trihistidine demonstrates both suitable binding efficiency and successful resolution of disaccharides isomers, suggesting it may be a useful reagent in IMS analyses of carbohydrates.
Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication
ERIC Educational Resources Information Center
Wolf, Michael Maclean
2009-01-01
Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…
Combinatorial structures to modeling simple games and applications
NASA Astrophysics Data System (ADS)
Molinero, Xavier
2017-09-01
We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.
Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz; Barkooie, Seyyed Mohsen Hosseini; Jahandideh, Samad; Rezaei, Mohammad Ali
2009-12-01
Regarding the great potential of dual binding site inhibitors of acetylcholinesterase as the future potent drugs of Alzheimer's disease, this study was devoted to extraction of the most effective structural features of these inhibitors from among a large number of quantitative descriptors. To do this, we adopted a unique approach in quantitative structure-activity relationships. An efficient feature selection method was emphasized in such an approach, using the confirmative results of different routine and novel feature selection methods. The proposed methods generated quite consistent results ensuring the effectiveness of the selected structural features.
Signatures of DNA target selectivity by ETS transcription factors
Kim, Hye Mi
2017-01-01
ABSTRACT The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation. PMID:28301293
Signatures of DNA target selectivity by ETS transcription factors.
Poon, Gregory M K; Kim, Hye Mi
2017-05-27
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
Regulation of alternative splicing in Drosophila by 56 RNA binding proteins
Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...
2015-08-20
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less
Multifarious Functions of the Fragile X Mental Retardation Protein.
Davis, Jenna K; Broadie, Kendal
2017-10-01
Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Ji Hoon; Oh, Misook; Kim, Hyun Soo; Lee, Huisun; Im, Wonpil; Lim, Hyun-Suk
2016-01-11
Many biologically active α-helical peptides adopt amphiphilic helical structures that contain hydrophobic residues on one side and hydrophilic residues on the other side. Therefore, α-helix mimetics capable of mimicking such amphiphilic helical peptides should possess higher binding affinity and specificity to target proteins. Here we describe an efficient method for generating amphiphilic α-helix mimetics. One-face α-helix mimetics having hydrophobic side chains on one side was readily converted into amphiphilic α-helix mimetics by introducing appropriate charged residues on the opposite side. We also demonstrate that such two-face amphiphilic α-helix mimetics indeed show remarkably improved binding affinity to a target protein, compared to one-face hydrophobic α-helix mimetics. We believe that generating a large combinatorial library of these amphiphilic α-helix mimetics can be valuable for rapid discovery of highly potent and specific modulators of protein-protein interactions.
Coffinier, Yannick; Vijayalakshmi, Mookambeswaran A
2004-08-25
In this study, we attempted a limited combinatorial approach for designing affinity ligands based on mercaptoheterocyclic components. The template, divinyl sulfone structure (DVS), which was grafted on poly(ethylene vinyl alcohol) (PEVA) hollow fiber membrane, has served for the tethering of different heterocyclic compounds as pyridine, imidazole, purine and pyrimidine rings. Their ability to adsorb specifically IgG in a salt independent manner out of pure IgG solution, mixture of IgG/albumin and human plasma was demonstrated. Mercapto methyl imidazole (MMI) has shown the best adsorption of IgG in terms of binding capacity. No subclass discrimination was observed on all tested ligands except for mercapto methyl pyrimidine where the major IgG subclass adsorbed was IgG3. MMI gave an IgG binding capacity of 100 microg/cm2 of hollow fiber membrane surface area.
Designable DNA-binding domains enable construction of logic circuits in mammalian cells.
Gaber, Rok; Lebar, Tina; Majerle, Andreja; Šter, Branko; Dobnikar, Andrej; Benčina, Mojca; Jerala, Roman
2014-03-01
Electronic computer circuits consisting of a large number of connected logic gates of the same type, such as NOR, can be easily fabricated and can implement any logic function. In contrast, designed genetic circuits must employ orthogonal information mediators owing to free diffusion within the cell. Combinatorial diversity and orthogonality can be provided by designable DNA- binding domains. Here, we employed the transcription activator-like repressors to optimize the construction of orthogonal functionally complete NOR gates to construct logic circuits. We used transient transfection to implement all 16 two-input logic functions from combinations of the same type of NOR gates within mammalian cells. Additionally, we present a genetic logic circuit where one input is used to select between an AND and OR function to process the data input using the same circuit. This demonstrates the potential of designable modular transcription factors for the construction of complex biological information-processing devices.
Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.
2002-01-17
This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use ofmore » such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.« less
Disentangling the many layers of eukaryotic transcriptional regulation.
Lelli, Katherine M; Slattery, Matthew; Mann, Richard S
2012-01-01
Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models.
A New Approach for Proving or Generating Combinatorial Identities
ERIC Educational Resources Information Center
Gonzalez, Luis
2010-01-01
A new method for proving, in an immediate way, many combinatorial identities is presented. The method is based on a simple recursive combinatorial formula involving n + 1 arbitrary real parameters. Moreover, this formula enables one not only to prove, but also generate many different combinatorial identities (not being required to know them "a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullinax, R.L.; Gross, E.A.; Amberg, J.R.
1990-10-01
The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less
Switch loop flexibility affects substrate transport of the AcrB efflux pump
Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea; ...
2017-10-05
The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less
Switch loop flexibility affects substrate transport of the AcrB efflux pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea
The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less
Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.
Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E
2018-03-20
Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Takakusagi, Yoichi; Takakusagi, Kaori; Sugawara, Fumio; Sakaguchi, Kengo
2018-01-01
Identification of target proteins that directly bind to bioactive small molecule is of great interest in terms of clarifying the mode of action of the small molecule as well as elucidating the biological phenomena at the molecular level. Of the experimental technologies available, T7 phage display allows comprehensive screening of small molecule-recognizing amino acid sequence from the peptide libraries displayed on the T7 phage capsid. Here, we describe the T7 phage display strategy that is combined with quartz-crystal microbalance (QCM) biosensor for affinity selection platform and bioinformatics analysis for small molecule-recognizing short peptides. This method dramatically enhances efficacy and throughput of the screening for small molecule-recognizing amino acid sequences without repeated rounds of selection. Subsequent execution of bioinformatics programs allows combinatorial and comprehensive target protein discovery of small molecules with its binding site, regardless of protein sample insolubility, instability, or inaccessibility of the fixed small molecules to internally located binding site on larger target proteins when conventional proteomics approaches are used.
Domain repertoires as a tool to derive protein recognition rules.
Zucconi, A; Panni, S; Paoluzi, S; Castagnoli, L; Dente, L; Cesareni, G
2000-08-25
Several approaches, some of which are described in this issue, have been proposed to assemble a complete protein interaction map. These are often based on high throughput methods that explore the ability of each gene product to bind any other element of the proteome of the organism. Here we propose that a large number of interactions can be inferred by revealing the rules underlying recognition specificity of a small number (a few hundreds) of families of protein recognition modules. This can be achieved through the construction and characterization of domain repertoires. A domain repertoire is assembled in a combinatorial fashion by allowing each amino acid position in the binding site of a given protein recognition domain to vary to include all the residues allowed at that position in the domain family. The repertoire is then searched by phage display techniques with any target of interest and from the primary structure of the binding site of the selected domains one derives rules that are used to infer the formation of complexes between natural proteins in the cell.
Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner
2013-04-08
In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.
The role of Transposable Elements in shaping the combinatorial interaction of Transcription Factors
2012-01-01
Background In the last few years several studies have shown that Transposable Elements (TEs) in the human genome are significantly associated with Transcription Factor Binding Sites (TFBSs) and that in several cases their expansion within the genome led to a substantial rewiring of the regulatory network. Another important feature of the regulatory network which has been thoroughly studied is the combinatorial organization of transcriptional regulation. In this paper we combine these two observations and suggest that TEs, besides rewiring the network, also played a central role in the evolution of particular patterns of combinatorial gene regulation. Results To address this issue we searched for TEs overlapping Estrogen Receptor α (ERα) binding peaks in two publicly available ChIP-seq datasets from the MCF7 cell line corresponding to different modalities of exposure to estrogen. We found a remarkable enrichment of a few specific classes of Transposons. Among these a prominent role was played by MIR (Mammalian Interspersed Repeats) transposons. These TEs underwent a dramatic expansion at the beginning of the mammalian radiation and then stabilized. We conjecture that the special affinity of ERα for the MIR class of TEs could be at the origin of the important role assumed by ERα in Mammalians. We then searched for TFBSs within the TEs overlapping ChIP-seq peaks. We found a strong enrichment of a few precise combinations of TFBS. In several cases the corresponding Transcription Factors (TFs) were known cofactors of ERα, thus supporting the idea of a co-regulatory role of TFBS within the same TE. Moreover, most of these correlations turned out to be strictly associated to specific classes of TEs thus suggesting the presence of a well-defined "transposon code" within the regulatory network. Conclusions In this work we tried to shed light into the role of Transposable Elements (TEs) in shaping the regulatory network of higher eukaryotes. To test this idea we focused on a particular transcription factor: the Estrogen Receptor α (ERα) and we found that ERα preferentially targets a well defined set of TEs and that these TEs host combinations of transcriptional regulators involving several of known co-regulators of ERα. Moreover, a significant number of these TEs turned out to be conserved between human and mouse and located in the vicinity (and thus candidate to be regulators) of important estrogen-related genes. PMID:22897927
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter
2013-01-01
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796
Programmable single-cell mammalian biocomputers.
Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin
2012-07-05
Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.
Zhang, Hongkai; Torkamani, Ali; Jones, Teresa M; Ruiz, Diana I; Pons, Jaume; Lerner, Richard A
2011-08-16
Use of large combinatorial antibody libraries and next-generation sequencing of nucleic acids are two of the most powerful methods in modern molecular biology. The libraries are screened using the principles of evolutionary selection, albeit in real time, to enrich for members with a particular phenotype. This selective process necessarily results in the loss of information about less-fit molecules. On the other hand, sequencing of the library, by itself, gives information that is mostly unrelated to phenotype. If the two methods could be combined, the full potential of very large molecular libraries could be realized. Here we report the implementation of a phenotype-information-phenotype cycle that integrates information and gene recovery. After selection for phage-encoded antibodies that bind to targets expressed on the surface of Escherichia coli, the information content of the selected pool is obtained by pyrosequencing. Sequences that encode specific antibodies are identified by a bioinformatic analysis and recovered by a stringent affinity method that is uniquely suited for gene isolation from a highly degenerate collection of nucleic acids. This approach can be generalized for selection of antibodies against targets that are present as minor components of complex systems.
Optimization and high-throughput screening of antimicrobial peptides.
Blondelle, Sylvie E; Lohner, Karl
2010-01-01
While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.
Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
Hartenfeller, Markus; Proschak, Ewgenij; Schüller, Andreas; Schneider, Gisbert
2008-07-01
We present a fast stochastic optimization algorithm for fragment-based molecular de novo design (COLIBREE, Combinatorial Library Breeding). The search strategy is based on a discrete version of particle swarm optimization. Molecules are represented by a scaffold, which remains constant during optimization, and variable linkers and side chains. Different linkers represent virtual chemical reactions. Side-chain building blocks were obtained from pseudo-retrosynthetic dissection of large compound databases. Here, ligand-based design was performed using chemically advanced template search (CATS) topological pharmacophore similarity to reference ligands as fitness function. A weighting scheme was included for particle swarm optimization-based molecular design, which permits the use of many reference ligands and allows for positive and negative design to be performed simultaneously. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor subtype-selective agonists. The results demonstrate the ability of the technique to cope with large combinatorial chemistry spaces and its applicability to focused library design. The technique was able to perform exploitation of a known scheme and at the same time explorative search for novel ligands within the framework of a given molecular core structure. It thereby represents a practical solution for compound screening in the early hit and lead finding phase of a drug discovery project.
Taveira, Gabriel B; Mello, Érica O; Carvalho, André O; Regente, Mariana; Pinedo, Marcela; de La Canal, Laura; Rodrigues, Rosana; Gomes, Valdirene M
2017-05-01
Many Fusarium species are able to cause severe infections in plants as well as in animals and humans. Therefore, the discovery of new antifungal agents is of paramount importance. CaThi belongs to the thionins, which are cationic peptides with low molecular weights (∼5 kDa) that have toxic effects against various microorganisms. Herein, we study the mechanism of action of CaThi and its combinatory effect with fluconazole (FLC) against Fusarium solani. The mechanism of action of CaThi was studied by growth inhibition, viability, plasma membrane permeabilization, ROS induction, caspase activation, localization, and DNA binding capability, as assessed with Sytox green, DAB, FITC-VAD-FMK, CaThi-FITC, and gel shift assays. The combinatory effect of CaThi and FLC was assessed using a growth inhibition assay. Our results demonstrated that CaThi present a dose dependent activity and at the higher used concentration (50 µg mL -1 ) inhibits 83% of F. solani growth, prevents the formation of hyphae, permeabilizes membranes, induces endogenous H 2 O 2 , activates caspases, and localizes intracellularly. CaThi combined with FLC, at concentrations that alone do not inhibit F. solani, result in 100% death of F. solani when combined. The data presented in this study demonstrate that CaThi causes death of F. solani via apoptosis; an intracellular target may also be involved. Combined treatment using CaThi and FLC is a strong candidate for studies aimed at improved targeting of F. solani. This strategy is of particular interest because it minimizes selection of resistant microorganisms. © 2017 Wiley Periodicals, Inc.
2011-01-01
Abstract Background The combinatorial library strategy of using multiple candidate ligands in mixtures as library members is ideal in terms of cost and efficiency, but needs special screening methods to estimate the affinities of candidate ligands in such mixtures. Herein, a new method to screen candidate ligands present in unknown molar quantities in mixtures was investigated. Results The proposed method involves preparing a processed-mixture-for-screening (PMFS) with each mixture sample and an exogenous reference ligand, initiating competitive binding among ligands from the PMFS to a target immobilized on magnetic particles, recovering target-ligand complexes in equilibrium by magnetic force, extracting and concentrating bound ligands, and analyzing ligands in the PMFS and the concentrated extract by chromatography. The relative affinity of each candidate ligand to its reference ligand is estimated via an approximation equation assuming (a) the candidate ligand and its reference ligand bind to the same site(s) on the target, (b) their chromatographic peak areas are over five times their intercepts of linear response but within their linear ranges, (c) their binding ratios are below 10%. These prerequisites are met by optimizing primarily the quantity of the target used and the PMFS composition ratio. The new method was tested using the competitive binding of biotin derivatives from mixtures to streptavidin immobilized on magnetic particles as a model. Each mixture sample containing a limited number of candidate biotin derivatives with moderate differences in their molar quantities were prepared via parallel-combinatorial-synthesis (PCS) without purification, or via the pooling of individual compounds. Some purified biotin derivatives were used as reference ligands. This method showed resistance to variations in chromatographic quantification sensitivity and concentration ratios; optimized conditions to validate the approximation equation could be applied to different mixture samples. Relative affinities of candidate biotin derivatives with unknown molar quantities in each mixture sample were consistent with those estimated by a homogenous method using their purified counterparts as samples. Conclusions This new method is robust and effective for each mixture possessing a limited number of candidate ligands whose molar quantities have moderate differences, and its integration with PCS has promise to routinely practice the mixture-based library strategy. PMID:21545719
cDREM: inferring dynamic combinatorial gene regulation.
Wise, Aaron; Bar-Joseph, Ziv
2015-04-01
Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.
Dana-Farber Cancer Institute: Discovery of Resistance Mechanisms | Office of Cancer Genomics
Resistance to targeted therapy is emerging as a bottleneck to achieving durable drug responses in cancer. The goal of the CTD2 Center at Dana Farber Cancer Institute is to identify mechanisms of resistance for both existing therapeutics as well as for emerging targets even prior to the identification of lead compounds. They aim to use this information to inform combinatorial treatments. In representative examples they have found that YAP1 leads to resistance after KRAS targeting and that PRKACA mediates resistance to HER2 therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.
2015-02-21
Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less
A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor.
Licciardello, Marco P; Ringler, Anna; Markt, Patrick; Klepsch, Freya; Lardeau, Charles-Hugues; Sdelci, Sara; Schirghuber, Erika; Müller, André C; Caldera, Michael; Wagner, Anja; Herzog, Rebecca; Penz, Thomas; Schuster, Michael; Boidol, Bernd; Dürnberger, Gerhard; Folkvaljon, Yasin; Stattin, Pär; Ivanov, Vladimir; Colinge, Jacques; Bock, Christoph; Kratochwill, Klaus; Menche, Jörg; Bennett, Keiryn L; Kubicek, Stefan
2017-07-01
Approved drugs are invaluable tools to study biochemical pathways, and further characterization of these compounds may lead to repurposing of single drugs or combinations. Here we describe a collection of 308 small molecules representing the diversity of structures and molecular targets of all FDA-approved chemical entities. The CeMM Library of Unique Drugs (CLOUD) covers prodrugs and active forms at pharmacologically relevant concentrations and is ideally suited for combinatorial studies. We screened pairwise combinations of CLOUD drugs for impairment of cancer cell viability and discovered a synergistic interaction between flutamide and phenprocoumon (PPC). The combination of these drugs modulates the stability of the androgen receptor (AR) and resensitizes AR-mutant prostate cancer cells to flutamide. Mechanistically, we show that the AR is a substrate for γ-carboxylation, a post-translational modification inhibited by PPC. Collectively, our data suggest that PPC could be repurposed to tackle resistance to antiandrogens in prostate cancer patients.
Lee, M L; Schneider, G
2001-01-01
Natural products were analyzed to determine whether they contain appealing novel scaffold architectures for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated. Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed using a self-organizing map. Obviously, current trade drugs and natural products have several topological pharmacophore patterns in common. These features can be systematically explored with selected combinatorial libraries based on a combination of natural product-derived and synthetic molecular building blocks.
Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.
Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro
2017-05-01
Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.
Eggenstein, E; Eichinger, A; Kim, H-J; Skerra, A
2014-02-01
Modern strategies in radio-immuno therapy and in vivo imaging require robust, small, and specific ligand-binding proteins. In this context we have previously developed artificial lipocalins, so-called Anticalins, with high binding activity toward rare-earth metal-chelate complexes using combinatorial protein design. Here we describe further improvement of the Anticalin C26 via in vitro affinity maturation to yield CL31, which has a fourfold slower dissociation half-life above 2h. Also, we present the crystallographic analyses of both the initial and the improved Anticalin, providing insight into the molecular mechanism of chelated metal binding and the role of amino acid substitutions during the step-wise affinity maturation. Notably, one of the four structurally variable loops that form the ligand pocket in the lipocalin scaffold undergoes a significant conformational change from C26 to CL31, acting as a lid that closes over the accommodated metal-chelate ligand. A systematic mutational study indicated that further improvement of ligand affinity is difficult to achieve while providing clues on the contribution of relevant side chains in the engineered binding pocket. Unexpectedly, some of the amino acid replacements led to strong increases - more then 10-fold - in the yield of soluble protein from periplasmic secretion in Escherichia coli. Copyright © 2013 Elsevier Inc. All rights reserved.
Deng, Huai; Kerppola, Tom K.
2014-01-01
Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription. PMID:25063457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhati, Mugdha; Lee, Christopher; Nancarrow, Amy L.
2008-09-03
LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1{sub LBD}).more » Although the LIM interaction domain of Ldb1 (Ldb1{sub LID}) and Isl1{sub LBD} share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1{sub LBD} mimics Ldb1{sub LID}. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.« less
Use of combinatorial chemistry to speed drug discovery.
Rádl, S
1998-10-01
IBC's International Conference on Integrating Combinatorial Chemistry into the Discovery Pipeline was held September 14-15, 1998. The program started with a pre-conference workshop on High-Throughput Compound Characterization and Purification. The agenda of the main conference was divided into sessions of Synthesis, Automation and Unique Chemistries; Integrating Combinatorial Chemistry, Medicinal Chemistry and Screening; Combinatorial Chemistry Applications for Drug Discovery; and Information and Data Management. This meeting was an excellent opportunity to see how big pharma, biotech and service companies are addressing the current bottlenecks in combinatorial chemistry to speed drug discovery. (c) 1998 Prous Science. All rights reserved.
Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance
Hall Sedlak, Ruth; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan
2012-01-01
Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli strain by the use of a simple silver-binding peptide motif. A silver-binding peptide, AgBP2, was identified from a combinatorial display library and fused to the C terminus of the E. coli maltose-binding protein (MBP) to yield a silver-binding protein exhibiting nanomolar affinity for the metal. Growth experiments performed in the presence of silver nitrate showed that cells secreting MBP-AgBP2 into the periplasm exhibited silver tolerance in a batch culture, while those expressing a cytoplasmic version of the fusion protein or MBP alone did not. Transmission electron microscopy analysis of silver-tolerant cells revealed the presence of electron-dense silver nanoparticles. This is the first report of a specifically engineered metal-binding peptide exhibiting a strong in vivo phenotype, pointing toward a novel ability to manipulate bacterial interactions with heavy metals by the use of short and simple peptide motifs. Engineered metal-ion-tolerant microorganisms such as this E. coli strain could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo. PMID:22286990
NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class
Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar
2016-01-01
ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874
Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; Bugga, Ratnakumar
2003-01-01
Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.
MIFT: GIFT Combinatorial Geometry Input to VCS Code
1977-03-01
r-w w-^ H ^ß0318is CQ BRL °RCUMr REPORT NO. 1967 —-S: ... MIFT: GIFT COMBINATORIAL GEOMETRY INPUT TO VCS CODE Albert E...TITLE (and Subtitle) MIFT: GIFT Combinatorial Geometry Input to VCS Code S. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER...Vehicle Code System (VCS) called MORSE was modified to accept the GIFT combinatorial geometry package. GIFT , as opposed to the geometry package
Neural Meta-Memes Framework for Combinatorial Optimization
NASA Astrophysics Data System (ADS)
Song, Li Qin; Lim, Meng Hiot; Ong, Yew Soon
In this paper, we present a Neural Meta-Memes Framework (NMMF) for combinatorial optimization. NMMF is a framework which models basic optimization algorithms as memes and manages them dynamically when solving combinatorial problems. NMMF encompasses neural networks which serve as the overall planner/coordinator to balance the workload between memes. We show the efficacy of the proposed NMMF through empirical study on a class of combinatorial problem, the quadratic assignment problem (QAP).
Towards a theory of automated elliptic mesh generation
NASA Technical Reports Server (NTRS)
Cordova, J. Q.
1992-01-01
The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented.
Jacobs, Y; Schnabel, C A; Cleary, M L
1999-07-01
Pbx/exd proteins modulate the DNA binding affinities and specificities of Hox proteins and contribute to the execution of Hox-dependent developmental programs in arthropods and vertebrates. Pbx proteins also stably heterodimerize and bind DNA with Meis and Pknox1-Prep1, additional members of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins that function on common genetic pathways with a subset of Hox proteins. In this study, we demonstrated that Pbx and Meis bind DNA as heterotrimeric complexes with Hoxb1 on a genetically defined Hoxb2 enhancer, r4, that mediates the cross-regulatory transcriptional effects of Hoxb1 in vivo. The DNA binding specificity of the heterotrimeric complex for r4 is mediated by a Pbx-Hox site in conjunction with a distal Meis site, which we showed to be required for ternary complex formation and Meis-enhanced transcription. Formation of heterotrimeric complexes in which all three homeodomains bind their cognate DNA sites is topologically facilitated by the ability of Pbx and Meis to interact through their amino termini and bind DNA without stringent half-site orientation and spacing requirements. Furthermore, Meis site mutation in the Hoxb2 enhancer phenocopies Pbx-Hox site mutation to abrogate enhancer-directed expression of a reporter transgene in the murine embryonic hindbrain, demonstrating that DNA binding by all three proteins is required for trimer function in vivo. Our data provide in vitro and in vivo evidence for the combinatorial regulation of Hox and TALE protein functions that are mediated, in part, by their interdependent DNA binding activities as ternary complexes. As a consequence, Hoxb1 employs Pbx and Meis-related proteins, as a pair of essential cofactors in a higher-order molecular complex, to mediate its transcriptional effects on an endogenous Hox response element.
FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science
NASA Astrophysics Data System (ADS)
Chikyo, Toyohiro
2011-10-01
About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.
Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond.
Bakshi, Anshika; Chaudhary, Sandeep C; Rana, Mehtab; Elmets, Craig A; Athar, Mohammad
2017-12-01
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. © 2017 Wiley Periodicals, Inc.
Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond
Bakshi, Anshika; Chaudhary, Sandeep C.; Rana, Mehtab; Elmets, Craig A.; Athar, Mohammad
2018-01-01
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10–100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. PMID:28574612
Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery
Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.
2016-01-01
High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510
Suram, Santosh K.; Xue, Yexiang; Bai, Junwen; ...
2016-11-21
Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase mapsmore » are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V–Mn–Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV 2O 6. Lastly, the open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suram, Santosh K.; Xue, Yexiang; Bai, Junwen
Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase mapsmore » are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V–Mn–Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV 2O 6. Lastly, the open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.« less
Antolini, Ermete
2017-02-13
Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.
Combinatorial Nano-Bio Interfaces.
Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong
2018-06-08
Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.
Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira
2007-02-01
Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.
A Novel Peptide Thrombopoietin Mimetic Designing and Optimization Using Computational Approach
Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh
2016-01-01
Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of −938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of −798.4 kcal/mol and TMP dimer with docking score of −811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency. PMID:27630985
A Novel Peptide Thrombopoietin Mimetic Designing and Optimization Using Computational Approach.
Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh
2016-01-01
Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of -938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of -798.4 kcal/mol and TMP dimer with docking score of -811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency.
Modulation of calmodulin plasticity by the effect of macromolecular crowding.
Homouz, Dirar; Sanabria, Hugo; Waxham, M Neal; Cheung, Margaret S
2009-09-04
In vitro biochemical reactions are most often studied in dilute solution, a poor mimic of the intracellular space of eukaryotic cells, which are crowded with mobile and immobile macromolecules. Such crowded conditions exert volume exclusion and other entropic forces that have the potential to impact chemical equilibria and reaction rates. In this article, we used the well-characterized and ubiquitous molecule calmodulin (CaM) and a combination of theoretical and experimental approaches to address how crowding impacts CaM's conformational plasticity. CaM is a dumbbell-shaped molecule that contains four EF hands (two in the N-lobe and two in the C-lobe) that each could bind Ca(2+), leading to stabilization of certain substates that favor interactions with other target proteins. Using coarse-grained molecular simulations, we explored the distribution of CaM conformations in the presence of crowding agents. These predictions, in which crowding effects enhance the population of compact structures, were then confirmed in experimental measurements using fluorescence resonance energy transfer techniques of donor- and acceptor-labeled CaM under normal and crowded conditions. Using protein reconstruction methods, we further explored the folding-energy landscape and examined the structural characteristics of CaM at free-energy basins. We discovered that crowding stabilizes several different compact conformations, which reflects the inherent plasticity in CaM's structure. From these results, we suggest that the EF hands in the C-lobe are flexible and can be thought of as a switch, while those in the N-lobe are stiff, analogous to a rheostat. New combinatorial signaling properties may arise from the product of the differential plasticity of the two distinct lobes of CaM in the presence of crowding. We discuss the implications of these results for modulating CaM's ability to bind Ca(2+) and target proteins.
Schaub, Christoph; Nagaso, Hideyuki; Jin, Hong; Frasch, Manfred
2012-01-01
Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1–Slou and Org-1–Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila. PMID:22318630
Schaub, Christoph; Nagaso, Hideyuki; Jin, Hong; Frasch, Manfred
2012-03-01
Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1-Slou and Org-1-Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila.
Biomining of MoS2 with Peptide-based Smart Biomaterials.
Cetinel, Sibel; Shen, Wei-Zheng; Aminpour, Maral; Bhomkar, Prasanna; Wang, Feng; Borujeny, Elham Rafie; Sharma, Kumakshi; Nayebi, Niloofar; Montemagno, Carlo
2018-02-20
Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS 2 ) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS 2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS 2 , clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS 2 -binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS 2 from tailing ponds and downstream mining processes.
Hamm, Jorg; Alessi, Dario R; Biondi, Ricardo M
2002-11-29
The design of specific inhibitors for protein kinases is an important step toward elucidation of intracellular signal transduction pathways and to guide drug discovery programs. We devised a model approach to generate specific, competitive kinase inhibitors by isolating substrate mimics containing two independent binding sites with an anti-idiotype strategy from combinatorial RNA libraries. As a general test for the ability to generate highly specific kinase inhibitors, we selected the transcription factor cAMP-response element-binding protein (CREB) that is phosphorylated on the same serine residue by the protein kinase MSK1 as well as by RSK1. The sequences and structures of these kinases are very similar, about 60% of their amino acids are identical. Nevertheless, we can demonstrate that the selected RNA inhibitors inhibit specifically CREB phosphorylation by MSK1 but do not affect CREB phosphorylation by RSK1. The inhibitors interact preferentially with the inactive form of MSK1. Furthermore, we demonstrate that RNA ligands can be conformation-specific probes, and this feature allowed us to describe magnesium ion-dependent conformational changes of MSK1 upon activation.
Identification of a D-amino acid decapeptide HIV-1 entry inhibitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggiano, Cesar; Jiang Shibo; Lu Hong
2006-09-08
Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonalmore » antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.« less
Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering
NASA Astrophysics Data System (ADS)
Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten
2015-04-01
The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.
Lee, Sangho; Privalsky, Martin L.
2009-01-01
Nuclear receptors are ligand-regulated transcription factors that regulate key aspects of metazoan development, differentiation, and homeostasis. Nuclear receptors recognize target genes by binding to specific DNA recognition sequences, denoted hormone response elements (HREs). Many nuclear receptors can recognize HREs as either homodimers or heterodimers. Retinoid X receptors (RXRs), in particular, serve as important heterodimer partners for many other nuclear receptors, including thyroid hormone receptors (TRs), and RXR/TR heterodimers have been proposed to be the primary mediators of target gene regulation by T3 hormone. Here, we report that the retinoic acid receptors (RARs), a distinct class of nuclear receptors, are also efficient heterodimer partners for TRs. These RAR/TR heterodimers form with similar affinities as RXR/TR heterodimers on an assortment of consensus and natural HREs, and preferentially assemble with the RAR partner 5′ of the TR moiety. The corepressor and coactivator recruitment properties of these RAR/TR heterodimers and their transcriptional activities in vivo are distinct from those observed with the corresponding RXR heterodimers. Our studies indicate that RXRs are not unique in their ability to partner with TRs, and that RARs can also serve as robust heterodimer partners and combinatorial regulators of T3-modulated gene expression. PMID:15650024
Singh, Narender; Guha, Rajarshi; Giulianotti, Marc; Pinilla, Clemencia; Houghten, Richard; Medina-Franco, Jose L.
2009-01-01
A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products. The compound databases were assessed in terms of physicochemical properties, scaffolds and fingerprints. The approach enables the analysis of property space coverage, degree of overlap between collections, scaffold and structural diversity and overall structural novelty. The degree of overlap between combinatorial libraries and drugs was assessed using the R-NN curve methodology, which measures the density of chemical space around a query molecule embedded in the chemical space of a target collection. The combinatorial libraries studied in this work exhibit scaffolds that were not observed in the drug, MLSMR and natural products collections. The fingerprint-based comparisons indicate that these combinatorial libraries are structurally different to current drugs. The R-NN curve methodology revealed that a proportion of molecules in the combinatorial libraries are located within the property space of the drugs. However, the R-NN analysis also showed that there are a significant number of molecules in several combinatorial libraries that are located in sparse regions of the drug space. PMID:19301827
Smooth Constrained Heuristic Optimization of a Combinatorial Chemical Space
2015-05-01
ARL-TR-7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...
Preparation of cherry-picked combinatorial libraries by string synthesis.
Furka, Arpád; Dibó, Gábor; Gombosuren, Naran
2005-03-01
String synthesis [1-3] is an efficient and cheap manual method for preparation of combinatorial libraries by using macroscopic solid support units. Sorting the units between two synthetic steps is an important operation of the procedure. The software developed to guide sorting can be used only when complete combinatorial libraries are prepared. Since very often only selected components of the full libraries are needed, new software was constructed that guides sorting in preparation of non-complete combinatorial libraries. Application of the software is described in details.
Combinatorial approaches to gene recognition.
Roytberg, M A; Astakhova, T V; Gelfand, M S
1997-01-01
Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers.
The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle
Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173
NASA Astrophysics Data System (ADS)
Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun
Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.
Interaction Analysis through Proteomic Phage Display
2014-01-01
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249
Hierarchy within the mammary STAT5-driven Wap super-enhancer
Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar
2016-01-01
Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes. PMID:27376239
My journey into the world of sphingolipids and sphingolipidoses
SANDHOFF, Konrad
2012-01-01
Analysis of lipid storage in postmortem brains of patients with amaurotic idiocy led to the recognition of five lysosomal ganglioside storage diseases and identification of their inherited metabolic blocks. Purification of lysosomal acid sphingomyelinase and ceramidase and analysis of their gene structures were the prerequisites for the clarification of Niemann-Pick and Farber disease. For lipid catabolism, intraendosomal vesicles are formed during the endocytotic pathway. They are subjected to lipid sorting processes and were identified as luminal platforms for cellular lipid and membrane degradation. Lipid binding glycoproteins solubilize lipids from these cholesterol poor membranes and present them to water-soluble hydrolases for digestion. Biosynthesis and intracellular trafficking of lysosomal hydrolases (hexosaminidases, acid sphingomyelinase and ceramidase) and lipid binding and transfer proteins (GM2 activator, saposins) were analyzed to identify the molecular and metabolic basis of several sphingolipidoses. Studies on the biosynthesis of glycosphingolipids yielded the scheme of Combinatorial Ganglioside Biosynthesis involving promiscuous glycosyltransferases. Their defects in mutagenized mice impair brain development and function. PMID:23229750
Functional Characterization of Schizophrenia-Associated Variation in CACNA1C
Eckart, Nicole; Song, Qifeng; Yang, Rebecca; Wang, Ruihua; Zhu, Heng; McCallion, Andrew S.; Avramopoulos, Dimitrios
2016-01-01
Calcium channel subunits, including CACNA1C, have been associated with multiple psychiatric disorders. Specifically, genome wide association studies (GWAS) have repeatedly identified the single nucleotide polymorphism (SNP) rs1006737 in intron 3 of CACNA1C to be strongly associated with schizophrenia and bipolar disorder. Here, we show that rs1006737 marks a quantitative trait locus for CACNA1C transcript levels. We test 16 SNPs in high linkage disequilibrium with rs1007637 and find one, rs4765905, consistently showing allele-dependent regulatory function in reporter assays. We find allele-specific protein binding for 13 SNPs including rs4765905. Using protein microarrays, we identify several proteins binding ≥3 SNPs, but not control sequences, suggesting possible functional interactions and combinatorial haplotype effects. Finally, using circular chromatin conformation capture, we show interaction of the disease-associated region including the 16 SNPs with the CACNA1C promoter and other potential regulatory regions. Our results elucidate the pathogenic relevance of one of the best-supported risk loci for schizophrenia and bipolar disorder. PMID:27276213
Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons.
Gallagher, Christopher; Ramos, Andres
2018-06-01
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation. © 2018 Federation of European Biochemical Societies.
The global regulatory architecture of transcription during the Caulobacter cell cycle.
Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.
Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.
Huang, Boshi; Kang, Dongwei; Zhan, Peng; Liu, Xinyong
2015-12-01
The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.
Validation of an Instrument and Testing Protocol for Measuring the Combinatorial Analysis Schema.
ERIC Educational Resources Information Center
Staver, John R.; Harty, Harold
1979-01-01
Designs a testing situation to examine the presence of combinatorial analysis, to establish construct validity in the use of an instrument, Combinatorial Analysis Behavior Observation Scheme (CABOS), and to investigate the presence of the schema in young adolescents. (Author/GA)
De Santa Barbara, P; Bonneaud, N; Boizet, B; Desclozeaux, M; Moniot, B; Sudbeck, P; Scherer, G; Poulat, F; Berta, P
1998-11-01
For proper male sexual differentiation, anti-Müllerian hormone (AMH) must be tightly regulated during embryonic development to promote regression of the Müllerian duct. However, the molecular mechanisms specifying the onset of AMH in male mammals are not yet clearly defined. A DNA-binding element for the steroidogenic factor 1 (SF-1), a member of the orphan nuclear receptor family, located in the AMH proximal promoter has recently been characterized and demonstrated as being essential for AMH gene activation. However, the requirement for a specific promoter environment for SF-1 activation as well as the presence of conserved cis DNA-binding elements in the AMH promoter suggest that SF-1 is a member of a combinatorial protein-protein and protein-DNA complex. In this study, we demonstrate that the canonical SOX-binding site within the human AMH proximal promoter can bind the transcription factor SOX9, a Sertoli cell factor closely associated with Sertoli cell differentiation and AMH expression. Transfection studies with COS-7 cells revealed that SOX9 can cooperate with SF-1 in this activation process. In vitro and in vivo protein-binding studies indicate that SOX9 and SF-1 interact directly via the SOX9 DNA-binding domain and the SF-1 C-terminal region, respectively. We propose that the two transcription factors SOX9 and SF-1 could both be involved in the expression of the AMH gene, in part as a result of their respective binding to the AMH promoter and in part because of their ability to interact with each other. Our work thus identifies SOX9 as an interaction partner of SF-1 that could be involved in the Sertoli cell-specific expression of AMH during embryogenesis.
De Santa Barbara, Pascal; Bonneaud, Nathalie; Boizet, Brigitte; Desclozeaux, Marion; Moniot, Brigitte; Sudbeck, Peter; Scherer, Gerd; Poulat, Francis; Berta, Philippe
1998-01-01
For proper male sexual differentiation, anti-Müllerian hormone (AMH) must be tightly regulated during embryonic development to promote regression of the Müllerian duct. However, the molecular mechanisms specifying the onset of AMH in male mammals are not yet clearly defined. A DNA-binding element for the steroidogenic factor 1 (SF-1), a member of the orphan nuclear receptor family, located in the AMH proximal promoter has recently been characterized and demonstrated as being essential for AMH gene activation. However, the requirement for a specific promoter environment for SF-1 activation as well as the presence of conserved cis DNA-binding elements in the AMH promoter suggest that SF-1 is a member of a combinatorial protein-protein and protein-DNA complex. In this study, we demonstrate that the canonical SOX-binding site within the human AMH proximal promoter can bind the transcription factor SOX9, a Sertoli cell factor closely associated with Sertoli cell differentiation and AMH expression. Transfection studies with COS-7 cells revealed that SOX9 can cooperate with SF-1 in this activation process. In vitro and in vivo protein-binding studies indicate that SOX9 and SF-1 interact directly via the SOX9 DNA-binding domain and the SF-1 C-terminal region, respectively. We propose that the two transcription factors SOX9 and SF-1 could both be involved in the expression of the AMH gene, in part as a result of their respective binding to the AMH promoter and in part because of their ability to interact with each other. Our work thus identifies SOX9 as an interaction partner of SF-1 that could be involved in the Sertoli cell-specific expression of AMH during embryogenesis. PMID:9774680
Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.
Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi
2016-06-01
Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.
Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z
2010-10-04
Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.
Combinatorial enzyme technology for the conversion of agricultural fibers to functional properties
USDA-ARS?s Scientific Manuscript database
The concept of combinatorial chemistry has received little attention in agriculture and food research, although its applications in this area were described more than fifteen years ago (1, 2). More recently, interest in the use of combinatorial chemistry in agrochemical discovery has been revitalize...
An Investigation into Post-Secondary Students' Understanding of Combinatorial Questions
ERIC Educational Resources Information Center
Bulone, Vincent William
2017-01-01
The purpose of this dissertation was to study aspects of how post-secondary students understand combinatorial problems. Within this dissertation, I considered understanding through two different lenses: i) student connections to previous problems; and ii) common combinatorial distinctions such as ordered versus unordered and repetitive versus…
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm.
Pickett, Stephen D; Green, Darren V S; Hunt, David L; Pardoe, David A; Hughes, Ian
2011-01-13
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure-activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods.
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm
2010-01-01
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure−activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods. PMID:24900251
NASA Astrophysics Data System (ADS)
Strom, C. S.; Bennema, P.
1997-03-01
This work (Part II) explores the relation between units and morphology. It shows the equivalence in behaviour between the attachment energies and the results of Monte Carlo growth kinetics simulations. The energetically optimal combination of the F slices in 1 1 0, 0 1 1 and 1 1 1 in a monomolecular interpretation leads to unsatisfactory agreement with experimentally observed morphology. In a tetrameric (or octameric) interpretation, the unit cell must be subdivided self-consistently in terms of stable molecular clusters. Thus, the presence or absence of the 1 1 1 form functions as a direct experimental criterion for distinguishing between monomolecular growth layers, and tetrameric (or octameric) growth layers of the same composition, but subjected to the condition of combinatorial compatibility, as the F slices combine to produce the growth habit. When that condition is taken into account, the tetrameric (or octameric) theoretical morphology in the broken bond model is in good agreement with experiment over a wide range. Subjectmatter for future study is summarized.
Multitriangulations, pseudotriangulations and some problems of realization of polytopes
NASA Astrophysics Data System (ADS)
Pilaud, Vincent
2010-09-01
This thesis explores two specific topics of discrete geometry, the multitriangulations and the polytopal realizations of products, whose connection is the problem of finding polytopal realizations of a given combinatorial structure. A k-triangulation is a maximal set of chords of the convex n-gon such that no k+1 of them mutually cross. We propose a combinatorial and geometric study of multitriangulations based on their stars, which play the same role as triangles of triangulations. This study leads to interpret multitriangulations by duality as pseudoline arrangements with contact points covering a given support. We exploit finally these results to discuss some open problems on multitriangulations, in particular the question of the polytopal realization of their flip graphs. We study secondly the polytopality of Cartesian products. We investigate the existence of polytopal realizations of cartesian products of graphs, and we study the minimal dimension that can have a polytope whose k-skeleton is that of a product of simplices.
Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie
2000-01-01
Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.
Free-Riding and Free-Labor in Combinatorial Agency
NASA Astrophysics Data System (ADS)
Babaioff, Moshe; Feldman, Michal; Nisan, Noam
This paper studies a setting where a principal needs to motivate teams of agents whose efforts lead to an outcome that stochastically depends on the combination of agents’ actions, which are not directly observable by the principal. In [1] we suggest and study a basic “combinatorial agency” model for this setting. In this paper we expose a somewhat surprising phenomenon found in this setting: cases where the principal can gain by asking agents to reduce their effort level, even when this increased effort comes for free. This phenomenon cannot occur in a setting where the principal can observe the agents’ actions, but we show that it can occur in the hidden-actions setting. We prove that for the family of technologies that exhibit “increasing returns to scale” this phenomenon cannot happen, and that in some sense this is a maximal family of technologies for which the phenomenon cannot occur. Finally, we relate our results to a basic question in production design in firms.
Thomas, Emily E; Pandey, Naresh; Knudsen, Sarah; Ball, Zachary T; Silberg, Jonathan J
2017-08-18
Transcriptional control can be used to program cells to label proteins with noncanonical amino acids by regulating the expression of orthogonal aminoacyl tRNA synthetases (aaRSs). However, we cannot yet program cells to control labeling in response to aaRS and ligand binding. To identify aaRSs whose activities can be regulated by interactions with ligands, we used a combinatorial approach to discover fragmented variants of Escherichia coli methionyl tRNA synthetase (MetRS) that require fusion to associating proteins for maximal activity. We found that these split proteins could be leveraged to create ligand-dependent MetRS using two approaches. When a pair of MetRS fragments was fused to FKBP12 and the FKBP-rapamycin binding domain (FRB) of mTOR and mutations were introduced that direct substrate specificity toward azidonorleucine (Anl), Anl metabolic labeling was significantly enhanced in growth medium containing rapamycin, which stabilizes the FKBP12-FRB complex. In addition, fusion of MetRS fragments to the termini of the ligand-binding domain of the estrogen receptor yielded proteins whose Anl metabolic labeling was significantly enhanced when 4-hydroxytamoxifen (4-HT) was added to the growth medium. These findings suggest that split MetRS can be fused to a range of ligand-binding proteins to create aaRSs whose metabolic labeling activities depend upon post-translational interactions with ligands.
Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather; ...
2017-10-30
Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less
Rauch, Jennifer N; Gestwicki, Jason E
2014-01-17
Proteins with Bcl2-associated anthanogene (BAG) domains act as nucleotide exchange factors (NEFs) for the molecular chaperone heat shock protein 70 (Hsp70). There are six BAG family NEFs in humans, and each is thought to link Hsp70 to a distinct cellular pathway. However, little is known about how the NEFs compete for binding to Hsp70 or how they might differentially shape its biochemical activities. Toward these questions, we measured the binding of human Hsp72 (HSPA1A) to BAG1, BAG2, BAG3, and the unrelated NEF Hsp105. These studies revealed a clear hierarchy of affinities: BAG3 > BAG1 > Hsp105 ≫ BAG2. All of the NEFs competed for binding to Hsp70, and their relative affinity values predicted their potency in nucleotide and peptide release assays. Finally, we combined the Hsp70-NEF pairs with cochaperones of the J protein family (DnaJA1, DnaJA2, DnaJB1, and DnaJB4) to generate 16 permutations. The activity of the combinations in ATPase and luciferase refolding assays were dependent on the identity and stoichiometry of both the J protein and NEF so that some combinations were potent chaperones, whereas others were inactive. Given the number and diversity of cochaperones in mammals, it is likely that combinatorial assembly could generate a large number of distinct permutations.
Dossani, Zain Y.; Reider Apel, Amanda; Szmidt‐Middleton, Heather; Hillson, Nathan J.; Deutsch, Samuel; Keasling, Jay D.
2017-01-01
Abstract Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain. PMID:29084380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather
Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less
Zhang, Yuhuan; Liu, Wei; Zhang, Wentao; Yu, Shaoxuan; Yue, Xiaoyue; Zhu, Wenxin; Zhang, Daohong; Wang, Yanru; Wang, Jianlong
2015-10-15
Herein, the structure of two DNA strands which are complementary except fourteen T-T and C-C mismatches was programmed for the design of the combinatorial logic operation by utilizing the different protective capacities of single chain DNA, part-hybridized DNA and completed-hybridized DNA on unmodified gold nanoparticles. In the presence of either Hg(2+) or Ag(+), the T-Hg(2+)-T or C-Ag(+)-C coordination chemistry could lead to the formation of part-hybridized DNA which keeps gold nanoparticles from clumping after the addition of 40 μL 0.2M NaClO4 solution, but the protection would be screened by 120 μL 0.2M NaClO4 solution. While the coexistence of Hg(2+), Ag(+) caused the formation of completed-hybridized DNA and the protection for gold nanoparticles lost in either 40 μL or 120 μL NaClO4 solutions. Benefiting from sharing of the same inputs of Hg(2+) and Ag(+), OR and AND logic gates were easily integrated into a simple colorimetric combinatorial logic operation in one system, which make it possible to execute logic gates in parallel to mimic arithmetic calculations on a binary digit. Furthermore, two other logic gates including INHIBIT1 and INHIBIT2 were realized to integrated with OR logic gate both for simultaneous qualitative discrimination and quantitative determination of Hg(2+) and Ag(+). Results indicate that the developed logic system based on the different protective capacities of DNA structure on gold nanoparticles provides a new pathway for the design of the combinatorial logic operation in one system and presents a useful strategy for development of advanced sensors, which may have potential applications in multiplex chemical analysis and molecular-scale computer design. Copyright © 2015 Elsevier B.V. All rights reserved.
Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.
Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G
1999-11-01
The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.
Xu, Huayong; Yu, Hui; Tu, Kang; Shi, Qianqian; Wei, Chaochun; Li, Yuan-Yuan; Li, Yi-Xue
2013-01-01
We are witnessing rapid progress in the development of methodologies for building the combinatorial gene regulatory networks involving both TFs (Transcription Factors) and miRNAs (microRNAs). There are a few tools available to do these jobs but most of them are not easy to use and not accessible online. A web server is especially needed in order to allow users to upload experimental expression datasets and build combinatorial regulatory networks corresponding to their particular contexts. In this work, we compiled putative TF-gene, miRNA-gene and TF-miRNA regulatory relationships from forward-engineering pipelines and curated them as built-in data libraries. We streamlined the R codes of our two separate forward-and-reverse engineering algorithms for combinatorial gene regulatory network construction and formalized them as two major functional modules. As a result, we released the cGRNB (combinatorial Gene Regulatory Networks Builder): a web server for constructing combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. The cGRNB enables two major network-building modules, one for MPGE (miRNA-perturbed gene expression) datasets and the other for parallel miRNA/mRNA expression datasets. A miRNA-centered two-layer combinatorial regulatory cascade is the output of the first module and a comprehensive genome-wide network involving all three types of combinatorial regulations (TF-gene, TF-miRNA, and miRNA-gene) are the output of the second module. In this article we propose cGRNB, a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. Since parallel miRNA/mRNA expression datasets are rapidly accumulated by the advance of next-generation sequencing techniques, cGRNB will be very useful tool for researchers to build combinatorial gene regulatory networks based on expression datasets. The cGRNB web-server is free and available online at http://www.scbit.org/cgrnb.
Combinatorial effects on clumped isotopes and their significance in biogeochemistry
NASA Astrophysics Data System (ADS)
Yeung, Laurence Y.
2016-01-01
The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial clumped-isotope effects. These isotopic signatures, manifest as either directly bound isotope ;clumps; or as features of a molecule's isotopic anatomy, are linked to molecular mechanisms and may eventually provide additional information about biogeochemical cycling on environmentally relevant spatial scales.
The construction of combinatorial manifolds with prescribed sets of links of vertices
NASA Astrophysics Data System (ADS)
Gaifullin, A. A.
2008-10-01
To every oriented closed combinatorial manifold we assign the set (with repetitions) of isomorphism classes of links of its vertices. The resulting transformation \\mathcal{L} is the main object of study in this paper. We pose an inversion problem for \\mathcal{L} and show that this problem is closely related to Steenrod's problem on the realization of cycles and to the Rokhlin-Schwartz-Thom construction of combinatorial Pontryagin classes. We obtain a necessary condition for a set of isomorphism classes of combinatorial spheres to belong to the image of \\mathcal{L}. (Sets satisfying this condition are said to be balanced.) We give an explicit construction showing that every balanced set of isomorphism classes of combinatorial spheres falls into the image of \\mathcal{L} after passing to a multiple set and adding several pairs of the form (Z,-Z), where -Z is the sphere Z with the orientation reversed. Given any singular simplicial cycle \\xi of a space X, this construction enables us to find explicitly a combinatorial manifold M and a map \\varphi\\colon M\\to X such that \\varphi_* \\lbrack M \\rbrack =r[\\xi] for some positive integer r. The construction is based on resolving singularities of \\xi. We give applications of the main construction to cobordisms of manifolds with singularities and cobordisms of simple cells. In particular, we prove that every rational additive invariant of cobordisms of manifolds with singularities admits a local formula. Another application is the construction of explicit (though inefficient) local combinatorial formulae for polynomials in the rational Pontryagin classes of combinatorial manifolds.
Mills, Jeffrey L; Liu, Gaohua; Skerra, Arne; Szyperski, Thomas
2009-08-11
The NMR structure of the 21 kDa lipocalin FluA, which was previously obtained by combinatorial design, elucidates a reshaped binding site specific for the dye fluorescein resulting from 21 side chain replacements with respect to the parental lipocalin, the naturally occurring bilin-binding protein (BBP). As expected, FluA exhibits the lipocalin fold of BBP, comprising eight antiparallel beta-strands forming a beta-barrel with an alpha-helix attached to its side. Comparison of the NMR structure of free FluA with the X-ray structures of BBP.biliverdin IX(gamma) and FluA.fluorescein complexes revealed significant conformational changes in the binding pocket, which is formed by four loops at the open end of the beta-barrel as well as adjoining beta-strand segments. An "induced fit" became apparent for the side chain conformations of Arg 88 and Phe 99, which contact the bound fluorescein in the complex and undergo concerted rearrangement upon ligand binding. Moreover, slower internal motional modes of the polypeptide backbone were identified by measuring transverse (15)N backbone spin relaxation times in the rotating frame for free FluA and also for the FluA.fluorescein complex. A reduction in the level of such motions was detected upon complex formation, indicating rigidification of the protein structure and loss of conformational entropy. This hypothesis was confirmed by isothermal titration calorimetry, showing that ligand binding is enthalpy-driven, thus overcompensating for the negative entropy associated with both ligand binding per se and rigidification of the protein. Our investigation of the solution structure and dynamics as well as thermodynamics of lipocalin-ligand interaction not only provides insight into the general mechanism of small molecule accommodation in the deep and narrow cavity of this abundant class of proteins but also supports the future design of corresponding binding proteins with novel specificities, so-called "anticalins".
ERIC Educational Resources Information Center
Barratt, Barnaby B.
1975-01-01
This study investigated the emergence of combinatorial competence in early adolescence and the effectiveness of a programmed discovery training procedure. Significant increases in combinatorial skill with age were shown; it was found that the expression of this skill was significantly facilitated if problems involved concrete material of low…
Invention as a combinatorial process: evidence from US patents
Youn, Hyejin; Strumsky, Deborah; Bettencourt, Luis M. A.; Lobo, José
2015-01-01
Invention has been commonly conceptualized as a search over a space of combinatorial possibilities. Despite the existence of a rich literature, spanning a variety of disciplines, elaborating on the recombinant nature of invention, we lack a formal and quantitative characterization of the combinatorial process underpinning inventive activity. Here, we use US patent records dating from 1790 to 2010 to formally characterize invention as a combinatorial process. To do this, we treat patented inventions as carriers of technologies and avail ourselves of the elaborate system of technology codes used by the United States Patent and Trademark Office to classify the technologies responsible for an invention's novelty. We find that the combinatorial inventive process exhibits an invariant rate of ‘exploitation’ (refinements of existing combinations of technologies) and ‘exploration’ (the development of new technological combinations). This combinatorial dynamic contrasts sharply with the creation of new technological capabilities—the building blocks to be combined—that has significantly slowed down. We also find that, notwithstanding the very reduced rate at which new technologies are introduced, the generation of novel technological combinations engenders a practically infinite space of technological configurations. PMID:25904530
Seo, Hyung-Min; Jeon, Jong-Min; Lee, Ju Hee; Song, Hun-Suk; Joo, Han-Byul; Park, Sung-Hee; Choi, Kwon-Young; Kim, Yong Hyun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun
2016-01-01
Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110% compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy.
Combinatorial Methods for Exploring Complex Materials
NASA Astrophysics Data System (ADS)
Amis, Eric J.
2004-03-01
Combinatorial and high-throughput methods have changed the paradigm of pharmaceutical synthesis and have begun to have a similar impact on materials science research. Already there are examples of combinatorial methods used for inorganic materials, catalysts, and polymer synthesis. For many investigations the primary goal has been discovery of new material compositions that optimize properties such as phosphorescence or catalytic activity. In the midst of the excitement generated to "make things", another opportunity arises for materials science to "understand things" by using the efficiency of combinatorial methods. We have shown that combinatorial methods hold potential for rapid and systematic generation of experimental data over the multi-parameter space typical of investigations in polymer physics. We have applied the combinatorial approach to studies of polymer thin films, biomaterials, polymer blends, filled polymers, and semicrystalline polymers. By combining library fabrication, high-throughput measurements, informatics, and modeling we can demonstrate validation of the methodology, new observations, and developments toward predictive models. This talk will present some of our latest work with applications to coating stability, multi-component formulations, and nanostructure assembly.
Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila
NASA Astrophysics Data System (ADS)
Agrawal, Namita; Pallos, Judit; Slepko, Natalia; Apostol, Barbara L.; Bodai, Laszlo; Chang, Ling-Wen; Chiang, Ann-Shyn; Michels Thompson, Leslie; Marsh, J. Lawrence
2005-03-01
We explore the hypothesis that pathology of Huntington's disease involves multiple cellular mechanisms whose contributions to disease are incrementally additive or synergistic. We provide evidence that the photoreceptor neuron degeneration seen in flies expressing mutant human huntingtin correlates with widespread degenerative events in the Drosophila CNS. We use a Drosophila Huntington's disease model to establish dose regimens and protocols to assess the effectiveness of drug combinations used at low threshold concentrations. These proof of principle studies identify at least two potential combinatorial treatment options and illustrate a rapid and cost-effective paradigm for testing and optimizing combinatorial drug therapies while reducing side effects for patients with neurodegenerative disease. The potential for using prescreening in Drosophila to inform combinatorial therapies that are most likely to be effective for testing in mammals is discussed. combinatorial treatments | neurodegeneration
Anitha, A; Sreeranganathan, Maya; Chennazhi, Krishna Prasad; Lakshmanan, Vinoth-Kumar; Jayakumar, R
2014-09-01
Colon cancer is the third most leading causes of death due to cancer worldwide and the chemo drug 5-fluorouracil's (5-FU) applicability is limited due to its non-specificity, low bioavailability and overdose. The efficacy of 5-FU in colon cancer chemo treatment could be improved by nanoencapsulation and combinatorial approach. In the present study curcumin (CUR), a known anticancer phytochemical, was used in combination with 5-FU and the work focuses on the development of a combinatorial nanomedicine based on 5-FU and CUR in N,O-carboxymethyl chitosan nanoparticles (N,O-CMC NPs). The developed 5-FU-N,O-CMC NPs and CUR-N,O-CMC NPs were found to be blood compatible. The in vitro drug release profile in pH 4.5 and 7.4 showed a sustained release profile over a period of 4 days. The combined exposure of the nanoformulations in colon cancer cells (HT 29) proved the enhanced anticancer effects. In addition, the in vivo pharmacokinetic data in mouse model revealed the improved plasma concentrations of 5-FU and CUR which prolonged up to 72 h unlike the bare drugs. In conclusion, the 5-FU and CUR released from the N,O-CMC NPs produced enhanced anticancer effects in vitro and improved plasma concentrations under in vivo conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Thangavel, Jayakumar; Malik, Asrar B.; Elias, Harold K.; Rajasingh, Sheeja; Simpson, Andrew D.; Sundivakkam, Premanand K.; Vogel, Stephen M.; Xuan, Yu-Ting; Dawn, Buddhadeb; Rajasingh, Johnson
2015-01-01
Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI. PMID:24929240
Zhou, Qian-Mei; Chen, Qi-Long; Du, Jia; Wang, Xiu-Feng; Lu, Yi-Yu; Zhang, Hui; Su, Shi-Bing
2014-01-01
In order to explore the synergistic mechanisms of combinatorial treatment using curcumin and mitomycin C (MMC) for breast cancer, MCF-7 breast cancer xenografts were conducted to observe the synergistic effect of combinatorial treatment using curcumin and MMC at various dosages. The synergistic mechanisms of combinatorial treatment using curcumin and MMC on the inhibition of tumor growth were explored by differential gene expression profile, gene ontology (GO), ingenuity pathway analysis (IPA) and Signal–Net network analysis. The expression levels of selected genes identified by cDNA microarray expression profiling were validated by quantitative RT-PCR (qRT-PCR) and Western blot analysis. Effect of combinatorial treatment on the inhibition of cell growth was observed by MTT assay. Apoptosis was detected by flow cytometric analysis and Hoechst 33258 staining. The combinatorial treatment of 100 mg/kg curcumin and 1.5 mg/kg MMC revealed synergistic inhibition on tumor growth. Among 1501 differentially expressed genes, the expression of 25 genes exhibited an obvious change and a significant difference in 27 signal pathways was observed (p < 0.05). In addition, Mapk1 (ERK) and Mapk14 (MAPK p38) had more cross-interactions with other genes and revealed an increase in expression by 8.14- and 11.84-fold, respectively during the combinatorial treatment by curcumin and MMC when compared with the control. Moreover, curcumin can synergistically improve tumoricidal effect of MMC in another human breast cancer MDA-MB-231 cells. Apoptosis was significantly induced by the combinatorial treatment (p < 0.05) and significantly inhibited by ERK inhibitor (PD98059) in MCF-7 cells (p < 0.05). The synergistic effect of combinatorial treatment by curcumin and MMC on the induction of apoptosis in breast cancer cells may be via the ERK pathway. PMID:25226537
Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.
Haglund, J; Haiman, M; Loehr, N
2005-02-22
Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization of this result to the integral Macdonald polynomials J(mu), a formula for H(mu) in terms of Lascoux-Leclerc-Thibon polynomials, and combinatorial expressions for the Kostka-Macdonald coefficients K(lambda,mu) when mu is a two-column shape.
Signal dimensionality and the emergence of combinatorial structure.
Little, Hannah; Eryılmaz, Kerem; de Boer, Bart
2017-11-01
In language, a small number of meaningless building blocks can be combined into an unlimited set of meaningful utterances. This is known as combinatorial structure. One hypothesis for the initial emergence of combinatorial structure in language is that recombining elements of signals solves the problem of overcrowding in a signal space. Another hypothesis is that iconicity may impede the emergence of combinatorial structure. However, how these two hypotheses relate to each other is not often discussed. In this paper, we explore how signal space dimensionality relates to both overcrowding in the signal space and iconicity. We use an artificial signalling experiment to test whether a signal space and a meaning space having similar topologies will generate an iconic system and whether, when the topologies differ, the emergence of combinatorially structured signals is facilitated. In our experiments, signals are created from participants' hand movements, which are measured using an infrared sensor. We found that participants take advantage of iconic signal-meaning mappings where possible. Further, we use trajectory predictability, measures of variance, and Hidden Markov Models to measure the use of structure within the signals produced and found that when topologies do not match, then there is more evidence of combinatorial structure. The results from these experiments are interpreted in the context of the differences between the emergence of combinatorial structure in different linguistic modalities (speech and sign). Copyright © 2017 Elsevier B.V. All rights reserved.
In situ click chemistry: a powerful means for lead discovery.
Sharpless, K Barry; Manetsch, Roman
2006-11-01
Combinatorial chemistry and parallel synthesis are important and regularly applied tools for lead identification and optimisation, although they are often accompanied by challenges related to the efficiency of library synthesis and the purity of the compound library. In the last decade, novel means of lead discovery approaches have been investigated where the biological target is actively involved in the synthesis of its own inhibitory compound. These fragment-based approaches, also termed target-guided synthesis (TGS), show great promise in lead discovery applications by combining the synthesis and screening of libraries of low molecular weight compounds in a single step. Of all the TGS methods, the kinetically controlled variant is the least well known, but it has the potential to emerge as a reliable lead discovery method. The kinetically controlled TGS approach, termed in situ click chemistry, is discussed in this article.
ERIC Educational Resources Information Center
Stevens, Victoria
2014-01-01
The author considers combinatory play as an intersection between creativity, play, and neuroaesthetics. She discusses combinatory play as vital to the creative process in art and science, particularly with regard to the incubation of new ideas. She reviews findings from current neurobiological research and outlines the way that the brain activates…
Kim, Hyo Jin; Turner, Timothy Lee; Jin, Yong-Su
2013-11-01
Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Dehury, Budheswar; Maharana, Jitendra; Sahoo, Bikash Ranjan; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Barooah, Madhumita
2015-04-01
The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein. From the best three binding poses predicted by molecular docking, MD simulations were performed to explore the dynamic binding mechanism of xa5 and avrxa5. Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) techniques were employed to calculate the binding free energy and to uncover the thriving force behind the molecular recognition of avrxa5 by eukaryotic transcription factor xa5. Binding free energy analysis revealed van der Waals term as the most constructive component that favors the xa5 and avrxa5 interaction. In addition, hydrogen bonds (H-bonds) and essential electrostatic interactions analysis highlighted amino acid residues Lys54/Asp870, Lys56/Ala868, Lys56/Ala866, Lys56/Glu871, Ile59/His862, Gly61/Phe858, His62/Arg841, His62/Leu856, Ser101/Ala872 and Ser105/Asp870 plays pivotal role for the energetically stability of the R-Avr complex. Insights gained from the present study are expected to unveil the molecular mechanisms that define the transcriptional activator mediated transcriptome modification in host plants. Copyright © 2015 Elsevier Inc. All rights reserved.
Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel
2016-01-01
The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.
Rickert, Keith W.; Grinberg, Luba; Woods, Robert M.; Wilson, Susan; Bowen, Michael A.; Baca, Manuel
2016-01-01
ABSTRACT The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3–5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material. PMID:26852694
Trans‐acting translational regulatory RNA binding proteins
Harvey, Robert F.; Smith, Tom S.; Mulroney, Thomas; Queiroz, Rayner M. L.; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa
2018-01-01
The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans‐acting regulatory RNA‐binding proteins (RBPs) are necessary to provide mRNA‐specific translation, and these interact with 5′ and 3′ untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans‐acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans‐acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans‐acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: 1RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes2Translation > Translation Regulation3Translation > Translation Mechanisms PMID:29341429
Trans-acting translational regulatory RNA binding proteins.
Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E
2018-05-01
The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.
Structure based re-design of the binding specificity of anti-apoptotic Bcl-xL
Chen, T. Scott; Palacios, Hector; Keating, Amy E.
2012-01-01
Many native proteins are multi-specific and interact with numerous partners, which can confound analysis of their functions. Protein design provides a potential route to generating synthetic variants of native proteins with more selective binding profiles. Re-designed proteins could be used as research tools, diagnostics or therapeutics. In this work, we used a library screening approach to re-engineer the multi-specific anti-apoptotic protein Bcl-xL to remove its interactions with many of its binding partners, making it a high affinity and selective binder of the BH3 region of pro-apoptotic protein Bad. To overcome the enormity of the potential Bcl-xL sequence space, we developed and applied a computational/experimental framework that used protein structure information to generate focused combinatorial libraries. Sequence features were identified using structure-based modeling, and an optimization algorithm based on integer programming was used to select degenerate codons that maximally covered these features. A constraint on library size was used to ensure thorough sampling. Using yeast surface display to screen a designed library of Bcl-xL variants, we successfully identified a protein with ~1,000-fold improvement in binding specificity for the BH3 region of Bad over the BH3 region of Bim. Although negative design was targeted only against the BH3 region of Bim, the best re-designed protein was globally specific against binding to 10 other peptides corresponding to native BH3 motifs. Our design framework demonstrates an efficient route to highly specific protein binders and may readily be adapted for application to other design problems. PMID:23154169
2016-10-01
site as well as in the cervical and lumbar cords out to at least 10 months post-injury. While our rodent study was ongoing, a multi-center clinical...lead to a preservation of motor function and an attenuation in long-term pathologies like neuropathic pain in rats following an acute therapeutic...chemotherapeutic resistance, mass spectrometry, riluzole, licofelone, neuropathic pain , locomotor, bioavailability 11 University of Mississippi
Toxin Inhibition - Deconvolution Strategies and Assay Screening of Combinatorial Peptide Libraries
2007-08-01
that could serve as lead compounds in the development of drug therapies to toxins. The libraries have typical structures of X I - X2 - hinge - X3 - X4...or passive vaccines have limited efficacies. There are no drug prophylaxes or therapies available. This technical report describes research to provide...broadly applicable drug discovery methods for a wide range of toxins. Future Work: The work conducted in the TIF project raised and renewed interest in
Zheng, Meihong; Zhang, Yonghui; Chen, Aiping; Wu, Junhua; Wei, Jiwu
2016-01-01
Reprogrammed metabolism and redox homeostasis are potential targets of cancer therapy. Our previous study demonstrated that the kidney form of glutaminase (GLS1) is highly expressed in hepatocellular carcinoma (HCC) cells and can be used as a target for effective anticancer therapy. Dihydroartemisinin (DHA) increases intracellular reactive oxygen species (ROS) levels leading to cytotoxicity in cancer cells. However, the heterogeneity of cancer cells often leads to differing responses to oxidative lesions. For instance, cancer cells with high ratio of GSH/GSSG, a critical ROS scavenger, are resistant to ROS-induced cytotoxicity. We postulate that a combinatorial strategy firstly disrupting redox homeostasis followed by DHA might yield a profound antitumor efficacy. In this study, when HCC cells were treated with a GLS1 inhibitor 968, the ROS elimination capacity was significantly reduced in HCC cells, which rendered HCC cells but not normal endothelial cells more sensitive to DHA-mediated cytotoxicity. We further confirmed that this synergistic antitumor efficacy was mediated by excessive ROS generation in HCC cells. NAC, a ROS inhibitor, partly rescued the combinatorial cytotoxic effect of 968 and DHA. Given that GLS1 is a potential antitumor target and DHA has been safely used in clinic, our findings provide new insight into liver cancer therapy targeting glutamine metabolism combined with the ROS generator DHA, which can be readily translated into cancer clinical trials. PMID:27835669
Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.
Gilmer, Jesse I; Person, Abigail L
2017-12-13
Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which nevertheless could support temporal diversification of like combinations, suitable for learned timing. Our study suggests a neural substrate for producing high levels of both combinatorial and temporal diversity in the granule cell layer. Copyright © 2017 the authors 0270-6474/17/3712153-14$15.00/0.
Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A
2016-11-11
A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml -1 and 0.48mgml -1 for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10 6 M -1 affinity constants and Qmax values of 19.11±2.60ugg -1 and 79.39ugg -1 for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents. Copyright © 2016 Elsevier B.V. All rights reserved.
Kono, H; Saven, J G
2001-02-23
Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.
Trimeric Association of Hox and TALE Homeodomain Proteins Mediates Hoxb2 Hindbrain Enhancer Activity
Jacobs, Yakop; Schnabel, Catherine A.; Cleary, Michael L.
1999-01-01
Pbx/exd proteins modulate the DNA binding affinities and specificities of Hox proteins and contribute to the execution of Hox-dependent developmental programs in arthropods and vertebrates. Pbx proteins also stably heterodimerize and bind DNA with Meis and Pknox1-Prep1, additional members of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins that function on common genetic pathways with a subset of Hox proteins. In this study, we demonstrated that Pbx and Meis bind DNA as heterotrimeric complexes with Hoxb1 on a genetically defined Hoxb2 enhancer, r4, that mediates the cross-regulatory transcriptional effects of Hoxb1 in vivo. The DNA binding specificity of the heterotrimeric complex for r4 is mediated by a Pbx-Hox site in conjunction with a distal Meis site, which we showed to be required for ternary complex formation and Meis-enhanced transcription. Formation of heterotrimeric complexes in which all three homeodomains bind their cognate DNA sites is topologically facilitated by the ability of Pbx and Meis to interact through their amino termini and bind DNA without stringent half-site orientation and spacing requirements. Furthermore, Meis site mutation in the Hoxb2 enhancer phenocopies Pbx-Hox site mutation to abrogate enhancer-directed expression of a reporter transgene in the murine embryonic hindbrain, demonstrating that DNA binding by all three proteins is required for trimer function in vivo. Our data provide in vitro and in vivo evidence for the combinatorial regulation of Hox and TALE protein functions that are mediated, in part, by their interdependent DNA binding activities as ternary complexes. As a consequence, Hoxb1 employs Pbx and Meis-related proteins, as a pair of essential cofactors in a higher-order molecular complex, to mediate its transcriptional effects on an endogenous Hox response element. PMID:10373562
Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F; Sette, Alessandro
2015-11-01
Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.
Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M.; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F.; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F.; Sette, Alessandro
2016-01-01
Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif. PMID:26399241
A dual drug regimen synergistically blocks human parainfluenza virus infection
NASA Astrophysics Data System (ADS)
Bailly, Benjamin; Dirr, Larissa; El-Deeb, Ibrahim M.; Altmeyer, Ralf; Guillon, Patrice; von Itzstein, Mark
2016-04-01
Human parainfluenza type-3 virus (hPIV-3) is one of the principal aetiological agents of acute respiratory illness in infants worldwide and also shows high disease severity in the elderly and immunocompromised, but neither therapies nor vaccines are available to treat or prevent infection, respectively. Using a multidisciplinary approach we report herein that the approved drug suramin acts as a non-competitive in vitro inhibitor of the hPIV-3 haemagglutinin-neuraminidase (HN). Furthermore, the drug inhibits viral replication in mammalian epithelial cells with an IC50 of 30 μM, when applied post-adsorption. Significantly, we show in cell-based drug-combination studies using virus infection blockade assays, that suramin acts synergistically with the anti-influenza virus drug zanamivir. Our data suggests that lower concentrations of both drugs can be used to yield high levels of inhibition. Finally, using NMR spectroscopy and in silico docking simulations we confirmed that suramin binds HN simultaneously with zanamivir. This binding event occurs most likely in the vicinity of the protein primary binding site, resulting in an enhancement of the inhibitory potential of the N-acetylneuraminic acid-based inhibitor. This study offers a potentially exciting avenue for the treatment of parainfluenza infection by a combinatorial repurposing approach of well-established approved drugs.
Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong
2015-01-01
Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach. PMID:26310773
Hernandez, Julio; Matter-Sadzinski, Lidia; Skowronska-Krawczyk, Dorota; Chiodini, Florence; Alliod, Christine; Ballivet, Marc; Matter, Jean-Marc
2007-12-28
The atonal homolog 5 (ATH5) protein is central to the transcriptional network regulating the specification of retinal ganglion cells, and its expression comes under the spatiotemporal control of several basic helix-loop-helix (bHLH) proteins in the course of retina development. Monitoring the in vivo occupancy of the ATH5 promoter by the ATH5, Ngn2, and NeuroM proteins and analyzing the DNA motifs they bind, we show that three evolutionarily conserved E-boxes are required for the bHLH proteins to control the different phases of ATH5 expression. E-box 4 mediates the activity of Ngn2, ATH5, and NeuroM along the pathway leading to the conversion of progenitors into newborn neurons. E-box 1, by mediating the antagonistic effects of Ngn2 and HES1 in proliferating progenitors, controls the expansion of the ATH5 expression domain in early retina. E-box 2 is required for the positive feedback by ATH5 that underlies the up-regulation of ATH5 expression when progenitors are going through their last cell cycle. The combinatorial nature of the regulation of the ATH5 promoter suggests that the bHLH proteins involved have no assigned E-boxes but use a common set at which they either cooperate or compete to finely tune ATH5 expression as development proceeds.
Conroy, Paul J; Law, Ruby H P; Caradoc-Davies, Tom T; Whisstock, James C
2017-03-01
Antibodies represent a highly successful class of molecules that bind a wide-range of targets in therapeutic-, diagnostic- and research-based applications. The antibody repertoire is composed of the building blocks required to develop an effective adaptive immune response against foreign insults. A number of species have developed novel genetic and structural mechanisms from which they derive these antibody repertoires, however, traditionally antibodies are isolated from human, and rodent sources. Due to their high-value therapeutic, diagnostic, biotechnological and research applications, much innovation has resulted in techniques and approaches to isolate novel antibodies. These approaches are bolstered by advances in our understanding of species immune repertoires, next generation sequencing capacity, combinatorial antibody discovery and high-throughput screening. Structural determination of antibodies and antibody-antigen complexes has proven to be pivotal to our current understanding of the immune repertoire for a range of species leading to advances in man-made libraries and fine tuning approaches to develop antibodies from immune-repertoires. Furthermore, the isolation of antibodies directed against antigens of importance in health, disease and developmental processes, has yielded a plethora of structural and functional insights. This review highlights the significant contribution of antibody-based crystallography to our understanding of adaptive immunity and its application to providing critical information on a range of human-health related indications. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun
2014-01-01
Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer. PMID:25327561
Li, Guangchao; Zhao, Likun; Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun
2014-09-30
Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer.
Coordination of flower development by homeotic master regulators.
Ito, Toshiro
2011-02-01
Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neri, Dario; Lerner, Richard A
2018-06-20
The discovery of organic ligands that bind specifically to proteins is a central problem in chemistry, biology, and the biomedical sciences. The encoding of individual organic molecules with distinctive DNA tags, serving as amplifiable identification bar codes, allows the construction and screening of combinatorial libraries of unprecedented size, thus facilitating the discovery of ligands to many different protein targets. Fundamentally, one links powers of genetics and chemical synthesis. After the initial description of DNA-encoded chemical libraries in 1992, several experimental embodiments of the technology have been reduced to practice. This review provides a historical account of important milestones in the development of DNA-encoded chemical libraries, a survey of relevant ongoing research activities, and a glimpse into the future.
NASA Astrophysics Data System (ADS)
Said, Awad I.; Georgiev, Nikolai I.; Bojinov, Vladimir B.
2018-05-01
A novel fluorescence sensing 1,8-naphthalimide fluorophore is synthesized and investigated. The novel probe comprising two different binding moieties is capable to detect selectively Fe3+ over the other representative metal ions as well as a combination of biologically important cations such as Fe3+, Cu2+ and Hg2+ in the physiological range without an interfering effect of the pHs. Due to the remarkable fluorescence changes in the presence of Fe3+, Hg2+ and Cu2+ ions, INH and AND logic gates are executed and the system is able to act as a single output combinatorial logic circuit with three chemical inputs.
Harini, K.; Sowdhamini, Ramanathan
2015-01-01
Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors. PMID:26221959
Dibó, Gábor
2012-02-01
Combinatorial chemistry was introduced in the 1980s. It provided the possibility to produce new compounds in practically unlimited number. New strategies and technologies have also been developed that made it possible to screen very large number of compounds and to identify useful components in mixtures containing millions of different substances. This dramatically changed the drug discovery process and the way of thinking of synthetic chemists. In addition, combinatorial strategies became useful in areas such as pharmaceutical research, agrochemistry, catalyst design, and materials research. Prof. Árpád Furka is one of the pioneers of combinatorial chemistry.
NASA Astrophysics Data System (ADS)
Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Convertino, Marino; Leonetti, Francesco; Pisani, Leonardo; Carotti, Angelo
2010-02-01
A series of 27 benzamidine inhibitors covering a wide range of biological activity and chemical diversity was analysed to derive a Linear Interaction Energy in Continuum Electrostatics (LIECE) model for analysing the thrombin inhibitory activity. The main interactions occurring at the thrombin binding site and the preferred binding conformations of inhibitors were explicitly biased by including into the LIECE model 10 compounds extracted from X-ray solved thrombin-inhibitor complexes available from the Protein Data Bank (PDB). Supported by a robust statistics ( r 2 = 0.698; q 2 = 0.662), the LIECE model was successful in predicting the inhibitory activity for about 76% of compounds ( r ext 2 ≥ 0.600) from a larger external test set encompassing 88 known thrombin inhibitors and, more importantly, in retrieving, at high sensitivity and with better performance than docking and shape-based methods, active compounds from a thrombin combinatorial library of 10240 mimetic chemical products. The herein proposed LIECE model has the potential for successfully driving the design of novel thrombin inhibitors with benzamidine and/or benzamidine-like chemical structure.
Circulating HMGB1 and RAGE as Clinical Biomarkers in Malignant and Autoimmune Diseases
Pilzweger, Christin; Holdenrieder, Stefan
2015-01-01
High molecular group box 1 (HMGB1) is a highly conserved member of the HMG-box-family; abundantly expressed in almost all human cells and released in apoptosis; necrosis or by activated immune cells. Once in the extracellular space, HMGB1 can act as a danger associated molecular pattern (DAMP), thus stimulating or inhibiting certain functions of the immune system; depending on the “combinatorial cocktail” of the surrounding milieu. HMGB1 exerts its various functions through binding to a multitude of membrane-bound receptors such as TLR-2; -4 and -9; IL-1 and RAGE (receptor for advanced glycation end products); partly complex-bound with intracellular fragments like nucleosomes. Soluble RAGE in the extracellular space, however, acts as a decoy receptor by binding to HMGB1 and inhibiting its effects. This review aims to outline today’s knowledge of structure, intra- and extracellular functions including mechanisms of release and finally the clinical relevance of HMGB1 and RAGE as clinical biomarkers in therapy monitoring, prediction and prognosis of malignant and autoimmune disease. PMID:26854151
Acetylcholinesterase affinity-based screening assay on Lippia gracilis Schauer extracts.
Vanzolini, K L; da F Sprenger, R; Leme, G M; de S Moraes, V R; Vilela, A F L; Cardoso, C L; Cass, Q B
2018-05-10
The use of affinity-based protein assay produced by covalently linking acetylcholinesterase to magnetic beads, followed by chemical characterization of the selective binders using Liquid Chromatography with tandem High-Resolution Mass Spectrometry (LC-HRMS) is herein described for profiling crude aqueous natural product extracts. The fishing assay was first modulated using galanthamine as a reference ligand and then, the assay condition was adjusted for the aqueous leaves extracts obtained from Lippia gracilis Schauer (genotype 201) that was used as the natural combinatory library. From the experiments, a selective binder has been undisclosed with an accurate mass of 449.1131 m/z and identified as eriodictyol 2'-O-glucoside or eriodictyol 3'-O-glucoside. The selectivity of the binding assay was demonstrated, as much as, that erydictiol 7-O-glucoside was not fished, although it was present in the crude aqueous extract. The binding assay platform exhibited high specificity and did not require any sample pretreatment, making it appropriate for profiling binders at natural libraries. Copyright © 2018 Elsevier B.V. All rights reserved.
Hierarchy within the mammary STAT5-driven Wap super-enhancer.
Shin, Ha Youn; Willi, Michaela; HyunYoo, Kyung; Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar
2016-08-01
Super-enhancers comprise dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate the role of super-enhancers in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-seq analysis for the master regulator STAT5A, the glucocorticoid receptor, H3K27ac and MED1 identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5-binding sites within its constituent enhancers. Individually, the most distal site displayed the greatest enhancer activity. However, combinatorial mutation analysis showed that the 1,000-fold induction in gene expression during pregnancy relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer. Altogether, these data suggest a temporal and functional enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insights into the regulation of cell-type-specific expression of hormone-sensing genes.
Core and region-enriched networks of behaviorally regulated genes and the singing genome
Whitney, Osceola; Pfenning, Andreas R.; Howard, Jason T.; Blatti, Charles A; Liu, Fang; Ward, James M.; Wang, Rui; Audet, Jean-Nicolas; Kellis, Manolis; Mukherjee, Sayan; Sinha, Saurabh; Hartemink, Alexander J.; West, Anne E.; Jarvis, Erich D.
2015-01-01
Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks. PMID:25504732
Systematic Identification of Combinatorial Drivers and Targets in Cancer Cell Lines
Tabchy, Adel; Eltonsy, Nevine; Housman, David E.; Mills, Gordon B.
2013-01-01
There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance. PMID:23577104
Systematic identification of combinatorial drivers and targets in cancer cell lines.
Tabchy, Adel; Eltonsy, Nevine; Housman, David E; Mills, Gordon B
2013-01-01
There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.
Hernando, Leticia; Mendiburu, Alexander; Lozano, Jose A
2013-01-01
The solution of many combinatorial optimization problems is carried out by metaheuristics, which generally make use of local search algorithms. These algorithms use some kind of neighborhood structure over the search space. The performance of the algorithms strongly depends on the properties that the neighborhood imposes on the search space. One of these properties is the number of local optima. Given an instance of a combinatorial optimization problem and a neighborhood, the estimation of the number of local optima can help not only to measure the complexity of the instance, but also to choose the most convenient neighborhood to solve it. In this paper we review and evaluate several methods to estimate the number of local optima in combinatorial optimization problems. The methods reviewed not only come from the combinatorial optimization literature, but also from the statistical literature. A thorough evaluation in synthetic as well as real problems is given. We conclude by providing recommendations of methods for several scenarios.
NASA Astrophysics Data System (ADS)
Tong, Wei
2017-04-01
Combinatorial material research offers fast and efficient solutions to identify promising and advanced materials. It has revolutionized the pharmaceutical industry and now is being applied to accelerate the discovery of other new compounds, e.g. superconductors, luminescent materials, catalysts etc. Differing from the traditional trial-and-error process, this approach allows for the synthesis of a large number of compositionally diverse compounds by varying the combinations of the components and adjusting the ratios. It largely reduces the cost of single-sample synthesis/characterization, along with the turnaround time in the material discovery process, therefore, could dramatically change the existing paradigm for discovering and commercializing new materials. This talk outlines the use of combinatorial materials approach in the material discovery in transportation sector. It covers the general introduction to the combinatorial material concept, state of art for its application in energy-related research. At the end, LBNL capabilities in combinatorial materials synthesis and high throughput characterization that are applicable for material discovery research will be highlighted.
Discovery of the leinamycin family of natural products by mining actinobacterial genomes
Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen
2017-01-01
Nature’s ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF–SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF–SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm-type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature’s rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature’s biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity. PMID:29229819
Discovery of the leinamycin family of natural products by mining actinobacterial genomes.
Pan, Guohui; Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Yang, Dong; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen; Shen, Ben
2017-12-26
Nature's ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF-SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF-SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm -type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature's rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature's biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity.
Santos, Christine Nicole S; Xiao, Wenhai; Stephanopoulos, Gregory
2012-08-21
Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production. Subsequent strain characterization through transcriptional analysis and whole genome sequencing allowed complete phenotype reconstruction from well-defined mutations and point to important roles for both the acid stress resistance pathway and the stringent response of E. coli in imparting this phenotype. As such, this study presents one of the first examples in which cell-wide measurements have helped to elucidate the genetic and biochemical underpinnings of an engineered cellular property, leading to the total restoration of metabolite overproduction from specific chromosomal mutations.
Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui
2014-03-10
A potentiometric Pb(II)-selective sensor was fabricated by a combinatorial screening of electrically conducting polysulfoaminoanthraquinone (PSA) nanoparticles as a solid ionophore, ion exchangers (oleic acid (OA) and NaTPB), plasticizers in a polyvinyl chloride (PVC) matrix, membrane thickness, inner filling ion species, and concentration. The membrane sensor with the composition of PSA/PVC/DOP (dioctyl phthalate)/OA (1.0:33:61:5.0) exhibited the best performance, including a slope of 29.3 mV decade(-1) in the concentration range 10(-6.3)-10(-1.6) M, detection limit of 1.6 × 10(-7) M, response time of 16 s, lifetime of five months, and good response reversibility. The proposed sensor has demonstrated good selectivity for Pb(II) over other monovalent, divalent and trivalent interfering ions, and could be used in a pH range of 3.62-5.22. The Pb(II) sensor has been successfully applied for the determination of Pb(II) concentration in real-world samples and also as an indicator electrode for potentiometric titration of lead ions.
Malik, Nikita; Kumar, Ashutosh
2016-09-01
NMR resonance assignment of intrinsically disordered proteins poses a challenge because of the limited dispersion of amide proton chemical shifts. This becomes even more complex with the increase in the size of the system. Residue specific selective labeling/unlabeling experiments have been used to resolve the overlap, but require multiple sample preparations. Here, we demonstrate an assignment strategy requiring only a single sample of uniformly labeled (13)C,(15)N-protein. We have used a combinatorial approach, involving 3D-HNN, CC(CO)NH and 2D-MUSIC, which allowed us to assign a denatured centromeric protein Cse4 of 229 residues. Further, we show that even the less sensitive experiments, when used in an efficient manner can lead to the complete assignment of a complex system without the use of specialized probes in a relatively short time frame. The assignment of the amino acids discloses the presence of local structural propensities even in the denatured state accompanied by restricted motion in certain regions that provides insights into the early folding events of the protein.
Santos, Christine Nicole S.; Xiao, Wenhai; Stephanopoulos, Gregory
2012-01-01
Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production. Subsequent strain characterization through transcriptional analysis and whole genome sequencing allowed complete phenotype reconstruction from well-defined mutations and point to important roles for both the acid stress resistance pathway and the stringent response of E. coli in imparting this phenotype. As such, this study presents one of the first examples in which cell-wide measurements have helped to elucidate the genetic and biochemical underpinnings of an engineered cellular property, leading to the total restoration of metabolite overproduction from specific chromosomal mutations. PMID:22869698
Rapid determination of enantiomeric excess: a focus on optical approaches.
Leung, Diana; Kang, Sung Ok; Anslyn, Eric V
2012-01-07
High-throughput screening (HTS) methods are becoming increasingly essential in discovering chiral catalysts or auxiliaries for asymmetric transformations due to the advent of parallel synthesis and combinatorial chemistry. Both parallel synthesis and combinatorial chemistry can lead to the exploration of a range of structural candidates and reaction conditions as a means to obtain the highest enantiomeric excess (ee) of a desired transformation. One current bottleneck in these approaches to asymmetric reactions is the determination of ee, which has led researchers to explore a wide range of HTS techniques. To be truly high-throughput, it has been proposed that a technique that can analyse a thousand or more samples per day is needed. Many of the current approaches to this goal are based on optical methods because they allow for a rapid determination of ee due to quick data collection and their parallel analysis capabilities. In this critical review these techniques are reviewed with a discussion of their respective advantages and drawbacks, and with a contrast to chromatographic methods (180 references). This journal is © The Royal Society of Chemistry 2012
Zhao, Y; Gran, B; Pinilla, C; Markovic-Plese, S; Hemmer, B; Tzou, A; Whitney, L W; Biddison, W E; Martin, R; Simon, R
2001-08-15
The interaction of TCRs with MHC peptide ligands can be highly flexible, so that many different peptides are recognized by the same TCR in the context of a single restriction element. We provide a quantitative description of such interactions, which allows the identification of T cell epitopes and molecular mimics. The response of T cell clones to positional scanning synthetic combinatorial libraries is analyzed with a mathematical approach that is based on a model of independent contribution of individual amino acids to peptide Ag recognition. This biometric analysis compares the information derived from these libraries composed of trillions of decapeptides with all the millions of decapeptides contained in a protein database to rank and predict the most stimulatory peptides for a given T cell clone. We demonstrate the predictive power of the novel strategy and show that, together with gene expression profiling by cDNA microarrays, it leads to the identification of novel candidate autoantigens in the inflammatory autoimmune disease, multiple sclerosis.
Liu, Zhi-Hua; Xie, Shangxian; Lin, Furong; Jin, Mingjie; Yuan, Joshua S
2018-01-01
Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. Overall, these results demonstrate that combinatorial pretreatment, together with fermentation optimization, favorably improves lipid production using lignin as the carbon source. Combinatorial pretreatment integrated with fed-batch fermentation was an effective strategy to improve the bioconversion of lignin into lipids, thus facilitating lignin valorization in biorefineries.
NASA Astrophysics Data System (ADS)
Temme, Francis P.
For uniform spins and their indistinguishable point sets of tensorial bases defining automorphic group-based Liouvillian NMR spin dynamics, the role of recursively-derived coefficients of fractional parentage (CFP) bijections and Schur duality-defined CFP(0)(n) ≡ ¦GI¦(n) group invariant cardinality is central both to understanding the impact of time-reversal invariance(TRI) spin physics, and to analysis as density-matrix formalisms over democratic recoupled (DR) dual tensorial sets, {T
Kim, S; Ip, H S; Lu, M M; Clendenin, C; Parmacek, M S
1997-01-01
The SM22alpha promoter has been used as a model system to define the molecular mechanisms that regulate smooth muscle cell (SMC) specific gene expression during mammalian development. The SM22alpha gene is expressed exclusively in vascular and visceral SMCs during postnatal development and is transiently expressed in the heart and somites during embryogenesis. Analysis of the SM22alpha promoter in transgenic mice revealed that 280 bp of 5' flanking sequence is sufficient to restrict expression of the lacZ reporter gene to arterial SMCs and the myotomal component of the somites. DNase I footprint and electrophoretic mobility shift analyses revealed that the SM22alpha promoter contains six nuclear protein binding sites (designated smooth muscle elements [SMEs] -1 to -6, respectively), two of which bind serum response factor (SRF) (SME-1 and SME-4). Mutational analyses demonstrated that a two-nucleotide substitution that selectively eliminates SRF binding to SME-4 decreases SM22alpha promoter activity in arterial SMCs by approximately 90%. Moreover, mutations that abolish binding of SRF to SME-1 and SME-4 or mutations that eliminate each SME-3 binding activity totally abolished SM22alpha promoter activity in the arterial SMCs and somites of transgenic mice. Finally, we have shown that a multimerized copy of SME-4 (bp -190 to -110) when linked to the minimal SM22alpha promoter (bp -90 to +41) is necessary and sufficient to direct high-level transcription in an SMC lineage-restricted fashion. Taken together, these data demonstrate that distinct transcriptional regulatory programs control SM22alpha gene expression in arterial versus visceral SMCs. Moreover, these data are consistent with a model in which combinatorial interactions between SRF and other transcription factors that bind to SME-4 (and that bind directly to SRF) activate transcription of the SM22alpha gene in arterial SMCs. PMID:9121477
Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris
2012-01-01
Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM-specific repression mechanism that so far has not been characterised for this class of mesodermal CRMs. PMID:23144600
An Indexed Combinatorial Library: The Synthesis and Testing of Insect Repellents
NASA Astrophysics Data System (ADS)
Miles, William H.; Gelato, Kathy A.; Pompizzi, Kristen M.; Scarbinsky, Aislinn M.; Albrecht, Brian K.; Reynolds, Elaine R.
2001-04-01
An indexed combinatorial library of amides was prepared by the reaction of amines and acid chlorides. A simple test for insect repellency using fruit flies (Drosophila melanogaster) allowed the determination of the most repellent sublibraries. The student-generated data were collected and analyzed to determine the most active amide(s) in the library. This experiment illustrates the fundamentals of combinatorial chemistry, a field that has undergone explosive growth in the last decade.
Křížová, Lucie; Kuchař, Milan; Petroková, Hana; Osička, Radim; Hlavničková, Marie; Pelák, Ondřej; Černý, Jiří; Kalina, Tomáš; Malý, Petr
2017-03-01
Interleukin-23 (IL-23), a heterodimeric cytokine of covalently bound p19 and p40 proteins, has recently been closely associated with development of several chronic autoimmune diseases such as psoriasis, psoriatic arthritis or inflammatory bowel disease. Released by activated dendritic cells, IL-23 interacts with IL-23 receptor (IL-23R) on Th17 cells, thus promoting intracellular signaling, a pivotal step in Th17-driven pro-inflammatory axis. Here, we aimed to block the binding of IL-23 cytokine to its cell-surface receptor by novel inhibitory protein binders targeted to the p19 subunit of human IL-23. To this goal, we used a combinatorial library derived from a scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived p19-targeted variants, called ILP binders. From 214 clones analyzed by ELISA, Western blot and DNA sequencing, 53 provided 35 different sequence variants that were further characterized. Using in silico docking in combination with cell-surface competition binding assay, we identified a group of inhibitory candidates that substantially diminished binding of recombinant p19 to the IL-23R on human monocytic THP-1 cells. Of these best p19-blockers, ILP030, ILP317 and ILP323 inhibited IL-23-driven expansion of IL-17-producing primary human CD4 + T-cells. Thus, these novel binders represent unique IL-23-targeted probes useful for IL-23/IL-23R epitope mapping studies and could be used for designing novel p19/IL-23-targeted anti-inflammatory biologics.
Kelm, R J; Cogan, J G; Elder, P K; Strauch, A R; Getz, M J
1999-05-14
Transcriptional activity of the mouse vascular smooth muscle alpha-actin gene in fibroblasts is regulated, in part, by a 30-base pair asymmetric polypurine-polypyrimidine tract containing an essential MCAT enhancer motif. The double-stranded form of this sequence serves as a binding site for a transcription enhancer factor 1-related protein while the separated single strands interact with two distinct DNA binding activities termed VACssBF1 and 2 (Cogan, J. G., Sun, S., Stoflet, E. S., Schmidt, L. J., Getz, M. J., and Strauch, A. R. (1995) J. Biol. Chem. 270, 11310-11321; Sun, S., Stoflet, E. S., Cogan, J. G., Strauch, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429-2936). VACssBF2 has been recently cloned and shown to consist of two closely related proteins, Puralpha and Purbeta (Kelm, R. J., Elder, P. K., Strauch, A. R., and Getz, M. J. (1997) J. Biol. Chem. 272, 26727-26733). In this study, we demonstrate that Puralpha and Purbeta interact with each other via highly specific protein-protein interactions and bind to the purine-rich strand of the MCAT enhancer in the form of both homo- and heteromeric complexes. Moreover, both Pur proteins interact with MSY1, a VACssBF1-like protein cloned by virtue of its affinity for the pyrimidine-rich strand of the enhancer. Interactions between Puralpha, Purbeta, and MSY1 do not require the participation of DNA. Combinatorial interactions between these three single-stranded DNA-binding proteins may be important in regulating activity of the smooth muscle alpha-actin MCAT enhancer in fibroblasts.
Generation of Affibody ligands binding interleukin-2 receptor alpha/CD25.
Grönwall, Caroline; Snelders, Eveline; Palm, Anna Jarelöv; Eriksson, Fredrik; Herne, Nina; Ståhl, Stefan
2008-06-01
Affibody molecules specific for human IL-2Ralpha, the IL-2 (interleukin-2) receptor alpha subunit, also known as CD25, were selected by phage-display technology from a combinatorial protein library based on the 58-residue Protein A-derived Z domain. The IL-2R system plays a major role in T-cell activation and the regulation of cellular immune responses. Moreover, CD25 has been found to be overexpressed in organ rejections, a number of autoimmune diseases and T-cell malignancies. The phage-display selection using Fc-fused target protein generated 16 unique Affibody molecules targeting CD25. The two most promising binders were characterized in more detail using biosensor analysis and demonstrated strong and selective binding to CD25. Kinetic biosensor analysis revealed that the two monomeric Affibody molecules bound to CD25 with apparent affinities of 130 and 240 nM respectively. The Affibody molecules were, on biosensor analysis, found to compete for the same binding site as the natural ligand IL-2 and the IL-2 blocking monoclonal antibody 2A3. Hence the Affibody molecules were assumed to have an overlapping binding site with IL-2 and antibodies targeting the IL-2 blocking Tac epitope (for example, the monoclonal antibodies Daclizumab and Basiliximab, both of which have been approved for therapeutic use). Furthermore, immunofluorescence microscopy and flow-cytometric analysis of CD25-expressing cells demonstrated that the selected Affibody molecules bound to CD4+ CD25+ PMBCs (peripheral-blood mononuclear cells), the IL-2-dependent cell line NK92 and phytohaemagglutinin-activated PMBCs. The potential use of the CD25-binding Affibody molecules as targeting agents for medical imaging and for therapeutic applications is discussed.
NASA Astrophysics Data System (ADS)
Vishnu, Kamalakannan
In 2016, invasive breast cancer was diagnosed in about 246,660 women and 2,600 men. An additional 61,000 new cases of in situ breast cancer was diagnosed in women. Microcalcifications are most common abnormalities detected by mammography for breast cancer, present in about 30% of all malignant breast lesions. Tumor specific biomarkers are used for targeting these abnormalities. Nanoparticles with multimodal and combinatorial therapies and conjunction of bio-ligands for specific molecular targeting using surface modifications effectually deliver a variety of drugs and are simultaneously used to image tumor progression. Alendronate, a germinal bisphosphonate conjugation as a targeting ligand would improve the nanoparticle's direct binding to hydroxyapatite (HA) mimicking calcified spots in breast cancer lesions. In this study, the hydrophobically modified glycol chitosan (HGC) micelle was modified with alendronate surface functionalization using a biotin-avidin interaction to improve the nanomicelle's calcification targeting ability. Biotinylated, avidinlyated hydrophobically modified iv glycol chitosan particles were linked to biotinylated alendronate via a strong biotin-avidin linkage. Cyanine 3, a red fluorescent dye was conjugated to the amine groups on HGC for visualization of micelles. The size of the nanoparticles measured was 254.0 +/- 0.43 nm and 209.7 +/- 1.0 nm for Cy3- BHGCA and Cy3-BHGCA-BALN nanoparticles respectively. The average surface charge was measured to be +26.9 +/- 0.19 mV and +27.68 +/- 0.20 mV for Cy3-BHGCA and Cy3-BHGCA- BALN nanoparticles respectively. Binding affinity using hydroxyapatite (HA) revealed that both Cy3 BHGCA BALN and Cy3 BHGCA nanoparticles displayed 95% binding in 24 hours. However, the biotin quenched nanoparticle Cy3 BHGCAB displayed 68% binding in 24 hours. The synthesis and binding chemistry was verified using Fourier transform infrared spectroscopy (FTIR).
Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred
2012-01-01
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.
Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred
2012-01-01
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585
Inhibition of Herpes Simplex Virus gD and Lymphotoxin-α Binding to HveA by Peptide Antagonists
Sarrias, Maria Rosa; Whitbeck, J. Charles; Rooney, Isabelle; Spruce, Lynn; Kay, Brian K.; Montgomery, Rebecca I.; Spear, Patricia G.; Ware, Carl F.; Eisenberg, Roselyn J.; Cohen, Gary H.; Lambris, John D.
1999-01-01
The herpesvirus entry mediator A (HveA) is a recently characterized member of the tumor necrosis factor receptor family that mediates the entry of most herpes simplex virus type 1 (HSV-1) strains into mammalian cells. Studies on the interaction of HSV-1 with HveA have shown that of all the viral proteins involved in uptake, only gD has been shown to bind directly to HveA, and this binding mediates viral entry into cells. In addition to gD binding to HveA, the latter has been shown to interact with proteins of tumor necrosis factor receptor-associated factor family, lymphotoxin-α (LT-α), and a membrane-associated protein referred to as LIGHT. To study the relationship between HveA, its natural ligands, and the viral proteins involved in HSV entry into cells, we have screened two phage-displayed combinatorial peptide libraries for peptide ligands of a recombinant form of HveA. Affinity selection experiments yielded two peptide ligands, BP-1 and BP-2, which could block the interaction between gD and HveA. Of the two peptides, only BP-2 inhibited HSV entry into CHO cells transfected with an HveA-expressing plasmid. When we analyzed these peptides for the ability to interfere with HveA binding to its natural ligand LT-α, we found that BP-1 inhibited the interaction of cellular LT-α with HveA. Thus, we have dissected the sites of interaction between the cell receptor, its natural ligand LT-α and gD, the virus-specific protein involved in HSV entry into cells. PMID:10364318
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Combinatorial Dyson-Schwinger equations and inductive data types
NASA Astrophysics Data System (ADS)
Kock, Joachim
2016-06-01
The goal of this contribution is to explain the analogy between combinatorial Dyson-Schwinger equations and inductive data types to a readership of mathematical physicists. The connection relies on an interpretation of combinatorial Dyson-Schwinger equations as fixpoint equations for polynomial functors (established elsewhere by the author, and summarised here), combined with the now-classical fact that polynomial functors provide semantics for inductive types. The paper is expository, and comprises also a brief introduction to type theory.
Combinatorial chemistry on solid support in the search for central nervous system agents.
Zajdel, Paweł; Pawłowski, Maciej; Martinez, Jean; Subra, Gilles
2009-08-01
The advent of combinatorial chemistry was one of the most important developments, that has significantly contributed to the drug discovery process. Within just a few years, its initial concept aimed at production of libraries containing huge number of compounds (thousands to millions), so called screening libraries, has shifted towards preparation of small and medium-sized rationally designed libraries. When applicable, the use of solid supports for the generation of libraries has been a real breakthrough in enhancing productivity. With a limited amount of resin and simple manual workups, the split/mix procedure may generate thousands of bead-tethered compounds. Beads can be chemically or physically encoded to facilitate the identification of a hit after the biological assay. Compartmentalization of solid supports using small reactors like teabags, kans or pellicular discrete supports like Lanterns resulted in powerful sort and combine technologies, relying on codes 'written' on the reactor, and thus reducing the need for automation and improving the number of compounds synthesized. These methods of solid-phase combinatorial chemistry have been recently supported by introduction of solid-supported reagents and scavenger resins. The first part of this review discusses the general premises of combinatorial chemistry and some methods used in the design of primary and focused combinatorial libraries. The aim of the second part is to present combinatorial chemistry methodologies aimed at discovering bioactive compounds acting on diverse GPCR involved in central nervous system disorders.
Combinatorial stresses kill pathogenic Candida species
Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.
2012-01-01
Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109
Chen, Hong-Zhang; Liu, Zhi-Hua
2015-06-01
Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular biomimetics: GEPI-based biological routes to technology.
Tamerler, Candan; Khatayevich, Dmitriy; Gungormus, Mustafa; Kacar, Turgay; Oren, E Emre; Hnilova, Marketa; Sarikaya, Mehmet
2010-01-01
In nature, the viability of biological systems is sustained via specific interactions among the tens of thousands of proteins, the major building blocks of organisms from the simplest single-celled to the most complex multicellular species. Biomolecule-material interaction is accomplished with molecular specificity and efficiency leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, Mother Nature developed molecular recognition by successive cycles of mutation and selection. Molecular specificity of probe-target interactions, e.g., ligand-receptor, antigen-antibody, is always based on specific peptide molecular recognition. Using biology as a guide, we can now understand, engineer, and control peptide-material interactions and exploit them as a new design tool for novel materials and systems. We adapted the protocols of combinatorially designed peptide libraries, via both cell surface or phage display methods; using these we select short peptides with specificity to a variety of practical materials. These genetically engineered peptides for inorganics (GEPI) are then studied experimentally to establish their binding kinetics and surface stability. The bound peptide structure and conformations are interrogated both experimentally and via modeling, and self-assembly characteristics are tested via atomic force microscopy. We further engineer the peptide binding and assembly characteristics using a computational biomimetics approach where bioinformatics based peptide-sequence similarity analysis is developed to design higher generation function-specific peptides. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems in a wide-range of applications from tissue engineering, disease diagnostics, and therapeutics to various areas of nanotechnology where integration is required among inorganic, organic and biological materials. Here, we describe lessons from biology with examples of protein-mediated functional biological materials, explain how novel peptides can be designed with specific affinity to inorganic solids using evolutionary engineering approaches, give examples of their potential utilizations in technology and medicine, and, finally, provide a summary of challenges and future prospects. (c) 2010 Wiley Periodicals, Inc.
Differential Effector Engagement by Oncogenic KRAS.
Yuan, Tina L; Amzallag, Arnaud; Bagni, Rachel; Yi, Ming; Afghani, Shervin; Burgan, William; Fer, Nicole; Strathern, Leslie A; Powell, Katie; Smith, Brian; Waters, Andrew M; Drubin, David; Thomson, Ty; Liao, Rosy; Greninger, Patricia; Stein, Giovanna T; Murchie, Ellen; Cortez, Eliane; Egan, Regina K; Procter, Lauren; Bess, Matthew; Cheng, Kwong Tai; Lee, Chih-Shia; Lee, Liam Changwoo; Fellmann, Christof; Stephens, Robert; Luo, Ji; Lowe, Scott W; Benes, Cyril H; McCormick, Frank
2018-02-13
KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines. We show that every cell line has a unique combination of effector dependencies, but in spite of this heterogeneity, we were able to identify two major subtypes of KRAS mutant cancers of the lung, pancreas, and large intestine, which reflect different KRAS effector engagement and opportunities for therapeutic intervention. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Engineering of routes to heparin and related polysaccharides.
Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J
2012-01-01
Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.
DNA as Sensors and Imaging Agents for Metal Ions
Xiang, Yu
2014-01-01
Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450
Woldring, Daniel R.; Holec, Patrick V.; Zhou, Hong; Hackel, Benjamin J.
2015-01-01
Discovering new binding function via a combinatorial library in small protein scaffolds requires balance between appropriate mutations to introduce favorable intermolecular interactions while maintaining intramolecular integrity. Sitewise constraints exist in a non-spatial gradient from diverse to conserved in evolved antibody repertoires; yet non-antibody scaffolds generally do not implement this strategy in combinatorial libraries. Despite the fact that biased amino acid distributions, typically elevated in tyrosine, serine, and glycine, have gained wider use in synthetic scaffolds, these distributions are still predominantly applied uniformly to diversified sites. While select sites in fibronectin domains and DARPins have shown benefit from sitewise designs, they have not been deeply evaluated. Inspired by this disparity between diversity distributions in natural libraries and synthetic scaffold libraries, we hypothesized that binders resulting from discovery and evolution would exhibit a non-spatial, sitewise gradient of amino acid diversity. To identify sitewise diversities consistent with efficient evolution in the context of a hydrophilic fibronectin domain, >105 binders to six targets were evolved and sequenced. Evolutionarily favorable amino acid distributions at 25 sites reveal Shannon entropies (range: 0.3–3.9; median: 2.1; standard deviation: 1.1) supporting the diversity gradient hypothesis. Sitewise constraints in evolved sequences are consistent with complementarity, stability, and consensus biases. Implementation of sitewise constrained diversity enables direct selection of nanomolar affinity binders validating an efficient strategy to balance inter- and intra-molecular interaction demands at each site. PMID:26383268
High-Throughput Identification of Combinatorial Ligands for DNA Delivery in Cell Culture
NASA Astrophysics Data System (ADS)
Svahn, Mathias G.; Rabe, Kersten S.; Barger, Geoffrey; EL-Andaloussi, Samir; Simonson, Oscar E.; Didier, Boturyn; Olivier, Renaudet; Dumy, Pascal; Brandén, Lars J.; Niemeyer, Christof M.; Smith, C. I. Edvard
2008-10-01
Finding the optimal combinations of ligands for tissue-specific delivery is tedious even if only a few well-established compounds are tested. The cargo affects the receptor-ligand interaction, especially when it is charged like DNA. The ligand should therefore be evaluated together with its cargo. Several viruses have been shown to interact with more than one receptor, for efficient internalization. We here present a DNA oligonucleotide-based method for inexpensive and rapid screening of biotin labeled ligands for combinatorial effects on cellular binding and uptake. The oligonucleotide complex was designed as a 44 bp double-stranded DNA oligonucleotide with one central streptavidin molecule and a second streptavidin at the terminus. The use of a highly advanced robotic platform ensured stringent processing and execution of the experiments. The oligonucleotides were fluorescently labeled and used for detection and analysis of cell-bound, internalized and intra-cellular compartmentalized constructs by an automated line-scanning confocal microscope, IN Cell Analyzer 3000. All possible combinations of 22 ligands were explored in sets of 2 and tested on 6 different human cell lines in triplicates. In total, 10 000 transfections were performed on the automation platform. Cell-specific combinations of ligands were identified and their relative position on the scaffold oligonucleotide was found to be of importance. The ligands were found to be cargo dependent, carbohydrates were more potent for DNA delivery whereas cell penetrating peptides were more potent for delivery of less charged particles.
Chiang, Chunyi; Karuri, Stella W; Kshatriya, Pradnya P; Schwartz, Jeffrey; Schwarzbauer, Jean E; Karuri, Nancy W
2012-01-10
We report a robust strategy for conjugating mixtures of two or more protein domains to nonfouling polyurethane surfaces. In our strategy, the carbamate groups of polyurethane are reacted with zirconium alkoxide from the vapor phase to give a surface-bound oxide that serves as a chemical layer that can be used to bond organics to the polymer substrate. A hydroxyalkylphosphonate monolayer was synthesized on this layer, which was then used to covalently bind primary amine groups in protein domains using chloroformate-derived cross-linking. The effectiveness of this synthesis strategy was gauged by using an ELISA to measure competitive, covalent bonding of cell-binding (III(9-10)) and fibronectin-binding (III(1-2)) domains of the cell adhesion protein fibronectin. Cell adhesion, spreading, and fibronectin matrix assembly were examined on surfaces conjugated with single domains, a 1:1 surface mixture of III(1-2) and III(9-10), and a recombinant protein "duplex" containing both domains in one fusion protein. The mixture performed as well as or better than the other surfaces in these assays. Our surface activation strategy is amenable to a wide range of polymer substrates and free amino group-containing protein fragments. As such, this technique may be used to create biologically specific materials through the immobilization of specific protein groups or mixtures thereof on a substrate surface.
Colloquium: Toward living matter with colloidal particles
NASA Astrophysics Data System (ADS)
Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.
2017-07-01
A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.
GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes
Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D
2014-01-01
Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12–ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex. PMID:25046113
Anti-digoxin Fab variants generated by phage display.
Murata, Viviane Midori; Schmidt, Mariana Costa Braga; Kalil, Jorge; Tsuruta, Lilian Rumi; Moro, Ana Maria
2013-06-01
Digoxin is a pharmaceutical used in the control of cardiac dysfunction. Its therapeutic window is narrow, with effect dosage very close to the toxic dosage. To counteract the toxic effect, polyclonal Fab fragments are commercially available. Our study is based on a monoclonal anti-digoxin antibody, which would provide a product with a specific potency and more precise dosage for the detoxification of patients under digoxin treatment. Phage display technology was used to select variants with high affinity. From an anti-digoxin hybridoma, RNA was extracted for subsequent cDNA synthesis. Specific primers were used for the LC and Fd amplifications, then cloned sequentially in a phagemid vector (pComb3X) for the combinatorial Fab library construction. Clones were selected for their ability to bind to digoxin-BSA. The presence of light and heavy chains was checked, randomly selected clones then sequenced and induced to produce soluble Fabs, and subsequently analyzed for anti-digoxin expression. Out of ten clones randomly chosen, six resulted positive expression of the product. The sequencing of these revealed two identical clones and one presenting a pseudogene in the LC. Four clones presenting variations in the framework1 showed binding to digoxin-BSA by ELISA and western blotting. The specific binding was further confirmed by Biacore(®), which allowed ranking of the clones. The development of these clones allowed the selection of variants with higher affinity than the original version.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Evaluation of the Current Status of the Combinatorial Approach for the Study of Phase Diagrams
Wong-Ng, W.
2012-01-01
This paper provides an evaluation of the effectiveness of using the high throughput combinatorial approach for preparing phase diagrams of thin film and bulk materials. Our evaluation is based primarily on examples of combinatorial phase diagrams that have been reported in the literature as well as based on our own laboratory experiments. Various factors that affect the construction of these phase diagrams are examined. Instrumentation and analytical approaches needed to improve data acquisition and data analysis are summarized. PMID:26900530
NASA Astrophysics Data System (ADS)
Lu, Hai-Bo; Liu, Wei-Qiang
2014-04-01
Validated by the correlated experiments, a nose-tip with forward-facing cavity/opposing jet/the combinatorial configuration of forward-facing cavity and opposing jet thermal protection system (TPS) are investigated numerically. The physical mechanism of these TPS is discussed, and the cooling efficiency of them is compared. The combinatorial system is more suitable to be the TPS for the high speed vehicles which need fly under various flow conditions with long-range and long time.
NASA Astrophysics Data System (ADS)
Jakubczyk, Dorota; Jakubczyk, Paweł
2018-02-01
We propose combinatorial approach to the representation of Schur-Weyl duality in physical systems on the example of one-dimensional spin chains. Exploiting the Robinson-Schensted-Knuth algorithm, we perform decomposition of the dual group representations into irreducible representations in a fully combinatorial way. As representation space, we choose the Hilbert space of the spin chains, but this approach can be easily generalized to an arbitrary physical system where the Schur-Weyl duality works.
Massively multiplex single-cell Hi-C
Ramani, Vijay; Deng, Xinxian; Qiu, Ruolan; Gunderson, Kevin L; Steemers, Frank J; Disteche, Christine M; Noble, William S; Duan, Zhijun; Shendure, Jay
2016-01-01
We present single-cell combinatorial indexed Hi-C (sciHi-C), which applies the concept of combinatorial cellular indexing to chromosome conformation capture. In this proof-of-concept, we generate and sequence six sciHi-C libraries comprising a total of 10,696 single cells. We use sciHi-C data to separate cells by karytoypic and cell-cycle state differences and identify cell-to-cell heterogeneity in mammalian chromosomal conformation. Our results demonstrate that combinatorial indexing is a generalizable strategy for single-cell genomics. PMID:28135255
Combinatorial Interdependence in Lottery
ERIC Educational Resources Information Center
Helman, Danny
2005-01-01
This paper examines a real life question of gamble facing lottery players. Combinatorial dependence plays a central role in shaping the game probabilistic structure, but might not carry the merited weight in punters' considerations.
Development of peptoid-based ligands for the removal of cadmium from biological media
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
2015-05-14
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
Development of peptoid-based ligands for the removal of cadmium from biological media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun
2010-10-01
Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.
Muhammad, Turghun; Cui, Liu; Jide, Wang; Piletska, Elena V; Guerreiro, Antonio R; Piletsky, Sergey A
2012-01-04
Novel water-compatible molecularly imprinted polymers (MIPs) selective for amiodarone (AD) were designed via a new methodology which relies on screening library of non-imprinted polymers (NIPs). The NIP library consisted of eighteen cross-linked co-polymers synthesized from monomers commonly used in molecular imprinting. The binding capacity of each polymer in the library was analyzed in two different solvents. Binding in water was used to assess non-specific (hydrophobic) interactions and binding in an appropriate organic solvent was used to assess specific interactions. A good correlation was found between the screening tests and modeling of monomer-template interactions performed using computational approach. Additionally, analysis of template-monomer interactions was performed using UV-vis spectroscopy. As the result, 4-vinylpyridine (4-VP) was selected as the best monomer for developing MIP for AD. The 4-VP-based polymers demonstrated imprinting factor equal 3.9. The polymers performance in SPE was evaluated using AD and its structural analogues. The recovery of AD was as high as 96% when extracted from spiked phosphate buffer (pH 4.5) solution and 82.1% from spiked serum samples. The developed MIP shown as a material with specific binding to AD, comparing to its structural analogues, 1-(2-diethylaminoethoxy)-2,6-diiodo-4-nitrobenzene and lidocaine, which shown 9.9% and 25.4% of recovery from the buffer solution, correspondingly. We believe that the screening of NIP library could be proposed as an alternative to commonly used computational and combinatorial approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Functional analysis of the plant disease resistance gene Pto using DNA shuffling.
Bernal, Adriana J; Pan, Qilin; Pollack, Jeff; Rose, Laura; Kozik, Alexander; Willits, Neil; Luo, Yao; Guittet, Muriel; Kochetkova, Elena; Michelmore, Richard W
2005-06-17
Pto is a serine/threonine kinase that mediates resistance in tomato to strains of Pseudomonas syringae pv. tomato expressing the (a)virulence proteins AvrPto or AvrPtoB. DNA shuffling was used as a combinatorial in vitro genetic approach to dissect the functional regions of Pto. The Pto gene was shuffled with four of its paralogs from a resistant haplotype to create a library of recombinant products that was screened for interaction with AvrPto in yeast. All interacting clones and a representative sample of noninteracting clones were sequenced, and their ability to signal downstream was tested by the elicitation of a hypersensitive response in an AvrPto-dependent or -independent manner in planta. Eight candidate regions important for binding to AvrPto or for downstream signaling were identified by statistical correlations between individual amino acid positions and phenotype. A subset of the regions had previously been identified as important for recognition, confirming the validity of the shuffling approach. Three novel regions important for Pto function were validated by site-directed mutagenesis. Several chimeras and point mutants exhibited a differential interaction with (a)virulence proteins in the AvrPto and VirPphA family, demonstrating distinct binding requirements for different ligands. Additionally, the identification of chimeras that are both constitutively active as well as capable of binding AvrPto indicates that elicitation of downstream signaling does not involve a conformational change that precludes binding of AvrPto, as previously hypothesized. The correlations between phenotypes and variation generated by DNA shuffling paralleled natural variation observed between orthologs of Pto from Lycopersicon spp.
Radulović, Niko S; Denić, Marija S; Stojanović-Radić, Zorica Z
2014-01-01
Recently, a potent anti-staphylococcal activity of Inula helenium L. (Asteraceae) root essential oil was reported. Also, bioassay guided fractionation of the oil pointed to eudesmane sesquiterpene lactones and a series of unidentified constituents as the main carriers of the observed activity. To identify nine new constituents (long-chain 3-methyl-2-alkanones) from a fraction of this root essential oil with a low minimum inhibitory concentration value (0.8 µg/mL) by employing a synthetic methodology that leads to the formation of a small combinatorial library of these compounds. The identity of these constituents was inferred from mass spectral fragmentation patterns and GC retention data. A library of 3-methyl-2-alkanones (C11 -C19 homologous series) was synthesised in three steps starting from methyl acetoacetate and the corresponding alkyl halides. The synthetic library was also screened for in vitro anti-microbial activity. Gas chromatographic analyses of I. helenium essential oil samples with spiked compounds from the synthesised library corroborated the tentative identifications of the long-chain 3-methyl-2-alkanones. The availability of these anti-microbial compounds from this library made it possible to construct GC/FID calibration curves and determine their content in the plant material: 0.08 - 24.2 mg/100 g of dry roots. The small combinatorial library approach enabled the first unequivocal identification of long-chain 3-methyl-2-alkanones as plant secondary metabolites, and, also, allowed determination of not only a single compound and biological properties, but those of a group of structurally related compounds. Copyright © 2013 John Wiley & Sons, Ltd.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf
2016-11-09
A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.
A Systematic Study of Simple Combinatorial Configurations.
ERIC Educational Resources Information Center
Dubois, Jean-Guy
1984-01-01
A classification of the simple combinatorial configurations which correspond to various cases of distribution and ordering of objects into boxes is given (in French). Concrete descriptions, structured relations, translations, and formalizations are discussed. (MNS)
Combinatorial Mathematics: Research into Practice
ERIC Educational Resources Information Center
Sriraman, Bharath; English, Lyn D.
2004-01-01
Implications and suggestions for using combinatorial mathematics in the classroom through a survey and synthesis of numerous research studies are presented. The implications revolve around five major themes that emerge from analysis of these studies.
Park, Je Won; Nam, Sang-Jip; Yoon, Yeo Joon
2017-06-15
Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era. Copyright © 2016 Elsevier Inc. All rights reserved.
Combinatorial vector fields and the valley structure of fitness landscapes.
Stadler, Bärbel M R; Stadler, Peter F
2010-12-01
Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.
Measuring and Specifying Combinatorial Coverage of Test Input Configurations
Kuhn, D. Richard; Kacker, Raghu N.; Lei, Yu
2015-01-01
A key issue in testing is how many tests are needed for a required level of coverage or fault detection. Estimates are often based on error rates in initial testing, or on code coverage. For example, tests may be run until a desired level of statement or branch coverage is achieved. Combinatorial methods present an opportunity for a different approach to estimating required test set size, using characteristics of the test set. This paper describes methods for estimating the coverage of, and ability to detect, t-way interaction faults of a test set based on a covering array. We also develop a connection between (static) combinatorial coverage and (dynamic) code coverage, such that if a specific condition is satisfied, 100% branch coverage is assured. Using these results, we propose practical recommendations for using combinatorial coverage in specifying test requirements. PMID:28133442
Polynomial functors and combinatorial Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Kock, Joachim
2017-04-01
We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 1-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structures. Precisely, for any finitary polynomial endofunctor P defined over groupoids, the system of combinatorial Dyson-Schwinger equations X = 1 + P(X) has a universal solution, namely the groupoid of P-trees. The isoclasses of P-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+-operators. The solution to this equation is a series (the Green function), which always enjoys a Faà di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Faà di Bruno bialgebra. Varying P yields different bialgebras, and cartesian natural transformations between various P yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of P-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-Löf type theory (expounded elsewhere).
Li, Y; Spellerberg, M B; Stevenson, F K; Capra, J D; Potter, K N
1996-03-01
Essentially all cold agglutinins (CA) with red blood cell I/i specificity isolated from patients with CA disease stemming from lymphoproliferative disorders utilize the VH 4-34 (VH 4-21) gene segment. This near universality of the restricted use of a single gene segment is substantially greater than that demonstrated for other autoantibodies. The monoclonal antibody 9G4 exclusively binds VH 4-34 encoded antibodies and serves as a marker for the VH 4-34 gene segment. Previous studies form our laboratory localized the 9G4 reactive area to framework region 1 (FR1). In the present study, the relative roles of VH FR1, heavy (H) chain complementarity determining region 3 (CDRH 3) and the light (L) chain in I antigen binding were investigated. Mutants containing FR1 sequences from the other VH families, CDRH 3 exchanges, and combinatorial antibodies involving L chain interchanges were produced in the baculovirus system and tested in an I binding assay. The data indicate that FR1 of the VH 4-34 gene segment and the CDRH 3 are essential for the interaction between CA and the I antigen, with the CDRH 3 being fundamental in determining the fine specificity of antigen binding (I versus i). Mutants with substantially altered CDRH 1 and CDRH 2 regions bind I as long as the FR1 is VH 4-34 encoded and the CDRH 3 has a permissive sequence. Light chain swaps indicate that even though antigen binding is predominantly mediated by the H chain, the association with antigen can be abrogated by an incompatible L chain. The necessity for VH 4-34 FR1 explains the almost exclusive use of the VH 4-34 gene segment in cold agglutinins. We hypothesize that, as a general phenomenon, the H chain FR1 of many antibodies may be important in providing the contact required for the close association of antibody with antigen, while the CDRH 3 dictates the fine specificity and strenght of binding.
Fuzzy connectedness and object definition
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Samarasekera, Supun
1995-04-01
Approaches to object information extraction from images should attempt to use the fact that images are fuzzy. In past image segmentation research, the notion of `hanging togetherness' of image elements specified by their fuzzy connectedness has been lacking. We present a theory of fuzzy objects for n-dimensional digital spaces based on a notion of fuzzy connectedness of image elements. Although our definitions lead to problems of enormous combinatorial complexity, the theoretical results allow us to reduce this dramatically. We demonstrate the utility of the theory and algorithms in image segmentation based on several practical examples.
Boundary qKZ equation and generalized Razumov Stroganov sum rules for open IRF models
NASA Astrophysics Data System (ADS)
Di Francesco, P.
2005-11-01
We find higher-rank generalizations of the Razumov-Stroganov sum rules at q = -ei π/(k+1) for Ak-1 models with open boundaries, by constructing polynomial solutions of level-1 boundary quantum Knizhnik-Zamolodchikov equations for U_q(\\frak {sl}(k)) . The result takes the form of a character of the symplectic group, that leads to a generalization of the number of vertically symmetric alternating sign matrices. We also investigate the other combinatorial point q = -1, presumably related to the geometry of nilpotent matrix varieties.
Applications of SHAPES screening in drug discovery.
Lepre, Christopher A; Peng, Jeffrey; Fejzo, Jasna; Abdul-Manan, Norzehan; Pocas, Jennifer; Jacobs, Marc; Xie, Xiaoling; Moore, Jonathan M
2002-12-01
The SHAPES strategy combines nuclear magnetic resonance (NMR) screening of a library of small drug-like molecules with a variety of complementary methods, such as virtual screening, high throughput enzymatic assays, combinatorial chemistry, X-ray crystallography, and molecular modeling, in a directed search for new medicinal chemistry leads. In the past few years, the SHAPES strategy has found widespread utility in pharmaceutical research. To illustrate a variety of different implementations of the method, we will focus in this review on recent applications of the SHAPES strategy in several drug discovery programs at Vertex Pharmaceuticals.
Rabbani-Chadegani, Azra; Abdosamadi, Sayeh; Fani, Nesa; Mohammadian, Shayesteh
2009-06-01
Although lead is widely recognized as a toxic substance in the environment and directly damage DNA, no studies are available on lead interaction with chromatin and histone proteins. In this work, we have examined the effect of lead nitrate on EDTA-soluble chromatin (SE chromatin), DNA and histones in solution using absorption and fluorescence spectroscopy, thermal denaturation and gel electrophoresis techniques. The results demonstrate that lead nitrate binds with higher affinity to chromatin than to DNA and produces an insoluble complex as monitored at 400 nm. Binding of lead to DNA decreases its Tm, increases its fluorescence intensity and exhibits hypochromicity at 210 nm which reveal that both DNA bases and the backbone participate in the lead-DNA interaction. Lead also binds strongly to histone proteins in the absence of DNA. The results suggest that although lead destabilizes DNA structure, in the chromatin, the binding of lead introduces some sort of compaction and aggregation, and the histone proteins play a key role in this aspect. This chromatin condensation, upon lead exposure, in turn may decrease fidelity of DNA, and inhibits DNA and RNA synthesis, the process that introduces lead toxicity at the chromatin level.
Determinants of BH3 Binding Specificity for Mcl-1 versus Bcl-x[subscript L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Sanjib; Gullá, Stefano; Chen, T. Scott
2010-06-25
Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the {alpha}-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the designmore » of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques - yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis - to elucidate specificity determinants for binding to Bcl-x{sub L} versus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-x{sub L} selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-x{sub L}, Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-x{sub L}-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-x{sub L} binders.« less
CisMiner: Genome-Wide In-Silico Cis-Regulatory Module Prediction by Fuzzy Itemset Mining
Navarro, Carmen; Lopez, Francisco J.; Cano, Carlos; Garcia-Alcalde, Fernando; Blanco, Armando
2014-01-01
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user. PMID:25268582
Determinants of BH3 binding specificity for Mcl-1 vs. Bcl-xL
Dutta, Sanjib; Gullá, Stefano; Chen, T. Scott; Fire, Emiko; Grant, Robert A.; Keating, Amy E.
2010-01-01
Interactions among Bcl-2 family proteins are important for regulating apoptosis. Pro-survival members of the family interact with pro-apoptotic BH3-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the alpha-helical BH3 region of the pro-apoptotic proteins to a conserved hydrophobic groove on the pro-survival proteins. Native BH3-only proteins exhibit selectivity in binding pro-survival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work we used two complementary techniques, yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis, to elucidate specificity determinants for binding to Bcl-xL vs. Mcl-1, two prominent pro-survival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-xL selectively, or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1 selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-xL, Bcl-2, Bcl-w and Bfl-1, whereas Bcl-xL selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 vs. Bcl-xL binders. PMID:20363230
Combinatorial invariants and covariants as tools for conical intersections.
Ryb, Itai; Baer, Roi
2004-12-01
The combinatorial invariant and covariant are introduced as practical tools for analysis of conical intersections in molecules. The combinatorial invariant is a quantity depending on adiabatic electronic states taken at discrete nuclear configuration points. It is invariant to the phase choice (gauge) of these states. In the limit that the points trace a loop in nuclear configuration space, the value of the invariant approaches the corresponding Berry phase factor. The Berry phase indicates the presence of an odd or even number of conical intersections on surfaces bounded by these loops. Based on the combinatorial invariant, we develop a computationally simple and efficient method for locating conical intersections. The method is robust due to its use of gauge invariant nature. It does not rely on the landscape of intersecting potential energy surfaces nor does it require the computation of nonadiabatic couplings. We generalize the concept to open paths and combinatorial covariants for higher dimensions obtaining a technique for the construction of the gauge-covariant adiabatic-diabatic transformation matrix. This too does not make use of nonadiabatic couplings. The importance of using gauge-covariant expressions is underlined throughout. These techniques can be readily implemented by standard quantum chemistry codes. (c) 2004 American Institute of Physics.
Gobin, Oliver C; Schüth, Ferdi
2008-01-01
Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.
Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho
2018-05-23
Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
2018-01-01
Combinatorial post-translational modifications (PTMs), which can serve as dynamic “molecular barcodes”, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
Molecular biomimetics: utilizing nature's molecular ways in practical engineering.
Tamerler, Candan; Sarikaya, Mehmet
2007-05-01
In nature, proteins are the machinery that accomplish many functions through their specific recognition and interactions in biological systems from single-celled to multicellular organisms. Biomolecule-material interaction is accomplished via molecular specificity, leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, molecular recognition and, consequently, functions developed through successive cycles of mutation and selection. Using biology as a guide, we can now understand, engineer and control peptide-material interactions and exploit these to tailor novel materials and systems for practical applications. We adapted combinatorial biology protocols to display peptide libraries, either on the cell surface or on phages, to select short peptides specific to a variety of practical materials systems. Following the selection step, we determined the kinetics and stability of peptide binding experimentally to understand the bound peptide structure via modeling and its assembly via atomic force microscopy. The peptides were further engineered to have multiple repeats or their amino acid sequences varied to tailor their function. Both nanoparticles and flat inorganic substrates containing multimaterials patterned at the nano- and microscales were used for self-directed immobilization of molecular constructs. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems with wide ranging applications, from tissue engineering, drug delivery and biosensors, to nanotechnology and bioremediation. Here we give examples of protein-mediated functional materials in biology, peptide selection and engineering with affinity to inorganics, demonstrate potential utilizations in materials science, engineering and medicine, and describe future prospects.
Disruption of mTORC1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis
Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I; Tall, Alan R.
2014-01-01
Rationale The mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma LDL levels. This suggests an anti-atherogenic effect possibly mediated by modulation of inflammatory responses in atherosclerotic plaques. Objective To assess the role of macrophage mTORC1 in atherogenesis. Methods and Results We transplanted bone marrow from mice in which a key mTORC1 adaptor, Raptor, was deleted in macrophages by Cre/loxP recombination (Mac-RapKO mice) into Ldlr-/- mice and then fed them the Western-type diet (WTD). Atherosclerotic lesions from Mac-RapKO mice showed decreased infiltration of macrophages, lesion size and chemokine gene expression compared with control mice. Treatment of macrophages with minimally modified LDL (mmLDL) resulted in increased levels of chemokine mRNAs and STAT3 phosphorylation; these effects were reduced in Mac-RapKO macrophages. While wild-type and Mac-RapKO macrophages showed similar STAT3 phosphorylation on Tyr705, Mac-RapKO macrophages showed decreased STAT3 Ser727 phosphorylation in response to mmLDL treatment and decreased Ccl2 promoter binding of STAT3. Conclusions The results demonstrate cross-talk between nutritionally-induced mTORC1 signaling and mmLDL-mediated inflammatory signaling via combinatorial phosphorylation of STAT3 in macrophages, leading to increased STAT3 activity on the CCL2 (MCP-1)promoter with pro-atherogenic consequences. PMID:24687132
Baumketner, Andrij
2012-01-01
Myosin motor protein exists in two alternative conformations, pre-recovery state M* and post-recovery state M**, upon ATP binding. The details of the M*-to-M** transition, known as the recovery stroke to reflect its role as the functional opposite of the force-generating power stroke, remain elusive. The defining feature of the post-recovery state is a kink in the relay helix, a key part of the protein involved in force generation. In this paper we determine the interactions that are responsible for the appearance of the kink. We design a series of computational models that contain three other segments, relay loop, converter domain and Src homology 1 domain helix (SH1), with which relay helix interacts, and determine their structure in accurate replica exchange molecular dynamics simulations in explicit solvent. By conducting an exhaustive combinatorial search among different models we find that: 1) the converter domain must be attached to the relay helix during the transition, so it does not interfere with other parts of the protein, 2) the structure of the relay helix is controlled by SH1 helix. The kink is strongly coupled to the position of SH1 helix. It arises as a result of direct interactions between SH1 and the relay helix and leads to a rotation of the C-terminal part of the relay helix which is subsequently transmitted to the converter domain. PMID:22411190
Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design
2012-01-01
The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472
Lexicographic goal programming and assessment tools for a combinatorial production problem.
DOT National Transportation Integrated Search
2008-01-01
NP-complete combinatorial problems often necessitate the use of near-optimal solution techniques including : heuristics and metaheuristics. The addition of multiple optimization criteria can further complicate : comparison of these solution technique...
NASA Astrophysics Data System (ADS)
Yeung, L.
2015-12-01
I present a mode of isotopic ordering that has purely combinatorial origins. It can be important when identical rare isotopes are paired by coincidence (e.g., they are neighbors on the same molecule), or when extrinsic factors govern the isotopic composition of the two atoms that share a chemical bond. By itself, combinatorial isotope pairing yields products with isotopes either randomly distributed or with a deficit relative to a random distribution of isotopes. These systematics arise because of an unconventional coupling between the formation of singly- and multiply-substituted isotopic moieties. In a random distribution, rare isotopes are symmetrically distributed: Single isotopic substitutions (e.g., H‒D and D‒H in H2) occur with equal probability, and double isotopic substitutions (e.g., D2) occur according to random chance. The absence of symmetry in a bond-making complex can yield unequal numbers of singly-substituted molecules (e.g., more H‒D than D‒H in H2), which is recorded in the product molecule as a deficit in doubly-substituted moieties and an "anticlumped" isotope distribution (i.e., Δn < 0). Enzymatic isotope pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect. Chemical-kinetic isotope effects, which are related to the bond-forming transition state, arise independently and express second-order combinatorial effects. In general, both combinatorial and chemical factors are important for calculating and interpreting clumped-isotope signatures of individual reactions. In many reactions relevant to geochemical oxygen, carbon, and nitrogen cycling, combinatorial isotope pairing likely plays a strong role in the clumped isotope distribution of the products. These isotopic signatures, manifest as either directly bound isotope clumps or as features of a molecule's isotopic anatomy, could be exploited as tracers of biogeochemistry that can relate molecular mechanisms to signals observable at environmentally relevant spatial scales.
The importance of hydration thermodynamics in fragment-to-lead optimization.
Ichihara, Osamu; Shimada, Yuzo; Yoshidome, Daisuke
2014-12-01
Using a computational approach to assess changes in solvation thermodynamics upon ligand binding, we investigated the effects of water molecules on the binding energetics of over 20 fragment hits and their corresponding optimized lead compounds. Binding activity and X-ray crystallographic data of published fragment-to-lead optimization studies from various therapeutically relevant targets were studied. The analysis reveals a distinct difference between the thermodynamic profile of water molecules displaced by fragment hits and those displaced by the corresponding optimized lead compounds. Specifically, fragment hits tend to displace water molecules with notably unfavorable excess entropies-configurationally constrained water molecules-relative to those displaced by the newly added moieties of the lead compound during the course of fragment-to-lead optimization. Herein we describe the details of this analysis with the goal of providing practical guidelines for exploiting thermodynamic signatures of binding site water molecules in the context of fragment-to-lead optimization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Welch, Brett D; Paduch, Marcin; Leser, George P; Bergman, Zachary; Kors, Christopher A; Paterson, Reay G; Jardetzky, Theodore S; Kossiakoff, Anthony A; Lamb, Robert A
2014-10-01
Paramyxoviruses are enveloped negative-strand RNA viruses that are significant human and animal pathogens. Most paramyxoviruses infect host cells via the concerted action of a tetrameric attachment protein (variously called HN, H, or G) that binds either sialic acid or protein receptors on target cells and a trimeric fusion protein (F) that merges the viral envelope with the plasma membrane at neutral pH. F initially folds to a metastable prefusion conformation that becomes activated via a cleavage event during cellular trafficking. Upon receptor binding, the attachment protein, which consists of a globular head anchored to the membrane via a helical tetrameric stalk, triggers a major conformation change in F which results in fusion of virus and host cell membranes. We recently proposed a model for F activation in which the attachment protein head domains move following receptor binding to expose HN stalk residues critical for triggering F. To test the model in the context of wild-type viral glycoproteins, we used a restricted-diversity combinatorial Fab library and phage display to rapidly generate synthetic antibodies (sAbs) against multiple domains of the paramyxovirus parainfluenza 5 (PIV5) pre- and postfusion F and HN. As predicted by the model, sAbs that bind to the critical F-triggering region of the HN stalk do not disrupt receptor binding or neuraminidase (NA) activity but are potent inhibitors of fusion. An inhibitory prefusion F-specific sAb recognized a quaternary antigenic site and may inhibit fusion by preventing F refolding or by blocking the F-HN interaction. Importance: The paramyxovirus family of negative-strand RNA viruses cause significant disease in humans and animals. The viruses bind to cells via their receptor binding protein and then enter cells by fusion of their envelope with the host cell plasma membrane, a process mediated by a metastable viral fusion (F) protein. To understand the steps in viral membrane fusion, a library of synthetic antibodies to F protein and the receptor binding protein was generated in bacteriophage. These antibodies bound to different regions of the F protein and the receptor binding protein, and the location of antibody binding affected different processes in viral entry into cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
DNA Polyplexes as Combinatory Drug Carriers of Doxorubicin and Cisplatin: An In Vitro Study
Kang, Han Chang; Cho, Hana; Bae, You Han
2015-01-01
Double helix nucleic acids were used as a combination drug carrier for doxorubicin (DOX), which physically intercalates with DNA double helices, and cisplatin (CDDP), which binds to DNA without an alkylation reaction. DNA interacting with DOX, CDDP, or both was complexed with positively charged, endosomolytic polymers. Compared with the free drug, the polyplexes (100 ~ 170 nm in size) delivered more drug into the cytosol and the nucleus and demonstrated similar or superior (up to a 7-fold increase) in vitro cell-killing activity. Additionally, the gene expression activities of most of the chemical drug-loaded plasmid DNA (pDNA) polyplexes were not impaired by the physical interactions between the nucleic acid and DOX/CDDP. When a model reporter pDNA (luciferase) was employed, it expressed luciferase protein at 0.7- ~ 1.4-fold the amount expressed by the polyplex with no bound drugs (a control), which indicated the fast translocation of the intercalated or bound drugs from the “carrier DNA” to the “nuclear DNA” of target cells. The proposed concept may offer the possibility of versatile combination therapies of genetic materials and small molecule drugs that bind to nucleic acids to treat various diseases. PMID:26132975
Tuning the chemosensory window
Zhou, Shanshan; Mackay, Trudy FC
2010-01-01
Accurate perception of chemical signals from the environment is critical for the fitness of most animals. Drosophila melanogaster experiences its chemical environment through families of chemoreceptors that include olfactory receptors, gustatory receptors and odorant binding proteins. Its chemical environment, however, changes during its life cycle and the interpretation of chemical signals is dependent on dynamic social and physical surroundings. Phenotypic plasticity of gene expression of the chemoreceptor repertoire allows flies to adjust the chemosensory window through which they “view” their world and to modify the ensemble of expressed chemoreceptor proteins in line with their developmental and physiological state and according to their needs to locate food and oviposition sites under different social and physical environmental conditions. Furthermore, males and females differ in their expression profiles of chemoreceptor genes. Thus, each sex experiences its chemical environment via combinatorial activation of distinct chemoreceptor ensembles. The remarkable phenotypic plasticity of the chemoreceptor repertoire raises several fundamental questions. What are the mechanisms that translate environmental cues into regulation of chemoreceptor gene expression? How are gustatory and olfactory cues integrated perceptually? What is the relationship between ensembles of odorant binding proteins and odorant receptors? And, what is the significance of co-regulated chemoreceptor transcriptional networks? PMID:20305396
Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators
NASA Technical Reports Server (NTRS)
Belaguli, N. S.; Sepulveda, J. L.; Nigam, V.; Charron, F.; Nemer, M.; Schwartz, R. J.
2000-01-01
Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
SABinder: A Web Service for Predicting Streptavidin-Binding Peptides.
He, Bifang; Kang, Juanjuan; Ru, Beibei; Ding, Hui; Zhou, Peng; Huang, Jian
2016-01-01
Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community.
Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N
2018-06-19
Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.
Liu, Xiaofeng S; Patterson, Leslie D; Miller, Marvin J; Theil, Elizabeth C
2007-11-02
Pores regulate access between ferric-oxy biomineral inside and reductants/chelators outside the ferritin protein nanocage to control iron demineralization rates. The pore helix/loop/helix motifs that are contributed by three subunits unfold independently of the protein cage, as observed by crystallography, Fe removal rates, and CD spectroscopy. Pore unfolding is induced in wild type ferritin by increased temperature or urea (1-10 mM), a physiological urea range, 0.1 mM guanidine, or mutation of conserved pore amino acids. A peptide selected for ferritin pore binding from a combinatorial, heptapeptide library increased the rate of Fe demineralization 3-fold (p<0.001), similarly to a mutation that unfolded the pores. Conjugating the peptide to Desferal (desferrioxamine B mesylate), a chelator in therapeutic use, increased the rates to 8-fold (p<0.001). A second pore binding peptide had the opposite effect and decreased the rate of Fe demineralization 60% (p<0.001). The peptides could have pharmacological uses and may model regulators of ferritin demineralization rates in vivo or peptide regulators of gated pores in membranes. The results emphasize that small peptides can exploit the structural plasticity of protein pores to modulate function.
Favalli, Nicholas; Biendl, Stefan; Hartmann, Marco; Piazzi, Jacopo; Sladojevich, Filippo; Gräslund, Susanne; Brown, Peter J; Näreoja, Katja; Schüler, Herwig; Scheuermann, Jörg; Franzini, Raphael; Neri, Dario
2018-06-01
A DNA-encoded chemical library (DECL) with 1.2 million compounds was synthesized by combinatorial reaction of seven central scaffolds with two sets of 343×492 building blocks. Library screening by affinity capture revealed that for some target proteins, the chemical nature of building blocks dominated the selection results, whereas for other proteins, the central scaffold also crucially contributed to ligand affinity. Molecules based on a 3,5-bis(aminomethyl)benzoic acid core structure were found to bind human serum albumin with a K d value of 6 nm, while compounds with the same substituents on an equidistant but flexible l-lysine scaffold showed 140-fold lower affinity. A 18 nm tankyrase-1 binder featured l-lysine as linking moiety, while molecules based on d-Lysine or (2S,4S)-amino-l-proline showed no detectable binding to the target. This work suggests that central scaffolds which predispose the orientation of chemical building blocks toward the protein target may enhance the screening productivity of encoded libraries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystallization in Two Dimensions and a Discrete Gauss-Bonnet Theorem
NASA Astrophysics Data System (ADS)
De Luca, L.; Friesecke, G.
2018-02-01
We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential V(r)=+∞ if r<1, -1 if r=1, 0 if r>1. This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss-Bonnet theorem (Knill in Elem Math 67:1-7, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential V(r)=r^{-6}-2r^{-12}, where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.
In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries.
Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio
2013-01-01
Musa ssp. is among the world's leading fruit crops. Although a strong interest on banana biochemistry exists in the scientific community, focused on metabolite composition, proteins have been scarcely investigated even if they play an important role in food allergy and stability, are a source of biologically active peptides, and can provide information about nutritional aspects of this fruit. In this work we have employed the combinatorial peptide ligand libraries after different types of protein extractions, for searching the very low-abundance proteins in banana. The use of advanced MS techniques and Musa ssp. mRNAs database in combination with the Uniprot_viridiplantae database allowed us to identify 1131 proteins. Among this huge amount of proteins we found several already known allergens such as Mus a 1, pectinesterase, superoxide dismutase, and potentially new allergens. Additionally several enzymes involved in degradation of starch granules and strictly correlated to ripening stage were identified. This is the first in-depth exploration of the banana fruit proteome and one of the largest descriptions of the proteome of any vegetable system. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Searching for substructures in fragment spaces.
Ehrlich, Hans-Christian; Volkamer, Andrea; Rarey, Matthias
2012-12-21
A common task in drug development is the selection of compounds fulfilling specific structural features from a large data pool. While several methods that iteratively search through such data sets exist, their application is limited compared to the infinite character of molecular space. The introduction of the concept of fragment spaces (FSs), which are composed of molecular fragments and their connection rules, made the representation of large combinatorial data sets feasible. At the same time, search algorithms face the problem of structural features spanning over multiple fragments. Due to the combinatorial nature of FSs, an enumeration of all products is impossible. In order to overcome these time and storage issues, we present a method that is able to find substructures in FSs without explicit product enumeration. This is accomplished by splitting substructures into subsubstructures and mapping them onto fragments with respect to fragment connectivity rules. The method has been evaluated on three different drug discovery scenarios considering the exploration of a molecule class, the elaboration of decoration patterns for a molecular core, and the exhaustive query for peptides in FSs. FSs can be searched in seconds, and found products contain novel compounds not present in the PubChem database which may serve as hints for new lead structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2016-06-07
A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation is presented in this paper. The final 12-parameter functional form is selected from approximately 10 × 10 9 candidate fits that are trained on a training set of 870 data points and tested on a primary test set of 2964 data points. The resulting density functional, ωB97M-V, is further tested for transferability on a secondary test set of 1152 data points. For comparison, ωB97M-V is benchmarked against 11 leading density functionals including M06-2X, ωB97X-D, M08-HX, M11, ωM05-D, ωB97X-V, and MN15. Encouragingly, the overall performance of ωB97M-V on nearlymore » 5000 data points clearly surpasses that of all of the tested density functionals. Finally, in order to facilitate the use of ωB97M-V, its basis set dependence and integration grid sensitivity are thoroughly assessed, and recommendations that take into account both efficiency and accuracy are provided.« less
NASA Astrophysics Data System (ADS)
Simonton, Dean Keith
2010-06-01
Campbell (1960) proposed that creative thought should be conceived as a blind-variation and selective-retention process (BVSR). This article reviews the developments that have taken place in the half century that has elapsed since his proposal, with special focus on the use of combinatorial models as formal representations of the general theory. After defining the key concepts of blind variants, creative thought, and disciplinary context, the combinatorial models are specified in terms of individual domain samples, variable field size, ideational combination, and disciplinary communication. Empirical implications are then derived with respect to individual, domain, and field systems. These abstract combinatorial models are next provided substantive reinforcement with respect to findings concerning the cognitive processes, personality traits, developmental factors, and social contexts that contribute to creativity. The review concludes with some suggestions regarding future efforts to explicate creativity according to BVSR theory.
Combinatorial Color Space Models for Skin Detection in Sub-continental Human Images
NASA Astrophysics Data System (ADS)
Khaled, Shah Mostafa; Saiful Islam, Md.; Rabbani, Md. Golam; Tabassum, Mirza Rehenuma; Gias, Alim Ul; Kamal, Md. Mostafa; Muctadir, Hossain Muhammad; Shakir, Asif Khan; Imran, Asif; Islam, Saiful
Among different color models HSV, HLS, YIQ, YCbCr, YUV, etc. have been most popular for skin detection. Most of the research done in the field of skin detection has been trained and tested on human images of African, Mongolian and Anglo-Saxon ethnic origins, skin colors of Indian sub-continentals have not been focused separately. Combinatorial algorithms, without affecting asymptotic complexity can be developed using the skin detection concepts of these color models for boosting detection performance. In this paper a comparative study of different combinatorial skin detection algorithms have been made. For training and testing 200 images (skin and non skin) containing pictures of sub-continental male and females have been used to measure the performance of the combinatorial approaches, and considerable development in success rate with True Positive of 99.5% and True Negative of 93.3% have been observed.
Combinatorial games with a pass: a dynamical systems approach.
Morrison, Rebecca E; Friedman, Eric J; Landsberg, Adam S
2011-12-01
By treating combinatorial games as dynamical systems, we are able to address a longstanding open question in combinatorial game theory, namely, how the introduction of a "pass" move into a game affects its behavior. We consider two well known combinatorial games, 3-pile Nim and 3-row Chomp. In the case of Nim, we observe that the introduction of the pass dramatically alters the game's underlying structure, rendering it considerably more complex, while for Chomp, the pass move is found to have relatively minimal impact. We show how these results can be understood by recasting these games as dynamical systems describable by dynamical recursion relations. From these recursion relations, we are able to identify underlying structural connections between these "games with passes" and a recently introduced class of "generic (perturbed) games." This connection, together with a (non-rigorous) numerical stability analysis, allows one to understand and predict the effect of a pass on a game.
Chang, Yi-Pin; Chu, Yen-Ho
2014-05-16
The design, synthesis and screening of diversity-oriented peptide libraries using a "libraries from libraries" strategy for the development of inhibitors of α1-antitrypsin deficiency are described. The major buttress of the biochemical approach presented here is the use of well-established solid-phase split-and-mix method for the generation of mixture-based libraries. The combinatorial technique iterative deconvolution was employed for library screening. While molecular diversity is the general consideration of combinatorial libraries, exquisite design through systematic screening of small individual libraries is a prerequisite for effective library screening and can avoid potential problems in some cases. This review will also illustrate how large peptide libraries were designed, as well as how a conformation-sensitive assay was developed based on the mechanism of the conformational disease. Finally, the combinatorially selected peptide inhibitor capable of blocking abnormal protein aggregation will be characterized by biophysical, cellular and computational methods.
Intrinsic information carriers in combinatorial dynamical systems
NASA Astrophysics Data System (ADS)
Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter
2010-09-01
Many proteins are composed of structural and chemical features—"sites" for short—characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations—unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are self-consistent descriptors of system dynamics in that their time-evolution is governed by a closed system of kinetic equations. Taken together, fragments are endogenous distinctions that matter for the dynamics of a system, which warrants viewing them as the carriers of information. Although fragments can be thought of as multisets of molecular species (an extensional view), their self-consistency suggests treating them as autonomous aspects cut off from their microscopic realization (an intensional view). Fragmentation is a seeded process that depends on the choice of observables whose dynamics one insists to describe. Different observables can cause distinct fragmentations, in effect altering the set of information carriers that govern the behavior of a system, even though nothing has changed in its microscopic constitution. In this contribution, we present a mathematical specification of fragments, but not an algorithmic implementation. We have described the latter elsewhere in rather technical terms that, although effective, were lacking an embedding into a more general conceptual framework, which we here provide.
Intrinsic information carriers in combinatorial dynamical systems.
Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter
2010-09-01
Many proteins are composed of structural and chemical features--"sites" for short--characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations-unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are self-consistent descriptors of system dynamics in that their time-evolution is governed by a closed system of kinetic equations. Taken together, fragments are endogenous distinctions that matter for the dynamics of a system, which warrants viewing them as the carriers of information. Although fragments can be thought of as multisets of molecular species (an extensional view), their self-consistency suggests treating them as autonomous aspects cut off from their microscopic realization (an intensional view). Fragmentation is a seeded process that depends on the choice of observables whose dynamics one insists to describe. Different observables can cause distinct fragmentations, in effect altering the set of information carriers that govern the behavior of a system, even though nothing has changed in its microscopic constitution. In this contribution, we present a mathematical specification of fragments, but not an algorithmic implementation. We have described the latter elsewhere in rather technical terms that, although effective, were lacking an embedding into a more general conceptual framework, which we here provide.
Kuhnert, Maren; Köster, Helene; Bartholomäus, Ruben; Park, Ah Young; Shahim, Amir; Heine, Andreas; Steuber, Holger; Klebe, Gerhard; Diederich, Wibke E
2015-02-23
Successful lead optimization in structure-based drug discovery depends on the correct deduction and interpretation of the underlying structure-activity relationships (SAR) to facilitate efficient decision-making on the next candidates to be synthesized. Consequently, the question arises, how frequently a binding mode (re)-validation is required, to ensure not to be misled by invalid assumptions on the binding geometry. We present an example in which minor chemical modifications within one inhibitor series lead to surprisingly different binding modes. X-ray structure determination of eight inhibitors derived from one core scaffold resulted in four different binding modes in the aspartic protease endothiapepsin, a well-established surrogate for e.g. renin and β-secretase. In addition, we suggest an empirical metrics that might serve as an indicator during lead optimization to qualify compounds as candidates for structural revalidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
Background Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture. Results Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins. Conclusions The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production. PMID:24341331
Transport of calcium ions through a bulk membrane by use of a dynamic combinatorial library.
Saggiomo, Vittorio; Lüning, Ulrich
2009-07-07
In a bulk membrane transport experiment, a dynamic combinatorial library (DCL) has been used to transport calcium ions; the calcium ions amplify the formation of a macrocyclic carrier which results in transport.
Counting Pizza Pieces and Other Combinatorial Problems.
ERIC Educational Resources Information Center
Maier, Eugene
1988-01-01
The general combinatorial problem of counting the number of regions into which the interior of a circle is divided by a family of lines is considered. A general formula is developed and its use is illustrated in two situations. (PK)
On the existence of binary simplex codes. [using combinatorial construction
NASA Technical Reports Server (NTRS)
Taylor, H.
1977-01-01
Using a simple combinatorial construction, the existence of a binary simplex code with m codewords for all m is greater than or equal to 1 is proved. The problem of the shortest possible length is left open.
Application of combinatorial biocatalysis for a unique ring expansion of dihydroxymethylzearalenone
USDA-ARS?s Scientific Manuscript database
Combinatorial biocatalysis was applied to generate a diverse set of dihydroxymethylzearalenone derivatives with modified ring structure. In one chemoenzymatic reaction sequence, dihydroxymethylzearalenone was first subjected to a unique enzyme-catalyzed oxidative ring opening reaction that creates ...
Molecular biomimetics: nanotechnology through biology.
Sarikaya, Mehmet; Tamerler, Candan; Jen, Alex K-Y; Schulten, Klaus; Baneyx, François
2003-09-01
Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.
Single particle electrochemical sensors and methods of utilization
Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA
2006-04-04
The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.
Cecere, Roberto; Gross, Joachim; Thut, Gregor
2016-06-01
The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Constrained Combinatorial Libraries of Gp2 Proteins Enhance Discovery of PD-L1 Binders.
Kruziki, Max A; Sarma, Vidur; Hackel, Benjamin J
2018-06-05
Engineered protein ligands are used for molecular therapy, diagnostics, and industrial biotechnology. The Gp2 domain is a 45-amino acid scaffold that has been evolved for specific, high-affinity binding to multiple targets by diversification of two solvent-exposed loops. Inspired by sitewise enrichment of select amino acids, including cysteine pairs, in earlier Gp2 discovery campaigns, we hypothesized that the breadth and efficiency of de novo Gp2 discovery will be aided by sitewise amino acid constraint within combinatorial library design. We systematically constructed eight libraries and comparatively evaluated their efficacy for binder discovery via yeast display against a panel of targets. Conservation of a cysteine pair at the termini of the first diversified paratope loop increased binder discovery 16-fold ( p < 0.001). Yet two other libraries with conserved cysteine pairs, within the second loop or an interloop pair, did not aid discovery thereby indicating site-specific impact. Via a yeast display protease resistance assay, Gp2 variants from the loop one cysteine pair library were 3.3 ± 2.1-fold ( p = 0.005) more stable than nonconstrained variants. Sitewise constraint of noncysteine residues-guided by previously evolved binders, natural Gp2 homology, computed stability, and structural analysis-did not aid discovery. A panel of binders to programmed death ligand 1 (PD-L1), a key target in cancer immunotherapy, were discovered from the loop 1 cysteine constraint library. Affinity maturation via loop walking resulted in strong, specific cellular PD-L1 affinity ( K d = 6-9 nM).
Kasi, V S; Kuppuswamy, D
1999-10-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.
Running Clubs--A Combinatorial Investigation.
ERIC Educational Resources Information Center
Nissen, Phillip; Taylor, John
1991-01-01
Presented is a combinatorial problem based on the Hash House Harriers rule which states that the route of the run should not have previously been traversed by the club. Discovered is how many weeks the club can meet before the rule has to be broken. (KR)
Quantum Resonance Approach to Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.
Zink, Lisa-Maria; Delbarre, Erwan; Eberl, H. Christian; Keilhauer, Eva C.; Bönisch, Clemens; Pünzeler, Sebastian; Bartkuhn, Marek; Collas, Philippe; Mann, Matthias
2017-01-01
Abstract Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. We find the HIRA, but not the DAXX/ATRX, complex to recognize H3.Y, explaining its presence in transcriptionally active euchromatic regions. Accordingly, H3.Y nucleosomes are enriched in the transcription-promoting FACT complex and depleted of repressive post-translational histone modifications. H3.Y mutational gain-of-function screens reveal an unexpected combinatorial amino acid sequence requirement for histone H3.3 interaction with DAXX but not HIRA, and for H3.3 recruitment to PML nuclear bodies. We demonstrate the importance and necessity of specific H3.3 core and C-terminal amino acids in discriminating between distinct chaperone complexes. Further, chromatin immunoprecipitation sequencing experiments reveal that in contrast to euchromatic HIRA-dependent deposition sites, human DAXX/ATRX-dependent regions of histone H3 variant incorporation are enriched in heterochromatic H3K9me3 and simple repeat sequences. These data demonstrate that H3.Y's unique amino acids allow a functional distinction between HIRA and DAXX binding and its consequent deposition into open chromatin. PMID:28334823
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Discovery of native autoantigens via antigen surrogate technology: application to type 1 diabetes.
Doran, Todd M; Simanski, Scott; Kodadek, Thomas
2015-02-20
A fundamental goal in understanding the mechanisms of autoimmune disease is the characterization of autoantigens that are targeted by autoreactive antibodies and T cells. Unfortunately, the identification of autoantigens is a difficult problem. We have begun to explore a novel route to the discovery of autoantibody/autoantigen pairs that involves comparative screening of combinatorial libraries of unnatural, synthetic molecules for compounds that bind antibodies present at much higher levels in the serum of individuals with a given autoimmune disease than in the serum of control individuals. We have shown that this approach can yield "antigen surrogates" capable of capturing disease-specific autoantibodies from serum. In this report, we demonstrate that the synthetic antigen surrogates can be used to affinity purify the autoantibodies from serum and that these antibodies can then be used to identify their cognate autoantigen in an appropriate tissue lysate. Specifically, we report the discovery of a peptoid able to bind autoantibodies present in about one-third of nonobese diabetic (NOD) mice. The peptoid-binding autoantibodies were highly enriched through peptoid affinity chromatography and employed to probe mouse pancreatic and brain lysates. This resulted in identification of murine GAD65 as the native autoantigen. GAD65 is a known humoral autoantigen in human type 1 diabetes mellitus (T1DM), but its existence in mice had been controversial. This study demonstrates the potential of this chemical approach for the unbiased identification of autoantigen/autoantibody complexes.
Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine.
Nakano, Hirofumi; Omura, Satoshi
2009-01-01
Staurosporine was discovered at the Kitasato Institute in 1977 while screening for microbial alkaloids using chemical detection methods. It was during the same era that protein kinase C was discovered and oncogene v-src was shown to have protein kinase activity. Staurosporine was first isolated from a culture of Actinomyces that originated in a soil sample collected in Mizusawa City, Japan. Thereafter, indolocarbazole compounds have been isolated from a variety of organisms. The biosynthesis of staurosporine and related indolocarbazoles was finally elucidated during the past decade through genetic and biochemical studies. Subsequently, several novel indolocarbazoles have been produced using combinatorial biosynthesis. In 1986, 9 years since its discovery, staurosporine and related indolocarbazoles were shown to be nanomolar inhibitors of protein kinases. They can thus be viewed as forerunners of today's crop of novel anticancer drugs. The finding led many pharmaceutical companies to search for selective protein kinase inhibitors by screening natural products and through chemical synthesis. In the 1990s, imatinib, a Bcr-Abl tyrosine kinase inhibitor, was synthesized and, following human clinical trials for chronic myelogenous leukemia, it was approved for use in the USA in 2001. In 1992, mammalian topoisomerases were shown to be targets for indolocarbazoles. This opened up new possibilities in that indolocarbazole compounds could selectively interact with ATP-binding sites of not only protein kinases but also other proteins that had slight differences in ATP-binding sites. ABCG2, an ATP-binding cassette transporter, was recently identified as an important new target for indolocarbazoles.
Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.
Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert
2010-01-12
Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anbarasu, K; Jayanthi, S
2018-05-01
Human lemur tyrosine kinase-3 (LMTK3) is primarily involved in regulation of estrogen receptor-α (ERα) by phosphorylation activity. LMTK3 acts as key biomarker for ERα positive breast cancer and identified as novel drug target for breast cancer. Due to the absence of experimental reports, the computational approach has been followed to screen LMTK3 inhibitors from natural product curcumin derivatives based on rational inhibitor design. The initial virtual screening and re-docking resulted in identification of top three leads with favorable binding energy and strong interactions in critical residues of ATP-binding cavity. ADME prediction confirmed the pharmacological activity of the leads with various properties. The stability and binding affinity of leads were well refined in dynamic system from 25 ns MD simulations. The behavior of protein motion towards closure of ATP-binding cavity was evaluated based on eigenvectors by PCA. In addition, MM/PBSA calculations also confirmed the relative binding free energy of LMTK3-lead complexes in favor of the effective binding. From our study, novel LMTK3 inhibitors tetrahydrocurcumin, curcumin 4,4'-diacetate, and demethoxycurcumin have been proposed with inhibition mechanism. Further experimental evaluation on reported lead candidates might prove its role in breast cancer therapeutics.
Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network
NASA Technical Reports Server (NTRS)
Kuhn, D. Richard; Kacker, Raghu; Lei, Yu
2010-01-01
This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.
Formal Operations and Ego Identity in Adolescence.
ERIC Educational Resources Information Center
Wagner, Janis A.
1987-01-01
Investigated the relationship between the development of formal operations and the formation of ego identity in adolescence. Obtained significant positive correlations between combinatorial ability and degree of identity, suggesting that high identity may facilitate the application of combinatorial operations. Found some gender differences in task…
Gian-Carlos Rota and Combinatorial Math.
ERIC Educational Resources Information Center
Kolata, Gina Bari
1979-01-01
Presents the first of a series of occasional articles about mathematics as seen through the eyes of its prominent scholars. In an interview with Gian-Carlos Rota of the Massachusetts Institute of Technology he discusses how combinatorial mathematics began as a field and its future. (HM)
A Model of Students' Combinatorial Thinking
ERIC Educational Resources Information Center
Lockwood, Elise
2013-01-01
Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students' ways of thinking at a level that facilitates deeper understanding of how students…
Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236
A methodology to find the elementary landscape decomposition of combinatorial optimization problems.
Chicano, Francisco; Whitley, L Darrell; Alba, Enrique
2011-01-01
A small number of combinatorial optimization problems have search spaces that correspond to elementary landscapes, where the objective function f is an eigenfunction of the Laplacian that describes the neighborhood structure of the search space. Many problems are not elementary; however, the objective function of a combinatorial optimization problem can always be expressed as a superposition of multiple elementary landscapes if the underlying neighborhood used is symmetric. This paper presents theoretical results that provide the foundation for algebraic methods that can be used to decompose the objective function of an arbitrary combinatorial optimization problem into a sum of subfunctions, where each subfunction is an elementary landscape. Many steps of this process can be automated, and indeed a software tool could be developed that assists the researcher in finding a landscape decomposition. This methodology is then used to show that the subset sum problem is a superposition of two elementary landscapes, and to show that the quadratic assignment problem is a superposition of three elementary landscapes.
Toxic Effects of Lead and Electromagnetic Pulse Energy on Memory Mechanisms
2012-08-01
n = 10) above baseline. These results indicated that 10 M Pb represents a sub- toxic (“low”) concentration of Pb for tetanus -induced LTP in our in...vitro slice preparation, and would thus be used in subsequent tests for combinatorial effects with LEMP. 16 2 mV 5 ms Pre- tetanus (baseline...Post- tetanus (LTP) Control Pb 10 M Pb 20 M Time (min) 0 10 20 30 40 50 60 % E P S P s lo pe 50 100 150 200 250 300 Control saline Pb 10 M Time