Science.gov

Sample records for combined cycle fatigue

  1. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  2. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  3. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  4. Low-cycle fatigue behavior of a nickel-based alloy under combined bending/tension loading

    SciTech Connect

    Julien, D.; Bui-Quoc, T.; Bernard, M.; Saad, N.R.; Nguyen, H.L.

    1999-02-01

    In this paper, the effect of a combined bending/tension loading on the fatigue resistance and on the fatigue crack growth characteristics of a nickel-based alloy at room temperature is studied. For this purpose, a device was specifically designed so that it can be mounted onto a servohydraulic push-pull testing machine. With the device, a simultaneous displacement and rotation of the specimen extremities generate a combined bending/axial stress; the ratio between the bending stress and the axial stress may be specified by adjusting the eccentricity between the specimen axis and the load axis. Stress-controlled fatigue tests were carried out on plate specimens under bending/tension loading with a surface stress ratio of {minus}0.52 (ratio between the maximum cyclic stress on the back face and that on the front face of the specimen). During each test, the fatigue crack length was monitored using two traveling video cameras. The experimental results obtained under bending/tension loading have been analyzed in connection with the data obtained under pure tension loading. In particular, the fatigue crack propagation rate expressed in terms of the stress intensity factor of a crack under combined loading was examined.

  5. Low cycle fatigue in turbines

    NASA Technical Reports Server (NTRS)

    Brun, M.

    1978-01-01

    Behavior of certain components at low-cycle fatigue is a parameter related to the conditions of use of turbines, to the technology of engine production and to the precision of its regulation. The laboratory takes this into account using data from sophisticated tests and rigorous analyses. The production plan includes careful examination of possible causes of premature rupture. This parameter has motivated the metallurgy industry to develop new materials and new technology.

  6. Multiaxial fatigue low cycle fatigue testing

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  7. Different aspects of low-cycle fatigue

    NASA Technical Reports Server (NTRS)

    Bathias, C.

    1978-01-01

    The experimental and theoretical knowledge in this field is presented. The different relations which correlate the number of cyles to rupture with strain or strain-energy are given. The application of low-cycle fatigue concepts to the crack initiation and crack propagation are briefly studied.

  8. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  9. Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life

    SciTech Connect

    Tobushi, Hisaaki; Nakahara, Takafumi; Shimeno, Yoshirou; Hashimoto, Takahiro

    2000-04-01

    The low-cycle fatigue of a TiNi shape memory alloy was investigated by the rotating-bending fatigue tests in air, in water and in silicone oil. (1) The influence of corrosion fatigue in water does not appear in the region of low-cycle fatigue. (2) The temperature rise measured through an infrared thermograph during the fatigue test in air is four times as large as that measured through a thermocouple. (3) The fatigue life at an elevated temperature in air coincides with the fatigue life at the same elevated temperature in water. (4) The shape memory processing temperature does not affect the fatigue life. (5) The fatigue equation is proposed to describe the fatigue life depending on strain amplitude, temperature and frequency. The fatigue life is estimated well by the proposed equation.

  10. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  11. A combined mode fatigue model for glass reinforced nylon as applied to molded engine cooling fans

    SciTech Connect

    Smith, J.D.; Bennet, M.L.

    1985-01-01

    The use of glass reinforced nylon in fatigue inducing environments calls for a new method of stress analysis. With an engine cooling fan, both mean and vibratory stresses need to be examined. Speed cycling can cause tensile fatigue, while vibration can cause flexural fatigue. Since tensile and flexural stresses exist in the fan simultaneously, a combined mode fatigue model is needed. The proposed model is based on high cycle flexural and tensile fatigue strengths, and tensile strength. It relates measurable strain to stress using temperature dependent flexural and tensile moduli, and treats underhood temperature and desired product life as variables.

  12. Very high cycle fatigue behavior of nickel-based superalloy Rene 88 DT

    NASA Astrophysics Data System (ADS)

    Miao, Jiashi

    The fatigue behavior of the polycrystalline nickel-based superalloy Rene 88 DT has been investigated at 593°C up to the very high cycle fatigue regime using ultrasonic fatigue techniques. Conventional damage tolerant methods failed to predict the fatigue life nor the large fatigue life viability of two orders of magnitude observed in the very high cycle regime. Fatigue crack initiation rather than fatigue crack growth is the life determining process in this alloy in the very high cycle regime. At 593°C, all fatigue failures have subsurface origins. Most fatigue crack initiation sites consist of a large crystallographic facet or a cluster of several large crystallographic facets. By combining electron backscatter diffraction, metallographic serial sectioning and SEM-stereo-image-based quantitative fractographic analysis, critical microstructure features associated with subsurface crystallographic fatigue crack initiation were identified. Subsurface fatigue cracks formed by the localization of cyclic plastic deformation on {111} slip planes in the region close to and parallel to twin boundaries in favorably oriented large grains. The facet plane in the crack initiation grain is parallel to the slip plane with the highest resolved shear stresses. Analytical calculations show that twin boundary elastic incompatibility stresses contribute to the onset of cyclic plastic strain localization in the fatigue crack initiation grains. Favorably oriented neighbor grains also can assist with fatigue crack initiation and especially early small crack propagation. Environment may play an important role in the shift of fatigue crack initiation sites from surface to subsurface at elevated temperature. The fatigue behavior of Rene 88 DT was also investigated under fully reversed loading at room temperature using ultrasonic fatigue techniques. Cyclic plastic strain localization and microcrack formation on specimen surfaces were quantitatively studied by EBSD. All microcracks examined

  13. High temperature multiaxial low cycle fatigue of cruciform specimen

    SciTech Connect

    Itoh, Takamoto . Dept. of Mechanical Engineering); Sakane, Masao; Ohnami, Masateru . Dept. of Mechanical Engineering)

    1994-01-01

    This paper describes high temperature multiaxial low cycle fatigue lives of type SUS304 stainless steel and 1Cr-1Mo-1/4V steel cruciform specimens at 923 K and 823 K in air. Strain controlled multiaxial low cycle fatigue tests were carried out using cruciform specimens at the principal strain ratios between [minus]1 and 1. The principal strain ratio had a significant effect on low cycle fatigue lives. Fatigue lives drastically decreased as the principal strain ratio increased. Multiaxial low cycle fatigue strain parameters were applied to the experimental data and the applicability of the parameter was discussed. The equivalent strain based on crack opening displacement (COD strain) developed in the paper and [Gamma][sup *] -- plane parameter successfully predicted multiaxial low cycle fatigue lives. The crack morphology was also extensively discussed from not only the surface crack direction but also the crack inclination into the specimen.

  14. High Cycle Thermal Fatigue in French PWR

    SciTech Connect

    Blondet, Eric; Faidy, Claude

    2002-07-01

    Different fatigue-related incidents which occurred in the world on the auxiliary lines of the reactor coolant system (SIS, RHR, CVC) have led EDF to search solutions in order to avoid or to limit consequences of thermodynamic phenomenal (Farley-Tihange, free convection loop and stratification, independent thermal cycling). Studies are performed on mock-up and compared with instrumentation on nuclear power stations. At the present time, studies allow EDF to carry out pipe modifications and to prepare specifications and recommendations for next generation of nuclear power plants. In 1998, a new phenomenal appeared on RHR system in Civaux. A crack was discovered in an area where hot and cold fluids (temperature difference of 140 deg. C) were mixed. Metallurgic studies concluded that this crack was caused by high cycle thermal fatigue. Since 1998, EDF is making an inventory of all mixing areas in French PWR on basis of criteria. For all identified areas, a method was developed to improve the first classifying and to keep back only potential damage pipes. Presently, studies are performing on the charging line nozzle connected to the reactor pressure vessel. In order to evaluate the load history, a mock-up has been developed and mechanical calculations are realised on this nozzle. The paper will make an overview of EDF conclusions on these different points: - dead legs and vortex in a no flow connected line; - stratification; - mixing tees with high {delta}T. (authors)

  15. The role of creep in high temperature low cycle fatigue.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Spera, D. A.

    1971-01-01

    The significance of the role that creep can play in governing high-temperature, low-cycle fatigue resistance is investigated by conducting strain cycling tests on two high-temperature stainless steel alloys and making concurrent measurements of stress, temperature, and strain at various frequencies. The results are then analyzed in terms of damage imposed by creep and fatigue components. It is shown that creep can play an important and sometimes dominant role in low cycle fatigue at high temperatures. The results of the study include the findings that: (1) the simple life-fraction theory described is adequate for calculating creep damage when the cyclic creep rupture curve is used as a basis for analysis; (2) a method of universal slopes originally developed for room temperature use is sufficiently accurate at high temperature to be used to calculate pure fatigue damage; and (3) a linear creep-fatigue damage rule can explain the transitions observed from one failure mode to another.

  16. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical

  17. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  18. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  19. Combined high vacuum/high frequency fatigue tester

    NASA Technical Reports Server (NTRS)

    Honeycutt, C. R.; Martin, T. F.

    1971-01-01

    Apparatus permits application of significantly greater number of cycles or equivalent number of cycles in shorter time than conventional fatigue test machines. Environment eliminates problems associated with high temperature oxidation and with sensitivity of refractory alloy behavior to atmospheric contamination.

  20. Fatigue crack growth and low cycle fatigue of two nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.

    1983-01-01

    The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.

  1. Topology optimization in damage governed low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Desmorat, Boris; Desmorat, Rodrigue

    2008-05-01

    Topology optimization is applied here to discuss an optimization problem of fatigue resistance. Fatigue lifetime is maximized by optimizing the shape of a structure in cyclic plasticity combined with Lemaitre damage law. The topology optimization algorithm is detailed. A 3D numerical example is given. To cite this article: B. Desmorat, R. Desmorat, C. R. Mecanique 336 (2008).

  2. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  3. High Cycle Fatigue in the Transmission Electron Microscope.

    PubMed

    Bufford, Daniel C; Stauffer, Douglas; Mook, William M; Syed Asif, S A; Boyce, Brad L; Hattar, Khalid

    2016-08-10

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 10(6) cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10(-12) m·cycle(-1). This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu. PMID:27351706

  4. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  5. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  6. High cycle fatigue in the transmission electron microscope

    DOE PAGESBeta

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S. A.; Boyce, Brad L.; Hattar, Khalid

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10–12 m·cycle–1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  7. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    NASA Astrophysics Data System (ADS)

    Pejkowski, Łukasz; Skibicki, Dariusz

    2016-08-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The criterion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S-N curves: tension-compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promising. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  8. Low- cycle fatigue behavior of polycrystalline nial at 1000 k

    NASA Astrophysics Data System (ADS)

    Lerch, B. A.; Noebe, R. D.

    1994-02-01

    The low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K, a temperature above the monotonic brittle-to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on B2 intermetallic samples prepared by two fab-rication techniques: hot isostatic pressing (HIP) of prealloyed powders and extrusion of vacuum induction-melted [cast plus extruded (C+E)] castings. At 1000 K, in an air environment both the hot-isostatically pressed (“hipped”) and C + E samples cyclically softened throughout most of their fatigue lives, though the absolute change in stress was no greater than about 35 MPa. At this temperature, samples were insensitive to processing defects, which were a source of failure initiation in room-temperature tests. The processing method had a small effect on fatigue life; the lives of the hipped samples were about a factor of 3 shorter than the fatigue lives of the C+E NiAl. The C+E material also underwent dynamic grain growth during testing, while the hipped NiAl maintained a constant grain size. Stable fatigue-crack growth in both materials was intergranular in nature, while final fracture by tensile overload occurred by transgranular cleavage. However, at plastic strain ranges below 0.3 pct, the fatigue lives of the hipped NiAl were controlled by intergranular cavitation and creep processes such that the fatigue lives were shorter than anticipated. Finally, hipped samples tested in vacuum had a factor of 3 longer life than specimens tested in air. A comparison of NiAl to typical superalloys (which it may replace) showed that NiAl exhibited a superior fatigue life on a plastic strain basis but was inferior to most superalloys on a stress basis.

  9. PO2 Cycling Reduces Diaphragm Fatigue by Attenuating ROS Formation

    PubMed Central

    Zuo, Li; Diaz, Philip T.; Chien, Michael T.; Roberts, William J.; Kishek, Juliana; Best, Thomas M.; Wagner, Peter D.

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses. PMID:25299212

  10. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  11. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  12. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  13. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2013-01-01

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.

  14. Thermodynamics of combined cycle plant

    NASA Astrophysics Data System (ADS)

    Crane, R. I.

    The fundamental thermodynamics of power plants including definitions of performance criteria and an introduction to exergy are reviewed, and treatments of simplified performance calculations for the components which form the major building blocks and a gas/steam combined cycle plant are given: the gas turbine, the heat recovery steam generator, and the remainder of the steam plant. Efficiency relationships and energy and exergy analyses of combined cycle plant are presented, with examples. Among the aspects considered are gas turbine performance characteristics and fuels, temperature differences for heat recovery, multiple steam pressures and reheat, supplementary firing and feed water heating. Attention is drawn to points of thermodynamic interest arising from applications of combined cycle plant to repowering of existing steam plant and to combined heat and power (cogeneration); some advances, including coal firing, are also introduced.

  15. Final report on low-cycle fatigue and creep-fatigue testing of salt-filled alloy 800 specimens

    SciTech Connect

    Kaae, J L

    1982-05-01

    Uniaxial low-cycle fatigue and creep-fatigue tests have been carried out on hollow alloy 800 specimens that were either filled with air or with a molten mixture of sodium nitrate, potassium nitrate and an oxidizer. Low-cycle fatigue tests were carried out at 1200/sup 0/F and 650/sup 0/F by cycling the strain continuously between equal mangitude of tensile and compressive values at a rate of 4 x 10/sup -3/sec/sup -1/ until failure. The creep-fatigue tests were carried out at 1200/sup 0/F. The loading cycle differed from that of low-cycle fatigue testing only in the imposition of a hold at the peak compressive strain in each cycle. Cracks always initiated on the inner surface of the hollow specimen, and therefore, corrosive effects on crack propagation and initiation were controlled by the environment within the specimen cavity. In common with tests carried out earlier on steam-filled alloy 800 specimens, at 1200/sup 0/F in the presence of molten salt the heat of alloy 800 with the lower carbon content had a higher fatigue strength than the heat with the higher carbon content even though different heats were used in the two testing programs. The fatigue strength of the two heats of material in the presence of molten salt at 650/sup 0/F were about the same. Tests with air-filled specimens indicated that the presence of the molten salt degraded the fatigue life at 1200/sup 0/F but did not affect the creep fatigue life, while the presence of steam enhanced both the fatigue life and the creep-fatigue life.

  16. High-Cycle Fatigue Behavior of a Nicalon(tm)/Si-N-C Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kalluri, Sreeramesh; Kantzos, Peter T.

    1999-01-01

    Elevated temperature, high-cycle fatigue behavior of a woven SiC/Si-N-C ceramic matrix composite system was investigated at 910 C. High frequency (100 Hz) fatigue tests were conducted in air on specimens machined from the composite system, A power-law type fatigue life relationship adequately characterized the high-cycle fatigue data generated in the study. Post failure fractographic and metallographic studies were performed to document the fatigue crack initiation regions and damage mechanisms in the composite system. Fatigue cracks initiated primarily from the corners of the specimens and propagated along the 90 degree fiber tows.

  17. H gas turbine combined cycle

    SciTech Connect

    Corman, J.

    1995-10-01

    A major step has been taken in the development of the Next Power Generation System - {open_quotes}H{close_quotes} Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1430 C (2600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The {open_quotes}H{close_quotes} Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

  18. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects. Final technical report, June 1992-January 1995

    SciTech Connect

    Bast, C.C.; Boyce, L.

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model`s empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect.

  19. Airbreathing combined cycle engine systems

    NASA Technical Reports Server (NTRS)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  20. Thermal High- and Low-Cycle Fatigue Behavior of Thick Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have received increasing attention for advanced gas turbine and diesel engine applications because of their ability to provide thermal insulation to engine components. However, the durability of these coatings under the severe thermal cycling conditions encountered in a diesel engine (ref. 1) still remains a major issue. In this research at the NASA Lewis Research Center, a high-power laser was used to investigate the thermal fatigue behavior of a yttria-stabilized zirconia coating system under simulated diesel engine conditions. The mechanisms of fatigue crack initiation and propagation, and of coating failure under complex thermal low-cycle fatigue (LCF, representing stop/start cycles) and thermal high-cycle fatigue (HCF, representing operation at 1300 rpm) are described. Continuous wave and pulse laser modes were used to simulate pure LCF and combined LCF/HCF, respectively (ref. 2). The LCF mechanism was found to be closely related to the coating sintering and creep at high temperatures. These creep strains in the ceramic coating led to a tensile stress state during cooling, thus providing the major driving force for crack growth under LCF conditions. The combined LCF/HCF tests induced more severe coating surface cracking, microspallation, and accelerated crack growth than did the pure LCF test. HCF thermal loads also facilitated lateral crack branching and ceramic/bond coat interface delaminations. HCF is associated with the cyclic stresses originating from the high-frequency temperature fluctuation at the ceramic coating surface. The HCF thermal loads act on the crack by a wedging mechanism (ref. 1), resulting in continuous crack growth at temperature. The HCF stress intensity factor amplitude increases with the interaction depth and temperature swing, and decreases with the crack depth. HCF damage also increases with the thermal expansion coefficient and the Young's modulus of the ceramic coating (refs. 1 and 3).

  1. Cyclic fatigue analysis of rocket thrust chambers. Volume 2: Attitude control thruster high cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A finite element stress analysis was performed for the film cooled throat section of an attitude control thruster. The anlaysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the thruster operating cycle. The configuration and operating conditions considered, correspond to a flightweight integrated thruster assembly which was thrust pulse tested. The computed strain range was used in conjuction with Haynes 188 Universal Slopes minimum life data to predict throat section fatigue life. The computed number of cycles to failure was greater than the number of pulses to which the thruster was experimentally subjected without failure.

  2. Effect of interstitial content on high- temperature fatigue crack propagation and low- cycle fatigue of alloy 720

    NASA Astrophysics Data System (ADS)

    Bashir, S.; Thomas, M. C.

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 °C in Allison’s T800, T406, GMA 2100, and GMA 3007 engines. In the original composition in-tended for use as turbine blades, large carbide and boride stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitials are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cy-cle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modifica-tion. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and bo-ron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  3. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF) regime up to 109 cycles

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    2015-12-01

    Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM) enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles. For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  4. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  5. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  6. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  7. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  8. Kalina cycle application to gas turbine combined cycles

    SciTech Connect

    Bjorge, R.W.; Corman, J.C.; Smith, R.W.

    1995-12-31

    Gas turbine-based combined cycles have gained broad market acceptance due to their favorable economics, high efficiency and excellent environmental performance. Combined-cycle performance improvements have tracked the rapid advance of gas turbine technology. The introduction of the steam-cooled STAG 107H and 109H combined-cycle systems with their 60% net plant efficiency capability is the latest step in this trend. High-efficiency steam bottoming cycles have also advanced, with the current state-of-the-art being the three-pressure reheat cycle. The Kalina Cycle utilizing a mixture of ammonia and water as the working fluid promises to further continue these combined cycle-performance improvements with dramatic changes in the bottoming cycle. These improvements are due to non-isothermal heat acquisition and heat rejection, as well as internal heat recuperation, which reduce losses of thermodynamic availability, or exergy, in the cycle. This paper discusses the application of the Kalina Cycle to gas turbine-based combined cycles, including system design and performance characteristics. It compares Kalina Cycle performance and economics with that of a state-of-the-art steam bottoming cycle, showing the potential economic advantages of this innovative cycle in combined-cycle applications. Several variants of the Kalina Cycle system and the Distillation Condensation Subsystem (DCSS), which replaces the condenser as the heat rejection and recuperation system of the Kalina Cycle, have been studied. Results show that the Kalina Cycle can enhance the gas turbine bottoming cycle power output by over 15% when compared with a three-pressure reheat Rankine bottoming cycle. This yields an efficiency improvement of 2-3 percentage points, a significant advance in the state-of-the-art. Based on these substantial performance gains, GE is pursuing the commercialization of the Kalina Cycle for combined-cycle applications under a worldwide exclusive license from Exergy, Inc.

  9. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  10. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  11. Externally fired combined cycle demonstration

    SciTech Connect

    Orozco, N.J.; Young, S.; LaHaye, P.G.; Strom-Olsen, J.; Seger, J.L.; Pickup, H.

    1995-11-01

    Externally Fired Combined Cycles (EFCCs) can increase the amount of electricity produced from ash bearing fuels up to 40%, with overall powerplant efficiencies in excess of 45%. Achieving such high efficiencies requires high temperature-high pressure air heaters capable of driving modern gas turbines from gas streams containing the products of coal combustion. A pilot plant has been constructed in Kennebunk, Maine to provide proof of concept and evaluation of system components. Tests using pulverized Western Pennsylvania bituminous coal have been carried out since April, 1995. The ceramic air heater extracts energy from the products of coal combustion to power a gas turbine. This air heater has operated at gas inlet temperatures over 1,095 C and pressures over 7.0 atm without damage to the ceramic tube string components. Stable gas turbine operation has been achieved with energy input from the air heater and a supplementary gas fired combustor. Efforts are underway to fire the cycle on coal only, and to increase the duration of the test runs. Air heater improvements are being implemented and evaluated. These improvements include installation of a second pass of ceramic tubes and evaluation of corrosion resistant coatings on the ceramic tubes.

  12. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    PubMed Central

    Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J

    2008-01-01

    Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to

  13. Probabilistic-graphical and phenomenological analysis of combined bending-torsion fatigue reliability data

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Broome, H.

    1969-01-01

    Fatigue data generated by three combined bending-torsion fatigue reliability research machines at The University of Arizona are probabilistic-graphically and phenomenologically analyzed. Distributions that are applicable to fatique life and static strength data are discussed. Phenomenological justifications for the use of these distributions are presented. It is found that the normal distribution represents the cycles-to-failure data at the highest stress levels best. The lognormal distribution appears to fit the cycles-to-failure data at the lower stress levels best and quite well at all stress levels including the highest. A regression analysis and least-squares goodness-of-fit test was performed for normal and lognormal plots. In most cases, the correlation coefficient gave a better fit to the data using the normal distribution, but the difference between the two was so slight that positive discrimination could not be made.

  14. The application of probabilistic design theory to high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1981-01-01

    Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.

  15. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  16. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have attracted increased attention for diesel engine applications. The advantages of using the ceramic coatings include a potential increase in efficiency and power density and a decrease in maintenance cost. Zirconia-based ceramics are the most important coating materials for such applications because of their low thermal conductivity, relatively high thermal expansivity and excellent mechanical properties. However, durability of thick thermal barrier coatings (TBCS) under severe temperature cycling encountered in engine conditions, remains a major question. The thermal transients associated with the start/stop and no-load/full-load engine cycle, and with the in-cylinder combustion process, generate thermal low cycle fatigue (LCF) and thermal high cycle fatigue (HCF) in the coating system. Therefore, the failure mechanisms of thick TBCs are expected to be quite different from those of thin TBCs under these temperature transients. The coating failure is related not only to thermal expansion mismatch and oxidation of the bond coats and substrates, but also to the steep thermal stress gradients induced in the coating systems. Although it has been reported that stresses generated by thermal transients can initiate surface and interface cracks in a coating system, the mechanisms of the crack propagation and of coating failure under the complex LCF and HCF conditions are still not understood. In this paper, the thermal fatigue behavior of an yttria partially stabilized zirconia coating system under simulated LCF and HCF engine conditions is investigated. The effects of LCF and HCF on surface crack initiation and propagation are also discussed.

  17. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  18. Kalina combined cycle performance and operability

    SciTech Connect

    Smith, R.W.; Ranasinghe, J.; Stats, D.; Dykas, S.

    1996-12-31

    Gas turbine combined cycles using Rankine bottoming cycles have gained broad market acceptance. The favorable plant economics derive from their high efficiency, short construction cycles and excellent environmental performance. The responsive operating characteristics of combined cycles is another key advantage for customers. Duty cycles cover the spectrum from daily start stop (DSS) to base load. Performance and economics of combined cycles have progressed with advances in gas turbine technology as well as the introduction of increasingly efficient multi-pressure Rankine bottoming cycles. Further advances in gas turbine technology and Rankine bottoming cycle performance are becoming incrementally more difficult and costly to achieve. The availability of the Kalina cycle presents a clear path toward improved combined-cycle system performance and reduced cost of electricity. This paper presents detailed performance and operating characteristics of a STAG 207FA combined cycle employing the Kalina bottoming cycle. These characteristics are compared to a conventional three-pressure reheat Rankine bottoming cycle. The Kalina cycle is shown to have performance and operability advantages throughout the range of site conditions and operating regimes, such as base load, load following, DSS duty, wet and dry cooling tower applications and unattended operation. These advantages derive from a single-pressure once-through heat recovery system, above atmospheric working fluid pressure throughout the system, above atmospheric working fluid pressure throughout the system, very high thermal efficiency ({approximately}2.0 to 2.5 percentage points better than the best Rankine), and compatibility with sub-freezing ambient conditions.

  19. Shakedown based model for high-cycle fatigue of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Gu, Xiaojun; Moumni, Ziad; Zaki, Wael; Zhang, Weihong

    2016-11-01

    The paper presents a high-cycle fatigue criterion for shape memory alloys (SMAs) based on shakedown analysis. The analysis accounts for phase transformation as well as reorientation of martensite variants as possible sources of fatigue damage. In the case of high-cycle fatigue, once the structure has reached an asymptotic state, damage is assumed to become confined at the mesoscopic scale, or the scale of the grain, with no discernable inelasticity at the macroscopic scale. Using a multiscale approach, a high-cycle fatigue criterion analogous to the Dang Van model (Dang Van 1973) for elastoplastic metals is derived for SMAs obeying the Zaki–Moumni model for SMAs (Zaki and Moumni 2007a). For these alloys, a safe domain is established in stress deviator space, consisting of a hypercylinder with axis parallel to the direction of martensite orientation at the mesoscopic scale. Safety with regard to high-cycle fatigue, upon elastic shakedown, is conditioned by the persistence of the macroscopic stress path at every material point within the hypercylinder, whose size depends on the volume fraction of martensite. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high cycle fatigue.

  20. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  1. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    SciTech Connect

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  2. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  3. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  4. Ultrahigh vacuum, high temperature, low cycle fatigue of coated and uncoated Rene 80

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1976-01-01

    A study was conducted on the ultrahigh vacuum strain controlled by low cycle fatigue behavior of uncoated and CODEP B-1 aluminide coated Rene' 80 nickel-base superalloy at 1000 C (1832 F) and 871 C (1600 F). The results indicated little effect of coating or temperature on the fatigue properties. There was, however, a significant effect on fatigue life when creep was introduced into the strain cycles. The effect of this creep component was analyzed in terms of the method of strainrange partitioning.

  5. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  6. Effect of microstructure on high-cycle fatigue properties of Alloy718 plates

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Nagashima, N.; Ogata, T.; Nagao, N.

    2015-12-01

    Effect of microstructure on high-cycle fatigue properties of Alloy718 were investigated at 77 K by using samples with three different microstructures; fine-grained (FG), coarse-grained (CG) and bimodal-grained (BG) ones. The BG sample consisted of FG and CG microstructural regions and grain sizes of those regions were close to those of the FG and the CG samples, respectively. High-cycle fatigue strength of the FG sample was higher than that of the CG sample. High-cycle fatigue strength of the BG sample was clearly lower than that of the FG sample and almost the same as that of the CG one. Flat area (facet) was found at fatigue crack initiation site in all specimens. Facet size was similar to the grain size and found to be almost same in the CG and the BG samples. Observations of the microstructure beneath the fatigue crack initiation site of the BG sample revealed that the facet corresponds to transgranular cracking in the course grain, meaning that fatigue crack initiated at the coarse grain in the BG sample. It is deduced that the high-cycle fatigue strength of Alloy 718 with the BG microstructure is strongly affected by that of the CG region in that material.

  7. Low-cycle and high-cycle fatigue failure process characterization of CFRP cross-ply laminates

    SciTech Connect

    Takeda, N.; Ogihara, S.; Kobayashi, A.

    1994-12-31

    Damage progress in toughened-type CFRP cross-ply laminates under tensile fatigue loading was measured by the replica technique. The damage parameters, the transverse crack density and the delamination ratio, were presented. Based on above data, simple shear-lag analysis combined with the modified Paris law model was conducted to model the damage progress. In addition, a novel power-law model was proposed, which related the cyclic strain range and the number of cycles. The loading-unloading tests were also performed to obtain the Young`s modulus reduction and the permanent strain as functions of the damage state. The shear-lag predictions of the Young`s modulus reduction and the permanent strain showed good agreement with the experimental data, when the interaction between transverse cracking and delamination were taken into account.

  8. Combined cycles which improved efficiency

    SciTech Connect

    Colosimo, D.

    1981-08-01

    The objective of this paper is to provide an overview of the limitations to the design of Rankine bottoming cycles for hot exhaust gas sources such as diesel and Brayton engines and to provide a description of an approach being developed for a gas turbine application which offers the potential of high efficiency, good economics and accepted machinery practice. 5 refs.

  9. High-temperature low cycle fatigue behavior of a gray cast iron

    SciTech Connect

    Fan, K.L. He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  10. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  11. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    SciTech Connect

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Ogata, T.; Matsuoka, S.

    2006-03-31

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma ({gamma}) grain size of 25 {mu}m. In the present material, plate-like delta phase precipitated at {gamma} grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  12. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Matsuoka, S.; Ogata, T.

    2006-03-01

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma (γ) grain size of 25 μm. In the present material, plate-like delta phase precipitated at γ grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  13. A real-time fatigue monitoring and analysis system for lower extremity muscles with cycling movement.

    PubMed

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chan, Hsiao-Lung; Chang, Ya-Ju; Ku, Chia-Hao

    2014-01-01

    A real-time muscle fatigue monitoring system was developed to quantitatively detect the muscle fatigue of subjects during cycling movement, where a fatigue progression measure (FPM) was built-in. During the cycling movement, the electromyogram (EMG) signals of the vastus lateralis and gastrocnemius muscles in one leg as well as cycling speed are synchronously measured in a real-time fashion. In addition, the heart rate (HR) and the Borg rating of perceived exertion scale value are recorded per minute. Using the EMG signals, the electrical activity and median frequency (MF) are calculated per cycle. Moreover, the updated FPM, based on the percentage of reduced MF counts during cycling movement, is calculated to measure the onset time and the progressive process of muscle fatigue. To demonstrate the performance of our system, five young healthy subjects were recruited. Each subject was asked to maintain a fixed speed of 60 RPM, as best he/she could, under a constant load during the pedaling. When the speed reached 20 RPM or the HR reached the maximal training HR, the experiment was then terminated immediately. The experimental results show that the proposed system may provide an on-line fatigue monitoring and analysis for the lower extremity muscles during cycling movement. PMID:25014101

  14. Low-cycle fatigue of thermal-barrier coatings at 982 deg C

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Liebert, C. H.; Nachtigall, A. J.

    1978-01-01

    The low-cycle fatigue lives of ZrO2-NiCrAlY and Al2O3-ZrO2-NiCrAlY thermal-barrier coatings in air at 982 C were determined from cyclic flexural tests of coated TAZ-8A strips. Strains were computed as a function of specimen displacements from a nonlinear, three-dimensional stress analysis program. Fatigue resistances of thermal-barrier coatings applied to the strips were compared with those of uncoated and NiCrAlY-coated strips. The results indicate that ZrO2 is about four times greater in fatigue life than TAZ-8A at 982 C, that ZrO2 would probably retain that fatigue strength up to 1316 C, and that adding an outer coat of Al2O3 to ZrO2 is neither beneficial nor detrimental to fatigue resistance.

  15. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.

    PubMed

    Nalla, R K; Kruzic, J J; Kinney, J H; Ritchie, R O

    2005-05-01

    Although fatigue damage in bone induced by cyclic loading has been recognized as a problem of clinical significance, few fracture mechanics based studies have investigated how incipient cracks grow by fatigue in this material. In the present study, in vitro cyclic fatigue experiments were performed in order to quantify fatigue-crack growth behavior in human cortical bone. Crack-growth rates spanning five orders of magnitude were obtained for the extension of macroscopic cracks in the proximal-distal direction; growth-rate data could be well characterized by the linear-elastic stress-intensity range, using a simple (Paris) power law with exponents ranging from 4.4 to 9.5. Mechanistically, to discern whether such behavior results from "true" cyclic fatigue damage or is simply associated with a succession of quasi-static fracture events, cyclic crack-growth rates were compared to those measured under sustained (non-cyclic) loading. Measured fatigue-crack growth rates were found to exceed those "predicted" from the sustained load data at low growth rates ( approximately 3 x 10(-10) to 5 x 10(-7) m/cycle), suggesting that a "true" cyclic fatigue mechanism, such as alternating blunting and re-sharpening of the crack tip, is active in bone. Conversely, at higher growth rates ( approximately 5 x 10(-7) to 3 x 10(-5) m/cycle), the crack-growth data under sustained loads integrated over the loading cycle reasonably predicts the cyclic fatigue data, indicating that quasi-static fracture mechanisms predominate. The results are discussed in light of the occurrence of fatigue-related stress fractures in cortical bone.

  16. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.

  17. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    DOE PAGESBeta

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less

  18. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  19. High-cycle fatigue characterization of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Xin, Yu T.; Jeelani, S.

    1993-01-01

    High-cycle fatigue behavior of titanium 5Al 2.5Sn alloy at room temperature has been studied. S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear damage rule, double linear damage rule and damage curve approaches are applied, and results are compared with the experimental data. The agreement between prediction and experiment is found to be excellent.

  20. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    SciTech Connect

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10/sup -4/ to 4 x 10/sup -2/ s/sup -1/, the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented.

  1. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    NASA Technical Reports Server (NTRS)

    Sankararao, K. Bhanu; Schuster, H.; Halford, G. R.

    1994-01-01

    The effect of strain rate on massive precipitation and the mechanism for the occurrence of massive precipitation of M23C6 in alloy 800H is investigated during elevated temperature low cycle fatigue testing. It was observed that large M23C6 platelets were in the vicinity of grain and incoherent twin boundaries. The strain controlled fatigue testing at higher strain rates that promoted cyclic hardening enabled massive precipitation to occur more easily.

  2. The influence of hold times on LCF and FCG behavior in a P/M Ni-base superalloy. [Low Cycle Fatigue/Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Golwalker, S. V.; Duquette, D. J.; Stoloff, N. S.

    1984-01-01

    The relative importance of creep and environmental interactions in high temperature fatigue behavior has been investigated for as-HIP Rene 95. Strain-controlled low cycle fatigue and load-controlled fatigue crack growth tests were performed at elevated temperatures in argon, followed by fractographic analyses of the fracture surfaces by scanning electron microscopy. Fatigue lives were drastically reduced and crack growth rates increased one hundred fold as a result of superposition of hold times on continuous cycling. A change in fracture mode with hold time also was noted. Chromium oxide was detected on the fracture surface by Auger electron spectroscopy. The drastic changes in fatigue resistance due to hold times were attributed primarily to environmental interactions with fatigue processes.

  3. Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles

    PubMed Central

    Yamano, Emi; Sugimoto, Masahiro; Hirayama, Akiyoshi; Kume, Satoshi; Yamato, Masanori; Jin, Guanghua; Tajima, Seiki; Goda, Nobuhito; Iwai, Kazuhiro; Fukuda, Sanae; Yamaguti, Kouzi; Kuratsune, Hirohiko; Soga, Tomoyoshi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2016-01-01

    Chronic fatigue syndrome (CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, lasting at least 6 consecutive months. Its pathogenesis remains incompletely understood. Here, we performed comprehensive metabolomic analyses of 133 plasma samples obtained from CFS patients and healthy controls to establish an objective diagnosis of CFS. CFS patients exhibited significant differences in intermediate metabolite concentrations in the tricarboxylic acid (TCA) and urea cycles. The combination of ornithine/citrulline and pyruvate/isocitrate ratios discriminated CFS patients from healthy controls, yielding area under the receiver operating characteristic curve values of 0.801 (95% confidential interval [CI]: 0.711–0.890, P < 0.0001) and 0.750 (95% CI: 0.584–0.916, P = 0.0069) for training (n = 93) and validation (n = 40) datasets, respectively. These findings provide compelling evidence that a clinical diagnostic tool could be developed for CFS based on the ratios of metabolites in plasma. PMID:27725700

  4. A combined cycle engine test facility

    SciTech Connect

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  5. Observation of fatigue in sandstone samples exposed to repeated freeze-thaw cycles

    NASA Astrophysics Data System (ADS)

    Hailiang, Jia; Wei, Xiang; Krautblatter, Michael

    2014-05-01

    The effect of rock fatigue is one of the key elements in the analysis and evaluation of rockfall preparation. We performed a series of laboratory freezing-thawing cycles experiments on an array of identical sandstone samples (cylinder samples with diameter of 5cm and length of 10cm). During each cycle we measured surface deformations and effective porosity for three samples, and after each thawing phase we removed two samples for destructive testing (uniaxial compressive and tensile strength). Our results indicate that: (1) frost action causes primarily reversible strain in samples with maximum magnitudes of ~1*10-4, we suggest low-cycle fatigue causes minor plastic deformation (2) with the increase of cycles, we observed a marked increase of effective porosity and a sharp decrease of uniaxial tensile strength. The decrease in uniaxial compressive strength was not as significant as that of the tensile strength in response to this frost action; (3) Curves describing effective porosity increases demonstrate a rapid increase during the first 3 - 4 freeze-thaw cycles, followed by a more linear increase, with steps in the porosity profile indicating discrete cycles with increased fatigue damage. Here we show how 17 freeze-thaw cycles cause progressive fatigue in sandstone samples and how this affects effective porosity and uniaxial compressive strength.

  6. Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry.

    PubMed

    Coelho, A C; Cannon, D T; Cao, R; Porszasz, J; Casaburi, R; Knorst, M M; Rossiter, H B

    2015-03-01

    A rapid switch from hyperbolic to isokinetic cycling allows the velocity-specific decline in maximal power to be measured, i.e., fatigue. We reasoned that, should the baseline relationship between isokinetic power (Piso) and electromyography (EMG) be reproducible, then contributions to fatigue may be isolated from 1) the decline in muscle activation (muscle activation fatigue); and 2) the decline in Piso at a given activation (muscle fatigue). We hypothesized that the EMG-Piso relationship is linear, velocity dependent, and reliable for instantaneous fatigue assessment at intolerance during and following whole body exercise. Healthy participants (n = 13) completed short (5 s) variable-effort isokinetic bouts at 50, 70, and 100 rpm to characterize baseline EMG-Piso. Repeated ramp incremental exercise tests were terminated with maximal isokinetic cycling (5 s) at 70 rpm. Individual baseline EMG-Piso relationships were linear (r(2) = 0.95 ± 0.04) and velocity dependent (analysis of covariance). Piso at intolerance (two legs, 335 ± 88 W) was ∼45% less than baseline [630 ± 156 W, confidence interval of the difference (CIDifference) 211, 380 W, P < 0.05]. Following intolerance, Piso recovered rapidly (F = 44.1; P < 0.05; η(2) = 0.79): power was reduced (P < 0.05) vs. baseline only at 0-min (CIDifference 80, 201 W) and 1-min recovery (CIDifference 13, 80 W). Activation fatigue and muscle fatigue (one leg) were 97 ± 55 and 60 ± 50 W, respectively. Mean bias ± limits of agreement for reproducibility were as follows: baseline Piso 1 ± 30 W; Piso at 0-min recovery 3 ± 35 W; and EMG at Piso 3 ± 14%. EMG power is linear, velocity dependent, and reproducible. Deviation from this relationship at the limit of tolerance can quantify the "activation" and "muscle" related components of fatigue during cycling.

  7. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    PubMed

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles. PMID:17111011

  8. Low-cycle fatigue of two austenitic alloys in hydrogen gas and air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.

    1976-01-01

    The low-cycle fatigue resistance of type 347 stainless steel and Hastelloy Alloy X was evaluated in constant-amplitude, strain-controlled fatigue tests conducted under continuous negative strain cycling at a constant strain rate of 0.001 per sec and at total axial strain ranges of 1.5, 3.0, and 5.0 percent in both hydrogen gas and laboratory air environments in the temperature range 538-871 C. Elevated-temperature, compressive-strain hold-time experiments were also conducted. In hydrogen, the cyclic stress-strain behavior of both materials at 538 C was characterized by appreciable cyclic hardening at all strain ranges. At 871 C neither material hardened significantly; in fact, at 5% strain range 347 steel showed continuous cyclic softening until failure. The fatigue resistance of 347 steel was slightly higher than that of Alloy X at all temperatures and strain ranges. Ten-minute compressive hold time experiments at 760 and 871 C resulted in increased fatigue lives for 347 steel and decreased fatigue lives for Alloy X. Both alloys showed slightly lower fatigue resistance in air than in hydrogen. Some fractographic and metallographic results are also given.

  9. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    NASA Astrophysics Data System (ADS)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  10. Absence of Respiratory Muscle Fatigue in High-Intensity Continuous or Interval Cycling Exercise.

    PubMed

    Kurti, Stephanie P; Smith, Joshua R; Emerson, Sam R; Castinado, Kenneth M; Harms, Craig A

    2015-11-01

    Respiratory muscle fatigue (RMF) occurs during prolonged exercise (∼15-20 minutes) at >85% V[Combining Dot Above]O2max. However, RMF has been reported to occur in ∼3-6 minutes in various modes of exercise at a high intensity. It is not known if continuous cycling exercise vs. repeated bouts of high-intensity interval training (HIT) at >85% V[Combining Dot Above]O2max will lead to RMF. We hypothesized that RMF would occur after a constant load test and would be present before end exercise in an HIT protocol. Eight moderately active healthy men (21.7 ± 1.7 years; 181.3 ± 5.2 cm; 81.3 ± 2.3 kg) completed a V[Combining Dot Above]O2max test on a cycle ergometer. Subjects then completed 2 bouts of HIT (7 × 1 minute, 2-minute recovery between intervals) and 3 bouts of continuous exercise (CE) tests at 90% of peak power (determined from an incremental exercise test to exhaustion). Maximal inspiratory pressure (PIMAX) and expiratory pressure (PEMAX) were measured pre- and post-exercise for both HIT and CE and after each interval during HIT. Decreases in postexercise PIMAX and PEMAX compared with baseline were used to determine RMF. There were no differences (p > 0.05) in PIMAX or PEMAX pre- to post-exercise for HIT (PIMAX pre: 134 ± 51, post: 135 ± 50 cmH2O; PEMAX pre: 143 ± 41, post: 148 ± 46 cmH2O) or CE (PIMAX pre: 135 ± 54, post: 133 ± 52 cmH2O; PEMAX pre: 146 ± 46, post: 148 ± 46 cmH2O) indicating RMF was not present following CE and HIT. These data suggest that repeated high-intensity cycling exercise at 90% peak power in a CE or HIT protocol does not lead to RMF.

  11. Effect of welding structure on high-cycle and low-cycle fatigue properties for MIG welded A5083 aluminum alloys at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2001-07-01

    High-cycle and low-cycle fatigue properties of aluminum alloy A5083 base and A5183 weld metals and the effect of welding structure on their fatigue properties have been investigated at cryogenic temperatures in order to evaluate the long-life reliability and safety of the structural materials used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. In the high-cycle fatigue tests, the S-N curves of A5083 base and A5183 weld metals shifted to higher stress levels, i.e., the longer life side at lower test temperatures. The ratios of 10 6-cycles fatigue strength (FS) to tensile strength (TS) for A5183 weld metals were slightly lower than those of A5083 base metals at each test temperature. Although the ratios of FS to TS for austenitic stainless steels weld metals at 4 K decreased substantially to about 0.4, that of A5183 weld metal was 0.65 even at 4 K and it indicated an excellent high-cycle fatigue property. Fatigue crack initiation sites in A5183 weld metals were occurred from the blowholes if the blowholes were located in the vicinity of the specimen surfaces. However, effects of the blowholes on high-cycle fatigue properties are not clear or significant. In the low-cycle fatigue tests, the fatigue lives of A5183 weld metals were slightly shorter than those of A5083 base metals at cryogenic temperatures. However, the fatigue lives of A5183 weld metals at 4 K were superior to that of conventional A5083 weld metals. The deterioration of low-cycle fatigue properties of A5183 weld metals at cryogenic temperatures were due to the intergranular fracture surface observed in fatigue crack propagation regions.

  12. High-Cycle Fatigue Properties and Fatigue Crack Initiation Behavior of Ti-5%Al-2.5%Sn Eli Alloy at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Demura, M.; Yuri, T.; Ogata, T.; Matsuoka, S.; Hori, S.

    2008-03-01

    Tensile tests and uni-axial loading fatigue tests were performed at 4 K, 77 K and 293 K for Ti-5%Al-2.5%Sn extra low interstitial (ELI) forged alloy. The 0.2% proof stress and the tensile strength of this alloy increased with a decrease of temperature. However, high-cycle fatigue strength at cryogenic temperatures was relatively low compared to that at 293 K. In the specimens fatigue-tested at cryogenic temperatures, facets formed at the crack initiation site. On the other hand, there was not a distinct facet at the crack initiation site in the specimens tested at 293 K. The crystallographic orientation of the facet was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to clarify the fatigue crack initiation mechanism at cryogenic temperatures. The SEM-EBSD analyses revealed that the facet plane was {112¯1} twin plane and the {112¯1} twins developed during high-cycle fatigue tests at cryogenic temperatures, leading to the fatigue crack initiation at {112¯1} twin/matrix interface. Based on these results, the fatigue crack initiation related with twin deformation is supposed to degrade high-cycle fatigue strength at cryogenic temperatures.

  13. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  14. Combined bending and torsional fatigue of woven roving GRP

    SciTech Connect

    Aboul Wafa, M.N.; Hamdy, A.H.; El-Midany, A.A.

    1997-04-01

    A study of biaxial fatigue of woven roving glass reinforced polyester (GRP) subjected to in-phase and out-of-phase cyclic bending and torsional moments is presented. To evaluate failure theories for this material, tests were conducted on two fiber orientations [0, 90] and [45, {minus}45] tubes. The results showed that for [0, 90] composites the S-N curves in pure bending and in pure torsion are sufficient to predict life. For [45, {minus}45] tubes, the value of the normal stress interaction component of the strength tensor, H{sub 12}, has to be obtained. If the ratio of the global flexural stress amplitude, A, to the accompanied global shear stress, B, is less than 2, the value of H{sub 12} may be taken as presented by Tsai-Hahn theory. But, if A/B {ge} 2, the value of H{sub 12} has to be obtained from [45, {minus}45] pure bending S-N curve, since the failure mode is a combination of interfacial shear and matrix failure. The out-of-phase loading results showed that the life of the specimens at high stress levels is less than that for the in-phase loading with the same peak values A and B.

  15. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  16. Combined cycle comes to the Philippines

    SciTech Connect

    1995-03-01

    The first combined cycle power station in the Philippines has gone into operation at National Power Corporation`s (NPC) Limay Bataan site, some 40 km west of Manila. The plant comprises two 300 MW blocks in 3+3+1 configuration, based on ABB Type GT11N gas turbines. It was built by a consortium of ABB, with their Japanese licensee Kawasaki Heavy Industries, and Marubeni Corporation. This paper discusses Philippine power production, design and operation of the Limay Bataan plant, and conversion of an existing turbine of the nuclear plant project that was abandoned earlier, into a combined cycle operation. 6 figs.

  17. Fatigue

    MedlinePlus

    Bennett RM. Fibromyalgia, chronic fatigue syndrome, and myofascial pain. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 274. Thames TA, Karrh ...

  18. Mechanical and low-cycle fatigue behavior of stainless reinforcing steel for earthquake engineering applications

    NASA Astrophysics Data System (ADS)

    Zhou, Yihui; Ou, Yu-Chen; Lee, George C.; O'Connor, Jerome S.

    2010-09-01

    Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance.

  19. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  20. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  1. Neuromuscular fatigue recovery following rapid and slow stretch-shortening cycle movements.

    PubMed

    Wadden, Katie P; Button, Duane C; Kibele, Armin; Behm, David G

    2012-06-01

    The purpose of this study was to investigate underlying mechanisms and neuromuscular recovery patterns following rapid and slow stretch-shortening cycle (SSC) movements performed to fatigue. Fourteen (10 moderately trained (MT) and four highly trained (HT)) subjects completed rapid and slow SSC movements to fatigue. The rapid SSC movement consisted of continuous drop jumps from a 30 cm platform until a predetermined jump height was no longer maintained, and the slow SSC movement consisted of continuous squats to 90° of knee flexion at a load of 65% of subject's one-repetition maximum until no further repetitions could be completed. Although blood lactate measures were significantly (p < 0.002) higher after the rapid SSC condition versus after the slow SSC condition, the recovery of neuromuscular properties (maximum voluntary contractions, twitch force, muscle compound action potential) following the two conditions to fatigue did not differ. The duration of the rapid SSC movement was dependent on the training status of the subject; HT subjects performed the rapid SSC longer (68.2%) than the MT subjects until fatigued. Thus, the neuromuscular fatigue recovery patterns were independent of the type of SSC movement, condition duration, and subject training status. Because rapid and slow SSC exercises induce similar fatigue patterns, training programs incorporating rapid SSC exercises can be developed similar to that prescribed in traditional slow SSC resistance training programs.

  2. Microstructural fracture mechanics in high-cycle fatigue

    SciTech Connect

    Rios, E.R. de los; Navarro, A.

    1997-12-31

    Microstructural Fracture Mechanics principles are used to develop a model of crack growth in long life fatigue. In its simplest form microstructural modelling considers the material as a polycrystal of uniform grain size D, with a crack system divided into three zones: the crack, the plastic zone and the microstructural barrier zone. The solution of the equilibrium equation allows for the calculation of the stresses sustained by the crack wake, plastic zone, barrier zone and elastic enclave, and the crack tip plastic displacement {phi}. Crack growth rate is calculated through a Paris type relationship in terms of {phi}, i.e., da/dN = C{phi}{sup n}. Conditions for crack arrest and instability are established.

  3. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle.

    PubMed

    Komi, P V

    2000-10-01

    Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given shortening velocity. Characteristic to this phenomenon is very low EMG-activity in the concentric phase of the cycle, but a very pronounced contribution of the short-latency stretch-reflex component. This reflex contributes significantly to force generation during the transition (stretch-shortening) phase in SSC action such as hopping and running. The amplitude of the stretch reflex component - and the subsequent force enhancement - may vary according to the increased stretch-load but also to the level of fatigue. While moderate SSC fatigue may result in slight potentiation, the exhaustive SSC fatigue can dramatically reduce the same reflex contribution. SSC fatigue is a useful model to study the processes of reversible muscle damage and how they interact with muscle mechanics, joint and muscle stiffness. All these parameters and their reduction during SSC fatigue changes stiffness regulation through direct influences on muscle spindle (disfacilitation), and by activating III and IV afferent nerve endings (proprioseptic inhibition). The resulting reduced stretch reflex sensitivity and muscle stiffness deteriorate the force potentiation mechanisms. Recovery of these processes is long lasting and follows the bimodal trend of recovery. Direct mechanical disturbances in the sarcomere structural proteins, such as titin, may also occur as a result of an exhaustive SSC exercise bout.

  4. Simulation of a combined-cycle engine

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  5. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  6. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  7. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  8. Single-cycle and fatigue strengths of adhesively bonded lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1998-12-31

    This study considers a composite-to-steel tubular lap joint in which failure typically occurs when the adhesive debonds from the steel adherend. The same basic joint was subjected to compressive and tensile axial loads (single-cycle) as well as bending loads (fatigue). The purpose of these tests was to determine whether failure is more dependent on the plastic strain or the peel stress that develops in the adhesive. For the same joint, compressive and tensile loads of the same magnitude will produce similar plastic strains but peel stresses of opposite signs in the adhesive. In the axial tests, the tensile strengths were much greater than the compressive strengths - indicating that the peel stress is key to predicting the single-cycle strengths. To determine the key parameter(s) for predicting high-cycle fatigue strengths, a test technique capable of subjecting a specimen to several million cycles per day was developed. In these bending tests, the initial adhesive debonding always occurred on the compressive side. This result is consistent with the single-cycle tests, although not as conclusive due to the limited number of tests. Nevertheless, a fatigue test method has been established and future tests are planned.

  9. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  10. Fatigue criterion for the design of rotating shafts under combined stress

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1977-01-01

    A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.

  11. Central and peripheral fatigue kinetics during exhaustive constant-load cycling.

    PubMed

    Decorte, N; Lafaix, P A; Millet, G Y; Wuyam, B; Verges, S

    2012-06-01

    The kinetics of central and peripheral fatigue development during an intensive constant-load cycling exercise was evaluated to better understand the mechanisms of task failure. Thirteen males cycled to exhaustion at 80% of maximal power output in intermittent bouts of 6 min of exercise with 4-min break between bouts to assess quadriceps fatigue with maximal voluntary contractions and single (1 Hz), paired (10 and 100 Hz) potentiated and interpolated magnetic stimulations of the femoral nerve (TwQ). Surface electromyographic signals (EMG) of the quadriceps muscles were recorded during stimulations and cycling. Total cycling duration (TCD) was 27 min 38 s±7 min 48 s. The mechanical response evoked by magnetic stimulation decreased mostly during the first half of TCD (TwQ1 Hz reduction: -34.4±12.2% at 40% TCD and -44.8±9.2% at exhaustion; P<0.001), while a reduction in maximum voluntary activation was present toward the end of exercise only (-5.4±4.8% and -6.4±5.6% at 80% TCD and exhaustion, respectively; P<0.01). The increase in quadriceps EMG during cycling was significantly correlated to the TwQ reduction for the rectus femoris (r(2) =0.20 at 1 Hz, r(2) =0.47 at 100 Hz, all P≤0.001). We conclude that peripheral fatigue develops early during constant-load intense cycling and is compensated by additional motor drive, while central fatigue appears to be associated with task failure. PMID:20807390

  12. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  13. An Investigation of the Combined Effect of Stress, Fatigue and Workload on Human Performance: Position Paper

    NASA Technical Reports Server (NTRS)

    Mock, Jessica

    2005-01-01

    Stress, fatigue, and workload affect worker performance. NSF reported that 61% of respondents state losing concentration at work while 79% occasionally or frequently made errors as a result of being fatigued. Shift work, altered work schedules, long hours of continuous wakefulness, and sleep loss can create sleep and circadian disruptions that degrade waking fundions causing stress and fatigue. Review of the literature has proven void of information that links the combined effects of fatigue, stress, and workload to human performance. This paper will address which occupational factors within stress, fatigue, and workload were identified as occupational contributors to performance changes. The results of this research will be apglied to underlying models and algorithms that will help predict performance changes in control room operators.

  14. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  15. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  16. Prediction of low-cycle fatigue-life by acoustic emission—2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    Low-cycle fatigue tests were conducted by tension-compression until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peakamplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a-posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. The amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life.

  17. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    SciTech Connect

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impacts on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.

  18. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE PAGESBeta

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  19. Integrating Water Flow, Locomotor Performance and Respiration of Chinese Sturgeon during Multiple Fatigue-Recovery Cycles

    PubMed Central

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585

  20. Carbohydrate ingestion during exercise does not delay the onset of fatigue during submaximal cycle exercise.

    PubMed

    Lacerda, Ana Cristina R; Alecrim, Polyana; Damasceno, Willian C; Gripp, Fernando; Pinto, Kelerson Mc; Silami-Garcia, Emerson

    2009-07-01

    The objective of this study was to evaluate the effect of the ingestion of carbohydrate (CHO, in the form of maltodextrin) or placebo (PLAC, in the form of gelatin) on the physical performance of cyclists during submaximal exercise until fatigue on an ergometric cycle. Nine volunteers exercised on 2 separate occasions at least 2 days apart. On each occasion, after 48 hours of a balanced diet, they pedaled at approximately 66% Vo2peak until fatigue. Every 15 minutes, 150 mL of water and 18 capsules, containing either 0.5 g of CHO or PLAC (approximately 0.13 g x kg(-1) of body weight), were ingested in accordance with a double-blind, randomized protocol. The results show that after 40% of total exercise time, blood glucose levels in the CHO test returned to baseline levels. However, in the PLAC trial these levels failed to return to baseline levels, remaining lower than levels recorded in the CHO test after 60% of total exercise time. Despite these results, CHO ingestion failed to delay the onset of fatigue (CHO: 91.8 +/- 10.1 minutes vs. PLAC: 93.3 +/- 16.1 minutes; p = 0.87). In practical terms, coaches and trainers should consider that CHO ingestion in previously fed users does not delay the onset of fatigue during submaximal cycle exercise.

  1. The Rehbinder effect in iron during giga-cycle fatigue loading

    SciTech Connect

    Bannikov, M. V. Naimark, O. B.

    2015-10-27

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  2. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  3. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  4. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  5. On the bilinearity of the Coffin-Manson low-cycle fatigue relationship

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V. M.

    1992-09-01

    The cause of the bilinear Coffin-Manson low-cycle fatigue relationship found in Al-Li alloys and dual-phase steels was investigated using Manson and Hirschberg (1964) and Manson (1966) data on 52100 steel, 4340 steel, 4130 steel, Inconel X, Ti-6Al-4V, 2014 T6 aluminum alloy, 4340 annealed steel, and 1100 aluminum. It was found that such a bilinear behavior depends on the relationship between the elastic and inelastic strain ranges. It is predicted that bilinear Coffin-Manson low-cycle fatigue behavior can be expected for materials in which the elastic strain range is more dominant than the inelastic strain range in the life span.

  6. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  7. Influence parameters of martensitic transformation during low cycle fatigue for steel AISI 321

    NASA Astrophysics Data System (ADS)

    Grosse, M.; Kalkhof, D.; Keller, L.; Schell, N.

    2004-07-01

    The volume fraction of martensite continuously increases with the fatigue cycle number. Consequently, the martensite amount can be used for indication of the low cycle fatigue state. Following an exponential decay function, the martensite volume fraction decreases with increasing temperature. No influence of the load frequency was found. The initial material state plays an important role for the martensite formation rate. The amount of martensite formed is much higher after cold-rolling than after solution annealing as final manufacturing process. The martensite shows a fibre texture in the annealed material. The (1 1 0) planes are preferentially oriented parallel and perpendicular to the loading direction. In the cold-rolled material no significant preferred orientation of this phase was found. The martensite is concentrated in the centre of the specimens. The shape of the distribution seems to be independent on the martensite amount.

  8. The Strutjet Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.

    1998-01-01

    The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine

  9. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  10. Low-cycle-fatigue behavior of copper materials and their use in synchrotron beamline components

    SciTech Connect

    Wang, Z.; Nian, T.; Ryding, D.; Kuzay, T.M.

    1993-09-01

    The third generation synchrotron facilities such as the 7-GeV Advanced Photon Source Project (APS) generate x-ray beams with very high heat loads and heat flux levels. The front-end and beamline components are required to sustain total heat loads of 5 to 15 kW and heat flux levels exceeding 400 W/mm{sup 2}. Grazing geometry and enhanced heat transfer techniques are used in the design of such components to reduce heat flux levels below the 30 W/mm{sup 2} level, which is sustainable by the special copper materials routinely used in the component design. Although the resulting maximum surface temperatures can be sustained, the structural stresses and the fatigue issues remain viable concerns for the copper, particularly under brazing or bonding of the parts. Brazing and bonding are almost always utilized in the design of the components, and the drastically lowered yield stress of the annealed copper subjected to bonding temperatures above 400{degree}C is a real concern. Such materials with reduced post-bonding stress levels easily reach yield point under thermal stresses during ordinary use on the beamline. The resulting plastic deformation in each load cycle may cause low-cycle-fatigue problems. The two common copper materials are OFHC and Glidcop. This paper critically reviews the available literature for low-cycle-fatigue properties, of OFHC at the elevated temperatures typically found in synchrotron operations.

  11. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  12. Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.

    1993-01-01

    The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.

  13. The effect of a carbohydrate mouth-rinse on neuromuscular fatigue following cycling exercise.

    PubMed

    Jeffers, Robert; Shave, Robert; Ross, Emma; Stevenson, Emma J; Goodall, Stuart

    2015-06-01

    Carbohydrate (CHO) mouth-rinsing, rather than ingestion, is known to improve performance of high-intensity (>75% maximal oxygen uptake) short-duration (≤1 h) cycling exercise. Mechanisms responsible for this improvement, however, are unclear. The present study aimed to investigate the effect of a CHO mouth-rinse on cycling time-trial (TT) performance and mechanisms of fatigue. On 2 separate occasions, 9 male cyclists (mean ± SD; maximal oxygen uptake, 61 ± 5 mL·kg(-1)·min(-1)) completed 45 min at 70% maximum power output (preload) followed by a 15-min TT. At 7.5-min intervals during the preload and TT, participants were given either a tasteless 6.4% maltodextrin mouth-rinse (CHO) or water (placebo (PLA)) in a double-blind, counterbalanced fashion. Isometric knee-extension force and electromyographic responses to percutaneous electrical stimulation and transcranial magnetic stimulation were measured before, after the preload, and after the TT. There were greater decreases in maximal voluntary contraction after the TT in PLA (20% ± 10%) compared with the CHO (12% ± 8%; P = 0.019). Voluntary activation was reduced following exercise in both trials, but did not differ between conditions (PLA -10% ± 8% vs. CHO -5% ± 4%; P = 0.150). The attenuation in the manifestation of global fatigue did not translate into a TT improvement (248 ± 23 vs. 248 ± 39 W for CHO and PLA, respectively). Furthermore, no differences in heart rate or ratings of perceived exertion were found between the 2 conditions. These data suggest that CHO mouth-rinsing attenuates neuromuscular fatigue following endurance cycling. Although these changes did not translate into a performance improvement, further investigation is required into the role of CHO mouth-rinse in alleviating neuromuscular fatigue.

  14. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  15. Temporal Effect of In Vivo Tendon Fatigue Loading on the Apoptotic Response Explained in the Context of Number of Fatigue Loading Cycles and Initial Damage Parameters

    PubMed Central

    Andarawis-Puri, Nelly; Philip, Anaya; Laudier, Damien; Schaffler, Mitchell B.; Flatow, Evan L.

    2014-01-01

    Accumulation of damage is a leading factor in the development of tendinopathy. Apoptosis has been implicated in tendinopathy, but the biological mechanisms responsible for initiation and progression of these injuries are poorly understood. We assessed the relationship between initial induced damage and apoptotic activity 3 and 7 days after fatigue loading. We hypothesized that greater apoptotic activity (i) will be associated with greater induced damage and higher number of fatigue loading cycles, and (ii) will be higher at 7 than at 3 days after loading. Left patellar tendons were fatigue loaded for either 100 or 7,200 cycles. Diagnostic tests were applied before and after fatigue loading to determine the effect of fatigue loading on hysteresis, elongation, and loading and unloading stiffness (damage parameters). Cleaved Caspase-3 staining was used to identify and calculate the percent apoptosis in the patellar tendon. While no difference in apoptotic activity occurred between the 100 and 7,200 cycle groups, greater apoptotic activity was associated with greater induced damage. Apoptotic activity was higher at 7 than 3 days after loading. We expect that the decreasing number of healthy cells that can repair the induced damage in the tendon predispose it to further injury. PMID:24838769

  16. The Effect of a Non-Gaussian Random Loading on High-Cycle Fatigue of a Thermally Post-Buckled Structure

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam

    2010-01-01

    High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.

  17. An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry.

    PubMed

    Camic, Clayton L; Housh, Terry J; Johnson, Glen O; Hendrix, C Russell; Zuniga, Jorge M; Mielke, Michelle; Schmidt, Richard J

    2010-01-01

    The purposes of this investigation were twofold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWC(FT)) from electromyographic (EMG) amplitude data could be applied to the frequency domain of the signal to derive a new fatigue threshold for cycle ergometry called the mean power frequency fatigue threshold (MPF(FT)), and (2) to compare the power outputs associated with the PWC(FT), MPF(FT), ventilatory threshold (VT), and respiratory compensation point (RCP). Sixteen men [mean (SD) age = 23.4 (3.2) years] performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences for PWC(FT) [mean (SD) = 168 (36) W] versus MPF(FT) [208 (37) W] and VT [152 (33) W] versus RCP [205 (84) W], but no mean differences for PWC(FT) versus VT or MPF(FT) versus RCP. The mean difference between PWC(FT) and MPF(FT) may be due to the effects of specific metabolites that independently influence the time and frequency domains of the EMG signal. These findings indicated that the PWC(FT) model could be applied to the frequency domain of the EMG signal to estimate MPF(FT). Furthermore, the current findings suggested that the PWC(FT) may demarcate the moderate from heavy exercise domains, while the MPF(FT) demarcates heavy from severe exercise intensities.

  18. Effects of fatigue on inter-cycle variability in cross-country skiing.

    PubMed

    Cignetti, F; Schena, F; Rouard, A

    2009-07-22

    The aim of the study was to examine the inter-cycle variability in cross-country skiing gait and its evolution with fatigue. Both issues were investigated to understand the flexibility capabilities of the neuromuscular system. Four women and four men skied on a treadmill, up to exhaustion. The angular displacements of the arms and legs movements were obtained for 40s period at the beginning and end of the skiing test. Mean inter-cycle standard deviation (SD(c)), largest Lyapunov exponent (lambda(1)) and correlation dimension (D(c)) were computed for each time series and surrogate counterpart to evaluate the magnitude and nature of the variability. For any experimental time series, lambda(1) was positive, D(c) greater than 1 and both were found to be different from their surrogate counterparts, confirming that the temporal variations of the data had a deterministic origin. More, larger SD(c), D(c) and lambda(1) values were observed at the end of the test, indicating more variability, noise and local dynamic instability in the data with fatigue. Hence, the fluctuations of limb angular displacements displayed a chaotic behavior, which reflected flexibility of the neuromuscular system to adapt to possible perturbations during skiing. However, such chaotic behavior degraded with fatigue, making the neuromuscular system less adaptable and more unstable.

  19. Low cycle fatigue behavior of new heat-resistant steel HCM2S at high temperature

    SciTech Connect

    Zhu Lihui; Zhao Qinxin; Gu Haicheng; Lu Yansun

    1999-07-01

    Low cycle fatigue behavior of new low alloy, heat-resistant steel HCM2S (2.25Cr-1.6W-V-Nb-B-N) at high temperature has been investigated. The cyclic stress response curve of HCM2S exhibits rapid initial cyclic softening followed by gradual softening until macroscopic crack growth occurs. The initial softening of HCM2S steel is due to the recovery of martensite laths in carbon-rich austenitic islands, the formation of stable dislocation cells and M{sub 6}C particles. Fatigue life equation of HCM2S as a function of strain range at 580 C is also given in this paper.

  20. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    NASA Astrophysics Data System (ADS)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  1. Elevation of Continuous Low-Cycle Fatigue Behaviour of High Temperature P122 Boiler Material

    SciTech Connect

    Pumwa, John; Soo Woo Nam

    2002-07-01

    The complex thermal-mechanical loading of power-generating plant components usually comprises of creep, high-cycle and low-cycle fatigue which are thermally induced by start-ups, load changes and shut-downs, producing in-stationary temperature gradients and hence creating strain as well as stress fields. In order to select the correct materials for these hostile environmental conditions, it is vitally important to understand the behaviour of mechanical properties of these materials. This paper reports the results of Low-cycle fatigue tests of P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material, which is one of the latest developed materials for high temperature environments. The tests were conducted at temperatures ranging from 550 deg. C to 700 deg. C at 50 deg. C intervals with strain ranges of {+-}1.5 to {+-}3.0% at 0.5% intervals using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. Moreover, the fracture mode assessments strongly revealed a ductile transgranular fracture mode. (authors)

  2. Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, YangYang; Duan, Zheng; Shi, HuiJi

    2013-03-01

    In order to clarify the differences of very high cycle fatigue (VHCF) behavior of nickel based superalloy IN718 with different loading frequencies, stress-controlled fatigue tests were carried out by using ultrasonic testing method (20 KHz) and rotary bending testing method (52.5 Hz), both at room temperatures, to establish stress versus cycles to failure (S-N) relationships. Results disclosed that cycles to failure at a given stress level increased with an increase of the applied frequency, i.e., the higher frequency produced an upper shift of the S-N curves. Fractographic analysis suggested that crack initiation and propagation behaviors had large differences: cracks in low-frequency tests preferentially initiated from multiple sources on the specimen surface, while in high-frequency tests, cracks mostly originated from a unique source of subsurface inclusions. Subsequently, frequency-involved modeling was proposed, based on the damage accumulation theory, which could well illustrate qualitatively those comparisons due to different loading frequencies.

  3. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  4. Computational investigation of rocket based combined cycle

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-bo; Wang, Zhan-xue; Liu, Zeng-wen

    2013-03-01

    Based on Computational Fluid Dynamic technology, the mixing process of Rocket Based Combined Cycle (RBCC) propulsion system is researched. The idea of RBCC propulsion system means combining rocket engine with ramjet engine effectively, which can flight from sea level to high altitude in wide Mach ranges. In order to analyze how the length of the mixing part affects mixing process, different length of mixing part are researched. As it is indicated, with a constant Mach number, increasing the length of mixing part makes main flow and second flow mix more evenly. Moreover, the length of mixing part has a slight impact on the thrust. Obviously the main consequence of increasing the length of mixing part is promoting the mix of main flow and second flow. Therefore, in order to decrease the weight of aircraft, it is of importance to reduce the length. Through comparing distribution of different cases, when working in the situation of maximum power, the flow in the nozzle of rocket engine is under expansion, while that in the nozzle is fully expanded. Nevertheless, in the case of high altitude and high Mach number, there exists a vortex in the nozzle of rocket engine because of over expansion; meanwhile, the flow in the nozzle is under expansion. Therefore, it is necessary to adjust nozzle throat area in order to increase the thrust of RBCC at high altitude.

  5. Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.

    2006-01-01

    A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.

  6. Metallurgical instabilities during the high temperature low cycle fatigue of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    An investigation is made of the microstructural instabilities that affect the high temperature low cycle fatigue (LCF) life of nickel-base superalloys. Crack initiation processes, provoked by the formation of carbides and the coarsening of the grains of the material at high temperatures are discussed. Experimental results are examined, and it is concluded that LCF behavior can be understood more fully only if details of the material and its dynamic behavior at high temperatures are considered. The effects of high stress, dislocation debris, and increasing environmental damage on the life of the alloy are discussed.

  7. On bilinearity of Manson-Coffin low-cycle-fatigue relationship

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.

    1992-01-01

    Some alloy systems, such as aluminum-lithium alloys and dual-phase steels, have been found to show a bilinear Manson-Coffin low-cycle-fatigue relationship. This paper shows that such bilinear behavior is related to the cyclic stress-strain curve. A bilinear cyclic stress-strain curve is a likely indication of a bilinear Manson-Coffin relationship. It is shown that materials other than aluminum-lithium alloys and dual-phase steels also may exhibit bilinear Manson-Coffin behavior. Implications for design are discussed.

  8. High-Temperature Low-Cycle Fatigue Property of Heat-Resistant Ductile-Cast Irons

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Jang, Ho; Oh, Yong-Jun

    2009-09-01

    This study examined the high-temperature degradation behavior of two types of heat-resistant Si-Mo ductile cast iron (Fe-3.4C-3.7Si-0.4Mo and Fe-3.1C-4.5Si-1.0Mo) with particular attention paid to the mechanical properties and overall oxidation resistance. Tension and low-cycle fatigue properties were examined at 600 °C and 800 °C. The mechanical tests and metallographic and fractographic analyses showed that cast iron containing higher Si and Mo contents had a higher tensile strength and longer fatigue life at both temperatures than cast iron with lower levels due to the phase transformations of pearlite and carbide. The Coffin-Manson type equation was used to assess the fatigue mechanism suggesting that the higher Si-Mo alloy was stronger but less ductile than the lower Si-Mo alloy at 600 °C. However, similar properties for both alloys were observed at 800 °C because of softening and oxidation effects. Analysis of the isothermal oxidation behavior at those temperatures showed that mixed Fe2SiO4 layers were formed and the resulting scaling kinetics was much faster for low Si-Mo containing iron. With increasing temperature, subsurface degradation such as decarburization, voids, and cracks played a significant role in the overall oxidation resistance.

  9. Hydrogen induced surface cracking in an 8090 Al-Li alloy during high cycle fatigue

    SciTech Connect

    Laffin, C.; Raghunath, C.R.; Lopez, H.F. . Materials Dept.)

    1993-10-01

    In recent years, there has been an increasing interest in understanding the effects of aggressive or moist environments on the properties of Al-Li alloys. However, most of the existing work has been focused on their stress corrosion cracking resistance. Consequently, only a few reports are available on the environmental fatigue strength of these alloys. Upon exposure to aggressive environments, the fatigue crack propagation resistance can be detrimentally affected. R. Piascik and R. Gangloff found enhanced cyclic crack growth rates in an Al-Li-Cu alloy when a critical water vapor pressure was exceeded. Thermodynamically, at atmospheric pressures, strong interactions between hydrogen and lithium are expected to give rise to stable lithium hydrides. Evidence for the development of hydride phases in Al-Li alloys exposed to hydrogen environments has been reported by various workers. Thus, it is likely that HE via hydride formation can be the relevant mechanisms in Al-Li alloys that have been in contact with hydrogen. Since lithium hydrides are stable up to temperatures of 773 K, previous hydrogen exposure can lead to an irreversible mode of embrittlement. Thus, it was the objective of the present work to investigate the effects of hydrogen during aging on the ensuing high cycle fatigue (HCF) performance of an 8090 Al-Li alloy.

  10. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  11. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  12. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress.

    PubMed

    Marcora, Samuele M; Bosio, Andrea; de Morree, Helma M

    2008-03-01

    Locomotor muscle fatigue, defined as an exercise-induced reduction in maximal voluntary force, occurs during prolonged exercise, but its effects on cardiorespiratory responses and exercise performance are unknown. In this investigation, a significant reduction in locomotor muscle force (-18%, P < 0.05) was isolated from the metabolic stress usually associated with fatiguing exercise using a 100-drop-jumps protocol consisting of one jump every 20 s from a 40-cm-high platform. The effect of this treatment on time to exhaustion during high-intensity constant-power cycling was measured in study 1 (n = 10). In study 2 (n = 14), test duration (871 +/- 280 s) was matched between fatigue and control condition (rest). In study 1, locomotor muscle fatigue caused a significant curtailment in time to exhaustion (636 +/- 278 s) compared with control (750 +/- 281 s) (P = 0.003) and increased cardiac output. Breathing frequency was significantly higher in the fatigue condition in both studies despite similar oxygen consumption and blood lactate accumulation. In study 2, high-intensity cycling did not induce further fatigue to eccentrically-fatigued locomotor muscles. In both studies, there was a significant increase in heart rate in the fatigue condition, and perceived exertion was significantly increased in study 2 compared with control. These results suggest that locomotor muscle fatigue has a significant influence on cardiorespiratory responses and exercise performance during high-intensity cycling independently from metabolic stress. These effects seem to be mediated by the increased central motor command and perception of effort required to exercise with weaker locomotor muscles. PMID:18184760

  13. Hydrogen effects on low-cycle fatigue of the single-crystal nickel-base superalloy CMSX-2

    NASA Technical Reports Server (NTRS)

    Dollar, M.; Bernstein, I. M.; Kromp, W.; Domnanovitch, A.; Pinczolits, H.

    1991-01-01

    The effects of hydrogen on the low-cycle fatigue behavior of CMSX-2 (001)-oriented single crystals were examined. Fatigue tests were conducted under constant plastic strain amplitude control. Cyclic stress-strain curves and fatigue life data at different plastic strain amplitudes were determined for hydrogen-free and hydrogen-charged specimens. Two charging procedures, leading to different hydrogen concentrations, were applied. Hydrogen was found to decrease significantly the number of cycles to failure under the various experimental conditions. The increasing hydrogen concentration and ratio of the hydrogen to nonhydrogen-containing volume were found to shorten fatigue life in hydrogen-charged specimens. Based on the analysis of cyclic stress-strain curves and optical and transmission electron microscopy, it was established that hydrogen enhanced strain localization and promoted crystallographic stage I cracking, leading to embrittlement.

  14. Mechanisms of deformation and fracture in high temperature low cycle fatigue of Rene 80 and IN 100

    NASA Technical Reports Server (NTRS)

    Romanoski, G. R., Jr.

    1982-01-01

    Specimens tested for the AGARD strain range partitioning program were investigated. Rene 80 and IN 100 were tested in air and in vacuum; at 871 C, 925 C, and 1000 C; and in the coated and uncoated condition. The specimens exhibited a multiplicity of high-temperature low-cycle fatigue damage. Observations of the various forms of damage were consistent with material and testing conditions and were generally in agreement with previous studies. In every case observations support a contention that failure occurs at a particular combination of crack length and maximum stress. A failure criterion which is applicable in the regime of testing studied is presented. The predictive capabilities of this criterion are straight forward.

  15. Plastic Behavior of a Nickel-Based Alloy under Monotonic-Tension and Low-Cycle-Fatigue Loading

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Wang, Yandong; Clausen, Bjorn; Li, Li; Liaw, Peter K; Ice, Gene E; Yang, Dr Ren; Choo, Hahn; Pike, Lee M; Klarstrom, Dwaine L

    2008-01-01

    The plasticity behavior of the annealed HASTELLOY C-22HSTM alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by the in-situ neutron-diffraction experiments at room temperature. Monotonic-tension and low-cycle-fatigue experiments were conducted to observe the plastic behavior of the alloy. The tension straining and cyclic-loading deformation were studied as a function of the stress. The plastic behaviors during the deformation are discussed in the light of the relationship between the stress and dislocation-density evolutions. The calculated dislocation-density evolutions within the alloys reflect the strain hardening and cyclic hardening/softening. Experimental lattice strains are compared to verify the hardening mechanism at the selected stress levels for tension and cyclic loadings. Combining with the calculations of the dislocation densities, the neutron-diffraction experiments give an evidence of the strain and cyclic hardening of the alloy.

  16. Effect of electron beam treatment on structural change in titanium alloy VT-0 at high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Konovalov, S. V.; Komissarova, I. A.; Kosinov, D. A.; Ivanov, Yu F.; Ivanova, O. V.; Gromov, V. E.

    2016-09-01

    Changes in the surface of the fractured structure of commercially pure titanium VT1-0 under treatment by low-energy high-current electron beams and the subsequent cycle fatigue to the failure were analyzed by transmission scanning and transmission electron diffraction microscopy. The increase in the fatigue life of samples in 2.2 times after treatment by electron beams was established. An assumption was made that the increase in the fatigue life of titanium, grade VT1-0, was due to the formation of a lamellar substructure conditioned by high-velocity crystallization of the titanium surface layer.

  17. Augmented supraspinal fatigue following constant-load cycling in the heat.

    PubMed

    Goodall, S; Charlton, K; Hignett, C; Prichard, J; Barwood, M; Howatson, G; Thomas, K

    2015-06-01

    The development of central fatigue is prominent following exercise-induced hyperthermia, but the contribution of supraspinal fatigue is not well understood. Seven endurance-trained cyclists (mean ± SD peak O2 uptake, 62.0 ± 5.6 mL/kg/min) completed two high-intensity constant-load cycling trials (296 ± 34 W) to the limit of tolerance in a hot (34 °C, 20% relative humidity) and, on a separate occasion, for the same duration, a control condition (18 °C, 20% relative humidity). Core body temperature (Tc ) was measured throughout. Before and immediately after each trial, twitch responses to supramaximal femoral nerve and transcranial magnetic stimulation were obtained from the knee extensors to assess neuromuscular and corticospinal function, respectively. Exercise time was 11.4 ± 2.6 min. Peak Tc was higher in the hot compared with control (38.36 ± 0.43 °C vs 37.86 ± 0.36 °C; P = 0.035). Post-exercise reductions in maximal voluntary contraction force (13 ± 9% vs 9 ± 5%), potentiated twitch force (16 ± 12% vs 21 ± 13%) and voluntary activation (9 ± 7% vs 7 ± 7%) were similar in hot and control trials, respectively. However, cortical voluntary activation declined more in the hot compared with the control (8 ± 3% vs 3 ± 2%; P = 0.001). Exercise-induced hyperthermia elicits significant central fatigue of which a large portion can be attributed to supraspinal fatigue. These data indicate that performance decrements in the heat might initially originate in the brain. PMID:25943667

  18. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  19. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Sam; Bai, Don; Schmidt, George

    2000-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic scramjet engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. Hydrogen is heated by the reactor and accelerated to produce high-speed ejection velocity. The ejection velocity up 10,000 m/sec is theoretically possible because of high energy density from the reactor and large gas constant of the hydrogen. Oxygen contained in the entrained air reacts with hydrogen and produces propulsive power for ejector mode operation. To provide enough thrust for initial acceleration, relatively large amount of hydrogen must be pumped through the reactor. Amount of oxygen contained in the entrained air may not be sufficient to burn all hydrogen and consequently combustion could occur at the end of exit nozzle. It is assumed that this combustion process is constant-pressure combustion at 1.0 atmospheric pressure and thus not affects the nozzle exit condition.

  20. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1999-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic RBCC engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. The performance of a generic ABCC engine along a flight path (q0 =10 (exp 3) lbf per square ft) shows that the mission averaged-specific impulse is about twice larger than RBCC engine and the dry mass-ratio is about 50% larger. Results of the present ABCC engine performance are based on the assumptions that the flow passage of working fluids is identical to that of RBCC engine and that a nuclear reactor is treated as an energy black box. Preliminary heat transfer calculation shows that the rate of heat transfer to the working fluids is within the limit of turbulent convective heat transfer regimes. The flow passage of realistic ABCC engine must be known for a better prediction of ABCC engine performance. Also, critical heat transfer calculations must be performed for the ejector mode and ramjet mode operations. This is possible only when the details of a reactor configuration are available.

  1. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  2. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Hüther, Jonas; Brøndsted, Povl

    2016-07-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes directions so is not significantly influenced of these stresses. This is related to the observations that the damage mechanisms in the off axes directions are mainly related to shear failure in the matrix and in the interface between fiber and matrix and different from the damage mechanisms in the fiber direction, where the damage initiates in the transverse backing fibers and is directly related to fiber fractures in the load-carrying axial fiber bundles.

  3. Status of the Combined Cycle Engine Rig

    NASA Technical Reports Server (NTRS)

    Saunders, Dave; Slater, John; Dippold, Vance

    2009-01-01

    Status for the past year is provided of the turbine-based Combined-Cycle Engine (CCE) Rig for the hypersonic project. As part of the first stage propulsion of a two-stage-to-orbit vehicle concept, this engine rig is designed with a common inlet that supplies flow to a turbine engine and a dual-mode ramjet / scramjet engine in an over/under configuration. At Mach 4 the inlet has variable geometry to switch the airflow from the turbine to the ramjet / scramjet engine. This process is known as inlet mode-transition. In addition to investigating inlet aspects of mode transition, the rig will allow testing of turbine and scramjet systems later in the test series. Fully closing the splitter cowl "cocoons" the turbine engine and increases airflow to the scramjet duct. The CCE Rig will be a testbed to investigate integrated propulsion system and controls technology objectives. Four phases of testing are planned to 1) characterize the dual inlet database, 2) collect inlet dynamics using system identification techniques, 3) implement an inlet control to demonstrate mode-transition scenarios and 4) demonstrate integrated inlet/turbine engine operation through mode-transition. Status of the test planning and preparation activities is summarized with background on the inlet design and small-scale testing, analytical CFD predictions and some details of the large-scale hardware. The final stages of fabrication are underway.

  4. The Toll-Like Receptor Radical Cycle Pathway: A New Drug Target in Immune-Related Chronic Fatigue.

    PubMed

    Lucas, Kurt; Morris, Gerwyn; Anderson, George; Maes, Michael

    2015-01-01

    In this review we discuss that peripheral and central activation of the Toll-like receptor 2/4 (TLR2/4) Radical Cycle may underpin the pathophysiology of immune-related chronic fatigue secondary to other medical diseases and conditions. The TLR Radical Cycle plays a role in illnesses and conditions that are disproportionately commonly comorbid with secondary chronic fatigue, including a) neuroinflammatory disorders, e.g. Parkinson's disease, stroke, depression, psychological stressors, and b) systemic disorders, e.g. (auto)immune disorders, chronic obstructive pulmonary disease, ankylosing spondylitis, chronic kidney disease, inflammatory bowel disease, cardiovascular disease, incl. myocardial infarction, cancer and its treatments. Increased TLR signaling is driven by activated immuneinflammatory and oxidative and nitrosative stress pathways, pathogen derived molecular patterns, including lipopolysaccharides, and damage associated molecular patterns (DAMPs). Newly formed redox-derived DAMPs, secondary to oxidative processes, may further activate the TLR complex leading to an auto-amplifying TLR Radical feedback loop. Increased gut permeability with translocation of gram negative bacteria and LPS, which activates the TLR Radical Cycle, is another pathway that may play a role in most of the abovementioned diseases and the secondary fatigue accompanying them. It is concluded that secondary fatigue may be associated with activation of the TLR Radical Cycle pathway due to activated immune-inflammatory pathways, classical and redox-derived DAMPs and PAMPs plays a role in its pathophysiology. Such an activation of the TLR Radical Cycle pathway may also explain why the abovementioned conditions are primed for an increased expression of secondary chronic fatigue. Targeting the TLR Radical Cycle pathway may be an effective method to treat TLR-Radical Cycle-related diseases such as secondary chronic fatigue.

  5. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  6. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  7. Microalloying Improves the Low-Cycle Fatigue Behavior of Powder-Extruded NiAl

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is considerable interest in developing new structural materials in which high use temperatures and strength, coupled with low density, are the minimum requirements. The goal for these new materials is to provide operation well beyond the working range of conventional superalloys. Of the many intermetallics under consideration, NiAl is one of the few systems that has emerged as a promising candidate for further development. This is because of a number of property advantages--including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance. However, binary NiAl lacks strength and creep resistance at elevated temperatures. Also, its poor high-temperature strength results in worse-than-predicted low-cycle fatigue (LCF) lives at low strain ranges at 727 C (1341 F) because of accelerated creep damage mechanisms that result in significant intergranular cracking. One approach for improving these properties involves microalloying NiAl with either Zr or N. As an integral part of this alloy-development program at the NASA Lewis Research Center, the low-cycle fatigue behavior of Zr- and N-doped nickel aluminides produced by extrusion of prealloyed powders was investigated and compared with similarly processed binary NiAl.

  8. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  9. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  10. Effects of Laser Peening Treatment on High Cycle Fatigue and Crack Propagation Behaviors in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 108 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment.

  11. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training.

    PubMed

    Behrens, Martin; Weippert, Matthias; Wassermann, Franziska; Bader, Rainer; Bruhn, Sven; Mau-Moeller, Anett

    2015-01-01

    Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after 8 weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms) and iMVC of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave), peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that cycling endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue resistance. PMID:26029114

  12. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    SciTech Connect

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  13. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  14. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  15. High temperature low-cycle fatigue mechanisms in single crystals of nickel-based superalloy Mar-M 200

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.

    1984-01-01

    Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.

  16. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females.

    PubMed

    Falgairette, G; Billaut, F; Giacomoni, M; Ramdani, S; Boyadjian, A

    2004-04-01

    The effect of recovery duration on performance and fatigue pattern during short exercises was studied including and excluding the flywheel inertia. Subjects (11 males and 11 females) performed a force-velocity test to determine their optimal force (f (opt)). On the following day, subjects performed randomly 4 series of two 8-s sprints against f (opt), with 15 s (R (15)), 30 s (R (30)), 60 s (R (60)), and 120 s (R (120)) recovery between sprints. The cycle (Monark 824 E, Stockholm, Sweden) was equipped with an optical sensor to calculate the revolution velocity of the pedal. For each sprint, peak power (P (peak)), mechanical work (W) and time to reach P (peak) (t (Ppeak)) were calculated including (I) and excluding (NI) the acceleration of the flywheel. For a given sprint, P (peak) and W were greater and t (Ppeak) was lower in I compared to NI condition (p < 0.05). Differences averaged 13 % for P (peak), 20 % for W, 34 % for t (Ppeak), and remained constant between sprints 1 and 2. In sprint 2, P (peak) and W were significantly reduced compared to sprint 1 only after R (15) and R (30) in I and NI (p < 0.05), and no gender differences occurred. In each sprint, P (peak) and W were higher (p < 0.001) and t (Ppeak) was shorter (p < 0.05) in males than in females, and gender differences were the same including or excluding the flywheel inertia. In conclusion, values excluding inertia underestimated mechanical performance and consequently the total energy supply. However, the pattern of fatigue and gender differences in performance and fatigue remained unchanged whatever the condition (I or NI). This result may have practical implications when the flywheel inertia can not be taken into account in the calculation of mechanical work and power output. PMID:15088250

  17. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  18. A combined approach to buffet response analyses and fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Jacobs, J. H.; Perez, R.

    1994-03-01

    Experimental measurement and neural network based prediction of wind tunnel model empennage random pressures are discussed. Artificially generated neural network power spectral densities of surface pressures are used to augment existing data and then load an elastic finite element model to obtain response spectra. Details on the use of actual response spectra from flight test data are also discussed. A random spectra fatigue method is described which effectively combines buffet and maneuver loads into a time series based on aircraft usage data. A peak-valley damage analysis procedure is employed to compute the aggregate fatigue life of the structure based on five combined load time series information. Applications of the method as a continual learning tool for buffet response spectra is elaborated.

  19. An analytical model which combines roughness- and plasticity- induced fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Chen, Nong

    In this study an analytical PICC-RICC Model was developed to describe better the near-threshold fatigue behavior. The PICC-RICC Model was built upon a strip-yield type PICC model originally proposed by Newman and later modified by Hou and Lawrence. A zigzag crack growth path was introduced to simulate surface roughness. The two opposing crack surfaces were considered to be translated and thus mismatched by the mixed-mode displacements occurring near the deflected crack tip. The model is powerful and unique in that it combines the effects of RICC and PICC. Thus, the gradual transition from RICC to PICC dominated crack closure is handled naturally by this model. The influences of the geometrical features of the surface roughness, R-ratio and the cyclic load range on RICC were examined using the PICC-RICC Model. Near-threshold fatigue behavior of various materials was predicted. The effect of microstructure on the RICC level was studied. The predicted results compared favorably with experimental data. The fatigue notch size effect was investigated using the PICC-RICC model. The initial crack length (asb{i}) for propagation was estimated. The predicted notch fatigue strength compared favorably with the Initiation-Propagation (I-P) Model prediction and test data. The existence of a "worst case notch" previously postulated using the I-P Model was confirmed.

  20. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  1. Mean stress effects on high-cycle fatigue of Alloy 718

    SciTech Connect

    Korth, G E

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649{degree}C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs.

  2. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling.

  3. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling. PMID:25803753

  4. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  5. Application of fracture mechanics and half-cycle theory to the prediction of fatigue life of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1989-01-01

    The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue crack growth analysis were established through proof load tests. The fatigue crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation. This report describes the application of fracture mechanics and the half-cycle method to calculate the number of remaining flights for aircraft structural components.

  6. Effect of grain size on high-cycle fatigue properties in alpha-type titanium alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Matsuoka, S.; Ogata, T.

    2003-08-01

    High-cycle fatigue properties were investigated at 4, 77 and 293 K in Ti-5%Al-2.5%Sn ELI alloy which was used for liquid hydrogen turbo-pumps of Japanese-built launch vehicles. Mean grain size of specimens was controlled to be about 30 or 80 μm. In the specimens with a grain size of 30 μm, fatigue strengths at 10 6 cycles at 4 and 77 K are 1.6 and 1.5 times higher than that at 293 K, respectively. On the other hand, in the specimen with a grain size of 80 μm, fatigue strengths at 10 6 cycles at 4 and 77 K get lower to the same level as that at 293 K. Thus, it is concluded that refinement of α grains is one of important factors to obtain the good high-cycle fatigue properties for Ti-5%Al-2.5%Sn ELI alloy at cryogenic temperature.

  7. Influence of the Peak Tensile Overload Cycles on the Fatigue Crack Growth of Aluminum Alloy Under Spectrum Loading

    NASA Astrophysics Data System (ADS)

    Iranpour, Mohammad; Taheri, Farid

    2013-11-01

    Many structures such as aircrafts, risers, and offshore pipelines that are in contact with fluids, become subjected to complex variable amplitude loading (VAL) stress-time histories during their service lives. As a result, the structural life assessment and damage-tolerant analyses of such structures are considered as two important design criteria. In this paper, a VAL stress-time history is used to study the fatigue life of 6061-T651 aluminum alloy, with focus on the retardation effect resulting from the applied peak tensile overload cycles (TOLCs). Various so-called "clipping" levels are tested, and the results are compared with those obtained through an analytical method, using the Willenborg retardation approach, in conjunction with the Walker fatigue crack growth model. The results would demonstrate the significant influence of the TOLC present within VAL scenarios on retarding the fatigue crack growth rate of the material. The study also investigates the influence of various clipping levels on the fatigue response of the material, also highlighting the limitations of the analytical approach in estimating the resulting crack growth rate. It is observed that the analytical method predicts a higher fatigue life for the material subjected to VAL, which is non-conservative for design purposes. Some suggestions are provided for fatigue life estimation of the material when subjected to VAL scenarios.

  8. Eccentric Fatigue Modulates Stretch-shortening Cycle Effectiveness--A Possible Role in Lower Limb Overuse Injuries.

    PubMed

    Debenham, J; Travers, M; Gibson, W; Campbell, A; Allison, G

    2016-01-01

    The role of fatigue in injury development is an important consideration for clinicians. In particular, the role of eccentric fatigue in stretch-shortening cycle (SSC) activities may be linked to lower limb overuse conditions. The purpose of this study was to explore the influence of ankle plantarflexor eccentric fatigue on SSC effectiveness during a hopping task in healthy volunteers. 11 healthy volunteers (23.2±6.7 years) performed a sub-maximal hopping task on a custom-built sledge system. 3D motion capture and surface EMG were utilised to measure lower limb stiffness, temporal kinematic measures and muscle timing measures at baseline and immediately following an eccentric fatigue protocol. A linear mixed model was used to test whether measures differed between conditions. Compared to baseline, eccentric fatigue induced increased stiffness during the hopping task (+ 15.3%; P<0.001). Furthermore, ankle stretch amplitude decreased (- 9.1%; P<0.001), whilst all other ankle kinematic measures remained unchanged. These changes were accompanied by a temporal shift in onset of activity in soleus and tibialis anterior muscles (- 4.6 to - 8.5%; p<0.001). These findings indicate that eccentric fatigue alters SSC effectiveness in healthy volunteers. These findings may be applied to inform pathogenetic models of overuse injury development.

  9. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  10. Combined cycle energy production: Overview of worldwide utilization and techniques

    NASA Astrophysics Data System (ADS)

    Roche, M.

    1982-06-01

    The worldwide distribution of combined cycle generators using simple recuperation, supercharged boilers, post combustion, and parallel combustion and complex cycles is summarized. Clean energy, fuel oil, coal, fluidized bed, and gasification based processes are discussed. With clean energy systems, up to 46% efficiency is achieved using a single recuperation - double evaporation cycle. Using gas turbine output to feed a higher power steam turbine is also economically attractive, but no one system is an obvious choice. Around 100 combined generators are now operating.

  11. Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk during Landing

    ERIC Educational Resources Information Center

    James, C. Roger; Dufek, Janet S.; Bates, Barry T.

    2006-01-01

    The purpose of this study was to examine changes in landing performance during fatigue that could result in increased stress fracture injury risk. Five participants performed nonfatigued and fatigued drop landings (0.60 m), while ground reaction force (GRF), electromyographic (EMG) activity, and kinematics were recorded. Fatigue was defined as a…

  12. Bearingless helicopter main rotor development. Volume 2: Combined load fatigue evaluation of weathered graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Rackiewicz, J. J.

    1977-01-01

    Small scale combined load fatigue tests were conducted on six artificially and six naturally weathered test specimens. The test specimen material was unidirectionally oriented A-S graphite - woven glass scrim epoxy resin laminate.

  13. Notch effects on high-cycle fatigue properties of Ti 6Al 4V ELI alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, T.; Ono, Y.; Ogata, T.

    2006-01-01

    Notch effects on the high-cycle fatigue properties of the forged Ti-6Al-4V ELI alloy at cryogenic temperatures were investigated. Also, the high-cycle fatigue data were compared with the rolled Ti-5Al-2.5Sn ELI alloy. The one million cycles fatigue strength (FS) of the smooth specimen for the forged Ti-6Al-4V ELI alloy increased with a decrease of test temperature. However, the FS of each notched specimen at 4 K were lower than those at 77 K. On the other hand, the FS of the smooth and the notched specimens for the forged Ti-6Al-4V ELI alloy at 4 K were lower than those for the rolled Ti-5Al-2.5Sn ELI alloy. This is considered to be the early initiation of the fatigue crack in the forged Ti-6Al-4V ELI alloy compares with the forged Ti-5Al-2.5Sn ELI.

  14. Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue

    SciTech Connect

    Wang, J.Q.; Li, J.; Wang, Z.F.; Zhu, Z.Y.; Ke, W. . Corrosion Science Lab.); Zang, Q.S.; Wang, Z.G. . State Key Lab. for Fatigue and Fracture of Materials)

    1994-12-01

    The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, it is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.

  15. Fatigue is specific to working muscles: no cross-over with single-leg cycling in trained cyclists.

    PubMed

    Elmer, Steven J; Amann, Markus; McDaniel, John; Martin, David T; Martin, James C

    2013-02-01

    Fatigue induced via a maximal isometric contraction of a single limb muscle group can evoke a "cross-over" of fatigue that reduces voluntary muscle activation and maximum isometric force in the rested contralateral homologous muscle group. We asked whether a cross-over of fatigue also occurs when fatigue is induced via high-intensity endurance exercise involving a substantial muscle mass. Specifically, we used high-intensity single-leg cycling to induce fatigue and evaluated associated effects on maximum cycling power (P (max)) in the fatigued ipsilateral leg (FAT(leg)) as well as the rested contralateral leg (REST(leg)). On separate days, 12 trained cyclists performed right leg P (max) trials before and again 30 s, 3, 5, and 10 min after a cycling time trial (TT, 10 min) performed either with their right or left leg. Fatigue was estimated by comparing exercise-induced changes in P (max) and maximum handgrip isometric force (F (max)). Mean power produced during the right and left leg TTs did not differ (203 ± 8 vs. 199 ± 8 W). Compared to pre-TT, FAT(leg) P (max) was reduced by 22 ± 3 % at 30 s post-TT and remained reduced by 9 ± 2 % at 5 min post-TT (both P < 0.05). Despite considerable power loss in the FAT(leg), post-TT REST(leg) P (max) (596-603 W) did not differ from pre-TT values (596 ± 35 W). There were no alterations in handgrip F (max) (529-547 N). Our data suggest that any potential cross-over of fatigue, if present at all, was not sufficient to measurably compromise REST(leg) P (max) in trained cyclists. These results along with the lack of changes in handgrip F (max) indicate that impairments in maximal voluntary neuromuscular function were specific to working muscles.

  16. Low cycle fatigue properties of reduced activation ferritic/martensitic steels after high-dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Petersen, C.; Aktaa, J.; Povstyanko, A.; Prokhorov, V.; Diegele, E.; Lässer, R.

    2011-08-01

    This paper focuses on the low cycle fatigue (LCF) behaviour of reduced activation ferritic/martensitic steels irradiated to a displacement damage dose of up to 70 dpa at 330-337 °C in the BOR 60 reactor within the ARBOR 2 irradiation programme. The influence of neutron irradiation on the fatigue behaviour was determined for the as-received EUROFER97, pre-irradiation heat-treated EUROFER97 HT and F82H-mod steels. Strain-controlled push-pull loading was performed using miniaturized cylindrical specimens at a constant temperature of 330 °C with total strain ranges between 0.8% and 1.1%. Comparison of the LCF behaviour of irradiated and reference unirradiated specimens was performed for both the adequate total and inelastic strains. Neutron irradiation-induced hardening may have various effects on the fatigue behaviour of the steels. The reduction of inelastic strain in the irradiated state compared with the reference unirradiated state at common total strain amplitudes may increase fatigue lifetime. The increase in the stress at the adequate inelastic strain, by contrast, may accelerate fatigue damage accumulation. Depending on which of the two effects mentioned dominates, neutron irradiation may either extend or reduce the fatigue lifetime compared with the reference unirradiated state. The results obtained for EUROFER97 and EUROFER97 HT confirm these considerations. Most of the irradiated specimens show fatigue lifetimes comparable to those of the reference unirradiated state at adequate inelastic strains. Some irradiated specimens, however, show lifetime reduction or increase in comparison with the reference state at adequate inelastic strains.

  17. Low cycle fatigue behavior of a SiCp reinforced aluminum matrix composite at ambient and elevated temperature

    SciTech Connect

    Han, N.L.; Wang, Z.G.; Sun, L.Z.

    1995-06-01

    Based on an investigation of low cycle fatigue life and cyclic stress response characteristics of SiC particulates reinforced pure aluminum and unreinforced matrix aluminum at 298 K and 441 K, the following observations were made. (1) Cyclic stress response of the unreinforced matrix aluminum, in the as-extruded condition, revealed initial cyclic hardening, cyclic stability and second hardening at ambient temperature. With a contrast, the unreinforced aluminum at elevated temperature showed progressively cyclic softening behavior without initial hardening. (2) The cyclic stress response characteristics of the composite were different from that of its unreinforced matrix at room temperature. In spite of the initial hardening, the composite showed progressive softening in most of the fatigue life. At elevated temperature the composite also displayed continuous cyclic softening behavior. The reason for the softening behavior probably was that the dislocation tangles in the composite specimen with a likely work-hardened status was not stable and could be changed under a cyclic loading. (3) The SiCp/Al composite and the unreinforced matrix followed the Coffin-Manson law. The low cycle fatigue resistance of the composite at room temperature was lower than that of the unreinforced matrix. A decrease in the fatigue endurance due to a rise in test temperature was observed for the composite and the unreinforced matrix especially at low cyclic plastic strain ranges. The induction of fatigue life of the unreinforced aluminum was faster than that of the composite, so the fatigue resistance of the composite was stronger than that of the unreinforced aluminum under lower cyclic strain ranges at elevated temperature.

  18. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  19. The effect of hydrogen on the low cycle fatigue behavior of a single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Dreshfield, R. L.

    1990-01-01

    The present study compares the room temperature fatigue properties of PWA 1480 single crystals containing either normal or elevated hydrogen levels, giving attention to the effects of various levels of HIPing process-controlled porosity on hydrogen-trapping and fatigue life. Hydrogen charging is found to degrade the fatigue lives of alloy samples by an order of magnitude; the magnitude of this degradation is comparable at both high and low porosity. HIPing accomplished a small beneficial effect on the fatigue life of both the hydrogen-charged and uncharged PWA 1480 samples. Fatigue cracks are noted to have consistently initiated at large, near-surface pores. By reducing the size and frquency of the larger pores, HIPing apparently retarded fatigue-crack initiation.

  20. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  1. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  2. Rocket Based Combined Cycle (RBCC) Propulsion Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop, was to impart technology information to the propulsion community with respect to hypersonic combined cycle propulsion capabilities. The major recommendation resulting from this technology workshop was as follows: conduct a systems-level applications study to define the desired propulsion system and vehicle technology requirements for LEO launch vehicles. All SSTO and TSTO options using the various propulsion systems (airbreathing combined cycle, rocket-based combined cycle, and all rocket) must be considered. Such a study should be accomplished as soon as possible. It must be conducted with a consistent set of ground rules and assumptions. Additionally, the study should be conducted before any major expenditures on a RBCC technology development program occur.

  3. Compressive Seal Development: Combined Ageing and Thermal Cycling Compressive

    SciTech Connect

    Chou, M.Y-S.; Stevenson, J.W.; Singh, P.

    2005-01-27

    The objective of this project was to evaluate the combined aging and cycling effect on hybrid Phlogopite mica seals with respect to materials and interfacial degradations in a simulated SOFC environment.

  4. Combined bending-torsion fatigue reliability of AISI 4340 steel shafting with K sub t = 2.34. [stress concentration factor

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Chester, L. B.; Dodge, T. M.

    1974-01-01

    Results generated by three, unique fatigue reliability research machines which can apply reversed bending loads combined with steady torque are presented. Six-inch long, AISI 4340 steel, grooved specimens with a stress concentration factor of 2.34 and R sub C 35/40 hardness were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and stress-to-failure data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one represents the data best. The effect of the groove and of the various combined bending-torsion loads on the S-N and Goodman diagrams are determined. Three design applications are presented. The third one illustrates the weight savings that may be achieved by designing for reliability.

  5. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  6. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  7. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  8. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  9. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    PubMed Central

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2=0.77 to R2=0.98 (for blood lactate) and from R2=0.81 to R2=0.97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  10. Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    The effect of the stress ratio R (the ratio of minimum stress to maximum stress) on the high-cycle fatigue properties of Ti-6Al-4V extra-low interstitial (ELI) alloy forging was investigated at 293 and 77 K. At 293 K, the fatigue strength at 107 cycles exhibited deviations below the modified Goodman line in the R=0.01 and 0.5 tests. Moreover, at 77 K, larger deviations of the fatigue strength at 107 cycles below the modified Goodman line were confirmed in the same stress ratio conditions. The high-cycle fatigue strength of the present alloy forging exhibit an anomalous mean stress dependency at both temperatures and this dependency becomes remarkable at low temperature.

  11. Application of fracture mechanics and half-cycle method to the prediction of fatigue life of B-52 aircraft pylon components

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Carter, A. L.; Totton, W. W.; Ficke, J. M.

    1989-01-01

    Stress intensity levels at various parts of the NASA B-52 carrier aircraft pylon were examined for the case when the pylon store was the space shuttle solid rocket booster drop test vehicle. Eight critical stress points were selected for the pylon fatigue analysis. Using fracture mechanics and the half-cycle theory (directly or indirectly) for the calculations of fatigue-crack growth ,the remaining fatigue life (number of flights left) was estimated for each critical part. It was found that the two rear hooks had relatively short fatigue life and that the front hook had the shortest fatigue life of all the parts analyzed. The rest of the pylon parts were found to be noncritical because of their extremely long fatigue life associated with the low operational stress levels.

  12. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  13. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeremy L.; Piehler, Henry R.

    1993-03-01

    Subsurface fatigue damage, in the form of cracking of the α phase, was observed in Ti-6A1-4V during high cycle fatigue of total hip prostheses tested in a simulated physiological test geometry and environment. The subsurface cracking was found only in the region of highest fatigue stresses and was present in a zone between 50 and 700 μm beneath the surface. The density of these cracks appeared to depend on the fabrication process used to form the part, where the direction of forging deformation strongly influenced the texture and grain morphology of the near-α bimodal microstructure. A novel scanning electron microscopy (SEM) technique, using selected area channeling patterns (SACPs) and electron channeling contrast imaging (ECCI), is described and was used to determine the crystallographic orientation of the fracture plane in the a phase. The texture resulting from the forming operation appeared to be such that the basal pole of the hcp lattice became oriented in the direction of flow. Also, the deformation substructure (in the form of dislocation subcells) influenced the formation of the subsurface cracks. Observations based on four independent fractured grains, using the channeling analysis techniques, indicated that the fracture plane for these subsurface fatigue cracks is the pyramidal plane of the hcp lattice.

  14. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis

    PubMed Central

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chan, Hsiao-Lung; Chiu, Li-Yu

    2015-01-01

    In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases. PMID:26115515

  15. Effects of creatine loading on electromyographic fatigue threshold in cycle ergometry in college-age men.

    PubMed

    Walter, Ashley A; Smith, Abbie E; Herda, Trent J; Ryan, Eric D; Moon, Jordan R; Cramer, Joel T; Stout, Jeffrey R

    2008-04-01

    The purpose of this study was to examine the effects of 5 d of creatine (Cr) loading on the electromyographic fatigue threshold (EMG FT) in college-age men. Sixteen men (age 22.4 +/- 2.6 yr, height 177.4 +/- 6.8 cm, weight 79.5 +/- 10.6 kg; M +/- SD) participated in this double-blind study and were randomly placed into either placebo (Pl; 10 g of flavored fructose powder per packet; n = 8) or Cr (5 g dicreatine citrate plus 10 g of flavored fructose powder per packet; n = 8) loading groups. Each participant ingested 1 packet 4 times/d, totaling 20 g/d for 5 days (loading). Before and after loading, each participant performed a discontinuous cycle-ergometer test to determine his EMG FT, using bipolar surface electrodes placed on the vastus lateralis of the right thigh. Four 60-s work bouts (ranging from 200 to 400 W) were completed. Adequate rest was given between bouts to allow for the participants' heart rate (HR) to drop within 10 beats of their resting HR. The EMG amplitude was averaged over 5-s intervals for each 60-s work bout. Resulting slopes from each successive work bout were used to calculate EMG FT. A 2-way ANOVA, Group (Cr vs. Pl) x Time (pre vs. post), resulted in a nonsignificant (p > .05) interaction for supplement and time. In addition, a significant increase (p = .009) in weight was observed in the Cr group. These data suggest that there was a minimal influence of Cr loading on EMG FT for the participants in this study.

  16. Fuel-flexible combined cycles for utility power and cogeneration

    NASA Astrophysics Data System (ADS)

    Roberts, P. B.; Duffy, T. E.; Schreiber, H.

    1980-03-01

    Two combustion turbine combined cycle power plants have been studied for performance and operating economics. Both power plants are in the sizing range that will be suitable for small utility application and use less than 106 GJ/hr (100 million Btu/hr). The first power plant is based on the Solar Turbines International (STI) Mars industrial gas turbine. The combined gas turbine/steam cycle is direct fired with No. 2 diesel fuel. A total installed cost for the system is estimated to be within the band 545 to 660 $/kW. The second power plant is based on STI's Centaur industrial gas turbine. The combined gas turbine/steam cycle is indirectly fired with solid fuel although it is intended that the installation can be initially fired with a liquid fuel.

  17. Operational strategies for dispatchable combined cycle plants, Part II

    SciTech Connect

    Nolan, J.P.; Landis, F.P.

    1996-11-01

    The Brush Cogeneration Facility is a dual-unit, combined cycle, cogeneration plant, operating in a dual cycling, automatically-dispatchable mode. Part I of this report described the contract, including automatic generation control (AGC) by Public Service Company of Colorado (PSCO), and the operation of Unit One. This part of the report covers the operation of Unit Two. Unit two is still in its operating infancy, but is showing that fuel efficiency and low emissions levels are not incompatible with cycling, load-following service. 1 fig.

  18. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling

    PubMed Central

    Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier

    2016-01-01

    Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key points The behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive

  19. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling.

    PubMed

    Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier

    2016-03-01

    Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key pointsThe behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive

  20. Utility-scale combined-cycle power systems with Kalina bottoming cycles

    SciTech Connect

    Kalina, A.I.

    1987-01-01

    A new power-generation technology, often referred to as the Kalina cycle, is being developed as a direct replacement for the Rankine steam cycle. It can be applied to any thermal heat source, low or high temperature. Among several Kalina cycle variations, there is one that is particularly well suited as a bottoming cycle for utility combined-cycle applications. It is the subject of this paper. Using an ammonia/water mixture as the working fluid and a condensing system based on absorption-refrigeration principles, the Kalina bottoming cycle outperforms a triple-pressure steam cycle by 16%. Additionally, this version of the Kalina cycle is characterized by an intercooling feature between turbine stages, diametrically opposite to normal reheating practice in steam plants. Energy and mass balances are presented for a 200-MW(electric) Kalina bottoming cycle. Kalina cycle performance is compared to a triple-pressure steam plant. Energy and mass balances are presented as well for a 200-MW(electric) Kalina direct-fired cycle designed for utility purposes.

  1. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps.

    PubMed

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam K

    2011-08-01

    The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue. PMID:21572355

  2. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps.

    PubMed

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam K

    2011-08-01

    The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue.

  3. 300 MW combined-cycle plant with integrated coal gasification

    SciTech Connect

    Kehlhofer, R.H.

    1984-09-01

    The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 X 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that All the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.

  4. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  5. In situ neutron diffraction study of the low cycle fatigue of the α-γ duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Jenčuš, Peter; Polák, Jaroslav; Lukáš, Petr; Muránsky, Ondrej

    2006-11-01

    In duplex stainless steels, significant thermal stresses are generated during the cooling from the homogenization temperature due to different thermal expansion coefficients of the austenitic and ferritic phases. The results of the in situ neutron diffraction examination of the evolution of the internal stresses during the low cycle fatigue in the SAF 2507 duplex stainless steel are reported. Stress response of both constituent components resulting from the load sharing between austenitic and ferritic grains was measured. It was found that the initial thermal residual stresses were relaxed rapidly at the beginning of the cyclic loading. Whereas initial hardening was identified in both phases, the subsequent fatigue softening was fully attributed to the austenitic phase.

  6. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  7. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... of Availability Hydrogen Energy California's Integrated Gasification Combined Cycle Project... availability of the Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary... the Hydrogen Energy California's (HECA) Integrated Gasification Combined Cycle Project, which would...

  8. Pros and cons of power combined cycle in Venezuela

    SciTech Connect

    Alvarez, C.; Hernandez, S.

    1997-09-01

    In Venezuela combined cycle power has not been economically attractive to electric utility companies, mainly due to the very low price of natural gas. Savings in cost of natural gas due to a higher efficiency, characteristic of this type of cycle, does not compensate additional investments required to close the simple cycle (heat recovery steam generator (HRSG) and steam turbine island). Low gas prices have contributed to create a situation characterized by investors` reluctance to commit capital in gas pipe lines and associated equipment. The Government is taking measures to improve economics. Recently (January 1, 1997), the Ministry of Energy and Mines raised the price of natural gas, and established a formula to tie its price to the exchange rate variation (dollar/bolivar) in an intent to stimulate investments in this sector. This is considered a good beginning after a price freeze for about three years. Another measure that has been announced is the implementation of a corporate policy of outsourcing to build new gas facilities such as pipe lines and measuring and regulation stations. Under these new circumstances, it seems that combined cycle will play an important role in the power sector. In fact, some power generation projects are considering building new plants using this technology. An economical comparative study is presented between simple and combined cycles power plant. Screening curves are showed with a gas price forecast based on the government decree recently issued, as a function of plant capacity factor.

  9. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  10. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  11. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  12. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  13. Low cycle fatigue behaviour of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  14. The low cycle fatigue behavior of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  15. Low-cycle fatigue behavior of oxygen-free high-conductivity copper at 300/sup 0/C in high vacuum

    SciTech Connect

    Liu, K.C.; Loring, C.M. Jr.

    1983-01-01

    In-vacuum fatigue tests were performed on commercially-pure OFHC copper and 35% Au-65% Cu brazing filler metal at 300/sup 0/C. Excessive recrystallization due to exposure in the 1025/sup 0/C brazing temperature cycle was detrimental to the fatigue life of the base metal; cold work was beneficial to the fatigue resistance. Triple-point cracking and grain boundary sliding were the prevailing modes of fatigue failure observed in the full-size specimens. However, a mixed morphology of ductile and cleavage-like fracture was observed on the fracture surface of the subsize specimen in which the grain structure appeared to have undergone a change because of the presence of surface cold work. The braze has superior fatigue resistance, but to exploit the maximum strength, the brazed joint must be devoid of defects such as cavities and cracks.

  16. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  17. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  18. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  19. NEUTRON-DIFFRACTION STUDY ON PLASTIC BEHAVIOR OF A NICKEL-BASED ALLOY UNDER THE MONOTONIC-TENSION AND THE LOW-CYCLE-FATIGUE EXPERIMENTS

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Clausen, Bjorn; Wang, Yandong; Yang, Dr Ren; Li, Li; Choo, Hahn; Liaw, Peter K

    2007-01-01

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  20. The combined cycle application of aeroderivative gas turbines

    SciTech Connect

    Sheard, A.G.; Raine, M.J.

    1998-07-01

    In recent years aeroderivative gas turbines have become an effective alternative to heavy industrial gas turbines. Marketing of aeroderivatives has focused on their simple cycle efficiency advantage. The use of aeroderivatives in combined cycle, however, has also been demonstrated to be competitive, with high net plant efficiency and moderate cost per installed kW. In this paper the rationale for choosing an aeroderivative over a conventional industrial gas turbine is discussed. Factors affecting the decision to opt for either a simple or combined cycle facility are considered. The economic case is made for combined cycle plant incorporating aeroderivatives, showing a lower total cost of ownership than the alternatives, including an assessment of the key factors necessary to make them viable. The paper continues with a description of an advanced ``single string'' power train concept. Implementation of the power train is presented, and its incorporation into an optimized 40 MW Class power station described. Reduction in cost of electricity and installed cost per kW are considered, as well as reduction in project lead time.

  1. The combined cycle application of aeroderivative gas turbines

    SciTech Connect

    Sheard, A.G.; Raine, M.J.

    1998-07-01

    In recent years aeroderivative gas turbines have become an effective alternative to heavy industrial gas turbines. Marketing of aeroderivatives has focused on their simple cycle efficiency advantage. The use of aeroderivatives in combined cycle, however, has also been demonstrated to be competitive, with high net plant efficiency and moderate cost per installed kW. Aeroderivative gas turbines are also capable of achieving high baseload plant availabilities because of the maintenance philosophy of rapid gas turbine or module exchange on site. In this paper the rationale for choosing an aeroderivative over a conventional industrial gas turbine is discussed. Factors affecting the decision to opt for either a simple or combined cycle facility are considered. The economic case is made for combined cycle plant incorporating aeroderivatives, showing a lower total cost of ownership that the alternatives, including an assessment of the key factors necessary to make them viable. The paper continues with a description of an advanced single string power train concept. Implementation of the power train is presented, and its incorporation into an optimized 40 MW Class power station described. Reduction in cost of electricity and installed cost per kW are considered, as well as reduction in project lead time.

  2. Acute and delayed neuromuscular adjustments of the triceps surae muscle group to exhaustive stretch-shortening cycle fatigue.

    PubMed

    Regueme, Sophie C; Nicol, Caroline; Barthèlemy, Joëlle; Grélot, Laurent

    2005-01-01

    Stretch-shortening cycle (SSC)-type fatigue is associated with acute and delayed functional defects, and appears to be a useful model to reveal the flexibility of both central and reflex adjustments to the contractile failure. SSC fatigue was induced in an experimental (EXP) group (n=6) on a sledge ergometer with an exhaustive rebound exercise with submaximal effort. The acute (POST) and 2-day delayed (2D) neuromuscular changes with fatigue were examined in a short submaximal rebound task (REBOUND) and in a maximal isometric plantarflexion test (ISOM). The EXP group results were compared to those of a control group (n=6) who did not perform the exhaustive SSC exercise and did not present any change in the tests. In the EXP group, the ISOM test revealed mostly a large decrease in maximal plantarflexion force at 2D that was correlated with the reduced mean soleus muscle (SOL) activation. Indicating "task-dependent" fatigue effects on the neural changes, the REBOUND test revealed both acute and delayed increases in SOL activation. Supporting central neural changes, SOL preactivation increased in POST and 2D. The neural flexibility along time and across muscles was demonstrated by the shifted increase in SOL activation from the braking phase in POST to the push-off phase in 2D, and associated increased gastrocnemius medialis preactivation in 2D. In contrast, activation during the stretch-reflex period was constant in POST, and decreased in 2D. These results would support the influence of musculotendinous afferents on the flexible neural adjustments to the SSC-induced contractile failure.

  3. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-09-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  4. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-07-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  5. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  6. Bond and low cycle fatigue behavior of thermoset composite reinforcing for the concrete industry

    SciTech Connect

    Barnes, B.

    1990-09-21

    This thesis encompasses two separate research projects. The first project, described in Chapter 2 was a project investigating the fatigue behavior of thermoset Fiber Composite (FC) sandwich wall ties. The second research project detailed in this thesis was a project studying the bond and tensile properties of FC rod and FC fibers.

  7. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2016-01-01

    A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.

  8. Fatigue-induced Reversible/Irreversible Structural-transformation Study of a Ni-based Superalloy Using Combined In-situ Neutron-Diffraction and Thermal Approaches

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Clausen, Bjorn; Liu, Yee-Lang; Kai, Ji-Jung; Ice, Gene E; Woods, Kyle P.; Liaw, Peter K

    2010-01-01

    Cyclic loading and the subsequent fatigue damage have been investigated with the in-situ neutron-diffraction and thermal characterization for a single-phase, polycrystal nickel-based alloy. The lattice-strain evolution is compared with the bulk parameters, such as the applied stress and the thermal response as a function of the fatigue cycles. The in-situ neutron-diffraction and thermal-evolution results identify the development of the five fatigue-damage stages. Fatigue damage is observed with bulk hardening, softening, and eventual saturation evident in both the diffraction patterns and the thermal-evolution features. An increase in the dislocation density and the formation of the patterned-dislocation structure are responsible for hardening within the early cycles. With further cyclic loading, the rearrangements of the dislocations result in the cyclic softening. The transition to saturation cycles is characterized by the anisotropy of the lattice strain evolution. The nonmonotonic thermal response and the irreversible anisotropy of the lattice-strain evolution are observed in the final saturation fatigue cycles. The fatigue-damage microstructure and dislocation-substructure evolution are studied with diffraction-profile analyses and complemented by the transmission-electron microscopy. The fluctuations of the differential dislocation density and size of the patterned substructure along with the in-situ thermal measurements reveal a second-order-kind structural transition and indicate the development of the irreversible fatigue-induced microstructure.

  9. Thermal-Fatigue Crack-Growth Characteristics and Mechanical Strain Cycling Behavior of A-286 Discaloy, and 16-25-6 Austenitic Steels

    NASA Technical Reports Server (NTRS)

    Smith, Robert W.; Smith, Gordon T.

    1960-01-01

    Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.

  10. Steam turbine development for advanced combined cycle power plants

    SciTech Connect

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  11. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  12. Thermal-economic analysis of organic Rankine combined cycle cogeneration

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-12-01

    An evaluation of organic rankine cycles (ORC) as combined with topping incorporating gas turbines or diesel engines, and with subsequent waste heat utilization is presented. It is found that the potential benefit of the proposed organic Rankine combined cycle cogeneration of useful heat and electricity is more flexible in meeting demands for the two products, by varying the mode of operation of the system. A thermal-economic analysis is developed and illustrated with cost and performance data for commercially available equipment, and with general economic parameters reflecting current regulations and market conditions. The performance of the ORC and of the entire combined cycle is described. Equations to evaluate the various thermodynamic and economic parameter, and the resultant case flows are presented. Criteria are developed to assess the addition of an ORC to a cogeneration system without ORC is viable based on rate of return on incremental investment. It is indicated that the proposed system is potentially viable, however, it is not viable under conditions prevailing in Chicago for the selected case studies.

  13. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  14. Combined cycle plants: Yesterday, today, and tomorrow (review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2016-07-01

    Gas turbine plants (GTP) for a long time have been developed by means of increasing the initial gas temperature and improvement of the turbo-machines aerodynamics and the efficiency of the critical components air cooling within the framework of a simple thermodynamic cycle. The application of watercooling systems that were used in experimental turbines and studied approximately 50 years ago revealed the fundamental difficulties that prevented the practical implementation of such systems in the industrial GTPs. The steam cooling researches have developed more substantially. The 300 MW power GTPs with a closedloop steam cooling, connected in parallel with the intermediate steam heating line in the steam cycle of the combined cycle plant (CCP) have been built, tested, and put into operation. The designs and cycle arrangements of such GTPs and entire combined cycle steam plants have become substantially more complicated without significant economic benefits. As a result, the steam cooling of gas turbines has not become widespread. The cycles—complicated by the intermediate air cooling under compression and reheat of the combustion products under expansion and their heat recovery to raise the combustion chamber entry temperature of the air—were used, in particular, in the domestic power GTPs with a moderate (700-800°C) initial gas turbine entry temperature. At the temperatures being reached to date (1300-1450°C), only one company, Alstom, applies in their 240-300 MW GTPs the recycled fuel cycle under expansion of gases in the turbine. Although these GTPs are reliable, there are no significant advantages in terms of their economy. To make a forecast of the further improvement of power GTPs, a brief review and assessment of the water cooling and steam cooling of hot components and complication of the GTP cycle by the recycling of fuel under expansion of gases in the turbine has been made. It is quite likely in the long term to reach the efficiency for the

  15. Overview of the Turbine Based Combined Cycle Discipline

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Walker, James F.; Pittman, James L.

    2009-01-01

    The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode

  16. Dynamic speckle interferometry of high-cycle material fatigue: Theory and some experiments

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. P.

    2016-06-01

    The objective of this paper was theoretical analysis of speckle dynamics in the image plane of a thin transparent object. It was suggested that speckle dynamics develops in simultaneous periodic motion of the sample, micro- and macro-variations of its refraction index and its translational motion. The results of the theory were contrasted with the data obtained in the fatigue tests with transparent object.

  17. Effect of Interfacial Roughness of Bond Coat on the Residual Adhesion Strength of a Plasma Sprayed TBC System after Thermal Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasuhiro; Fukanuma, Hirotaka; Ohno, Naoyuki

    The effect of the bond coat on residual adhesion strength after thermal cycle fatigue was investigated in plasma-sprayed thermal barrier coatings (TBC). This study used CoNiCrAlY powder with two different particle sizes for spraying bond coat material to examine the effect of interface roughness between the bond coat and top coat. In addition, the bond coat was sprayed on either by a high velocity oxy-fuel (HVOF) or a low pressure plasma spray (LPPS). The residual adhesion strength of the TBC top coat was evaluated as a function of the number of thermal cycles by the modified 4-point bending test. In addition, SEM observations of thermal fatigue cracking morphologies and measurements of the residual stress in the ceramic top coat were carried out. The experimental results indicated that, after thermal cycle fatigue, microcracks were generated in the ceramic top coat; however, they were moderated in a rough interface TBC compared to a smooth interface TBC. In addition, the bond coat sprayed by the HVOF method showed a higher resistance to microcracking than the coat sprayed using the LPPS. Residual stress in the ceramic top coat is almost zero at 0 thermal cycles. After thermal cycle fatigue, it becomes compressional stress; however, it is independent of the bond coat. There was little difference in the adhesion strength by bond coat in as-sprayed conditions. On the other hand, the specimen with a rough interface exhibited higher residual adhesion strength after thermal cycle fatigue compared with the specimens with a relatively smooth interface. In addition, if the bond coat is sprayed by HVOF, the residual adhesion strength increases. It was revealed that the difference in residual adhesion strength by bond coat is related to the distribution morphology of thermal fatigue microcracks.

  18. Effect of machining damage on low cycle fatigue crack initiation life in drilled holes in UdimetRTM 720

    NASA Astrophysics Data System (ADS)

    Magadanz, Christine M.

    White layer is a generic term for a light etching surface layer on metal alloys that can result under extreme deformation conditions in wear, sliding or machining. While there has been some characterization of white layer due to abusive machining, the specific effect on fatigue crack initiation life has not been well documented. This study aimed to establish a relationship between the presence of white layer due to abusive machining and fatigue crack initiation life in a wrought nickel based superalloy (Udimet ® 720). Low cycle fatigue testing was conducted on large specimens containing through holes drilled with parameters aimed at creating holes with and without white layer. Initially, Acoustic Emission monitoring technologies were used to monitor for acoustic events associated with crack initiation, however, this technology was deemed unreliable for this testing. Instead, cycles to crack initiation was determined using striation density measurements on each fracture surface to estimate the number of cycles of crack propagation, which was subtracted from the total number of cycles for the specimen. A total of sixteen specimens were tested in this manner. The results suggested that the crack initiation lives of holes machined with good machining parameters were statistically longer than crack initiation lives of holes machined with poor machining parameters. The mean initiation life of the poorly machined specimens was a factor of approximately 2 times shorter than the mean initiation life of the well machined specimens. The holes machined with good machining parameters exhibited subsurface initiations which suggested that no anomalies affected crack initiation for these specimens. It was also shown that some of the poorly machined holes exhibited subsurface initiations rather than initiations at white layer damage. These holes had better surface finish than the poorly machined specimens that did fail at white layer. The mean initiation life of the poorly

  19. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    PubMed

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  20. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue

    PubMed Central

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  1. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    PubMed

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.

  2. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a

  3. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model

    NASA Technical Reports Server (NTRS)

    Haid, Daniel A.; Gamble, Eric J.

    2011-01-01

    A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.

  4. Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of Inconel 713LC

    NASA Astrophysics Data System (ADS)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammad Mehdi; Zare, Esmail

    2016-01-01

    In this research, an Al-Si protective coating was applied on the surface of an IN713LC specimen using pack cementation method. Surface-treated and untreated specimens were exposed to low-cycle fatigue by tension-tension loading under total strain control at 1173 K (900 °C) in air. Based on the obtained results, the hardening/softening, cyclic stress-strain, and fatigue life curves were plotted and analyzed. The results showed that both the single-stage and two-stage coatings improved the fatigue life of the substrate. However, owing to more silicon content of single-stage coating compared to that of two-stage coating, the effect of single-stage coating was superior. The stress response of the treated material was lower compared with the untreated one. Observations of the specimen section and fracture surface examinations were used to analyze fatigue behavior of both coated and uncoated materials.

  5. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  6. Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)

    NASA Technical Reports Server (NTRS)

    Fahmy, A. A.; Cunningham, T. G.

    1976-01-01

    Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.

  7. Chronic fatigue syndrome: an approach combining self-management with graded exercise to avoid exacerbations.

    PubMed

    Nijs, Jo; Paul, Lorna; Wallman, Karen

    2008-04-01

    Controversy regarding the aetiology and treatment of patients with chronic fatigue syndrome continues among the medical professions. The Cochrane Collaboration advises practitioners to implement graded exercise therapy for patients with chronic fatigue syndrome using cognitive behavioural principles. Conversely, there is evidence that exercise can exacerbate symptoms in chronic fatigue syndrome, if too-vigorous exercise/activity promotes immune dysfunction, which in turn increases symptoms. When designing and implementing an exercise programme for chronic fatigue syndrome it is important to be aware of both of these seemingly opposing viewpoints in order to deliver a programme with no detrimental effects on the pathophysiology of the condition. Using evidence from both the biological and clinical sciences, this paper explains that graded exercise therapy for people with chronic fatigue syndrome can be undertaken safely with no detrimental effects on the immune system. Exercise programmes should be designed to cater for individual physical capabilities and should take into account the fluctuating nature of symptoms. In line with cognitive behaviourally and graded exercise-based strategies, self-management for people with chronic fatigue syndrome involves encouraging patients to pace their activities and respect their physical and mental limitations, with the ultimate aim of improving their everyday functioning.

  8. Bithermal low-cycle fatigue behavior of a NiCoCrAlY-coated single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  9. Bithermal Low-Cycle Fatigue Behavior of a NiCoCrAlY-Coated Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  10. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 1: Narloy Z

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for Narloy Z, a centrifugally cast, copper-base alloy. Tensile tests were performed at room temperature in air and in argon at 482, 538 and 593 C using an axial strain rate of .002/sec to the -1 power. In addition tensile tests were performed at 538 C in an evaluation of tensile properties at strain rates of .004 and .01/sec to the -1 power. Ultimate and yield strength values of about 315 and 200 MN/sq m respectively were recorded at room temperature and these decreased to about 120 and 105 respectively as the temperature was increased to 593 C. Reduction in area values were recorded in the range from 40 to 50% with some indication of a minimum ductility point at 538 C.

  11. Current activities in standardization of high-temperature, low-cycle-fatigue testing techniques in the United States

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Ellis, J. Rodney; Swindeman, Robert W.

    1990-01-01

    The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed.

  12. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling.

    PubMed

    Thomson, Rebecca L; Rogers, Daniel K; Howe, Peter R C; Buckley, Jonathan D

    2016-01-01

    Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P < 0.001), rHRIsig (2.25 ± 1.0 to 1.14 ± 0.7 beats · min(-1) · s(-1), P < 0.001) and rHRIexp (3.79 ± 2.07 to 1.98 ± 1.05 beats · min(-1) · s(-1), P = 0.001), and increased pre-exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P < 0.001). Pre-post run difference in time-trial performance was related to difference in rHRIsig (r = 0.58, P = 0.04 and r = 0.75, P = 0.003) but not rHRIexp (r = -0.04, P = 0.9 and r = 0.27, P = 0.4) when controlling for differences in pre-exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.

  13. Acute effects of an arginine-based supplement on neuromuscular, ventilatory, and metabolic fatigue thresholds during cycle ergometry.

    PubMed

    Zak, Roksana B; Camic, Clayton L; Hill, Ethan C; Monaghan, Molly M; Kovacs, Attila J; Wright, Glenn A

    2015-04-01

    The purpose of the present study was to examine the effects of an acute dose of an arginine-based supplement on the physical working capacity at the fatigue threshold (PWCFT), lactate threshold (LT), ventilatory threshold (VT), and peak oxygen uptake during incremental cycle ergometry. This study used a double-blinded, placebo-controlled, within-subjects crossover design. Nineteen untrained men (mean age ± SD = 22.0 ± 1.7 years) were randomly assigned to ingest either the supplement (3.0 g of arginine, 300 mg of grape seed extract, and 300 mg of polyethylene glycol) or placebo (microcrystalline cellulose) and performed an incremental test on a cycle ergometer for determination of PWCFT, LT, VT, and peak oxygen uptake. Following a 1-week period, the subjects returned to the laboratory and ingested the opposite substance (either supplement or placebo) prior to completing another incremental test to be reassessed for PWCFT, LT, VT, and peak oxygen uptake. The paired-samples t tests indicated there were significant (P < 0.05) mean differences between the arginine and placebo conditions for the PWCFT (192 ± 42 vs. 168 ± 53 W, respectively) and VT (2546 ± 313 vs. 2452 ± 342 mL·min(-1)), but not the LT (135 ± 26 vs. 138 ± 22 W), absolute peak oxygen uptake (3663 ± 445 vs. 3645 ± 438 mL·min(-1)), or relative peak oxygen uptake (46.5 ± 6.0 vs. 46.2 ± 5.0 mL·kg(-1)·min(-1)). These findings suggested that the arginine-based supplement may be used on an acute basis for delaying the onset of neuromuscular fatigue (i.e., PWCFT) and improving the VT in untrained individuals.

  14. Less is more: standard warm-up causes fatigue and less warm-up permits greater cycling power output.

    PubMed

    Tomaras, Elias K; MacIntosh, Brian R

    2011-07-01

    The traditional warm-up (WU) used by athletes to prepare for a sprint track cycling event involves a general WU followed by a series of brief sprints lasting ≥ 50 min in total. A WU of this duration and intensity could cause significant fatigue and impair subsequent performance. The purpose of this research was to compare a traditional WU with an experimental WU and examine the consequences of traditional and experimental WU on the 30-s Wingate test and electrically elicited twitch contractions. The traditional WU began with 20 min of cycling with a gradual intensity increase from 60% to 95% of maximal heart rate; then four sprints were performed at 8-min intervals. The experimental WU was shorter with less high-intensity exercise: intensity increased from 60% to 70% of maximal heart rate over 15 min; then just one sprint was performed. The Wingate test was conducted with a 1-min lead-in at 80% of optimal cadence followed by a Wingate test at optimal cadence. Peak active twitch torque was significantly lower after the traditional than experimental WU (86.5 ± 3.3% vs. 94.6 ± 2.4%, P < 0.05) when expressed as percentage of pre-WU amplitude. Wingate test performance was significantly better (P < 0.01) after experimental WU (peak power output = 1,390 ± 80 W, work = 29.1 ± 1.2 kJ) than traditional WU (peak power output = 1,303 ± 89 W, work = 27.7 ± 1.2 kJ). The traditional track cyclist's WU results in significant fatigue, which corresponds with impaired peak power output. A shorter and lower-intensity WU permits a better performance. PMID:21551012

  15. Gas turbine and combined-cycle capacity enhancement

    SciTech Connect

    1995-01-01

    This report presents interim results of a study of capacity enhancement of gas turbines and combined cycles. A portion of the study is based on a tailored collaboration study for Missouri Public Service. The techniques studied include water injection, steam injection, increased firing temperature, supercharging, and inlet cooling for the gas turbines. The inlet cooling approaches cover evaporative cooling with and without media, water cooling, thermal energy storage (TES) systems using ice or water and continuous refrigeration. Results are given for UTC FT4/GG4, GE MS5001, MS7001, W501 and W251 gas turbines. Duct firing of a three-pressure HRSG for peaking capacity is investigated. The GE PG7221(FA) is used as the reference gas turbine for this combined cycle. The results to-date indicate that the utilities have a number of viable options for capacity enhancement that are dependent on the mission of the gas turbine, local climate, and the design of the gas turbine.

  16. The development of combined-cycle power plants in China

    SciTech Connect

    Chu Guoyu

    1996-10-01

    In order to reduce environmental pollution and meet the needs of peak load regulation and power load increase, according to China`s ``The Ninth Five-Year Plan`` and ``The Development Plan of Electric Power Industry for 2010,`` oil and gas may be imported to build properly sized combined-cycle power plants in southeast coastal areas where there is fuel shortage while the economy develops relatively fast. In the past 17 years, China`s reform and opening to the outside world has brought about continuous, quick, and healthy development of the national economy. The people`s living standard has been improving progressively, while the commercial power consumption and the power consumption for livelihood have also been increased swiftly and significantly. This year, due to the practice of working 5 days a week and some other reasons, the peak-valley load difference of the power grid has become larger, being generally above 35%. This just calls for improving the peak-load regulating capability of the grid. However, the small-unit capacity thermal power generating units within the grid have poor peak-load regulating capability, while most of the hydropower plants in the grid provide run-off generation and have no peak-load regulating capability. Therefore, in some power grids, pumped-storage hydropower plants are built to meet this requirement. Accordingly, it seems quite necessary and suitable to build a number of combined-cycle power plants.

  17. Influence of different stimulation frequencies on power output and fatigue during FES-cycling in recently injured SCI people.

    PubMed

    Eser, Prisca C; Donaldson, Nick de N; Knecht, Hans; Stüssi, Edgar

    2003-09-01

    This study investigated whether power output during 30 min sessions of functional electrical stimulation (FES)-cycling can be increased by using stimulation frequencies higher than 30 Hz. The stimulation frequencies of FES-cycling training sessions of 19 recently injured para- and tetraplegics were randomly set at 30, 50, or 60 Hz and power output (PO) was measured continually. The mean PO of the 30 min, the PO of the last minute of each session, and the minimum PO were significantly greater at 60 and 50 Hz than at 30 Hz (ANOVA without cross-product). A 19% and 25% higher mean PO was reached at 50 and 60 Hz, respectively, compared to 30 Hz. The PO of the last minute of each session was almost always higher than the mean PO of the whole session and also higher at higher frequencies, which indicates that no muscle fatigue could be detected in 30 min FES-cycling at any of the tested frequencies.

  18. Effects of acupuncturing Pishu combined with Ginsenoside Rg3 on the immune function of rats with chronic fatigue

    PubMed Central

    Zhang, Wenjing; Zhang, Yue; Ma, Xiande; Chen, Yiguo

    2015-01-01

    Objective: This study was designed to investigate the effects of acupuncturing Pishu combined with Ginsenoside Rg3 on the immune function of rats with chronic fatigue. Methods: Forty male SD rats were equally randomized into control group, chronic fatigue system group (CFS), Ginsenoside Rg3 (Rg3) group, acupuncture group and acupuncture combined with Ginsenoside Rg3 (A+Rg3) group. Rats with chronic fatigue were established by bounding and forced swimming in cold water once daily for 21 days except control group, then the rats in the acupuncture and A+Rg3 group were treated by manual acupuncture stimulation of bilateral “Pishu” once daily for 7 days. Ginsenoside Rg3 was administered by intravenous to the rats of the A+Rg3 and Rg3 group for 7 days in dosages of 2 mg/kg body weight, and two markers of physical fatigue were evaluated: body weight and blood lactic acid (LA). The percentages of CD3+ lymphocytes, CD4+ lymphocytes, and CD8+ lymphocytes in the spleens of the rats were evaluated using flow cytometric analysis. Serum IFN-gamma (IFN-γ) and IL-4 contents were detected by ELISA. Results: Increased body weight and reduced blood LA concentrations were found in the rat of Rg3 group and A+Rg3 group than that in CFS group. The rat of Rg3 group and A+Rg3 group also showed a significant increase in the percentage of CD4+ lymphocytes and a significant decrease in the percentage of CD8+ lymphocytes and correct CD4+/CD8+ ratio. Compared with the CFS group, the level of IFN-γ in the Rg3, acupuncture and A+Rg3 groups was reduced and IL-4 was increased. Conclusions: Acupuncture and Rg3 can improve the immune system activity of CFS rats and acupuncturing Pishu combined with Rg3 was significantly superior compared with Rg3 and acupuncture, respectively. PMID:26770528

  19. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  20. Gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

    1994-09-01

    The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

  1. The NASA ASTP Combined-Cycle Propulsion Database Project

    NASA Technical Reports Server (NTRS)

    Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)

    2000-01-01

    The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended

  2. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-xAg-0.7Cu

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-07-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  3. Thermal fatigue: The impact of the length of time step on the amount of stress cycles

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2013-10-01

    One of the degradation processes in stones and other building materials is caused by cyclic thermal stress. For the determination of the amount and amplitude of the thermal stress cycles may be used numerical simulation. The length of time step during simulation of thermal cycles significantly affected the magnitude and the amount of cycles because the intensity of global solar radiation may vary during the time. The dependence of temperature and stress response of the damaged stone block on the length of time step is described in this paper.

  4. Combining passive thermography and acoustic emission for large area fatigue damage growth assessment of a composite structure

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-05-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.

  5. ASPEN modeling of steam bottoming cycles for gasification combined cycle power plants

    SciTech Connect

    Culberson, O.L.; Begovich, J.M.; Graves, R.L.; Kahl, W.K.

    1986-02-01

    A generalized flowsheet for steam bottoming cycle coal gasification combined cycle power plants was developed from the analysis of reports describing some twelve of those plants. ASPEN was used to obtain a computer program for the simulation of such plants through the generalized model. The ASPEN program, after modifications necessary to handle the configuration of a thirteenth plant, successfully simulated that plant. A custom ASPEN program also prepared to simulate that plant suggested that custom programs for these plants are preferable to the use of the generalized program. Another custom ASPEN program was prepared to simulate a very complex and sophisticated steam bottoming plant and confirmed the superiority of using the custom program approach. ASPEN again proved to be capable of duplicating the vendor's results and would be useful in examining various flowsheet configurations and process conditions. 15 refs.

  6. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  7. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  8. Coal-gasification combined-cycle power generation

    SciTech Connect

    Roberts, J.A.

    1984-06-01

    Rolls-Royce has joined forces with Foster Wheeler to offer a modern power plant that integrates the benefits of coal gasification with the efficiency advantages of combined-cycle power generation. Powered by fuel gas from two parallel Lurgi slagging gasifiers, the 150-MW power station employs two Rolls-Royce SK60 gas-turbine generating sets. The proposed plant is designed for continuous power generation and should operate efficiently down to one-third of its rated capacity. Rolls estimates that the installed cost for this station would be lower than that for a conventional coal-fired station of the same output with comparable operating costs. Cooling water requirements would be less than half those of a coal-fired station.

  9. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.

    PubMed

    Islam, Md Nurul; Arai, Yoshio; Araki, Wakako

    2015-02-01

    The present study proposes the use of ultrasonic back-reflected waves for evaluating low cycle fatigue crack growth from persistent slip bands (PSBs) of stainless steel under block loading. Fatigue under high-low block loading changes the back-reflected intensity of the ultrasonic wave that emanates from the surface. Measuring the change in ultrasonic intensity can predict the start of crack growth with reasonable accuracy. The present study also proposes a modified constant cumulative plastic strain method and a PSB damage evolution model to predict the onset of crack growth under block loads.

  10. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    SciTech Connect

    Kibitkin, Vladimir V. Solodushkin, Andrey I. Pleshanov, Vasily S.

    2015-10-27

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  11. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Smith, Timothy D.

    1998-01-01

    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  12. Combined glucose ingestion and mouth rinsing improves sprint cycling performance.

    PubMed

    Chong, Edwin; Guelfi, Kym J; Fournier, Paul A

    2014-12-01

    This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202 W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p < .05). Mean power output during the sprint was significantly higher in the glucose trial compared with maltodextrin (p < .05) and also tended to be higher than the water trial (p = .075). Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract.

  13. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 2: NASA 1.1, Glidcop, and sputtered copper alloys

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for five advance copper-base alloys: Sputtered Zr-Cu as received, sputtered Zr-Cu heat-treated, Glidcop AL-10, and NASA alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 C using an axial strain rate of 0.002/sec. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538C using an axial strain rate of 0.002/sec to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. It was found that the fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatique life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/sec was evaluated along with the effect of strain rates of 0.0004 and 0.01/sec at 538 C. Hold-time data are reported for the NASA 1-1B alloy at 538 C using 5 minute hold periods in tension only and compression only at two different strain range values. Hold periods in tension were much more detrimental than hold periods in compression.

  14. Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.

    1976-01-01

    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.

  15. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  16. Time-frequency and principal-component methods for the analysis of EMGs recorded during a mildly fatiguing exercise on a cycle ergometer.

    PubMed

    von Tscharner, Vinzenz

    2002-12-01

    Electromyographic signals contain the information on muscle activity and have to be frequently averaged, compared, classified or details need to be extracted. A time-frequency analysis, based on wavelets, was previously presented. The analysis transformed an EMG signal into an EMG-intensity-pattern showing the intensities at any point in time for the frequencies filtered out by the wavelets. The purpose of the present study was:to define and apply a new EMG-pattern-space for the analysis of EMG-intensity-patterns; and to determine the variation of EMG-intensity-patterns while getting mildly fatigued by cycling on a cycle-ergometer. The coordinates spanning the pattern space were principal components of the measured EMG-intensity-patterns. A point in pattern-space thus represented an EMG-intensity-pattern. Fatigue resulted in points moving along a line in pattern space. The line was characterized by an intercept at time 0 and a slope. Thus mild fatigue caused a shift from an initial intensity-pattern representing the intercept to a final intensity-pattern adding gradually larger amounts of the pattern representing the slope. The intensity-pattern of the slope revealed the physiologically important individual strategies for coping with mild fatigue. Changes were observed at different times and at different frequencies during the cycling movement.

  17. The influence of the muscle fiber pennation angle and innervation zone on the identification of neuromuscular fatigue during cycle ergometry.

    PubMed

    Camic, Clayton L; Housh, Terry J; Hendrix, C Russell; Zuniga, Jorge M; Bergstrom, Haley C; Schmidt, Richard J; Johnson, Glen O

    2011-02-01

    The purpose of the present investigation was to compare the electromyographic (EMG) responses and the estimated physical working capacity at the fatigue threshold (PWC(FT)) values recorded from electrode arrangements placed: (1) parallel to the muscle fiber pennation angle (MFPA), (2) parallel to the long axis of the femur, and (3) over the innervation zone (IZ) during incremental cycle ergometry. Thirteen college-aged males and females (mean age ± SD=22.4 ± 3.4 years) performed an incremental test to exhaustion on a cycle ergometer. A linear electrode array was utilized to determine the MFPA and location of the IZ of the vastus lateralis (VL). For determination of the PWC(FT) values, EMG signals were recorded from three bipolar electrode arrangements at different locations over the VL. The results of a one-way repeated measures ANOVA indicated there were no significant (p<0.05) mean differences in PWC(FT) values among the electrode arrangements (parallel to the MFPA=190 ± 36 W; parallel to the long axis of the femur=194 ± 40 W; and over the IZ=199 ± 51 W) or the EMG amplitude and MPF values at the common power outputs. There were also significant correlations (r=0.75-0.91) among the three electrode arrangements for PWC(FT) values. These findings suggested that the PWC(FT), like absolute EMG amplitude and MPF, is robust to the influence of electrode placement over the IZ as well as the orientation with respect to the MFPA during cycle ergometry.

  18. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganehgheshlaghi, Mohannad

    2014-01-01

    The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.

  19. Statistical optimisation techniques in fatigue signal editing problem

    SciTech Connect

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-03

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  20. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    SciTech Connect

    Konovalov, Sergey Alsaraeva, Krestina Gromov, Victor Semina, Olga; Ivanov, Yurii

    2015-10-27

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  1. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  2. Daily Social Enjoyment Interrupts the Cycle of Same-day and Next-day Fatigue in Women with Fibromyalgia

    PubMed Central

    Yeung, Ellen W.; Davis, Mary C.; Aiken, Leona S.; Tennen, Howard A.

    2014-01-01

    Background Fatigue is a debilitating symptom of fibromyalgia (FM) that has limited treatment options. Some evidence, however, has linked positive social engagement with reduced within-day fatigue. Purpose This study elaborated longitudinal within-day and across-day relations between FM fatigue and social enjoyment. Methods 176 women with FM completed 21-day automated diaries assessing morning and end-of-day fatigue, and both afternoon social enjoyment and stress within two social domains: non-spousal and spousal. Results In the non-spousal domain, analysis supported a mediational path from lower morning fatigue to higher afternoon social enjoyment, which predicted lower end-of-day fatigue, and subsequently, lower next-morning fatigue. Enjoyment exerted a greater impact on within-day fatigue than did stress. Patterns in the spousal domain were similar, but the mediated path was nonsignificant. Conclusions Positive social engagement offers relief from FM fatigue that carries over across days and may provide an additional target to enhance the effectiveness of current interventions. PMID:25380634

  3. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  4. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  5. Rocket-Based Combined Cycle Engine Concept Development

    NASA Technical Reports Server (NTRS)

    Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.

  6. The combination of short rest and energy drink consumption as fatigue countermeasures during a prolonged drive of professional truck drivers.

    PubMed

    Ronen, Adi; Oron-Gilad, Tal; Gershon, Pnina

    2014-06-01

    One of the major concerns for professional drivers is fatigue. Many studies evaluated specific fatigue countermeasures, in many cases comparing the efficiency of each method separately. The present study evaluated the effectiveness of rest areas combined with consumption of energy drinks on professional truck drivers during a prolonged simulated drive. Fifteen professional truck drivers participated in three experimental sessions: control-drivers were asked to drink 500 ml of a placebo drink prior to the beginning of the drive. Energy drink-drivers were asked to drink 500 ml of an energy drink containing 160 mg of caffeine prior to the beginning of the drive, and an Energy drink+Rest session--where the drivers were asked to drink 500 ml of an energy drink prior to driving, and rest for 10 min at a designated rest area zone 100 min into the drive. For all sessions, driving duration was approximately 150 min and consisted of driving on a monotonous, two-way rural road. In addition to driving performance measures, subjective measures, and heart rate variability were obtained. Results indicated that consumption of an energy drink (in both sessions) facilitated lower lane position deviations and reduced steering wheel deviations during the first 80-100 min of the drive relative to the control sessions. Resting after 100 min of driving, in addition to the energy drink that was consumed before the drive, enabled the drivers to maintain these abilities throughout the remainder of the driving session. Practical applications: Practical applications arising from the results of this research may give indication on the possible added value of combining fatigue counter measures methods during a prolonged drive and the importance of the timing of the use for each method.

  7. A Combined Experimental/Computational Investigation of a Rocket Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Trexler, Carl A.; Goldman, Allen L.

    2001-01-01

    A rocket based combined cycle inlet geometry has undergone wind tunnel testing and computational analysis with Mach 4 flow at the inlet face. Performance parameters obtained from the wind tunnel tests were the mass capture, the maximum back-pressure, and the self-starting characteristics of the inlet. The CFD analysis supplied a confirmation of the mass capture, the inlet efficiency and the details of the flowfield structure. Physical parameters varied during the test program were cowl geometry, cowl position, body-side bleed magnitude and ingested boundary layer thickness. An optimum configuration was determined for the inlet as a result of this work.

  8. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... per day would be required for cooling water makeup, steam cycle makeup, and other processes. The... Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA--Notice of... proposed by HECA would demonstrate Integrated Gasification Combined Cycle (IGCC) technology with...

  9. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 1: Preliminary results for 12 alloys at 1000 F (538 C)

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Short-term tensile evaluations at room temperature and 538 C and low-cycle fatigue evaluations at 538 C are presented for the following materials: Zirconium copper-annealed, Zirconium copper-1/4 hard, Zirconium copper-1/2 hard, Tellurium copper-1/2 hard, Chromium copper-SA and aged, OFHC copper-hard, OFHC copper-1/4 hard, OFHC copper-annealed, Silver-as drawn, Zr-Cr-Mg copper-SA, CW and aged, Electroformed copper-30-35 ksi, and Co-Be-Zr- copper-SA, aged. A total of 50 tensile tests and 76 low-cycle fatigue tests were performed using a strain rate of 0.2 percent per second.

  10. Dynamic response and acoustic fatigue of stiffened composite structure

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1984-01-01

    The results of acoustic fatigue and dynamic response tests performed on L-1011 graphite-epoxy (GrE) aileron and panel components are reported. The aileron featured glass microballoons between the GrE skins. Tests yielded random fatigue data from double and single cantilever coupons and modal data from impedance hammer and loudspeaker impulses. Numerical and sample test data were obtained on combined acoustic and shear loads, acoustic and thermal loads, random fatigue and damping of the integrally stiffened and secondary bonded panels. The fatigue data indicate a fatigue life beyond 10 million cycles. The acoustic data suggested that noise transmission could be enhanced in the integrally stiffened panels, which were more acoustic-fatigue resistant than were the secondary bonded panels.

  11. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  12. Long-term cancer-related fatigue outcomes in patients with locally advanced prostate cancer after intensity-modulated radiotherapy combined with hormonal therapy

    PubMed Central

    Luo, Hua-Chun; Lei, Yong; Cheng, Hui-Hua; Fu, Zhi-Chao; Liao, Shao-Guang; Feng, Jing; Yin, Qin; Chen, Qun-Hua; Lin, Gui-Shan; Zhu, Jin-Feng; Xu, Jian-Feng; Wang, Dian

    2016-01-01

    Abstract The aim of our study was to investigate the relationship between cancer-related fatigue and clinical parameters, and the effect factors of fatigue for the prostate cancer patients. Long-term follow-up is performed using the Fatigue Symptom Inventory before treatment (A), at the end of intensity-modulated radiotherapy (B), and 3 months (C), 12 months (D), 24 months (E), 36 months (F), and 48 months (G) after the end of intensity-modulated radiotherapy. Three dimensions of fatigue are assessed during follow-up: severity, perceived interference with quality of life, and duration in the past week. In all, 97 patients with locally advanced prostate cancer were enrolled in the study. Median follow-up time was 43.9 months. The fatigue index was significantly higher in the prostate-specific antigen >20 ng/mL, Gleason score >8, the Eastern Cooperative Oncology Group scores, and the higher education. The most severe fatigue occurred at time points B and C. The score for duration of fatigue fluctuated across the time points, with significantly increased scores at time points D, E, and F. In conclusion, we show that cancer-related fatigue is the important symptom which affects the quality of life for the prostate cancer patients. For patients with locally advanced prostate cancer with a high Eastern Cooperative Oncology Group score, a Gleason score of >8 points, prostate-specific antigen levels of >20 ng/mL, and high education, attention should be paid to the interference of fatigue with quality of life, especially general level of activity, ability to concentrate, and mood, after radiotherapy combined with hormonal therapy. PMID:27336890

  13. Simulation of ionomer membrane fatigue under mechanical and hygrothermal loading conditions

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-04-01

    Understanding the fatigue lifetime of common perfluorosulfonic acid (PFSA) ionomer membranes under fluctuating hygrothermal conditions is essential for the development of durable fuel cell technologies. For this purpose, a finite element based fatigue lifetime prediction model is developed based on an elastic-plastic constitutive model combined with a Smith-Watson-Topper (SWT) fatigue formulation. The model is validated against previously reported experimental results for a membrane under cyclic mechanical loadings. The validated model is then utilized to investigate the membrane fatigue lifetime in ex-situ applications under cyclic humidity and temperature conditions. The simulations suggest that the membrane fatigue lifetime is shorter under fluctuating humidity loadings than for temperature loadings. Additionally, the membrane fatigue lifetime is found to be more sensitive to the amplitude of the strain oscillations than to the mean strain under hygrothermal cycling. Most notably, the model predicts that simultaneous humidity and temperature cycling can exacerbate the fatigue process and reduce the fatigue lifetime by several orders of magnitude compared to isolated humidity or temperature cycling. The combination of measured mechanical fatigue data and the present numerical model provides a useful toolkit for analysis of membrane fatigue due to hygrothermal variations, which can be costly and time-consuming when addressed experimentally.

  14. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise.

    PubMed

    Sundberg, Christopher W; Bundle, Matthew W

    2015-07-01

    We investigated the influence of altered muscle duty cycle on the performance decrements and neuromuscular responses occurring during constant-load, fatiguing bouts of knee extension exercise. We experimentally altered the durations of the muscularly inactive portion of the limb movement cycle and hypothesized that greater relative durations of inactivity within the same movement task would 1) reduce the rates and extent of muscle performance loss and 2) increase the forces necessary to trigger muscle fatigue. In each condition (duty cycle = 0.6 and 0.3), male subjects [age = 25.9 ± 2.0 yr (SE); mass = 85.4 ± 2.6 kg], completed 9-11 exhaustive bouts of two-legged knee extension exercise, at force outputs that elicited failure between 4 and 290 s. The novel duty cycle manipulation produced two primary results; first, we observed twofold differences in both the extent of muscle performance lost (DC0.6 = 761 ± 35 N vs. DC0.3 = 366 ± 49 N) and the time course of performance loss. For example, exhaustive trials at the midpoint of these force ranges differed in duration by more than 30 s (t0.6 = 36 ± 2.6 vs. t0.3 = 67 ± 4.3 s). Second, both the minimum forces necessary to exceed the peak aerobic capacity and initiate a reliance on anaerobic metabolism, and the forces necessary to elicit compensatory increases in electromyogram activity were 300% greater in the lower vs. higher duty cycle condition. These results indicate that the fatigue-induced compensatory behavior to recruit additional motor units is triggered by a reliance on anaerobic metabolism for ATP resynthesis and is independent of the absolute level or fraction of the maximum force produced by the muscle.

  15. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise

    PubMed Central

    Sundberg, Christopher W.

    2015-01-01

    We investigated the influence of altered muscle duty cycle on the performance decrements and neuromuscular responses occurring during constant-load, fatiguing bouts of knee extension exercise. We experimentally altered the durations of the muscularly inactive portion of the limb movement cycle and hypothesized that greater relative durations of inactivity within the same movement task would 1) reduce the rates and extent of muscle performance loss and 2) increase the forces necessary to trigger muscle fatigue. In each condition (duty cycle = 0.6 and 0.3), male subjects [age = 25.9 ± 2.0 yr (SE); mass = 85.4 ± 2.6 kg], completed 9–11 exhaustive bouts of two-legged knee extension exercise, at force outputs that elicited failure between 4 and 290 s. The novel duty cycle manipulation produced two primary results; first, we observed twofold differences in both the extent of muscle performance lost (DC0.6 = 761 ± 35 N vs. DC0.3 = 366 ± 49 N) and the time course of performance loss. For example, exhaustive trials at the midpoint of these force ranges differed in duration by more than 30 s (t0.6 = 36 ± 2.6 vs. t0.3 = 67 ± 4.3 s). Second, both the minimum forces necessary to exceed the peak aerobic capacity and initiate a reliance on anaerobic metabolism, and the forces necessary to elicit compensatory increases in electromyogram activity were 300% greater in the lower vs. higher duty cycle condition. These results indicate that the fatigue-induced compensatory behavior to recruit additional motor units is triggered by a reliance on anaerobic metabolism for ATP resynthesis and is independent of the absolute level or fraction of the maximum force produced by the muscle. PMID:25876654

  16. Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators.

    PubMed

    Alvarenga-Filho, Helcio; Sacramento, Priscila M; Ferreira, Thais B; Hygino, Joana; Abreu, Jorge Eduardo Canto; Carvalho, Sonia Regina; Wing, Ana Cristina; Alvarenga, Regina Maria Papais; Bento, Cleonice A M

    2016-04-15

    Fatigue is a common and disabling symptom of multiple sclerosis (MS), a classical Th1- and Th17-mediated autoimmune disease. There is no effective pharmacological treatment for fatigue, but some reports point towards beneficial effects of physical activity on management of the fatigue in MS patients. As both MS and fatigue have been associated with dysregulated cytokine network production, the objective of the present study was to evaluate the impact of a physical activity program consisting of a 12-week series of combining Pilates and aerobic exercises on fatigue severity, determined by FSS, and cytokine production, quantified by ELISA, by T cells from MS patients (n=08) with low disability (EDSS≤2). The results showed decrease in FSSs in all patients at the end of physical activity intervention. Regarding the cytokines, a significant reduction of IL-22 release was observed in polyclonally-activated T cells form MS patients post-training follow-up. Interestingly, while the physical activity attenuated the ability of dopamine in up-regulating Th17-related cytokines, it enhanced the anti-inflammatory effects of serotonin, evidenced by high IL-10 production. In summary, all results suggest that programmed physical activity has beneficial effects on management of fatigue in MS patients, and it could be related, at least in part, to its ability in regulating neuroimmune parameters into T cell compartment. PMID:27049568

  17. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R.; Arunkumar, N.; Manzoor Hussian, M.

    Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014) alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  18. Vacuum thermal-mechanical fatigue testing of two iron base high temperature alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1974-01-01

    Ultrahigh vacuum elevated temperature low cycle fatigue and thermal fatigue tests of 304 stainless steel and A-286 alloy have shown significant effects of frequency and combined temperature-strain cycling on fatigue life. At constant temperature, the cyclic life of both alloys was lower at lower frequencies. Combined temperature-strain cycling reduced fatigue life with respect to isothermal life at the maximum temperature of the thermal cycle. Life reductions with in-phase thermal cycling (tension at high temperature, compression at low temperature) were attributed to grain boundary cavitation caused by unreversed tensile grain boundary sliding. The proposed mechanism for out-of-phase cavity generation involved accumulation of unreversed compressive grain boundary displacements which could not be geometrically accomodated by intragranular deformation in the low-ductility A-286 alloy.

  19. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  20. Frequency-Dependent Low Cycle Fatigue of Sn1Ag0.1Cu(In/Ni) Solder Joints Subjected to High-Frequency Loading

    NASA Astrophysics Data System (ADS)

    Wong, E. H.; Seah, S. K. W.; Shim, V. P. W.

    2014-02-01

    The low-cycle-fatigue characteristics of solder joints, formed by reflowing Sn98.8/Ag1.0/Cu0.1/In0.05/Ni0.02 solder over electroless nickel immersion gold-plated copper pads, were investigated by dynamic cyclic bending of printed circuit boards (PCBs). The PCB strain amplitudes were varied from 1.2 × 10-3 to 2.4 × 10-3 and the flexural frequencies ranged from 30 Hz to 150 Hz, to simulate drop impact-induced PCB resonant frequencies. A trend of drastically decreasing fatigue life with cyclic frequency was observed, in contrast with previous reports indicating the reverse; this is attributed to the different failure mechanisms activated. A systematic procedure involving optimization followed by transformation was used to condense the strain-frequency-life data into a master curve expressed in strain-life space.

  1. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    DOE PAGESBeta

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal andmore » mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less

  2. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  3. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  4. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  5. Combination of sago and soy-protein supplementation during endurance cycling exercise and subsequent high-intensity endurance capacity.

    PubMed

    Ghosh, Asok Kumar; Rahaman, A Abdul; Singh, Rabindarjeet

    2010-06-01

    The purpose of the study was to investigate whether a combination of sago and soy protein ingested during moderate-intensity cycling exercise can improve subsequent high-intensity endurance capacity compared with a carbohydrate in the form of sago and with a placebo. The participants were 8 male recreational cyclists with age, weight, and VO2max of 21.5 +/- 1.1 yr, 63.3 +/- 2.4 kg, and 39.9 +/- 1.1 ml . kg(-1) . min(-1), respectively. The design of the study was a randomized, double-blind placebo-controlled crossover comprising 60 min of exercise on a cycle ergometer at 60% VO2max followed by a time-to-exhaustion ride at 90% VO2max. The sago feeding provided 60 g of carbohydrate, and the sago-soy combination provided 52.5 g of carbohydrate and 15 g of protein, both at 20-min intervals during exercise. Times to exhaustion for the placebo, sago, and sago-soy supplementations were 4.09 +/- 1.28, 5.49 +/- 1.20, and 7.53 +/- 2.02 min, respectively. Sago-soy supplementation increased endurance by 84% (44-140%; p < .001) and by 37% (15-63%; p < .05) relative to placebo and sago, respectively. The plasma insulin response was elevated above that with placebo during sago and sago-soy supplementations. The authors conclude that a combination of sago and soy protein can delay fatigue during high-intensity cycling.

  6. Bithermal fatigue - A link between isothermal and thermomechanical fatigue

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Mcgaw, Michael A.; Bill, Robert C.; Fanti, Paolo D.

    1988-01-01

    A technique for bithermal fatigue testing is presented in which the tensile and compressive halves of the cycle are conducted isothermally at two significantly different temperatures. With reference to experimental results obtained for a nickel-base superalloy, B1900 + Hf, it is shown that bithermal fatigue testing is a simple alternative to thermomechanical fatigue and can provide a conservative determination of thermomechanical fatigue life for creep damage dominated failure modes. Bithermal fatigue results can be directly related to thermomechanical fatigue results through the use of an appropriate damage rule.

  7. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    SciTech Connect

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  8. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  9. Probabilistic Failure Assessment For Fatigue

    NASA Technical Reports Server (NTRS)

    Moore, Nicholas; Ebbeler, Donald; Newlin, Laura; Sutharshana, Sravan; Creager, Matthew

    1995-01-01

    Probabilistic Failure Assessment for Fatigue (PFAFAT) package of software utilizing probabilistic failure-assessment (PFA) methodology to model high- and low-cycle-fatigue modes of failure of structural components. Consists of nine programs. Three programs perform probabilistic fatigue analysis by means of Monte Carlo simulation. Other six used for generating random processes, characterizing fatigue-life data pertaining to materials, and processing outputs of computational simulations. Written in FORTRAN 77.

  10. An analysis of the deformation approach to calculation of the life of hydrogen impregnated 1Kh16N4B steel in low-cycle fatigue

    SciTech Connect

    Litvin, V.V.; Anan'evskii, V.A.; Mints, A.I.

    1986-01-01

    This paper presents the results of experimental investigations and an analysis of the applicability of the deformation approach for calculation of the life of 1Kh16N4B steel in low-cycle fatigue. Hydrogen impregnation was done with use of cathodic polarization in a special cell with a polarization current density of 35 mA/cm/sup 2/ for 60 min. The test results are presented, and it can be seen that the influence of hydrogen absorption significantly changes the life of 1Kh16N4B steel, but the Coffin-Kavomoto criterion does not give satisfactory results.

  11. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  12. The application of cycling and cycling combined with feedback in the rehabilitation of stroke patients: a review.

    PubMed

    Barbosa, David; Santos, Cristina P; Martins, Maria

    2015-02-01

    Stroke is a leading cause of long-term disabilities, such as hemiparesis, inability to walk without assistance, and dependence of others in the activities of daily living. Motor function rehabilitation after stroke demands for methods oriented to the recovery of the walking capacity. Because of the similarities with walking, cycling leg exercise may present a solution to this problem. The aim of this article is to review the state of the art applications of cycling leg exercise as a (1) motor function rehabilitation method and an (2) aerobic training method for stroke patients as well as the commonly used (3) assessment tools. The cycling characteristics and applications, the applied test protocols as well as the tools used to assess the state and the recovery of patients and types of cycling devices are presented. In addition, the potential benefits of the use of other therapies, like feedback, together with cycling are explored. The application of cycling leg exercise alone and combined with feedback in stroke rehabilitation approaches has shown promising results. Positive effects on motor abilities were found in subacute and chronic patients. However, larger and normalized studies and assessments are needed because there is a high heterogeneity in the patients' characteristics, protocols and metrics. This wil allow the comparison between different studies related with cycling.

  13. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  14. Comparative thermal fatigue resistances of twenty-six nickel and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1975-01-01

    Thermal fatigue resistances were determined from fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials with directional solidification and surface protection of definite benefit. The alloy-coating combination with the highest thermal fatigue resistance was directionally solidified NASA TAZ-8A with an RT-XP coating. It oxidation resistance was excellent, showing almost no weight change after 15 000 fluidized bed cycles.

  15. A combined NDE-fatigue testing and three-dimensional image processing study of a SiC/SiC composite system

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Ghosn, Louis J.; Baaklini, George Y.; Rauser, Richard W.; Zima, John D.

    2004-07-01

    Non destructive evaluation (NDE) is a critical technology for improving the quality of a component in a cost-sparing production environment. NDE detects variations in a material or a component without altering or damaging the test piece. Using these techniques to improve the production process requires characterization of the faults and their influence on the component performance. This task depends on the material properties and on the complexity of the component geometry. Hence, the NDE technique is applied to study the structural durability of ceramic matrix composite materials used in gas turbine engine applications. Matrix voids are common anomalies generated during the melt infiltration process. The effects of these matrix porosities are usually associated with a reduction in the initial overall composite stiffness and an increase in the thermal conductivity of the component. Furthermore, since the role of the matrix as well as the coating is to protect the fibers from the harsh engine environments, the current design approach is to limit the design stress level of CMC components to always be below the first matrix cracking stress. In this study, the effect of matrix porosity on the matrix cracking stress is evaluated using a combined fatigue tensile testing, NDE, and 3 D image processing approach. Computed Tomography (CT) is utilized as the NDE technique to characterize the initial matrix porosity"s locations and sizes in various CMC test specimens. The three dimensional volume rendering approach is exercised to construct the 3 D volume of the specimen based on the geometric modeling of the specimen's CT results using image analysis and geometric modeling software. The same scanned specimens are then fatigue tested to various maximum loads and temperatures to depict the matrix cracking locations in relation to the initial damage. The specimen are then re-scanned and checked for further anomalies and obvious changes in the damage state. Finally, rendered

  16. Fatigue behavior of unirradiated V-5Cr-5Ti

    SciTech Connect

    Gieseke, B.G.; Stevens, C.O.; Grossbeck, M.L.

    1995-04-01

    The objective of this research is to determine the low cycle fatigue behavior of V-5Cr-5Ti alloys for a range of temperatures and the extent of environmental effects at ambient temperatures. The results of in-vacuum low cycle fatigue tests are presented for unirradiated V-5Cr-5Ti tested at room temperature, 240, and 400{degree}C. A comparison of the fatigue data generated in rough and high vacuums shows that a pronounced environmental degradation of the fatiuge properties exists in this alloy at room temperature. Fatigue life was reduced by as much as 84%. Cyclic stress range data and SEM observations suggest that this reduction is due to a combination of increases in rates of crack initiation and subsequent growth. The relative contribution of each difference is dependent upon the strain range.

  17. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  18. Waste-heat boiler application for the Vresova combined cycle plant

    SciTech Connect

    Vicek, Z.

    1995-12-01

    This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.

  19. An Experimental Study of Fatigue Crack Growth in Aluminum Sheet Subjected to Combined Bending and Membrane Stresses

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1997-01-01

    An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.

  20. Performance potential of combined cycles integrated with low-Btu gasifiers for future electric utility applications

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.

    1977-01-01

    A comparison and an assessment of 10 advanced utility power systems on a consistent basis and to a common level of detail were analyzed. Substantial emphasis was given to a combined cycle systems integrated with low-Btu gasifiers. Performance and cost results from that study were presented for these combined cycle systems, together with a comparative evaluation. The effect of the gasifier type and performance and the interface between the gasifier and the power system were discussed.

  1. German experiences in local fatigue monitoring

    SciTech Connect

    Abib, E.; Bergholz, S.; Rudolph, J.

    2012-07-01

    are the various manual control options and also different operating modes. It is clear that showing the covering of real loads by design loads, requires a relatively complex and well-qualified detection process. The difficulty of this task is increased due to the lack of data or incomplete information and the exclusive reliance on existing operation plant data. The strategy of employing local fatigue monitoring is a straightforward solution enabling the direct measurement of loads on the fatigue-sensitive zones. Nowadays a direct derivation of the complete stress tensor at the fatigue-relevant locations is enabled thanks to the recorded local loads and combination with finite element (FE) analyses. So, additionally to the recorded temperature curves, a representation of the time evolution of the six stress components for each monitored component is possible. This allows the application of the simplified elasto-plastic fatigue check according to design codes. The fatigue level can be realistically analyzed with a suitable cycle-counting method. Furthermore, the knowledge of the time evolution of the stresses and strains enables to take into account an environmental factor to include the corrosive fluid influence in the calculations. Without local recording, it is impossible to calculate realistic fatigue usage. AREVA offers the AREVA fatigue concept (AFC) and the new fatigue monitoring system integrated (FAMOSi), necessary tools to monitor local fatigue and to provide realistic assessment. (authors)

  2. Thermal Cycling Fatigue in DIPs Mounted with Eutectic Tin-Lead Solder Joints in Stub and Gullwing Geometries

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was first to make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age. Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.

  3. A limit-cycle model of leg movements in cross-country skiing and its adjustments with fatigue.

    PubMed

    Cignetti, F; Schena, F; Mottet, D; Rouard, A

    2010-08-01

    Using dynamical modeling tools, the aim of the study was to establish a minimal model reproducing leg movements in cross-country skiing, and to evaluate the eventual adjustments of this model with fatigue. The participants (N=8) skied on a treadmill at 90% of their maximal oxygen consumption, up to exhaustion, using the diagonal stride technique. Qualitative analysis of leg kinematics portrayed in phase planes, Hooke planes, and velocity profiles suggested the inclusion in the model of a linear stiffness and an asymmetric van der Pol-type nonlinear damping. Quantitative analysis revealed that this model reproduced the observed kinematics patterns of the leg with adequacy, accounting for 87% of the variance. A rising influence of the stiffness term and a dropping influence of the damping terms were also evidenced with fatigue. The meaning of these changes was discussed in the framework of motor control.

  4. An indentation fatigue strength law

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing; Yonezu, Akio; Chen, Xi

    2010-05-01

    Indentation fatigue, where a cyclic load is applied on the sample via an indenter, emerges as an alternative approach for measuring the fatigue properties of materials. We have carried out indentation fatigue tests on a poly(vinyl chloride) (PVC) bulk material, as well as on TiN and NiP films/coatings deposited on SUS304 steel substrates, and demonstrate that a simple power-law relationship can be established between the indentation load amplitude and number of cycles to failure. Such a law is very similar to the conventional fatigue strength law obtained from uniaxial tests. The agreement between the fatigue stress exponents obtained by uniaxial and indentation fatigue tests suggests the potential applicability of the indentation fatigue technique for extracting the fatigue properties of materials.

  5. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  6. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  7. A study of female nurses combining partner and parent roles with working a continuous three-shift roster: the impact on sleep, fatigue and stress.

    PubMed

    Clissold, Gemma; Smith, Peter; Accutt, Bruce; Di Milia, Lee

    2002-06-01

    This study of female nurses working a continuous 3-shift roster found that the average sleep duration per 24-hours across the roster is almost one hour less for nurses who combine shiftwork, partner and parent roles. In particular, they are not free to use the later starting afternoon shift as an opportunity to repay the sleep debt incurred on night shift. The results show an interaction between work and family roles resulting in chronic fatigue that is a risk factor especially when combined with the acute fatigue associated with night work. The sleep record data is supported by interview data which highlight shiftwork as a stressor that reduces the opportunity for participation in social and leisure activities by all three of the groups studied: single, partnered and partnered with children. The strain of shiftwork on personal and social relationships reduces the resources available for coping with the emotional and physical stressors encountered by nurses in their work and family roles.

  8. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    than for the conventional processes, the improved power plant capacity results in the potential for significant reductions in the plant cost-of-electricity, about 4.5% for the Current Standards case, and more than 7% for the Future Standards case. For Methanol Synthesis, the Novel Gas Cleaning process scheme again shows the potential for significant advantages over the conventional gas cleaning schemes. The plant generating capacity is increased more than 7% and there is a 2.3%-point gain in plant thermal efficiency. The Total Capital Requirement is reduced by about 13% and the cost-of-electricity is reduced by almost 9%. For both IGCC Methanol Synthesis cases, there are opportunities to combine some of the filter-reactor polishing stages to simplify the process further to reduce its cost. This evaluation has devised plausible humid-gas cleaning schemes for the Filter-Reactor Novel Gas Cleaning process that might be applied in IGCC and Methanol Synthesis applications.

  9. Optimization Of The Alternate Cycle In A Membrane Aeration/Filtration Combined Bioreactor

    NASA Astrophysics Data System (ADS)

    Wang, Hongjie; Dong, Wenyi; Yang, Yue; Gan, Guanghua; Li, Weiguang

    2010-11-01

    In this study, a membrane aeration/filtration combined bioreactor (CMBR) was constructed, and the effect of alternate cycle by CMBR on membrane fouling and oxygen utilization efficiency (OUE) was investigated. Results showed that under the condition, when the alternate cycle was 0.75˜3h, the ΔTMP (TMP value of the time when a filtration cycle was over) of CMBR maintained a basically constant value during the 6 days' continuous operation, which implied the CMBR achieved a favorable effect of the membrane fouling relieving. Too short or too long cycle would lead to a gradual increase of ΔTMP. OUE of CMBR increased with the extension of the alternate cycle. Thus, it suggested that the optimal alternate cycle of CMBR should be 3h.

  10. The analysis of fatigue crack growth mechanism and oxidation and fatigue life at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1988-01-01

    Two quantitative models based on experimentally observed fatigue damage processes have been made: (1) a model of low cycle fatigue life based on fatigue crack growth under general-yielding cyclic loading; and (2) a model of accelerated fatigue crack growth at elevated temperatures based on grain boundary oxidation. These two quantitative models agree very well with the experimental observations.

  11. Fatigue and thermal fatigue of Pb-Sn solder joints

    SciTech Connect

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55/sup 0/C and 125/sup 0/C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb.

  12. Bithermal fatigue: A simplified alternative to thermomechanical fatigue

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.

  13. The History and Promise of Combined Cycle Engines for Access to Space Applications

    NASA Technical Reports Server (NTRS)

    Clark, Casie

    2010-01-01

    For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.

  14. Thermal-stress fatigue behavior of twenty-six superalloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  15. Clinical neurophysiology of fatigue.

    PubMed

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  16. Low-cycle Fatigue and Dynamic Fracture in Gold Thin Films on SiN Supported Membranes

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Newell, J. M.; MacNeal, P. D.; Ruiz, R. P.; Holmes, W. A.; Yun, M.; Mulder, J. L.; Koch, T. C.; Bock, J. J.; Lange, A. E.

    2005-01-01

    This slide presentation focuses on the dynamic mechanical response and fatigue behavior in sub-micron thick Au-films deposited onto amorphous Si(sub X)N(sub y) substrates, with spider-web geometry, that were subjected to forced vibration (3-axis random vibration with 2 kHz roll-off frequency). The work is to advance cyrogenic detectors that can operate at 100mK, that is required to create cryogenic detectors that are to search for present day signatures of the big bang.

  17. Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 °C

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Chaturvedi, M. C.; Chen, D. L.

    2004-11-01

    Symmetrical push-pull low-cycle fatigue (LCF) tests were performed on INCONEL 718 (IN718) containing 12, 29, 60, and 100 ppm B at 650 °C. The results showed that all the alloys experienced a relatively short period of initial cyclic hardening at low strain amplitudes, followed by a regime of saturation or slightly continuous cyclic softening. The initial cyclic hardening phase decreased with increasing strain amplitudes, and disappeared at the high strain amplitudes. A serrated flow was observed in the plastic regions of cyclic stress-strain hysteresis loops. The saturated cyclic stress amplitude at a given strain amplitude was highest for the alloy with 60 ppm B, and lowest for the alloy with 12 ppm B. The LCF lifetime increased with increasing B concentration up to 60 ppm, and then decreased as the B content increased from 60 to 100 ppm. Fractographic analysis suggested that the fracture mode changed from intergranular to transgranular cracking as the B concentration increased. The characteristic deformation microstructures produced by LCF tests at 650 °C, examined via transmission electron microscopy, were regularly spaced arrays of planar deformation bands on {111} slip planes in all four alloys. A ladderlike structure was observed in some local regions in the alloy with 12 ppm B. Heavily deformed planar deformation bands were observed in the fatigued specimens with 100 ppm B. The mechanism of improvement in the LCF life of IN718 due to B addition is discussed.

  18. High degree decentralization for the optimum thermoeconomic design of a combined cycle

    SciTech Connect

    Benelmir, R. . Lab. d'Energetique et automatique); Evans, R.B. . George W. Woodruff School of Mechanical Engineering); Spakovsky, M.R. Von . Dept. de mecanique)

    1992-01-01

    Decentralized design methods will always greatly facilitate the optimum design of large engineering systems whenever a High Degree of Decentralization (HDD) is achieved. HDD allows the optimization of each component by itself without significantly sacrificing the overall system optimum. In this paper, a primary engineering component costing expression is introduced, resulting in a significant HDD - called Primary Decentralized Thermoeconomic Design - for the design of gas turbine cycles with or without a steam power bottoming cycle. This costing expression is a compromise between simplicity and a representative model for engineering component costing. A requirement for such an expression is that it provides a balance not only between the capital cost expenditures and the dissipation of exergy, but also between the capital cost and the dissipation of heat removal capacity. In fact, additional exergy dissipation always results in the dissipation of more heat, which must be removed from the overall power generation cycle. Applied to a combined cycle (a gas and steam turbine cycle), such decentralization serves to show how the steam power bottoming cycle assists the gas turbine cycle. This approach produces a significant HDD which allows engineers to study many more possible improvements in combined cycles than could otherwise be considered.

  19. Exploratory Thermal-mechanical Fatigue Results for Rene' 80 in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Sheinker, A. A.

    1978-01-01

    A limited study was conducted of the use of strainage partitioning for predicting the thermalmechanical fatigue life of cast nickel-base superalloy Rene' 80. The fatigue lives obtained by combined inphase thermal and mechanical strain cycling between 400 C (752 F) and 1000 C (1802 F) in an ultrahigh vacuum were considerably shorter than those represented by the four basic partitioned inelastic strainrange fatigue life relationships established previously for this alloy at 871 C (1600 F) and 1000 C (1832 F) in an ultrahigh vacuum. This behavior was attributed to the drastic decrease in ductility with decreasing temperature for this alloy. These results indicated that the prediction of the thermal-mechanical fatigue life of Rene' 80 by the method of strainrange partioning may be improved if based on the four basic fatigue life relationships determined at a lower temperature in the thermal-mechanical strain cycle.

  20. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    NASA Technical Reports Server (NTRS)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  1. Effect of sodium environment on the low cycle fatigue properties of modified 9Cr-1Mo ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Sandhya, R.; Ganesan, V.; Valsan, M.; Bhanu Sankara Rao, K.

    2009-02-01

    Modified 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of liquid metal cooled fast breeder reactors (LMFBRs). The steam generator has been designed to operate for 30-40 years. It is important to accurately determine the life of the components in the actual environment in order to consider the extension of life beyond the design life. With this objective in view, a programme has been initiated at our laboratory to evaluate the effects of flowing sodium on the LCF behaviour of modified 9Cr-1Mo steel. LCF tests conducted in flowing sodium environment at 823 K and 873 K exhibited cyclic softening behaviour both in air and sodium environments. The fatigue lives are significantly improved in sodium environment when compared to the data obtained in air environment under identical testing conditions. The lack of oxidation in sodium environment is considered to be responsible for the delayed crack initiation and consequent increase in fatigue life. Comparison of experimental lifetimes with RCC-MR design code predictions indicated that the design curve based on air tests is too conservative.

  2. Effec of high-temperature decomposition of the solid solution on the low-cycle fatigue resistance of semifinished products made of aluminum alloy 1163

    SciTech Connect

    Teleshov, V.V.; Kuzginov, V.I.; Golovleva, A.P.

    1995-11-01

    The surface of anodized parts made of 1163T aluminum alloy that are produced by mechanical treatment of large pressed or rolled semifinished products exhibits dark regions. These regions have a higher electrical conductivity {gamma} than the rest of the anodized surface, colored light-yellow. Some authors explain the appearance of the dark stains by high-temperature decomposition of the solid solution, which is initiated by secondary heating of these surface regions due to the heat of surrounding volumes in random interruptions of the cooling process. The aim of the present work is to refine the dependence of {gamma}on the endurance in tests for low-cycle fatigue of specimens from semifinished products made of 1163 alloy in order to establish the intensity of the decrease of the endurance and the admissible increase of {gamma} in the region of dark stains.

  3. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  4. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis. PMID:26306846

  5. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis.

  6. Combined Ageing and Thermal Cycling of Compressive Mica Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-06-30

    Hybrid Phlogopite mica seals were evaluated in a combined ageing and thermal cycling test. Two interlayers were investigated: a glass and a metallic foil. Samples were first aged at 800 degrees C for {approx}500 or {approx}1000 hrs in a simulated SOFC environment, followed by short-term thermal cycling. The results of hybrid mica with glass interlayer showed extensive reaction and poor thermal cycle stability after ageing for 1036 hrs and 21 thermal cycles. Use of the brazing alloy as the interlayer showed no interaction with mica over 504 hrs, and reasonable leak rates were maintained through eight cycles. The leakage development was found to be consistent with fracture surface and microstructure analyses.

  7. Mechanisms underlying muscle fatigue differ between multiple sclerosis patients and controls: a combined electrophysiological and neuroimaging study.

    PubMed

    Steens, A; Heersema, D J; Maurits, N M; Renken, R J; Zijdewind, I

    2012-02-15

    Increased sense of fatigue is an important and conspicuous symptom in multiple sclerosis (MS). Muscle fatigue is associated with increased sense of fatigue in MS (Steens et al., 2011). The aim of this study was to investigate mechanisms that can explain muscle fatigue in MS patients and controls. We assessed changes in cortical activation (BOLD), voluntary activation (twitch interpolation) and muscle force during a sustained maximal voluntary contraction (MVC) in twenty MS patients and twenty healthy controls. In control participants, individual differences in force decline (mean 65% MVC, 8 SD) during the sustained maximal contraction could be accounted for by differences in maximal voluntary force (R(2): 0.49, p = 0.001); stronger participants presented a larger force decline. The small decline in voluntary activation (mean 7.8%, 11.8 SD) did not contribute significantly to the force decline. During the sustained contraction, the force decline was accompanied by an increase in cortical activation in the main motor areas. In MS patients, the differences in the decline in force (mean 67% MVC, 9 SD) were significantly associated (R(2): 0.51, p = 0.001) with a decline in voluntary activation (mean 20.1%, 20.6 SD) and not with maximal force or decline in rest twitch. The corresponding cortical activation in motor areas showed an increase in the first two intervals of the sustained contraction but declined during the last interval. Our data indicate that muscle fatigue during a sustained contraction in MS patients is associated with changes in the voluntary activation that are not sufficiently compensated by increased cortical activation. Control participants, however, show increased cortical activation to compensate for these fatigue-related changes in voluntary activation and the major cause of force decline is therefore to be found in the periphery (muscles).

  8. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  9. Effect of L-ornithine hydrochloride ingestion on intermittent maximal anaerobic cycle ergometer performance and fatigue recovery after exercise.

    PubMed

    Demura, Shinichi; Morishita, Koji; Yamada, Takayoshi; Yamaji, Shunsuke; Komatsu, Miho

    2011-11-01

    L-Ornithine plays an important role in ammonia metabolism via the urea cycle. This study aimed to examine the effect of L-ornithine hydrochloride ingestion on ammonia metabolism and performance after intermittent maximal anaerobic cycle ergometer exercise. Ten healthy young adults (age, 23.8 ± 3.9 year; height, 172.3 ± 5.5 cm; body mass, 67.7 ± 6.1 kg) with regular training experience ingested L-ornithine hydrochloride (0.1 g/kg, body mass) or placebo after 30 s of maximal cycling exercise. Five sets of the same maximal cycling exercise were conducted 60 min after ingestion, and maximal cycling exercise was conducted after a 15 min rest. The intensity of cycling exercise was based on each subject's body mass (0.74 N kg(-1)). Work volume (watt), peak rpm (rpm) before and after intermittent maximal ergometer exercise and the following serum parameters were measured before ingestion, immediately after exercise and 15 min after exercise: ornithine, ammonia, urea, lactic acid and glutamate. Peak rpm was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion. Serum ornithine level was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion immediately and 15 min after intermittent maximal cycle ergometer exercise. In conclusion, although maximal anaerobic performance may be improved by L-ornithine hydrochloride ingestion before intermittent maximal anaerobic cycle ergometer exercise, the above may not depend on increase of ammonia metabolism with L-ornithine hydrochloride.

  10. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  11. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  12. The use of ultrasonic signals and optical method to estimate the damage of materials after fatigue loading

    NASA Astrophysics Data System (ADS)

    Mishakin, V. V.; Mitenkov, F. M.; Klyushnikov, V. A.; Danilova, N. V.

    2010-12-01

    The influence of fatigue load of steels on parameters of ultrasonic and microplastic characteristics has been studied. A phenomenological theory, which connects process of damage accumulation (before appearance of crack) under fatigue loading with acoustic parameters and microplastic parameters, has been developed. Experimental studies showed that the combination of nondestructive methods of control (acoustical and optical) allows one to estimate the state of materials at an early stage of destruction in both low-cycle and high-cycle areas.

  13. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  14. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  15. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    SciTech Connect

    Sebesta, J.J.; Hoskins, W.W. )

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors.

  16. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  17. Surface contact fatigue and flexural fatigue of dental restorative materials.

    PubMed

    McCabe, J F; Wang, Y; Braem, M

    2000-06-01

    Antagonistic contact on a dental restoration may produce surface and subsurface stresses leading to fatigue wear as well as to bulk stressing, eventually causing catastrophic failure. It was the aim of the present work to study the outcome of two different approaches to fatigue testing of materials involving either surface contact fatigue or flexural fatigue mechanisms. A range of materials was tested, including conventional glass-ionomers, resin-modified glass-ionomers, poly-acid modified composites, and composites. Materials were prepared and tested using both surface contact and flexural fatigue. The results show that conventional glass-ionomers have the least resistance to fatigue under both regimes while composites have the longest fatigue lives and the highest values of flexural fatigue limit. However, the results also support the fact that catastrophic failure should be investigated separately from surface contact fatigue. Within the group of composite products tested, a hybrid composite material had a significantly greater flexural fatigue limit than a microfilled one, but the latter material had a significantly greater surface contact fatigue life, indicating that wear behavior cannot be predicted from bulk fracture characteristics and vice versa. The process of wear occurs by a combination of a number of fundamental processes, and the contribution fatigue makes will vary according to the environment and nature of the material.

  18. Study of the off-design performance of integrated coal gasification combined-cycle power plants

    SciTech Connect

    Phillips, J.N.

    1986-01-01

    An Integrated Coal Gasification Combined-Cycle (IGCC) plant is a combined-cycle plant fueled by coal. A combined-cycle plant consists of one or more gas turbines with a Rankine (i.e., steam) bottoming cycle. The coal is first gasified to produce a synfuel which can be combusted in a gas turbine after particles and sulfur compounds are removed. The exhaust from the gas turbine is then used to raise steam for the Rankine bottoming cycle. A computer simulation model for the steady-state operation of an IGCC plant was developed. The model uses the ASPEN advanced flowsheet simulation software package as a framework. ASPEN's built-in unit operation models were augmented by six component models developed for this study including a numerical finite differencing scheme which used the diffusion approximation to evaluate the radiant heat transfer in the syngas coolers, the Stanford Turbine Evaluation Program (STEP) which extended the algorithms of General Electric for steam turbine performance analysis, and a heat-exchanger model that used Kays and London's methodology and data. The effect of ambient air temperature and part-load operation on a commercial scale IGCC plant was investigated and strategies to mitigate off-design performance penalties were examined.

  19. Practical feasibility of advanced steam systems for combined-cycle power plants: Final report

    SciTech Connect

    Not Available

    1988-05-01

    Over the past decade, advances in gas turbine design have lead to significant advances in the performance of simple cycle units. Higher turbine outlet temperatures with modern gas turbines provide an opportunity for improvements in the steam bottoming cycle of combined cycle configurations as well. This report covers the study, conducted under EPRI Project RP2052-2, to evaluate the practical feasibility of various steam cycle improvement approaches. The concept of ''Fully Reserved Cost of Electricity'' (FRCOE), developed for assessing the practical merits of proposed cycle improvement schemes, is described. FRCOE assigns cost penalties for the loss of availability or increased uncertainty due to any complexity introduced by these schemes. Experience with existing units incorporating advanced features is described, together with the technology limits to some of the advanced features. Practical feasibility assessments of steam bottoming cycle configurations, such as multiple steam pressures and reheating, are presented. Assessment of adjustments in steam cycle parameters included steam throttle pressure, superheater approach, pinch point, economizer approach and condensing pressure. Using data for a representative advanced gas turbine and conservative component availability estimates, the assessments found that lowering the pinch point has the greatest beneficial effects on the FRCOE. Favorable FRCOE results from two-pressure and nonreheat cycles. Only minor benefits acrue from lower superheater and economizer approaches, and throttle pressures above 1500 psi. There is no universally optimum system. At low fuel costs and low capacity factors, cycle improvements leading to loss of availabililty are not found to be economically justifiable. Conversely, at high fuel costs and capacity factors, these complex high performance cycles result in economically advantageous plants. Each plant application needs to be specifically analyzed. 3 refs., 17 figs., 8 tabs.

  20. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  1. Steam turbines produced by the Ural Turbine Works for combined-cycle plants

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Bilan, V. N.; Paneque Aguilera, H. C.; Sakhnin, Yu. A.; Shekhter, M. V.; Stepanov, M. Yu.; Polyaeva, E. N.

    2013-08-01

    The most interesting and innovative solutions adopted in the projects of steam turbines for combined-cycle plants with capacities from 115 to 900 MW are pointed out. The development of some ideas and components from the first projects to subsequent ones is shown.

  2. The combined oral contraceptive pill and the assumed 28-day cycle.

    PubMed

    Dowse, M St Leger; Gunby, A; Moncad, R; Fife, C; Smerdon, G; Bryson, P

    2007-07-01

    Some studies involving women taking the combined oral contraceptive pill (COCP) have on occasion assumed the COCP group to have a rigid 28-day pharmaceutically driven cycle. Anecdotal evidence suggests otherwise, with many women adjusting their COCP usage to alter the time between break-through bleeds for sporting and social reasons. A prospective field study involving 533 scuba diving females allowed all menstrual cycle lengths (COCP and non-COCP) to be observed for up to three consecutive years (St Leger Dowse et al. 2006). A total of 29% of women were COCP users who reported 3,241 cycles. Of these cycles, only 42% had a rigid 28-day cycle, with the remainder varying in length from 21 to 60 days. When performing studies involving the menstrual cycle, it should not be assumed that COCP users have a rigid confirmed 28-day cycle and careful consideration should be given to data collection and analysis. The effects of differing data interpretations are shown.

  3. Fractographic evaluation of creep effects on strain-controlled fatigue-cracking of AISI 304LC and 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1978-01-01

    Analysis of high temperature low cycle fatigue of AISI 304LC and 316 stainless steels by the method of strainrange partitioning results in four separate strainrange versus life relationships, depending upon the way in which creep-strain and plastic strain are combined within a cycle. Fractography is used in this investigation of the creep-fatigue interaction associated with these cycles. The PP and PC-cycle fractures were transgranular. The PC-cycle resulted in fewer cycles of initiation and shorter total cyclic life for the same applied inelastic strainrange. The CC-cycle had mixed transgranular and intergranular fracture, fewer cycles of initiation and shorter cycle life than PP or PC. The CP-cycle had fully integranular cracking, and failed in fewer cycles than were required for cracks to initate for PP,PC, and CC.

  4. High temperature low cycle fatigue mechanisms for nickel base and a copper base alloy. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Shih, C. I.

    1982-01-01

    Damage mechanisms were studied in Rene' 95 and NARloy Z, using optical, scanning and transmission in microscopy. In necklace Rene' 95, crack initiation was mainly associated with cracking of surface MC carbides, except for hold time tests at higher strain ranges where initiation was associated more with a grain boundary mechanism. A mixed mode of propagation with a faceted fracture morphology was typical for all cycle characters. The dependence of life on maximum tensile stress can be demonstrated by the data falling onto three lines corresponding to the three tensile hold times, in the life against maximum tensile stress plot. In NARloy Z, crack initiation was always at the grain boundaries. The mode of crack propagation depended on the cycle character. The life decreased with decreasing strain rate and with tensile holds. In terms of damage mode, different life prediction laws may be applicable to different cycle characters.

  5. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    SciTech Connect

    Miura, N.; Fujioka, T.; Kashima, K.

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  6. Microstructural effects on the room and elevated temperature low cycle fatigue behavior of Waspaloy. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.

    1982-01-01

    Longitudinal specimens of Waspaloy containing either coarse grains with small gamma or fine grains with large gamma were tested in air at a frequency of 0.33 Hz or 0.50 Hz. The coarse grained structures exhibited planar slip on (III) planes and precipitate shearing at all temperatures. Cracks initiated by a Stage 1 mechanism and propagated by a striation forming mechanism. At 700 C and 800 C, cleavage and intergranular cracking were observed. Testing at 500 C, 700 C, and 800 C caused precipitation of grain boundary carbides. At 700 C, carbides precipitated on slip bands. The fine grained structures exhibited planar slip on (111) planes. Dislocations looped the large gamma precipitates. This structure led to stress saturation and propagation was observed. Increasing temperatures resulted in increased specimen oxidation for both heat treatments. Slip band and grain boundary oxidation were observed. At 800 C, oxidized grain boundaries were cracked by intersecting slip bands which resulted in intergranular failure. The fine specimens had crack initiation later in the fatigue life, but with more rapid propagation crack propagation.

  7. An engineering approach to the prediction of fatigue behavior of unnotched/notched fiber reinforced composite laminates

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Mclaughlin, P. V., Jr.

    1978-01-01

    An engineering approach is proposed for predicting unnotched/notched laminate fatigue behavior from basic lamina fatigue data. The fatigue analysis procedure was used to determine the laminate property (strength/stiffness) degradation as a function of fatigue cycles in uniaxial tension and in plane shear. These properties were then introduced into the failure model for a notched laminate to obtain damage growth, residual strength, and failure mode. The approach is thus essentially a combination of the cumulative damage accumulation (akin to the Miner-Palmgren hypothesis and its derivatives) and the damage growth rate (similar to the fracture mechanics approach) philosophies. An analysis/experiment correlation appears to confirm the basic postulates of material wearout and the predictability of laminate fatigue properties from lamina fatigue data.

  8. Analysis of a New Rocket-Based Combined-Cycle Engine Concept at Low Speed

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Trefny, C. J.

    1999-01-01

    An analysis of the Independent Ramjet Stream (IRS) cycle is presented. The IRS cycle is a variation of the conventional ejector-Ramjet, and is used at low speed in a rocket-based combined-cycle (RBCC) propulsion system. In this new cycle, complete mixing between the rocket and ramjet streams is not required, and a single rocket chamber can be used without a long mixing duct. Furthermore, this concept allows flexibility in controlling the thermal choke process. The resulting propulsion system is intended to be simpler, more robust, and lighter than an ejector-ramjet. The performance characteristics of the IRS cycle are analyzed for a new single-stage-to-orbit (SSTO) launch vehicle concept, known as "Trailblazer." The study is based on a quasi-one-dimensional model of the rocket and air streams at speeds ranging from lift-off to Mach 3. The numerical formulation is described in detail. A performance comparison between the IRS and ejector-ramjet cycles is also presented.

  9. Etude des effets du climat nordique sur la duree de vie en fatigue en tension des composites unidirectionnels de fibres de verre et d'epoxy

    NASA Astrophysics Data System (ADS)

    Brassard, David

    Northern regions of Canada present a huge potential for wind energy production. Unfortunately, it introduces new challenges regarding the operating conditions. This thesis presents a study on the effects of northern climate on the fatigue life of unidirectional glass fibre/epoxy composites. Following a review of previous researches in that field, we provide the results of the present study. Under controlled experimental conditions, we examined the individual and combined effects of low temperatures, moisture content, and freeze-thaw cycles on the fatigue life under tension load of composites. These results were compared to dry and room temperature conditions that served as a baseline. Statistical analysis suggests that thermal cycles between 40 °C and -40 °C do not affect the average fatigue life of unidirectional composites. Freeze-thaw cycles detrimentally affects the interface observed after failure of the specimens. At high stresses, moisture content decreases fatigue life while at low stresses, moisture content increases fatigue life probably due to an increase in ductility of the epoxy matrix. Low temperature did not affect the fatigue life of dry samples, but increased the fatigue life of specimens for moisture conditioned samples. In dry conditions, Northern climates do not negatively affect the fatigue life of unidirectional composites. Freeze-thaw cycles also did not affect fatigue life of unidirectionnal composites. Future research should test its effect on the interface in multidirectional composites.

  10. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  11. Fatigue of fiberglass beam substructures

    SciTech Connect

    Mandell, J.F.; Combs, D.W.; Samborsky, D.D.

    1995-09-01

    Composite material beams representative of wind turbine blade substructure have been designed, fabricated, and tested under constant amplitude flexural fatigue loading. Beam stiffness, strength, and fatigue life are predicted based on detailed finite element analysis and the materials fatigue database developed using standard test coupons and special high frequency minicoupons.Beam results are in good agreement with predictions when premature adhesive and delamination failures are avoided in the load transfer areas. The results show that fiberglass substructures can be designed and fabricated to withstand maximum strain levels on the order of 8,000 microstrain for about 10{sup 6} cycles with proper structural detail design and the use of fatigue resistant laminate constructions. The study also demonstrates that the materials fatigue database and accurate analysis can be used to predict the fatigue life of composite substructures typical of blades.

  12. Towards a Delamination Fatigue Methodology for Composite Materials

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2007-01-01

    A methodology that accounts for both delaminaton onset and growth in composite structural components is proposed for improved fatigue life prediction to reduce life cycle costs and improve accept/reject criteria for manufacturing flaws. The benefits of using a Delamination Onset Threshold (DOT) approach in combination with a Modified Damage Tolerance (MDT) approach is highlighted. The use of this combined approach to establish accept/reject criteria, requiring less conservative initial manufacturing flaw sizes, is illustrated.

  13. Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms

    NASA Astrophysics Data System (ADS)

    Venkata Rao, R.; Patel, Vivek

    2012-08-01

    This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.

  14. Quantification of fatigue crack propagation of an austenitic stainless steel in mercury embrittlement

    NASA Astrophysics Data System (ADS)

    Naoe, Takashi; Yamaguchi, Yoshihito; Futakawa, Masatoshi

    2012-12-01

    Liquid metals are expected to be used as nuclear materials, such as coolant for nuclear reactors and spallation targets for neutron sources, because of their good thermal conductivity and neutron production. However, in specific combinations, liquid metals have the potential to degrade structural integrity of solid metals because of Liquid Metal Embrittlement (LME). In this study, the effect of mercury immersion on fatigue crack propagation rate in SUS316 was investigated through fatigue tests with a notched specimen under mercury immersion. FRActure Surface Topography Analysis (FRASTA) with the measurement of the notch opening distance was performed to estimate the fatigue crack growth rate in mercury. The results showed that the fatigue crack growth rate was slightly higher in mercury than that in the air in the low cycle fatigue region. This suggests that the crack propagation is accelerated by mercury immersion in high stress imposition regions.

  15. Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.

    1999-01-01

    Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.

  16. Integrated operation and management system for a 700MW combined cycle power plant

    SciTech Connect

    Shiroumaru, I. ); Iwamiya, T. ); Fukai, M. )

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  17. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    SciTech Connect

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  18. Integrated gasification combined-cycle research development and demonstration activities in the U.S.

    SciTech Connect

    Ness, H.M.

    1994-12-31

    The United States Department of Energy (DOE) has selected seven integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D)program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  19. Combined cycle testing experience applied to on-line performance monitoring

    SciTech Connect

    DesJardins, R.R.; Chung-Sherg Liu

    1995-12-31

    Combined cycle plants account for an increasing share of new power projects in progress throughout the world today. The financial performance of many of these projects depends on the thermal performance of the plant. Further, market competition puts added pressure on these plants to operate at high levels of availability and thermal efficiency. On-line performance monitoring is one technique that has proven successful in achieving and maintaining goals for optimum performance. The combined cycle plant presents a special challenge to the performance engineer seeking to trend and assess plant condition. Seasonal and daily fluctuations in ambient conditions cause the plant to operate at varying levels of plant efficiency and capacity. Therefore, measured performance must be corrected to standard conditions before day-to-day comparisons can be made. An on-line monitoring system using a proven correction methodology has been installed at the 522-MWe combined-cycle Stony Brook Energy Center in Ludlow, Massachusetts. The correction methodology was developed and employed at General Physics Corporation for combined cycle plant acceptance testing. The on-line system is PC-based and operates on the plant`s local area network. Historical performance information and real-time graphical displays are available to all levels of plant personnel, including control room operators, shift supervisors, plant engineers, and managers. The on-line system, installed in 1994, continuously monitors five (5) General Electric Frame 7 gas turbines, three (3) heat recovery steam generators, and a single steam turbine. Equipment and overall plant performance is correct to 20 {degrees}F and 90 {degrees}F Standard Days. The system provides both short term and long term equipment condition trending, while also assisting with detection of misfiring combustion cans.

  20. Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.

  1. Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.

  2. Effects of combined inspiratory muscle and cycle ergometer training on exercise performance in patients with COPD.

    PubMed

    Wanke, T; Formanek, D; Lahrmann, H; Brath, H; Wild, M; Wagner, C; Zwick, H

    1994-12-01

    Cycle ergometer training plays an important role in the rehabilitation of patients with chronic obstructive pulmonary disease (COPD), but the usefulness of specific inspiratory muscle training as part of pulmonary rehabilitation remains uncertain. To determine whether inspiratory muscle training could intensify the known beneficial effects of cycle ergometer training on exercise performance in these patients, we compared the effect of an 8 week inspiratory muscle training combined with cycle ergometer training with that of an 8 week cycle ergometer training alone on inspiratory muscle performance and general exercise capacity. Patients were randomly assigned to the two training groups; 21 patients received additional inspiratory muscle training (Group 1) and 21 did not (Group 2). Maximal sniff assessed oesophageal and transdiaphragmatic pressures served as parameters for global inspiratory muscle strength and diaphragmatic strength, respectively. The duration for which the patient could breathe against a constant inspiratory pressure load was used as an index of inspiratory muscle endurance. Exercise capacity was determined by an incremental symptom-limited cycle ergometer test. After the training period, inspiratory muscle performance improved significantly in the patients with inspiratory muscle training, but not in those without. Both training regimens increased maximal power output and oxygen uptake, but this improvement was significantly greater in the patients with inspiratory muscle training than in those without.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Studies of Microtexture and Its Effect on Tensile and High-Cycle Fatigue Properties of Laser-Powder-Deposited INCONEL 718

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Azer, Magdi; Deal, Andrew

    2012-11-01

    The current work studies the microstructure, texture, and mechanical properties of INCONEL 718 alloy (IN718) produced by laser direct metal deposition. The grain microstructure exhibits an alternative distribution of banded fine and coarse grain zones as a result of the rastering scanning pattern. The effects of the anisotropic crystallographic texture on the tensile and high-cycle fatigue (HCF) properties at room temperature are investigated. Tensile test results showed that the tensile strength of laser-deposited IN718 after direct aging or solution heat treatment is equivalent to the minimum-forged IN718 properties. The transverse direction (relative to the laser scanning direction) produces >10 pct stiffer modulus of elasticity but 3 to 6 pct less tensile strength compared to the longitudinal direction due to the preferential alignment of grains having <111> and <100> directions parallel to the tensile loading direction. Laser-deposited IN718 with good metallurgical integrity showed equivalent HCF properties compared to the direct-aged wrought IN718, which can be attributed to the banded grain size variation and cyclic change of inclining grain orientations resulted from alternating rastering deposition path.

  4. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    PubMed

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

  5. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology

    SciTech Connect

    Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M.

    2010-09-15

    Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

  6. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for

  7. Relation of cyclic loading pattern to microstructural fracture in creep fatigue

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Oldrieve, R. E.

    1983-01-01

    Creep-fatigue-environment interaction is discussed using the 'strainrange partitioning' (SRP) framework as a basis. The four generic SRP strainrange types are studied with a view of revealing differences in micromechanisms of deformation and fatigue degradation. Each combines in a different manner the degradation associated with slip-plane sliding, grain-boundary sliding, migration, cavitation, void development and environmental interaction; hence the approch is useful in delineating the relative importance of these mechanisms in the different loadings. Micromechanistic results are shown for a number of materials, including 316 SS, wrought heat resistant alloys, several nickel-base superalloys, and a tantalum base alloy, T-111. Although there is a commonality of basic behavior, the differences are useful in delineation several important principles of interpretation. Some quantitative results are presented for 316 SS, involving crack initiation and early crack growth, as well as the interaction of low-cycle fatigue with high-cycle fatigue.

  8. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  9. Fatigue Modeling via Mammalian Auditory System for Prediction of Noise Induced Hearing Loss.

    PubMed

    Sun, Pengfei; Qin, Jun; Campbell, Kathleen

    2015-01-01

    Noise induced hearing loss (NIHL) remains as a severe health problem worldwide. Existing noise metrics and modeling for evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL) caused by high-level occupational noise. In this study, we proposed two auditory fatigue based models, including equal velocity level (EVL) and complex velocity level (CVL), which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL) filter to obtain velocities of basilar membrane (BM) in cochlea. The high-cycle fatigue theory is based on the assumption that GDHL can be considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the auditory risk of exposure to hazardous occupational noise.

  10. Fatigue Modeling via Mammalian Auditory System for Prediction of Noise Induced Hearing Loss.

    PubMed

    Sun, Pengfei; Qin, Jun; Campbell, Kathleen

    2015-01-01

    Noise induced hearing loss (NIHL) remains as a severe health problem worldwide. Existing noise metrics and modeling for evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL) caused by high-level occupational noise. In this study, we proposed two auditory fatigue based models, including equal velocity level (EVL) and complex velocity level (CVL), which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL) filter to obtain velocities of basilar membrane (BM) in cochlea. The high-cycle fatigue theory is based on the assumption that GDHL can be considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the auditory risk of exposure to hazardous occupational noise. PMID:26691685

  11. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts.

  12. Temperature-Dependent Effects on the Mechanical Behavior and Deformation Substructure of Haynes 188 Under Low-Cycle Fatigue

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The mechanical behavior of a cobalt-nickel-chromium-tungsten superalloy, Haynes 188, is being critically examined at the NASA Lewis Research Center. This dynamic, strain-aging (DSA) alloy is used for combustor liners in many military and commercial aircraft turbine engines and for the liquid oxygen posts in the main injectors of the space shuttle main engine. Its attractive features include a good combination of high monotonic yield and tensile strength, and excellent fabricability, weldability, and resistance to high-temperature oxidation for prolonged exposures.

  13. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1994-05-01

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  14. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Mynul

    established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.

  15. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  16. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for

  17. Advanced Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet system is being tested to evaluate methodologies for a Turbine Based Combined Cycle (TBCC) propulsion system to perform a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the closed loop control system, which utilizes a shock location sensor to improve inlet performance and operability. Even though the shock location feedback has a coarse resolution, the feedback allows for a reduction in steady state error and, in some cases, better performance than with previous proposed pressure ratio based methods. This paper demonstrates the design and benefit with the implementation of a proportional-integral controller, an H-Infinity based controller, and a disturbance observer based controller.

  18. Effects of two neuromuscular fatigue protocols on landing performance.

    PubMed

    James, C Roger; Scheuermann, Barry W; Smith, Michael P

    2010-08-01

    The purpose of the study was to investigate the effects of two fatigue protocols on landing performance. A repeated measures design was used to examine the effects of fatigue and fatigue protocol on neuromuscular and biomechanical performance variables. Ten volunteers performed non-fatigued and fatigued landings on two days using different fatigue protocols. Repeated maximum isometric squats were used to induce fatigue on day one. Sub-maximum cycling was used to induce fatigue on day two. Isometric squat maximum voluntary contraction (MVC) was measured before and after fatigued landings on each day. During the landings, ground reaction force (GRF), knee kinematics, and electromyographic (EMG) data were recorded. Isometric MVC, GRF peaks, loading rates, impulse, knee flexion at contact, range of motion, max angular velocity, and EMG root mean square (RMS) values were compared pre- and post-fatiguing exercise and between fatigue protocols using repeated ANOVA. Fatigue decreased MVC strength (p0.05), GRF second peak, and initial impulse (p0.01), but increased quadriceps medium latency stretch reflex EMG activity (p0.012). Knee flexion at contact was 5.2 degrees greater (p0.05) during fatigued landings following the squat exercise compared to cycling. Several variables exhibited non-significant but large effect sizes when comparing the effects of fatigue and fatigue protocol. In conclusion, fatigue alters landing performance and different fatigue protocols result in different performance changes.

  19. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  20. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  1. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  2. Response Surface Modeling of Combined-Cycle Propulsion Components using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    2002-01-01

    Three examples of response surface modeling with CFD are presented for combined cycle propulsion components. The examples include a mixed-compression-inlet during hypersonic flight, a hydrogen-fueled scramjet combustor during hypersonic flight, and a ducted-rocket nozzle during all-rocket flight. Three different experimental strategies were examined, including full factorial, fractionated central-composite, and D-optimal with embedded Plackett-Burman designs. The response variables have been confined to integral data extracted from multidimensional CFD results. Careful attention to uncertainty assessment and modeling bias has been addressed. The importance of automating experimental setup and effectively communicating statistical results are emphasized.

  3. Impact of different fules on reheat and nonreheat combined cycle plant performance

    SciTech Connect

    Tawney, R.K.; Kamali, K. ); Yeager, W.L. )

    1988-01-01

    The combustion turbine is capable of firing a variety of gaseous and/or liquid fuels. This ability offers the power industry the advantage of utilizing the most economical fuel available in the market. The purpose of this paper is to evaluate qualitative and quantitative performance differences of combined cycle reheat versus non-reheat configurations when burning three different fuels--natural gas, distillate fuel, and coal-derived gas (coal gas). The performance data include power output, heat rates, steam produced, stack temperatures and other associated design factors.

  4. Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; McCurdy, David R.

    2001-01-01

    The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.

  5. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Astrophysics Data System (ADS)

    Olds, John R.; Walberg, Gerald D.

    1993-02-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  6. [LH excretion during the ovulatory cycle and during therapy with various estrogen-gestagen combinations].

    PubMed

    Göretzlehner, G; Wilken, H

    1972-11-01

    Immunochemical determination of urinary LH was carried out in 7 normally ovulating women and in 25 women treated with various combined, sequential, and depot hormonal contraceptives. In ovulatory cycles without hormone treatment an LH peak was always observed at midcycle. During treatment with Ovosiston, OZN, and Quinestrol-norethisterone acetate, no LH peak was seen. In women receiving sequential preparations (mestranol-chlormadinone acetate, estrone cyanate-chlormadinone acetate), elevated LH levels were observed during estrogen medication. LH excretion was suppressed after administration of chlormadinone acetate. LH levels were also slightly elevated before and after medication with Quinestrol-chlormadinone acatate (1 pill per month). PMID:4121480

  7. Water chemistry of a combined-cycle power plant's auxiliary equipment cooling system

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Korotkov, A. N.; Oparin, M. Yu.; Larin, A. B.

    2013-04-01

    Results from an analysis of methods aimed at reducing the corrosion rate of structural metal used in heat-transfer systems with water coolant are presented. Data from examination of the closed-circuit system for cooling the auxiliary mechanisms of a combined-cycle plant-based power unit and the results from adjustment of its water chemistry are given. A conclusion is drawn about the possibility of using a reagent prepared on the basis of sodium sulfite for reducing the corrosion rate when the loss of coolant is replenished with nondeaerated water.

  8. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  9. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect

    Liese, Eric; Zitney, Stephen E.

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  10. Elevated temperature fretting fatigue of nickel based alloys

    NASA Astrophysics Data System (ADS)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  11. A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys

    DOE PAGESBeta

    Moore, John A.; Frankel, Dana; Prasannavenkatesan, Rajesh; Domel, August G.; Olson, Gregory B.; Liu, Wing Kam

    2016-06-06

    Nickel Titanium (NiTi) alloys are often used in biomedical devices where failure due to mechanical fatigue is common. For other alloy systems, computational models have proven an effective means of determining the relationship between microstructural features and fatigue life. This work will extend the subset of those models which were based on crystal plasticity to examine the relationship between microstructure and fatigue life in NiTi alloys. It will explore the interaction between a spherical inclusion and the material’s free surface along with several NiTi microstructures reconstructed from 3D imaging. This work will determine the distance at which the free surfacemore » interacts with an inclusion and the effect of applied strain of surface-inclusion interaction. The effects of inclusion-inclusion interaction, matrix voiding, and matrix strengthening are explored and ranked with regards to their influence on fatigue life.« less

  12. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  13. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  14. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  15. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  16. Sacramento Power Authority experience of building and testing a successful turn key combined cycle project

    SciTech Connect

    Maring, J.; Yost, J.; Zachary, J.

    1998-07-01

    The following paper will describe a combined cycle power plant providing power and steam to a food processing plant. The project owner is Sacramento Power Authority in Sacramento, California, USA. A consortium led by Siemens supplied the equipment and provided the turn key project management. The project was completed in 23 months and the plant was released for dispatch 3 weeks ahead of schedule. The formal performance tests conducted in December 1997, indicated a better net output and a lower net heat rate from the guaranteed values. The thermal acceptance test procedure was in full compliance with the new Performance Test Code PTC-46 of the American Society of Mechanical Engineers (ASME) for combined cycle power plant testing, issued in 1996 and also met all the requirements of ISO 2314 Procedure. The paper will also discuss the performance of an evaporative cooler, used to lower compressor air inlet temperature and the methodology used to reduce the additional instrumentation uncertainty associated with such devices. The paper will also deal with the unique environmental emissions restrictions imposed on the project.

  17. Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASA's High Temperature, High Speed Turbine Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.

    2008-01-01

    The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.

  18. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance.

    PubMed

    Lane, Stephen C; Hawley, John A; Desbrow, Ben; Jones, Andrew M; Blackwell, James R; Ross, Megan L; Zemski, Adam J; Burke, Louise M

    2014-09-01

    Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg(-1) body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3(-)), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate-electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (-0.4%, p = 0.6 compared with CONT) or when combined with caffeine (-0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg(-1) BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50-60 min by ∼3%-4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study. PMID:25154895

  19. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance.

    PubMed

    Lane, Stephen C; Hawley, John A; Desbrow, Ben; Jones, Andrew M; Blackwell, James R; Ross, Megan L; Zemski, Adam J; Burke, Louise M

    2014-09-01

    Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg(-1) body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3(-)), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate-electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (-0.4%, p = 0.6 compared with CONT) or when combined with caffeine (-0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg(-1) BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50-60 min by ∼3%-4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study.

  20. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  1. Cumulative creep fatigue damage in 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  2. Oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

    1996-12-31

    This project emphasizes CO2-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems, CO2 transportation, and options for the long-term sequestration Of CO2. The intent is to quantify the CO2 budget, or an ``equivalent CO2`` budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, bituminous coal feed, and low-pressure glycol sulfur removal, followed by Claus/SCOT treatment, to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO2 release rate of 0.801 kg/kV-Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H2S recovery, followed by either low-pressure glycol or membrane CO2 recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H2S recovery and a fuel cell as the topping cycle, with no shift stages. From the IGCC plant, a 500-km pipeline takes the CO2 to geological sequestering. For the optimal CO2 recovery case, the net electric power production was reduced by 37.6 MW from the base case, with a CO2 release rate of 0.277 kg/kWhe (when makeup power was considered). In a comparison of air-blown and oxygen-blown CO2-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, while the cost for oxygen-blown IGCC was 58.29 mills/kWh. For the optimal cases employing glycol CO2 recovery, there was no clear advantage; the cost for air-blown IGCC was 95.48 mills/kWh, and the cost for the oxygen-blown IGCC was slightly lower, at 94.55 mills/kWh.

  3. Axial and Torsional Load-Type Sequencing in Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    2001-01-01

    The experiments described herein were performed to determine whether damage imposed by axial loading interacts with damage imposed by torsional loading. This paper is a follow on to a study that investigated effects of load-type sequencing on the cumulative fatigue behavior of a cobalt base superalloy, Haynes 188 at 538 C Both the current and the previous study were used to test the applicability of cumulative fatigue damage models to conditions where damage is imposed by different loading modes. In the previous study, axial and torsional two load level cumulative fatigue experiments were conducted, in varied combinations, with the low-cycle fatigue (high amplitude loading) applied first. In present study, the high-cycle fatigue (low amplitude loading) is applied initially. As in the previous study, four sequences (axial/axial, torsion/torsion, axial/torsion, and torsion/axial) of two load level cumulative fatigue experiments were performed. The amount of fatigue damage contributed by each of the imposed loads was estimated by both the Palmgren-Miner linear damage rule (LDR) and the non-linear damage curve approach (DCA). Life predictions for the various cumulative loading combinations are compared with experimental results.

  4. ENSO and annual cycle interaction: the combination mode representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ren, Hong-Li; Zuo, Jinqing; Jin, Fei-Fei; Stuecker, Malte F.

    2016-06-01

    Recent research demonstrated the existence of a combination mode (C-mode) originating from the atmospheric nonlinear interaction between the El Niño-Southern Oscillation (ENSO) and the Pacific warm pool annual cycle. In this paper, we show that the majority of coupled climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are able to reproduce the observed spatial pattern of the C-mode in terms of surface wind anomalies reasonably well, and about half of the coupled models are able to reproduce spectral power at the combination tone periodicities of about 10 and/or 15 months. Compared to the CMIP5 historical simulations, the CMIP5 Atmospheric Model Intercomparison Project (AMIP) simulations can generally exhibit a more realistic simulation of the C-mode due to prescribed lower boundary forcing. Overall, the multi-model ensemble average of the CMIP5 models tends to capture the C-mode better than the individual models. Furthermore, the models with better performance in simulating the ENSO mode tend to also exhibit a more realistic C-mode with respect to its spatial pattern and amplitude, in both the CMIP5 historical and AMIP simulations. This study shows that the CMIP5 models are able to simulate the proposed combination mode mechanism to some degree, resulting from their reasonable performance in representing the ENSO mode. It is suggested that the main ENSO periods in the current climate models needs to be further improved for making the C-mode better.

  5. Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.

  6. Technetium chemistry in the fuel cycle: combining basic and applied studies.

    PubMed

    Poineau, Frederic; Mausolf, Edward; Jarvinen, Gordon D; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2013-04-01

    Technetium is intimately linked with nuclear reactions. The ultraminute natural levels in the environment are due to the spontaneous fission of uranium isotopes. The discovery of technetium was born from accelerator reactions, and its use and presence in the modern world are directly due to nuclear reactors. While occupying a central location in the periodic table, the chemistry of technetium is poorly explored, especially when compared to its neighboring elements, i.e., molybdenum, ruthenium, and rhenium. This state of affairs, which is tied to the small number of laboratories equipped to work with the long-lived (99)Tc isotope, provides a remarkable opportunity to combine basic studies with applications for the nuclear fuel cycle. An example is given through examination of the technetium halide compounds. Binary metal halides represent some of the most fundamental of inorganic compounds. The synthesis of new technetium halides demonstrates trends with structure, coordination number, and speciation that can be utilized in the nuclear fuel cycle. Examples are provided for technetium-zirconium alloys as waste forms and the formation of reduced technetium species in separations. PMID:23153109

  7. Technetium chemistry in the fuel cycle: combining basic and applied studies.

    PubMed

    Poineau, Frederic; Mausolf, Edward; Jarvinen, Gordon D; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2013-04-01

    Technetium is intimately linked with nuclear reactions. The ultraminute natural levels in the environment are due to the spontaneous fission of uranium isotopes. The discovery of technetium was born from accelerator reactions, and its use and presence in the modern world are directly due to nuclear reactors. While occupying a central location in the periodic table, the chemistry of technetium is poorly explored, especially when compared to its neighboring elements, i.e., molybdenum, ruthenium, and rhenium. This state of affairs, which is tied to the small number of laboratories equipped to work with the long-lived (99)Tc isotope, provides a remarkable opportunity to combine basic studies with applications for the nuclear fuel cycle. An example is given through examination of the technetium halide compounds. Binary metal halides represent some of the most fundamental of inorganic compounds. The synthesis of new technetium halides demonstrates trends with structure, coordination number, and speciation that can be utilized in the nuclear fuel cycle. Examples are provided for technetium-zirconium alloys as waste forms and the formation of reduced technetium species in separations.

  8. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    NASA Technical Reports Server (NTRS)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  9. Analysis of potential benefits of integrated-gasifier combined cycles for a utility system

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.

    1983-01-01

    Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.

  10. Integrated gasification-combined-cycle power plants - Performance and cost estimates

    SciTech Connect

    Tsatsaronis, G.; Tawfik, T.; Lin, L. )

    1990-04-01

    Several studies of Integrated Gasification-combined-cycle (IGCC) power plants have indicated that these plants have the potential for providing performance and cost improvements over conventional coal-fired steam power plants with flue gas desulfurization. Generally, IGCC power plants have a higher energy-conversion efficiency, require less water, conform with existing environmental standards at lower cost, and are expected to convert coal to electricity at lower costs than coal-fired steam plants. This study compares estimated costs and performance of various IGCC plant design configurations. A second-law analysis identifies the real energy waste in each design configuration. In addition, a thermoeconomic analysis reveals the potential for reducing the cost of electricity generated by an IGCC power plant.

  11. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  12. Family Life Cycle and Deforestation in Amazonia: Combining Remotely Sensed Information with Primary Data

    NASA Technical Reports Server (NTRS)

    Caldas, M.; Walker, R. T.; Shirota, R.; Perz, S.; Skole, D.

    2003-01-01

    This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.

  13. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  14. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    SciTech Connect

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  15. Optimization of the oxidant supply system for combined cycle MHD power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1982-01-01

    An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.

  16. Model predictive control system and method for integrated gasification combined cycle power generation

    SciTech Connect

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  17. Studying the effect the parameters of steam power cycle have on the economic efficiency and reliability of three-loop combined-cycle plants with steam reheating

    NASA Astrophysics Data System (ADS)

    Luk'yanova, T. S.; Trukhnii, A. D.

    2012-09-01

    We consider the effect the temperatures and pressures in the high- and intermediate-pressure loops have on the economic characteristics of the heat-recovery boiler, steam turbine cylinders, and steam turbine unit of the combined-cycle plant and on the final content of moisture in the steam turbine.

  18. Chronic Fatigue Syndrome

    MedlinePlus

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  19. High-Temperature Fatigue of a Hybrid Aluminum Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Clark, J. T.; Sanders, P. G.

    2014-01-01

    An aluminum metal matrix composite (MMC) brake drum was tested in fatigue at room temperature and extreme service temperatures. At room temperature, the hybrid composite did not fail and exceeded estimated vehicle service times. At higher temperatures (62 and 73 pct of the matrix eutectic), fatigue of a hybrid particle/fiber MMC exhibited failure consistent with matrix overloading. Overaging of the A356 matrix coupled with progressive fracture of the SiC particles combined to create the matrix overload condition. No evidence of macro-fatigue crack initiation or growth was observed, and the matrix-particle interface appeared strong with no debonding, visible matrix phases, or porosity. An effective medium model was constructed to test the hypothesis that matrix overloading was the probable failure mode. The measured particle fracture rate was fit using realistic values of the SiC Weibull strength and modulus, which in turn predicted cycles to failure within the range observed in fatigue testing.

  20. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    NASA Astrophysics Data System (ADS)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  1. Control Activity in Support of NASA Turbine Based Combined Cycle (TBCC) Research

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Vrnak, Daniel R.; Le, Dzu K.; Ouzts, Peter J.

    2010-01-01

    Control research for a Turbine Based Combined Cycle (TBCC) propulsion system is the current focus of the Hypersonic Guidance, Navigation, and Control (GN&C) discipline team. The ongoing work at the NASA Glenn Research Center (GRC) supports the Hypersonic GN&C effort in developing tools to aid the design of control algorithms to manage a TBCC airbreathing propulsion system during a critical operating period. The critical operating period being addressed in this paper is the span when the propulsion system transitions from one cycle to another, referred to as mode transition. One such tool, that is a basic need for control system design activities, is computational models (hereto forth referred to as models) of the propulsion system. The models of interest for designing and testing controllers are Control Development Models (CDMs) and Control Validation Models (CVMs). CDMs and CVMs are needed for each of the following propulsion system elements: inlet, turbine engine, ram/scram dual-mode combustor, and nozzle. This paper presents an overall architecture for a TBCC propulsion system model that includes all of the propulsion system elements. Efforts are under way, focusing on one of the propulsion system elements, to develop CDMs and CVMs for a TBCC propulsion system inlet. The TBCC inlet aerodynamic design being modeled is that of the Combined-Cycle Engine (CCE) Testbed. The CCE Testbed is a large-scale model of an aerodynamic design that was verified in a small-scale screening experiment. The modeling approach includes employing existing state-of-the-art simulation codes, developing new dynamic simulations, and performing system identification experiments on the hardware in the NASA GRC 10 by10-Foot Supersonic Wind Tunnel. The developed CDMs and CVMs will be available for control studies prior to hardware buildup. The system identification experiments on the CCE Testbed will characterize the necessary dynamics to be represented in CDMs for control design. These

  2. Fatigue Reliability Analysis of Turbine Disk Alloy Using Saddlepoint Approximation

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Huang, Hong-Zhong; Zhu, Shun-Peng; Li, Yan-Feng; Yang, Yuanjian

    2013-09-01

    In this paper, a new fatigue reliability analysis method based on saddlepoint approximation (SPA) was proposed for calculating the probability of failure of turbine disk alloy in a low cycle fatigue (LCF) regime. Firstly, two LCF life prediction models based on total strain energy density and Support Vector Regression (SVR) metamodel are presented for turbine disk alloy GH4133 under different loading conditions at 250 °C. Compared with the SWT model, modified Walker model and Response Surface (RS) model, the predicted lives by the proposed models are within a factor of ±2 and a factor of ±1.1 respectively. Secondly, based on the fatigue design criteria, the probabilities of failure are calculated using SPA for the explicit and implicit performance functions using two proposed LCF models and viscosity-based model. These three models have provided the reliability design rules for GH4133. Finally, the failure probabilities curves between SPA and the designed fatigue lives are achieved. The reliability analysis results were found to be in good agreement with the calculated results of test data. These results show that SPA is very apt for the fatigue reliability analysis of turbine disk under different loading conditions using only a small number of samples without any distribution assumptions for random variables. Moreover, it can be used to estimate the system's probability of failure with a large number of random variables or high nonlinearity of performance functions. The effectiveness and accuracy of the combination of the fatigue models and SPA for fatigue reliability analysis are verified using three examples.

  3. Combining life cycle assessment and qualitative risk assessment: the case study of alumina nanofluid production.

    PubMed

    Barberio, Grazia; Scalbi, Simona; Buttol, Patrizia; Masoni, Paolo; Righi, Serena

    2014-10-15

    In this paper the authors propose a framework for combining life cycle assessment (LCA) and Risk Assessment (RA) to support the sustainability assessment of emerging technologies. This proposal includes four steps of analysis: technological system definition; data collection; risk evaluation and impacts quantification; results interpretation. This scheme has been applied to a case study of nanofluid alumina production in two different pilot lines, "single-stage" and "two-stage". The study has been developed in the NanoHex project (enhanced nano-fluid heat exchange). Goals of the study were analyzing the hotspots and highlighting possible trade-off between the results of LCA, which identifies the processes having the best environmental performance, and the results of RA, which identifies the scenarios having the highest risk for workers. Indeed, due to lack of data about exposure limits, exposure-dose relationships and toxicity of alumina nanopowders (NPs) and nanofluids (NF), the workplace exposure has been evaluated by means of qualitative risk assessment, using Stoffenmanager Nano. Though having different aims, LCA and RA have a complementary role in the description of impacts of products/substances/technologies. Their combined use can overcome limits of each of them and allows a wider vision of the problems to better support the decision making process.

  4. Condenser, compressor, and HRSG cleaning in combined cycles: How often is too often?

    SciTech Connect

    Kock, J.; DeGeeter, S.; Haynes, C.J.

    1996-05-01

    The true cost of electric power production consists of capital, fuel, and operation and maintenance (O&M) expense. Decisions are made every day regarding how O&M budget is spent, often affecting plant efficiency and output, and impacting the {open_quotes}bottom line.{close_quotes} As power producers strive to become more competitive, management will require strategies to minimize total production costs, and maximize profits. One such strategy is to clean equipment often enough to maintain good performance, but not too frequently as to exhaust O&M budgets. Examples for a combined cycle unit are gas turbine compressor washes, blast cleaning of HRSG gas-side tube surfaces, and condenser tube cleaning. Each of these tasks restores equipment performance, increasing output. Associated with each, though, is an expense, such as downtime, labor, materials, contractor invoice, and waste disposal. If these tasks are performed too often, excess expense will not be justified by improved output. If done infrequently, the potential for increased revenue and/or fuel cost savings will not be realized. For each task, there is an optimum scheduling interval which will produce the lowest combination of O&M expense and lost revenue. A simple calculation which uses periodic performance testing, monitoring and analysis can determine an optimum maintenance interval for many tasks. In virtually any plant with reasonable instrumentation, a program can be established to determine optimum schedules for most routine performance-improvement maintenance tasks.

  5. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  6. Management of chronic (post-viral) fatigue syndrome.

    PubMed Central

    Wessely, S; David, A; Butler, S; Chalder, T

    1989-01-01

    Simple rehabilitative strategies are proposed to help patients with the chronic fatigue syndrome. A model is outlined of an acute illness giving way to a chronic fatigue state in which symptoms are perpetuated by a cycle of inactivity, deterioration in exercise tolerance and further symptoms. This is compounded by the depressive illness that is often part of the syndrome. The result is a self-perpetuating cycle of exercise avoidance. Effective treatment depends upon an understanding of the interaction between physical and psychological factors. Cognitive behavioural therapy is suggested. Cognitive therapy helps the patient understand how genuine symptoms arise from the frequent combination of physical inactivity and depression, rather than continuing infection, while a behavioural approach enables the treatment of avoidance behaviour and a gradual return to normal physical activity. PMID:2553945

  7. Fatigue Fractures

    PubMed Central

    Morris, James M.

    1968-01-01

    Fatigue (or stress) fracture of bone in military recruits has been recognized for many years. Most often it is a metatarsal bone that is involved but the tarsal bones, calcaneus, tibia, fibula, femur, and pelvis are occasionally affected. Reports of such fractures in the ribs, ulna and vertebral bodies may be found in the literature. In recent years, there has been increasing awareness of the occurrence of fatigue fractures in the civilian population. Weekend sportsmen, athletes in an early phase of training, and persons engaged in unaccustomed, repetitive, vigorous activity are potential victims of such a fracture. The signs and symptoms, roentgenographic findings, treatment and etiology of fatigue fractures are dealt with in this presentation. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6. PMID:5652745

  8. A phenomenological model for predicting fatigue life in bovine trabecular bone.

    PubMed

    Ganguly, P; Moore, T L A; Gibson, L J

    2004-06-01

    Cyclic loading of bone during daily activities can lead to fatigue degradation and increased risk of fracture in both the young and elderly population. Damage processes under cyclic loading in trabecular bone result in the reduction of the elastic modulus and accumulation of residual strain. These effects increase with increasing stress levels, leading to a progressive reduction in fatigue life. The present work analyzes the effect of stress and strain variation on the above damage processes in bovine trabecular bone, and develops a phenomenological model relating fatigue life to the imposed stress level. The elastic modulus reduction of the bone specimens was observed to depend on the maximum compressive strain, while the rate of residual strain accumulation was a function of the stress level. A model was developed for the upper and lower bounds of bone elastic modulus reduction with increasing number of cycles, at each stress range. The experimental observations were described well by the model. The model predicted the bounds of the fatigue life with change in fatigue stress. The decrease in the fatigue life with increasing stress was related to corresponding increases in the residual strain accumulation rates at the elevated stress levels. The model shows the validity of fatigue predictions from relatively few cyclic experiments, by combining trends observed in the monotonic and the cyclic tests. The model also presents a relatively simple procedure for predicting the endurance limit for bovine trabecular bone specimens.

  9. Gene Expression in Response to Exercise in Patients with Chronic Fatigue Syndrome: A Pilot Study

    PubMed Central

    Keech, Andrew; Vollmer-Conna, Ute; Barry, Benjamin K.; Lloyd, Andrew R.

    2016-01-01

    Chronic fatigue syndrome (CFS) is a debilitating disorder of unknown pathogenesis, characterized by fatigue, which is exacerbated after minimal exercise. We examined the effect of a single bout of aerobic exercise on leucocyte mRNA expression of genes putatively linked to exaggerated afferent signaling as an under-pinning of the fatigue state. A carefully-characterized sample of patients with CFS (N = 10) and healthy matched control participants (N = 12) were included. Participant ratings of fatigue and other symptoms, as well as blood samples, were obtained at baseline, and five other time-points up to 72 h after 25 min of moderate-intensity cycling exercise. Leucocyte mRNA of 19 metabolite-sensing, adrenergic, immune, and neurotransmission genes was examined using quantitative polymerase chain reaction. Patients with CFS reported substantial fatigue, functional impairment, and poor sleep at baseline (all p < 0.02), and exercise immediately induced worsened patients' fatigue (effect size, ES = 1.17). There were no significant changes in gene expression after exercise and patients did not differ from control participants at any time point. Higher levels of expression of ficolin (FCN1) and a purinergic receptor (P2RX4) in patients with CFS were found when all time points were combined. Patients with CFS did not show significant exercise-induced changes in leucocyte mRNA of 19 metabolite-sensing, adrenergic, immune and neurotransmission genes despite a prominent exacerbation of fatigue. PMID:27713703

  10. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  11. Thermal energy storage for integrated gasification combined-cycle power plants

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

    1990-07-01

    There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

  12. Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John

    1994-01-01

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  13. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  14. HEAVY-DUTY TRUCK TEST CYCLES: COMBINING DRIVEABILITY WITH REALISTIC ENGINE EXERCISE

    EPA Science Inventory

    Heavy-duty engine certification testing uses a cycle that is scaled to the capabilities of each engine. As such, every engine should be equally challenged by the cycle's power demands. It would seem that a chassis cycle, similarly scaled to the capabilities of each vehicle, could...

  15. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  16. Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors

    SciTech Connect

    Goswami, D.Y.; Xu, F.

    1999-05-01

    A combined thermal power and cooling cycle is proposed which combines the Rankine and absorption refrigeration cycles. It can provide power output as well as refrigeration with power generation as a primary goal. Ammonia-water mixture is used as a working fluid. The boiling temperature of the ammonia-water mixture increases as the boiling process proceeds until all liquid is vaporized, so that a better thermal match is obtained in the boiler. The proposed cycle takes advantage of the low boiling temperature of ammonia vapor so that it can be expanded to a low temperature while it is still in a vapor state or a high quality two phase state. This cycle is ideally suited for solar thermal power using low cost concentrating collectors, with the potential to reduce the capital cost of a solar thermal power plant. The cycle can also be used as a bottoming cycle for any thermal power plant. This paper presents a parametric analysis of the proposed cycle.

  17. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  18. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  19. Practical Guideline for Fatigue Management in Inflammatory Bowel Disease.

    PubMed

    Kreijne, J E; Lie, M R K L; Vogelaar, L; van der Woude, C J

    2016-01-01

    During active inflammatory bowel disease (IBD) fatigue is a common symptom, which seems related to active gut inflammation. However, even in remission many patients suffer from fatigue that negatively affects quality of life and work productivity. Currently, robust knowledge on the pathogenesis and treatment of IBD-related fatigue is lacking. In order to alleviate the burden of IBD-related fatigue, a systematic approach is mandatory. We propose a fatigue attention cycle to enhance identification, evaluation and management of fatigued IBD patients. The benefits of the cycle are twofold. Firstly, it allows the systematic and uniform identification of patients with severe fatigue, in turn allowing tailored non-pharmacological and pharmacological interventions. Secondly, uniform identification of such patients creates a well-defined patient base to investigate the underlying pathogenesis of fatigue, resulting in a greater understanding of this debilitating phenomenon and possibly resulting in the discovery of predictive factors and new treatment interventions.

  20. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  1. The effectiveness of combined-cycle power plants hot startups simulating

    NASA Astrophysics Data System (ADS)

    Radin, Yu. A.; Kontorovich, T. S.; Molchanov, K. A.

    2015-09-01

    Activities aimed at substantiating the maneuverability characteristics of power-generating equipment installed at district heating power plants (DHPP) and especially at combined-cycle power plants (CCPPs) are quite topical for the modern conditions and involve calculations of thermally stressed state and analysis of the cyclic strength of steam path critical elements at different loading rates. Until recently, such problems have been solved in two possible ways: based on the results of tests carried out on operating equipment and using the mathematical models of heavily stressed parts of CCPP equipment. In this article, preference is given to the second way. The results of mathematical modeling represented as time dependences of the temperature state of equipment critical parts were taken as initial data for calculating their thermally stressed state and for analyzing their damageability according to the criterion of the equivalent operating hours. This criterion is an integral indicator characterizing the extent of damage accumulated in equipment parts and can be used for elaborating equipment maintenance programs. A dependence of the equivalent operating hours on the initial temperature of the metal of the high-pressure steam superheater's outlet header, the component imposing the strongest limitations on the power unit loading rate, is obtained. It is shown that the number of equivalent operating hours of the CCPP steam circuit part equipment accumulated during hot startups does not have any essential effect on the equipment service life (heat-recovery steam generators, steam turbine, and steam lines).

  2. Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Anderson, William E.

    2005-01-01

    The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.

  3. The cost of carbon capture and storage for natural gas combined cycle power plants.

    PubMed

    Rubin, Edward S; Zhai, Haibo

    2012-03-20

    This paper examines the cost of CO(2) capture and storage (CCS) for natural gas combined cycle (NGCC) power plants. Existing studies employ a broad range of assumptions and lack a consistent costing method. This study takes a more systematic approach to analyze plants with an amine-based postcombustion CCS system with 90% CO(2) capture. We employ sensitivity analyses together with a probabilistic analysis to quantify costs for plants with and without CCS under uncertainty or variability in key parameters. Results for new baseload plants indicate a likely increase in levelized cost of electricity (LCOE) of $20-32/MWh (constant 2007$) or $22-40/MWh in current dollars. A risk premium for plants with CCS increases these ranges to $23-39/MWh and $25-46/MWh, respectively. Based on current cost estimates, our analysis further shows that a policy to encourage CCS at new NGCC plants via an emission tax or carbon price requires (at 95% confidence) a price of at least $125/t CO(2) to ensure NGCC-CCS is cheaper than a plant without CCS. Higher costs are found for nonbaseload plants and CCS retrofits.

  4. Dual-mode Operation of a Rocket-Ramjet Combined Cycle Engine

    NASA Astrophysics Data System (ADS)

    Tomioka, Sadatake; Tani, Koichiro; Masumoto, Ryo; Ueda, Shuuichi

    One-dimensional evaluation of Ramjet-mode operation was carried out on a rocket-ramjet combined cycle engine model. For simplicity, instantaneous mixing between the airflow and rocket exhaust, instantaneous heat release, and pressure recovery by a normal-shock wave were assumed. Shock wave location was so decided that the heat release at the injection (heat addition) location was to thermally-choke the combustion gas flow. By changing the injection location, it was shown that a further downstream injection resulted in a further thrust production and a further fuel flow rate requirement for choking, and a lesser specific impulse. Balancing the thrust production and the specific impulse in terms of the launch vehicle acceleration performance should be pursued. The total pressure loss within the engine model was dominated by the shock wave location, not depended on injection location and fuel flow rate, so that having shock wave penetration to further upstream location was beneficial both for thrust production in the engine and at the external nozzle.

  5. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1992-03-01

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  6. The cost of carbon capture and storage for natural gas combined cycle power plants.

    PubMed

    Rubin, Edward S; Zhai, Haibo

    2012-03-20

    This paper examines the cost of CO(2) capture and storage (CCS) for natural gas combined cycle (NGCC) power plants. Existing studies employ a broad range of assumptions and lack a consistent costing method. This study takes a more systematic approach to analyze plants with an amine-based postcombustion CCS system with 90% CO(2) capture. We employ sensitivity analyses together with a probabilistic analysis to quantify costs for plants with and without CCS under uncertainty or variability in key parameters. Results for new baseload plants indicate a likely increase in levelized cost of electricity (LCOE) of $20-32/MWh (constant 2007$) or $22-40/MWh in current dollars. A risk premium for plants with CCS increases these ranges to $23-39/MWh and $25-46/MWh, respectively. Based on current cost estimates, our analysis further shows that a policy to encourage CCS at new NGCC plants via an emission tax or carbon price requires (at 95% confidence) a price of at least $125/t CO(2) to ensure NGCC-CCS is cheaper than a plant without CCS. Higher costs are found for nonbaseload plants and CCS retrofits. PMID:22332665

  7. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect

    Not Available

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  8. Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Yungster, S.

    1996-01-01

    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.

  9. Mach 4 Test Results of a Dual-Flowpath, Turbine Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy w.; Emami, Saied; Trexler, Carl A.

    2006-01-01

    An experimental study was conducted to evaluate the performance of a turbine based combined cycle (TBCC) inlet concept, consisting of a low speed turbojet inlet and high speed dual-mode scramjet inlet. The main objectives of the study were (1) to identify any interactions between the low and the high speed inlets during the mode transition phase in which both inlets are operating simultaneously and (2) to determine the effect of the low speed inlet operation on the performance of the high speed inlet. Tests were conducted at a nominal freestream Mach number of 4 using an 8 percent scale model representing a single module of a TBCC inlet. A flat plate was installed upstream of the model to produce a turbulent boundary layer which simulated the full-scale vehicle forebody boundary layer. A flowmeter/back pressure device, with remote actuation, was attached aft of the high speed inlet isolator to simulate the back pressure resulting from dual-mode scramjet combustion. Results indicate that the inlets did not interact with each other sufficiently to affect inlet operability. Flow spillage resulting from a high speed inlet unstart did not propagate far enough upstream to affect the low speed inlet. Also, a low speed inlet unstart did not cause the high speed inlet to unstart. The low speed inlet improved the performance of the high speed inlet at certain conditions by diverting a portion of the boundary layer generated on the forebody plate.

  10. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  11. High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR-helium

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Rittenhouse, P.L.

    1981-01-01

    Results of strain controlled fatigue and tensile tests are presented for two nickel base solution hardened alloys which are reference structural alloys for use in several high temperature gas cooled reactor concepts. These alloys, Hastelloy X Inconel 617, were tested at temperatures ranging from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in the solution annealed as well as in the pre-aged condition where aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are also given between the strain controlled fatigue lives of these alloys and several other commonly used alloys all tested at 538/sup 0/C.

  12. Tendon fatigue in response to mechanical loading

    PubMed Central

    Andarawis-Puri, N.; Flatow, E. L.

    2015-01-01

    Tendinopathies are commonly attributable to accumulation of sub-rupture fatigue damage from repetitive use. Data is limited to late stage disease from patients undergoing surgery, motivating development of animal models, such as ones utilizing treadmill running or repetitive reaching, to investigate the progression of tendinopathies. We developed an in vivo model using the rat patellar tendon that allows control of the loading directly applied to the tendon. This manuscript discusses the response of tendons to fatigue loading and applications of our model. Briefly, the fatigue life of the tendon was used to define low, moderate and high levels of fatigue loading. Morphological assessment showed a progression from mild kinks to fiber disruption, for low to high level fatigue loading. Collagen expression, 1 and 3 days post loading, showed more modest changes for low and moderate than high level fatigue loading. Protein and mRNA expression of Ineterleukin-1β and MMP-13 were upregulated for moderate but not low level fatigue loading. Moderate level (7200 cycles) and 100 cycles of fatigue loading resulted in a catabolic and anabolic molecular profile respectively, at both 1 and 7 days post loading. Results suggest unique mechanisms for different levels of fatigue loading that are distinct from laceration. PMID:21625047

  13. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    NASA Astrophysics Data System (ADS)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  14. Fatigue properties of acrylic denture base resins.

    PubMed

    Fujii, K

    1989-12-01

    Observations were made of fractured surfaces caused by flexural and tensile fatigue tests made in polymethyl methacrylate denture base resins (PMMA). In addition, the changes in dynamic viscoelastic and tensile properties of the materials along with fatigue propagation were investigated. In the tensile and flexural fatigue tests, both the fractured surfaces, which had striations on their surfaces and cracks near the fractured section, closely resembled each other in appearance. On the other hand, all of the tensile properties, such as elastic modulus, toughness and tensile strength, decreased with the increase of the number of stress cycles in the fatigue test. The storage modulus (E') of the material decreased gradually along with fatigue propagation over the whole range of temperatures tested. The loss modulus (E") and mechanical loss tangent (tan delta) increased slightly. The fatigue limit of four commercial denture base resins varied widely from one product to another.

  15. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance.

    PubMed

    Glaister, Mark; Pattison, John R; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul

    2015-01-01

    The aim of this study was to examine the acute supplementation effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. Using a randomized, counterbalanced, double-blind Latin-square design, 14 competitive female cyclists (age: 31 ± 7 years; height: 1.69 ± 0.07 m; body mass: 61.6 ± 6.0 kg) completed four 20-km time trials on a racing bicycle fitted to a turbo trainer. Approximately 2.5 hours before each trial, subjects consumed a 70-ml dose of concentrated beetroot juice containing either 0.45 g of dietary nitrate or with the nitrate content removed (placebo). One hour before each trial, subjects consumed a capsule containing either 5 mg·kg of caffeine or maltodextrin (placebo). There was a significant effect of supplementation on power output (p = 0.001), with post hoc tests revealing higher power outputs in caffeine (205 ± 21 W) vs. nitrate (194 ± 22 W) and placebo (194 ± 25 W) trials only. Caffeine-induced improvements in power output corresponded with significantly higher measures of heart rate (caffeine: 166 ± 12 b·min vs. placebo: 159 ± 15 b·min; p = 0.02), blood lactate (caffeine: 6.54 ± 2.40 mmol·L vs. placebo: 4.50 ± 2.11 mmol·L; p < 0.001), and respiratory exchange ratio (caffeine: 0.95 ± 0.04 vs. placebo: 0.91 ± 0.05; p = 0.03). There were no effects (p ≥ 0.05) of supplementation on cycling cadence, rating of perceived exertion, (Equation is included in full-text article.), or integrated electromyographic activity. The results of this study support the well-established beneficial effects of caffeine supplementation on endurance performance. In contrast, acute supplementation with dietary nitrate seems to have no effect on endurance performance and adds nothing to the benefits afforded by caffeine supplementation.

  16. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance.

    PubMed

    Glaister, Mark; Pattison, John R; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul

    2015-01-01

    The aim of this study was to examine the acute supplementation effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. Using a randomized, counterbalanced, double-blind Latin-square design, 14 competitive female cyclists (age: 31 ± 7 years; height: 1.69 ± 0.07 m; body mass: 61.6 ± 6.0 kg) completed four 20-km time trials on a racing bicycle fitted to a turbo trainer. Approximately 2.5 hours before each trial, subjects consumed a 70-ml dose of concentrated beetroot juice containing either 0.45 g of dietary nitrate or with the nitrate content removed (placebo). One hour before each trial, subjects consumed a capsule containing either 5 mg·kg of caffeine or maltodextrin (placebo). There was a significant effect of supplementation on power output (p = 0.001), with post hoc tests revealing higher power outputs in caffeine (205 ± 21 W) vs. nitrate (194 ± 22 W) and placebo (194 ± 25 W) trials only. Caffeine-induced improvements in power output corresponded with significantly higher measures of heart rate (caffeine: 166 ± 12 b·min vs. placebo: 159 ± 15 b·min; p = 0.02), blood lactate (caffeine: 6.54 ± 2.40 mmol·L vs. placebo: 4.50 ± 2.11 mmol·L; p < 0.001), and respiratory exchange ratio (caffeine: 0.95 ± 0.04 vs. placebo: 0.91 ± 0.05; p = 0.03). There were no effects (p ≥ 0.05) of supplementation on cycling cadence, rating of perceived exertion, (Equation is included in full-text article.), or integrated electromyographic activity. The results of this study support the well-established beneficial effects of caffeine supplementation on endurance performance. In contrast, acute supplementation with dietary nitrate seems to have no effect on endurance performance and adds nothing to the benefits afforded by caffeine supplementation. PMID:24978834

  17. Ultrasonic Fatigue Behavior of a Fe-BASED Warm-Compacted Powder Metallurgy Material

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Heng; Ye, Xuan; Hu, Lei; Luo, Fei; Xiao, Zhi-Yu

    2013-07-01

    Fe-2Cu-2Ni-1Mo-1C powder metallurgy material was fabricated by die-wall lubricated warm compaction and ultrasonic fatigue test was carried out for as-sintered and heat treatment samples. Material fatigue strength reaches 249 MPa under axial fatigue testing. The sintered material consists of acicular martensite, pearlite, bainite and retained austenite. Tempered martensite is the major phases after heat-treatment. Cleavage plane and dimples is mixed fracture for sample after axial fatigue test. Mechanical properties of after heat treatment materials are improved and fatigue strength reaches 382 MPa under 107 cycles in bending ultrasonic fatigue test. The fatigue strength increases significantly in high cycles range.

  18. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Stueber, Thomas

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  19. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  20. Use of the 5E learning cycle model combined with problem-based learning for a fundamentals of nursing course.

    PubMed

    Jun, Won Hee; Lee, Eun Ju; Park, Han Jong; Chang, Ae Kyung; Kim, Mi Ja

    2013-12-01

    The 5E learning cycle model has shown a positive effect on student learning in science education, particularly in courses with theory and practice components. Combining problem-based learning (PBL) with the 5E learning cycle was suggested as a better option for students' learning of theory and practice. The purpose of this study was to compare the effects of the traditional learning method with the 5E learning cycle model with PBL. The control group (n = 78) was subjected to a learning method that consisted of lecture and practice. The experimental group (n = 83) learned by using the 5E learning cycle model with PBL. The results showed that the experimental group had significantly improved self-efficacy, critical thinking, learning attitude, and learning satisfaction. Such an approach could be used in other countries to enhance students' learning of fundamental nursing.