Science.gov

Sample records for combined ir-microwave satellite

  1. CRRES: Combined release and radiation effects satellite program summary

    NASA Technical Reports Server (NTRS)

    Layman, Laura D.; Miller, George P.

    1993-01-01

    The experiments that comprise the Combined Release and Radiation Effects Satellite Program (CRRES) (Apr. 1990 - Jul. 1992) are presented. The experiments are as follows: PEGSAT; El Coqui; the Kwajalein Campaign; and experiments G1 - G14.

  2. Combining satellite data for better tropical forest monitoring

    NASA Astrophysics Data System (ADS)

    Reiche, Johannes; Lucas, Richard; Mitchell, Anthea L.; Verbesselt, Jan; Hoekman, Dirk H.; Haarpaintner, Jörg; Kellndorfer, Josef M.; Rosenqvist, Ake; Lehmann, Eric A.; Woodcock, Curtis E.; Seifert, Frank Martin; Herold, Martin

    2016-02-01

    Implementation of policies to reduce forest loss challenges the Earth observation community to improve forest monitoring. An important avenue for progress is the use of new satellite missions and the combining of optical and synthetic aperture radar sensor data.

  3. Solar Power Satellite (SPS) solid-state antenna power combiner

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A low loss power-combining microstrip antenna suitable for solid state solar power satellite (SPS) application was developed. A unique approach for performing both the combining and radiating function in a single cavity-type circuit was verified, representing substantial refinements over previous demonstration models in terms of detailed geometry to obtain good matching and adequate bandwidth at the design frequency. The combiner circuit was designed, built, and tested and the overall results support the view that the solid state power-combining antenna approach is a viable candidate for a solid state SPS antenna building block.

  4. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  5. High resolution gravity models combining terrestrial and satellite data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Pavlis, Nikolaos K.; Wang, Yan M.

    1992-01-01

    Spherical harmonic expansions to degree 360 have been developed that combine satellite potential coefficient information, terrestrial gravity data, satellite altimeter information as a direct tracking data type and topographic information. These models define improved representations of the Earth's gravitational potential beyond that available from just satellite or terrestrial data. The development of the degree 360 models, however, does not imply a uniform accuracy in the determination of the gravity field as numerous geographic areas are devoid of terrestrial data or the resolution of such data is limited to, for example, 100 km. This paper will consider theoretical and numerical questions related to the combination of the various data types. Various models of the combination process are discussed with a discussion of various correction terms for the different models. Various sources of gravity data will be described. The new OSU91 360 model will be discussed with comparisons made to previous 360 models and to other potential coefficient models that are complete to degree 50. Future directions in high degree potential coefficient models will be discussed.

  6. FEC combined burst-modem for business satellite communications use

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Miyake, M.; Fuji, T.; Moritani, Y.; Fujino, T.

    The authors recently developed two types of FEC (forward error correction) combined modems both applicable to low-data-rate and intermediate-data-rate TDMA international satellite communications. Each FEC combined modem consists of a QPSK (quadrature phase-shift keyed) modem, a convolutional encoder, and a Viterbi decoder. Both modems are designed taking into consideration the fast acquisition of the carrier and bit timing and the low cycle slipping rate in the low-carrier-to-noise-ratio environment. Attention is paid to designing the Viterbi decoder to be operated in a situation in which successive bursts may have different coding rates according to the punctured coding scheme. The overall scheme of the FEC combined modems are presented, and some of the key technologies applied in developing them are outlined. The hardware implementation and experimentation are also discussed. The measured data are compared with results of theoretical analysis, and relatively good performances are obtained.

  7. Contribution of satellite laser ranging to combined gravity field models

    NASA Astrophysics Data System (ADS)

    Maier, A.; Krauss, S.; Hausleitner, W.; Baur, O.

    2012-02-01

    In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (-1.75 ± 0.6) × 10-11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth's oblateness.

  8. Combined Earth's gravity field models based on satellite and terrestrial data: are they necessarily better than satellite-only models?

    NASA Astrophysics Data System (ADS)

    Hashemi Farahani, H.; Ditmar, P.; Klees, R.

    2012-12-01

    In spite of rapid progress of satellite gravimetry, the spatial resolution of satellite-only Earth's gravity field models is currently limited to about 100 km. Improving the spatial resolution requires the combination of satellite gravimetry data (or satellite-only models) with terrestrial gravity and radar altimetry measurements. However, the optimal combination of all available data is non-trivial, among others due to the different spectral contents, spatial coverage, the presence of systematic errors, and uncertain noise models. In order to study how successfully this has been done so far, we have analyzed the accuracy of two pairs of recently produced models: (i) combined model EGM2008 and its satellite-only counterpart ITG-Grace03; and (ii) combined model EIGEN-6C and its satellite-only counterpart EIGEN-6S. As independent control data, we have used in our analysis (i) the data acquired by the GRACE and GOCE satellite missions after these models were compiled, as well as (ii) an independent model of the oceanic Mean Dynamic Topography (MDT). We demonstrate that combining terrestrial data with satellite ones may lead not only to improvements, but also to noticeable worsening a combined model as compared to its satellite-only counterpart, particularly in the continental areas poorly covered with terrestrial gravimetry measurements. The analysis allows one to conclude that additional efforts are needed to design improved data combination strategies, which better exploits the information content in satellite and terrestrial data. Furthermore, it demonstrates that the selection of the "best" gravity field model must be made in the context of a particular application; no model shows the best performance in all frequency ranges and geographical areas.

  9. A web-based tool that combines satellite and weather station observations to support irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The Satellite Irrigation Management Support (SIMS) project combines NASA's Terrestrial Observation and Prediction System (TOPS), Landsat and MODIS satellite imagery, and reference evapotranspiration from surface weather station networks to map daily crop irrigation demand in California in ...

  10. Satellites

    SciTech Connect

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system.

  11. Combined Release and Radiation Effects Satellite (CRRES) experiments data collection, analysis, and publication

    NASA Technical Reports Server (NTRS)

    Long, Terry N.; Alzmann, Melanie O.

    1992-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) program experiments data collection, analysis, and publication activities are described. These activities were associated with both the satellite chemical release and a planned Puerto Rico sounding rocket campaign. To coordinate these activities, a working group meeting was organized and conducted.

  12. Combining satellite imagery and machine learning to predict poverty.

    PubMed

    Jean, Neal; Burke, Marshall; Xie, Michael; Davis, W Matthew; Lobell, David B; Ermon, Stefano

    2016-08-19

    Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.

  13. Combining satellite imagery and machine learning to predict poverty.

    PubMed

    Jean, Neal; Burke, Marshall; Xie, Michael; Davis, W Matthew; Lobell, David B; Ermon, Stefano

    2016-08-19

    Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries--Nigeria, Tanzania, Uganda, Malawi, and Rwanda--we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains. PMID:27540167

  14. Combined Satellite - and ULS-Derived Sea-Ice Flux in the Weddell Sea

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Liu, X.; Harms, S.

    2000-01-01

    Several years of daily microwave satellite ice-drift are combined with moored Upward Looking Sonar (ULS) ice-drafts into an ice volume flux record at points along a flux gate across the Weddell Sea, Antarctica.

  15. Combined adjustment of multi-resolution satellite imagery for improved geo-positioning accuracy

    NASA Astrophysics Data System (ADS)

    Tang, Shengjun; Wu, Bo; Zhu, Qing

    2016-04-01

    Due to the widespread availability of satellite imagery nowadays, it is common for regions to be covered by satellite imagery from multiple sources with multiple resolutions. This paper presents a combined adjustment approach to integrate multi-source multi-resolution satellite imagery for improved geo-positioning accuracy without the use of ground control points (GCPs). Instead of using all the rational polynomial coefficients (RPCs) of images for processing, only those dominating the geo-positioning accuracy are used in the combined adjustment. They, together with tie points identified in the images, are used as observations in the adjustment model. Proper weights are determined for each observation, and ridge parameters are determined for better convergence of the adjustment solution. The outputs from the combined adjustment are the improved dominating RPCs of images, from which improved geo-positioning accuracy can be obtained. Experiments using ZY-3, SPOT-7 and Pleiades-1 imagery in Hong Kong, and Cartosat-1 and Worldview-1 imagery in Catalonia, Spain demonstrate that the proposed method is able to effectively improve the geo-positioning accuracy of satellite images. The combined adjustment approach offers an alternative method to improve geo-positioning accuracy of satellite images. The approach enables the integration of multi-source and multi-resolution satellite imagery for generating more precise and consistent 3D spatial information, which permits the comparative and synergistic use of multi-resolution satellite images from multiple sources.

  16. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) services to traditional terrestrial and airborne users, GPS is also being increasingly used as a tool to enable precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite System (GNSS) constellations being replenished and coming into service (GLONASS, Beidou, and Galileo), it will become possible to benefit from greater signal availability and robustness by using evolving multi-constellation receivers. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to seventy thousand kilometers. This paper will report a similar analysis of the signal coverage of GPS in the space domain; however, the analyses will also consider signal coverage from each of the additional GNSS constellations noted earlier to specifically demonstrate the expected benefits to be derived from using GPS in conjunction with other foreign systems. The Space Service Volume is formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude circa 36,000 km, as compared with the Terrestrial Service Volume between 3,000 km and the surface of the Earth. In the Terrestrial Service Volume, GNSS performance is the same as on or near the Earth's surface due to satellite vehicle availability and geometry similarities. The core GPS system has thereby established signal requirements for the Space Service Volume as part of technical Capability Development Documentation (CDD) that specifies system performance. Besides the technical discussion, we also present diplomatic efforts to extend the GPS Space Service Volume concept to other PNT service providers in an effort to assure that all space users will benefit from the enhanced

  17. CRRES combined radiation and release effects satellite program

    NASA Technical Reports Server (NTRS)

    Giles, B. L. (Compiler); Mccook, M. A. (Compiler); Mccook, M. W. (Compiler); Miller, G. P. (Compiler)

    1995-01-01

    The various regions of the magnetosphere-ionosphere system are coupled by flows of charged particle beams and electromagnetic waves. This coupling gives rise to processes that affect both technical and non-technical aspects of life on Earth. The CRRES Program sponsored experiments which were designed to produce controlled and known input to the space environment and the effects were measured with arrays of diagnostic instruments. Large amounts of material were used to modify and perturb the environment in a controlled manner, and response to this was studied. The CRRES and PEGSAT satellites were dual-mission spacecraft with a NASA mission to perform active chemical-release experiments, grouped into categories of tracer, modification, and simulation experiments. Two sounding rocket chemical release campaigns completed the study.

  18. Combined Use of CO and CO2 Satellite Observations

    NASA Astrophysics Data System (ADS)

    Krol, M. C.; Basu, S.; Guerlet, S.; Clerbaux, C.; Houweling, S.

    2013-12-01

    CO2 satellite observations from GOSAT may inform about biosphere-atmosphere exchange of CO2. Here we address the specific question whether we can separate CO2 contributions from biomass burning and the respiration/assimilation exchange. To this end, we first employ IASI CO observations to constrain the biomass burning process. We then translate the CO emissions into CO2 biomass burning emissions using emission factors. Finally, we determine to CO2 exchange flux using the biomass burning CO2 emissions as a prior. All source inversions are done using the TM5-4DVAR system, which allows a 1x1 degree resolution zoom over regions of interest. We focus on regions that experienced drought and fire-related CO anomalies, such as the widespread drought around Moscow in 2010. We show that fire CO2 emissions can only partially explain the observed CO2 anomalies. The remaining anomaly are therefore attributed to reduced net CO2 uptake by the biosphere.

  19. Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2011-01-01

    The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected

  20. Combined Release and Radiation Effects Satellite (CRRES) Experiment: Educational planning and coordination

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Alzmann, Melanie

    1991-01-01

    The efforts conducted to provide educational planning and development support for the Combined Release and Radiation Satellite (CRRES) Experiment are summarized. Activities regarding the scientific working group and workshop development are presented including the preparation of descriptive information on the CRRES Project.

  1. Storm diagnostic/predictive images derived from a combination of lightning and satellite imagery

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Buechler, Dennis E.; Meyer, Paul J.

    1988-01-01

    A technique is presented for generating trend or convective tendency images using a combination of GOES satellite imagery and cloud-to-ground lightning observations. The convective tendency images can be used for short term forecasting of storm development. A conceptual model of cloud electrical development and an example of the methodology used to generate lightning/satellite convective tendency imagery are given. Successive convective tendency images can be looped or animated to show the previous growth or decay of thunderstorms and their associated lighting activity. It is suggested that the convective tendency image may also be used to indicate potential microburst producing storms.

  2. Radiation-induced insulator discharge pulses in the CRRES Internal Discharge Monitor satellite experiment. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.; Robinson, P. A., Jr.; Holman, E. G.

    1991-01-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The IDM is flying on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples include G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. The IDM results indicate the rate at which insulator pulses occur. Pulsing began on the seventh orbit. The maximum pulse rate occurred near orbit 600 when over 50 pulses occurred. The average pulse rate is approximately two per orbit, but nearly half of the first 600 orbits experienced no pulses. The pulse rate per unit flux of high energy electrons has not changed dramatically over the first ten months in space. These pulse rates are in agreement with laboratory experience on shorter time scales. Several of the samples have never pulsed. IDM pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on CRRES.

  3. De-correlated combination of two low-low Satellite-to-Satellite tracking pairs according to temporal aliasing

    NASA Astrophysics Data System (ADS)

    Murböck, Michael; Pail, Roland

    2014-05-01

    The monitoring of the temporal changes in the Earth's gravity field is of great scientific and societal importance. Within several days a homogeneous global coverage of gravity observations can be obtained with satellite missions. Temporal aliasing of background model errors into global gravity field models will be one of the largest restrictions in future satellite temporal gravity recovery. The largest errors are due to high-frequent tidal and non-tidal atmospheric and oceanic mass variations. Having a double pair low-low Satellite-to-Satellite tracking (SST) scenario on different inclined orbits reduces temporal aliasing errors significantly. In general temporal aliasing effects for a single (-pair) mission strongly depend on the basic orbital rates (Murböck et al. 2013). These are the rates of the argument of the latitude and of the longitude of the ascending node. This means that the revolution time and the length of one nodal day determine how large the temporal aliasing error effects are for each SH order. The combination of two low-low SST missions based on normal equations requires an adequate weighting of the two components. This weighting shall ensure the full de-correlation of each of the two parts. Therefore it is necessary to take the temporal aliasing errors into account. In this study it is analyzed how this can be done based on the resonance orders of the two orbits. Different levels of approximation are applied to the de-correlation approach. The results of several numerical closed-loop simulations are shown including stochastic modeling of realistic future instrument noise. It is shown that this de-correlation approach is important for maximizing the benefit of a double-pair low-low SST mission for temporal gravity recovery. Murböck M, Pail R, Daras I and Gruber T (2013) Optimal orbits for temporal gravity recovery regarding temporal aliasing. Journal of Geodesy, Springer Berlin Heidelberg, ISSN 0949-7714, DOI 10.1007/s00190-013-0671-y

  4. The Combined Release and Radiation Effects Satellite (CRRES) program: A unique series of scientific experiments

    NASA Technical Reports Server (NTRS)

    Reasoner, David L.; Mccook, Morgan W. (Editor); Vaughan, William W. (Editor)

    1990-01-01

    The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.

  5. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    NASA Astrophysics Data System (ADS)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  6. Performance and limits of current satellite-only and combined gravity field models (Invited)

    NASA Astrophysics Data System (ADS)

    Pail, R.

    2013-12-01

    During the last decade, the successful operation of the dedicated satellite missions GOCE and GRACE have revolutionized our picture of the Earth's gravity field, because they delivered a static global gravity field map with high and homogeneous accuracy for spatial lengthscales down to 80-100 km. The current satellite-only models of the fourth generation including GOCE data have reached accuracies of about 3 cm in geoid height and less than 1 mGal in gravity anomalies at degree/order 200 (100 km spatial half-wavelength). Due to the attenuation of the gravity field with orbit altitude, gravity field models derived only from satellite data will never be able to achieve very high spatial resolutions of only a few kilometres. However, precise knowledge of the Earth's gravity field structure with very high resolution is essential not only for a range of geoscience disciplines, such as solid Earth geophysics for lithospheric modelling and geological interpretation, exploration geophysics, and several climate research applications such as ocean circulation or sea level change research, but also for geodesy (e.g., surveying, inertial navigation) and civil engineering (e.g., construction, modelling of water flow for hydro-engineering). For this reason, satellite-only models are complemented by combined gravity field models, which contain very high-resolution or even point-wise gravity field information obtained by terrestrial gravity measurements over continents, and satellite altimetry over the oceans. To further increase the spatial resolution beyond 10-20 km, measured terrestrial and satellite data can also be augmented by high-resolution gravity field signals synthesized from topographic models, although the latter is not useful anymore for geophysical interpretation. In this contribution we explore the performance and the limits of the most recent satellite-only and combined Earth's gravity field models. On the basis of selected case studies from different

  7. Atmospheric Profiling Combining the Features of GPS ro & Mls: Satellite to Satellite Occultations Near Water & Ozone Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Reed, H.; Erickson, D.

    2015-12-01

    Assessing climate models & their predictions requires observations that determine the state of the real climate system precisely and unambiguously, independently from models. For this purpose, we have been developing a new orbiting remote sensing system called the Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS) which is a cross between GPS RO and the Microwave Limb Sounder. ATOMMS actively probes water vapor, ozone & other absorption lines at cm & mm wavelengths in a satellite to satellite occultation geometry to simultaneously profile temperature, pressure, water vapor and ozone as well as other important constituents. Individual profiles of water vapor, temperature & pressure heights will extend from near the surface into the mesosphere with ~1%, 0.4K and 10 m precision respectively and still better accuracy, with 100 m vertical resolution. Ozone profiles will extend upward from the upper troposphere. Line of sight wind profiles will extend upwards from the mid-stratosphere. ATOMMS is a doubly differential absorption system which eliminates drift and both sees clouds and sees thru them, to deliver performance in clouds within a factor of 2 of the performance in clear skies. This all-weather sampling combined with insensitivity to surface emissivity avoids sampling biases that limit most existing satellite records. ATOMMS will profile slant liquid water in clouds & rain and as well as turbulence via scintillations ("twinkling of a star"). Using prototype ATOMMS instrumentation that we developed with funding from NSF, several ATOMMS ground field campaigns precisely measured water vapor, cloud amount, rainfall, turbulence and absorption line spectroscopy. ATOMMS's dynamic range was demonstrated as water vapor was derived to 1% precision in optical depths up to 17. We are developing high altitude aircraft to aircraft instrumentation to further demonstrate ATOMMS performance, refine spectroscopy & support future field campaigns. Our vision is a

  8. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  9. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations.

    PubMed

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-01

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic "V" shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun. PMID:26805831

  10. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations.

    PubMed

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-20

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic "V" shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun.

  11. Vertical land movements from the combined use of satellite altimetry and tide gauges

    NASA Astrophysics Data System (ADS)

    Marcos, Marta; Woppelmann, Guy

    2015-04-01

    Vertical ground displacements at tide gauge sites were estimated from the differenced time series of monthly satellite altimetry sea level anomalies minus tide gauge. We have used the time series of satellite altimetry that are routinely processed and distributed by four major data providers (three gridded and one along-track products) together with monthly tide gauge records from the datum controlled data set of the Permanent Service for Mean Sea Level (PSMSL). Differenced time series were built using three variants of altimetric time series. Each resulting record was analyzed assuming a combination of white noise and power-law noise of a priori unknown spectral index. The rate uncertainties, computed taking into account the noise content in the differenced time series, will be discussed. In particular, in the context of the departures from the white noise (expected only if both the satellite altimeter and the tide gauge were recording mostly the same sea level signals and their instrumental errors were negligible) and its amplitude. The most suitable altimetric product in terms of correlation and variance reduction at tide gauges, among those investigated, will be identified. Rates of vertical land motion computed with Global Positioning System (GPS) and rates obtained from the combination of altimetry and tide gauge records will be finally compared for those stations where both measurements are available.

  12. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations

    PubMed Central

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-01

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic “V” shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is −2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations’ time series of some GEO satellites might vary according to their relative geometries with the sun. PMID:26805831

  13. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  14. Retrieval of temperature and water vapor from combined satellite and ground based ultra-spectral measurements

    NASA Astrophysics Data System (ADS)

    Jian, Yongxiao

    Ultra-spectrometers with a spectral resolution better than 1 cm-1, such as AIRS on the AQUA, IASI on the Metop-A/B, and CrIS on the Suomi-NPP, have become operational during the past decade. The radiance spectra measured by these satellite-borne spectrometers provide soundings of the atmosphere with relatively high vertical resolution and high accuracy except for the lower atmosphere. Meanwhile, many ground-based ultra-spectrometers based on the Michelson Interferometer have been incorporated into the Department of Energy Atmospheric Radiation Measurement facilities and aboard NOAA research vessels. These instruments provide temperature and water vapor soundings within the planetary boundary layer continuously with very high vertical resolution. This dissertation develops a retrieval procedure which can combine the radiance measured by ground-based spectrometers and coincident observation from satellite-borne instruments to improve retrieval results throughout the lower atmosphere. To verify the feasibility and improved accuracy of the combined retrieval, 90 clear sky cases from four in-situ radiosonde measurement locations or geographical regions, were selected for this study. Each region consists of radiosonde measurements of temperature and water vapor, downwelling radiance spectra measured at approximately the balloon launch time, and upwelling radiance observation by IASI at the location and time coincident with the surface radiance and radiosonde measurements. These cases indicate, that when compared with the retrieval from upwelling radiance or downwelling radiance spectra only, there is a significant improvement of the retrieval using combined upwelling and downwelling radiance spectra is observed. At altitude below the 800 hPa pressure level, the errors using the combined retrieval are about 0.5 -- 1 K in temperature, and 20 -- 40 % for water vapor mixing ratio. These errors are approximately one-third the magnitude of errors for the sounding retrieval

  15. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  16. A first experiment on local combination of EGM2008 data and GOCE grids at satellite altitude

    NASA Astrophysics Data System (ADS)

    Gatti, A.; Pavlis, N. K.; Reguzzoni, M.; Sanso, F.

    2012-12-01

    The GOCE satellite of the European Space Agency (ESA), thanks to a low orbit and a very sophisticated gradiometer, is observing the Earth gravitational field with the highest level of accuracy and resolution ever reached by any geodetic missions. Although lower than other satellites, the GOCE orbit altitude of about 250 km inevitably limits the maximum achievable resolution of the estimated gravitational field; to overcome this limitations a combination with other sources of data is then necessary. One of the most informative and accurate spherical harmonic global models of the Earth gravitational field is EGM2008. It has been developed by a least squares combination between of the ITG-GRACE03S model (with its associated error covariance matrix) and a 5'x5' grid of free-air gravity anomalies. Therefore this model seems to be suitable for a combination with the newer GOCE data. The classical approach to merge these two types of information is a direct combination of the spherical harmonic coefficients coming from the satellite-only model and EGM2008. The possible drawbacks of this approach are the following: 1. Every GOCE-only spherical harmonic global model need a certain level of regularization (e.g. to deal with polar gaps) acting on a subset of coefficients but more or less affecting the estimated field all over the world. 2. The EGM2008 error description is based on publicly available coefficient variances or, at most, on a block diagonal covariance matrix when coefficients are sorted order by order; this implies that the corresponding geographical error is latitude dependent, which is an approximation far from reality. The main goal of this work is to try to overcome these limitations by computing local grids at ground level from GOCE data and EGM2008 grids. With this approach the GOCE information used is not yet regularized to produce a global model and EGM2008 could be weighted taking into account the actual geographic distribution of the error (e.g. the

  17. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  18. Combining satellite data with ancillary data to produce a refined land-use/land-cover map

    USGS Publications Warehouse

    Stewart, J.S.

    1998-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the Western Lake Michigan Drainages Study Unit, a current map of land use and land cover is needed to gain a better understanding of how land use and land cover may influence water quality. Satellite data from the Landsat Thematic Mapper provides a means to map and measure the type and amount of various land-cover types across the Study Unit and can be easily updated as changes occur in the landscape or in water quality. Translating these land cover categories to land use, however, requires the use of other thematic maps or ancillary data layers, such as wetland inventories, population data, or road networks. This report describes a process of (1) using satellite imagery to produce a land-cover map for the Fox/Wolf River basin, a portion of the Western Lake Michigan Drainages NAWQA Study Unit and (2) improving the satellite-derived land-cover map by using other thematic maps. The multiple data layers are processed in a geographic information system (GIS), and the combination provides more information than individual sources alone.

  19. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimations over Continental South America

    NASA Technical Reports Server (NTRS)

    Vila, Daniel; deGoncalves, Luis Gustavo; Toll, David L.; Rozante, Jose Roberto

    2008-01-01

    This paper describes a comprehensive assessment of a new high-resolution, high-quality gauge-satellite based analysis of daily precipitation over continental South America during 2004. This methodology is based on a combination of additive and multiplicative bias correction schemes in order to get the lowest bias when compared with the observed values. Inter-comparisons and cross-validations tests have been carried out for the control algorithm (TMPA real-time algorithm) and different merging schemes: additive bias correction (ADD), ratio bias correction (RAT) and TMPA research version, for different months belonging to different seasons and for different network densities. All compared merging schemes produce better results than the control algorithm, but when finer temporal (daily) and spatial scale (regional networks) gauge datasets is included in the analysis, the improvement is remarkable. The Combined Scheme (CoSch) presents consistently the best performance among the five techniques. This is also true when a degraded daily gauge network is used instead of full dataset. This technique appears a suitable tool to produce real-time, high-resolution, high-quality gauge-satellite based analyses of daily precipitation over land in regional domains.

  20. The combination of satellite observation techniques for sequential ionosphere VTEC modeling

    NASA Astrophysics Data System (ADS)

    Erdogan, Eren; Limberger, Marco; Schmidt, Michael; Seitz, Florian; Dettmering, Denise; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Venzmer, Malte; Mrotzek, Niclas

    2016-04-01

    The project OPTIMAP is a joint initiative by the Bundeswehr GeoInformation Centre (BGIC), the German Space Situational Awareness Centre (GSSAC), the German Geodetic Research Institute of the Technical University of Munich (DGFI-TUM) and the Institute for Astrophysics at the University of Göttingen (IAG). The main goal is to develop an operational tool for ionospheric mapping and prediction (OPTIMAP). A key feature of the project is the combination of different satellite observation techniques to improve the spatio-temporal data coverage and the sensitivity for selected target parameters. In the current status, information about the vertical total electron content (VTEC) is derived from the dual frequency signal processing of four techniques: (1) Terrestrial observations of GPS and GLONASS ensure the high-resolution coverage of continental regions, (2) the satellite altimetry mission Jason-2 is taken into account to provide VTEC in nadir direction along the satellite tracks over the oceans, (3) GPS radio occultations to Formosat-3/COSMIC are exploited for the retrieval of electron density profiles that are integrated to obtain VTEC and (4) Jason-2 carrier-phase observations tracked by the on-board DORIS receiver are processed to determine the relative VTEC. All measurements are sequentially pre-processed in hourly batches serving as input data of a Kalman filter (KF) for modeling the global VTEC distribution. The KF runs in a predictor-corrector mode allowing for the sequential processing of the measurements where update steps are performed with one-minute sampling in the current configuration. The spatial VTEC distribution is represented by B-spline series expansions, i.e., the corresponding B-spline series coefficients together with additional technique-dependent unknowns such as Differential Code Biases and Intersystem Biases are estimated by the KF. As a preliminary solution, the prediction model to propagate the filter state through time is defined by a random

  1. PM-GCD - a combined IR-MW satellite technique for frequent retrieval of heavy precipitation

    NASA Astrophysics Data System (ADS)

    Casella, D.; Dietrich, S.; di Paola, F.; Formenton, M.; Mugnai, A.; Porcù, F.; Sanò, P.

    2012-01-01

    Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach high level of accuracy - especially regarding convective precipitation. At the present stage though, these observations cannot provide satisfactory coverage of the evolution of intense and rapid precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications - especially in supporting authorities for flood alerts and weather warnings. To tackle this problem, over the past two decades several techniques have been developed combining accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). In this framework, we have developed a new fast and simple precipitation retrieval technique which we call Passive Microwave - Global Convective Diagnostic, (PM-GCD). This method uses MW retrievals in conjunction with the Global Convective Diagnostic (GCD) technique which discriminates deep convective clouds based on the difference between the MSG water vapor (6.2 μm) and thermal-IR (10.8 μm) channels. Specifically, MSG observations and the GCD technique are used to identify deep convective areas. These areas are then calibrated using MW precipitation estimates based on observations from the Advanced Microwave Sounding Unit (AMSU) radiometers onboard operational NOAA and Eumetsat satellites, and then finally propagated in time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique, analyzing its results for a case study that refers to a flood event that struck the island of Sicily in southern Italy on 1-2 October 2009.

  2. The Asian Tropopause Aerosol layer through satellite and balloon-borne measurements combined with modelling approaches.

    NASA Astrophysics Data System (ADS)

    Vernier, J. P.; Fairlie, T. D.; Natarajan, M.; Crawford, J. H.; Baker, N. C.; Wegner, T.; Deshler, T.; Gadhavi, H. S.; Kumar, S.; Singh, A. K.; Jayaraman, A.; Raj, A.; Alladi, H.; Ratnam, M. V.; Pandit, A.; Vignelles, D.; Wienhold, F.; Liu, H.; Kumar, S.

    2015-12-01

    The Asian tropopause Aerosol Layer (ATAL) is a seasonal aerosol feature occurring in the Upper Troposphere and Lower Stratosphere (UTLS) above Asia during the Summer Asian Monsoon. Vertically resolved aerosol backscatter profiles from the Cloud-Aerosol Lidar and Infrared Pathfinder satellite Observation (CALIPSO) mission and extinction profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) have been used to infer the spatial and temporal distributions of the ATAL since the late 90's. We found that aerosol optical thickness between 13-18km have increased by a factor of 2-3 over the past 16 years likely related to raising pollution levels in South East Asia occuring during the same period. Modelling studies of the ATAL using WACCAM 3 and GEOS-Chem have provided conflicting information on its origin and a better representation of in-cloud SO2 and aerosol lifetime in GOES-Chem seems to be key to obtain consistent results with the few SO2 measurements available in the UTLS during the Asian Monsoon. In situ measurements of aerosol and trace gases in the UTLS from several balloon campaigns which took place in summer 2014 and 2015 in Asia will be presented and discussed with combined satellite and modelling analysis.

  3. Detecting Disaster Damage from 2015 Typhoon Etau by the Combined Use of Different SAR Satellites

    NASA Astrophysics Data System (ADS)

    Honda, Kenichi; Fujihira, Kei; Asada, Norichika; Fukushima, Ayumi; Mushiake, Naruo

    2016-06-01

    In this study, focusing on the flood damages in Joso City in Ibaraki Prefecture, we estimated the extent of inundation using multiple SAR satellites and examined their varied results depending on observational bands. We further examined the potential utilization of combined different SAR data for initial responses to disasters. For classification of the inundated areas, a binary classification was used with a threshold of backscatter coefficient and the difference in backscatter coefficient between the usual condition and the situation after the breach. In the extraction of inundation after the breach of the levee, COSMO-SkyMed showed the accuracy of 72.6%, while ALOS-2 PALSAR-2 indicated the accuracy of 66.1%. The extent of inundation were extracted by difference of backscatter coefficient using the data taken by Sentinel-1 and ALOS-2 PALSAR-2 before the breach of the levee, and the comparison analysis results showed that the extent of inundation expanded after the breach of the levee. From the above results, we graded the characteristics of the satellites by their observational bands and spatial resolution.

  4. Precise Satellite Navigation Combining Kinematic and Dynamic Techniques in Support of Remote Sensing From Space

    NASA Astrophysics Data System (ADS)

    Colombo, O. L.; Rowlands, D. D.; Chinn, D.; Poulose, S.

    2002-05-01

    A precise orbit determination method combining kinematic and dynamic techniques has been used to analyze two full days of on-board GPS receiver data from TOPEX and from a set of 20 IGS ground sites around the world. The resulting orbits agree, to better than 4 cm rms in height and a total of 10 cm rms in three-dimensions, with the corresponding Goddard Precise Orbit Estimates (POE). These POE, produced by NASA for the TOPEX Geophysical Data Records, are based only on laser and DORIS Doppler tracking data, so they can be used as a totally independent control for GPS-based results. There are two main steps:(1) A preliminary 24-hour kinematic trajectory, precise to a few meters, is obtained from double-differenced pseudo-range data. A one-day orbit is fitted to this trajectory, using the classical dynamic approach (in this case, as implemented in the Goddard SFC program GEODYN). (2) The fitted orbit is used to help correct cycle-slips in the carrier phase data. The corrected phase data, alone, are used to get a more precise kinematic trajectory. A new dynamic orbit fit is made to this trajectory to obtain the final, precise orbit. For the dynamic orbit determination, the forces acting on the satellite have been modeled, as for the POE, with a fixed box-wing model for the effect of solar radiation and drag on the satellite, and the gravitational acceleration with the JGM3 gravity field model, developed for TOPEX. In addition, a few force parameters were estimated, along with the orbit initial conditions: one drag scale factor every four hours, and one daily set of four empirical parameters representing unmodeled and mismodeled forces, for a total of 16 unknowns in each 24-hour solution. This approach combines the high precision of the dynamic method with the efficient data processing of the kinematic method, and has been implemented at Goddard using only pre-existing software. In general, this method could be used in support of remote sensing from space, when it is

  5. Tropical Rainfall Distributions Determined Using TRMM Combined with Other Satellite and Rain Gauge Information.

    NASA Astrophysics Data System (ADS)

    Adler, Robert F.; Huffman, George J.; Bolvin, David T.; Curtis, Scott; Nelkin, Eric J.

    2000-12-01

    A technique is described to use Tropical Rainfall Measuring Mission (TRMM) combined radar-radiometer information to adjust geosynchronous infrared satellite data [the TRMM Adjusted Geostationary Operational Environmental Satellite Precipitation Index (AGPI)]. The AGPI is then merged with rain gauge information (mostly over land) to provide finescale (1° latitude × 1° longitude) pentad and monthly analyses, respectively. The TRMM merged estimates are 10% higher than those from the Global Precipitation Climatology Project (GPCP) when integrated over the tropical oceans (37°N-37°S) for 1998, with 20% differences noted in the most heavily raining areas. In the dry subtropics the TRMM values are smaller than the GPCP estimates. The TRMM merged product tropical-mean estimates for 1998 are 3.3 mm day1 over ocean and 3.1 mm day1 over land and ocean combined. Regional differences are noted between the western and eastern Pacific Ocean maxima when TRMM and GPCP are compared. In the eastern Pacific rain maximum the TRMM and GPCP mean values are nearly equal, which is very different from the other tropical rainy areas where TRMM merged product estimates are higher. This regional difference may indicate that TRMM is better at taking into account the vertical structure of the rain systems and the difference in structure between the western and eastern (shallower) Pacific convection.Comparisons of these TRMM merged analysis estimates with surface datasets shows varied results; the bias is near zero when compared with western Pacific Ocean atoll rain gauge data, but is significantly positive as compared with Kwajalein radar estimates (adjusted by rain gauges). Over land the TRMM estimates also show a significant positive bias. The inclusion of gauge information in the final merged product significantly reduces the bias over land, as expected.The monthly precipitation patterns produced by the TRMM merged data process clearly show the evolution of the El Ni

  6. Multi-technique combination of space geodesy observations: Impact of the Jason-2 satellite on the GPS satellite orbits estimation

    NASA Astrophysics Data System (ADS)

    Zoulida, Myriam; Pollet, Arnaud; Coulot, David; Perosanz, Félix; Loyer, Sylvain; Biancale, Richard; Rebischung, Paul

    2016-10-01

    In order to improve the Precise Orbit Determination (POD) of the GPS constellation and the Jason-2 Low Earth Orbiter (LEO), we carry out a simultaneous estimation of GPS satellite orbits along with Jason-2 orbits, using GINS software. Along with GPS station observations, we use Jason-2 GPS, SLR and DORIS observations, over a data span of 6 months (28/05/2011-03/12/2011). We use the Geophysical Data Records-D (GDR-D) orbit estimation standards for the Jason-2 satellite. A GPS-only solution is computed as well, where only the GPS station observations are used. It appears that adding the LEO GPS observations results in an increase of about 0.7% of ambiguities fixed, with respect to the GPS-only solution. The resulting GPS orbits from both solutions are of equivalent quality, agreeing with each other at about 7 mm on Root Mean Square (RMS). Comparisons of the resulting GPS orbits to the International GNSS Service (IGS) final orbits show the same level of agreement for both the GPS-only orbits, at 1.38 cm in RMS, and the GPS + Jason2 orbits at 1.33 cm in RMS. We also compare the resulting Jason-2 orbits with the 3-technique Segment Sol multi-missions d'ALTimétrie, d'orbitographie et de localisation précise (SSALTO) POD products. The orbits show good agreement, with 2.02 cm of orbit differences global RMS, and 0.98 cm of orbit differences RMS on the radial component.

  7. Morphodynamics of River Lowlands and Deltas: Combining Historical Maps with Satellite Data

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Hannon, M.; Kettner, A. J.; Jenkins, C. J.; Hutton, E. W.

    2007-12-01

    Cartographers have for centuries documented the courses of rivers and their delta's distributary channels. Yet these valuable historical maps have not often been placed into a Global Information System, and verified for their cartographic accuracy. We have obtained between 6 and 15 historical maps (17th - 20th century) for a set of global deltas (Indus, Ganges, Godavari, Krishna, Mahanadi, Brahmani, Yellow, Vistula Danube, Po, Rhone, Niger, Nile, Orinoco, Magdalena, Amazon, and Mississippi). The maps were examined for their registration accuracy, using the location of between 8 and 15 cities or towns. Those maps with RMS errors of less than 5 km had shape files established for the pathways of their rivers and distributary channels. Geolocated Space Shuttle Radar data were binned into 1 m topographic units (? 90 m horizontal footprint) for each river-delta system and used in combination with LANDSAT ETM+ (15-30 m horizontal footprint), as an underlay to each of the historical maps. The satellite data proved useful in verifying the historical courses of these channels, many of which are no longer active. Together the data provide valuable insight to the time dependent dynamics of distributary channel switching and migration, before the heavy anthropogenic footprint of the 20th century (river diversions through barrages, upstream damming of the sediment supply, mitigation of the seasonal flood wave, levee development and stabilization, human-affected delta subsidence, and agricultural infrastructure).

  8. Eulerian mean surface velocity field derived by combining drifter and satellite altimeter data

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Imawaki, Shiro

    2003-03-01

    Combining surface drifter and satellite altimeter data,we estimate Eulerian mean sea-surface velocity with a resolution of quarter degrees in both latitude and longitude. The Eulerian mean velocity is calculated by subtracting the altimeter-derived velocity anomaly (i.e., deviation from the temporal mean) at the time when a drifter measured the surface velocity, from this drifter-measured velocity. The method is applied to the surface flow of the North Pacific, using TOPEX/POSEIDON and ERS-1/2 altimeter data, and WOCE-TOGA surface drifter data obtained during October 1992 to January 2001. The estimated Eulerian mean velocities for the Kuroshio south of Japan and the Kuroshio Extension region tend to be smaller than simple averages of drifter-derived velocities by 20 to 50 cm sec-1. The instantaneous velocities are obtained every ten days as sums of the Eulerian mean velocities and velocity anomalies. They agree well with in situ surface velocities measured by acoustic Doppler current profilers.

  9. Fluxgate magnetometer analysis and simulation software for the Combined Release and Radiation Effects Satellite (CRRES). Technical report

    SciTech Connect

    McNeil, W.J.; Singer, H.J.

    1986-10-01

    A software package was designed to simulate the operation of the fluxgate magnetometer to be flown on the Combined Release and Radiation Effects Satellite (CRRES). Algorithms are presented to create a one-second averaged data base from a simulated data stream from a spinning satellite in a realistic earth's magnetic field. Methods are devised to perform on-orbit calibration, to despin the data and to use a model field for calibration. Expressions are presented for both the signals and errors in signals introduced by inaccurate calibration parameters. The time requirement for processing are estimated.

  10. Tropical Rainfall Analysis Using TRMM in Combination With Other Satellite Gauge Data: Comparison with Global Precipitation Climatology Project (GPCP) Results

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.

  11. On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Yan Ming

    2016-07-01

    One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.

  12. The Combined Release and Radiation Effects Satellite program (CRRES): A unique series of scientific experiments

    NASA Technical Reports Server (NTRS)

    1991-01-01

    CRRES is a program to study the space environment which surrounds Earth and the effects of space radiation on modern satellite electronic systems. The satellite will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with suborbital rocket probes. These chemical releases will paint the magnetic and electric fields in Earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments.

  13. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  14. Tropical Rainfall Distributions Determined Using TRMM Combined with other Satellite and Raingauge Information

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George J.; Bolvin, David T.; Curtis, Scott; Nelkin, Eric J.

    1999-01-01

    Abstract A technique is described to use Tropical Rain Measuring Mission (TRMM) combined radar/radiometer information to adjust geosynchronous infrared satellite data (the TRMM Adjusted GOES Precipitation Index, or TRMM AGPI). The AGPI is then merged with rain gauge information (mostly over land; the TRMM merged product) to provide fine- scale (1 deg latitude/longitude) pentad and monthly analyses, respectively. The TRMM merged estimates are 10% higher than those from the Global Precipitation Climatology Project (GPCP) when integrated over the tropical oceans (37 deg N-S) for 1998, with 20% differences noted in the most heavily raining areas. In the dry subtropics the TRMM values are smaller than the GPCP estimates. The TRMM merged-product tropical-mean estimates for 1998 are 3.3 mm/ day over ocean and 3.1 mm/ day over land and ocean combined. Regional differences are noted between the western and eastern Pacific Ocean maxima when TRMM and GPCP are compared. In the eastern Pacific rain maximum the TRMM and GPCP mean values are nearly equal, very different from the other tropical rainy areas where TRMM merged-product estimates are higher. This regional difference may indicate that TRMM is better at taking in to account the vertical structure of the rain systems and the difference in structure between the western and eastern (shallower) Pacific convection. Comparisons of these TRMM merged analysis estimates with surface data sets shows varied results; the bias is near zero when compared to western Pacific Ocean atoll raingauge data, but significantly positive compared to Kwajalein radar estimates (adjusted by rain gauges). Over land the TRMM estimates also show a significant positive bias. The inclusion of gauge information in the final merged product significantly reduces the bias over land, as expected. The monthly precipitation patterns produced by the TRMM merged data process clearly show the evolution of the ENSO tropical precipitation pattern from early 1998

  15. Tropical forest monitoring, combining satellite and social data, to inform management and livelihood implications: Case studies from Indonesian West Timor

    NASA Astrophysics Data System (ADS)

    Fisher, Rohan

    2012-06-01

    Deforestation in the world's tropics is an urgent international issue. One response has been the development of satellite based monitoring initiatives largely focused on the carbon rich forests of western Indonesia. In contrast this study focuses on one eastern Indonesian district, Kabupaten Kupang, which has some of the largest and least studied tracts of remaining forest in West Timor. A combination of remote sensing, GIS and social science methods were used to describe the state of forests in Kabupaten Kupang, how and why they are changing. Using satellite imagery, case studies and on-ground interviews, this study explores the proposition that transdisciplinary local social, cultural and biophysical knowledge is important for effectively using remotely sensed data as a tool to inform local management policies. When compared to some other parts of Indonesia, the rate and extent of deforestation in West Timor was found to be relatively small and a satellite based assessment alone could conclude that it is not a critical issue. However this study showed that when on-ground social data are coupled with (such) satellite-based data a more complex picture emerges, related to key livelihood issues. The causes of forest cover change were found to be multivariate and location specific, requiring management approaches tailored to local social issues. This study suggests that integrative research can maximise the utility of satellite data for understanding causation and thus informing management strategies. In addition, the satellite based assessment found that at the time of the study less than 4% of forested land was within national parks and nature reserves and less than a third of the protected catchment forest zone was forested. These data suggest considerable scope for upland re-forestation activities or the redrawing of protected forest boundaries.

  16. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2006-01-01

    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  17. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    NASA Astrophysics Data System (ADS)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit

  18. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  19. Simultaneous hierarchical segmentation and vectorization of satellite images through combined data sampling and anisotropic triangulation

    SciTech Connect

    Grazzini, Jacopo; Prasad, Lakshman; Dillard, Scott

    2010-10-21

    The automatic detection, recognition , and segmentation of object classes in remote sensed images is of crucial importance for scene interpretation and understanding. However, it is a difficult task because of the high variability of satellite data. Indeed, the observed scenes usually exhibit a high degree of complexity, where complexity refers to the large variety of pictorial representations of objects with the same semantic meaning and also to the extensive amount of available det.ails. Therefore, there is still a strong demand for robust techniques for automatic information extraction and interpretation of satellite images. In parallel, there is a growing interest in techniques that can extract vector features directly from such imagery. In this paper, we investigate the problem of automatic hierarchical segmentation and vectorization of multispectral satellite images. We propose a new algorithm composed of the following steps: (i) a non-uniform sampling scheme extracting most salient pixels in the image, (ii) an anisotropic triangulation constrained by the sampled pixels taking into account both strength and directionality of local structures present in the image, (iii) a polygonal grouping scheme merging, through techniques based on perceptual information , the obtained segments to a smaller quantity of superior vectorial objects. Besides its computational efficiency, this approach provides a meaningful polygonal representation for subsequent image analysis and/or interpretation.

  20. Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests

    NASA Astrophysics Data System (ADS)

    Ziebart, M.; Adhya, S.; Sibthorpe, A.; Edwards, S.; Cross, P.

    In an era of high resolution gravity field modelling the dominant error sources in spacecraft orbit determination are non-conservative spacecraft surface forces. These forces can be difficult to characterise a priori because they require detailed modelling of: spacecraft geometry and surface properties; attitude behaviour; the spatial and temporal variations of the incident radiation and particle fluxes and the interaction of these fluxes with the surfaces. The conventional approach to these problems is to build simplified box-and-wing models of the satellites and to estimate empirically factors that account for the inevitable mis-modelling. Over the last few years the authors have developed a suite of software utilities that model analytically three of the main effects: solar radiation pressure, thermal forces and the albedo/earthshine effects. The techniques are designed specifically to deal with complex spacecraft structures, no structural simplifications are made and the method can be applied to any spacecraft. Substantial quality control measures are used during computation to both avoid and trap errors. The paper presents the broad basis of the modelling techniques for each of the effects, and gives the results of recent tests applied to GPS Block IIR satellites and the low Earth orbit satellite altimeter JASON-1.

  1. Posterior Double Vertebral Column Resections Combined with Satellite Rod Technique to Correct Severe Congenital Angular Kyphosis.

    PubMed

    Sun, Xu; Zhu, Ze-Zhang; Chen, Xi; Liu, Zhen; Wang, Bin; Qiu, Yong

    2016-08-01

    This paper presents a highly challenging technique involving posterior double vertebral column resections (VCRs) and satellite rods placement. This was a young adult case with severe angular thoracolumbar kyphosis of 101 degrees, secondary to anterior segmentation failure from T11 to L1 . There were hemivertebrae at T11 and T12 , and a wedged vertebra at L1 . He received double VCRs at T12 and T11 and instrumented fusion from T6 to L4 via a posterior only approach. Autologous grafts and a cage were placed between the bony surfaces of the osteotomy gap. Once closure of osteotomy was achieved, bilateral permanent CoCr rods were placed with addition of satellite rods. Postoperative X-ray demonstrated marked correction of kyphosis. On the 10(th) days after surgery, the patient was able to walk without assistance. In conclusion, double VCRs are effective to correct severe angular kyphosis, and addition of satellite rods may be imperative to enhance instrumentation strength and thus prevent correction loss. PMID:27627727

  2. Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hongxiang; Moradkhani, Hamid

    2016-08-01

    Assimilation of satellite soil moisture and streamflow data into a distributed hydrologic model has received increasing attention over the past few years. This study provides a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. Performance is assessed over the Salt River Watershed in Arizona, which is one of the watersheds without anthropogenic effects in Model Parameter Estimation Experiment (MOPEX). A total of five data assimilation (DA) scenarios are designed and the effects of the locations of streamflow gauges and the ASCAT soil moisture on the predictions of soil moisture and streamflow are assessed. In addition, a geostatistical model is introduced to overcome the significantly biased satellite soil moisture and also discontinuity issue. The results indicate that: (1) solely assimilating outlet streamflow can lead to biased soil moisture estimation; (2) when the study area can only be partially covered by the satellite data, the geostatistical approach can estimate the soil moisture for those uncovered grid cells; (3) joint assimilation of streamflow and soil moisture from geostatistical modeling can further improve the surface soil moisture prediction. This study recommends that the geostatistical model is a helpful tool to aid the remote sensing technique and the hydrologic DA study.

  3. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Hsu, N. Christina; Kahn, Ralph A.; Levy, Robert C.; Lyapustin, Alexei; Sayer, Andrew M.; Winker, David M.

    2016-01-01

    We estimated global fine particulate matter (PM(sub 2.5)) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically-based satellite-derived PM(sub 2.5) estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM(sub 2.5) estimates were highly consistent (R(sup 2) equals 0.81) with out-of-sample cross-validated PM(sub 2.5) concentrations from monitors. The global population-weighted annual average PM(sub 2.5) concentrations were 3-fold higher than the 10 micrograms per cubic meter WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM(sub 2.5) data sources can yield valuable improvements to PM(sub 2.5) characterization on a global scale.

  4. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors.

    PubMed

    van Donkelaar, Aaron; Martin, Randall V; Brauer, Michael; Hsu, N Christina; Kahn, Ralph A; Levy, Robert C; Lyapustin, Alexei; Sayer, Andrew M; Winker, David M

    2016-04-01

    We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM2.5 estimates were highly consistent (R(2) = 0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5 concentrations were 3-fold higher than the 10 μg/m(3) WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global scale. PMID:26953851

  5. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature component

    NASA Astrophysics Data System (ADS)

    Moyano, Maria Carmen; Garcia, Monica; Tornos, Lucia; Recuero, Laura; Palacios-Orueta, Alicia; Juana, Luis

    2015-04-01

    Quantification of daily evapotranspiration at regional levels is fundamental for improving agricultural and hydrological management, especially in water-scarce and climatic change vulnerable regions, like the Mediterranean basin. Regional estimates of daily crop evapotranspiration (ET) have been historically based on combination equations, such as Penman-Monteith or Priestley-Taylor, forced with weather-data inputs. However, the requirements for long term in-situ data, limit the application of such traditional approaches and algorithms using satellite-data without field calibrations bridge this gap by estimating long-term ET at the pixel level from local to global scales. Land surface temperature is a key variable tracking land surface moisture status. However, it has not been included in satellite ET approaches based on combination equations. In this study, a land surface temperature component was used to estimate soil surface conductance based on an apparent thermal inertia index. A process-based model was applied to estimate surface energy fluxes including daily ET based on a modified version of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model at 1km pixel resolution during a chrono-sequence spanning for more than a decade (2002-2013). The thermal-PT-JPL model was forced with vegetation, albedo, reflectance and temperature products from the Moderate-resolution Imaging Spectroradiometer (MODIS) from both Aqua and Terra satellites. The study region, B-XII Irrigation District of the Lower Guadalquivir, is one of the largest irrigated areas in Spain but it has scarce in-situ micrometeorological or eddy covariance data. The final aim of this study is to evaluate the thermal version of PT-JPL model versus a lumped hydrological model to assess crop evapotranspiration deficits and long-term water consumption trends in the area. The results showed that the thermal-PT-JPL model is a suitable and simple tool requiring only air temperature and incoming solar

  6. Combining satellite observations to develop a global soil moisture product for near-real-time applications

    NASA Astrophysics Data System (ADS)

    Enenkel, Markus; Reimer, Christoph; Dorigo, Wouter; Wagner, Wolfgang; Pfeil, Isabella; Parinussa, Robert; De Jeu, Richard

    2016-10-01

    The soil moisture dataset that is generated via the Climate Change Initiative (CCI) of the European Space Agency (ESA) (ESA CCI SM) is a popular research product. It is composed of observations from 10 different satellites and aims to exploit the individual strengths of active (radar) and passive (radiometer) sensors, thereby providing surface soil moisture estimates at a spatial resolution of 0.25°. However, the annual updating cycle limits the use of the ESA CCI SM dataset for operational applications. Therefore, this study proposes an adaptation of the ESA CCI product for daily global updates via satellite-derived near-real-time (NRT) soil moisture observations. In order to extend the ESA CCI SM dataset from 1978 to present we use NRT observations from the Advanced Scatterometer on-board the two MetOp satellites and the Advanced Microwave Scanning Radiometer 2 on-board GCOM-W. Since these NRT observations do not incorporate the latest algorithmic updates, parameter databases and intercalibration efforts, by nature they offer a lower quality than reprocessed offline datasets. In addition to adaptations of the ESA CCI SM processing chain for NRT datasets, the quality of the NRT datasets is a main source of uncertainty. Our findings indicate that, despite issues in arid regions, the new CCI NRT dataset shows a good correlation with ESA CCI SM. The average global correlation coefficient between CCI NRT and ESA CCI SM (Pearson's R) is 0.80. An initial validation with 40 in situ observations in France, Spain, Senegal and Kenya yields an average R of 0.58 and 0.49 for ESA CCI SM and CCI NRT, respectively. In summary, the CCI NRT product is nearly as accurate as the existing ESA CCI SM product and, therefore, of significant value for operational applications such as drought and flood forecasting, agricultural index insurance or weather forecasting.

  7. Combining satellite, radiometric, and station data to study atmospheric dust over Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F. M.

    2012-12-01

    Atmospheric dust over Saudi Arabia during 2000-2010 has been studied using satellite and ground-based Aerosol Optical Depth (AOD), as well as station observations of dust occurrence. These datasets show a consistent seasonal cycle in dust activity, which peaks in spring to summer due to high surface temperatures, causing high atmospheric instability, and favorable wind patterns. Anomalies in these datasets are highly correlated on the monthly time scale, and statistically consistent on the daily time scale. Two remotely-sensed AOD datasets from Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) are validated with AOD measured by AEronet Robotic NETwork (AERONET) at Solar Village (24.9N, 46.4 E). The temporal correlation is higher between MODIS and AERONET on the monthly scale, but higher between MISR and AERONET on the daily scale. Meanwhile, MODIS AOD better captures the monthly dust frequency reported by dust observations from 17 stations across the country. The performance of satellite sensors on different temporal scales can be explained by the different levels of data coverage. The performance of satellite sensors also varies with the temporal and spatial scales of dust storms at various locations. We conclude that remotely-sensed AOD data can be applied as a reliable index of atmospheric dust concentration over Saudi Arabia on the monthly and daily time scales. Climatology of annual mean MISR-AOD (unitless: color shading), MODIS-AOD (unitless: contour) and the probability of dust storm occurrence at each station (size of the dot indicates the probability, computed as the number of days with recorded dust divided by the total number of days) during 2000-2010. Areas with MODIS-AOD above 0.3 are shaded with dots.

  8. Combined radiation pressure and thermal modelling of complex satellites: algorithms and on-orbit tests

    NASA Astrophysics Data System (ADS)

    Ziebart, M.; Adhya, S.; Sibthorpe, A.; Edwards, S.; Cross, P.

    In an era of high resolution gravity field modelling the dominant error sources in spacecraft orbit determination are non-conservative spacecraft surface forces. These forces include: solar radiation pressure, thermal re-radiation forces, the forces due to radiation both reflected and emitted by the Earth and atmospheric drag effects. All of these forces can be difficult to characterise a priori because they require detailed modelling of the spacecraft geometry and surface properties, its attitude behaviour, the incident flux spatial and temporal variations and the interaction of these fluxes with the surface. The conventional approach to overcoming these problems is to build simplified box-and-wing models of the satellites and to estimate empirically factors that account for the inevitable mis-modelling. Over the last five years the authors have developed a suite of software utilities that model analytically the first three effects in the list above: solar radiation pressure, thermal forces and the albedo/earthshine force. The techniques are designed specifically to deal with complex spacecraft structures, no structural simplifications are made and the method can be applied to any spacecraft. Substantial quality control measures are used during computation to both avoid and trap errors. The paper presents the broad basis of the modelling techniques for each of the effects. Two operational tests of the output models, using the medium earth orbit satellite GPS Block IIR and the low earth orbit Jason-1, are presented. Model tests for GPS IIR are based on predicting the satellite orbit using the dynamic models alone (with no empirical scaling or augmentation) and comparing the integrated trajectory with precise, post-processed orbits. Using one month's worth of precise orbits, and all available Block IIR satellites, the RMS difference between the predicted orbits and the precise orbits over 12 hours are: 0.14m (height), 0.07m across track and 0.51m (along track). The

  9. Global assessment of ocean carbon export by combining satellite observations and food-web models

    NASA Astrophysics Data System (ADS)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  10. Estimation of the parameters of gravity waves combining ground based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Paulino, Igo; Vadas, Sharon; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Takahashi, Hisao; Essien, Patrick

    2016-07-01

    Four medium-scale gravity waves were studied using images of the NIR OH airglow emission obtained from an all sky imager deployed at São João do Cariri (36.5 ^{o}W; 7.4 ^{o}S) and mesospheric temperature profiles from the TIMED/SABER satellite. The coincident measurements were made on 11 and 14 April 2007, 08 February and 28 August 2008. The horizontal parameters of the gravity waves were estimated using the keogram analysis and the vertical ones were calculated from the coincident temperature profiles collected into the area of 15 ^{o} x 15 ^{o} degrees (longitude X latitude), centered at the observatory. The horizontal wavelength were 190, 138, 171 and 355 km, respectively. The observed periods were 50, 20, 33 and 20 min. The vertical wavelength were 15, 10, 15 and 30 km. Comparisons to the dispersion relation for the gravity waves were done and the results are in agreement to the theory. Thus, the SABER satellite measurements may be used to study the gravity wave activity in the mesosphere and lower thermosphere with good precision.

  11. Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling

    PubMed Central

    Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorellamacquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805

  12. Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Singh, Sudhir Kumar; Gupta, Manika; Gupta, Dileep Kumar; Kumar, Pradeep

    2016-04-01

    Soil moisture is a key variable responsible for water and energy exchanges from land surface to the atmosphere (Srivastava et al., 2014). On the other hand, Soil Moisture Deficit (or SMD) can help regulating the proper use of water at specified time to avoid any agricultural losses (Srivastava et al., 2013b) and could help in preventing natural disasters, e.g. flood and drought (Srivastava et al., 2013a). In this study, evaluation of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and soil moisture from Soil Moisture and Ocean Salinity (SMOS) satellites are attempted for prediction of Soil Moisture Deficit (SMD). Sophisticated algorithm like Adaptive Neuro Fuzzy Inference System (ANFIS) is used for prediction of SMD using the MODIS and SMOS dataset. The benchmark SMD estimated from Probability Distributed Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the validation. The performances are assessed in terms of Nash Sutcliffe Efficiency, Root Mean Square Error and the percentage of bias between ANFIS simulated SMD and the benchmark. The performance statistics revealed a good agreement between benchmark and the ANFIS estimated SMD using the MODIS dataset. The assessment of the products with respect to this peculiar evidence is an important step for successful development of hydro-meteorological model and forecasting system. The analysis of the satellite products (viz. SMOS soil moisture and MODIS LST) towards SMD prediction is a crucial step for successful hydrological modelling, agriculture and water resource management, and can provide important assistance in policy and decision making. Keywords: Land Surface Temperature, MODIS, SMOS, Soil Moisture Deficit, Fuzzy Logic System References: Srivastava, P.K., Han, D., Ramirez, M.A., Islam, T., 2013a. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology 498, 292-304. Srivastava, P.K., Han, D., Rico

  13. Reduced Toxicity Fuel Satellite Propulsion System Including Axial Thruster and ACS Thruster Combination

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  14. Combining satellite and seismic images to analyse the shallow structure of the Dead Sea Transform near the DESERT transect

    NASA Astrophysics Data System (ADS)

    Kesten, D.; Weber, M.; Haberland, Ch.; Janssen, Ch.; Agnon, A.; Bartov, Y.; Rabba, I.

    2008-02-01

    The left-lateral Dead Sea Transform (DST) in the Middle East is one of the largest continental strike-slip faults of the world. The southern segment of the DST in the Arava/Araba Valley between the Dead Sea and the Red Sea, called Arava/Araba Fault (AF), has been studied in detail in the multidisciplinary DESERT (DEad SEa Rift Transect) project. Based on these results, here, the interpretations of multi-spectral (ASTER) satellite images and seismic reflection studies have been combined to analyse geologic structures. Whereas satellite images reveal neotectonic activity in shallow young sediments, reflection seismic image deep faults that are possibly inactive at present. The combination of the two methods allows putting some age constraint on the activity of individual fault strands. Although the AF is clearly the main active fault segment of the southern DST, we propose that it has accommodated only a limited (up to 60 km) part of the overall 105 km of sinistral plate motion since Miocene times. There is evidence for sinistral displacement along other faults, based on geological studies, including satellite image interpretation. Furthermore, a subsurface fault is revealed ≈4 km west of the AF on two ≈E-W running seismic reflection profiles. Whereas these seismic data show a flower structure typical for strike-slip faults, on the satellite image this fault is not expressed in the post-Miocene sediments, implying that it has been inactive for the last few million years. About 1 km to the east of the AF another, now buried fault, was detected in seismic, magnetotelluric and gravity studies of DESERT. Taking together various evidences, we suggest that at the beginning of transform motion deformation occurred in a rather wide belt, possibly with the reactivation of older ≈N-S striking structures. Later, deformation became concentrated in the region of today’s Arava Valley. Till ≈5 Ma ago there might have been other, now inactive fault traces in the vicinity

  15. Constraining methane emissions from the Indo-Gangetic Plains and South Asia using combined surface and satellite data

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Lunt, M. F.; Rigby, M. L.; Chatterjee, A.; Boesch, H.; Parker, R.; Prinn, R. G.; van der Schoot, M. V.; Krummel, P. B.; Tiwari, Y. K.; Mukai, H.; Machida, T.; Terao, Y.; Nomura, S.; Patra, P. K.

    2015-12-01

    We present an analysis of the regional methane (CH4) budget from South Asia, using new measurements and new modelling techniques. South Asia contains some of the largest anthropogenic CH4 sources in the world, mainly from rice agriculture and ruminants. However, emissions from this region have been highly uncertain largely due to insufficient constraints from atmospheric measurements. Compared to parts of the developed world, which have well-developed monitoring networks, South Asia is very under-sampled, particularly given its importance to the global CH4 budget. Over the past few years, data have been collected from a variety of surface sites around the region, ranging from in situ to flask-based sampling. We have used these data, in conjunction with column methane data from the GOSAT satellite, to quantify emissions at a regional scale. Using the Met Office's Lagrangian NAME model, we calculated sensitivities to surface fluxes at 12 km resolution, allowing us to simulate the high-resolution impacts of emissions on concentrations. In addition, we used a newly developed hierarchical Bayesian inverse estimation scheme to estimate regional fluxes over the period of 2012-2014 in addition to ancillary "hyper-parameters" that characterize uncertainties in the system. Through this novel approach, we have characterized the effect of "aggregation" errors, model uncertainties as well as the effects of correlated errors when using regional measurement networks. We have also assessed the effects of biases on the GOSAT CH4 retrievals, which has been made possible for the first time for this region through the expanded surface measurements. In this talk, we will discuss a) regional CH4 fluxes from South Asia, with a particular focus on the densely populated Indo-Gangetic Plains b) derived model uncertainties, including the effects of correlated errors c) the impacts of combining surface and satellite data for emissions estimation in regions where poor satellite validation

  16. Comprehensive Spectral Signal Investigation of a Larch Forest Combining - and Satellite-Based Measurements

    NASA Astrophysics Data System (ADS)

    Landmann, J. M.; Rutzinger, M.; Bremer, M.; chmidtner, K.

    2016-06-01

    Collecting comprehensive knowledge about spectral signals in areas composed by complex structured objects is a challenging task in remote sensing. In the case of vegetation, shadow effects on reflectance are especially difficult to determine. This work analyzes a larch forest stand (Larix decidua MILL.) in Pinnis Valley (Tyrol, Austria). The main goal is extracting the larch spectral signal on Landsat 8 (LS8) Operational Land Imager (OLI) images using ground measurements with the Cropscan Multispectral Radiometer with five bands (MSR5) simultaneously to satellite overpasses in summer 2015. First, the relationship between field spectrometer and OLI data on a cultivated grassland area next to the forest stand is investigated. Median ground measurements for each of the grassland parcels serve for calculation of the mean difference between the two sensors. Differences are used as "bias correction" for field spectrometer values. In the main step, spectral unmixing of the OLI images is applied to the larch forest, specifying the larch tree spectral signal based on corrected field spectrometer measurements of the larch understory. In order to determine larch tree and shadow fractions on OLI pixels, a representative 3D tree shape is used to construct a digital forest. Benefits of this approach are the computational savings compared to a radiative transfer modeling. Remaining shortcomings are the limited capability to consider exact tree shapes and nonlinear processes. Different methods to implement shadows are tested and spectral vegetation indices like the Normalized Difference Vegetation Index (NDVI) and Greenness Index (GI) can be computed even without considering shadows.

  17. Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges

    NASA Astrophysics Data System (ADS)

    Allam, Mariam M.; Jain Figueroa, Anjuli; McLaughlin, Dennis B.; Eltahir, Elfatih A. B.

    2016-02-01

    Reliable estimates of regional evapotranspiration are necessary to improve water resources management and planning. However, direct measurements of evaporation are expensive and difficult to obtain. Some of the difficulties are illustrated in a comparison of several satellite-based estimates of evapotranspiration for the Upper Blue Nile (UBN) basin in Ethiopia. These estimates disagree both temporally and spatially. All the available data products underestimate evapotranspiration leading to basin-scale mass balance errors on the order of 35 percent of the mean annual rainfall. This paper presents a methodology that combines satellite observations of rainfall, terrestrial water storage as well as river-flow gauge measurements to estimate actual evapotranspiration over the UBN basin. The estimates derived from these inputs are constrained using a one-layer soil water balance and routing model. Our results describe physically consistent long-term spatial and temporal distributions of key hydrologic variables, including rainfall, evapotranspiration, and river-flow. We estimate an annual evapotranspiration over the UBN basin of about 2.55 mm per day. Spatial and temporal evapotranspiration trends are revealed by dividing the basin into smaller subbasins. The methodology described here is applicable to other basins with limited observational coverage that are facing similar future challenges of water scarcity and climate change.

  18. Development of a Biomass Burning Emissions Inventory by Combining Satellite and Ground-based Information

    EPA Science Inventory

    A 2005 biomass burning (wildfire, prescribed, and agricultural) emission inventory has been developed for the contiguous United States using a newly developed simplified method of combining information from multiple sources for use in the US EPA’s national Emission Inventory (NEI...

  19. Addressing challenges in combining GOES and LEO satellite products of the CONUS

    NASA Astrophysics Data System (ADS)

    Petersen, R. A.; Dworak, R.

    2012-12-01

    The challenges of transforming data from the next generation of satellites into information and products for the weather and science purposes presents a major challenge to both the research and applications communities. This will be especially difficult over land, where the process of integrating observations from multiple instruments and platforms in real time is complicated by the influence of the land surface on the observations themselves. In addition, effective merging of the mixture of time-continuous GEO and less frequent but higher spectral resolution LEO observations with other new surface-based observations will be essential and require new product processing strategies. The material shown in this presentation will begin to address some of these issues. It will describe results of efforts to inter-calibrate moisture products derived from existing GEO and LEO data sets over land designed 1) to identify and remove biases from the GOES moisture retrievals, 2) to determine the seasonally varying information content of the GOES relative to NWP model 'first guess' fields, 3) to determine the similarities and differences in error structures between GOES and AIRS retrievals, and 4) to determine the vertical structure of the errors in both systems. For example, comparisons have been made between GOES Total Precipitable Water (TPW) using the Li retrieval system (GOES-Li) and data from Raman Lidar (RL), Microwave Radiometer (MWR) and surface-based GPS-Met systems at the ARM CART site. The test showed for using one year of derived TPW products, the NWP model first guess (GFS) and GOES-Li products are wetter, however the GOES-Li beats the GFS in the warm season, especially in August when the NWP precipitation skill is least. During the warm season GOES-Li is noticeably better than GFS (which was too wet) during daytime. In addition, the GPS-Met data are best during the daytime, while the Ramon Lidar performs best at night. AIRS products were also evaluated for several

  20. Combined system for the compensation of the solar pressure-induced disturbing torque for geostationary satellites

    NASA Astrophysics Data System (ADS)

    Shmatov, S. I.; Mordvinkin, A. S.

    2014-12-01

    The problem is considered of determining the shape and dimensions of the passive component in a combined system for offsetting the solar pressure-induced disturbing torque for geostationary spacecraft with asymmetrical solar arrays. The problem statement, numerical solution algorithm, and calculated results are presented. The resulting shape, the study suggests, not only has the required compensation properties but is also the most efficient from the standpoint of manufacture and functional reliability.

  1. Improved 3D density modelling of the Central Andes from combining terrestrial datasets with satellite based datasets

    NASA Astrophysics Data System (ADS)

    Schaller, Theresa; Sobiesiak, Monika; Götze, Hans-Jürgen; Ebbing, Jörg

    2015-04-01

    As horizontal gravity gradients are proxies for large stresses, the uniquely high gravity gradients of the South American continental margin seem to be indicative for the frequently occurring large earthquakes at this plate boundary. It has been observed that these earthquakes can break repeatedly the same respective segment but can also combine to form M>9 earthquakes at the end of longer seismic cycles. A large seismic gap left behind by the 1877 M~9 earthquake existed in the northernmost part of Chile. This gap has partially been ruptured in the Mw 7.7 2007 Tocopilla earthquake and the Mw 8.2 2014 Pisagua earthquake. The nature of this seismological segmentation and the distribution of energy release in an earthquake is part of ongoing research. It can be assumed that both features are related to thickness variations of high density bodies located in the continental crust of the coastal area. These batholiths produce a clear maximum in the gravity signal. Those maxima also show a good spatial correlation with seismic asperity structures and seismological segment boundaries. Understanding of the tectonic situation can be improved through 3D forward density modelling of the gravity field. Problems arise in areas with less ground measurements. Especially in the high Andes severe gaps exist due to the inaccessibility of some regions. Also the transition zone between on and offshore date data displays significant problems, particularly since this is the area that is most interesting in terms of seismic hazard. We modelled the continental and oceanic crust and upper mantle using different gravity datasets. The first one includes terrestrial data measured at a station spacing of 5 km or less along all passable roads combined with satellite altimetry data offshore. The second data set is the newly released EIGEN-6C4 which combines the latest satellite data with ground measurements. The spherical harmonics maximum degree of EIGEN-6C4 is 2190 which corresponds to a

  2. Study of cloud properties and processes in the polar regions by combining satellite and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Adhikari, Loknath

    Clouds in the polar regions play an important roles in the hydrologic cycle, the local radiative balance, and polar sea ice. However, harsh climatic conditions and perennial snow and ice cover limits the collection of cloud data from the surface as well as the effectiveness of cloud detection with satellite passive sensors. Therefore, there is a lack of reliable data on polar clouds and their properties. This study combines active and passive measurements from the NASA A-Train satellites to overcome these shortcomings and to provide a novel approach to study on polar clouds. Multi-year CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to investigate the characteristics of tropospheric clouds and precipitation systems, and their effect on the occurrence and microphysical properties of polar stratospheric clouds in the Antarctic region, south of 60 °S. The lidar and radar data are collocated to derive a combined cloud mask to improve detection of cloud vertical structure. Polar stratospheric clouds were detected using CALIPSO attenuated lidar scattering ratios (ALSR) at a horizontal resolution of 20 km to achieve good signal-to-noise ratios to allow the detection of tenuous PSCs. Clouds in the Antarctic region exhibit distinct land-sea and seasonal variabilities. The mean annual cloud occurrence is ~ 50 % over the continent and ~ 85 % over the ocean. Over the ocean the mean occurrence is higher in summer (90 %) than in winter (70 %). Low-level clouds contribute to more than 60 % of the total clouds. However, due to the extensive snow cover and cold surfaces in winter these low-level cloud occurrences are smaller in winter (50 %) than in summer (65 %). For ice clouds, both the effective radius and ice water content are larger in summer than in winter. High-level and deep tropospheric clouds strongly affect polar stratospheric cloud (PSC) occurrence and their microphysical properties by providing additional cooling

  3. Global aerosol typing from a combination of A-Train satellite observations in clear-sky and above clouds

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.

    2014-12-01

    According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.

  4. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    PubMed

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-error<30%. In terms of magnitude, the results were as accurate as or better than those of more traditional (i.e., using areas that fluctuate based on water resource availability and prescribed crop factors) irrigation modelling. The RS

  5. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    PubMed

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-error<30%. In terms of magnitude, the results were as accurate as or better than those of more traditional (i.e., using areas that fluctuate based on water resource availability and prescribed crop factors) irrigation modelling. The RS

  6. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho; Li, Zhanqing; Wong, Man Sing; Xin, Jinyuan; Wang, Yuesi; Hao, Wei-Min; Zhao, Fengsheng

    2007-11-01

    Single scattering albedo (SSA) governs the strength of aerosols in absorbing solar radiation, but few methods are available to directly measure this important quantity. There currently exist many ground-based measurements of spectral transmittance from which aerosol optical thickness (AOT) are retrieved under clear sky conditions. Reflected radiances at the top of the atmosphere as measured by a spaceborne spectroradiometer are sensitive to both AOT and SSA. On the basis of extensive radiative transfer simulations, it is demonstrated that the combined use of the two measurements allows for the retrieval of SSA at a reasonable accuracy under moderate to heavy aerosol loadings. Retrieval of SSA is most sensitive to AOT and surface reflectance. The accuracy of SSA retrievals increases with aerosol loading. The uncertainties in SSA retrievals are 0.02 ˜ 0.03 for AOT = 1.0 and 0.03 ˜ 0.05 for AOT = 0.5 at 0.47 μm. The proposed retrieval method is applied to 1 a worth of Moderate Resolution Imaging Spectroradiometer (MODIS) Level-1 calibrated reflected radiances matched with surface spectral transmittances acquired at 24 stations of the Chinese Sun Hazemeter Network established under the auspices of the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). Measurements made under high-turbidity conditions (AOT > 0.4) were used. All the stations are located in relatively remote and thus spatially representative locations. From the retrieved values, the first gross map of SSA across China is generated. The retrieved SSA values were compared with those retrieved independently from AERONET sites in China. The root-mean-square deviation (RMSD) is on the order of 0.03, and the mean difference is ˜0.02. The nationwide means of AOT, Ångström exponent, and SSA (at 0.5 μm) in 2005 are 0.69 ± 0.17, 1.06 ± 0.26, and 0.89 ± 0.04, respectively.

  7. The efficacy of combining satellite water storage and soil moisture observations as constraints on water balance estimation

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; van Dijk, Albert; Renzullo, Luigi; Tregoning, Paul; Walker, Jeffrey; Pauwels, Valentijn

    2016-04-01

    The ability to accurately estimate terrestrial water storage (TWS) and its components (e.g. soil moisture, groundwater, surface water and snow) is of considerable value to water resources assessment. Due to the imperfection of both model predictions and observations, data assimilation methods have been widely applied to hydrological problems for optimal combination of model and observations. Recent studies on the assimilation of TWS data have shown its capability to improve simulated groundwater storages, but the assimilation of TWS only does not guarantee accurate estimation of surface soil moisture (SSM). We investigated the efficiency of data assimilation combining TWS change estimates, derived from temporal changes in Earth's gravity field measured by the Gravity Recovery and Climate Experiment (GRACE), with SSM, retrieved from emitted microwave radiation at L-band observed by the Soil Moisture and Ocean Salinity (SMOS) satellite. The global World Wide Water (W3) water balance model was used. The specific satellite data products used were the SMOS CATDS level 3 daily SSM product and the JPL mascon monthly GRACE product. Both the ensemble Kalman filter (EnKF) and smoother (EnKS) were implemented to determine the best option for the assimilation of SSM observations only and the joint assimilation of SSM and TWS. The observation models, which map model states into observation space, are the top-layer soil relative wetness and monthly average TWS (i.e. aggregated daily top-, shallow-, deep-layer soil water storage, ground- and surface water storages). Three assimilation experiments were conducted with each method: a) assimilation of SSM data only; b) assimilation of TWS data only; c) joint assimilation of SSM and TWS data. Results were compared against in-situ soil moisture and groundwater observations, and the performance assessed with respect to open-loop results. Results for the Murray-Darling Basin in Australia demonstrate that the assimilation of SSM data only

  8. Combining satellite remote sensing and surveys to understand persistent yield variation--- a case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lobell, D. B.; Chen, X.

    2015-12-01

    A large gap between maize yields on average farmers' fields and the highest yields achieved by either experiment or farmers is typical throughout the developing world, including in the North China Plain (NCP). This maize yield gap as identified by previous studies indicates large opportunities for raising yield by improving agronomy. Quzhou county is typical of the winter-wheat summer-maize system in NCP where the average plot size is as small as 0.25 hectares. To analyze this cropping system amidst the challenge of substantial heterogeneity, we identified fields that were either persistently higher or lower yielding according to the remote sensing yield estimates, and then conducted detailed field surveys. We found irrigation facility to be a major constraint to yield both in terms of irrigation water quality and farmers' access to wells. In total, improving the access to unsalty water would be associated with a 0.32t/ha (4.2%) increase in multi-year average yield. In addition, farmers' method of choosing cultivar, which likely relates to their overall knowledge level, significantly explained yield variation. In particular, those choosing cultivars according to technician advice, personal experiences and high yielding neighbors' advice had on average higher yield than farmers that either followed seed sellers' advice or collectively purchased seeds. Overall, the study presents a generalizable methodology of assessing yield gap as well as its persistent factors using a combination of satellite and survey data.

  9. Combining Ground-based and Satellite Observations to Reconstruct Changes in the Functioning of the Terrestrial Biosphere

    NASA Astrophysics Data System (ADS)

    Cox, P. M.; Groenendijk, M.

    2014-12-01

    Vegetation links the planet's water and carbon cycles. Stomata on plant leaves are the pores through which CO2 is fixed during photosynthesis, and also the pores through which water is returned to the atmosphere as the transpiration flux. Stomata therefore exert considerable control over both the water and carbon cycles. Unfortunately, the long-term responses of stomata to rising CO2 and changes in climate are still rather uncertain, despite their significance for future climate. In contrast, Plant Water Use Efficiency (WUE) which is the ratio of the carbon assimilated through photosynthesis to the water lost through transpiration, is a robust diagnostic of the functioning of the land biosphere that is not directly dependent on the uncertain long-term responses of stomata. We have recently shown that it is possible to get constrained estimates of fractional changes in WUE based purely on changes in atmospheric CO2 and near surface temperature and humidity. This is achieved by calibrating against eddy covariance flux measurements (that constrain the response of WUE to humidity deficit), and also d13C records from tree-rings (that constrain the CO2-sensitivity of WUE). This talk will show how these ground-based measurements imply very significant changes in WUE, both globally and regionally, from 1900 onwards. Furthermore, we will show how the combination of our reconstructed changes in WUE with satellite-based estimates of Gross Primary Productivity, enable recent changes in plant transpiration to be estimated.

  10. Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data

    NASA Astrophysics Data System (ADS)

    Mémin, A.; Flament, T.; Alizier, B.; Watson, C.; Rémy, F.

    2015-07-01

    Assessment of the long term mass balance of the Antarctic Ice Sheet, and thus the determination of its contribution to sea level rise, requires an understanding of interannual variability and associated causal mechanisms. We performed a combined analysis of surface-mass and elevation changes using data from the GRACE and Envisat satellite missions, respectively. Using empirical orthogonal functions and singular value decompositions of each data set, we find a quasi 4.7-yr periodic signal between 08/2002 and 10/2010 that accounts for ∼ 15- 30% of the time variability of the filtered and detrended surface-mass and elevation data. Computation of the density of this variable mass load corresponds to snow or uncompacted firn. Changes reach maximum amplitude within the first 100 km from the coast where it contributes up to 30-35% of the annual rate of accumulation. Extending the analysis to 09/2014 using surface-mass changes only, we have found anomalies with a periodicity of about 4-6 yrs that circle the AIS in about 9-10 yrs. These properties connect the observed anomalies to the Antarctic Circumpolar Wave (ACW) which is known to affect several key climate variables, including precipitation. It suggests that variability in the surface-mass balance of the Antarctic Ice Sheet may also be modulated by the ACW.

  11. Combining In SITU And Multi-Sensor Satellite Data To Assess The Impact Of Atmospheric Deposition In Lake Garda

    NASA Astrophysics Data System (ADS)

    Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Di Nicolantonio, Walter; Cacciari, Alessandra; Matta, Erica; Rampini, Anna; Gianinetto, Marco; Ober, Giovanna

    2013-12-01

    In this study we investigated the effect of the deposition of Saharan dust on the phytoplankton growth (i.e. dust fertilization hypothesis) in Lake Garda, an oligotrophic basin with low nutrient and low chlorophyll-a (chl-a) concentration, by combining satellite data with in situ measurements. A Saharan dust event has been recognised on 28/07/2005 by: (i) SEVIRI (Spinning Enhanced Visible and InfraRed Imager) data processing, (ii) a significant increase of PM10 with respect to PM2.5 in a site southern the lake; and (iii) the high values of AOT (aerosol optical thickness) with corresponding low values of the Angstrom parameter measured by AERONET in Ispra. Few days later, an increase of chl-a in the lake was detected from MERIS (Medium Resolution Imaging Spectrometer). The images were processed with the Case-2 Regional (C2R) processor that provided values comparable to in situ measurements (r=0.78). Therefore, preliminary results seem to indicate a response of the Lake Garda in terms of increasing of chl-a as a consequence of the Saharan dust event recognised on 28/07/2005. Nevertheless, the analysis of further events is mandatory in order to have confirmation (or no), about the linkage between atmospheric deposition and phytoplankton dynamics in the study area.

  12. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  13. IMPROVING THE ACCURACY OF HISTORIC SATELLITE IMAGE CLASSIFICATION BY COMBINING LOW-RESOLUTION MULTISPECTRAL DATA WITH HIGH-RESOLUTION PANCHROMATIC DATA

    SciTech Connect

    Getman, Daniel J

    2008-01-01

    Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic data (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.

  14. Monitoring Rainfall by Combining Ground-based Observed Precipitation and PERSIANN Satellite Product (Case Study Area: Lake Urmia Basin)

    NASA Astrophysics Data System (ADS)

    Abrishamchi, A.; Mirshahi, A.

    2015-12-01

    The global coverage, quick access, and appropriate spatial-temporal resolution of satellite precipitation data renders the data appropriate for hydrologic studies, especially in regions with no sufficient rain-gauge network. On the other hand, satellite precipitation products may have major errors. The present study aims at reduction of estimation error of the PERSIANN satellite precipitation product. Bayesian logic employed to develop a statistical relationship between historical ground-based and satellite precipitation data. This relationship can then be used to reduce satellite precipitation product error in near real time, when there is no ground-based precipitation observation. The method was evaluated in the Lake Urmia basin with a monthly time scale; November to May of 2000- 2008 for the purpose of model development and two years of 2009 and 2010 for the validation of the established relationships. Moreover, Kriging interpolation method was employed to estimate the average rainfall in the basin. Furthermore, to downscale the satellite precipitation product from 0.25o to 0.05o, data-location downscaling algorithm was used. In 76 percent of months, the final product, compared with the satellite precipitation, had less error during the validation period. Additionally, its performance was marginally better than adjusted PERSIANN product.

  15. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations

    NASA Astrophysics Data System (ADS)

    Di Mauro, B.; Fava, F.; Ferrero, L.; Garzonio, R.; Baccolo, G.; Delmonte, B.; Colombo, R.

    2015-06-01

    In this paper, we evaluate the impact of mineral dust (MD) on snow radiative properties in the European Alps at ground, aerial, and satellite scale. A field survey was conducted to acquire snow spectral reflectance measurements with an Analytical Spectral Device (ASD) Field Spec Pro spectroradiometer. Surface snow samples were analyzed to determine the concentration and size distribution of MD in each sample. An overflight of a four-rotor Unmanned Aerial Vehicle (UAV) equipped with an RGB digital camera sensor was carried out during the field operations. Finally, Landsat 8 Operational Land Imager (OLI) data covering the central European Alps were analyzed. Observed reflectance evidenced that MD strongly reduced the spectral reflectance of snow, in particular, from 350 to 600 nm. Reflectance was compared with that simulated by parameterizing the Snow, Ice, and Aerosol Radiation radiative transfer model. We defined a novel spectral index, the Snow Darkening Index (SDI), that combines different wavelengths showing nonlinear correlation with measured MD concentrations (R2 = 0.87, root-mean-square error = 0.037). We also estimated a positive instantaneous radiative forcing that reaches values up to 153 W/m2 for the most concentrated sampling area. SDI maps at local scale were produced using the UAV data, while regional SDI maps were generated with OLI data. These maps show the spatial distribution of MD in snow after a natural deposition from the Saharan desert. Such postdepositional experimental data are fundamental for validating radiative transfer models and global climate models that simulate the impact of MD on snow radiative properties.

  16. The He-3/He-4 ratios for solar energetic particle events during the Combined Release and Radiation Effects Satellite Mission

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng; Guzik, T. Gregory; Wefel, John P.

    1995-01-01

    Helium data measured by the University of Chicago instrument, ONR-604, are employed to determine the ratio of He-3 to He-4 for solar energetic particle (SEP) events over an energy range 50-110 MeV/nucleon during the 1990/1991 Combined Release and Radiation Effects Satellite mission. The Sun in this period is extremely active. A total of 29 separate SEP events have been identified; among them 16 major events have been analyzed to obtain He-3/He-4 ratios, with a mass resolution of 0.10 amu. Thirteen events have a He-3/He-4 ratio larger than 0.005, one order of magnitude greater than the solar coronal value. The He-3/He-4 ratio at energies of 50-110 MeV/nucleon is independent of the size of the SEP event, for the moderately large flares analyzed here. The helium energy spectra are represented by power laws. During the 1991 June flare period, different large-particle injections associated with different solar flares, but occurring from the same active region, have a similar average spectral index and a similar He-3/He-4 ratio. The spectral index of He-4 varies from event to event, i.e., from as small as 1.5 to as large as 7.5. A correlation is found between the inferred spectral index from gamma-ray measurements and our measured spectral indices for the 1991 June 11 and June 15 events, suggesting that the high-energy SEPs may come from the same acceleration event as the particles that interact at the Sun and produce the gamma rays. The implications of these results for particle acceleration and propagation at the flare site and in the solar corona are discussed.

  17. A practical small satellite variable-speed control moment gyroscope for combined energy storage and attitude control

    NASA Astrophysics Data System (ADS)

    Richie, David J.; Lappas, Vaios J.; Prassinos, George

    2009-12-01

    A recent effort to develop single-gimbal variable-speed control moment gyroscopes (VSCMGs) for a combined energy storage and attitude control subsystem (ESACS) on small satellites has culminated in laboratory validation of the concept. A single actuator prototype comprised of a cutting-edge Carbon Fiber rotor and COTS motor/generator components has been developed, balanced, bench tested, and integrated onto a spherical air-bearing structure. This structure is used to demonstrate the primary capability of a VSCMG to act as a dynamo whilst simultaneously changing a spacecraft's orientation in a controlled fashion. As originally predicted, the actuator's flywheel spins up when energy is supplied (supported via a direct energy transfer power architecture), then spins down when the energy source is removed, porting the energy released to run a resistive load. The work presented gives an overview of the governing principles of the technology, addresses the underlying mission and design requirements, and presents the prototype design. Then, effectiveness of the prototype integrated on a three-axis test article is presented along with its associated test data. Finally, discussion of these results and identification of future research concludes the work. The benefits of this technology for future space missions are that system consolidation permits mass reduction, higher instantaneous peak power is available as compared to conventional secondary battery systems, state-of-charge measurement is readily available from wheel speed feedback, and torque amplification through gimballing permits efficient actuator control. The technology demonstrated is exciting and leaves the door open for future development via inclusion of magnetic levitation.

  18. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  19. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  20. Combination of satellite based thermal remote sensing and in situ radon measurements and field observations to detect (submarine) groundwater discharge

    NASA Astrophysics Data System (ADS)

    Mallast, U.; Schubert, M.; Schmidt, A.; Knoeller, K.; Stollberg, R.; Siebert, C.; Merz, R.

    2012-12-01

    Submarine groundwater discharge (SGD) is an important factor in the understanding and sustainable management of coastal freshwater aquifers in many highly populated coastal areas worldwide. This is not only due to the fact that SGD represents (i) a significant pathway for transfer of matter between land and sea as it supplies nutrients and trace metals to coastal oceans and (ii) a contamination threat to the near-shore marine environment resulting from land-based activities. It means also that potentially significant freshwater quantities are lost to the sea in e.g. arid areas, where groundwater is the main water resource (IAEA, 2007). The quantitative estimation of SGD is complicated due to its large temporal and spatial variability. Several studies attempted to quantify SGD rates using seepage meters, piezometers or geochemical tracers (Taniguchi et al., 2002). In most of these studies the actual SGD locations were known. In cases of unknown discharge locations airborne- and recently spaceborne-thermal remote sensing were used for detection (Roxburgh, 1985; Wilson and Rocha, 2012). Presented approaches applied only single images that represent only a temporal snapshot and hence possibly a non-representative picture of the discharge behavior (e.g. stormdriven or dry periods). Due to the continuous satellite image recording (Landsat TM/ETM+), numerous images exist that can be exploited against the background of temperature contrasts between discharging groundwater and ocean water. Hence, integrating multiple images recorded at different times does not only account for the intermittent character of groundwater discharge but enables to derive representative SGD information. We will present a satellite-based multi-thermal image method which exploits the fact that continuously discharging groundwater stabilizes the temperature at the discharge location and hence displays small temperature variability. In contrast, ambient unaffected areas clearly follow the seasonal

  1. Non-linear oscillation of inter-connected satellites system under the combined influence of the solar radiation pressure and dissipative force of general nature

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Narayan, A.

    2001-06-01

    The non-linear oscillation of inter-connected satellites system about its equilibrium position in the neighabourhood of main resonance ??=3D 1, under the combined effects of the solar radiation pressure and the dissipative forces of general nature has been discussed. It is found that the oscillation of the system gets disturbed when the frequency of the natural oscillation approaches the resonance frequency.

  2. Subjective evaluation of the combined influence of satellite temperature sounding data and increased model resolution on numerical weather forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Halem, M.; Ghil, M.

    1979-01-01

    The present evaluation is concerned with (1) the significance of prognostic differences resulting from the inclusion of satellite-derived temperature soundings, (2) how specific differences between the SAT and NOSAT prognoses evolve, and (3) comparison of two experiments using the Goddard Laboratory for Atmospheric Sciences general circulation model. The subjective evaluation indicates that the beneficial impact of sounding data is enhanced with increased resolution. It is suggested that satellite sounding data posses valuable information content which at times can correct gross analysis errors in data sparse regions.

  3. Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure mesoscale processes is expensive, thus confined in place and time. Hence we turn to satellite products. This paper reports preliminary results of a tropical cyclone genesis and early intensification study. We explore the role of mesoscale processes using a combination of products from TRMM, QuikSCAT, AMSU, also SSM/I, geosynchronous and model output. Major emphasis is on the role of merging mesoscale vortices. These initially form in midlevel stratiform cloud. When they form in regions of lowered Rossby radius of deformation (strong background vorticity) the mesoscale vortices can last long enough to interact and merge, with the weaker vortex losing vorticity to the stronger, which can then extend down to the surface. In an earlier cyclongenesis case (Oliver 1993) off Australia, intense deep convection occurred when the stronger vortex reached the surface; this vortex became the storm center while the weaker vortex was sheared out as the major rainband. In our study of Atlantic tropical cyclones originating from African waves, we use QuikSCAT to examine surface winds in the African monsoon trough and in the vortices which move westward off the coast, which may or may not undergo genesis (defined by NHC as reaching TD, or tropical depression, with a west wind to the south of the surface low). We use AMSU mainly to examine development of warm cores. TRMM passive microwave TMI is used with SSM/I to look at the rain structure, which often indicates eye formation, and to look at the ice scattering signatures of deep convection. The TRMM precipitation radar, PR, when available, gives precipitation cross sections. So far we have detailed studies of two African-origin cyclones, one which became severe hurricane Floyd 1999, and the other reached TD2 in June

  4. Combining a two-sourcepatch model with satellite data to monitor daily evapotranspiration at a regional scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, we present a micro-meteorological approach for estimating surface energy fluxes that can be operationally used together with satellite images to monitor surface energy fluxes at a regional scale. In particular we will focus on the retrieval of daily evapotranspiration. The feasibility ...

  5. Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements.

    PubMed

    Ho, Shu-Peng; Smith, William L; Huang, Hung-Lung

    2002-07-10

    A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy's Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)]. PMID:12141504

  6. Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements.

    PubMed

    Ho, Shu-Peng; Smith, William L; Huang, Hung-Lung

    2002-07-10

    A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy's Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)].

  7. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-06-01

    In this paper, we study aerosol characteristics over an urban station in Western India, during a dust event that occurred between 19 and 26 March 2012, with the help of ground-based and satellite measurements and model simulation data. The aerosol parameters are found to change significantly during dust events and they suggest dominance of coarse mode aerosols. The fine mode fraction, size distribution and single scattering albedo reveal that dust (natural) aerosols dominate the anthropogenic aerosols over the study region. Ground-based measurements show drastic reduction in visibility on the dust-laden day (22 March 2012). Additionally, HYSPLIT model and satellite daily data have been used to trace the source, path and spatial extent of dust storm events. Most of the dust aerosols, during the study period, travel from west-to-east pathway from source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO and synoptic meteorological parameters from ECMWF re-analysis data reveal a layer of thick dust extending from surface to an altitude of about 4 km, and decrease in temperature and increase in specific humidity, respectively. The aerosol radiative forcing calculations indicate more cooling at the surface and warming in the atmosphere during dust event. The results of satellite observations are found to have good consistency with ground-based air quality measurements. Synthesis of satellite data integrated with ground-based observations, supplemented by model analysis, is found to be a promising technique for improved understanding of dust storm phenomenon and its impact on regional climate.

  8. Push-Broom-Type Very High-Resolution Satellite Sensor Data Correction Using Combined Wavelet-Fourier and Multiscale Non-Local Means Filtering

    PubMed Central

    Kang, Wonseok; Yu, Soohwan; Seo, Doochun; Jeong, Jaeheon; Paik, Joonki

    2015-01-01

    In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve these problems, we present a novel method to correct VHR data acquired by a push-broom-type sensor by combining wavelet-Fourier and multiscale non-local means (NLM) filters. After the wavelet-Fourier filter separates the stripe noise from the mixed noise in the wavelet low- and selected high-frequency sub-bands, random noise is removed using the multiscale NLM filter in both low- and high-frequency sub-bands without loss of image detail. The performance of the proposed method is compared to various existing methods on a set of push-broom-type sensor data acquired by Korean Multi-Purpose Satellite 3 (KOMPSAT-3) with severe stripe and random noise, and the results of the proposed method show significantly improved enhancement results over existing state-of-the-art methods in terms of both qualitative and quantitative assessments. PMID:26378532

  9. Combining satellite observations to develop a daily global soil moisture product for a wide range of applications

    NASA Astrophysics Data System (ADS)

    Enenkel, M.; Reimer, C.; Dorigo, W.; Wagner, W.; Pfeil, I.; Parinussa, R.; De Jeu, R.

    2015-11-01

    The soil moisture dataset that is generated via the Climate Change Initiative (CCI) of the European Space Agency (ESA) (ESA CCI SM) is a popular research product. It is composed of observations from nine different satellites and aims to exploit the individual strengths of active (radar) and passive (radiometer) sensors, thereby providing surface soil moisture estimates at a spatial resolution of 0.25°. However, the annual updating cycle limits the use of the ESA CCI SM dataset for operational applications. Therefore, this study proposes an adaptation of the ESA CCI processing chain for daily global updates via satellite-derived near real-time (NRT) soil moisture observations. In order to extend the ESA CCI SM dataset from 1978 to present we use NRT observations from the Advanced SCATterometer on-board the MetOp satellites and the Advanced Microwave Scanning Radiometer 2 on-board GCOM-W. Since these NRT observations do not incorporate the latest algorithmic updates, parameter databases, and intercalibration efforts, by nature they offer a lower quality than reprocessed offline datasets. Our findings indicate that, despite issues in arid regions, the new "CCI NRT" dataset shows a good correlation with ESA CCI SM. The average global correlation coefficient between CCI NRT and ESA CCI SM (Pearson's R) is 0.8. An initial validation with 40 in-situ observations in France, Kenya, Senegal and Kenya yields an average R of 0.58 and 0.49 for ESA CCI SM and CCI NRT respectively. In summary, the CCI NRT dataset is getting ready for operational use, supporting applications such as drought and flood monitoring, weather forecasting or agricultural applications.

  10. Evaluation and development of satellite inferences of convective storm intensity using combined case study analysis and thunderstorm model simulations

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; Tripoli, G. J.

    1980-01-01

    Major research accomplishments which were achieved during the first year of the grant are summarized. The research concentrated in the following areas: (1) an examination of observational requirements for predicting convective storm development and intensity as suggested by recent numerical experiments; (2) interpretation of recent 3D numerical experiments with regard to the relationship between overshooting tops and surface wind gusts; (3) the development of software for emulating satellite-inferred cloud properties using 3D cloud model predicted data; and (4) the development of a conceptual/semi-quantitative model of eastward propagating, mesoscale convective complexes forming to the lee of the Rocky Mountains.

  11. Evaluation and development of satellite inferences of convective storm intensity using combined case study and thunderstorm model simulations

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; Tripoli, G. J.

    1982-01-01

    Observational requirements for predicting convective storm development and intensity as suggested by recent numerical experiments are examined. Recent 3D numerical experiments are interpreted with regard to the relationship between overshooting tops and surface wind gusts. The development of software for emulating satellite inferred cloud properties using 3D cloud model predicted data and the simulation of Heymsfield (1981) Northern Illinois storm are described as well as the development of a conceptual/semi-quantitative model of eastward propagating, mesoscale convective complexes forming to the lee of the Rocky Mountains.

  12. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bladford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Ferrara, E. C.; Gehrels, N.; Hays, E.; Scargle, J. D.; Thompson, D. J.; Troja, E.

    2011-01-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(exp -26) cm(exp 3) / s at 5 GeV to about 5 X 10(exp -23) cm(exp 3)/ s at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (approx 3 X 10(exp -26) cm(exp 3)/s for a purely s-wave cross section), without assuming additional boost factors.

  13. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Cañadas, B; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Jeltema, T E; Jóhannesson, G; Johnson, R P; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lionetto, A M; Llena Garde, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Profumo, S; Rainò, S; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Roth, M; Sadrozinski, H F-W; Sbarra, C; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strigari, L; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Kaplinghat, M; Martinez, G D

    2011-12-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26)  cm3  s(-1) at 5 GeV to about 5×10(-23)   cm3  s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26)  cm3  s(-1) for a purely s-wave cross section), without assuming additional boost factors.

  14. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T.H.; Buson, S.; /more authors..

    2012-09-14

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{sup -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.

  15. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Cañadas, B; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Jeltema, T E; Jóhannesson, G; Johnson, R P; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lionetto, A M; Llena Garde, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Profumo, S; Rainò, S; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Roth, M; Sadrozinski, H F-W; Sbarra, C; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strigari, L; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Kaplinghat, M; Martinez, G D

    2011-12-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26)  cm3  s(-1) at 5 GeV to about 5×10(-23)   cm3  s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26)  cm3  s(-1) for a purely s-wave cross section), without assuming additional boost factors. PMID:22242987

  16. Methodology for evaluating lateral boundary conditions in the regional chemical transport model MATCH (v5.5.0) using combined satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.; Devasthale, A.

    2015-11-01

    Hemispheric transport of air pollutants can have a significant impact on regional air quality, as well as on the effect of air pollutants on regional climate. An accurate representation of hemispheric transport in regional chemical transport models (CTMs) depends on the specification of the lateral boundary conditions (LBCs). This study focuses on the methodology for evaluating LBCs of two moderately long-lived trace gases, carbon monoxide (CO) and ozone (O3), for the European model domain and over a 7-year period, 2006-2012. The method is based on combining the use of satellite observations at the lateral boundary with the use of both satellite and in situ ground observations within the model domain. The LBCs are generated by the global European Monitoring and Evaluation Programme Meteorological Synthesizing Centre - West (EMEP MSC-W) model; they are evaluated at the lateral boundaries by comparison with satellite observations of the Terra-MOPITT (Measurements Of Pollution In The Troposphere) sensor (CO) and the Aura-OMI (Ozone Monitoring Instrument) sensor (O3). The LBCs from the global model lie well within the satellite uncertainties for both CO and O3. The biases increase below 700 hPa for both species. However, the satellite retrievals below this height are strongly influenced by the a priori data; hence, they are less reliable than at, e.g. 500 hPa. CO is, on average, underestimated by the global model, while O3 tends to be overestimated during winter, and underestimated during summer. A regional CTM is run with (a) the validated monthly climatological LBCs from the global model; (b) dynamical LBCs from the global model; and (c) constant LBCs based on in situ ground observations near the domain boundary. The results are validated against independent satellite retrievals from the Aqua-AIRS (Atmospheric InfraRed Sounder) sensor at 500 hPa, and against in situ ground observations from the Global Atmospheric Watch (GAW) network. It is found that (i) the use of

  17. Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

    DOE PAGES

    Ahnen, M. L.

    2016-02-16

    Here, we present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to amore » factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.« less

  18. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice

  19. Interactive access to LP DAAC satellite data archives through a combination of open-source and custom middleware web services

    USGS Publications Warehouse

    Davis, Brian N.; Werpy, Jason; Friesz, Aaron M.; Impecoven, Kevin; Quenzer, Robert; Maiersperger, Tom; Meyer, David J.

    2015-01-01

    Current methods of searching for and retrieving data from satellite land remote sensing archives do not allow for interactive information extraction. Instead, Earth science data users are required to download files over low-bandwidth networks to local workstations and process data before science questions can be addressed. New methods of extracting information from data archives need to become more interactive to meet user demands for deriving increasingly complex information from rapidly expanding archives. Moving the tools required for processing data to computer systems of data providers, and away from systems of the data consumer, can improve turnaround times for data processing workflows. The implementation of middleware services was used to provide interactive access to archive data. The goal of this middleware services development is to enable Earth science data users to access remote sensing archives for immediate answers to science questions instead of links to large volumes of data to download and process. Exposing data and metadata to web-based services enables machine-driven queries and data interaction. Also, product quality information can be integrated to enable additional filtering and sub-setting. Only the reduced content required to complete an analysis is then transferred to the user.

  20. Supraglacial Streams on the Greenland Ice Sheet Delineated from Combined Spectral-Shape Information in High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Yang, K.; Smith, L. C.

    2012-12-01

    Supraglacial meltwater streams and lakes that form each summer across large expanses of the Greenland Ice Sheet (GrIS) ablation zone have global implications for sea level rise yet remain one of the least-studied hydrologic systems on Earth. Remote sensing of supraglacial streams is challenging owing to their narrow width (~1 - 30 m), and proximity to other features having similar visible/NIR reflectance (lakes and slush) or shape (dry stream channels, crevasses, and fractures). This presentation presents a new, automated "spectral-shape" procedure for delineating actively flowing streams in high-resolution satellite imagery, utilizing both spectral and pattern information. First, a modified Normalized Difference Water Index adapted for ice (NDWIice) enhances the spectral contrast between open water and drier snow/ice surfaces. Next, three NDWIice thresholds are used to mask deep-water lakes and discern open water from slush, in concert with a multi-points fast marching method to rejoin resulting stream fragments. Comparison of this procedure with manual digitization for six WorldView-2 images in southwestern Greenland demonstrates its value for detecting actively flowing supraglacial streams, especially in slushy areas where classification performance improves dramatically versus simple threshold methods. While a simple threshold approach is satisfactory for areas known to be slush-free, the procedure outlined here enables comprehensive stream mapping across the GrIS ablation zone, regardless of slush conditions and/or the presence of similarly shaped glaciological features.

  1. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  2. Towards stochastically downscaled precipitation in the Tropics based on a robust 1DD combined satellite product and a high resolution IR-based rain mask

    NASA Astrophysics Data System (ADS)

    Guilloteau, Clement; Roca, Rémy; Gosset, Marielle

    2015-04-01

    In the Tropics where the ground-based rain gauges network is very sparse, satellite rainfall estimates are becoming a compulsory source of information for various applications: hydrological modeling, water resources management or vegetation-monitoring. The tropical Tropical Amount of Precipitation with Estimate of Error (TAPEER) algorithm, developed within the framework of Megha-Tropiques satellite mission is a robust estimate of surface rainfall accumulations at the daily, one degree resolution. TAPEER validation in West Africa has proven its accuracy. Nevertheless applications that involve non-linear processes (such as surface runoff) require finer space / time resolution than one degree one day, or at least the statistical characterization of the sub-grid rainfall variability. TAPEER is based on a Universally Adjusted Global Precipitation Index (UAGPI) technique. The one degree, one day estimation relies on the combination of observations from microwave radiometers embarked on the 7 platforms forming the GPM constellation of low earth orbit satellites together with geostationary infra-red (GEO-IR) imagery. TAPEER provides as an intermediate product a high-resolution rain-mask based on the GEO-IR information (2.8 km, 15 min in Africa). The main question of this work is, how to use this high-resolution mask information as a constraint for downscaling ? This work first presents the multi-scale evaluation of TAPEER's rain detection mask against ground X-band polarimetric radar data and TRMM precipitation radar data in West Africa, through wavelet transform. Other algorithms (climate prediction center morphing technique CMORPH, global satellite mapping of precipitation GSMaP, multi-sensor precipitation estimate MPE) detection capabilities are also evaluated. Spatio-temporal wavelet filtering of the detection mask is then used to compute precipitation probability at the GEO-IR resolution. The wavelet tool is finally used to stochastically generate rain / no rain field

  3. Combining Satellite Data and Models to Assess the Impacts of Urbanization on the Continental US Surface Climate

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.; Mostovoy, G.

    2013-01-01

    Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate

  4. Simulation of whistler waves excited in the presence of a cold plasma cloud - Implications for the CRRES mission. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Schriver, D.; Ashour-Abdalla, M.

    1991-01-01

    A one-dimensional electromagnetic particle simulation model is constructed to study the excitation of whistler waves in the presence of a cold plasma cloud for conditions representative of those after the release of lithium in the inner plasma sheet during the Combined Release and Radiation Effect Satellite mission. The results indicate that a standing-wave pattern with discrete wave frequencies is formed within the cloud. The magnetic wave amplitude inside the cloud, which is limited by quasi-linear diffusion, is of the order of several nanoteslas. Assuming a magnetospheric loss cone of 5 deg, the observed pitch angle diffusion produced by the whistler waves is sufficient to put the electrons on strong diffusion.

  5. Calculating Freshwater Input from Iceberg Melt in Greenlandic Fjords by Combining In Situ Observations of Iceberg Movement with High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sulak, D. J.; Sutherland, D.; Stearns, L. A.; Hamilton, G. S.

    2015-12-01

    Understanding fjord circulation in Greenland's outlet glacial fjords is crucial to explaining recent temporal and spatial variability in glacier dynamics, as well as freshwater transport on the continental shelf. The fjords are commonly assumed to exhibit a plume driven circulation that draws in warmer and saltier Atlantic-origin water toward the glacier at depth. Freshwater input at glacier termini directly drives this circulation and significantly influences water column stratification, which indirectly feeds back on the plume driven circulation. Previous work has focused on freshwater inputs from surface runoff and submarine melting, but the contribution from iceberg melt, a potentially important freshwater source, has not been quantified. Here, we develop a new technique combining in situ observations of movement from iceberg-mounted GPS units with multispectral satellite imagery from Landsat 8. The combination of datasets allows us to examine the details of iceberg movement and quantify mean residence times in a given fjord. We then use common melt rate parameterizations to estimate freshwater input for a given iceberg, utilizing novel satellite-derived iceberg distributions to scale up to a fjord-wide freshwater contribution. We apply this technique to Rink Isbræ and Kangerlussuup Sermia in west Greenland, and Helheim Glacier in southeast Greenland. The analysis can be rapidly expanded to look at other systems as well as seasonal and interannual changes in how icebergs affect the circulation and stratification of Greenland's outlet glacial fjords. Ultimately, this work will lead to a more complete understanding of the wide range of factors that control the observed regional variability in Greenland's glaciers.

  6. PM-GCD - A combined IR-MW satellite technique for frequent retrieval of heavy precipitation: Application to the EU FLASH project

    NASA Astrophysics Data System (ADS)

    Casella, Daniele; Dietrich, Stefano; di Paola, Francesco; Formenton, Marco; Mugnai, Alberto; Sanò, Paolo

    2010-05-01

    Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach a high level of accuracy - and especially so, for deep convective precipitating systems. However, these observations do not provide a satisfactorily coverage of the rapid evolution of intense precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications -- including support to authorities in activating flood alarms. To avoid this problem, several techniques have been developed that combine accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). Within the European Union FP6 FLASH project, we have developed a new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique). This technique uses passive-microwave (PM) retrievals in conjunction with the Global Convection Detection (GCD) technique that discriminates deep convective clouds within the GEO observations, based on the difference between the water vapor (6.2 μm ) and thermal-IR (10.8 μm ) channels. In essence, within the PM-GCD technique, deep convective areas are defined from MSG observations, then calibrated using MW-AMSU precipitation retrievals and finally propagated over time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique and discuss the results of its application to a flood event that occurred on September 12-15, 2006 over the north-western Mediterranean coastal areas, and that has been selected for joint research by the EU FLASH and HYDRATE projects.

  7. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    NASA Astrophysics Data System (ADS)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with

  8. Three-dimensional, two-species magnetohydrodynamic studies of the early time behaviors of the Combined Release and Radiation Effects Satellite G2 barium release

    SciTech Connect

    Xie, Lianghai Li, Lei; Wang, Jingdong; Zhang, Yiteng

    2014-04-15

    We present a three-dimensional, two-species (Ba{sup +} and H{sup +}) MHD model to study the early time behaviors of a barium release at about 1 R{sub E} like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions are constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H{sup +}, which creates density hole and bumps in the background H{sup +} when barium ions expanding along the magnetic field lines.

  9. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  10. Combining forces--the use of Landsat TM satellite imagery, soil parameter information, and multiplex PCR to detect Coccidioides immitis growth sites in Kern County, California.

    PubMed

    Lauer, Antje; Talamantes, Jorge; Castañón Olivares, Laura Rosío; Medina, Luis Jaime; Baal, Joe Daryl Hugo; Casimiro, Kayla; Shroff, Natasha; Emery, Kirt W

    2014-01-01

    Coccidioidomycosis is a fungal disease acquired through the inhalation of spores of Coccidioides spp., which afflicts primarily humans and other mammals. It is endemic to areas in the southwestern United States, including the San Joaquin Valley portion of Kern County, California, our region of interest (ROI). Recently, incidence of coccidioidomycosis, also known as valley fever, has increased significantly, and several factors including climate change have been suggested as possible drivers for this observation. Up to date details about the ecological niche of C. immitis have escaped full characterization. In our project, we chose a three-step approach to investigate this niche: 1) We examined Landsat-5-Thematic-Mapper multispectral images of our ROI by using training pixels at a 750 m × 750 m section of Sharktooth Hill, a site confirmed to be a C. immitis growth site, to implement a Maximum Likelihood Classification scheme to map out the locations that could be suitable to support the growth of the pathogen; 2) We used the websoilsurvey database of the US Department of Agriculture to obtain soil parameter data; and 3) We investigated soil samples from 23 sites around Bakersfield, California using a multiplex Polymerase Chain Reaction (PCR) based method to detect the pathogen. Our results indicated that a combination of satellite imagery, soil type information, and multiplex PCR are powerful tools to predict and identify growth sites of C. immitis. This approach can be used as a basis for systematic sampling and investigation of soils to detect Coccidioides spp.

  11. Combining Forces - The Use of Landsat TM Satellite Imagery, Soil Parameter Information, and Multiplex PCR to Detect Coccidioides immitis Growth Sites in Kern County, California

    PubMed Central

    Lauer, Antje; Talamantes, Jorge; Castañón Olivares, Laura Rosío; Medina, Luis Jaime; Baal, Joe Daryl Hugo; Casimiro, Kayla; Shroff, Natasha; Emery, Kirt W.

    2014-01-01

    Coccidioidomycosis is a fungal disease acquired through the inhalation of spores of Coccidioides spp., which afflicts primarily humans and other mammals. It is endemic to areas in the southwestern United States, including the San Joaquin Valley portion of Kern County, California, our region of interest (ROI). Recently, incidence of coccidioidomycosis, also known as valley fever, has increased significantly, and several factors including climate change have been suggested as possible drivers for this observation. Up to date details about the ecological niche of C. immitis have escaped full characterization. In our project, we chose a three-step approach to investigate this niche: 1) We examined Landsat-5-Thematic-Mapper multispectral images of our ROI by using training pixels at a 750 m×750 m section of Sharktooth Hill, a site confirmed to be a C. immitis growth site, to implement a Maximum Likelihood Classification scheme to map out the locations that could be suitable to support the growth of the pathogen; 2) We used the websoilsurvey database of the US Department of Agriculture to obtain soil parameter data; and 3) We investigated soil samples from 23 sites around Bakersfield, California using a multiplex Polymerase Chain Reaction (PCR) based method to detect the pathogen. Our results indicated that a combination of satellite imagery, soil type information, and multiplex PCR are powerful tools to predict and identify growth sites of C. immitis. This approach can be used as a basis for systematic sampling and investigation of soils to detect Coccidioides spp. PMID:25380290

  12. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  13. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    NASA Astrophysics Data System (ADS)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  14. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  15. Satellite (IRLS) tracking of elk

    NASA Technical Reports Server (NTRS)

    Buechner, H. K.

    1972-01-01

    The practicability of tracking free roaming animals in natural environments by satellite systems is reported. Satellite systems combine continuous tracking with simultaneous monitoring of physiological and environmental parameters through a combination of radio tracking and biotelemetric ground systems that lead to a better understanding of animal behavior and migration patterns.

  16. Characterisation of a stratospheric sulphate plume from the Nabro volcano using a combination of passive satellite measurements in nadir and limb geometry

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Dörner, S.; Puķīte, J.; Hörmann, C.; Fromm, M. D.; Wagner, T.

    2014-03-01

    The eruption of the Nabro volcano (Eritrea), which started on 12 June 2011, caused the introduction of large quantities of SO2 into the lower stratosphere. The subsequently formed sulphate aerosols could be detected for several months following the eruption. It is generally assumed that the formation of sulphate aerosols in the stratosphere takes about a month, but in plumes from explosive eruptions significant amounts of aerosols have been seen to form within a few hours. We show that sulphate aerosols were present in the lower stratosphere within hours of the onset of the eruption of Nabro. Evidence comes from nadir UV Aerosol Index (UVAI) and SO2 measurements by SCIAMACHY, GOME-2 and OMI, and limb aerosol measurements by SCIAMACHY. The sulphate plume displays negative UVAI in the western part of OMI's swath and positive UVAI in the eastern part - an effect that is due to the strong viewing angle dependence of UVAI and can only be caused by a high-altitude (>11 km), non-absorbing (single-scattering albedo >0.97) aerosol plume. For the retrieval of the aerosol profile from limb measurements, the horizontal dimensions and the position of the aerosol plume need to be taken into account, otherwise both extinction and layer height may be underestimated appreciably. By combining nadir SO2 column density and UVAI with limb aerosol profiles, a stratospheric plume from Nabro could be tracked from 13 to 17 June, before the plumes from later, lower-altitude explosions started interfering with the signal. Our findings are in agreement with ground-based lidar and sun-photometer data from an MPLNET/AERONET station in Israel and with data from the satellite-borne CALIOP lidar.

  17. Characterisation of a stratospheric sulfate plume from the Nabro volcano using a combination of passive satellite measurements in nadir and limb geometry

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Dörner, S.; Puķīıte, J.; Hörmann, C.; Fromm, M. D.; Wagner, T.

    2014-08-01

    The eruption of the Nabro volcano (Eritrea), which started on 12 June 2011, caused the introduction of large quantities of SO2 into the lower stratosphere. The subsequently formed sulfate aerosols could be detected for several months following the eruption. It is generally assumed that the formation of sulfate aerosols in the stratosphere is a relatively slow process, but in plumes from explosive eruptions significant amounts of aerosols have been seen to form within a few hours. We show that sulfate aerosols were present in the lower stratosphere within hours of the onset of the eruption of Nabro. Evidence comes from nadir UV Aerosol Index (UVAI) and SO2 measurements by SCIAMACHY, GOME-2 and OMI, and limb aerosol measurements by SCIAMACHY. The sulfate plume displays negative UVAI in the western part of OMI's swath and positive UVAI in the eastern part - an effect that is due to the strong viewing angle dependence of UVAI and can only be caused by a high-altitude (>11 km), non-absorbing (single-scattering albedo >0.97) aerosol plume. For the retrieval of the aerosol profile from limb measurements, the horizontal dimensions and the position of the aerosol plume need to be taken into account, otherwise both extinction and layer height may be underestimated appreciably. By combining nadir SO2 column density and UVAI with limb aerosol profiles, a stratospheric plume from Nabro could be tracked from 13 to 17 June, before the plumes from later, lower-altitude explosions started interfering with the signal. Our findings are in agreement with ground-based lidar and sun-photometer data from an MPLNET/AERONET station in Israel and with data from the satellite-borne CALIOP lidar.

  18. A combined deficit index for regional agricultural drought assessment over semi-arid tract of India using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Vyas, Swapnil S.; Bhattacharya, Bimal K.; Nigam, Rahul; Guhathakurta, Pulak; Ghosh, Kripan; Chattopadhyay, N.; Gairola, R. M.

    2015-07-01

    The untimely onset and uneven distribution of south-west monsoon rainfall lead to agricultural drought causing reduction in food-grain production with high vulnerability over semi-arid tract (SAT) of India. A combined deficit index (CDI) has been developed from tri-monthly sum of deficit in antecedent rainfall and deficit in monthly vegetation vigor with a lag period of one month between the two. The formulation of CDI used a core biophysical (e.g., NDVI) and a hydro-meteorological (e.g., rainfall) variables derived using observation from Indian geostationary satellites. The CDI was tested and evaluated in two drought years (2009 and 2012) within a span of five years (2009-2013) over SAT. The index was found to have good correlation (0.49-0.68) with standardized precipitation index (SPI) computed from rain-gauge measurements but showed lower correlation with anomaly in monthly land surface temperature (LST). Significant correlations were found between CDI and reduction in agricultural carbon productivity (0.67-0.83), evapotranspiration (0.64-0.73), agricultural grain yield (0.70-0.85). Inconsistent correlation between CDI and ET reduction was noticed in 2012 in contrast to consistent correlation between CDI and reduction in carbon productivity both in 2009 and 2012. The comparison of CDI-based drought-affected area with those from existing operational approach showed 75% overlapping regions though class-to-class matching was only 40-45%. The results demonstrated that CDI is a potential indicator for assessment of late-season regional agricultural drought based on lag-response between water supply and crop vigor.

  19. Satellite RNAs and Satellite Viruses.

    PubMed

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  20. Application of spectral analysis techniques to the intercomparison of aerosol data - Part 4: Combined maximum covariance analysis to bridge the gap between multi-sensor satellite retrievals and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Carlson, B. E.; Lacis, A. A.

    2014-04-01

    The development of remote sensing techniques has greatly advanced our knowledge of atmospheric aerosols. Various satellite sensors and the associated retrieval algorithms all add to the information of global aerosol variability, while well-designed surface networks provide time series of highly accurate measurements at specific locations. In studying the variability of aerosol properties, aerosol climate effects, and constraining aerosol fields in climate models, it is essential to make the best use of all of the available information. In the previous three parts of this series, we demonstrated the usefulness of several spectral decomposition techniques in the analysis and comparison of temporal and spatial variability of aerosol optical depth using satellite and ground-based measurements. Specifically, Principal Component Analysis (PCA) successfully captures and isolates seasonal and interannual variability from different aerosol source regions, Maximum Covariance Analysis (MCA) provides a means to verify the variability in one satellite dataset against Aerosol Robotic Network (AERONET) data, and Combined Principal Component Analysis (CPCA) realized parallel comparison among multi-satellite, multi-sensor datasets. As the final part of the study, this paper introduces a novel technique that integrates both multi-sensor datasets and ground observations, and thus effectively bridges the gap between these two types of measurements. The Combined Maximum Covariance Analysis (CMCA) decomposes the cross covariance matrix between the combined multi-sensor satellite data field and AERONET station data. We show that this new method not only confirms the seasonal and interannual variability of aerosol optical depth, aerosol source regions and events represented by different satellite datasets, but also identifies the strengths and weaknesses of each dataset in capturing the variability associated with sources, events or aerosol types. Furthermore, by examining the spread of

  1. Cloudsat and MTSAT Satellites Observer Atsani

    NASA Video Gallery

    This Aug. 19 image combines cloud imagery from Japan's MTSAT satellite and NASA's CloudSat satellite. Areas of pink and red designate larger amounts of liquid and ice. Light blue indicate smaller c...

  2. Combining Landsat TM multispectral satellite imagery and different modelling approaches for mapping post-fire erosion changes in a Mediterranean site

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kairis, Orestis; Karamesouti, Mina; Papanikolaou, Ioannis D.; Kosmas, Constantinos

    2013-04-01

    South European countries are naturally vulnerable to wildfires. Their natural resources such as soil, vegetation and water may be severely affected by wildfires, causing an imminent environmental deterioration due to the complex interdependence among biophysical components. Soil surface water erosion is a natural process essential for soil formation that is affected by such interdependences. Accelerated erosion due to wildfires, constitutes a major restrictive factor for ecosystem sustainability. In 2007, South European countries were severely affected by wildfires, with more than 500,000 hectares of land burnt in that year alone, well above the average of the last 30 years. The present work examines the changes in spatial variability of soil erosion rates as a result of a wildfire event that took place in Greece in 2007, one of the most devastating years in terms of wildfire hazards. Regional estimates of soil erosion rates before and after the fire outbreak were derived from the Revised Universal Soil Loss Equation (RUSLE, Renard et al. 1991) and the Pan-European Soil Erosion Risk Assessment model (PESERA, Kirkby, 1999; Kirkby et al., 2000). Inputs for both models included climatic, land-use, soil type, topography and land use management data. Where appropriate, both models were also fed with input data derived from the analysis of LANDSAT TM satellite imagery available in our study area, acquired before and shortly after the fire suppression. Our study was compiled and performed in a GIS environment. In overall, the loss of vegetation from the fire outbreak caused a substantial increase of soil erosion rates in the affected area, particularly towards the steep slopes. Both tested models were compared to each other and noticeable differences were observed in the soil erosion predictions before and after the fire event. These are attributed to the different parameterization requirements of the 2 models. This quantification of sediment supply through the river

  3. Meteorological satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J. (Editor); Schnapf, A.; Diesen, B. C., III; Martin, P. S.; Schwalb, A.; Bandeen, W. R.

    1980-01-01

    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  4. Reconstruction of SO2 emission height time-series and plume age using a combination of satellite imagery, volcanic tremor and back trajectory modelling at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Pardini, Federica; Burton, Mike; Salerno, Giuseppe; Merucci, Luca; Corradini, Stefano; Barsotti, Sara; de'Michieli Vitturi, Mattia; di Grazia, Giuseppe

    2015-04-01

    While much work has focused on detection of volcanic gas emissions from space, relatively little progress has been made on examining volcanic processes using satellite measurements of volcanic plumes. In theory, much information can be derived regarding the temporal evolution of an eruption from a single image of an eruption plume. This information could be used to constrain models of magma chamber emptying, and comparison with InSAR measurements of syn-eruptive deflation. The over-arching goal of the work presented here therefore is SO2 flux time-series reconstruction using satellite imagery of SO2 in volcanic plumes. One of the major sources of uncertainty in the determination of SO2 abundances from satellite imagery is the plume height, and so we have focused on the development of a robust procedure that allows us to make accurate reconstructions of plume height time series. Starting from satellite images of SO2 emitted from Mt. Etna, Italy, we identified specific pixels where SO2 was detected and utilized the HYSPLIT Lagrangian back-trajectory model in order to retrieve the emission height and time of the eruption column over the volcano. The results have been refined using a probabilistic approach that allows calculation of the most probable emission height range. Previous work has highlighted that volcanic tremor is strongly connected to eruption intensity, and therefore, potentially to plume height. We therefore examined the relationship between volcanic tremor measured on Etna with our derived plume height time series. We discovered a relatively good agreement between the time series, suggesting that the physical processes controlling both the distribution of SO2 in the atmosphere and the intensity of volcanic tremor are strongly coupled, through the explosivity of the eruptive activity. The synthesis of volcanic tremor and derived plume heights is a novel new approach, and opens the possibility of more quantitative analysis of SO2 amounts in satellite

  5. THE ONE ROOM SATELLITE.

    ERIC Educational Resources Information Center

    DREYFUS, LEE S.

    A WISCONSIN HIGH SCHOOL FRENCH CLASS AND A GROUP OF STUDENTS IN AN ENGLISH CALSS AT THE LYCEE HENRI IV OF PARIS, FRANCE, PARTICIPATED IN A COMBINED CLASS SESSION IN THE FIRST INTERNATIONAL TV CLASSROOM EXCHANGE. THE TV SIGNALS WERE EXCHANGED BY MEANS OF THE EARLY BIRD SATELLITE AND PERMITTED THE STUDENTS TO EXCHANGE MESSAGES. DURING THE TELECAST…

  6. Satellite myths

    NASA Astrophysics Data System (ADS)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  7. Satellite Videoconferences

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is helping thousands of teachers to learn more about aerospace matters, improve their classroom skills, and expand significantly the content of their aerospace education curricula by means of live educational satellite videoconferences. The 1 1/2 hour 'Update for Teachers' programs originate at Oklahoma State University (OSU) Telecommunications Center. The television signals are transmitted to the WESTAR IV communications satellite, which remits them to participating schools across the U.S. and in parts of Mexico and Canada. The schools are equipped with small home style satellite reception dishes. Education Satellite Videoconference programs are conducted four times yearly, covering a variety of aerospace subjects. Teachers can call toll-free and have questions answered after the speaker's presentations. Information about NASA educational resources and how to obtain them will be provided.

  8. Satellite positioning

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.; Watkins, Michael M.

    1991-01-01

    Developments in satellite positioning techniques and their applications are reviewed on the basis of the theoretical and practical work published by U.S. researchers in 1987-1990. Current techniques are classified into two main categories: satellite laser tracking and radio tracking. Particular attention is given to the Geoscience Laser Ranging System, the Lunar Laser Ranging concept; GPS ephemerides determination, fiducial networks, and reference frame; static GPS positioning; and kinematic GPS positioning.

  9. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.

  10. Small satellites

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.; Dermott, S.

    1986-01-01

    Satellites smaller than Mimas (r = 195 km) are distinguished by irregular overall shapes and by rough limb topography. Material properties and impact cratering dominate the shaping of these objects. Long fragmentation histories can produce a variety of internal structures, but so far there is no direct evidence that any small satellite is an equilibrium ellipsoid made up of noncohesive gravitationally bound rubble. One many bodies that orbit close to their primary the tidal and rotational components of surface gravity strongly affect the directions of local g and thereby affect the redistribution of regolith by mass wasting. Downslope movement of regolith is extensive on Deimos, and is probably effective on many other small satellites. It is shown that in some cases observed patterns of downslope mass wasting cold produce useful constraints on the satellite's mean density. The diversity of features seen in the few high-resolution images of small satellites currently available suggests that these objects have undergone complex histories of cratering, fragmentation, and regolith evolution.

  11. Comparing Two Satellite Sensors

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of images shows the same area of South Africa's Kruger National Park taken by different satellite sensors only minutes apart. The top image is from the Enhanced Thematic Mapper plus (ETM+) aboard Landsat 7, the latest in a long line of high-resolution remote sensing satellites begun in 1972 with the Earth Resources Technology Satellite (ERTS), later renamed Landsat-1. The bottom image was acquired by the Advanced Land Imager (ALI) aboard Earth Observer-1 (EO-1), an instrument designed to test new technologies that will continue the observations begun by the Landsat satellites. Future instruments like the ALI will be much smaller and less expensive than the ETM+, enabling NASA and the United States Geological Survey (USGS) to continue exploring the surface of the Earth. Both images above are false color composites combining short wave infrared (1.65 um), near infrared (.79 um), and green (.57 um) wavelengths as red, green, and blue, respectively. Dense vegetation appears green. The similarity of the images demonstrates the ability of the ALI to produce data that can be compared with the 29-year archive of Landsat data. Several NASA field campaigns conducted in Kruger National Park provided ground-based data needed to evaluate measurements from each of the satellite sensors. For more information, read the EO-1 fact sheet and the Landsat-7 fact sheet. Images courtesy Landsat 7 Science Team

  12. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  13. Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO3 profiling floats experiment

    NASA Astrophysics Data System (ADS)

    D'Ortenzio, Fabrizio; Lavigne, Hélöise; Besson, Florent; Claustre, Hervé; Coppola, Laurent; Garcia, Nicole; Laës-Huon, Agathe; Le Reste, Serge; Malardé, Damien; Migon, Christophe; Morin, Pascal; Mortier, Laurent; Poteau, Antoine; Prieur, Louis; Raimbault, Patrick; Testor, Pierre

    2014-09-01

    Two profiling floats, equipped with nitrate concentration sensors were deployed in the northwestern Mediterranean from summer 2012 to summer 2013. Satellite ocean color data were extracted to evaluate surface chlorophyll concentration at float locations. Time series of mixed layer depths and nitrate and chlorophyll concentrations were analyzed to characterize the interplay between the physical-chemical and biological dynamics in the area. Deep convection (mixed layer depth > 1000 m) was observed in January-February, although high-nitrate surface concentrations could be already observed in December. Chlorophyll increase is observed since December, although high values were observed only in March. The early nitrate availability in subsurface layers, which is likely due to the permanent cyclonic circulation of the area, appears to drive the bloom onset. The additional nitrate supply associated to the deep convection events, although strengthening the overall nitrate uptake, seems decoupled of the December increase of chlorophyll.

  14. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.

    2001-01-01

    A bearing test apparatus was used to investigate lubricant degradation rates and elastohydrodynamic transition temperatures for several perfluoropolyether (Krytox) formulations, a pentasilahydrocarbon, and a synthetic hydrocarbon (Pennzane 2001 A) in an MPB 1219 bearing, which is used in the geostationary operational environmental satellite (GOES) mission filter wheel assembly. Test conditions were the following: 1000-hr duration, 75 C, 20 lb axial load, vacuum level less than 1 x 10(exp -6) Torr, and a 600-rpm rotational speed. Baseline tests were performed using unformulated Krytox 143AB, the heritage lubricant. Krytox additive formulations showed small reductions in degradation rate. Krytox GPL-105, a higher viscosity version, yielded the least amount of degradation products. Both the silahydrocarbon and Pennzane 2001A showed no signs of lubricant degradation and had ample amounts of free oil at test conclusion.

  15. Balancing Vanguard Satellites

    NASA Technical Reports Server (NTRS)

    Simkovich, A.; Baumann, Robert C.

    1961-01-01

    The Vanguard satellites and component parts were balanced within the specified limits by using a Gisholt Type-S balancer in combination with a portable International Research and Development vibration analyzer and filter, with low-frequency pickups. Equipment and procedures used for balancing are described; and the determination of residual imbalance is accomplished by two methods: calculation, and graphical interpretation. Between-the-bearings balancing is recommended for future balancing of payloads.

  16. Satellite TV in the UK

    NASA Astrophysics Data System (ADS)

    Stanyard, Roger

    1991-11-01

    The development of DBS TV is considered in terms of the type of supporting satellite to be selected with attention given to the medium-power concept FSS satellites. Predictions are made regarding the combination direct-to-home/DBS satellite-broadcasting industry emphasizing the use of DBS TV for program delivery and not as a substitute for cable and other distribution methods. DBS TV is an effective technology for reaching audience segments that cannot be included by conventional terrestrial and cable means.

  17. Satellite voice broadcast system study, volume 2

    NASA Technical Reports Server (NTRS)

    Horstein, M.

    1985-01-01

    This study investigates the feasibility of providing Voice of America (VOA) broadcasts by satellite relay, rather than via terrestrial relay stations. Satellite voice broadcast systems are described for three different frequency bands: HF (26 MHz), VHF (68 MHz), and L-band (1.5 GHz). The geographical areas of interest at HF and L-band include all major land masses worldwide with the exception of the U.S., Canada, and Australia. Geostationary satellite configurations are considered for both frequency bands. In addition, a system of subsynchronous, circular satellites with an orbit period of 8 hours is developed for the HF band. VHF broadcasts, which are confined to the Soviet Union, are provied by a system of Molniya satellites. Satellites intended for HF or VHF broadcastinbg are extremely large and heavy. Satellite designs presented here are limited in size and weight to the capability of the STS/Centaur launch vehicle combination. Even so, at HF it would take 47 geostationary satellites or 20 satellites in 8-hour orbits to fully satisfy the voice-channel requirements of the broadcast schedule provided by VOA. On the other hand, three Molniya satellites suffice for the geographically restricted schedule at VHF. At L-band, only four geostationary satellites are needed to meet the requirements of the complete broadcast schedule. Moreover, these satellites are comparable in size and weight to current satellites designed for direct broadcast of video program material.

  18. Managing Satellites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Integral Systems, Inc.'s EPOCH 2000 forms the core of NASA's Near Earth Asteroid Rendezvous (NEAR) mission's command and control center. EPOCH 2000, which allows ground operators to monitor and control satellites over a wide area network, owes part of its heritage from work completed to support Goddard Space Flight Center. The software automates telemetry processing, commanding, anomaly detection, and archiving collected data. The NEAR spacecraft, launched in February 1996, will rendezvous in early 1999 and orbit the Asteroid Eros for a year. Integral Systems also provided Low Earth Orbit Autonomous Ground Terminals (LEO-Ts) to NASA. The LEO-T is designed to make it easier and less expensive for principal investigators to obtain telemetry, tracking and control services for their science missions. The company products have supported well over 70 satellite missions aimed at scientific research, meteorology, or communications applications.

  19. Digging up your dirt. High school students combine small-scale respiration and soil carbon measurements with satellite imagery in hands-on inquiry activities.

    NASA Astrophysics Data System (ADS)

    Kemper, K.; Throop, H.

    2015-12-01

    One of the greatest impacts on the global carbon cycle is changes in land use. Making this concept relevant and inquiry-based for high school students is challenging. Many are familiar with reconstructing paleo-climate from ice core data, but few have a connection to current climate research. Many students ask questions like 'What will our area be like in 20 years?' or 'How much does planting trees help?' while few have the scientific language to engage in a discussion to answer these questions. Our work connects students to climate change research in several ways: first, teacher Keska Kemper engaged in field research with Dr. Heather Throop creating a 'teacher in the field' perspective for students in the classroom. Dr. Throop met with Keska Kemper's students several times to develop an inquiry-based field study. Students predicted and then measured rates of respiration between different soil types in an urban park close to their school. Students then could compare their results from Portland, Oregon to Throop's work across a rain gradient in Australia. Discussions about percent tree cover and soil carbon helped students see connections between land use changes and changes in carbon cycling. Last, students examined satellite imagery to determine percent tree cover and numberss of trees to compare to soil carbon in the same region. Students were able to examine imagery over the last 30 years to visualize land use changes in the greater Portland area.

  20. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  1. Stereoscopic observations from meteorological satellites

    NASA Astrophysics Data System (ADS)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the

  2. Exploring the link between urban form and work related transportation using combined satellite image and census information: Case of the Great lakes region

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Guindon, Bert; Sun, Krista

    2016-05-01

    Aspects of urban transportation have significant implications for resource consumption and environmental quality. The level of travel activity, the viability of various modes of transportation and hence the level of transportation-related emissions are influenced by the structure of cities, i.e., their urban forms. While it is widely recognized that satellite remote sensing can provide spatial information on urban land cover and land use, its effective use for understanding impacts of urban form on issues such as transportation requires that this information be integrated with relevant demographic information. A comprehensive bi-national urban database, the Great Lakes Urban Survey (GLUS), comprising all cities with populations in excess of 200,000 has been created from Landsat imagery and national census and transportation survey information from Canada and the United States. A suite of analysis tools are proposed to utilize information sets such as GLUS to investigate the link between urban form and work-related travel. A new indicator, the Employment Deficit Measure (EDM), is proposed to quantify the balance between employment and worker availability at different transit horizons and hence to assess the viability of alternate modes of transportation. It is argued that the high degree of residential and commercial/industrial land uses greatly impact travel to work mode options as well as commute distance. A spatial interaction model is developed and found to accurately predict travel distance aggregated at the census tract level. We argue that this model could also be used to explore the relative levels of travel activity associated with different urban forms.

  3. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites

    NASA Astrophysics Data System (ADS)

    Döll, Petra; Müller Schmied, Hannes; Schuh, Carina; Portmann, Felix T.; Eicker, Annette

    2014-07-01

    Groundwater depletion (GWD) compromises crop production in major global agricultural areas and has negative ecological consequences. To derive GWD at the grid cell, country, and global levels, we applied a new version of the global hydrological model WaterGAP that simulates not only net groundwater abstractions and groundwater recharge from soils but also groundwater recharge from surface water bodies in dry regions. A large number of independent estimates of GWD as well as total water storage (TWS) trends determined from GRACE satellite data by three analysis centers were compared to model results. GWD and TWS trends are simulated best assuming that farmers in GWD areas irrigate at 70% of optimal water requirement. India, United States, Iran, Saudi Arabia, and China had the highest GWD rates in the first decade of the 21st century. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique, and Mongolia, at least 30% of the abstracted groundwater was taken from nonrenewable groundwater during this time period. The rate of global GWD has likely more than doubled since the period 1960-2000. Estimated GWD of 113 km3/yr during 2000-2009, corresponding to a sea level rise of 0.31 mm/yr, is much smaller than most previous estimates. About 15% of the globally abstracted groundwater was taken from nonrenewable groundwater during this period. To monitor recent temporal dynamics of GWD and related water abstractions, GRACE data are best evaluated with a hydrological model that, like WaterGAP, simulates the impact of abstractions on water storage, but the low spatial resolution of GRACE remains a challenge.

  4. Combining shipboard in situ data with satellite data to estimate daily primary production in a coastal upwelling system: A data mining approach

    NASA Astrophysics Data System (ADS)

    Williamson, Robert I.; Field, John G.; Shillington, Frank A.; Jarre, Astrid; Potgieter, Anet

    2015-11-01

    This study classifies coastal time-series data according to subsurface phytoplankton vertical distributions to be able to capture the variability of primary production at fine spatial and temporal scales. Our method uses algorithms developed to extract patterns in large datasets of time-sequential data. We use short time-series of QuikSCAT surface winds, MODIS sea surface temperature and surface chlorophyll a associated with each in situ chlorophyll a profile, as well as the season and bottom depth of the in situ station to discover patterns that can be used to classify new data into 12 profile classes. We first fill in missing MODIS data using a conditional random field model so that cloudy days are not excluded. The most likely profile is then predicted using all the available data. We apply our method to the St Helena Bay area, a region within the productive Benguela Current upwelling system. A profile is predicted for each day and each pixel of 4 km resolution satellite image for 16 consecutive months. Each profile is used in a broad-band photosynthesis model to produce a daily three-dimensional estimate of gross primary production. An average production rate of 3.2 g C m-2 day-1 was obtained for the area, which shows very good agreement with other estimates from the region. The results show persistent high productivity near the surface throughout the year with the exception of the winter months. Deeper in the water column productivity is more seasonal. The 16 month time-series highlights the interannual, seasonal and daily variability of the system. By linking physical processes to the distribution of phytoplankton at appropriate spatio-temporal scales, we can now more rigorously investigate bottom-up driven impacts on ecosystems characterised by short-term variability.

  5. Combined MIPAS (airborne/satellite), CALIPSO and in situ study on large potential NAT particles observed in early Arctic winter stratosphere in December 2011

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Höpfner, Michael; Pitts, Michael; Poole, Lamont; Oelhaf, Hermann; Molleker, Sergej; Borrmann, Stephan; Ebersoldt, Andreas; Frey, Wiebke; Gulde, Thomas; Maucher, Guido; Piesch, Christof; Sartorius, Christian; Orphal, Johannes

    2015-04-01

    The understanding of the characteristics of large HNO3-containing particles (potential 'NAT-rocks') involved in vertical redistribution of HNO3 in the polar winter stratosphere is limited due to the difficult accessibility of these particles by observations. While robust polar stratospheric cloud (PSC) classification schemes exist for observations by the space-borne lidar aboard CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) as well as for the passive mid-infrared limb observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), these observations are hardly exploited for the detection of large (diameter >10 μm) NAT particles. This is due to the facts that these particles have low overall number densities, resulting in weak detectable signatures, and that the physical characteristics of these particles (i.e. shape, morphology, HNO3-content and optical characteristics) are uncertain. We investigate collocated and complementary observations of a low-density potential large NAT particle field by the space-borne instruments CALIPSO and MIPAS-ENVISAT as well as the airborne observations by the limb-sounder MIPAS-STR and the in situ particle probe FSSP-100 (Forward Scattering Spectrometer Probe 100) aboard the high-altitude aircraft Geophysica. The observations aboard the Geophysica on 11 December 2011 associated to ESSenCe (ESa Sounder Campaign 2011) provided us the unique opportunity to study in detail the lower boundary region of a PSC where large potential NAT particles (>20 μm in diameter) were detected in situ. We analyse the ambient temperatures and gas-phase composition (HNO3 and H2O), the signatures of the observed particles in the CALIPSO and MIPAS observations, the HNO3-content of these particles suggested by the FSSP-100 and MIPAS-STR observations, and focus on the spectral fingerprint of these particles in the MIPAS-STR observations. While the spectral characterisation of the observed particles is subject

  6. Combined uncertainty of hydrological model complexity and satellite-based forcing data evaluated in two data-scarce semi-arid catchments in Ethiopia

    NASA Astrophysics Data System (ADS)

    Knoche, Malte; Fischer, Christian; Pohl, Eric; Krause, Peter; Merz, Ralf

    2014-11-01

    In water resources modeling, meteorological data scarcity can be compensated by various global data sets, but those data sets can differ tremendously. In the literature, hydrological models of differing complexity are proposed for estimating the water resources of semi-arid catchments, and also to evaluate rainfall data sets. The goal of this paper is to provide a joint analysis of modeling uncertainty due to different input data and increasing model complexity. Impacts of mutually concealed uncertainties on model performance and model outputs are exemplified in two data sparse semi-arid catchments in Ethiopia. We applied a semi-distributed and a fully distributed hydrological model, having different levels of complexity. Three different satellite-based rainfall data sets and two temperature products were used as model inputs. The semi-distributed model demonstrated good validation performances, while the fully distributed model was more sensitive to data uncertainties. The application of TRMM version 6 completely failed and the high-resolution CMORPH precipitation estimate outperformed TRMM version 7. In contrast, the use of high-resolution temperature data did not improve the model results. The large differences in remotely sensed input data were buffered inside the hydrological models. Therefore, data set evaluations regarding only the simulated hydrographs were less meaningful. In contrast, the investigation of parameter evolution and distributed outputs' variability appeared to be a valuable tool to uncover the interdependencies of data and model uncertainties. We suggest this procedure to be applied by default in water resources estimations that are affected by data scarcity, but especially when data sets are evaluated using hydrological models. Our case study demonstrates that estimations of groundwater recharge and actual evapotranspiration vary largely, depending on the applied data sets and models. The joint analysis reveals large interdependencies

  7. Meteorological satellites

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Meteor-2 (second generation meteorological satellite) and an experimental satellite on which instruments are being tested and modified for the requirements of hydrometeorology and a determination of natural resources are presently operational in the U.S.S.R. Television devices with a 1-10 km terrain image resolution operating in the visible and infrared region are used to determine the space system, velocity and direction of cloud movements and provide information about the snow and ice cover, cyclones, storms, vortices in the atmosphere, and velocity and direction of wind. Images with a 50-1000 m resolution make possible geological and hydrological surveys, an evaluation of the state of vegetation and crops, detection of forest fires, determination of pollution of the atmosphere and sea and determination of optimal fishing regions in the ocean. Measurement of the intensity of atmospheric radiation in narrow infrared regions and very high frequencies allows remote evaluation of the temperature and humidity distribution in the vertical cross section of the Earth's atmosphere.

  8. Combination of optical and LiDAR satellite imagery with forest inventory data to improve wall-to-wall assessment of growing stock in Italy

    NASA Astrophysics Data System (ADS)

    Maselli, F.; Chiesi, M.; Mura, M.; Marchetti, M.; Corona, P.; Chirici, G.

    2014-02-01

    The acquisition of information about growing stock is a fundamental step in the framework of forest management planning and scenario modeling, besides being essential for assessing the amount of carbon stored within forest ecosystems. Gallaun et al. (2010) produced a pan-European map of forest growing stock by the combination of ground and remotely sensed data. The first objective of the current paper is to assess the accuracy of this map versus the ground data collected during the latest Italian National Forest Inventory (INFC). Next, a new wall-to-wall estimation of growing stock is obtained by combining ground measurements of four regional forest inventories with the CORINE land cover map of Italy and the global canopy height map derived from Geoscience Laser Altimeter System (GLAS) and Moderate Resolution Imaging Spectroradiometer (MODIS) data. More particularly, the growing stock measurements of the four inventories are stratified by ecosystem type and extended over all Italian forest areas through the application of locally weighted regressions to the GLAS/MODIS canopy height map. When compared to the INFC measurements, the new map shows higher accuracy than that by Gallaun et al., particularly for high growing stock values. The coefficient of determination between estimated and INFC growing stocks is improved by about 0.5, whilst the mean square error is reduced from 90 to 48 m3 ha-1.

  9. Small satellite radiometric measurement system

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for the earth`s radiation budget. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted aircraft (RPAs). An example of the implementation of this radiometer on a small satellite is given. Significant benefits derive from simultaneous measurements of specific narrow (in wavelength) spectral features; such data may be obtained by combining LARI with a compact spectrometer on the same platform. Well-chosen satellite orbits allow one to use data from other satellites (e.g. DMSP) to enhance the data product, or to provide superior coverage of specific locations. 23 refs.

  10. A Satellite Interference Location System

    NASA Astrophysics Data System (ADS)

    Smith, William Whitfield, Jr.

    1990-01-01

    This dissertation describes the design and development of a system for inferring the position of terrestrial satellite uplink stations using existing domestic satellites with minimal disruption to normal satellite operation. Two methods are presented by which a quantity measured at a terrestrial receiving site is mapped into a curve of possible uplink locations on the Earth's surface. One method involves measuring differential time delays of a single uplink signal observed through two adjacent spacecraft. Another method uses a short baseline interferometer composed of the two cross-polarized and spatially separated antenna feeds aboard an affected satellite. A unique location or two dimensional solution is obtained by employing an appropriate combination of the two presented methods. A system for measurement of the required differential delays and phases is described in addition to the experimental work performed to demonstrate the feasibility of these location methods.

  11. Outer planet satellites

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon.

  12. Multi-mission Satellite Management

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  13. The status of environmental satellites and availability of their data products

    NASA Technical Reports Server (NTRS)

    Hughes, C. L.; Campbell, C. E.

    1977-01-01

    The latest available information about the status of unclassified environmental satellite (flown by the United States) and their data products is presented. The type of environmental satellites discussed include unmanned earth resource and meteorological satellites, and manned satellites which can act as a combination platform for instruments. The capabilities and data products of projected satellites are discussed along with those of currently operating systems.

  14. Satellite altimetry

    NASA Technical Reports Server (NTRS)

    Cheney, Robert E.

    1992-01-01

    Since altimetry data are not really old enough to use the term data archaeology, Mr. Cheney referred to the stewardship of these data. He noted that it is very important to document the basis for an altimetry data set as the algorithms and corrections used to arrive at the Geophysical Data Record (GDR) have been improving and are continuing to improve the precision of sea level data derived from altimetry. He noted that the GEOSAT Exact Repeat Mission (ERM) data set has recently been reprocessed by his organization in the National Ocean Service of NOAA and made available to the scientific community on CD/ROM disks by the National Oceanographic Data Center of the U.S. (NODC). The new data set contains a satellite orbit more precise by an order of magnitude together with an improved water vapor correction. A new, comprehensive GDR Handbook has also been prepared.

  15. A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy

    NASA Astrophysics Data System (ADS)

    Yang, Guixin; Lv, Ruichan; He, Fei; Qu, Fengyu; Gai, Shili; Du, Shaokang; Wei, Zibo; Yang, Piaoping

    2015-08-01

    In this contribution, a novel multifunctional anti-cancer nanoplatform has been firstly constructed by conjugating a photothermal agent (CuS nanoparticles) and a cancer cell target agent (folic acid, FA) onto the surface of mesoporous silica coated core-shell-shell up-conversion nanoparticles (UCNPs). It was found that the doxorubicin (DOX) loaded system exhibits obvious pH and NIR-responsive release behaviour and the drug can be targetedly delivered to the cancer cells by a receptor mediated endocytosis manner. Furthermore, both photothermal therapy (PTT) and chemotherapy can be triggered simultaneously by a single 808 nm near infrared (NIR) light source, thus leading to a synergistic effect. The combined chemo- and NIR photothermal therapy can significantly improve the therapeutic efficacy compared to any single therapy, which has been evidenced by both in vitro and in vivo results. Besides, due to the doped rare earth ions, the platform also exhibits good up-conversion luminescence (UCL), computed tomography (CT) and magnetic resonance imaging (MRI) properties. Based on the excellent multimodal imaging and anti-tumor properties, the multifunctional nanoplatform should be a promising candidate for imaging-guided anti-cancer therapy.In this contribution, a novel multifunctional anti-cancer nanoplatform has been firstly constructed by conjugating a photothermal agent (CuS nanoparticles) and a cancer cell target agent (folic acid, FA) onto the surface of mesoporous silica coated core-shell-shell up-conversion nanoparticles (UCNPs). It was found that the doxorubicin (DOX) loaded system exhibits obvious pH and NIR-responsive release behaviour and the drug can be targetedly delivered to the cancer cells by a receptor mediated endocytosis manner. Furthermore, both photothermal therapy (PTT) and chemotherapy can be triggered simultaneously by a single 808 nm near infrared (NIR) light source, thus leading to a synergistic effect. The combined chemo- and NIR photothermal

  16. Combined Satellite and Surface-Based Estimation of the Intracloud/ Cloud-to-Ground Lightning Ratio Over the Continental United States

    NASA Technical Reports Server (NTRS)

    Boccippio, D. J.; Cummins, K.; Christian, H. J.; Goodman, S. J.

    1999-01-01

    Four years of observations from the NASA Optical Transient Detector (OTD) and Global Atmospherics National Lightning Detection Network (NLDN) are combined to determine the geographic distribution of the intracloud/cloud to ground lightning ratio over the continental United States. The mean ratio over this region is 2.64-2.94, with a standard deviation of 1.1-1.3 and anomalies as low as 1.0 or less over the Rocky and Appalachian mountains and as high as 8-10 in the central-upper midwest. There is some indication that the ratio covaries with ground elevation, although the relationship is nonunique. Little evidence is found to support a latitudinal covariance, despite significant variation in the climatological mean tropopause pressure over the latitudes considered. The dynamic range of local variability is comparable to the range of values cited by previous studies for latitudinal variation from the deep tropics to midlatitudes. Local high anomalies of this ratio in the midwest are coincident with anomalies in the climatological percentage of positive CG occurrence, as well as in the occurrence of large positive CGs characteristic of MCS convective and trailing stratiform regions. This suggests that storm type, morphology and level of organization may dominate over environmental cofactors in the local determination of this ratio.

  17. A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy.

    PubMed

    Yang, Guixin; Lv, Ruichan; He, Fei; Qu, Fengyu; Gai, Shili; Du, Shaokang; Wei, Zibo; Yang, Piaoping

    2015-08-28

    In this contribution, a novel multifunctional anti-cancer nanoplatform has been firstly constructed by conjugating a photothermal agent (CuS nanoparticles) and a cancer cell target agent (folic acid, FA) onto the surface of mesoporous silica coated core-shell-shell up-conversion nanoparticles (UCNPs). It was found that the doxorubicin (DOX) loaded system exhibits obvious pH and NIR-responsive release behaviour and the drug can be targetedly delivered to the cancer cells by a receptor mediated endocytosis manner. Furthermore, both photothermal therapy (PTT) and chemotherapy can be triggered simultaneously by a single 808 nm near infrared (NIR) light source, thus leading to a synergistic effect. The combined chemo- and NIR photothermal therapy can significantly improve the therapeutic efficacy compared to any single therapy, which has been evidenced by both in vitro and in vivo results. Besides, due to the doped rare earth ions, the platform also exhibits good up-conversion luminescence (UCL), computed tomography (CT) and magnetic resonance imaging (MRI) properties. Based on the excellent multimodal imaging and anti-tumor properties, the multifunctional nanoplatform should be a promising candidate for imaging-guided anti-cancer therapy. PMID:26220401

  18. Satellites in Education.

    ERIC Educational Resources Information Center

    Jones, David

    1988-01-01

    Describes the methods and materials used to obtain satellite pictures from weather satellites. Discusses possible physics lessons which can be done using this equipment including orbital mechanics, and how the satellite works. (CW)

  19. From the sprinkler to satellite: Combining fixed and mobile cosmic-ray neutron probes for realtime multiscale monitoring of soil moisture in agricultural systems

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.

    2015-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at various scales by combining fixed and roving cosmic-ray neutron probes at four study sites across an East-West precipitation gradient overtopping the High Plains Aquifer (HPA). Each of the four study sites consisted of coarse scale mapping of the entire ~12 by 12 km domain and detailed mapping of 1 quarter section (0.8 by 0.8 km) agricultural field. By using a simplistic data merging technique we are able to produce a statistical daily soil moisture product at a variety of key spatial scales in support of irrigation water management technology: the individual sprinkler (~102 m2) for variable rate irrigation, the individual pie slice (~103 m2) for variable speed irrigation, and the quarter section (0.64 km2) for uniform rate irrigation. In addition, we are able to provide a daily soil moisture product over the 144 km2 study area at a variety of key remote sensing scales 1, 9, and 144 km2. These products can be used to support SMAP/SMOS through calibration, validation, and value addition by statistical downscaling. Future work could include larger scale monitoring in support of GRACE total water storage calculations in the HPA or other key groundwater resource locations by incorporating existing COSMOS sites or establishment of new networks.

  20. Pole position studied with artificial earth satellites.

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1972-01-01

    Long-arc orbit computation of highest accuracy can provide pole positions. Optical Baker-Nunn and laser range observations of several satellites are combined. The accuracy of the pole position is comparable to that of the mean satellite-tracking station coordinates (plus or minus 5 m) when sufficient tracking data are available. Exploitation of the technique requires more accurate tracking data.

  1. A satellite for demonstration of Panel Extension Satellite (PETSAT)

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoshiki; Sahara, Hironori; Nakasuka, Shinichi; Greenland, Stephen; Morimoto, Takeshi; Koyama, Kanichi; Kobayashi, Chisato; Kikuchi, Hideaki; Okada, Takanori; Tanaka, Hidenori

    2008-07-01

    This paper presents the current status, configuration, architecture, and key technologies of SOHLA-2, the demonstration mission of the PETSAT (Panel ExTension SATellite) concept. The PETSAT proposal is for a modular satellite consisting of any number of unfolding functional panels. These panels are designed around an open architecture and connected through standardized interfaces. The interfaces between panels incorporate a reliable "plug-in" format, such that when combined, the integrated system takes on the intended satellite function in a redundant and distributed manner. By combining the different panel types in any number and configuration, flexibility to mission requirements is achieved. Some panels for performing basic satellite functions will be available as commercial-off-the-shelf components, and others custom developed dependent on the mission. During launch these panels are stowed in a folded low volume configuration, which is then extended on-orbit, realizing a satellite with a large area for the mounting of solar arrays, mission systems, extensible booms, or any other components. SOHLA-2 is both a concept demonstration and a lightning detection mission in the VHF band. It weighs less than 50 kg and consists of six panels: communication, attitude control, propulsion, mission, experiment and bus function. The bus function panel is based on the successful Cubesat XI developed at the University of Tokyo and this acts as the manager of the technology demonstration aspects for the mission. By basing the architecture upon a proven technology, the reliability of the satellite is increased. It is intended that the satellite be launched in early 2008.

  2. Satellite Failure Risk Due to Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Flegel, S.; Wiedemann, C.; Gelhaus, J.; Dietze, C.; Vorsmann, P.; Alwes, D.

    2009-03-01

    The increasing accumulation of space debris objects on earth orbits represents a risk for spaceflight missions. Particle impacts on satellites can lead to serious damages or even to the loss of a mission. In this paper the risk for historical and future satellite missions is analyzed separately. For historical satellite missions, the risk analysis is combined with cost estimations. Altogether 3893 satellites were examined and their analysis results evaluated. The failure probability of selected future satellite missions due to hypervelocity impacts from space debris is estimated for the years 2005 and 2055. The future evolution of the spatial density is predicted for a business-as-usual scenario which is based on the launch activity in the years preceding 2005. The predicted evolution of the space debris environment is discussed in terms of object sources and orbit altitudes. The analysis shows that an increase in the failure probability of satellites is likely.

  3. Iodine Satellite

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  4. Navy satellite communications

    NASA Astrophysics Data System (ADS)

    Clair, William C.

    1992-03-01

    The history, current status, and future plans of Navy satellite communications are reviewed. Particular attention is given to Fleet Satellites; the Defense Satellite Communications System; the International Maritime Satellite; Core Command and Control (Core C2), General Purpose Communications, and Navy EHF SATCOM program; and the Copernicus architecture.

  5. Tethered Communication Satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1986-01-01

    Report describes concept for placing several communication satellites in geostationary orbit without taking up more space than assigned to single satellite. Proposed scheme eases orbital crowding more economically than space platforms. Concept requires minimal redesign of existing satellites and accommodates many satellites in just one orbital slot. System much lighter in weight than geostationary platform and easier and more economical to transport.

  6. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  7. Stream Gauges and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.

    2010-12-01

    within an international river basin (this is also an argument for better diplomacy). Essentially, where gauges exist, satellite measurements allow the spatial extension of in-situ observations, especially when jointly combined in models such as data assimilation methods. The opportunity for new hydrologic science and discovery is enhanced when the strengths of traditional and new measurements are combined.

  8. Shadow imaging of geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  9. Weather Satellite Enterprise Information Chain

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  10. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  11. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  12. Stereo Measurements from Satellites

    NASA Technical Reports Server (NTRS)

    Adler, R.

    1982-01-01

    The papers in this presentation include: 1) 'Stereographic Observations from Geosynchronous Satellites: An Important New Tool for the Atmospheric Sciences'; 2) 'Thunderstorm Cloud Top Ascent Rates Determined from Stereoscopic Satellite Observations'; 3) 'Artificial Stereo Presentation of Meteorological Data Fields'.

  13. Satellite-Delivered Learning.

    ERIC Educational Resources Information Center

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  14. Geology of icy satellites

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1985-01-01

    The geology of the major icy satellites of Jupiter, Saturn, Uranus, and Neptune is discussed in terms of the four major processes that shape icy satellite surfaces: impact cratering, volcanism, tectonism, and interactions with planetary magnetospheres and solar radiation. The role of these processes in creating the differences that exist among the satellites, in particular the orderly progression of geological properties in the Jovian satellites, is emphasized. Important questions left open after the Voyager missions are summarized.

  15. Solar power satellite system definition study. Part 2, volume 5: Space operations (construction and transportation)

    NASA Technical Reports Server (NTRS)

    Miller, K.; Davis, E. E.

    1977-01-01

    Construction and transportation systems and operations are described for the following combinations: (1) silicon photovoltaic CR=1 satellite constructed primarily in low earth orbit (LEO); (2) silicon photovoltaic CR=1 satellite constructed in geosynchronous earth orbit (GEO); (3) Rankine thermal engine satellite constructed primarily in LEO; and (4) Rankine thermal engine satellite constructed in GEO.

  16. Magnetospheres: Jupiter, Satellite Interactions

    NASA Astrophysics Data System (ADS)

    Neubauer, F.; Murdin, P.

    2000-11-01

    Most of the satellites of Jupiter, notably the large Galilean satellites Io, Europa, Ganymede and Callisto (see JUPITER: SATELLITES), orbit deep inside the magnetosphere of Jupiter (see JUPITER: MAGNETOSPHERE) and are therefore immersed in the flow of magnetospheric plasma (made of a mixture of electrons and ions) and subjected to an interaction with the strong Jovian magnetic field. These intera...

  17. Communications satellite systems operations with the space station, volume 2

    NASA Technical Reports Server (NTRS)

    Price, K.; Dixon, J.; Weyandt, C.

    1987-01-01

    A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.

  18. Germany's Option for a Moon Satellite

    NASA Astrophysics Data System (ADS)

    Quantius, Dominik

    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully de-signed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind. In co-operation with the DLR-Institute of Space Systems in Bremen, Germany, two studies on systems level for a first P5 satellite towards Moon and a following one towards Mars have been performed. By using the DLR's Concurrent Engineering Facility (CEF) two consistent satellite concepts were designed including mission analysis, configuration, propulsion, subsystem dimensioning, payload selection, budgeting and cost. The present paper gives an insight in the accomplished design process and the results of the performed study towards Moon. The developed Moon orbiter is designed to carry the following four main instruments besides flexible communication abilities: • slewable HDTV camera combined with a high gain antenna that allows receiving lunar television using a commercially available satellite TV dish on Earth • sensor imaging infrared spectrometer for mineralogy of lunar silicates and lunar surface temperature measurements • camera for detection and monitoring of impact flashes in visible light (VIS) on lunar night side caused by meteoroid impact events • camera technology test for interplanetary navigation and planetary approach navigation. This study presents a non-industrial satellite concept that could be launched as piggyback load on Ariane 5 into GTO. Due to the fact, that the satellite would be built by the private sector, the mission costs would remain low. Otherwise the scientific and public output would be high using that satellite bus for the instruments

  19. Improving the orbits of eclipsing GPS satellites

    NASA Astrophysics Data System (ADS)

    Rodriguez Solano, Carlos Javier; Hugentobler, Urs; Steigenberger, Peter; Allende Alba, Gerardo

    2013-04-01

    The orbits of GPS satellites show a lower performance during Sun-Earth eclipse seasons than during periods outside these seasons. In particular the orbits of GPS II and IIA satellites are worse during eclipses, while GPS IIR satellite orbits are almost unaffected. The cause of this problem is the non-nominal yaw attitude of the satellites during eclipses, i.e., the yaw maneuvers performed at noon, shadow and post-shadow. If the yaw maneuvers are not properly taken into account, two effects appear: 1) the phase measurements are degraded since the modelled position of the satellite's navigation antenna differs from the true position, and 2) the non-conservative forces like solar radiation pressure and Earth radiation pressure are mismodelled due to the wrong orientation of the satellite's surfaces in space. In this study, we introduce the yaw maneuver information available from models in the computation of solar radiation pressure and Earth radiation pressure acting on a box-wing like satellite. Also the computation of the satellite's navigation antenna position takes into account the yaw maneuver models. The improvement of GPS satellite orbits during eclipse seasons is quantified in terms of orbit predictions after 6 hours and after 4 days for all GPS satellites during 2007 and 2008. Already the use of the currently available yaw maneuver models, with nominal hardware yaw rates, shows an important improvement when combined with our box-wing model. In addition, we have estimated the real hardware yaw rates from PPP residuals and use this information for orbit prediction, obtaining an additional improvement in the orbits of GPS II and IIA satellites during eclipse seasons.

  20. A small terminal for satellite communication systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Wu, Dong; Jin, Min

    1994-01-01

    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization.

  1. Survey: National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The national Environmental Satellite Service (NESS) receives data at periodic intervals from satellites of the Synchronous Meteorological Satellite/Geostationary Operational Environmental Satellite series and from the Improved TIROS (Television Infrared Observational Satellite) Operational Satellite. Within the conterminous United States, direct readout and processed products are distributed to users over facsimile networks from a central processing and data distribution facility. In addition, the NESS Satellite Field Stations analyze, interpret, and distribute processed geostationary satellite products to regional weather service activities.

  2. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  3. The sad saga of small satellites

    SciTech Connect

    Taubes, G.

    1993-02-12

    While the massive EOS program lumbers toward its first scheduled lauch in 1998, many global change variables are going unmonitored. So why not fill the gap with a separate program of simple, cheaper satellites to monitor such things as atmospheric aerosols, water vapor, clouds and the radiation budget Good idea, many NASA advisers have said. But a combination of NASA's reluctance and agency tug-of-wars seems likely to keep the small satellites grounded.

  4. Geosynchronous satellite collision avoidance

    NASA Technical Reports Server (NTRS)

    Fraser, W.

    1985-01-01

    The increases in the number of satellite systems, the growing dependency on these systems, and the potentially hazardous conjunctions in space, dictates careful management of satellite positions. The potential for satellite collision increases as more objects are placed in orbit. At geosynchronous altitudes active satellites maintain fixed longitudinal station-keeping control while inactive satellites and debris generally drift around the globe or oscillate about two geopotential stable points. Portions of the total objects in geosynchronous orbit are tracked by ground stations while a significant number of additional pieces of space debris regularly pass through geosynchronous orbit altitudes. The probability of an operational satellite colliding with another satellite or a piece of space debris will increase in the number of space objects, their sizes, and on-orbit lifetimes.

  5. Comments on satellite meteorology from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.

    1982-01-01

    Examples of the use of geostationary satellites in meteorology are given. Studies of the rate of change of cumulus clouds and cloud systems and wind parameter determination from cloud motions are reviewed. Computer processed imagery products are also discussed.

  6. Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis.

    PubMed

    Tian, Yi; Lv, Lijun; Jiang, Liwei; Wang, Xin; Li, Yanhong; Yu, Haiming; Feng, Xiaochen; Li, Qi; Zhang, Li; Li, Zhuo

    2013-08-01

    We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)'s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique. PMID:23913059

  7. Ephemeris errors of GPS satellites

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1986-01-01

    Numerical models are developed to examine the potential effects of solar radiation, the terrestrial gravitational field, and the estimated initial state of the Global Positioning System (GPS) satellites, along with the capability of current models to account for the effects on the ephemeris of the GPS constellation. Of particular interest is the accuracy of the satellite position predictions for applications in geodesy. The main characteristics of the GPS orbits are reviewed and linear combinations of possible errors for 3 day ephemerides are examined. It is shown that the effects of the forces on the GPS orbits will be dynamic, yet can be expressed simply enough to maintain positioning accuracy to 1 percent. The calculations can also take into consideration solar wind pressure on the solar panels.

  8. Satellite services system overview

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  9. Satellite Antenna Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory, the ACTS antenna system was transferred from experimental testing status to commercial development with KVH Industries, Inc. The ACTS design enables mobile satellite antennas to remain pointed at the satellite, regardless of the motion or vibration on which it is mounted. KVH's first product based on the ACTS design is a land-mobile satellite antenna system that will enable direct broadcast satellite television aboard moving trucks, recreational vehicles, trains, and buses. Future products could include use in broadcasting, emergency medical and military vehicles.

  10. Satellite communication antenna technology

    NASA Technical Reports Server (NTRS)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  11. Satellite networks for education

    NASA Technical Reports Server (NTRS)

    Singh, J. P.; Morgan, R. P.; Rosenbaum, F. J.

    1972-01-01

    Satellite based educational networking is discussed with particular attention given to the potential uses of communications satellites to help meet educational needs in the United states. Four major subject areas were covered; (1) characteristics and structure of networks, (2) definition of pressures within educational establishment that provide motivation for various types of networks, (3) examination of current educational networking status for educational radio and television, instructional television fixed services, inter- and intra-state educational communication networks, computer networks, and cable television for education, and (4) identification of possible satellite based educational telecommunication services and three alternatives for implementing educational satellite systems.

  12. Future satellite systems - Market demand assessment

    NASA Technical Reports Server (NTRS)

    Reiner, P. S.

    1981-01-01

    During 1979-80, a market study was performed regarding the future total demand for communications services, and satellite transmission service at the 4/6 GHz, 12/14 GHz, and 20/30 GHz frequencies. Included in the study were a variety of communications traffic characteristics as well as projections of the cost of C and Ku band satellite systems through the year 2000. In connection with the considered study, a total of 15 major study tasks and subtasks were undertaken and were all interrelated in various ways. The telecommunications service forecasts were concerned with a total of 21 data services, 5 voice services, and 5 video services. The traffic volumes within the U.S. for the three basic services were projected for three time periods. It is found that the fixed frequency allocation for domestic satellites combined with potential interference from adjacent satellites means a near term lack of orbital positions above the U.S.

  13. Global satellite composites - 20 years of evolution

    NASA Astrophysics Data System (ADS)

    Kohrs, Richard A.; Lazzara, Matthew A.; Robaidek, Jerrold O.; Santek, David A.; Knuth, Shelley L.

    2014-01-01

    For two decades, the University of Wisconsin Space Science and Engineering Center (SSEC) and the Antarctic Meteorological Research Center (AMRC) have been creating global, regional and hemispheric satellite composites. These composites have proven useful in research, operational forecasting, commercial applications and educational outreach. Using the Man computer Interactive Data System (McIDAS) software developed at SSEC, infrared window composites were created by combining Geostationary Operational Environmental Satellite (GOES), and polar orbiting data from the SSEC Data Center and polar data acquired at McMurdo and Palmer stations, Antarctica. Increased computer processing speed has allowed for more advanced algorithms to address the decision making process for co-located pixels. The algorithms have evolved from a simplistic maximum brightness temperature to those that account for distance from the sub-satellite point, parallax displacement, pixel time and resolution. The composites are the state-of-the-art means for merging/mosaicking satellite imagery.

  14. Vibration suppression of satellites using multifunctional platforms

    NASA Astrophysics Data System (ADS)

    Antin, Nicolas; Russ, Richard; Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2009-03-01

    This research focuses on a finite element analysis of active vibration suppression capabilities of a smart composite platform, which is a structural interface between a satellite main thruster and its structure and possesses simultaneous precision positioning and vibration suppression capabilities for thrust vector control of a satellite. First, the combined system of the smart composite platform and the satellite structure are briefly described followed by the finite element modeling and simulations. The smart platform piezoelectric patches and stacks material properties modeling, for the finite element analysis, are developed consistent with the manufacturer data. Next, a vibration suppression scheme, based on the modal analysis, is presented and used in vibration suppression analysis of satellite structures of the thrust vector under the thruster-firing excitation. The approach introduced here is an effective technique for the design of smart structures with complex geometry to study their MIMO active vibration suppression capabilities.

  15. Communications technology satellite

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A description of the Communications Technology Satellite (CTS), its planned orbit, its experiments, and associated ground facilities was given. The communication experiments, to be carried out by a variety of groups in both the United States and Canada, include tele-education, tele-medicine, community interaction, data communications and broadcasting. A historical summary of communications satellite development was also included.

  16. Satellite Teleconference Final Report.

    ERIC Educational Resources Information Center

    Elgin Community Coll., IL.

    The vocational education satellite teleconference project accomplished two goals: (1) identified, acquired, copied, and distributed to the Illinois Vocational Curriculum Center 100 marketing or training videotapes for staff development and classroom use; and (2) provided from 15-25 variable time (1- to 3-hour) satellite teleconferences in four…

  17. Communication satellite technology trends

    NASA Technical Reports Server (NTRS)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  18. Satellites in Schools.

    ERIC Educational Resources Information Center

    Underwood, C. I.; And Others

    1987-01-01

    Discusses the use of satellite data in physics classrooms. Describes the apparatus that can be used to collect and analyze data. Provides examples of how telemetry data transmitted by the satellite UoSAT-2 can be used not only in teaching physics, but also in geography, mathematics, and information technology. (TW)

  19. Signals from Communications Satellites.

    ERIC Educational Resources Information Center

    Thomsen, Volker

    1996-01-01

    Discusses the Doppler effect for relative motion between a source of waves and an observer and the orbital dynamics of communications satellites. Presents preliminary calculations of the satellite's altitude and linear velocity using only the concepts of the Doppler shift and the mechanics of motion in a circular path. (JRH)

  20. Audio direct broadcast satellites

    NASA Astrophysics Data System (ADS)

    Miller, J. E.

    1983-05-01

    Satellite sound broadcasting is, as the name implies, the use of satellite techniques and technology to broadcast directly from space to low-cost, consumer-quality receivers the types of sound programs commonly received in the AM and FM broadcast bands. It would be a ubiquitous service available to the general public in the home, in the car, and out in the open.

  1. Seminar by Satellite

    ERIC Educational Resources Information Center

    Hart, Peter J.

    1978-01-01

    Seminars on curriculum development transmitted by satellite are operated by the University of the South Pacific, Suva. The satellite was launched in 1966 by NASA, which has permitted educational broadcasting. Ground stations have been set up in eight countries that support the university. Practical aspects of transmission are outlined. (SW)

  2. Audio direct broadcast satellites

    NASA Technical Reports Server (NTRS)

    Miller, J. E.

    1983-01-01

    Satellite sound broadcasting is, as the name implies, the use of satellite techniques and technology to broadcast directly from space to low-cost, consumer-quality receivers the types of sound programs commonly received in the AM and FM broadcast bands. It would be a ubiquitous service available to the general public in the home, in the car, and out in the open.

  3. Satellites and the ISDN

    NASA Astrophysics Data System (ADS)

    Lewis, J.

    1983-12-01

    The potential role of satellites in an integrated services digital network (ISDN) is discussed in the light of recent CCITT studies. Present satellite digital-communication techniques are reviewed, and the changes introduced by ISDN development and by the competition of long-distance optical-fiber networks are characterized. CCITT standards on error performance (e.g., bit-error rate less than 10 to the -6th for at least 98 percent of the worst month), availability, and synchronization are summarized and compared with currently applied satellite standards. Since the potential for improvements in transmission quality and delay in satellite systems is limited, it is recommended that satellite planning concentrate on transparency enhancement (including speech processing, frame-format modification, and forward error correction) to accommodate ISDN.

  4. Pastures from Space: What can we learn from satellite images?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellites such as the Landsat platform record both visible light and near infrared radiation. These can be combined to produce estimates of standing plant biomass. Satellite estimates of plant production have been widely used in rangelands and forests where large areas are studied. The square Lands...

  5. Intra- and Inter-Seasonal Supra-glacial Water Variability over the West Greenland Ice Sheet as Estimated from Combining High Resolution Satellite Optical Data and a Digital Elevation Model

    NASA Astrophysics Data System (ADS)

    Brown, M. G.; Tedesco, M.; Smith, L. C.; Rennermalm, A. K.; Yang, K.

    2015-12-01

    The supra-glacial hydrology of the Greenland Ice Sheet (GrIS) plays a crucial role on the surface energy and mass balance budgets of the ice sheet as a whole. The surface hydrology network variability of small streams in the ablation zone of Greenland is poorly understood both spatially and temporally. Using satellites that can spatially resolve the presence and associated properties of small streams, the scientific community is now able to be provided with accurate spatial and temporal analysis of surface hydrology on the ice sheet (that could not have been resolved with other sensors such as those on board MODIS or LANDSAT). In this study we report mapped supra-glacial water networks over a region of the West GrIS (approximately 164 km2) derived from high resolution multispectral satellite imagery from the Quickbird and WorldView - 2 satellites in tandem with a 2 meter stereographic SETSM DEM (digital elevation model). The branching complexity of the identified surface streams is computed from the available DEM as well as the intra- and inter seasonal changes observed in the hydrological system. The stream networks created during the melt season (at several different stages of melting) are compared and discussed as well as the networks mapped between consecutive years for proximate dates. Also, depth and volume estimations for the surface water features identified were extracted via band math algorithms, threshold classifications, and morphological operations. Our results indicate that the higher stream orders have the largest amount of stored surface water per km but the lower stream orders, specifically 1st order with widths of ~ 2 meters, hold more stored surface water overall. We also employ and compare runoff data from the numerical model MAR (Modèle Atmosphérique Régional) to the estimations found using imagery and the DEM.

  6. Transit satellite system timing capabilities

    NASA Technical Reports Server (NTRS)

    Finsod, T. D.

    1978-01-01

    Current time transfer capabilities of the Transit Satellite System are reviewed. Potential improvements in the changes in equipment and operational procedures using operational satellites are discussed.

  7. Satellite Services Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Key issues associated with the orbital servicing of satellites are examined including servicing spacecraft and equipment, servicing operations, economics, satellite design, docking and berthing, and fluid management.

  8. Swedish small satellites

    NASA Astrophysics Data System (ADS)

    Lundahl, K.; von Scheele, F.

    2004-11-01

    In 1986 the first Swedish small satellite VIKING was launched on the Ariane 1 rocket together with the French remote sensing satellite SPOT-1. This paper describes the development of Swedish small satellites in an international framework. The satellites have delivered excellent scientific data to a low cost by using e.g. streamlined project organisations, competitive procurement programs and piggy-back launch opportunities. The first micro satellite Astrid-1 was launched in January 1995 and was followed by the launch of Astrid-2 in December 1998. The capable Odin small satellite was launched in February 2001. SSC was also contracted for ESA's SMART-1 probe destined to the Moon. SMART-1, launched in September 2003, is used for both research and as a technology demonstrator for future projects. Future proposed projects include micro and small satellites for climate research as the Atmosphere and Climate Explorer Plus (ACE+), the Stratosphere-Troposphere Exchange And climate Monitor (STEAM) and PRISMA, a technology demonstrator for formation flying, new propulsion system and commercial development methods.

  9. The DLR small satellite mission bird.

    NASA Astrophysics Data System (ADS)

    Brieβ, K.; Bärwald, W.; Gerlich, T.; Jahn, H.; Lura, F.; Studemund, H.

    2000-03-01

    The paper describes the DLR small satellite mission "BIRD" (Bi-spectral Infrared Detection). The BIRD mission is dedicated to hot spot detection and investigation from space by means of new developed infrared array sensors. They are suitable for Earth remote sensing with small satellites. A dedicated two-channel cooled infrared sensor system is developed for hot spot detection and investigation from space. It is combined with a two-channel VIS/NIR sensor system for special questions of the remote sensing of vegetation. The sensor system and data processing algorithms are tested by airborne experiments. Results of the airborne experiments are pointed out in the paper. A speciality of this mission consists in the constraint to implement this payload on a micro satellite suitable for a piggyback launch. So the launch is not a main cost driver as for other small satellite missions with dedicated launchers. The mass of the complete satellite including payload and launch adapter has to be less than 100kg. To meet the particular requirements of the payload on the spacecraft bus a lot of new developments on component level are done. The paper describes the 3-axis stabilized satellite, the basic spacecraft modes, the mission architecture and the model philosophy within strict design-to-cost constraints. The BIRD mission is now in the Phase C/D and will be ready for launch in the summer of the year 2000.

  10. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  11. Satellite Breakup Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Leleux, Darrin P.; Smith, Jason T.

    2006-01-01

    Many satellite breakups occur as a result of an explosion of stored energy on-board spacecraft or rocket-bodies. These breakups generate a cloud of tens or possibly hundreds of thousands of debris fragments which may pose a transient elevated threat to spaceflight crews and vehicles. Satellite breakups pose a unique threat because the majority of the debris fragments are too small to be tracked from the ground. The United States Human Spaceflight Program is currently implementing a risk mitigation strategy that includes modeling breakup events, establishing action thresholds, and prescribing corresponding mitigation actions in response to satellite breakups.

  12. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  13. JOI reaffirms satellite plan

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A recent report by the Satellite Planning Committee of Joint Oceanographic Institutions, Inc. (JOI), Washington, D.C., underscored the need for the four oceanographic satellite missions that have been proposed for the next decade to be carried out as planned and firmly on schedule. In reaffirming the need for the missions, the committee said that many important types of long-term global data auoui ihe oceans can be gathered only by research satellites. The potential benefits to vital national activities such as trade, fisheries, national defense, and waste disposal will be well worth the missions' cost, they added.

  14. Overview of commercial satellite communications

    NASA Astrophysics Data System (ADS)

    Beakley, G. W.

    1984-07-01

    A brief history of communications satellites is presented, taking into account the launching of Sputnik 1 in October 1957, the Explorer 1 in January of 1958, the launch of the Score as the world's first active communications satellite in December 1958, the Communications Satellite Act in 1962, and the launch of 'Early Bird' in 1964. The Intelsat satellites are considered along with maritime satellite communications, the U.S. domestic satellite systems, Alaskan satellite communications, cable television, broadcast TV stations, print media, the hotel/motel industry as a large market for satellite communications terminals, the opening of a minicable and satellite master antenna TV market for TV receive-only systems, and business telecommunications earth terminals. Attention is also given to future directions regarding satellite positions, the concept of 'video-plus', and direct broadcast satellites.

  15. Orbit determination accuracies using satellite-to-satellite tracking

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Argentiero, P. D.; Schmid, P. E.

    1977-01-01

    The uncertainty in relay satellite sate is a significant error source which cannot be ignored in the reduction of satellite-to-satellite tracking data. Based on simulations and real data reductions, it is numerically impractical to use simultaneous unconstrained solutions to determine both relay and user satellite epoch states. A Bayesian or least squares estimation technique with an a priori procedure is presented which permits the adjustment of relay satellite epoch state in the reduction of satellite-to-satellite tracking data without the numerical difficulties introduced by an ill-conditioned normal matrix.

  16. Meteorological satellite accomplishments

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1974-01-01

    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.

  17. Domestic Communication Satellites

    ERIC Educational Resources Information Center

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  18. AUSSAT mobile satellite services

    NASA Technical Reports Server (NTRS)

    Nowland, Wayne L.; Wagg, Michael; Simpson, Daniel

    1988-01-01

    An overview of AUSSAT's planned mobile satellite system is given. The development program which is being undertaken to achieve the 1992 service date is described. Both business and technical aspects of the development program are addressed.

  19. Weather, land satellite sale

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan announced on March 8 plans to sell to private industry the nation's land and meteorological remote-sensing satellites, including the responsibility for any future ocean-observing systems. According to the plan, the private firm successful in its bid to buy the five satellites would sell back to the government the data received by the satellites. The Reagan administration says the sale will save money and will put activities appropriate for commercial ventures into the commercial sector. Response to the announcement from scientists and congressmen has been anything but dulcet; one senator, in fact, charges that the Commerce Department and the corporation most likely to purchase the satellites are engaged in a ‘sweetheart deal.’

  20. Aiming a Satellite Dish.

    ERIC Educational Resources Information Center

    Zebrowski, Ernest, Jr.

    1988-01-01

    Develops a pair of equations for calculating the elevation and azimuth angles for the various satellites. Uses 3-dimensional vector difference calculations. Provides a practical example, figures, and table. (YP)

  1. Speckle imaging of satellites

    SciTech Connect

    Fitch, J.P.; Lawrence, T.W.; Goodman, D.M.; Johansson, E.M.

    1991-12-01

    We performed a series of experiments using the Air Force Optical Station`s 1.6 m telescope and a bare CCD detector to capture speckle images of various satellites. The speckle images were processed with bispectral techniques for recovering image Fourier phase as well as projection onto convex sets for recovering image Fourier magnitude from the projected autocorrelation. Results of imaging point stars and binaries are shown as a baseline assessment of our technique. We have reconstructed high quality images of numerous satellites and will show reconstructions of a very familiar satellite: the Hubble Space Telescope. To our knowledge, this is the first demonstration of the use of bare CCDs for speckle imaging of relatively bright objects such as artificial satellites. 8 refs.

  2. Speckle imaging of satellites

    SciTech Connect

    Fitch, J.P.; Lawrence, T.W.; Goodman, D.M.; Johansson, E.M.

    1991-12-01

    We performed a series of experiments using the Air Force Optical Station's 1.6 m telescope and a bare CCD detector to capture speckle images of various satellites. The speckle images were processed with bispectral techniques for recovering image Fourier phase as well as projection onto convex sets for recovering image Fourier magnitude from the projected autocorrelation. Results of imaging point stars and binaries are shown as a baseline assessment of our technique. We have reconstructed high quality images of numerous satellites and will show reconstructions of a very familiar satellite: the Hubble Space Telescope. To our knowledge, this is the first demonstration of the use of bare CCDs for speckle imaging of relatively bright objects such as artificial satellites. 8 refs.

  3. Trends In Satellite Communication

    NASA Technical Reports Server (NTRS)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.

    1988-01-01

    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  4. Epos TCS Satellite Data

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Mandea, Mioara; Fernández-Turiel, José Luis; Stramondo, Salvatore; Wright, Tim; Walter, Thomas; Bally, Philippe; Casu, Francesco; Zeni, Giovanni; Buonanno, Sabatino; Zinno, Ivana; Tizzani, Pietro; Castaldo, Raffaele; Ostanciaux, Emilie; Diament, Michel; Hooper, Andy; Maccaferri, Francesco; Lanari, Riccardo

    2016-04-01

    TCS Satellite Data is devoted to provide Earth Observation (EO) services, transversal with respect to the large EPOS community, suitable to be used in several application scenarios. In particular, the main goal is to contribute with mature services that have already well demonstrated their effectiveness and relevance in investigating the physical processes controlling earthquakes, volcanic eruptions and unrest episodes as well as those driving tectonics and Earth surface dynamics. The TCS Satellite Data will provide two kinds of services: satellite products/services, and Value-added satellite products/services. The satellite products/services are composed of three (EPOSAR, GDM and COMET) well-identified and partly already operational elements for delivering Level 1 products. Such services will be devoted to the generation of SAR interferograms, DTM and ground displacement maps through the exploitation of different advanced EO techniques for InSAR and optical data analysis. The Value-added satellite products/services are composed of 4 elements (EPOSAR, 3D-Def, Mod and COMET) of Level 2 and 3 products. Such services integrate satellite and in situ measurements and observations to retrieve information on source mechanism, such as the geometry (spatial location, depth, volume changes) and the physical parameters of the deformation sources, through the exploitation of modelling approaches. The TCS Satellite Data will provide products in two different processing and delivery modes: 1- surveillance mode - routinely product generation; 2- on demand mode - product generation performed on demand by the user. Concerning the surveillance mode, the goal is providing continuous satellite measurements in areas of particular interest from a geophysical perspective (supersites). The objective is the detection of displacement patterns changing along time and their geophysical explanation. This is a valid approach for inter-seismic movements and volcanic unrest, post-seismic and post

  5. The Inclusion of Raman Scattering Effects in the Combined Ocean-Atmosphere Radiative Transfer Model MOMO to Estimate the Influence of Raman Scattering in Case 1 Waters on Satellite Ocean Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    von Bismarck, J.; Fischer, J.

    2011-12-01

    Raman scattering of the solar lightfield, due to energy absorption by vibrational modes of water molecules, may contribute significantly to the signals observed by remote sensing satellites over water. The inelastic fraction of the water-leaving radiance for clear water reaches values of 30% in the red part of the visible spectrum, and still reaches values of several percent in moderately turbid waters. Furthermore, inelastic scattering due to chlorophyll and yellow substance fluorescence adds to this fraction. For these reasons the inclusion of inelastic scattering sources into radiative-transfer models, used in ocean remote sensing applications or atmosphere remote sensing over the ocean, can be important. MOMO is a computer code based on the matrix-operator method designed to calculate the lightfield in the stratified atmosphere-ocean system. It has been developed at the Institute for Space Sciences of the Freie Universität Berlin and provides the full polarization state (in the newest version) and an air-sea interface accounting for radiative effects of the wind roughened water surface. The inclusion of Raman scattering effects is done by a processing module, that starts a primary MOMO program run with a high spectral resolution, to calculate the radiative energy available for inelastic scattering at each model layer boundary. The processing module then calculates the first order Raman source-terms for every observation wavelength at every layer boundary, accounting for the non-isotropicity (including the azimuthal dependence) of the Raman phase-function, the spectral redistribution, and the spectral dependence of the Raman scattering coefficient. These elementary source-terms then serve as input for the second program run, which then calculates the source-terms of all model layers, using the doubling-adding method, and the resulting radiance field. Higher orders of the Raman contribution can be computed with additional program runs. Apart from the Raman

  6. Satellite Applications for Public Service: Project Summaries.

    ERIC Educational Resources Information Center

    Lauffer, Sandra; And Others

    Summaries of 18 different projects involving the use of satellite communications are presented in this report, including PEACESAT Education and Communication Experiments, USP Network Satellite Communication Project, Project Satellite, Satellite Instructional Television Experiment (SITE), Appalachian Education Satellite Program, Alaska Education…

  7. Direct Broadcasting Satellites in Japan.

    ERIC Educational Resources Information Center

    Maeda, Jiro

    The development and use of broadcasting satellites in Japan are discussed in this paper. The paper describes the medium-scale experimental broadcasting satellite, YURI, launched by NASA in 1978, and reports that experiments with YURI in the areas of basic technologies in the broadcasting satellite system, experiments on satellite control…

  8. Satellite Technologies in the Classroom.

    ERIC Educational Resources Information Center

    Portz, Stephen M.

    1999-01-01

    Focuses on ways of using satellite imagery obtained from the Internet, to enhance classroom learning. Discusses satellite deployment; classroom applications, including infrared imagery, high-resolution photography, and global positioning satellites; and use of satellite data for hands-on activities, including cartography, city and community…

  9. Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report

    NASA Technical Reports Server (NTRS)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.

  10. Satellite Communications for ATM

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  11. Information transfer satellite concept study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Bergin, P.; Kincade, C.; Kurpiewski, D.; Leinhaupel, F.; Millican, F.; Onstad, R.

    1971-01-01

    A wide range of information transfer demands were identified and analyzed. They were then combined into an appropriate set of requirements for satellite communication services. In this process the demands were ranked and combined into single and multipurpose satellite systems. A detailed analysis was performed on each satellite system to determine: total system cost, including both ground and space segments; sensitivities of the systems to various system tradeoffs; and forcing functions which control the system variations. A listing of candidate missions for detailed study is presented, along with a description of the conceptual system design and an identification of the technology developments required to bring these systems to fruition.

  12. High resolution analysis of satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1989-01-01

    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest.

  13. High performance satellite networks

    NASA Astrophysics Data System (ADS)

    Helm, Neil R.; Edelson, Burton I.

    1997-06-01

    The high performance satellite communications networks of the future will have to be interoperable with terrestrial fiber cables. These satellite networks will evolve from narrowband analogue formats to broadband digital transmission schemes, with protocols, algorithms and transmission architectures that will segment the data into uniform cells and frames, and then transmit these data via larger and more efficient synchronous optional (SONET) and asynchronous transfer mode (ATM) networks that are being developed for the information "superhighway". These high performance satellite communications and information networks are required for modern applications, such as electronic commerce, digital libraries, medical imaging, distance learning, and the distribution of science data. In order for satellites to participate in these information superhighway networks, it is essential that they demonstrate their ability to: (1) operate seamlessly with heterogeneous architectures and applications, (2) carry data at SONET rates with the same quality of service as optical fibers, (3) qualify transmission delay as a parameter not a problem, and (4) show that satellites have several performance and economic advantages over fiber cable networks.

  14. Satellite altimeter calibration techniques

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.; Martin, C. F.

    1990-01-01

    This paper examines calibration techniques which can most effectively satisfy the requirements of future satellites carrying high-accuracy radar altimeters, such as the ESA ERS-1 and the NASA/CNES Topex/Poseidon satellites scheduled for launch during the next five years. The calibration accuracies and the advantages and disadvantages of the four currently proposed calibration techniques for over-water calibration are discussed: (1) a tide gauge on a tower at-sea and a nearby laser, (2) a laser and a tide gauge on an island with an offshore satellite pass and a geoid tie between the satellite ground track and the laser, (3) a tide gauge on a tower at-sea with satellite positioning from multiple lasers and a GPS, and (4) a laser and a tide gauge on a tower at-sea. Error budgets for these techniques, developed on the basis of state-of-the-art tracking systems, were found to have one sigma height uncertainties in the 2.8 to 4.9 cm range.

  15. Satellite altimeter calibration techniques

    NASA Astrophysics Data System (ADS)

    Kolenkiewicz, R.; Martin, C. F.

    This paper examines calibration techniques which can most effectively satisfy the requirements of future satellites carrying high-accuracy radar altimeters, such as the ESA ERS-1 and the NASA/CNES Topex/Poseidon satellites scheduled for launch during the next five years. The calibration accuracies and the advantages and disadvantages of the four currently proposed calibration techniques for over-water calibration are discussed: (1) a tide gauge on a tower at-sea and a nearby laser, (2) a laser and a tide gauge on an island with an offshore satellite pass and a geoid tie between the satellite ground track and the laser, (3) a tide gauge on a tower at-sea with satellite positioning from multiple lasers and a GPS, and (4) a laser and a tide gauge on a tower at-sea. Error budgets for these techniques, developed on the basis of state-of-the-art tracking systems, were found to have one sigma height uncertainties in the 2.8 to 4.9 cm range.

  16. International communications via satellite

    NASA Astrophysics Data System (ADS)

    McLucas, J. L.

    The evolution of communications satellite systems is traced in terms of technical capabilities and technological advances. The Communications Act of 1962 led to the establishment of INTELSAT on an international basis in 1964. The original 19 signatory nations has grown to over 100, and over 800 ground relay stations have been built. The INTELSAT system comprises spacecraft over the Atlantic, Pacific, and Indian Oceans and handles 2/3 of the world's international electronic communications and all transoceanic television. The 1965 Early Bird satellite had a 240 two-way telephone link capacity and weighed 38 kg, while the Intelsat V satellites, of which there will be nine, have increased the capacity to 20,000 voice circuits and Intelsat VI will double the number by 1993. Increasing demand for satellite communications links is driving the design and development of space platforms for multiple missions of communications, meteorological studies, and on-board switching and data processing in excess of current multiple satellite systems.

  17. Rotation histories of the natural satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1977-01-01

    Recent advances in the theory of rotation are combined with traditional approaches to study the rotational evolution of the 33 known natural satellites. A calculation similar to that reported by Burns and Safronov (1973) is applied to each satellite to obtain the characteristic time of decay of any wobble motion to smooth rotation about the principal axis of maximum moment of inertia. Stability criteria and capture probabilities are calculated for the 3/2 spin resonance. Results show that only the regular satellites and Iapetus, Hyperion, Triton, and the moon are tidally evolved. Of these, 13 have confirmed synchronous rotation periods; capture probabilities into the 3/2 resonance indicate that none of the remaining 10 should be captured in nonsynchronous, commensurate spin states. For the most part, the irregular satellites retain their original spins except for a relaxation to principal axis rotation. Tidal evolution of the obliquities of the satellites is evaluated in the framework of the generalization of Cassini's laws for the moon. Nearly resonant, forced librations in longitude of 4.8 and 0.5 deg are calculated on the basis of the observed shapes of Phobos and Deimos, respectively.

  18. LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION

    SciTech Connect

    Nierenberg, A. M.; Auger, M. W.; Treu, T.; Marshall, P. J.; Fassnacht, C. D.

    2011-04-10

    We study the spatial distribution of faint satellites of intermediate redshift (0.1 < z < 0.8), early-type galaxies, selected from the GOODS fields. We combine high-resolution Hubble Space Telescope images and state-of-the-art host subtraction techniques to detect satellites of unprecedented faintness and proximity to intermediate redshift host galaxies (up to 5.5 mag fainter and as close as 0.''5/2.5 kpc to the host centers). We model the spatial distribution of objects near the hosts as a combination of an isotropic, homogeneous background/foreground population and a satellite population with a power-law radial profile and an elliptical angular distribution. We detect a significant population of satellites (N{sub s} = 1.7{sup +0.9}{sub -0.8}) that is comparable to the number of Milky Way satellites with similar host-satellite contrast. The average projected radial profile of the satellite distribution is isothermal ({gamma}{sub p} = -1.0{sup +0.3}{sub -0.4}), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining {phi} to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of {phi} = 0 and |{phi}| less than 42{sup 0} at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.

  19. Satellite failures revisited

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  20. Artificial gravity experiment satellites

    NASA Astrophysics Data System (ADS)

    Harada, Tadashi

    1992-07-01

    An overview of the conceptual study of an artificial gravity experiment satellite based on the assumption of a launch by the H-2 launch vehicle with a target launch date in the Year 2000 is presented. While many satellites provided with artificial gravity have been reported in relation to a manned Mars exploration spacecraft mission, the review has been conducted on missions and test subjects only for experimental purposes. Mission requirements were determined based on the results of reviews on the mission, test subjects, and model missions. The system baseline and development plan were based on the results of a study on conceptual structure and scale of the system, including measures to generate artificial gravity. Approximate scale of the system and arm length, mission orbit, visibility of the operation orbit from ground stations in Japan, and satellite attitude on the mission orbit are outlined.

  1. The Clementine satellite

    SciTech Connect

    Not Available

    1994-06-01

    The first US satellite to the Moon in more than two decades was launched from Vandenberg Air Force Base (Santa Barbara County), California, on January 25, 1994. The satellite was named Clementine because it carried only enough fuel to complete its mission before it was [open quotes]lost and gone forever.[close quotes] The Clementine satellite tested 23 advanced technologies during its mission for the Ballistic Missile Defense Organization. In fulfilling its scientific goals, Clementine provided a wealth of information relevant to the mineralogy of the lunar surface. Using six on-board cameras designed and built at the Laboratory, Clementine mapped the entire surface of the Moon at resolutions never before attained. Clementine also provided range data that will be used to construct a relief map of the lunar surface.

  2. Brazilian Small Satellites

    NASA Astrophysics Data System (ADS)

    Carvalho, Himilcon

    Brazilian experience with micro scientific satellites began in 1995 with the SACI project that comprised 2 scientific satellites that carried onboard experiments from Brazil, Japan and US. The first one failed after launch (1998) and the second was lost during the second launch attempt of the Brazilian national launcher, VLS, in1999. Started by 1997, the French-Brazilian Microsatellite Project comprised a set of 9 experiments from French and Brazilian scientists. The project was terminated by the French side in 2002. Currently, there are two ongoing science projects, MIRAX (devoted to X-Ray astronomy) and EQUARS (to study the higher atmosphere). These projects include experiments from US, Netherlands, Japan, Canada, and Brazil, with launch scheduled to 2011 or 2012. This paper presents a brief summary of the history of the development of these satellites along with some highlights on the Brazilian Space Program.

  3. AVS on satellite

    NASA Astrophysics Data System (ADS)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  4. ESA's satellite communications programme

    NASA Astrophysics Data System (ADS)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  5. Uranus satellites - Surface properties

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Brown, R. H.; Bell, Jeffrey F.

    1991-01-01

    The post-Voyager knowledge of the photometric, colorimetric, spectral, and thermal properties of the Uranian satellites is reviewed, focusing on such fundamental physical properties as albedo, color, and surface texture. While albedo variations of at least a factor of 2 exist, color differences are almost absent (Miranda) or subdued (Oberon). In the case of Titania, the strong opposition effect reported by ground-based observers was confirmed by Voyager. Voyager did not observe the opposition parts of the phase curves of the other satellites. Voyager thermal observations of Ariel and Miranda suggest that both have highly porous regoliths, thermophysically similar to those of Jupiter's icy satellites. At the time of the flyby (south pole facing the sun), maximum surface temperatures reached or exceeded 85 K, but nighttime polar temperatures are predicted to drop to 20 to 30 K because each pole spends about 40 yr in darkness. Ground-based spectroscopy identified water ice as an important surface constituent.

  6. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues.

  7. Satellites For Sale

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'For Sale' sign refering to the two satellites, Palapa B-2 and Westar 6 that they retrieved from orbit after their Payload Assist Modules (PAM) failed to fire. Astronaut Joseph P. Allen IV, who also participated in the two EVAs, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar 6 nearer Discovery's aft.

  8. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  9. Geodynamics from satellites

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.

    1979-01-01

    The NASA Geodynamics Program is developing a variety of techniques in support of national programs in geodynamics, geomagnetics and earthquake hazard reduction. Global tectonics are to be observed by satellite laser tracking and radio interferometry, which will be used to measure the movements of extended (greater than 200 km) regions to an accuracy of 3 cm, while for shorter distances, lasers enable a more rapid measuring of regional strain accumulation patterns than ground systems. The techniques of Doppler tracking between two satellites to measure the gravity field over the ocean is also under NASA study

  10. Satellite communications system 'Tyulpan'

    NASA Astrophysics Data System (ADS)

    Tchuyan, R. K.; Tarasov, E. V.; Belousov, A. P.; Balyk, V. M.; Kovtunenko, V. M.; Morozov, V. A.; Andreev, V. A.; v'yunenko, K. A.

    1993-10-01

    A concept of the satellite communication system called 'Tyulpan' (because or its tulip-resembling shape) is considered. This conception envisages the use of six satellites-retranslators installed on high-latitude elliptic orbits. Such a system can provide the communication for mean- and high-latitude region of Europe, Asia, and America. For the communication, super small ground stations of 0.4 m in diameter can be used. In the development of system conception, the already existing technical solutions and possibility of conversion or existing installations of military destination were taken into account. Therefore, the system considered can be realized at the earliest possible date.

  11. Declassified intelligence satellite photographs

    USGS Publications Warehouse

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  12. Satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Osorio, J. P.

    1992-03-01

    Laser ranging to satellites is one of the most precise methods for positio ning on the surface of the Earth. Reference is made to the need for precise posi tioning and to the improvement brought by the use of space techniques. Satellite Laser Ranging system is then described and in view of the high precision of the results derived from its measurements comments are made to some of the more important applications: high precision networks tectonic plate motion polar motion and earth''s rotation. Finally plans for system improvement in the near future are also presented.

  13. Resolving Seamounts in Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H.

    2006-12-01

    We have examined three factors influencing the use of satellite altimeter data to map seamounts and guyots in the deep ocean: (1) the resolution of seamount and guyot gravity anomalies by altimetry; (2) the non-linearity of the relationship between gravity and bathymetry; and (3) the homogeneity of the mass density within the seamount or guyot. When altimeter data are used to model the marine gravity anomaly field the result may have limited resolution due to noise levels in the altimeter data, track spacing of the satellite profiles, inclination angles of the orbits, and filters used to combine and interpolate the data (Sandwell and Smith, JGR, 1997). We compared the peak-to-trough amplitude of gravity anomalies in Sandwell and Smith`'s version 15.1 field to peak-to-trough amplitudes measured by gravimeters on board ships. The satellite gravity field amplitudes match ship measurements well over seamounts and guyots having volumes exceeding ~2000 km3. Over smaller volume seamounts, where the anomalies have most of their power at quite short wavelengths, the satellite field under-estimates the anomaly amplitude. If less filtering could be done, or a new mission with a lower noise level were flown, more of the anomalies associated with small seamounts might be resolved. Smith and Sandwell (Science, 1997) predicted seafloor topography from altimetric gravity assuming that the density of seafloor topography is nearly constant over ~100 km distances, and that the relationship between gravity and topography may be approximated by a liner filter over those distances. In fact, the true theoretical relationship is non-linear (Parker, Geophys. J. R. astr. Soc, 1972); it can be expressed as an N-th order expansion, with the N=1 term representing a linear filter and the N>1 terms accounting for higher-order corrections. We find that N=2 is a sufficient approximation at both seamounts and guyots. Constant density models of large volume guyots do not fit the observed gravity

  14. The American Satellite Company (ASC) satellite deployed from payload bay

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  15. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    NASA Astrophysics Data System (ADS)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  16. Potential applications of satellite navigation

    NASA Astrophysics Data System (ADS)

    Schaenzer, G.

    The applicability of Navstar GPS to civil air navigation is discussed. The accuracy of current air-navigation systems is reviewed; the basic principle and accuracy of GPS navigation are characterized; the relatively low cost of GPS receiving equipment is pointed out; and particular attention is given to hybrid systems combining GPS with inertial navigation. It is predicted that CAT III landings will be possible using such hybrid systems when the GPS satellites are fully deployed, even without access to the military GPS code. Techniques for GPS-based precision landings, reduced-noise landings, landings on parallel runways, control of taxiing maneuvers, and aircraft-based geodetic measurements are briefly described and illustrated with diagrams.

  17. Technology for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Gouker, M. A.; Campbell, D. P.; Gallagher, J. J.

    1987-01-01

    Components were examined that will be needed for high frequency rectenna devices. The majority of the effort was spent on measuring the directivity and efficiency of the half-wave dipole antenna. It is felt that the antenna and diode should be roughly optimized before they are combined into a rectenna structure. An integrated low pass filter had to be added to the antenna structure in order to facilitate the field pattern measurements. A calculation was also made of the power density of the Earth's radiant energy as seen by satellites in Earth orbit. Finally, the feasibility of using a Metal-Oxide-Metal (MOM) diode for rectification of the received power was assessed.

  18. One-Dimensional Hybrid Satellite Track Model for the Dynamics Explorer 2 (DE 2) Satellite

    NASA Technical Reports Server (NTRS)

    Deng, Wei; Killeen, T. L.; Burns, A. G.; Johnson, R. M.; Emery, B. A.; Roble, R. G.; Winningham, J. D.; Gary, J. B.

    1995-01-01

    A one-dimensional hybrid satellite track model has been developed to calculate the high-latitude thermospheric/ionospheric structure below the satellite altitude using Dynamics Explorer 2 (DE 2) satellite measurements and theory. This model is based on Emery et al. satellite track code but also includes elements of Roble et al. global mean thermosphere/ionosphere model. A number of parameterizations and data handling techniques are used to input satellite data from several DE 2 instruments into this model. Profiles of neutral atmospheric densities are determined from the MSIS-90 model and measured neutral temperatures. Measured electron precipitation spectra are used in an auroral model to calculate particle impact ionization rates below the satellite. These rates are combined with a solar ionization rate profile and used to solve the O(+) diffusion equation, with the measured electron density as an upper boundary condition. The calculated O(+) density distribution, as well as the ionization profiles, are then used in a photochemical equilibrium model to calculate the electron and molecular ion densities. The electron temperature is also calculated by solving the electron energy equation with an upper boundary condition determined by the DE 2 measurement. The model enables calculations of altitude profiles of conductivity and Joule beating rate along and below the satellite track. In a first application of the new model, a study is made of thermospheric and ionospheric structure below the DE 2 satellite for a single orbit which occurred on October 25, 1981. The field-aligned Poynting flux, which is independently obtained for this orbit, is compared with the model predictions of the height-integrated energy conversion rate. Good quantitative agreement between these two estimates has been reached. In addition, measurements taken at the incoherent scatter radar site at Chatanika (65.1 deg N, 147.4 deg W) during a DE 2 overflight are compared with the model

  19. A Survey of Geosynchronous Satellite Glints

    NASA Astrophysics Data System (ADS)

    Vrba, F.; Hutter, D.; Shankland, P.; Armstrong, J.; Schmitt, H.; Hindsley, R.; Divittorio, M.; Benson, J.

    Artificial satellites have characteristic diffuse reflected-light signatures as they are illuminated at varying phase angles by the Sun and are viewed at differing orientations by an observer. At times of favorable alignment between the satellite, observer and Sun, specular reflection off of relatively flat surfaces, such as solar panels, can cause brief increases in reflected light of several hundred times that of the nominal diffuse signature. Such events are commonly referred to as "glints". In the case of geosynchronous satellites, favorable glint alignments are due to changes in the Sun-Vehicle-Observer angle which are primarily due to the apparent motion of the Sun as the observer-satellite vector remains nearly stationary. These occur near in time to the vernal and autumnal equinoxes. While the most favorable geosynchronous satellite glint alignments are precluded by the fact that the satellites are at that time most likely to be in Earth shadow, observations of several glints have been reported in the literature. While such studies note the peak brightnesses, durations, and phase angles of individual glints, to our knowledge, no extended study of geosynchronous glint characteristics exists. Beginning with the autumnal equinox glint season of 2007 we have built on our earlier studies using the U.S. Naval Observatory, Flagstaff Station 40-inch Ritchey telescope to provide near-real-time astrometric and photometric information for use by the Navy Prototype Optical Interferometer (NPOI) team in its efforts to obtain interferometric fringes of geosynchronous satellites during a glint episode. The combined observations culminated in successful fringe measurements of DirecTV-9S during the vernal equinox 2008 and 2009 seasons (see Armstrong, et al. 2009, this conference). For our 40-inch telescope observations we used an LN2-cooled 2048x2048 CCD with standard R-band and H-alpha photometric filters, covering an area of the sky of approximately 22x22 arcmin with each

  20. Experimental Satellite Quantum Communications.

    PubMed

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers. PMID:26252672

  1. Solar wind monitor satellite

    SciTech Connect

    Kappenman, J.G. ); Albertson, V.D. ); Damsk, B.L. ); Dale, S.J. )

    1990-05-01

    This authors discuss the effects of geomagnetic disturbances on power systems. They also discuss the effects of geomagnetic storms on spacecraft electronics, pipelines, and geophysical surveys for oil and minerals. The current satellite system technology used in geomagnetic disturbance forecasts is described and assessed.

  2. Small satellite radiometric measurements

    SciTech Connect

    Weber, P.G.

    1991-01-01

    A critical need for the Mission to Planet Earth is to provide continuous, well-calibrated radiometric data for the radiation budget. This paper describes a new, compact, flexible radiometer which will provide both spectrally integrated data and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted vehicles (RPVs). 12 refs., 2 figs.

  3. Building Satellites is Easier

    NASA Technical Reports Server (NTRS)

    Marsh, Phyllis Nimmo

    1996-01-01

    'Building Satellites' is a story about Jim Marsh's recovery from a severe head injury told by his wife Phyllis from the moment she learned of its happening, through the ups and downs of a lengthy rehabilitation, until his return to work and daily living. It continues on, however, and narrates his battle with the more insidious Grave's disease. Told in the first person, 'Building Satellites' vividly portrays Phyllis's thoughts and feelings throughout this experience with scrupulous honestly. This is a story worth reading for many reasons. First of all, Jim was an accomplished scientist, respected by his colleagues both in this country and abroad. Secondly, it narrates the many stages of his recovery from head injury with detailed readable accuracy; it informs us as well as inspires. Finally, 'Building Satellites" also tells us the story of Phyllis Marsh's remarkable creative response to this crisis. It narrates her personal experiences as she progresses through the strange and somewhat bizarre world of medicine and rehabilitation, guided by a few basic beliefs, which she learned as a child in Iowa, that provided her with the strength to endure. 'Building Satellites' seems to reaffirm our unconscious, but settled conviction, that when confornted overnight with adversity, we are somehow given the means for coping, supported by our basic beliefs, strengthened by family and friends, and eventually learning to accept any outcome.

  4. Creating Better Satellite Conferences.

    ERIC Educational Resources Information Center

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  5. Domestic Communications Satellites.

    ERIC Educational Resources Information Center

    Network Project Notebook, 1972

    1972-01-01

    The June, 1972 Federal Communications Commission's (FCC) decision allowed an "open skies" policy in regard to domestic communication satellites and raised Liberal opposition to a situation where exclusive and unchecked communications power is now in the hands of private entrepreneurs, primarily the big Defense Department oriented aerospace…

  6. Satellite Town Meeting.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    On the third Tuesday of each month, U.S. Secretary of Education, Richard W. Riley, and Deputy Secretary, Madeleine M. Kunin, host the Satellite Town Meeting--a live, interactive teleconference where renowned national experts, local educators, and community leaders share ideas on how to improve schools and reach the National Educational Goals. It…

  7. Data distribution satellite

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Jorasch, Ronald E.; Wiskerchen, Michael J.

    1991-01-01

    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs.

  8. Satellite camera image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Savides, John (Inventor); Hanson, Charles W. (Inventor)

    1987-01-01

    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).

  9. Satellite Weather Watch.

    ERIC Educational Resources Information Center

    Summers, R. Joe

    1982-01-01

    Describes an inexpensive (about $1,500) direct-readout ground station for use in secondary school science/mathematics programs. Includes suggested activities including, among others, developing map overlays, operating station equipment, interpreting satellite data, developing weather forecasts, and using microcomputers for data storage, orbit…

  10. Perception via satellite

    USGS Publications Warehouse

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  11. On satellite constellation selection

    SciTech Connect

    Canavan, G.H.

    1991-05-01

    Analytical estimates can be used to produce and discuss optimal constellations. They are in close agreement with phase-space estimates and exact solutions. They suggest that distributions of inclined orbits could reduce satellite numbers by factors of 2--3 while improving uniformity. 4 refs., 2 figs.

  12. Retroreflector spherical satellite

    NASA Astrophysics Data System (ADS)

    Akentyev, A. S.; Vasiliev, V. P.; Sadovnikov, M. A.; Sokolov, A. L.; Shargorodskiy, V. D.

    2015-10-01

    Specific features of spherical retroreflector arrays for high-precision laser ranging are considered, and errors in distance measurements are analyzed. A version of a glass retroreflector satellite with a submillimeter "target error" is proposed. Its corner cube reflectors are located in depressions to reduce the working angular aperture, and their faces have a dielectric interference coating.

  13. Mobile satellite ranging

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A brief review of the constraints which have limited satellite ranging hardware and an outline of the steps which are underway to improve the status of the equipment in this area are given. In addition, some suggestions are presented for the utilization of newer instruments and for possible future research and development work in this area.

  14. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  15. Experimental Satellite Quantum Communications.

    PubMed

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  16. Small satellite space operations

    NASA Technical Reports Server (NTRS)

    Reiss, Keith

    1994-01-01

    CTA Space Systems has played a premier role in the development of the 'lightsat' programs of the 80's and 90's. The high costs and development times associated with conventional LEO satellite design, fabrication, launch, and operations continue to motivate the development of new methodologies, techniques, and generally low cost and less stringently regulated satellites. These spacecraft employ low power 'lightsat' communications (versus TDRSS for NASA's LEO's) and typically fly missions with payload/experiment suites that can succeed, for example, without heavily redundant backup systems and large infrastructures of personnel and ground support systems. Such small yet adaptable satellites are also typified by their very short contract-to-launch times (often one to two years). This paper reflects several of the methodologies and perspectives of our successful involvement in these innovative programs and suggests how they might relieve NASA's mounting pressures to reduce the cost of both the spacecraft and their companion mission operations. It focuses on the use of adaptable, sufficiently powerful yet inexpensive PC-based ground systems for wide ranging user terminal (UT) applications and master control facilities for mission operations. These systems proved themselves in successfully controlling more than two dozen USAF, USN, and ARPA satellites at CTA/SS. UT versions have linked with both GEO and LEO satellites and functioned autonomously in relay roles often in remote parts of the world. LEO applications particularly illustrate the efficacy of these concepts since a user can easily mount a lightweight antenna, usually an omni or helix with light duty rotors and PC-based drivers. A few feet of coax connected to a small transceiver module (the size of a small PC) and a serial line to an associated PC establishes a communications link and together with the PC constitute a viable ground station. Applications included geomagnetic mapping; spaceborne solid state

  17. Cibola flight experiment satellite

    NASA Astrophysics Data System (ADS)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  18. Assessment of Satellite Radiometry in the Visible Domain

    NASA Technical Reports Server (NTRS)

    Melin, Frederick; Franz, Bryan A.

    2014-01-01

    Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate Variables by the Global Climate Observing System. To contribute to climate research, the satellite ocean color data records resulting from successive missions need to be consistent and well characterized in terms of uncertainties. This chapter reviews various approaches that can be used for the assessment of satellite ocean color data. Good practices for validating satellite products with in situ data and the current status of validation results are illustrated. Model-based approaches and inter-comparison techniques can also contribute to characterize some components of the uncertainty budget, while time series analysis can detect issues with the instrument radiometric characterization and calibration. Satellite data from different missions should also provide a consistent picture in scales of variability, including seasonal and interannual signals. Eventually, the various assessment approaches should be combined to create a fully characterized climate data record from satellite ocean color.

  19. A description and evaluation of FAO satellite rainfall estimation algorithm

    NASA Astrophysics Data System (ADS)

    Dinku, Tufa; Alessandrini, Stefano; Evangelisti, Mauro; Rojas, Oscar

    2015-09-01

    There are ongoing efforts to improve the accuracy of satellite rainfall estimates. One of these efforts comes from the Food and Agriculture Organization (FAO) of the United Nations. The FAO effort involves combining satellite rainfall estimates and meteorological model outputs with station measurements. The algorithm of the FAO satellite rainfall estimates (FAO-RFE) is presented and evaluated by comparing with raingauge data and other satellite rainfall products over eastern and western parts of Africa. The evaluations were done at daily and ten-daily time scales. The FAO-RFE has shown significant improvement over the individual inputs. However, comparison of FAO-RFE with other satellite rainfall products has shown a slight improvement only over areas with good station input. The main weakness of the FAO-RFE is that it overestimates rainfall occurrences, which is attributed to the forecast product used in the algorithm.

  20. Mesoscale temperature and moisture fields from satellite infrared soundings

    NASA Technical Reports Server (NTRS)

    Hillger, D. W.; Vonderhaar, T. H.

    1976-01-01

    The combined use of radiosonde and satellite infrared soundings can provide mesoscale temperature and moisture fields at the time of satellite coverage. Radiance data from the vertical temperature profile radiometer on NOAA polar-orbiting satellites can be used along with a radiosonde sounding as an initial guess in an iterative retrieval algorithm. The mesoscale temperature and moisture fields at local 9 - 10 a.m., which are produced by retrieving temperature profiles at each scan spot for the BTPR (every 70 km), can be used for analysis or as a forecasting tool for subsequent weather events during the day. The advantage of better horizontal resolution of satellite soundings can be coupled with the radiosonde temperature and moisture profile both as a best initial guess profile and as a means of eliminating problems due to the limited vertical resolution of satellite soundings.

  1. Data Collection Satellite Application in Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Durào, O.

    2002-01-01

    's over Brazilian territory. There were 25 platforms when SCD-1 was launched. However this number is growing rapidly to 400 platforms, at first for measurements of water reservoir levels as well as other hydrology applications (The Brazilian Electricity Regulatory Agency - ANEEL is the customer), and for many other different applications such as meteorology, oceanography, environmental monitoring sciences, and people and animal tracking. The clear feeling is that users are discovering a satellite system whose benefits were not previously well understood when launched and being able to propose and come up with different and useful applications. A new field in the country that has a great potential to benefit from this system is agriculture. Per se, this is a very important sector of the Brazilian economy and its international trade. Combining it with space technology may justify the investment of new and low cost dedicated satellites. This paper describes a new proposal for use of the SCD-1,2,CBERS-1 satellite system for precision agriculture. New PCD's would be developed for measurements of chemical content of the soil, such as, for example, Nitrogen and others, beyond humidity and solar incidence. This can lead to a more efficient fertilization, harvesting and even the spray of chemical defensives, with the consequence of environment protection. The PCD's ground network so established, along with the information network already available, combined with the space segment of such a system may, as previously said, be able to justify the investment in low cost satellites with this sole purpose.

  2. Aqua satellite orbiting the Earth

    NASA Video Gallery

    This animation shows the Aqua satellite orbiting the Earth on August 27, 2005 by revealing MODIS true-color imagery for that day. This animation is on a cartesian map projection, so the satellite w...

  3. COMBINES AND COMBINING.

    ERIC Educational Resources Information Center

    RIDENOUR, HARLAN E.

    THROUGH THE USE OF THIS MANUAL, VOCATIONAL AGRICULTURE STUDENTS WITH OCCUPATIONAL INTEREST IN GRAIN FARMING AND CUSTOM COMBINE OPERATION MAY GAIN KNOWLEDGE ABOUT THE BASIC DESIGN AND OPERATION OF COMBINES. DEVELOPMENT BY A STATE CURRICULUM MATERIALS DIRECTOR INCLUDED CONSULTATION WITH ENGINEERS, TRIAL, AND REVISION. OBJECTIVES ARE STATED IN TERMS…

  4. Towards navigation based on 120 satellites: Analyzing the new signals

    NASA Astrophysics Data System (ADS)

    Gao, Grace Xingxin

    Global Navigation Satellite Systems (GNSS) are experiencing a new era. The US Global Positioning System (GPS) now serves over 300 million users in a bewildering breadth of applications. The Russian GLONASS is enjoying a startling renaissance based on the recovery of the Russian economy. In addition, the European Union is developing the Galileo system that promises to place 30 more satellites in medium Earth orbit. If that is not enough, China has started their Compass system project that promises a rich combination of satellites in medium and geostationary earth orbit. All of these satellites will broadcast at least three civil signals in a multiplicity of frequency bands. If all of these new satellites are launched, we will have 120 satellites and over 300 signals in space for global navigation by 2020. So far, two test satellites of the European Galileo and one satellite from the Chinese Compass have been launched. The new satellites and new signals create a great opportunity for GNSS receivers to gain more redundancy and accuracy. On the other hand, the new GNSS signals could interfere with each other since their frequency bands overlap. Moreover, when the satellites were put into orbit, the signal specifications were not available to the public. This mystery made it impossible for GNSS receivers to acquire and track the new satellites. It was also impossible to analyze the interference among GNSS satellites. Thus, there was an urgent and great need for discovering the unknown signal characteristics. The contribution of this work is to design algorithms for deciphering all the new test satellite signals from the Galileo and Compass satellite programs. We reveal the spread spectrum codes for all the signals on the prototype satellites listed above. In addition, we derive the underlying code generators based on a modification of the Berlekamp-Massey algorithm for solving systems of equations over finite fields. Several receiver companies, such as Trimble

  5. Meteorological measurements from satellite platforms

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1972-01-01

    Quantitative exploitation of meteorological data from geosynchronous satellites is starting to move from the laboratory to operational practice. Investigations of the data applications portion of the total meteorological satellite system include: (1) tropospheric wind shear and the related severe storm circulations; (2) kinematic properties of the tropical atmosphere as derived from cloud motion vectors; (3) application of a geostationary satellite rake system to measurements of rainfall; and (4) pointing error analysis of geosynchronous satellites.

  6. Detection of extreme climate events in semi-arid biomes using a combination of near-field and satellite based remote sensing across the New Mexico Elevation Gradient network of flux towers

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Maurer, G.

    2015-12-01

    Semi-arid biomes in the Southwestern U.S. over the past decade have experienced high inter- and intra-annual variability in precipitation and vapor-pressure deficit (VPD), and from recent observations, are particularly vulnerable to both VPD and drought. Given the large land area occupied by semi-arid biomes in the U.S., the ability to quantify how climate extremes alter ecosystem function, in addition to being able to use satellites to remotely detect when these climate extremes occur, is crucial to scale the impact of these events on regional carbon dynamics. In an effort to understand how well commonly employed remote sensing platforms capture the impact of extreme events on semi-arid biomes, we coupled a 9-year record of eddy-covariance measurements made across an elevation/aridity gradient in NM with remote sensing data sets from tower-based phenocams, MODIS and Landsat 7 ETM+. We compared anomalies in air temperature, vapor pressure deficit, and precipitation, to the degree in variability of remote sensing vegetation indices (e.g, NDVI, EVI, 2G-Rbi, LST, etc.), and tower-derived gross primary productivity (GPP), across a range of temporal lags to quantify : 1) how sensitive vegetation indices from various platforms, LST, and carbon uptake are to climate disturbances, and the extremity of the disturbance; 2) how well correlated vegetation indices and tower fluxes are on monthly, seasonal and annual time scales, and if the degree to which they are correlated is related to the extent of climate anomalies during that period; and 3) the lags in the response of both GPP and vegetation indices to climate-anomalies and how well correlated these were on various time scales. Our initial results show differential sensitivities across a range of semi-arid ecosystems to drought and vapor pressure deficit. We see the strongest sensitivity of vegetation indices, and correlations between vegetation indices and tower GPP in the low and high elevation biomes that have a more

  7. Satellites Would Transmit Power By Laser Beams

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Walker, Gilbert H.; HUMES D. H.; Kwon, J. H.

    1995-01-01

    Arrays of diode lasers concentrate power into narrow beams. Baseline design of system formulated with regard to two particular missions that differ greatly in power requirements, thus showing scalability and attributes of basic system. Satellite system features large-scale array amplifier of high efficiency, injection-locked amplifiers, coherent combination of beams, and use of advanced lithographic technology to fabricate diode lasers in array. Extremely rapid development of applicable technologies make features realizable within decade.

  8. Mobile satellite service for Canada

    NASA Technical Reports Server (NTRS)

    Sward, David

    1988-01-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  9. Telelibrary: Library Services via Satellite.

    ERIC Educational Resources Information Center

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  10. Satellite-based terrestrial production efficiency modeling

    PubMed Central

    McCallum, Ian; Wagner, Wolfgang; Schmullius, Christiane; Shvidenko, Anatoly; Obersteiner, Michael; Fritz, Steffen; Nilsson, Sten

    2009-01-01

    Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT) or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra); there is an urgent need for satellite

  11. Feasibility study for a future Austrian lightning nano-satellite

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, Konrad; Jaffer, Ghulam; Koudelka, O.; Khan, S.; Grant, C.; Unterberger, M.; Lichtenegger, Herbert; Macher, W.; Hausleitner, W.

    A feasibility study for an Austrian lightning nano-satellite is presented. The satellite will carry a radio-frequency receiver payload for the investigation of electromagnetic signatures produced by lightning strokes. A special emphasis will be on the investigation of transient electromagnetic waves in VHF range (20-40MHz) known as sferics. The onboard RF lightning triggering system will be a special capability of the nano-satellite. The lightning experiment will also observe VHF signals of ionospheric and magnetospheric origin. Adaptive filters will be developed to differentiate terrestrial electromagnetic impulsive signals from ionospheric or magnetospheric signals. One of the major problems using a nano-satellite is to integrate the lightning experiment antenna, receiver and data acquisition unit into the nano-satellite structure. Using a gravity gradient boom as a lightning antenna can increase the sensitivity and directional capability. A major part of this study is devoted to the design of a combined gravity-gradient boom and a sferics antenna. The compact structure of a nano-satellite faces special EMC issues e.g., impulsive electromagnetic events from DC converters. The low power and mass budget of a nano-satellite requires merging of the satellite housekeeping and lightning experiment units. The Lightning nano-satellite team has participated in various space missions (HUYGENS, DEMETER, PHOBOS, CLUSTER) investigating electromagnetic phenomena. The data of these missions will be used to test the hardand software of the lightning experiment before the launch. Further tests with a satellite mock-up, high frequency electronics and gravity gradient boom acting as lightning antenna will be carried out in a high voltage chamber, where artificial lightning can be generated. Additionally ground based and balloon-borne tests are planned with the satellite engineering model using terrestrial lightning.

  12. An enhanced algorithm to estimate BDS satellite's differential code biases

    NASA Astrophysics Data System (ADS)

    Shi, Chuang; Fan, Lei; Li, Min; Liu, Zhizhao; Gu, Shengfeng; Zhong, Shiming; Song, Weiwei

    2016-02-01

    This paper proposes an enhanced algorithm to estimate the differential code biases (DCB) on three frequencies of the BeiDou Navigation Satellite System (BDS) satellites. By forming ionospheric observables derived from uncombined precise point positioning and geometry-free linear combination of phase-smoothed range, satellite DCBs are determined together with ionospheric delay that is modeled at each individual station. Specifically, the DCB and ionospheric delay are estimated in a weighted least-squares estimator by considering the precision of ionospheric observables, and a misclosure constraint for different types of satellite DCBs is introduced. This algorithm was tested by GNSS data collected in November and December 2013 from 29 stations of Multi-GNSS Experiment (MGEX) and BeiDou Experimental Tracking Stations. Results show that the proposed algorithm is able to precisely estimate BDS satellite DCBs, where the mean value of day-to-day scattering is about 0.19 ns and the RMS of the difference with respect to MGEX DCB products is about 0.24 ns. In order to make comparison, an existing algorithm based on IGG: Institute of Geodesy and Geophysics, China (IGGDCB), is also used to process the same dataset. Results show that, the DCB difference between results from the enhanced algorithm and the DCB products from Center for Orbit Determination in Europe (CODE) and MGEX is reduced in average by 46 % for GPS satellites and 14 % for BDS satellites, when compared with DCB difference between the results of IGGDCB algorithm and the DCB products from CODE and MGEX. In addition, we find the day-to-day scattering of BDS IGSO satellites is obviously lower than that of GEO and MEO satellites, and a significant bias exists in daily DCB values of GEO satellites comparing with MGEX DCB product. This proposed algorithm also provides a new approach to estimate the satellite DCBs of multiple GNSS systems.

  13. Sampling errors in rainfall estimates by multiple satellites

    NASA Technical Reports Server (NTRS)

    North, Gerald R.; Shen, Samuel S. P.; Upson, Robert

    1993-01-01

    This paper examines the sampling characteristics of combining data collected by several low-orbiting satellites attempting to estimate the space-time average of rain rates. The several satellites can have different orbital and swath-width parameters. The satellite overpasses are allowed to make partial coverage snapshots of the grid box with each overpass. Such partial visits are considered in an approximate way, letting each intersection area fraction of the grid box by a particular satellite swath be a random variable with mean and variance parameters computed from exact orbit calculations. The derivation procedure is based upon the spectral minimum mean-square error formalism introduced by North and Nakamoto. By using a simple parametric form for the spacetime spectral density, simple formulas are derived for a large number of examples, including the combination of the Tropical Rainfall Measuring Mission with an operational sun-synchronous orbiter. The approximations and results are discussed and directions for future research are summarized.

  14. Using satellite data in map design and production

    USGS Publications Warehouse

    Hutchinson, John A.

    2002-01-01

    Satellite image maps have been produced by the U.S. Geological Survey (USGS) since shortly after the launch of the first Landsat satellite in 1972. Over the years, the use of image data to design and produce maps has developed from a manual and photographic process to one that incorporates geographic information systems, desktop publishing, and digital prepress techniques. At the same time, the content of most image-based maps produced by the USGS has shifted from raw image data to land cover or other information layers derived from satellite imagery, often portrayed in combination with shaded relief.

  15. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  16. Undersea volcano production versus lithospheric strength from satellite altimetry

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Sandwell, D. T.

    1986-01-01

    All seamount signatures apparent in the SEASAT altimeter profiles were located and digitized. In addition to locating the seamount signatures, their amplitudes were also estimated. The second phase consisted of determining what basic characteristics of a seamount can be extracted from a single vertical deflection profile. Seven seamounts that had both good bathymetric coverage and good satellite altimeter coverage were used to test a simple flexural model. A method was developed to combine satellite altimeter profiles from several different satellites to construct a detailed and accurate geoid.

  17. GEO Satellite Solar Array Abnormality's Analysis and Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Junyan; Yang, Yujie; Zhu, Weibo; Liu, Jingyong; Xu, Hui

    Solar array, converting sunlight into electricity, is one of the most important components in satellite energy subsystem. It is significant for in-orbit satellite safety that solar array and its subsidiaries work normally. An abnormal phenomenon that the output current of one solar array suddenly decreased happened in a GEO satellite. Combined with the structure of the solar array system and the trends of relevant parameters during the abnormality, the paper analyzed the possible reasons, and detected the root cause, and finally provided an emergency treatment for this kind of abnormality.

  18. Satellite masses in the Uranus and Neptune systems

    SciTech Connect

    Greenberg, R.

    1984-10-01

    Satellite masses are derivation with emphasis on implications for bulk densities and albedos is reviewed. In the Uranian system the inner satellites have lower densities and/or higher albedos than the outer ones. However, uncertainties are great enough that all five satellites may have nearly equal densities. In such a case the albedo would decrease with semimajor axis. A more severe constraint is placed on Miranda's mass, and hence on its density and albedo. The recent radiometric value for Triton's diameter, combined with mass determinations, yields a density greater than 4 gm/cm3.

  19. Satellite Masses in the Uranus and Neptune Systems

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1984-01-01

    Satellite masses are derivation with emphasis on implications for bulk densities and albedos is reviewed. In the Uranian system the inner satellites have lower densities and/or higher albedos than the outer ones. However, uncertainties are great enough that all five satellites may have nearly equal densities. In such a case the albedo would decrease with semimajor axis. A more severe constraint is placed on Miranda's mass, and hence on its density and albedo. The recent radiometric value for Triton's diameter, combined with mass determinations, yields a density greater than 4 gm/cu cm.

  20. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  1. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    This report covers work performed by Science Applications International Corporation (SAIC) under contract NAS8-39386 from the NASA Marshall Space Flight Center entitled LDEF Satellite Radiation Analyses. The basic objective of the study was to evaluate the accuracy of present models and computational methods for defining the ionizing radiation environment for spacecraft in Low Earth Orbit (LEO) by making comparisons with radiation measurements made on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The emphasis of the work here is on predictions and comparisons with LDEF measurements of induced radioactivity and Linear Energy Transfer (LET) measurements. These model/data comparisons have been used to evaluate the accuracy of current models for predicting the flux and directionality of trapped protons for LEO missions.

  2. Declassified Intelligence Satellite Photographs

    USGS Publications Warehouse

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  3. Satellite freeze forecast system

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.

  4. The European Communications Satellite

    NASA Astrophysics Data System (ADS)

    Stone, T. A.

    1985-09-01

    Two European Communication Satellites (ECSs) are now in operation for Eutelsat, forming the orbital portion of a communications system that will operate until 1993, carrying telephony and TV for the European Broadcasting Union. A total of five ECSs are to be constructed in order to ensure continuity of service over the systems lifetime. ECSs will also serve as the bases for the European Regional Communication System, which furnishes small receiver dish specialized services and preemptive TV distribution channels within Europe.

  5. ASPEC: Solar power satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  6. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Threfore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  7. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Therefore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  8. Scientific analysis of satellite ranging data

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  9. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  10. Perturbed Trojan satellites

    NASA Astrophysics Data System (ADS)

    Morais, M. H. M.; Murray, C. D.

    1999-09-01

    We present some mechanisms that can lead to instability of initially small eccentricity Trojan-type orbits associated with planetary satellites. Dermott & Murray (1981) showed that in the context of the hierarchical restricted three-body problem (M>> m), stable small eccentricity coorbital motion associated with the mass m, occurs within a region of relative width in semi-major axis a_s=0.74 epsilon (where epsilon is the dimensionless Hill's radius). However, for large eccentricities, the size of the stable coorbital region shrinks as a_s=4 (epsilon /e)(1/2) epsilon (Namouni 1999). The perturbations from other nearby bodies can cause increases in both eccentricity and semi-major axis, leading to ejection from the coorbital region via collisions with the parent body or a nearby perturber. We show that mean motion resonances among saturnian satellites can cause chaotic diffusion of both the eccentricity and the semi-major axis of their associated Trojan orbits. Moreover, we show that secular resonances inside the coorbital regions of some uranian and saturnian satellites can induce significant increases in the eccentricity of Trojan objects. A better insight into the complicated dynamics exhibited by Trojan objects when they are being subject to perturbations is fundamental to be able to assess the likelihood of finding real examples of these configurations. Dermott & Murray (1981). Icarus 48, 1-11. Namouni (1999). Icarus 137, 293-314.

  11. Neptune - three new satellites

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This image captured by the Voyager 2 spacecraft was used to confirm the discovery of three new satellites orbiting Neptune. The 46 second exposure was taken by Voyager 2's narrow angle camera through a clear filter on July 30, 1989, when the spacecraft was about 37.3 million kilometers (23.6 million miles) from Neptune. The large globe of the planet itself is severely overexposed and appears pure white. The image has been computer processed to accentuate the new moons, which otherwise would appear little stronger than background noise. The satellite 1989 N1, at right in this frame, was discovered by Voyager 2 in early July 1989. The new satellites confirmed this week are 1989 N2, 1989 N3 and 1989 N4. Each of the moons appears as a small streak, an effect caused by movement of the spacecraft during the long exposure. The new moons occupy nearly circular and equatorial orbits ranging from about 27,300 to 48,300 kilometers (17,000 to 30,000 miles) from Neptune's cloud tops, and are estimated to range in diameter from about 100 to 200 kilometers (about 60 to 125 miles). The Voyager Mission is conducted by the Jet Propulsion Laboratory for NASA's Office of Space Science and Applications.

  12. Heart Monitoring By Satellite

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ambulance antenna shown is a specially designed system that allows satellite-relayed two-way communications between a moving emergency vehicle and a hospital emergency room. It is a key component of a demonstration program aimed at showing how emergency medical service can be provided to people in remote rural areas. Satellite communication permits immediate, hospital- guided treatment of heart attacks or other emergencies by ambulance personnel, saving vital time when the scene of the emergency is remote from the hospital. If widely adopted, the system could save tens of thousands of lives annually in the U.S. alone, medical experts say. The problem in conventional communication with rural areas is the fact that radio signals travel in line of sight. They may be blocked by tall buildings, hills and mountains, or even by the curvature of the Earth, so signal range is sharply limited. Microwave relay towers could solve the problem, but a complete network of repeater towers would be extremely expensive. The satellite provides an obstruction-free relay station in space.

  13. Origin of the Uranian satellites

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Lunine, Jonathan I.; Tittemore, William C.

    1991-01-01

    The current understanding of the origin of the Uranian satellites is assessed by reviewing relevant data on the Uranian satellites, including those obtained by Voyager, and comparing these properties with those of the satellites of the other outer planets. The nature of the early solar system, including the origin of the giant planets, is discussed as a preface to alternative hypotheses for the origin of the nebular disk within which the Uranian satellites formed. The chemical and physical properties of this disk are discussed, as well as the accretion of the satellites from disk solid matter. Predictions of alternative scenarios for the satellites' origin with the relevant observational constraint are compared. The orbital evolution of the larger satellites of Uranus is discussed to gain an understanding of their present orbital properties and possibly important past tidal heating episodes.

  14. Communications satellites - The experimental years

    NASA Technical Reports Server (NTRS)

    Edelson, B. I.

    1983-01-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  15. Communications satellites - The experimental years

    NASA Astrophysics Data System (ADS)

    Edelson, B. I.

    1983-10-01

    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  16. Optical satellite communications in Europe

    NASA Astrophysics Data System (ADS)

    Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf

    2010-02-01

    This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.

  17. A 32 KBPS codec for satellite communication

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Aikoh, S.; Maruta, R.; Sawai, A.; Shimoyama, H.; Tomozawa, A.

    A 32 kbps ADPCM codec has been developed by combining a robust predictor with a predictor-driven locking quantizer. The algorithm has been chosen through careful studies on combinations of several prediction algorithms and a dynamic locking quantization scheme. By introducing a new speech and data discrimination function in the prediction algorithm, high performance encoding capability very close to that for 64 kbps PCM on both speech and modem signals has been realized without losing robustness in its ability to operate properly in spite of transmission bit errors. This codec enables channel capacity doubling in any digital network, including satellite communications.

  18. ACTS Satellite Telemammography Network Experiments

    NASA Technical Reports Server (NTRS)

    Kachmar, Brian A.; Kerczewski, Robert J.

    2000-01-01

    The Satellite Networks and Architectures Branch of NASA's Glenn Research Center has developed and demonstrated several advanced satellite communications technologies through the Advanced Communications Technology Satellite (ACTS) program. One of these technologies is the implementation of a Satellite Telemammography Network (STN) encompassing NASA Glenn, the Cleveland Clinic Foundation. the University of Virginia, and the Ashtabula County Medical Center. This paper will present a look at the STN from its beginnings to the impact it may have on future telemedicine applications. Results obtained using the experimental ACTS satellite demonstrate the feasibility of Satellite Telemammography. These results have improved teleradiology processes and mammography image manipulation, and enabled advances in remote screening methodologies. Future implementation of satellite telemammography using next generation commercial satellite networks will be explored. In addition, the technical aspects of the project will be discussed, in particular how the project has evolved from using NASA developed hardware and software to commercial off the shelf (COTS) products. Development of asymmetrical link technologies was an outcome of this work. Improvements in the display of digital mammographic images, better understanding of end-to-end system requirements, and advances in radiological image compression were achieved as a result of the research. Finally, rigorous clinical medical studies are required for new technologies such as digital satellite telemammography to gain acceptance in the medical establishment. These experiments produced data that were useful in two key medical studies that addressed the diagnostic accuracy of compressed satellite transmitted digital mammography images. The results of these studies will also be discussed.

  19. Mobile satellite service communications tests using a NASA satellite

    NASA Technical Reports Server (NTRS)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  20. Satellite-to-satellite system and orbital error estimates

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Argentiero, P. D.; Vonbun, F. O.

    1976-01-01

    Satellite-to-satellite tracking and orbit computation accuracy is evaluated on the basis of data obtained from near earth spacecraft via the geostationary ATS-6. The near earth spacecraft involved are Apollo-Soyuz, GEOS-3, and NIMBUS-6. In addition ATS-6 is being tracked by a new scheme wherein a single ground transmitter interrogates several ground based transponders via ATS-6 to achieve the precision geostationary orbits essential in satellite-to-satellite orbit computation. Also one way Doppler data is being recorded aboard NIMBUS-6 to determine the position of meteorological platforms. Accuracy assessments associated with the foregoing mission related experiments are discussed.

  1. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  2. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  3. Satellite attitude control simulations

    NASA Technical Reports Server (NTRS)

    Debra, D. B.; Powell, J. D.

    1973-01-01

    Work was conducted to develop an extremely low drift rate gyroscope and a very precise star tracker. A proposed relativity satellite will measure very accurately the theoretically predicted 'relativistic' precession of the gyroscope relative to an inertial reference frame provided by the star tracker. Aspects of precision spinning attitude control are discussed together with questions of gyro operation, and the hopping mode for lunar transportation. For the attitude control system of the lunar hopper, a number of control laws were investigated. The studies indicated that some suboptimal controls should be adequate for the system.

  4. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  5. LDEF satellite radiation study

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1994-01-01

    Some early results are summarized from a program under way to utilize LDEF satellite data for evaluating and improving current models of the space radiation environment in low earth orbit. Reported here are predictions and comparisons with some of the LDEF dose and induced radioactivity data, which are used to check the accuracy of current models describing the magnitude and directionality of the trapped proton environment. Preliminary findings are that the environment models underestimate both dose and activation from trapped protons by a factor of about two, and the observed anisotropy is higher than predicted.

  6. The Galilean Satellites

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.

    The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.

    North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.

    The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.

    Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web

  7. The Galilean Satellites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. From left to right, the moons shown are Ganymede, Callisto, Io, and Europa. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. In order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.

    The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.

    North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.

    The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft.

    Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World

  8. Satellite observations of contrails

    NASA Astrophysics Data System (ADS)

    Mannstein, H.; Meyer, R.; Wendlimg, P.

    2003-04-01

    A direct human influence on cirrus coverage close to the tropopause is given by the contrails produced from air-traffic, which is currently increasing at approximately 7%/year. The infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) onboard of the weather satellites of the NOAA series are used for the automated detection of linear contrails. Results from studies on contrail coverage and the resulting radiative impact over Europe, SE and E-Asia will be presented and compared to results from model calculations.

  9. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Model calculations and analyses have been carried out to compare with several sets of data (dose, induced radioactivity in various experiment samples and spacecraft components, fission foil measurements, and LET spectra) from passive radiation dosimetry on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The calculations and data comparisons are used to estimate the accuracy of current models and methods for predicting the ionizing radiation environment in low earth orbit. The emphasis is on checking the accuracy of trapped proton flux and anisotropy models.

  10. Tethered satellite system

    NASA Technical Reports Server (NTRS)

    Sisson, J.

    1986-01-01

    A reusable system is to be developed to enable a variety of scientific investigations to be accomplished from the shuttle, considering the use of a tethered system with manual or automated control, deployment of a satellite toward or away from the Earth, up to 100 km, and conducting or nonconducting tether. Experiments and scientific investigations are to be performed using the tether system for applications such as magnetometry, electrodynamics, atmospheric science, and chemical release. A program is being implemented as a cooperative U.S./Italian activity. The proposed systems, investigations, and the program are charted and briefly discussed.

  11. Radio broadcasting via satellite

    NASA Astrophysics Data System (ADS)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  12. Future communications satellite applications

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  13. Comparison of satellite theories

    NASA Technical Reports Server (NTRS)

    Hertz, H. G.

    1972-01-01

    The accuracy of five mathematical models in computing a nominal orbit for the Vanguard 2 satellite by using a position velocity vector is considered. Either numerical integration or analytical theories are used in all models as well as the same force model that corresponds to a potential with the zonal harmonics to order four. The amounts of spread in the values of the total energy and the z-component of the angular momentum for a set of times are considered as measures of accuracy.

  14. Positional Accuracy of Gps Satellite Almanac

    NASA Astrophysics Data System (ADS)

    Ma, Lihua; Zhou, Shangli

    2014-12-01

    How to accelerate signal acquisition and shorten starting time are key problems in the Global Positioning System (GPS). GPS satellite almanac plays an important role in signal reception period. Almanac accuracy directly affects the speed of GPS signal acquisition, the start time of the receiver, and even the system performance to some extent. Combined with precise ephemeris products released by the International GNSS Service (IGS), the authors analyse GPS satellite almanac from the first day to the third day in the 1805th GPS week (from August 11 to 13, 2014 in the Gregorian calendar). The results show that mean of position errors in three-dimensional coordinate system varies from about 1 kilometer to 3 kilometers, which can satisfy the needs of common users.

  15. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  16. A geopause satellite system concept

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1971-01-01

    A typical Geopause satellite orbit has a 14 hour period, a mean height of about 4.6 earth radii, and is nearly circular, polar, and normal to the ecliptic. At this height only a relatively few gravity terms have uncertainties corresponding to orbital perturbations above the decimeter level. The orbit is at the geopotential boundary, the geopause. The few remaining environmental quantities which may be significant can be determined by means of orbit analysis and accelerometers. The Geopause satellite system also provides the tracking geometry and coverage needed for determining the orbit, the tracking system biases and the station locations. Five or more fundamental stations well distributed in longitude can view Geopause over the North Pole. Geopause also provides the basic capability for satellite-to-satellite tracking of drag-free satellites for mapping the gravity field and altimeter satellites for surveying the sea surface topography.

  17. Advanced technologies for future environmental satellite systems

    NASA Astrophysics Data System (ADS)

    Dittberner, Gerald J.; Crison, Michael J.; Bajpai, Shyam; Diedrich, Benjamin L.

    2004-09-01

    maintain a satellite in a position closer to the Sun than L1. L1 is that point between the Earth and the sun where the gravitational forces of the Earth and the sun are equal. The sail would allow the increased gravitational force from the Sun to be balanced by the propulsive force of the solar sail. This capability could increase the lead-time for measuring and predicting the impact of solar events. Solar sails could also allow a satellite to be positioned over the Earth's polar regions continuously, filling a critical gap in current orbital observations and services. The combination of these technologies will enable the NOAA Satellites and Information Service to meet important requirements currently unmet and help satisfy NOAA strategic goals.

  18. TDRSS Augmentation System for Satellites

    NASA Technical Reports Server (NTRS)

    Heckler, Gregory W.; Gramling, Cheryl; Valdez, Jennifer; Baldwin, Philip

    2016-01-01

    In 2015, NASA Goddard Space Flight Center (GSFC) reinvigorated the development of the TDRSS Augmentation Service for Satellites (TASS). TASS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems(GNSS) and the Tracking and Data Relay Satellite System (TDRSS). TASS leverages the existing TDRSS to provide an S-band beacon radio navigation and messaging source to users at orbital altitudes 1400 km and below.

  19. Precise orbit determination of Beidou Satellites at GFZ

    NASA Astrophysics Data System (ADS)

    Deng, Zhiguo; Ge, Maorong; Uhlemann, Maik; Zhao, Qile

    2014-05-01

    In December 2012 the Signal-In-Space Interface Control Document (ICD) of the BeiDou Navigation Satellite System (BeiDou system) was published. Currently the initial BeiDou regional navigation satellite system consisting of 14 satellites was completed, and provides observation data of five Geostationary-Earth-Orbit (GEO)satellites, five Inclined-GeoSynchronous-Orbit (IGSO) satellites and four Medium-Earth-Orbit (MEO) satellites. The Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ) contributes as one of the analysis centers to the International GNSS Service (IGS) since many years. In 2012 the IGS began the "Multi GNSS EXperiment" (MGEX), which supports the new GNSS, such as Galileo, Compass, and QZSS. Based on tracking data of BeiDou-capable receivers from the MGEX and chinese BeiDou networks up to 45 global distributed stations are selected to estimate orbit and clock parameters of the GPS/BeiDou satellites. Some selected results from the combined GPS/BeiDou data processing with 10 weeks of data from 2013 are shown. The quality of the orbit and clock products are assessed by means of orbit overlap statistics, clock stabilities as well as an independent validation with SLR measurements. At the end an outlook about GFZ AC's future Multi-GNSS activities will be given.

  20. Optimal design of the satellite constellation arrangement reconfiguration process

    NASA Astrophysics Data System (ADS)

    Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid

    2016-08-01

    In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.

  1. A survey of satellite galaxies around NGC 4258

    SciTech Connect

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-20

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 × 10{sup 12} M {sub ☉} within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue u–r colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  2. Efficient mission control for the 48-satellite Globalstar Constellation

    NASA Astrophysics Data System (ADS)

    Smith, Dan

    1994-11-01

    The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200] . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds] Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.

  3. Efficient mission control for the 48-satellite Globalstar Constellation

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    1994-01-01

    The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200! . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds! Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.

  4. Architecture analysis of the simplified libration point satellite navigation system

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Xu, Bo

    2016-10-01

    The libration point satellite navigation system is a novel navigation architecture that consists of satellites located in periodic orbits around the Earth-Moon libration points. Superiorities of the proposed system lie in its autonomy and extended navigation capability, which have been proved in our previous works. Based on the candidate architectures obtained before, a detailed analysis of the simplified libration point satellite navigation system, i.e. the Earth-Moon L1,2 two-satellite constellation, is conducted in this work. Firstly, relation between orbits amplitude is derived for the candidate two-satellite constellations to ensure continuous crosslink measurements between libration point satellites. Then, with the use of a reference lunar exploration mission scenario, navigation performances of different constellation configurations are evaluated by Monte-Carlo simulations. The simulation results indicate that the amplitude and initial phase combinations of libration point orbits have direct effect on the performance of the two-satellite constellations. By using a cooperative evolutionary algorithm for configuration parameter optimization, some optimal constellations are finally obtained for the simplified navigation architecture. The results obtained in this paper may be a reference for future system design.

  5. A global satellite-assisted precipitation climatology

    NASA Astrophysics Data System (ADS)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  6. A global satellite assisted precipitation climatology

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  7. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  8. Baseband Processor for Communication Satellites

    NASA Technical Reports Server (NTRS)

    Jirberg, Russell J.; Armstrong, Patrick C.

    1987-01-01

    Baseband processing (BBP) system for advanced satellite communications successfully demonstrated. Provides increased data capacity through frequency-reusing multibeam antenna systems, using time-division multiple access (TDMA) and onboard satellite switching. Large numbers of thin-route trunking stations and user-based Earth terminals handled efficiently by satellite baseband switching. With BBP system, satellite routes data messages individually among locations anywhere in continental United States. Processes, controls, and routes message traffic among users. Time-division multiple access and baseband switching used.

  9. Satellite communication for public services

    NASA Technical Reports Server (NTRS)

    Cooper, R. S.; Redisch, W. N.

    1977-01-01

    Public service programs using NASA's ATS-6 and CTS satellites are discussed. Examples include the ATS-6 Health and Education Telecommunications experimental program and the use of CTS to enable students in one university to take courses presented at another distant university. Possible applications of satellite communication systems to several areas of public service are described, and economic and political obstacles hindering the implementation of these programs are considered. It is suggested that a federally sponsored program demonstrating the utility of satellites accomodating a large number of small terminals is needed to encourage commercial satellite operations.

  10. Communications satellite systems capacity analysis

    NASA Technical Reports Server (NTRS)

    Browne, L.; Hines, T.; Tunstall, B.

    1982-01-01

    Analog and digital modulation techniques are compared with regard to efficient use of the geostationary orbit by communications satellites. Included is the definition of the baseline systems (both space and ground segments), determination of interference susceptibility, calculation of orbit spacing, and evaluation of relative costs. It is assumed that voice or TV is communicated at 14/11 GHz using either FM or QPSK modulation. Both the Fixed-Satellite Service and the Broadcasting-Satellite Service are considered. For most of the cases examined the digital approach requires a satellite spacing less than or equal to that required by the analog approach.

  11. Profiler/satellite interference analysis

    NASA Astrophysics Data System (ADS)

    Chadwick, R. B.

    1987-02-01

    An engineering analysis of potential radio interference between the Wind Profiler Demonstration Network and three NOAA satellite-based systems is presented. These three systems are: Geostationary Operational Environmental Satellite (GOES) system, the Search and Rescue Satellite (SARSAT) system, and the TIROS series Data Collection System (TDCS). The Profiler considered in this analysis is the UHF Wind Profiler to be supplied by Sperry Corporation under a contract awarded June 1986. The analysis is based on the interference-to-noise ratio at the satellite receiver. Several engineering changes have been made to the original contract to reduce potential interference. The effects of these changes are presented.

  12. NOAA's NESDIS operational satellite oceanography

    NASA Astrophysics Data System (ADS)

    Bayler, E.; Chang, P.; Cheney, R.; Clark, D.; Hughes, K.; Strong, A.

    2003-04-01

    Satellite oceanography within the National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) focuses on observation retrieval and applications to address the NOAA missions of environmental assessment, prediction, and stewardship. The satellite oceanography division encompasses three functional areas: satellite ocean sensors, ocean dynamics/ data assimilation, and marine ecosystems / climate. The breadth of scientific investigation includes sea-surface temperature, sea-surface height, sea-surface height, sea-surface roughness, ocean color, ocean surface winds, sea ice, data assimilation, and operational oceanography. The primary objective is to transition research to operations. This overview of operational oceanography within NOAA's NESDIS provides insight into the capabilities, products, and services.

  13. Trends in mobile satellite communication

    NASA Technical Reports Server (NTRS)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  14. Business Use of Satellite Communications.

    ERIC Educational Resources Information Center

    Edelson, Burton I.; Cooper, Robert S.

    1982-01-01

    Reviews business communications development and discusses business applications of satellite communications, system technology, and prospects for future developments in digital transmission systems. (JN)

  15. The power relay satellite

    NASA Astrophysics Data System (ADS)

    Glaser, Peter E.

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  16. GSICS Satellite Intercalibration Products

    NASA Astrophysics Data System (ADS)

    Bali, M.; Flynn, L. E.

    2015-12-01

    Monitoring satellite instrument measurements (Top of Atmosphere radiances) while they are orbiting by comparing them with in-orbit stable references has emerged as a key component of ensuring quality (the stability and accuracy) of their measurements and correcting any biases that emerge during the mission. In 2006 the World Meteorological Organization (WMO) and the CGMS together initiated the Gobal Space Based Inter-Calibration System (GSICS,gsics.wmo.int) with the aim of monitoring the quality of measurement from satellite instruments launched by member including NASA, NOAA, EUMETSAT, ISRO CMA KMA CNES. In recent years, GSICS, via collaboration among member agencies across nations has successfully monitored instrument records for both GEO (GOES, SEVIRI, MTSAT) and LEO (AVHRR) based instruments by comparing them to in-orbit references such as IASI, AIRS and MODIS. The cross comparison products undergo stringent quality checks and standarizations and a scientific review of the theoretical bases and are assigned a GSICS maturity level. The accepted products are distributed freely as GSICS correction products. These products have wide applications. The goal of the presentation is to introduce GSICS cross calibration products and demonstrate their applications in developing products such as Fundamental Climate Data Records (FCDRs), evaluating Spectral Response Function status, and providing bias corrections. The impact of the GSICS bias corrections on retrieval of downstream variables such as Cloud Height Sea Surface Temperature will be one component of the presentation.

  17. The power relay satellite

    SciTech Connect

    Glaser, P.E.

    1994-12-31

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  18. Enceladus: a vanishing satellite

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2014-05-01

    Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic activity is observed. Every second, the mass of ~200 kg is ejecting into space. The size of the satellite directly after accretion (this body is referred here as proto-Enceladus) is unknown. It can be estimated in two ways. First, if the average mass outflow is equal to the present rate then the satellite's original mass was ~30% bigger than today. Second, we assume here that density of proto-Enceladus was equal to the present density of Mimas because they were formed in the same part of the nebula. Mimas is dead, so it preserves original composition. Both approaches give similar initial Enceladus' radius (~296 km) and its surface area (~1.1×106 km2). The present values are: 252 km and 7.99×105 km2. The loss of matter should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding, and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic model that could explain this paradox. The volatiles escape from the hot region through the fractures forming plumes in the space. The loss of the volatiles results in a void, an instability, and motion of solid matter into hot region to fill the void in statu nascendi. The motion includes: Subsidence of the lithosphere of SPT. Flow of matter in the mantle. Motion of lithospheric plates adjacent to SPT towards the active region. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ~0.05 mm·yr-1. However, all three types of motion are probably important, so the subsidence is slower but mantle flow and plates' motion also play a role in filling the void. Note that in our model reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. Note also that we do not know the present age of the

  19. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Kandylakis, Z.; Karantzalos, K.

    2016-06-01

    In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

  20. Potential for satellite remote sensing of ground water.

    PubMed

    Becker, Matthew W

    2006-01-01

    Predicting hydrologic behavior at regional scales requires heterogeneous data that are often prohibitively expensive to acquire on the ground. As a result, satellite-based remote sensing has become a powerful tool for surface hydrology. Subsurface hydrology has yet to realize the benefits of remote sensing, even though surface expressions of ground water can be monitored from space. Remotely sensed indicators of ground water may provide important data where practical alternatives are not available. The potential for remote sensing of ground water is explored here in the context of active and planned satellite-based sensors. Satellite technology is reviewed with respect to its ability to measure ground water potential, storage, and fluxes. It is argued here that satellite data can be used if ancillary analysis is used to infer ground water behavior from surface expressions. Remotely sensed data are most useful where they are combined with numerical modeling, geographic information systems, and ground-based information.

  1. Requirement Analysis of Orbital Parameters in the Satellite-to-Satellite Tracking Model

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Hsu, H. T.; Zhong, M.; Yun, M. J.; Zhou, X. H.; Peng, B. B.

    2010-01-01

    The 21st century is a new epoch that human beings upgrade the cognitive capabilities to the Digital Earth using the SST (Satellite-to-Satellite Tracking) and SGG (Satellite Gravity Gradiometry) techniques. The requirement analysis of orbital parameters in the SST model is carried out for the first time using the combined models of cumulative geoid height errors influenced by the range-rate error of K-band ranging system, orbital error of GPS receiver and nonconservative force error of accelerometer from GRACE satellites based on the semi-analytical method in this study. The simulated results are as follows: (1) The matched relationship of accuracy indexes from key payloads including K-band ranging system, GPS receiver and accelerometer is obtained using the semi-analytical method; (2) The GRACE global gravitational field is estimated based on different average orbital altitudes (500 km, 450 km, 400 km, 350 km, 300 km, 250 km and 200 km) and average intersatellite ranges (110 km, 220 km and 330 km). The optimal design of average orbital altitude 400 km and intersatellite range 220 km is suggested in the future first gravity satellite in China. The reasons why the preferable orbital altitude and intersatellite range are selected are analyzed and demonstrated in detail. This work not only can provide theoretical foundation and calculational guarantee for the optimal selection of orbital parameters and efficient and rapid estimation on the accuracy of global gravitational field in the future satellite gravity measurement in China, but also has some guiding significance to the development direction of future international GRACE Follow-On Earth's gravity measurement mission and GRAIL lunar gravity exploration program.

  2. Workshop on Satellite Meteorology. Part 1; Satellite and Their Data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Workshop on Satellite Meteorology is co-sponsored by the Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado State University and the American Meteorlogical Society's Committee on Meteorological Aspects of Aerospace Systems. The workshop covers uses of satellite data in atmospheric science. It provides state-of-the-art information to those in Universities, research groups, and other users. One area of primary focus is to provide source material to university personnel for developing and augmenting courses in satellite meteorology and the atmospheric sciences. The items in the program include information on meteorological satellites and data sources, uses of satellite imagery for all scales of weather analysis and forecasting, uses of sounding data and other radiance information and research opportunities on interactive systems. Each session is presented by a group of experts in the field and includes an open discussion of the state-of-the-art and promising areas for future development. This pre-print volume is one of three parts on the workshop. The three parts are: PART I. Satellites and Their Data; PART II. Satellite Image Analysis and Interpretation; PART III. Satellite Soundings and Their Uses.

  3. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  4. Satellite-Based Educational Services. Technical Memorandum.

    ERIC Educational Resources Information Center

    Operations Research, Inc., Silver Spring, MD.

    This memorandum contains engineering information relevant to the use of communication satellites for educational purposes. Information is provided for ground terminals as well as satellites. Satellite related issues addressed include: (1) expected life of service of various satellites, (2) constraints on the availability of the satellites, (3)…

  5. Sentinels in the Sky: Weather Satellites.

    ERIC Educational Resources Information Center

    Haynes, Robert

    This publication describes forecasting weather activity using satellites. Information is included on the development of weather satellites, the National Oceanic and Atmospheric Administration (NOAA) Satellite System (including the polar-orbiting satellites), and the Geostationary Operational Environmental Satellite (GOES). The publication…

  6. Newspaper Uses of Satellite Technology.

    ERIC Educational Resources Information Center

    Johns, David

    Replacing slower mail service, satellite transmission now gives the newspaper industry a practical and almost spontaneous method for sending all kinds of information to any newspaper across the country. Unlike other communication industries, newspapers did not begin to make widespread use of satellite technology until 1979, when government…

  7. Satellites: Teaching Technology Looks Up

    ERIC Educational Resources Information Center

    Lewis, Philip

    1973-01-01

    A Satellite will beam career education programs to 56 rural junior high schools and 12 public broadcasting stations in eight Rocky Mountain States. Programing on health, drug education, and English as a second language will be beamed to Alaskan elementary schools. Satellite beamed programs to India are planned on improving occupations skills, food…

  8. Satellite Technology Demonstration; Final Report.

    ERIC Educational Resources Information Center

    Federation of Rocky Mountain States, Inc., Denver, CO.

    The goal of the Satellite Technology Demonstration project (STD) was to show the feasibility of a satellite-based media system for isolated, rural populations and to test and evaluate user acceptance and the cost of various delivery modes using a variety of materials. The STD amalgamated the resources of government, health, education, and…

  9. Drag-free satellite control

    NASA Technical Reports Server (NTRS)

    Debra, Daniel B.

    1989-01-01

    A drag-free satellite cancels the effect of external disturbances. Although the forces may be small, a satellite is disturbed by residual air drag, radiation pressure, micrometeorite impact, and other small forces that act on its surface disturbing its orbit, which is principally determined by the gravity field. In some missions, these small perturbations that make the satellite deviate from its purely gravitational orbit are limiting. An internal unsupported proof mass is shielded by the satellite from the external disturbances. The position of the shield (or the main part of the satellite) is measured with respect to the internal proof mass, and this information is used to actuate a propulsion system which moves the satellite to follow the proof mass. A drag-free control system is illustrated. Since the proof mass is shielded it follows a purely gravitational orbit - as does the satellite following it - hence the name drag-free satellite. The idea was conceived by Lange (1964) and has been applied to many mission studies since. In some cases, it is not necessary to cancel the disturbances, only to measure them so they may be taken into account. In such cases, an accelerometer may be a more suitable solution (for example, using the ONERA Cactus or the Bell Aerosystems MESA).

  10. A new satellite of saturn?

    PubMed

    Fountain, J W; Larson, S M

    1977-08-26

    Analysis of all available observations of faint objects near Saturn during the 1966 passage of the earth through the plane of Saturn's rings suggests the existence of at least one previously undiscovered satellite of Saturn. The data support the previously published orbit for Janus. These satellites may be major members of an extended ring.

  11. Radiocommunications for meteorological satellite systems

    NASA Technical Reports Server (NTRS)

    Walton, B. A.

    1975-01-01

    A general overview is presented of the spectrum utilization and frequency requirements of present and planned meteorological satellite programs. The sensors, and TIROS operational systems are discussed along with the Nimbus and Synchronous Meteorological Satellites. STORMSAT, SEASAT, and the Spacelab are briefly described.

  12. Capture-ejector satellites

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Eldred, C. H.; Martin, J. A.

    1983-01-01

    A satellite in the form of a large rotating rim which can be used to boost spacecraft from low-Earth orbit to higher orbits is described. The rim rotates in the plane of its orbit such that the lower portion of the rim is traveling at suborbital velocity, while the upper portion is travelling at greater than orbital velocity. Ascending spacecraft or payloads arrive at the lowest portion of the rim at suborbital velocities, where the payloads are released on a trajectory for higher orbits; descending payloads employ the reverse procedure. Electric thrusters placed on the rim maintain rim rotational speed and altitude. From the standpoint of currently known materials, the capture-ejector concept may be useful for relatively small velocity increments.

  13. The SPOT satellite

    NASA Astrophysics Data System (ADS)

    Fouquet, J.-P.

    1981-03-01

    The background, objectives and data products of the French SPOT remote sensing satellite system are presented. The system, which was developed starting in 1978 with the subsequent participation of Sweden and Belgium, is based on a standard multimission platform with associated ground control station and a mission-specific payload, which includes two High-Resolution Visible range instruments allowing the acquisition of stereoscopic views from different orbits. Mission objectives include the definition of future remote sensing systems, the compilation of a cartographic and resources data base, the study of species discrimination and production forecasting based on frequent access and off-nadir viewing, the compilation of a stereoscopic data base, and platform and instrument qualification, for possible applications in cartography, geology and agriculture. Standard data products will be available at three levels of preprocessing: radiometric correction only, precision processing for vertical viewing, and cartographic quality processing.

  14. Satellite Rings Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies.

    The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  15. Alaska's giant satellite network

    NASA Astrophysics Data System (ADS)

    Hills, A.

    1983-07-01

    The evolution and features of the Alaskan telecommunications network are described, with emphasis on the satellite links. The Alaskan terrain is rugged and largely unpopulated. Satcom V provides C-band (6/4 GHz) transmission with 24 transponders, each having a 40 MHz bandwidth. The Alascom company operated 105 4.5 m earth-based antennas for remote villages, which receive both telephone and television services. There are also 27 10-m dishes for regional and military applications and a 30 m dish, one of three dishes for links to the centerminous U.S. Currently, half the villages have private and business telephone communications facilities and 200 villages have access to two television stations, one educational, one entertainment. Teleconferencing is possible for government and educational purposes, and discussions are underway with NASA to establish a mobile radio communications capacity.

  16. Polar research from satellites

    NASA Technical Reports Server (NTRS)

    Thomas, Robert H.

    1991-01-01

    In the polar regions and climate change section, the topics of ocean/atmosphere heat transfer, trace gases, surface albedo, and response to climate warming are discussed. The satellite instruments section is divided into three parts. Part one is about basic principles and covers, choice of frequencies, algorithms, orbits, and remote sensing techniques. Part two is about passive sensors and covers microwave radiometers, medium-resolution visible and infrared sensors, advanced very high resolution radiometers, optical line scanners, earth radiation budget experiment, coastal zone color scanner, high-resolution imagers, and atmospheric sounding. Part three is about active sensors and covers synthetic aperture radar, radar altimeters, scatterometers, and lidar. There is also a next decade section that is followed by a summary and recommendations section.

  17. Enceladus: a vanishing satellite

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic activity is observed. Every second, the mass of 200 kg is ejecting into space. The size of the satellite directly after accretion (this body is referred here as proto-Enceladus) is unknown. It can be estimated in two ways. First, if the average mass outflow is equal to the present rate then the satellite’s original mass was 30% bigger than today. Second, we assume here that density of proto-Enceladus was equal to the present density of Mimas because they were formed in the same part of the nebula. Mimas is dead, so it preserves original composition. Both approaches give similar initial Enceladus’ radius ( 296 km) and its surface area ( 1.1×106 km2). The present values are: 252 km and 7.99×105 km2. The loss of matter should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding, and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic model that could explain this paradox. The volatiles escape from the hot region through the fractures forming plumes in the space. The loss of the volatiles results in a void, an instability, and motion of solid matter into hot region to fill the void in statu nascendi. The motion includes: (i) Subsidence of the lithosphere of SPT. (ii) Flow of matter in the mantle. (iii) Motion of lithospheric plates adjacent to SPT towards the active region. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is 0.05 mm·yr-1. However, all three types of motion are probably important, so the subsidence is slower but mantle flow and plates’ motion also play a role in filling the void. Note that in our model reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. Note also that we do not know the

  18. Satellite Power System (SPS)

    NASA Technical Reports Server (NTRS)

    Edler, H. G.

    1978-01-01

    Potential organizational options for a solar power satellite system (SPS) were investigated. Selection and evaluation criteria were determined to include timeliness, reliability, and adequacy to contribute meaningfully to the U.S. supply; political feasibility (both national and international); and cost effectiveness (including environmental and other external costs). Based on these criteria, four organizational alternatives appeared to offer reasonable promise as potential options for SPS. A large number of key issues emerged as being factors which would influence the final selection process. Among these issues were a variety having to do with international law, international institutions, environmental controls, economics, operational flexibility, congressional policies, commercial-vs-governmental ownership, national dedication, and national and operational stategic issues.

  19. Multipurpose satellite bus (MPS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Naval Postgraduate School Advanced Design Project sponsored by the Universities Space Research Association Advanced Design Program is a multipurpose satellite bus (MPS). The design was initiated from a Statement of Work (SOW) developed by the Defense Advanced Research Projects Agency (DARPA). The SOW called for a 'proposal to design a small, low-cost, lightweight, general purpose spacecraft bus capable of accommodating any of a variety of mission payloads. Typical payloads envisioned include those associated with meteorological, communication, surveillance and tracking, target location, and navigation mission areas.' The design project investigates two dissimilar missions, a meteorological payload and a communications payload, mated with a single spacecraft bus with minimal modifications. The MPS is designed for launch aboard the Pegasus Air Launched Vehicle (ALV) or the Taurus Standard Small Launch Vehicle (SSLV).

  20. Data distribution satellite

    NASA Technical Reports Server (NTRS)

    Stevens, Grady H.

    1992-01-01

    The Data Distribution Satellite (DDS), operating in conjunction with the planned space network, the National Research and Education Network and its commercial derivatives, would play a key role in networking the emerging supercomputing facilities, national archives, academic, industrial, and government institutions. Centrally located over the United States in geostationary orbit, DDS would carry sophisticated on-board switching and make use of advanced antennas to provide an array of special services. Institutions needing continuous high data rate service would be networked together by use of a microwave switching matrix and electronically steered hopping beams. Simultaneously, DDS would use other beams and on board processing to interconnect other institutions with lesser, low rate, intermittent needs. Dedicated links to White Sands and other facilities would enable direct access to space payloads and sensor data. Intersatellite links to a second generation ATDRS, called Advanced Space Data Acquisition and Communications System (ASDACS), would eliminate one satellite hop and enhance controllability of experimental payloads by reducing path delay. Similarly, direct access would be available to the supercomputing facilities and national data archives. Economies with DDS would be derived from its ability to switch high rate facilities amongst users needed. At the same time, having a CONUS view, DDS would interconnect with any institution regardless of how remote. Whether one needed high rate service or low rate service would be immaterial. With the capability to assign resources on demand, DDS will need only carry a portion of the resources needed if dedicated facilities were used. Efficiently switching resources to users as needed, DDS would become a very feasible spacecraft, even though it would tie together the space network, the terrestrial network, remote sites, 1000's of small users, and those few who need very large data links intermittently.

  1. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  2. Land mobile satellite system requirements

    NASA Technical Reports Server (NTRS)

    Kiesling, J. D.

    1983-01-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  3. Land mobile satellite system requirements

    NASA Astrophysics Data System (ADS)

    Kiesling, J. D.

    1983-05-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  4. Direct Broadcast Satellite: Radio Program

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  5. THE THREE-DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM; STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES

    SciTech Connect

    Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M. J.; Ferguson, A. M. N.; Chapman, S. C.

    2013-04-01

    We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with an rms thickness of just 12.34{sup +0.75}{sub -0.43} kpc. This disk is oriented approximately edge-on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk-like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.

  6. Estimation of Satellite PCO Offsets for BeiDou based on MGEX Net Solution

    NASA Astrophysics Data System (ADS)

    Yize, Zhang; Junping, Chen; Bin, Wu; Jiexian, Wang

    2015-04-01

    BeiDou Satellite Navigation System currently has a total 14 satellites including GEO/IGSO/MEO satellites and providing a regional PNT service. Due to a lack of publicly available antenna phase center offsets (PCO) for the BeiDou satellites, conventional values of (+0.6 m, 0.0 m, +1.1 m) are recommended for orbit and clock determination of the GEO/IGSO/MEO satellites, which needs to be further estimation and refinement. In this paper, we propose a multi-GNSS network solution for the estimation of BeiDou satellite PCO. More than 35 ground stations of International GNSS MGEX tracking network are used to determine the BeiDou satellite PCO. In this strategy, the GPS and BeiDou satellite orbits and clocks are derived from IGS final products, and GPS satellite PCO and PCV are fixed according to igs08.atx. The BeiDou satellites PCO are estimated together with the station clock, troposphere delay and LC combination ambiguity parameter. Result shows that the RMS of phase residuals for all stations is 1.8cm and is 1.6m for code residual, respectively. The estimated PCO is different for each satellite. Appling the new PCO for precise point positioning, we found that the positioning error improves from 6cm to 2cm in height.

  7. Designing nonuniform satellite systems for continuous global coverage using equatorial and polar circular orbits

    NASA Astrophysics Data System (ADS)

    Ulybyshev, S. Yu.

    2016-07-01

    We present a method for designing nonuniform satellite systems for continuous global coverage using a combination of equatorial and near-polar satellite segments in circular orbits. Equations are derived to determine the basic design parameters of the satellite system itself and the conditions of its closure at the joint of near-polar and equatorial segments. We analyze specific features of near-polar and equatorial satellite systems and their advantages and disadvantages compared with existing classes of near-polar phased and kinematically correct satellite systems. We estimate the minimum required number of spacecrafts in satellite systems for a given fold of coverage and present calculated dependences for classes of near-polar phased and equatorial satellite systems with different types of closure. For the class of kinematically correct satellite systems, we analyze the characteristics of systems with a minimum spacecraft flight height and reveal that the number of satellites in the orbital plane depends on the flight height for different folds of coverage. We bring examples of the best near-polar equatorial satellite systems of global coverage for different folds and a class of satellite systems with a fixed number of spacecrafts and orbital planes in them.

  8. Communications satellites - Orbiting into the '90s

    NASA Astrophysics Data System (ADS)

    Campanella, S. Joseph

    1990-08-01

    Engineering advances in satellite communications are discussed, including sophisticated switchboards, narrow beams, source coding for higher-capacity networks, and the use of higher- and lower-frequency bands and lower orbits. One of the most popular new 14/11-14/12-GHz commercial services has been time-division multiplexing of multiple carriers operating at low to medium bit rates. Multiple-carrier, low-burst-rate TDMA is widely used with VSATs on the customer's premises. NASA's ACTS and Italy's Italsat both plan to use signal regeneration at 30/20 GHz. Onboard switching and multiplexing minimize noise, boost power, but also trim the cost of the entire satellite network. Phone calls and voiceband data are now often carried over satellite circuits and by cable beneath the ocean by adaptive differential pulse-coded modulation (ADPCM). When this technique at 32 kb/s is combined with digital speech interpolation, circuits can carry 4-5 times as many channels as with conventional 64-kb/s pulse-coded transmission.

  9. The global warming of group satellite galaxies

    NASA Astrophysics Data System (ADS)

    Yozin, C.; Bekki, K.

    2016-08-01

    Recent studies adopting λRe, a proxy for specific angular momentum, have highlighted how early-type galaxies (ETGs) are composed of two kinematical classes for which distinct formation mechanisms can be inferred. With upcoming surveys expected to obtain λRe from a broad range of environments (e.g. SAMI, MaNGA), we investigate in this numerical study how the λRe-ɛe distribution of fast-rotating dwarf satellite galaxies reflects their evolutionary state. By combining N-body/SPH simulations of progenitor disc galaxies (stellar mass ≃109 M⊙), their cosmologically-motivated sub-halo infall history and a characteristic group orbit/potential, we demonstrate the evolution of a satellite ETG population driven by tidal interactions (e.g. harassment). As a general result, these satellites remain intrinsically fast-rotating oblate stellar systems since their infall as early as z = 2; mis-identifications as slow rotators often arise due to a bar/spiral lifecycle which plays an integral role in their evolution. Despite the idealistic nature of its construction, our mock λRe-ɛe distribution at z < 0.1 reproduces its observational counterpart from the ATLAS3D/SAURON projects. We predict therefore how the observed λRe-ɛe distribution of a group evolves according to these ensemble tidal interactions.

  10. Estimating surface soil moisture from satellite microwave measurements and a satellite derived vegetation index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; Chang, Alfred; Golus, Robert E.

    1988-01-01

    Normalized 18-GHz microwave brightness temperatures, T(B), and a vegetation index determined from satellite radiometer data are combined with climatically modeled surface moisture estimates to constrain a simple physically based soil moisture model. It is found that the normalized T(B) values correlated well with soil moisture when the data were segregated by vegetation index range, but less so when all the data were combined. By using the vegetation index parameter, the model is shown to account for about 70 percent of the variability in modeled surface soil moisture.

  11. Recent advances in analytical satellite theory

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1978-01-01

    Recent work on analytical satellite perturbation theory has involved the completion of a revision to 4th order for zonal harmonics, the addition of a treatment for ocean tides, an extension of the treatment for the noninertial reference system, and the completion of a theory for direct solar-radiation pressure and earth-albedo pressure. Combined with a theory for tesseral-harmonics, lunisolar, and body-tide perturbations, these formulations provide a comprehensive orbit-computation program. Detailed comparisons with numerical integration and observations are presented to assess the accuracy of each theoretical development.

  12. CRRES microelectronic test chip. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Lin, Y.-S.; Buehler, M. G.; Ray, K. P.; Sokoloski, M. M.

    1991-01-01

    The JPL CRRES chip was designed and fabricated in 1985 and included in the CRRES MEP. MOSFET Matrix results show the effect of shielding on radiation-induced MOSFET threshold voltage shifts and channel mobility degradation. Shielded (middle board) MOSFETs have a threshold-voltage damage factor that is approximately three orders of magnitude smaller than would be estimated from Co-60 ground tests. Unshielded (outer board) MOSFETs have a threshold-voltage damage factor that would be estimated from Co-60 ground tests. Temperature swings as large as 23 C with a 22.5 orbit periodicity affected the MOSFET data and were removed from the data in order to reveal the radiation effects. This experiment demonstrated the feasibility of characterizing MOSFETs in a matrix, thus reducing the complexity and mass of the experiment.

  13. CRRES: The combined release and radiation effects satellite program directory

    NASA Technical Reports Server (NTRS)

    Layman, Laura D.; Miller, George P.

    1992-01-01

    As a result of natural processes, plasma clouds are often injected into the magnetosphere. These chemical releases can be used to study many aspects of such injections. When a dense plasma is injected into the inner magnetosphere, it is expected to take up the motion of the ambient plasma. However, it has been observed in previous releases at moderate altitudes that the cloud preserved its momentum for some time following the release and that parts of the cloud peeled off from the main cloud presumable due to the action of an instability. As one moves outward into the magnetosphere, the mirror force becomes less dominant and the initial conditions following a release are dominated by the formation of a diamagnetic cavity since the initial plasma pressure from the injected Ba ions is greater than the magnetic field energy density. A previous high-altitude release (31,300 km) showed this to be the case initially, but at later times there was evidence for acceleration of the Ba plasma to velocities corresponding to 60,000 K. This effect is not explained. This series of experiments is therefore designed to inject plasma clouds into the magnetosphere under widely varying conditions of magnetic field strength and ambient plasma density. In this way the coupling of injected clouds to the ambient plasma and magnetic field, the formation of striations due to instabilities, and possible heating and acceleration of the injected Ba plasma can be studied over a wide range of magnetosphere parameters. Adding to the scientific yield will be the availability of measurements for the DOD/SPACERAD instruments which can monitor plasma parameters, electric and magnetic fields, and waves before, during and after the releases.

  14. The exterior tidal potential acting on a satellite. [satellite orbits/satellite perturbation - gravitation effects

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1975-01-01

    A theory is presented that points out the existence of several long period and 'cross effects' in the coefficients in the expansion of the geopotential and in the motion of satellites. The tidal potential, defined as small periodic variations in the geopotential, was calculated. The influence of these geopotential variations on satellite perturbation is examined. Spherical harmonics were employed.

  15. Satellite Derived Earth Surface Temperatures: a Crop Assessment Tool.

    NASA Astrophysics Data System (ADS)

    Crosiar, Christy Lynn

    The data for this research consist of the following: 23 days of NOAA/AVHRR satellite data; AgRISTARS enumerator data (or ground truth data) for 26 counties in three midwestern states (Iowa, Nebraska and North Dakota) and radiosonde observations for nine upper air stations, producing an 8 state coverage. The objectives of this research are threefold: (1) to develop a regression model to estimate maximum shelter temperature, (2) to develop a method to assess crop conditions and (3) to determine the variability within a scan line due to changes in optical depth and/or scan angle. The regression model uses three independent variables derived from satellite data to predict maximum shelter temperature. The first independent variable is the satellite's first estimate of temperature, the channel 4 effective temperature. The second independent variable is the difference in the amount of radiation received by the satellite's two thermal channels (4 and 5) serving as a measure of the water vapor in the atmosphere. The third independent variable, path length, uses the pixel position within the scan line to calculate the viewing angle from nadir. This approach resulted in a good R^2 of.65. Three reasons to explain why this R ^2 is not stronger are as follows: (1) a known temperature difference between satellite and shelter temperature, (2) unregistered satellite data--the latitude and longitude of the satellite data are not the location of the shelter and (3) comparison of an area averaged temperature (satellite data) to a point source (shelter) measurement are two different values. The second objective is using satellite data, during the heading and flowering period, combined with the ground truth data or the enumerator data obtained through the AgRISTARS program to determine crop stress. Using two regression models, two satellite temperature indices are used as predictors of a ratio in yield. Statistically significant relationships exist for soybeans and sunflowers. The third

  16. Satellite-based Tropical Cyclone Monitoring Capabilities

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  17. The Galilean Satellites

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this 'family portrait,' the four Galilean Satellites are shown to scale. These four largest moons of Jupiter shown in increasing distance from Jupiter are (left to right) Io, Europa, Ganymede, and Callisto.

    These global views show the side of volcanically active Io which always faces away from Jupiter, icy Europa, the Jupiter-facing side of Ganymede, and heavily cratered Callisto. The appearances of these neighboring satellites are amazingly different even though they are relatively close to Jupiter (350,000 kilometers for Io; 1, 800,000 kilometers for Callisto). These images were acquired on several orbits at very low 'phase' angles (the sun, spacecraft, moon angle) so that the sun is illuminating the Jovian moons from completely behind the spacecraft, in the same way a full moon is viewed from Earth. The colors have been enhanced to bring out subtle color variations of surface features. North is to the top of all the images which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    Io, which is slightly larger than Earth's moon, is the most colorful of the Galilean satellites. Its surface is covered by deposits from actively erupting volcanoes, hundreds of lava flows, and volcanic vents which are visible as small dark spots. Several of these volcanoes are very hot; at least one reached a temperature of 2000 degrees Celsius (3600 degrees Fahrenheit) in the summer of 1997. Prometheus, a volcano located slightly right of center on Io's image, was active during the Voyager flybys in 1979 and is still active as Galileo images were obtained. This global view was obtained in September 1996 when Galileo was 485,000 kilometers from Io; the finest details that can be discerned are about 10 km across. The bright, yellowish and white materials located at equatorial latitudes are believed to be composed of sulfur and sulfur dioxide. The polar caps are darker and covered by a redder material.

    Europa has a very different surface from its

  18. The Galilean Satellites

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this 'family portrait,' the four Galilean Satellites are shown to scale. These four largest moons of Jupiter shown in increasing distance from Jupiter are (left to right) Io, Europa, Ganymede, and Callisto.

    These global views show the side of volcanically active Io which always faces away from Jupiter, icy Europa, the Jupiter-facing side of Ganymede, and heavily cratered Callisto. The appearances of these neighboring satellites are amazingly different even though they are relatively close to Jupiter (350,000 kilometers for Io; 1, 800,000 kilometers for Callisto). These images were acquired on several orbits at very low 'phase' angles (the sun, spacecraft, moon angle) so that the sun is illuminating the Jovian moons from completely behind the spacecraft, in the same way a full moon is viewed from Earth. The colors have been enhanced to bring out subtle color variations of surface features. North is to the top of all the images which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    Io, which is slightly larger than Earth's moon, is the most colorful of the Galilean satellites. Its surface is covered by deposits from actively erupting volcanoes, hundreds of lava flows, and volcanic vents which are visible as small dark spots. Several of these volcanoes are very hot; at least one reached a temperature of 2000 degrees Celsius (3600 degrees Fahrenheit) in the summer of 1997. Prometheus, a volcano located slightly right of center on Io's image, was active during the Voyager flybys in 1979 and is still active as Galileo images were obtained. This global view was obtained in September 1996 when Galileo was 485,000 kilometers from Io; the finest details that can be discerned are about 10 km across. The bright, yellowish and white materials located at equatorial latitudes are believed to be composed of sulfur and sulfur dioxide. The polar caps are darker and covered by a redder material.

    Europa has a very different surface from its

  19. Second-degree Stokes coefficients from multi-satellite SLR

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Müller, Horst; Gerstl, Michael; Štefka, Vojtěch; Bouman, Johannes; Göttl, Franziska; Horwath, Martin

    2015-09-01

    The long wavelength part of the Earth's gravity field can be determined, with varying accuracy, from satellite laser ranging (SLR). In this study, we investigate the combination of up to ten geodetic SLR satellites using iterative variance component estimation. SLR observations to different satellites are combined in order to identify the impact of each satellite on the estimated Stokes coefficients. The combination of satellite-specific weekly or monthly arcs allows to reduce parameter correlations of the single-satellite solutions and leads to alternative estimates of the second-degree Stokes coefficients. This alternative time series might be helpful for assessing the uncertainty in the impact of the low-degree Stokes coefficients on geophysical investigations. In order to validate the obtained time series of second-degree Stokes coefficients, a comparison with the SLR RL05 time series of the Center of Space Research (CSR) is done. This investigation shows that all time series are comparable to the CSR time series. The precision of the weekly/monthly and coefficients is analyzed by comparing mass-related equatorial excitation functions with geophysical model results and reduced geodetic excitation functions. In case of , the annual amplitude and phase of the DGFI solution agrees better with three of four geophysical model combinations than other time series. In case of , all time series agree very well to each other. The impact of on the ice mass trend estimates for Antarctica are compared based on CSR GRACE RL05 solutions, in which different monthly time series are used for replacing. We found differences in the long-term Antarctic ice loss of Gt/year between the GRACE solutions induced by the different SLR time series of CSR and DGFI, which is about 13 % of the total ice loss of Antarctica. This result shows that Antarctic ice mass loss quantifications must be carefully interpreted.

  20. Concept and implementation of the Globalstar mobile satellite system

    NASA Technical Reports Server (NTRS)

    Schindall, Joel

    1995-01-01

    Globalstar is a satellite-based mobile communications system which provides quality wireless communications (voice and/or data) anywhere in the world except the polar regions. The Globalstar system concept is based upon technological advancements in Low Earth Orbit (LEO) satellite technology and in cellular telephone technology, including the commercial application of Code Division Multiple Access (CDMA) technologies. The Globalstar system uses elements of CDMA and Frequency Division Multiple Access (FDMA), combined with satellite Multiple Beam Antenna (MBA) technology and advanced variable-rate vocoder technology to arrive at one of the most efficient modulation and multiple access systems ever proposed for a satellite communications system. The technology used in Globalstar includes the following techniques in obtaining high spectral efficiency and affordable cost per channel: (1) CDMA modulation with efficient power control; (2) high efficiency vocoder with voice activity factor; (3) spot beam antenna for increased gain and frequency reuse; (4) weighted satellite antenna gain for broad geographic coverage; (5) multisatellite user links (diversity) to enhance communications reliability; and (6) soft hand-off between beams and satellites. Initial launch is scheduled in 1997 and the system is scheduled to be operational in 1998. The Globalstar system utilizes frequencies in L-, S- and C-bands which have the potential to offer worldwide availability with authorization by the appropriate regulatory agencies.

  1. Toward a new generation of satellite surface products?

    NASA Astrophysics Data System (ADS)

    Aires, F.; Prigent, C.

    2006-11-01

    Despite the abundance and variety of remote sensing measurements, land surface characterization from satellite observations is still very challenging. The links between the three sources of surface information, namely the satellite observations, the in situ measurements, and the land surface model outputs, are complex. Innovative techniques have to be developed to merge these information sources and optimize the use of satellite measurements for better surface products and more predictability. Concepts such as multi-instrument/multiparameter retrieval algorithms are discussed, as well as the synergetic use of satellite observations, model outputs, and in situ data. The need for careful satellite calibration is stressed, and the scaling problem is emphasized. Recent results are reviewed to indicate what the land surface remote sensing problems are and how they might be attacked. Two concrete applications are presented: an "all weather" retrieval of surface skin temperature from combined microwave and infrared observations and a soil moisture analysis from the merging of multisatellite observations and land surface model outputs. This paper is intended to stimulate debates and collaborations between the land surface modelers and the satellite remote sensing community for the design of the next generation of land surface products.

  2. Statistical analysis and modelling of small satellite reliability

    NASA Astrophysics Data System (ADS)

    Guo, Jian; Monas, Liora; Gill, Eberhard

    2014-05-01

    This paper attempts to characterize failure behaviour of small satellites through statistical analysis of actual in-orbit failures. A unique Small Satellite Anomalies Database comprising empirical failure data of 222 small satellites has been developed. A nonparametric analysis of the failure data has been implemented by means of a Kaplan-Meier estimation. An innovative modelling method, i.e. Bayesian theory in combination with Markov Chain Monte Carlo (MCMC) simulations, has been proposed to model the reliability of small satellites. An extensive parametric analysis using the Bayesian/MCMC method has been performed to fit a Weibull distribution to the data. The influence of several characteristics such as the design lifetime, mass, launch year, mission type and the type of satellite developers on the reliability has been analyzed. The results clearly show the infant mortality of small satellites. Compared with the classical maximum-likelihood estimation methods, the proposed Bayesian/MCMC method results in better fitting Weibull models and is especially suitable for reliability modelling where only very limited failures are observed.

  3. Security Concepts for Satellite Links

    NASA Astrophysics Data System (ADS)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  4. Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package

    NASA Technical Reports Server (NTRS)

    Masunaga, Hirohiko; Matsui, Toshihisa; Tao, Wei-Kuo; Hou, Arthur Y.; Kummerow, Christian D.; Nakajima, Teruyuki; Bauer, Peter; Olson, William S.; Sekiguchi, Miho; Nakajima, Teruyuki

    2010-01-01

    Several multisensor simulator packages are being developed by different research groups across the world. Such simulator packages [e.g., COSP , CRTM, ECSIM, RTTO, ISSARS (under development), and SDSU (this article), among others] share overall aims, although some are targeted more on particular satellite programs or specific applications (for research purposes or for operational use) than others. The SDSU or Satellite Data Simulator Unit is a general-purpose simulator composed of Fortran 90 codes and applicable to spaceborne microwave radiometer, radar, and visible/infrared imagers including, but not limited to, the sensors listed in a table. That shows satellite programs particularly suitable for multisensor data analysis: some are single satellite missions carrying two or more instruments, while others are constellations of satellites flying in formation. The TRMM and A-Train are ongoing satellite missions carrying diverse sensors that observe clouds and precipitation, and will be continued or augmented within the decade to come by future multisensor missions such as the GPM and Earth-CARE. The ultimate goals of these present and proposed satellite programs are not restricted to clouds and precipitation but are to better understand their interactions with atmospheric dynamics/chemistry and feedback to climate. The SDSU's applicability is not technically limited to hydrometeor measurements either, but may be extended to air temperature and humidity observations by tuning the SDSU to sounding channels. As such, the SDSU and other multisensor simulators would potentially contribute to a broad area of climate and atmospheric sciences. The SDSU is not optimized to any particular orbital geometry of satellites. The SDSU is applicable not only to low-Earth orbiting platforms as listed in Table 1, but also to geostationary meteorological satellites. Although no geosynchronous satellite carries microwave instruments at present or in the near future, the SDSU would be

  5. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  6. Use of communications. [satellite communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the field of satellite communications is reviewed, and useful services which may be provided by future satellite communications systems are considered. Recommendations are made with regard to mobile communications for use on land and at sea, position determination, mineral and energy exploration, the possibility of using electronic means to assist in main delivery, education and health-care experiments, and the use of satellite telecommunications to enhance the quality of life in rural areas by making available a full range of educational and entertainment programs. The needs of the amateur radio community are also considered.

  7. Progress in satellite tracking cranes

    USGS Publications Warehouse

    Ellis, D.H.; Smith, D.G.; Olsen, G.H.; Fuller, M.R.; Landfried, S.E.; Higuchi, H.; Vermillion, C.H.

    1992-01-01

    We review the history of tracking cranes with satellite telemetry and identify some of the difficulties in designing satellite transmitters and harnesses for cranes. Miniaturization of these transmitters and a plethora of harnessing experiments since 1989 allow us to recommend limited application of this technology to all species of cranes. We are still uncertain, however, if cranes harnessed with satellite telemetry devices are able to reproduce after migration. Because of this uncertainty, we urge caution in the use of this technology, especially with breeding adults in severely endangered populations. This manuscript also describes continuing research needs.

  8. Geometry of a mapping satellite.

    USGS Publications Warehouse

    Snyder, J.P.

    1982-01-01

    The proposed mapping satellite Mapsat is to consist of fixed fore, vertical, and aft linear detector arrays, any two of which may be used simultaneously to obtain digital images for one- dimensional stereo correlation. The satellite attitude may be varied according to Fourier series to enable a given detector on one array to follow closely the groundtrack sensed by the corresponding detector on another array throughout the orbit. These tracking errors are negligible for a satellite stable within anticipated ranges. The required computations have been programmed in FORTRAN IV. -Author

  9. The economics of satellite retrieval

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Greenberg, Joel S.

    1988-01-01

    The economics of space operations with and without the Space Station have been studied in terms of the financial performance of a typical communications-satellite business venture. A stochastic Monte-Carlo communications-satellite business model is employed which includes factors such as satellite configuration, random and wearout failures, reliability of launch and space operations, stand-down time resulting from failures, and insurance by operation. Financial performance impacts have been evaluated in terms of the magnitude of investment, net present value, and return on investment.

  10. The french educational satellite arsene

    NASA Astrophysics Data System (ADS)

    Danvel, M.; Escudier, B.

    ARSENE (Ariane, Radio-amateur, Satellite pour l'ENseignement de l'Espace) is a telecommunications satellite for Amateur Space Service. Its main feature is that more than 100 students from French engineering schools and universities have been working since 1979 for definition phase and satellite development. The highest IAF awards has been obtained by "ARSENE students" in Tokyo (1980) and Rome (1981). The French space agency, CNES and French aerospace industries are supporting the program. The European Space Agency offered to place ARSENE in orbit on the first Ariane mark IV launch late 1985.

  11. Planetary satellites - an update

    NASA Astrophysics Data System (ADS)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  12. Hubble Space Telescope satellite

    NASA Technical Reports Server (NTRS)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  13. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  14. CEOS Committee on Earth Observations Satellites consolidated report, 1992

    NASA Astrophysics Data System (ADS)

    1992-11-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  15. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  16. Processing Satellite Data for Slant Total Electron Content Measurements

    NASA Technical Reports Server (NTRS)

    Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)

    2016-01-01

    A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.

  17. Interferometric imaging of geostationary satellites

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Baines, E. K.; Hindsley, R. B.; Schmitt, H. R.; Restaino, S. R.; Jorgensen, A. M.; Mozurkewich, D.

    2012-06-01

    Even the longest geosatellite, at 40 m, subtends only 0.2 arcsec (1 microradian). Determining structure and orientation with 10 cm resolution requires a 90 m telescope at visual wavelengths, or an interferometer. We de- scribe the application of optical interferometry to observations of complex extended targets such as geosatellites, and discuss some of its challenges. We brie y describe our Navy Optical Interferometer (NOI) group's eorts toward interferometric observations of geosatellites, including the rst interferometric detection of a geosatellite. The NOI observes in 16 spectral channels (550{850 nm) using up to six 12-cm apertures, with baselines (separa- tions between apertures) of 16 to 79 m. We detected the geosatellite DirecTV-9S during glint seasons in March 2008 and March 2009, using a single 16 m baseline (resolution 1:6 m). Fringes on a longer baseline were too weak because the large-scale structure was over-resolved. The fringe strengths are consistent with a combination of two size scales, 1:3 m and & 3:5 m. Our near term NOI work is directed toward observing geosatellites with three or more 10 to 15 m baselines, using closure phase measurements to remove atmospheric turbulence eects and coherent data averaging to increase the SNR. Beyond the two- to three-year time frame, we plan to install larger apertures (1.4 and 1.8 m), allowing observations outside glint season, and to develop baseline bootstrap- ping, building long baselines from chains of short baselines, to avoid over-resolution while increasing maximum resolution. Our ultimate goal is to develop the design parameters for dedicated satellite imaging interferometry.

  18. Satellite orbit considerations for a global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.; Gibson, Gary G.; Suttles, John T.; Buglia, James J.; Taback, Israel

    1991-01-01

    A study was conducted to determine satellite orbits for earth observation missions aimed at obtaining data for assessing data global climate change. A multisatellite system is required to meet the scientific requirements for temporal coverage over the globe. The best system consists of four sun-synchronous satellites equally spaced in local time of equatorial crossing. This system can obtain data every three hours for all regions. Several other satellite systems consisting of combinations of sun-synchronous orbits and either the Space Station Freedom or a mid-altitude equatorial satellite can provide three to six hour temporal coverage, which is sufficient for measuring many of the parameters required for the global change monitoring mission. Geosynchronous satellites are required to study atmospheric and surface processes involving variations on the order of a few minutes to an hour. One or two geosynchronous satellites can be relocated in longitude to study processes over selected regions of earth.

  19. Satellite orbit considerations for a global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.; Gibson, Gary G.; Suttles, John T.; Buglia, James J.; Taback, Israel

    1991-01-01

    A study was conducted to determine satellite orbits for Earth observation missions aimed at obtaining data for assessing global climate change. A multisatellite system is required to meet the scientific requirements for temporal coverage over the globe. The best system consists of four Sun-synchronous satellites equally spaced in local time of equatorial crossing. This system can obtain data every three hours for all regions. Several other satellite systems consisting of combinations of Sun-synchronous orbits and either the Space Station Freedom or a mid-latitude equatorial satellite can provide three to six hour temporal coverage, which is sufficient for measuring many of the parameters required for the global change monitoring mission. Geosynchronous satellites are required to study atmospheric and surface processes involving variations on the order of a few minutes to an hour. Two or more geosynchronous satellites can be relocated in longitude to study processes over selected regions of Earth.

  20. NASA's TRMM Satellite Captures Cosme

    NASA Video Gallery

    On Tuesday, June 25, Cosme became a hurricane. NASA's TRMM satellite flew over Cosme at 9:46 a.m. EDT shortly before it was upgraded to a hurricane. A rainfall analysis from TRMM's Microwave Imager...

  1. Satellite Movie Shows Erika Dissipate

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from Aug. 27 to 29 shows Tropical Storm Erika move through the Eastern Caribbean Sea and dissipate near eastern Cuba. ...

  2. Satellite Technology for Education Distribution

    ERIC Educational Resources Information Center

    Campbell, Jack M.

    1974-01-01

    The use of satellite technology to bring much needed information, such as career education messages to remote areas of Rocky Mountain States is the subject of this paper. Both software and hardware aspects of this demonstration project are discussed. (Author)

  3. TRMM Satellite Video of Amara

    NASA Video Gallery

    TRMM satellite on Dec. 16, at 2043 UTC showed scattered bands of moderate to heavy rain falling at a rate of over 76.9 mm/3 inches per hour spiraling into Amara's center. Cloud tops reached 13km/~8...

  4. Earth Resources Technology Satellite (ERTS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Earth Resources Technology Satellite (ERTS) mock-up in a space chamber test at General Electric's Space Division. The ERTS program represented a concentrated effort to observe and monitor the limited resources of the Earth, in order to best conserve and utilize the resources in support of a burgeoning world population. The first ERTS was launched in 1972 and was later named Land Remote-Sensing Satellite (Landsat), to better represent the civil satellite program's prime emphasis on remote sensing of land resources. Multiple sensors survey and relay back masses of data in various ways from the Landsat. NASA has built 7 Land Remote Sensing Satellites, which have helped agricultural experts pick up underutilized land areas and new prospects for land use through irrigation. It has also assisted in pinpointing the spread of crop disease and in charting new uses of the sea for oceanographers.

  5. Satellite tracking of threatened species

    USGS Publications Warehouse

    Williams, M.; Lunsford, A.; Ellis, D.; Robinson, J.; Coronado, P.; Campbell, W.

    1998-01-01

    In 1990, a joint effort of two U.S. federal agencies, NASA Goddard Space Flight Center (GSFC) and the Patuxent Wildlife Research Center, began. We initially joined forces in a project that used satellite telemetry to discover the winter home of a tiny dwindling population of Siberian Cranes. Since then several projects have emerged, and a web site was created to follow some of these activities. This web site is called the Satellite Tracking of Threatened Species and its location is http://sdcd.gsfc.nasa.gov/ISTO/satellite_tracking. It describes the overall program, and links you to three subsections that describe the projects in more detail: Satellite Direct Readout, Birdtracks, and Birdworld.

  6. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g., particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  7. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g. particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  8. Cloudsat Satellite Images of Amanda

    NASA Video Gallery

    NASA's CloudSat satellite flew over Hurricane Amanda on May 25, at 5 p.m. EDT and saw a deep area of moderate to heavy-moderate precipitation below the freezing level (where precipitation changes f...

  9. Reduced domestic satellite orbit spacing

    NASA Astrophysics Data System (ADS)

    Sharp, G. L.

    The demand for services provided by communications satellites in geostationary orbit is growing, and problems arise with respect to the required increase in capacity. One approach for providing such an increase involves the employment of more satellites operating at smaller orbital spacings. The present investigation is concerned with the results of technical studies conducted by the Federal Communications Commission (FCC) to determine the feasibility of reducing orbital spacings between U.S. 'domestic fixed satellites' (domsats). Attention is given to details regarding the usable orbital arc, an adjacent satellite interference model, antenna sidelobe patterns, a single entry analysis, a 4/6 GHz aggregate analysis, results for the 4/6 GHz bands, results for the 12/14 GHz bands, data services, voice services, video reception, and high power spot beams.

  10. Visual Data Analysis for Satellites

    NASA Technical Reports Server (NTRS)

    Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick

    2008-01-01

    The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.

  11. Taos: A low cost satellite

    NASA Astrophysics Data System (ADS)

    Jung, P.

    Aerospatiale, under contract to CNES, has studied a new satellite based system with the double mission of mobile tracking and paging. This is called Taos. A constellation of five Taos satellites will allow positioning with an accuracy of 1 km, as well as small message transmission with a maximum time delay of 2 hours. Using a low earth orbit, Taos will have a small power budget, with the attendant gains in dimensions, mass, and eventually cost. The emergence of such class of lightsats has been fostered by the progress of electronics, as well as the new small launchers now being offered. Furthermore, the market is clearly hungry for ever more worldwide data collection. This paper describes the Taos system of satellite and ground segment, for which a primary goal will be a significant reduction of the recurring price. Weighing 152 kg, each satellite will have a power of 270 W.

  12. Satellite Imagery Via Personal Computer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Automatic Picture Transmission (APT) was incorporated by NASA in the Tiros 8 weather satellite. APT included an advanced satellite camera that immediately transmitted a picture as well as low cost receiving equipment. When an advanced scanning radiometer was later introduced, ground station display equipment would not readily adjust to the new format until GSFC developed an APT Digital Scan Converter that made them compatible. A NASA Technical Note by Goddard's Vermillion and Kamoski described how to build a converter. In 1979, Electro-Services, using this technology, built the first microcomputer weather imaging system in the U.S. The company changed its name to Satellite Data Systems, Inc. and now manufactures the WeatherFax facsimile display graphics system which converts a personal computer into a weather satellite image acquisition and display workstation. Hardware, antennas, receivers, etc. are also offered. Customers include U.S. Weather Service, schools, military, etc.

  13. Commercial satellite broadcasting for Europe

    NASA Astrophysics Data System (ADS)

    Forrest, J. R.

    1988-12-01

    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  14. Satellite Teleconferencing in the Caribbean.

    ERIC Educational Resources Information Center

    Sankar, Hollis C.

    1985-01-01

    Discusses the need for, and the development, use, and future trends of, the University of the West Indies Distance Teaching Experiment, which utilizes telephone and communications satellite technology teleconferencing to extend educational opportunities to the peoples of the Caribbean. (MBR)

  15. Satellite observation of effusive volcanism

    USGS Publications Warehouse

    Williams, R.S.; Friedman, J.D.

    1970-01-01

    Infrared emission from an active effusive volcanic eruption on Surtsey, Vestmannaeyjar, Iceland, was recorded by airborne and satellite infrared systems at irregular intervals between 19 August and 3 October 1966. Ground and lava temperature measurements and volumetric lava outflow data permitted a comparison to be made between total thermal-energy yield and radiant emission recorded by the satellite system. The Nimbus HRIR recorded radiant emission at a level of about 3% of the estimated total thermal yield.

  16. Legal aspects of satellite teleconferencing

    NASA Technical Reports Server (NTRS)

    Smith, D. D.

    1971-01-01

    The application of satellite communications for teleconferencing purposes is discussed. The legal framework within which such a system or series of systems could be developed is considered. The analysis is based on: (1) satellite teleconferencing regulation, (2) the options available for such a system, (3) regulatory alternatives, and (4) ownership and management aspects. The system is designed to provide a capability for professional education, remote medical diagnosis, business conferences, and computer techniques.

  17. Intelsat satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The launch schedule for Intelsat 5-B, the prime Intelsat satellite to provide communications services between the Americas, Europe, the Middle East, and Africa, is presented. The planned placement of the satellite into an elliptical transfer orbit, and circularization of the orbit at geosynchronous altitude over the equator are described. Characteristics of the Atlas Centaur launch vehicle, AC-56, are given. The launch operation is summarized and the launch sequence presented. The Intelsat team and contractors are listed.

  18. The data distribution satellite system

    NASA Technical Reports Server (NTRS)

    Bruno, Ronald C.; Weinberg, Aaron

    1991-01-01

    The Data Distributed Satellite (DDS) will be capable of providing the space research community with inexpensive and easy access to space payloads and space data. Furthermore, the DDS is shown to be a natural outgrowth of advances and evolution in both NASA's Space Network and commercial satellite communications. The roadmap and timescale for this evolution is described along with key demonstrations, proof-of-concept models, and required technology development that will support the projected system evolution toward the DDS.

  19. Satellite lifetime routine user's manual

    NASA Technical Reports Server (NTRS)

    Everett, H. U.; Myler, T. R.

    1975-01-01

    A FORTRAN coded computer program which determines secular variations in mean orbital elements of earth satellites and the lifetime of the orbit is described. The dynamical model treats a point mass satellite subject to solar and lunar disturbing gravitational fields, second, third and fourth harmonics of the earth's oblate potential, earth's atmospheric drag, and solar radiation pressure. Each of these disturbing functions may be selectively simulated. Data preparation instructions, a sample problem, and definitions of output quantities are included.

  20. Hubless satellite communications networks

    NASA Technical Reports Server (NTRS)

    Robinson, Peter Alan

    1994-01-01

    Frequency Comb Multiple Access (FCMA) is a new combined modulation and multiple access method which will allow cheap hubless Very Small Aperture Terminal (VSAT) networks to be constructed. Theoretical results show bandwidth efficiency and power efficiency improvements over other modulation and multiple access methods. Costs of the VSAT network are reduced dramatically since a hub station is not required.

  1. Satellite observations of ethylene

    NASA Astrophysics Data System (ADS)

    Dolan, W.; Payne, V.; Kulawik, S. S.; Bowman, K. W.

    2015-12-01

    Ethylene (C2H4) is a trace gas commonly associated with boreal fire plumes and the petrochemical industry. It has a short lifetime (~1-2 days) in the troposphere due to its reaction with OH. Chemical destruction of ethylene in the atmosphere leads to the production of ozone precursors such as carbon monoxide (CO) and formaldehyde. The Tropospheric Emission Spectrometer (TES) is a Fourier Transform Spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution. Trace gas products retrieved routinely from TES spectra include O3, CO, H2O, HDO, CH4, NH3, HCOOH, CH3OH, with OCS and PAN to be included in the next data release. The TES spectra also includes a wealth of untapped information about other trace gasses including ethylene. Ethylene was first observed in TES spectra by Alvarado et al. (2011), though it has yet to be developed into an operational product. Our study focuses on the detection and initial quantitative estimates of ethylene in TES special observations taken in support of the 2008 ARCTAS mission. Initial observations of HCN in the spectra may provide a way to distinguish between fire plume and petrochemical derived ethylene. Results indicate a correlation between ethylene and CO in fresh fire plumes but not in older plumes, consistent with the gas's short lifetime. The approach adopted here to detect ethylene in the TES 2008 ARCTAS special observations can easily be expanded to larger datasets, including those from other thermal infrared sounders as well as to other trace gases.

  2. Satellite medical centers project

    NASA Astrophysics Data System (ADS)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  3. ARJIS satellite demonstration project

    NASA Astrophysics Data System (ADS)

    Severance, Steve; Williams, Carl

    2005-06-01

    In 2003, the California Space Authority (CSA) was provided funding by the U. S. Congress through the Defense Appropriations Act to develop a project that would demonstrate the U.S. space enterprise capability that would contribute to the effectiveness of those engaged in Homeland Security. The project was given broad latitude in selecting the area of Homeland Security to be addressed and the nature of the space technology to be applied. CSA became aware of a nascent law enforcement data-sharing project in the San Diego region known as the Automated Regional Justice Information System (ARJIS). First developed by the police departments in San Diego, ARJIS is an innovative system that shares criminal justice information among 50 federal, state, and local agencies. ARJIS was completing a pilot project that enabled officers to receive information on handheld computers, which was transmitted wirelessly through cellular networks. The accessed information came from several databases that collectively contained the entire region's crime and arrest reports, traffic citations, and incidents, as well as state and county wants and warrants. The fundamental limitations that plague all cellular-based devices caught CSA's attention and resulted in a cooperative effort to harden the communications link between the patrol officer and critical data. The principal goal of the SATCOM development task was to create a proof-of-concept application that would use SATCOM links to augment the current ARJIS handheld wireless (cellular) capability. The successful technical demonstration and the positive support for satellite communications from the law enforcement community showed that this project filled a need-both for improved information sharing and for highly reliable communications systems.

  4. A multipurpose satellite ejection system

    NASA Technical Reports Server (NTRS)

    Moore, Michael B.

    1987-01-01

    A design is presented for a pneumatic ejection system capable of ejecting a spin stabilized satellite from the cargo bay of space vehicles. This system was orginally designed for use on the Spacelab 6 shuttle mission, but is now being considered for use with expendable rockets for launching satellites. The ejection system was designed to launch a 150 lb satellite at an initial ejection velocity of 32 ft/sec with a spin rate of 30 rev/min. The ejection system consists of a pneumatic cylinder, satellite retaining mechanism, and bearing assembly to allow the satellite to rotate during the spin up phase. As the cylinder is pressurized rapidly causing movement of the actuation piston, the mechanism automatically releases the spinning satellite by retracting a pneumatic locking pin and three spring loaded holddown pins. When the piston reaches the end of its stroke, it encounters a crushable aluminum honeycomb shock absorber which decelerates the piston and retaining mechanism. The assembly is designed for multiple uses except for the crushable shock absorber and pyrotechnic valves. The advantage of the design is discussed and patent no. and date given.

  5. The American mobile satellite system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    During 1989, the American Mobile Satellite Corporation (AMSC) was authorized to construct, launch, and operate satellites to provide mobile satellite services (MSS) to the U.S. and Puerto Rico. The AMSC has undertaken three major development programs to bring a full range of MSS services to the U.S. The first program is the space segment program that will result in the construction and launch of the satellites as well as the construction and installation of the supporting ground telemetry and command system. The second segment will result in the specification, design, development, construction, and installation of the Network Control System necessary for managing communications access to the satellites, and the specification and development of ground equipment for standard circuit switched and packet switched communications services. The third program is the Phase 1 program to provide low speed data services within the U.S. prior to availability of the AMSC satellites and ground segment. Described here are the present status and plans for these three programs as well as an update on related business arrangements and regulatory matters.

  6. Odyssey personal communications satellite system

    NASA Technical Reports Server (NTRS)

    Spitzer, Christopher J.

    1993-01-01

    The spectacular growth of cellular telephone networks has proved the demand for personal communications. Large regions of the world are too sparsely populated to be economically served by terrestrial cellular communications. Since satellites are well suited to this application, TRW filed with the FCC on May 31, 1993 for the Odyssey construction permit. Odyssey will provide high quality wireless communication services worldwide from satellites. These services will include: voice, data, paging, and messaging. Odyssey will be an economical approach to providing communications. A constellation of 12 satellites will be orbited in three, 55 deg. inclined planes at an altitude of 10,354 km to provide continuous coverage of designated regions. Two satellites will be visible anywhere in the world at all times. This dual visibility leads to high line-of-sight elevation angles, minimizing obstructions by terrain, trees and buildings. Each satellite generates a multibeam antenna pattern that divides its coverage area into a set of contiguous cells. The communications system employs spread spectrum CDMA on both the uplinks and downlinks. This signaling method permits band sharing with other systems and applications. Signal processing is accomplished on the ground at the satellite's 'Gateway' stations. The 'bent pipe' transponders accommodates different regional standards, as well as signaling changes over time. The low power Odyssey handset will be cellular compatible. Multipath fade protection is provided in the handset.

  7. Satellites You Can See for Homework

    ERIC Educational Resources Information Center

    Broderick, Stephen

    2012-01-01

    Artificial satellites are easily observed most nights when the weather is fine. The website called "Heavens Above" at www.heavens-above.com will help locate these satellites flying over one's location. It also includes how bright they will appear. The direction of travel of each satellite in the night sky also indicates the type of satellite. For…

  8. Analysis of Satellite and Sub-Orbital Measurements

    NASA Technical Reports Server (NTRS)

    Gleason, James (Technical Monitor); Martin, Randall V.

    2004-01-01

    The objective of this project is to support the INTEX aircraft mission by developing experience in the integrated analysis of existing sub-orbital observations and satellite observations with numerical models. Specific tasks include providing guidance to INTEX by identifying discrepancies in satellite observations with (1) in situ measurements, (2) bottom-up emission inventories of nitrogen oxides and volatile organic compounds, and (3) model calculations of the export of pollution from North America to the global atmosphere. An important focus area is developing and improving bottom-up emission inventories by combining top-down and bottom-up information.

  9. Development of a composite (K1100/CE) satellite bus structure

    SciTech Connect

    Hoffman, C.N.; Snyder, B.A.; Dean, M.W.

    1996-12-31

    This paper describes the use of high-performance composite materials (K1100 graphite fiber/cyanate ester matrix [Gr/CE]) for the structural design of a full-capability small satellite built for the Navy Geosat Follow-On (GFO) Program. A challenging combination of mission requirements and program budget constraints led to the production of an advanced technology, multifunctional composite satellite bus. The process started with top-level requirements to derive structural performance, then proceeded through material selection, detail design, and procurement. It culminated in a successful test program.

  10. Handbook of satellite pointing errors and their statistical treatment

    NASA Astrophysics Data System (ADS)

    Weinberger, M. C.

    1980-03-01

    This handbook aims to provide both satellite payload and attitude control system designers with a consistent, unambiguous approach to the formulation, definition and interpretation of attitude pointing and measurement specifications. It reviews and assesses the current terminology and practices, and from them establishes a set of unified terminology, giving the user a sound basis to understand the meaning and implications of various specifications and requirements. Guidelines are presented for defining the characteristics of the error sources influencing satellite pointing and attitude measurement, and their combination in performance verification.

  11. Galilean satellite ecilpse timings: The 1990-1991 apparition

    NASA Astrophysics Data System (ADS)

    Westfall, John E.

    1994-04-01

    The Association of Lunar and Planetary Observers (ALPO) Jupiter Section received 802 visual timings of the eclipses of Jupiter's four Galilean satellites from 82 observers for the 1990/91 Apparition, together with 15 CCD and video timings from two observers. For each satellite, eclipse visual disappearance and reappearance timings were adjusted for telescope aperture and were then combined for comparison with the Jet Propulsion Laboratory's `E-2' Ephemeris. The observed positions of Io, Europa, and Ganymede fitted the ephermeris well; Callisto appeared to be about 33 seconds `early' in its orbit, but this difference was not statistically significant.

  12. Satellite sound broadcast propagation measurements and system impairments

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.; Golshan, Nasser

    1992-01-01

    An evaluation of the operational characteristics of indoor portable reception of satellite sound reception has identified the nature of UHF and L-band signals' penetration loss in the cases of buildings having intricate spectral and spatial signal structures. These propagation impairments must be mitigated by resort to a combination of link margin, diversity techniques, and/or the efforts of a listener to place the radio (or its antenna) in an advantageous location. Attention is given to cost/performance tradeoffs for a mix of these measures, with a view to Direct Broadcast Satellite Radio system design.

  13. Telemetry Data Collection from Oscar Satellite

    NASA Technical Reports Server (NTRS)

    Haddock, Paul C.; Horan, Stephen

    1998-01-01

    This paper discusses the design, configuration, and operation of a satellite station built for the Center for Space Telemetering and Telecommunications Laboratory in the Klipsch School of Electrical and Computer Engineering Engineering at New Mexico State University (NMSU). This satellite station consists of a computer-controlled antenna tracking system, 2m/70cm transceiver, satellite tracking software, and a demodulator. The satellite station receives satellite,telemetry, allows for voice communications, and will be used in future classes. Currently this satellite station is receiving telemetry from an amateur radio satellite, UoSAT-OSCAR-11. Amateur radio satellites are referred to as Orbiting Satellites Carrying Amateur Radio (OSCAR) satellites as discussed in the next section.

  14. Relativity in Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Ries, John C.

    2009-05-01

    Satellite laser ranging (SLR) is the measurement of the round-trip light time of ultra-short laser pulses to satellites deploying specifically designed retroreflectors. The ranging data are used to determine cm-precision satellite orbits, temporal variations in the Earth's gravity field, mm/yr accuracy determinations of station motion on a global scale, and fundamental physical constants. The SLR stations form an important part of the international network of space geodetic observatories that define and maintain the International Terrestrial Reference System. Starting in 1964, the precision of satellite laser ranging has improved from a few meters to a few mm for the better stations. With a measurement accuracy better than the part-per-billion level, the effects General Relativity must be considered. These include additional perturbations to the orbit dynamics, corrections to the round-trip light-time computation, and fundamental aspects of space-time in the definition of the geocentric reference frame. While these effects are significant, they are generally not large enough to provide useful tests of General Relativity. An important exception, however, is the relativistic prediction of the Lense-Thirring orbit precession, i.e the effect of `frame-dragging’ on the satellite orbit due to the spinning Earth's mass. While the signal is large enough to be easily observed with satellite laser ranging, the Lense-Thirring measurement uncertainty is limited by the knowledge of the even zonal harmonics of the Earth's gravity field that also produce Newtonian secular orbit precessions. However, this problem has been overcome with the dramatically improved models resulting from the joint NASA-DLR Gravity Recovery and Climate Experiment (GRACE) mission. Using laser ranging to the LAGEOS satellites, it is possible to confirm the General Relativity prediction of the Lense-Thirring precession with an uncertainty better than 15%. This research was supported by the National

  15. Using Cell Phones From Satellites

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    2000-01-01

    During the past several years, an interest has grown in using commercial telecommunications techniques to supply Telemetry and Command (T&C) services. Recently, the National Aeronautics and Space Administration (NASA) Space Operations Management Office (SOMO) has outlined plans to utilize satellite-based telecommunications services to support space operations in space missions over the next several decades. NASA currently obtains the bulk of its telecommunications services for earth-orbiting satellites via the existing government-owned and controlled Space Network (SN) system. This system consists of the constellation of Tracking and Data Relay Satellites (TDRS) in Geostationary Earth Orbit (GEO) and the associated ground terminals and communications intrastructure. This system is valuable and effective for scientific satellites costing over one million dollars. However, for smaller satellites, this system becomes problematic due to the cost of transponders and support infrastructure. The nominal transponders for using the TDRS cannot be obtained for a cost in dollars, and size, weight, or power that the 3 Corner Satellite project can afford. For these types of nanosatellite missions, alternatives that fit the mission cost and satellite profiles are needed. In particular, low-cost access using existing commercial infrastructure would be useful to mission planners. In particular, the ability to obtain low data rate T&C services would be especially valuable. The nanosatellites generally have low T&C requirements and therefore would benefit from using commercial services that could operate in the 2400 bps - 9600 bps range, especially if contact times longer than the 5 - 10 minute ground station passes could be found.

  16. Minuteman 2 launched small satellite

    NASA Technical Reports Server (NTRS)

    Chan, Sunny; Hinders, Kriss; Martin, Trent; Mcmillian, Shandy; Sharp, Brad; Vajdos, Greg

    1994-01-01

    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months.

  17. Pulsed Plasma Thruster Technology for Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Oleson, Steven R.; Mcguire, Melissa; Meckel, Nicole J.; Cassady, R. Joseph

    1995-01-01

    Pulsed plasma thrusters (PPT's) offer the combined benefits of extremely low average electric power requirements (1 to 150 W), high specific impulse (approximately 1000 s), and system simplicity derived from the use of an inert solid propellant. Potential applications range from orbit insertion and maintenance of small satellites to attitude control for large geostationary communications satellites. While PPT's have been used operationally on several spacecraft, there has been no new PPT technology development since the early 1970's. As result of the rapid growth in the small satellite community and the broad range of PPT applications, NASA has initiated a development program with the objective of dramatically reducing the PPT dry mass, increasing PPT performance, and demonstrating a flight ready system by October 1997. This paper presents the results of a series of near-Earth mission studies including both primary and auxiliary propulsion and attitude control functions and reviews the status of NASA's on-going development program.

  18. Fade durations in satellite-path mobile radio propagation

    NASA Technical Reports Server (NTRS)

    Schmier, Robert G.; Bostian, Charles W.

    1986-01-01

    Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.

  19. Improving Orbit Determination for Geostationary Satellites via Data Fusion

    NASA Astrophysics Data System (ADS)

    Chan, Joseph; Chazono, Hideshi; Izumiyama, Taku

    2013-08-01

    Intelsat Ltd. (IS), SKY Perfect JSAT Corporation (SJC) and IHI Corporation (IHI) conducted a joint study to evaluate accuracies and error covariance of determined orbits for IS and SJC satellites by using solo optical observed data from IHI optical observation demonstrator, and combined data from tradition ranging data. Optical data has proven to be very useful for space surveillance and close approach monitoring providing improved orbital knowledge of both active and non-active space objects. As satellite operators we are also interested in using optical data to complement our standard ranging measurements to improve our orbit uncertainties and help to resolve and calibrate sensor biases. In the first phase of our join study IHI provided optical observations for both IS and SJC satellites and we will present the multi-objectives of our join study and preliminary results in the orbit comparisons and error estimations from different fusion techniques.

  20. Investigation of environmental perturbations on passive asymmetric satellite

    NASA Technical Reports Server (NTRS)

    Tate, V.

    1976-01-01

    The effects of environmental perturbations on the attitude of a slow tumbling earth-oriented satellite are investigated. The environmental perturbations considered were aerodynamic drag, gravity-gradient, solar radiation pressure, and magnetic torques. The Euler attitude equations were solved numerically for the Skylab spacecraft. Results are presented for both torque-free motion and for cases in which aerodynamic and gravity-gradient torques are acting in a slow tumble mode. Simulations show gravity-gradient effects on satellite momentum to be cyclic and to increase the precession rate of the angular momentum vector about the radius vector. This also tends to align the minor axis along the radius vector. Aerodynamic drag initially decreases angular momentum, slowly precesses the momentum vector about the radius vector, and finally drives the satellite into an unstable mode. Combined gravity-gradient and aerodynamic torques reduce angular momentum and energy, and induce a steady precession rate of the momentum vector about the radius vector.

  1. Do satellites detect trends in surface solar radiation?

    PubMed

    Pinker, R T; Zhang, B; Dutton, E G

    2005-05-01

    Long-term variations in solar radiation at Earth's surface (S) can affect our climate, the hydrological cycle, plant photosynthesis, and solar power. Sustained decreases in S have been widely reported from about the year 1960 to 1990. Here we present an estimate of global temporal variations in S by using the longest available satellite record. We observed an overall increase in S from 1983 to 2001 at a rate of 0.16 watts per square meter (0.10%) per year; this change is a combination of a decrease until about 1990, followed by a sustained increase. The global-scale findings are consistent with recent independent satellite observations but differ in sign and magnitude from previously reported ground observations. Unlike ground stations, satellites can uniformly sample the entire globe. PMID:15879215

  2. A personal communications network using a Ka-band satellite

    NASA Technical Reports Server (NTRS)

    Palmer, Larry C.; Laborde, Enrique; Stern, Alan; Sohn, Philip Y.

    1992-01-01

    The feasibility of a personal communications network using portable terminals that can provide 4.8-kb/s voice communications to a hub station via a Ka-band geosynchronous satellite has been investigated. Tradeoffs are examined so that the combined system of hub and gateway earth stations, the satellite, and the personal terminals can provide a competitive service in terms of cost, availability, and quality. A baseline system that uses a spacecraft with approximately 140 spot beams to cover the contiguous US (CONUS) and 5-W power amplifiers in each beam is described. Satellite access in both the forward and return directions uses frequency-division multiple-access/code-division multiple-access (FDMA/CDMA) with a chip rate of 2.5 Mchip/s.

  3. Autonomous satellite navigation methods using the Global Positioning Satellite System

    NASA Technical Reports Server (NTRS)

    Murata, M.; Tapley, B. D.; Schutz, B. E.

    1982-01-01

    This investigation considers the problem of autonomous satellite navigation using the NAVSTAR Global Positioning System (GPS). The major topics covered include the design, implementation, and validation of onboard navigation filter algorithms by means of computer simulations. The primary errors that the navigation filter design must minimize are computational effects and modeling inaccuracies due to limited capability of the onboard computer. The minimization of the effect of these errors is attained by applying the sequential extended Kalman filter using a factored covariance implementation with Q-matrix or dynamical model compensations. Peformance evaluation of the navigation filter design is carried out using both the CDC Cyber 170/750 computer and the PDP-11/60 computer. The results are obtained assuming the Phase I GPS constellation, consisting of six satellites, and a Landsat-D type spacecraft as the model for the user satellite orbit.

  4. Phoebe and the Icy Saturnian Satellites: Implications for Satellite Origins

    NASA Astrophysics Data System (ADS)

    Mosqueira, I.; Estrada, P. R.

    2004-11-01

    Phoebe's retrograde, eccentric and inclined orbit marks it as an object captured from heliocentric orbit. Accordingly, its composition may be indicative of its origin in the solar nebula. Analogous arguments have been made extensively in connection with the origin of Pluto-Charon (see, e.g., McKinnon et al. 1997) as well as Triton (McKinnon and Mueller 1989). Indeed, the demarcation between nebula and subnebula objects has led a number of workers (see, e.g., Johnson et al. 1987; Lunine et al. 1993; Podolak et al. 1993) to argue that the regular satellites of the giant planets did not derive the bulk of their material directly from heliocentric orbit. The recent Cassini flyby of Phoebe has yielded a mass for this object of GM = 0.5527 ± 0.001 km3/s2 Jacobson et al. 2004 (this conference). Its density of 1.6 g/cm3 indicates a rock to ice ratio of at least 50 % (Porco et al. 2004; Science, to be submitted). Phoebe's high rock/ice ratio when compared to the icy Saturnian satellites reinforces the argument that Phoebe is an object that formed in heliocentric orbit and became captured. Yet, given that it may be misleading to lump together satellites with quite different formation histories, we refine the comparison on the basis of models for regular satellite formation. Because it derives condensables directly from heliocentric orbit and fails to consider planetesimals, the model of Canup and Ward (2002) does not provide a context for understanding such compositional differences. We will therefore discuss two models of satellite formation we are developing, which differ mainly in their treatment of turbulence (decaying vs steady). In both models the inner (located inside Titan's orbit), icy Saturnian satellites represent a second generation of objects. Mosqueira and Estrada (2003a,b) has these satellites forming 104-10^5 years after Titan as the disk became optically thin and water rich due to preferential gas drag loss of silicates as Saturn cooled. On the other hand

  5. Phoebe and the Icy Saturnian Satellites: Implications for Satellite Origins

    NASA Astrophysics Data System (ADS)

    Mosqueira, I.; Estrada, P. R.

    2004-12-01

    Phoebe's retrograde, eccentric and inclined orbit marks it as an object captured from heliocentric orbit. Accordingly, its composition may be indicative of its origin in the solar nebula. Analogous arguments have been made extensively in connection with the origin of Pluto-Charon (see, e.g., McKinnon et al. 1997) as well as Triton (McKinnon and Mueller 1989). Indeed, the demarcation between nebula and subnebula objects has led a number of workers (see, e.g., Johnson et al. 1987; Lunine et al. 1993; Podolak et al. 1993) to argue that the regular satellites of the giant planets did not derive the bulk of their material directly from heliocentric orbit. The recent Cassini flyby of Phoebe has yielded a mass for this object of GM = 0.5527 ± 0.001 km3/s2 Jacobson et al. 2004. Its density of 1.6 g/cm3 indicates a rock to ice ratio of at least 50 % (Porco et al. 2004; Science, to be submitted). Phoebe's high rock/ice ratio when compared to the icy Saturnian satellites reinforces the argument that Phoebe is an object that formed in heliocentric orbit and became captured. Yet, given that it may be misleading to lump together satellites with quite different formation histories, we refine the comparison on the basis of models for regular satellite formation. Because it derives condensables directly from heliocentric orbit and fails to consider planetesimals, the model of Canup and Ward (2002) does not provide a context for understanding such compositional differences. We will therefore discuss two models of satellite formation we are developing, which differ mainly in their treatment of turbulence (decaying vs steady). In both models the inner (located inside Titan's orbit), icy Saturnian satellites represent a second generation of objects. Mosqueira and Estrada (2003a,b) has these satellites forming 104-10^5 years after Titan as the disk became optically thin and water rich due to preferential gas drag loss of silicates as Saturn cooled. On the other hand, the gas

  6. Comparison of TRMM Ground Validation and Satellite Rain Intensity Estimates

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Lawrence, Richard

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) Program began in the late 1980's and has provided a wealth of data and resources for validating TRMM satellite estimates. The TRMM GV program's main operational task is to provide rainfall products for four sites: Darwin, Australia (DARW); Houston, Texas (HSTN); Kwajalein, Republic of the Marshall Islands (KWAJ); and, Melbourne, Florida (MELB). A comparison between TRMM Ground Validation (Version 5) and Satellite (Version 6) rain intensity estimates is presented. The full suite of Version 6 satellite data is currently being generated by the TRMM Science Data and Information System (TSDIS) and should be completed some time near the end of 2005. The gridded satellite product (3G68) will be compared to GV Level II rain-intensity and -type maps (2A53 and 2A54, respectively). The 3G68 product represents a 0.5 deg x 0.5 deg data grid providing estimates of rain intensities from the TRMM Precipitation Radar (PR), Microwave Imager (TMI) and Combined (COM) algorithms. The comparisons will be sub-setted according to geographical type (land, coast and ocean). A bias statistic will be presented that provides quantification of the relative differences between the various estimators. Previous comparisons of an interim satellite product (Version 6a) showed that all of the estimates (GV and satellite) are converging, with some expected discrepancies. The convergence of the GV and satellite estimates bodes well for expectations for the proposed Global Precipitation Measurement (GPM) program and this study and others are being leveraged towards planning GV goals for GPM.

  7. Orbit determination of Tance-1 satellite using VLBI data

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Hu, X. G.; Huang, C.; Jiang, D. R.

    2006-01-01

    On 30 December, 2003, China successfully launched the first satellite Tance-1 of Chinese Geospace Double Star Exploration Program, i.e. "Double Star Program (DSP)", on an improved Long March 2C launch vehicle. The Tance-1 satellite is operating at an orbit around the earth with a 550km perigee, 78000km apogee and 28.5 degree inclination.VLBI technique can track Tance-1 satellite or even far satellites such as lunar vehicles. To validate the VLBI technique in the on-going Chinese lunar exploration mission, Shanghai Astronomical Observatory (SHAO) organized to track the Tance-1 satellite with Chinese three VLBI stations: Shanghai, Kunming and Urumchi Orbit Determination (OD) of the Tance-1 satellite with about two days VLBI dada, and the capability of OD with VLBI data are studied. The results show that the VLBI-based orbit solutions improve the fit level over the initial orbit. The VLBI-delay-based orbit solution shows that the RMS of residuals of VLBI delay data is about 5.5m, and about 2.0cm/s for the withheld VLBI delay rate data. The VLBI-delay-rate-based orbit solution shows that the RMS of residuals of VLBI delay rate data is about 1.3cm/s, and about 29m for the withheld VLBI delay data. In the situation of orbit determination with VLBI delay and delay rate data with data sigma 5.5m and 1.3cm/s respectively, the RMS of residuals are 5.5,m and 2.0cm/s respectively. The simulation data assess the performance of the solutions. Considering the dynamic model errors of the Tance-1 satellite, the accuracy of the position is about km magnitude, and the accuracy of the velocity is about cm/s magnitude. The simulation work also show the dramatic accuracy improvement of OD with VLBI and USB combined.

  8. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    SciTech Connect

    Rodriguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-08-20

    subhalos should agree with the abundance of massive satellites in all MW-sized hosts, i.e., there is not a missing (massive) satellite problem for the {Lambda}CDM cosmology. However, we confirm that the maximum circular velocity, v{sub max}, of the subhalos of satellites smaller than m{sub *} {approx} 10{sup 8} M{sub Sun} is systematically larger than the v{sub max} inferred from current observational studies of the MW bright dwarf satellites; different from previous works, this conclusion is based on an analysis of the overall population of MW-sized galaxies. Some pieces of evidence suggest that the issue could refer only to satellite dwarfs but not to central dwarfs, then environmental processes associated with dwarfs inside host halos combined with supernova-driven core expansion should be on the basis of the lowering of v{sub max}.

  9. Global Positioning Satellite Recorder

    1997-11-10

    The GPS Tracker is a device (automotive unit) that records position (latitude and longitude), date, and time autonomously with time. The data from the GPS Tracker can be used offline with a personal computer and map data base to plot the track of where a vehicle or other mobile battery powered object has been. The invention simplifies field operations for recording location autonomously by obviating the need to execute a set of detailed instructions priormore » to operation. The vehicle combines GPS technology and a cpu with custom software to accomplish the task.« less

  10. Dust collection on serviceable satellites

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III

    1986-01-01

    One rationale for the Space Shuttle program which was dramatically realized during the repair of the Solar Maximum Mission (SMM) is the efficiency of in-orbit satellite servicing. An unexpected benefit of this repair mission was the return of parts of the Solar Max satellite which had been exposed for four years to the space environment. Studies conducted on these parts have yielded valuable data on the micrometeorite flux and composition at shuttle altitudes during this time period. The scientific results from studies of the cosmic dust component of the observed particle impacts are not yet complete but it is clear from the preliminary data available that such studies will be a valuable adjunct to the studies of cosmic dust particles collected in the atmosphere. The success of the initial studies of particles collected during repairs of the SMM spacecraft on a surface not specifically designed as a particle collector nor retrieved in a manner intended to minimize or eliminate local contamination raises the possibility that even more interesting results might be obtained if serviceable satellites were initially designed with these objectives in mind. All designs for modern satellites utilize some form of thermal blanket material in order to minimize thermal stresses inside the spacecraft. It is proposed that all future satellites be designed with standardized removeable sections of thermal blanket material which could be replaced during on-orbit servicing and returned to earth for detailed study.

  11. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  12. Chartering Launchers for Small Satellites

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  13. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  14. Research Supporting Satellite Communications Technology

    NASA Technical Reports Server (NTRS)

    Horan Stephen; Lyman, Raphael

    2005-01-01

    This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

  15. Petite Amateur Navy Satellite (PANSAT)

    NASA Technical Reports Server (NTRS)

    Sakoda, D.; Hiser, J. K.

    1989-01-01

    The Naval Postgraduate School's (NPS) Space Systems Academic Group (SSAG) is designing and developing a small communications satellite for launch aboard the shuttle as a complex autonomous payload (CAP). The objectives of PANSAT are three-fold. First, PANSAT will provide an ideal educational tool for the officer students at NPS supporting Space Systems Engineering and Space Systems Operations with hands-on hardware development. Second, the satellite will provide digital store-and-forward communications, or packet radio, for the amateur radio community. The third objective is to provide a low-cost, space-based platform for small experiments. PANSAT will be launched from the shuttle at a nominal altitude of 200 n.m. and an inclination of at least 37 degrees. The satellite weight is 150 lbs. Since there is no attitude control, eight dipole whip antennas will be used to provide isotropic ground coverage for communications. FM digital communications will be used with up-link and down-link on a single frequency in the amateur band of 437.25 MHz. A maximum 50 kHz of bandwidth is envisioned for the satellite. The expected lifetime of the satellite is 1 1/2 to 2 years before atmospheric reentry. The PANSAT design consists of the following: communications subsystem (COMM); computer, or data processor and sequencer (DP&S); power subsystem; structure subsystem; and experiment payload.

  16. Satellite dual antenna pointing system

    NASA Technical Reports Server (NTRS)

    Keigler, John E. (Inventor); Hartshorne, Frank A. (Inventor)

    1986-01-01

    A satellite antenna pointing system for separately pointing separated transmit and receive high gain antenna systems includes means for separately and sequentially applying a beacon signal to the transmit and receive antenna systems and a broad beam width antenna which has a coverage area greater than the overall coverage region of the spot beam antenna systems. The system includes ground stations located at or near the periphery of the overall coverage region adapted to receive these beacon signals. At a central control station these beacon signals are compared to provide first signals proportional to the ratio of said beacon signals received from said transmit antenna system and said broad beam width antenna and second signals proportional to the ratio of said beacon signals received from said satellite receive antenna system and said broad beam width antenna. The central station generates from said first signals transmit antenna control signals which are sent to the satellite to control the orientation of said transmit antenna system. Likewise, the central control station generates from the second signals receiver antenna control signals which are applied to the satellite to control the orientation of the satellite receive antenna system.

  17. Spin axis behavior of the LAGEOS satellites

    NASA Astrophysics Data System (ADS)

    AndréS, J. I.; Noomen, R.; Bianco, G.; Currie, D. G.; Otsubo, T.

    2004-06-01

    The satellites LAGEOS-I and LAGEOS-II are essential for the scientific study of various (geo)physical phenomena, such as geocenter motion and absolute scale. The high quality of such science products strongly depends on the absolute quality of the SLR observations and that of the orbit description. Therefore all accelerations experienced by the spacecraft need to be modeled as accurately as possible, the thermal radiation forces being one of them. Traditionally, this is done by estimating so-called empirical accelerations. However, the rotational dynamics of LAGEOS-I in particular no longer allows such a simple approach: a full modeling of the spin behavior, the temperature distribution over the spacecraft surface and the resulting net force prove necessary to achieve the best results. As a first step, a new model, Lageos Spin Axis Model (LOSSAM) has been developed. It is unique in its combination of analytical theory and empirical observations. Its mathematics is taken after previous investigators, although flaws have been corrected. LOSSAM describes the full spin behavior of LOSSAM based on the following phenomena: (1) the geomagnetic field, (2) the Earth's gravity field, (3) the satellite center of pressure offset, and (4) the effective difference in reflectivity between the satellite hemispheres. Its accuracy has been demonstrated by an improvement of about a 50% in the RMS residual of the Yarkovsky-Schach effect signal (as shown by [2004]). Such a high-quality model for rotational behavior is indispensable for a proper force modeling, and hence also for the quality of typical LAGEOS science products.

  18. The Gravity Fields of the Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Iess, L.

    2011-12-01

    In its tour of the Saturnian system, begun on July 1st, 2004, the Cassini spacecraft had many close flybys of Saturn's main satellites. However, due to impossibility to carry out simultaneously remote sensing observations and microwave tracking from ground, only a small fraction of those flybys could be exploited for gravity measurements. So far, the quadrupole field has been mapped only for Titan, Rhea and Enceladus, while for Hyperion and Iapetus the mass was the only accessible parameter. For Titan and Enceladus, the only satellites targeted more than once for gravity observations, also a rough geoid to degree and order 3 has been determined. Satellite gravity investigations rely upon accurate measurements of the spacecraft range rate, enabled by coherent, two-way radio links at X and Ka band (8.4 and 32.5 GHz). The use of hydrogen masers frequency standards at the ground station and the consid-erable suppression of plasma noise at X and Ka band frequen-cies provide range rate accuracies of 10-30 micron/s at integra-tion times of 60 s. Thanks to the higher frequency of the radio link, these measurement accuracies are in the average a factor of 10 better than those attained by Galileo in its tour of the Jovian system. However, in order to attain a reliable determination of the low degree field, good measurements must be combined with appropriate flyby geometries and adequate sampling, a condition that necessarily requires multiple flybys. We review the main results obtained so far by Cassini for Titan, Rhea and Enceladus, and discuss the methods of analysis used by the Radio Science Team.

  19. Satellite auxiliary-propulsion selection techniques. Applications of selection techniques to the ATS-H satellite

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1972-01-01

    The analysis required to estimate auxiliary-propulsion system requirements for a mission which includes tipoff rate reduction, acquisitions, disturbance torques, orbital disturbances, and spacecraft commanded maneuvers is presented. The comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced applications technology satellite (ATS-H) is described. A generalized auxiliary-propulsion system tradeoff, based on mission cost effectiveness criteria, is examined. The specific mission assumptions for the ATS-H spacecraft are included, along with a discussion of the sensitivity of the final selection to these assumptions.

  20. Earth-satellite propagation above GHz: Papers from the 1972 spring URSI session on experiments utilizing the ATS-5 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (Compiler)

    1972-01-01

    Papers are reported from the Special Session on Earth-Satellite Propagation Above 10 GHz, presented at The 1972 Spring Meeting of the United States National Committee, International Union of Radio Science, April 1972, Washington, D. C. This session was devoted to propagation measurements associated with the Applications Technology Satellite (ATS-5), which provided the first operational earth-space links at frequencies above 15 GHz. A comprehensive summary is presented of the major results of the ATS-5 experiment measurements and related radiometric, radar and meteorological studies. The papers are organized around seven selected areas of interest, with the results of the various investigators combined into a single paper presented by a principal author for that area. A comprehensive report is provided on the results of the ATS-5 satellite to earth transmissions. A complete list of published reports and presentations related to the ATS-5 Millimeter Wave Experiment is included.