Science.gov

Sample records for combined thermophilic aerobic

  1. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process.

  2. Aerobic biological treatment of thermophilically digested sludge.

    PubMed

    Kevbrina, M V; Nikolaev, Y A; Danilovich, D A; Vanyushina, A Ya

    2011-01-01

    Aerobic biological treatment of digested sludge was studied in a continuously operated laboratory set-up. An aerated reactor was filled with thermophilically digested sludge from the Moscow wastewater treatment plant and inoculated with special activated sludge. It was then operated at the chemostat mode at different flow rates. Processes of nitrification and denitrification, as well as dephosphatation, occurred simultaneously during biological aerobic treatment of thermophilically digested sludge. Under optimal conditions, organic matter degradation was 9.6%, the concentrations of ammonium nitrogen and phosphate decreased by 89 and 83%, respectively, while COD decreased by 12%. Dewaterability of digested sludge improved significantly. The processes were found to depend on hydraulic retention time, oxygen regime, and temperature. The optimal conditions were as follows: hydraulic retention time 3-4 days, temperature 30-35 degrees C, dissolved oxygen levels 0.2-0.5 mg/L at continuous aeration or 0.7-1 mg/L at intermittent aeration. Based on these findings, we propose a new combined technology of wastewater sludge treatment. The technology combines two stages: anaerobic digestion followed by aerobic biological treatment of digested sludge. The proposed technology makes it possible to degrade the sludge with conversion of approximately 45% volatile suspended solids to biogas, to improve nitrogen and phosphorus removal in reject water from sludge treatment units, and to achieve removal of malodorous substances after 8-9 days of anaerobic-aerobic sludge treatment.

  3. Use of thermophilic biological aerobic technology for industrial waste treatment.

    PubMed

    Rozich, A F; Bordacs, K

    2002-01-01

    Thermophilic aerobic treatment systems offer unique advantages for treatment of high strength organic waste streams and slurries/sludges. These systems combine the best features of conventional aerobic and anaerobic processes that include rapid biodegradation kinetics and low biological solids production, respectively. Application of these processes can result in substantial economic benefit by reducing residuals processing and disposal costs. These systems have not been widely applied for industrial waste treatment, therefore the goal of this paper to show the advantages of applying thermophilic aerobic treatment to these streams. Also included in the paper is a discussion of the process benefits along with design/application considerations and industrial case histories.

  4. Combined mesophilic anaerobic and thermophilic aerobic digestion process for high-strength food wastewater to increase removal efficiency and reduce sludge discharge.

    PubMed

    Jang, H M; Park, S K; Ha, J H; Park, J M

    2014-01-01

    In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.

  5. Diversity of thermophilic populations during thermophilic aerobic digestion of potato peel slurry.

    PubMed

    Ugwuanyi, J O; Harvey, L M; McNeil, B

    2008-01-01

    To study the diversity of thermophiles during thermophilic aerobic digestion (TAD) of agro-food waste slurries under conditions similar to full-scale processes. Population diversity and development in TAD were studied by standard microbiological techniques and the processes monitored by standard fermentation procedures. Facultative thermophiles were identified as Bacillus coagulans and B. licheniformis, while obligate thermophiles were identified as B. stearothermophilus. They developed rapidly to peaks of 10(7) to 10(8) in thermophiles increased with process temperatures. Thermophiles were unstable at process pH above or below neutral, but developed rapidly at all aeration rates. Peak populations were higher in the median than at extremes of aeration rates. Obligate thermophiles were unstable at low aeration rates. Process self-heating was higher at lower than at higher aeration rate. Beyond 96 h most thermophiles were present as spores. Limited range of indigenous thermophiles drives TAD of slurry. They develop rapidly and are stable at most digestion conditions. Development and stability of thermophiles in TAD suggest that the process may be operated in a wide range of conditions; and even at short HRT in continuous processes without compromising efficiency.

  6. Microbiological aspects of aerobic thermophilic treatment of swine waste.

    PubMed Central

    Beaudet, R; Gagnon, C; Bisaillon, J G; Ishaque, M

    1990-01-01

    A thermophilic strain (D2) identified as a Bacillus sp. was isolated from an aerobic digestor of swine waste after several months of operation at 55 degrees C. Aerobic thermophilic batch treatment of swine waste inoculated with strain D2 was studied in a 4-liter fixed-bed reactor. Stabilization of the waste was achieved in less than 30 h when the original chemical oxygen demand (COD) was between 15 and 20 g/liter or in less than 48 h when the COD was around 35 g/liter. When the COD was higher than 30 g/liter, the pH of the waste reached 9.2 to 9.5 during the treatment, and periodic adjustment of the pH to 8.5 was necessary to maintain the activity of the biofilm. In this reactor, ammoniacal nitrogen was completely eliminated by desorption in less than 72 h of incubation. The different packing materials used resulted in similar rates of degradation of organic matter. The thermophilic treatment was also efficient in the 75-liter digestor, and stabilization was achieved in approximately 50 h. A bank of 22 thermophilic bacterial strains originating from different environments and adapted to the thermophilic treatment of swine waste was established. This thermophilic treatment allows, in one step, rapid stabilization of the waste, elimination of the bad smell, and complete elimination of ammonia nitrogen by stripping. PMID:2339880

  7. Swine waste treatment by self-heating aerobic thermophilic bioreactors.

    PubMed

    Juteau, Pierre; Tremblay, Danielle; Ould-Moulaye, Cheikh-Baye; Bisaillon, Jean-Guy; Beaudet, Réjean

    2004-02-01

    Pig manure represents a very high-strength wastewater that is well suited for a self-heating aerobic thermophilic treatment. Here we report the use of 59-L Aerobic Thermophilic Sequencing Batch Reactors (AT-SBR) to study the treatment of pig manure with a HRT of 6 days. Temperatures up to 75 degrees C were reached without external heating by using Venturi-type aerators but these conditions were detrimental for the respiratory activity of the microflora. For COD removal, better performances were achieved when the temperature was limited to 50 degrees C. However, higher temperatures increased the rate of phosphorus crystallisation and the volatilisation of ammonia. A temperature of 50 degrees C was enough to eliminate faecal coliforms and Campylobacter spp., but 60 degrees C was needed for the efficient destruction of Clostridium perfringens. Consequently, an operating temperature of 60 degrees C appears to be a good compromise. Under these conditions, the BOD(5) decreases from 50.5 to 1.0 g L(-1), yielding a 98% removal.

  8. [Identification and denitrification characteristics of a thermophilic aerobic denitrifier].

    PubMed

    Zhang, Miao; Huang, Shao-Bin

    2011-01-01

    A bacterial strain TAD1 with high nitrogen removal efficiency was isolated from biofilm of the biotrickling filter of a coal-fired power plant by thermophilic domestication. This bacterium was Gram negative, short rod, with the size of (0.67-0.89) microm x (1.03-1.41) microm. It was identified as Chelatococcus sp. according to its physiological properties and the analysis of its 16S rDNA gene. Studied on its function of aerobic denitrification at the temperature of 50 degrees C, the results showed that nitrate in the culture media was efficiently removed from 63.79 mg/L to 0.46 mg/L, and the nitrogen removal efficiency was up to 99.12% in 24 hours, and no nitrite was observed during the incubation, the major end product of the denitrification was nitrogen. During the denitrification of TAD1, the pH in the culture medium gradually increases, while the oxidation-reduction potential gradually decreases. The factors affecting aerobic denitrification by strain TAD1 were also discussed, indicating that the most suitable pH value for aerobic denitrification was 7.0-9.0, and the DO was 2.1-7.2 mg/L.

  9. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    food production for human thus rely on local Martian resources. A tree growing subsystem will also give an interesting feature to Martian agriculture. In addition to producing excess oxygen, trees’ rigid body will provide structural material, which can be used for habitat construction. The combination of hyper-thermophilic aerobic composting, plant cultivation, and tree growing with utilizing in-situ natural local resources available on Mars can provide important elements which can enable space agriculture on Mars.

  10. Thermal adaptation in yeast: obligate psychrophiles are obligate aerobes, and obligate thermophiles are facultative anaerobes.

    PubMed Central

    Watson, K; Arthur, H; Morton, H

    1978-01-01

    The obligate psychrophilic yeasts Torulopsis psychrophila, T. austromarina, Leucosporidium frigidum, L. gelidum, and L. nivalis were obligate aerobes and were unable to grow anaerobically. In contrast, the obligate thermophilic yeasts T. bovina, T. pintolopesii, Candida slooffii, and Saccharomyces telluris were facultative anaerobes. PMID:568620

  11. Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification-aerobic denitrification.

    PubMed

    Chen, Jun; Zheng, Ji; Li, Yan; Hao, Hong-Hong; Chen, Jian-Meng

    2015-12-01

    A strain bacterium that is thermophilic, heterotrophic nitrifying, and aerobic denitrifying was isolated and identified as Anoxybacillus contaminans HA for the first time. The identification was based on morphological and physiological characterizations, together with phylogenetic analysis of 16S rDNA sequence. The strain possessed excellent tolerance to high temperatures, with 55 °C as its optimum and 60 °C as viable. Moreover, NH4 (+)-N and NO3 (-)-N could be efficiently removed under thermophilic and solely aerobic conditions, with little intermediate accumulation. Average removal efficiencies of NH4 (+)-N and NO3 (-)-N at 55 °C reached 71.0 and 74.7 %, respectively, with removal rates of 5.83 and 32.08 mg l(-1) h(-1), respectively. Single-factor experiments suggested that the optimal conditions for both heterotrophic nitrification and aerobic denitrification were glucose as carbon source, NH4 (+)-N range of 50-200 mg l(-1), and wide NO3 (-)-N range of 200-1000 mg l(-1). These results indicated that strain HA had heterotrophic nitrification and aerobic denitrification abilities, as well as the notable ability to remove ammonium under thermophilic condition. Thus, this strain has potential application in waste-gas treatment.

  12. Hyper-thermophilic aerobic bacterial ecology for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, T.; Kanazawa, S.; Moriya, T.; Ishikawa, Y.; Hashimoto, H.; Yamashita, M.; Space Agriculture Task Force, J.

    A material recycling is one of core issues in engineering for habitation on extraterrestrial bodies such as Mars A new composting system has been developed in Japan which utilizes some thermophilic bacteria to attain higher temperature than normally expected in the ordinary composting system Dead body of rat was found to be eaten up by the thermophilic bacteria under aerated condition and oxidized to carbon dioxide and few other inorganics within two hours Ecology of these composting bacteria is structured on the intensive symbiotic interactions among various species that participate in various reaction networks in a concert Complexity in the composting bacteria might be based on multiple interaction and interdependency among participating species and organisms Species identification and phylogeny of symbiotic bacteria and understanding of their ecology have been made Those bacterial systems are active and durable under temperature high in a range of 80 to 100 r C Biological combustion release heat and temperature goes up when air is fed through the reaction bed Since microbial activity decreases at exceeding temperature and release of heat decreases as well temperature in the reacting bed itself-regulated in the range Even though it should be verified composting bacteria themselves are presumed to be safe for human agricultural plant and animal species Their activity is restricted only to the condition under elevated temperature Their activities depend greatly on their symbiotic partners and extreme environment created by them The

  13. Characteristics of hydrocarbon hydroxylase genes in a thermophilic aerobic biological system treating oily produced wastewater.

    PubMed

    Liu, Ruyin; Gao, Yingxin; Ji, Yifeng; Zhang, Yu; Yang, Min

    2015-01-01

    Alkane and aromatic hydroxylase genes in a full-scale aerobic system treating oily produced wastewater under thermophilic condition (45-50 °C) in the Jidong oilfield, China, were investigated using clone library and quantitative polymerase chain reaction methods. Rather than the normally encountered integral-membrane non-haem iron monooxygenase (alkB) genes, only CYP153-type P450 hydroxylase genes were detected for the alkane activation, indicating that the terminal oxidation of alkanes might be mainly mediated by the CYP153-type alkane hydroxylases in the thermophilic aerobic process. Most of the obtained CYP153 gene clones showed distant homology with the reference sequences, which might represent novel alkane hydroxylases. For the aromatic activation, the polycyclic aromatic hydrocarbon-ring hydroxylating dioxygenase (PAH-RHD) gene was derived from Gram-negative PAH-degraders belonging to the Burkholderiales order, with a 0.72% relative abundance of PAH-RHD gene to 16S rRNA gene. This was consistent with the result of 16S rRNA gene analysis, indicating that Burkholderiales bacteria might play a key role in the full-scale process of thermophilic hydrocarbon degradation.

  14. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  15. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?

    PubMed

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio

    2015-01-01

    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.

  16. Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors.

    PubMed

    Kurian, R; Acharya, C; Nakhla, G; Bassi, A

    2005-11-01

    Although thermophilic treatment systems have recently gained considerable interest, limited information exists on the comparative performances of membrane-coupled bioreactors (MBR) at thermophilic and conventional conditions. In this study aerobic MBRs operating at room temperature (20 degrees C) and at lower thermophilic range (45 degrees C) were investigated for the treatment of dissolved air flotation (DAF) pretreated pet food wastewater. The particular wastewater is characterized by oil and grease (O & G) concentrations as high as 6 g/L, COD of 51 g/L, BOD of 16 g/L and volatile fatty acid (VFA) of 8.3 g/L. The performances of the two systems in terms of COD, BOD and O & G removal at varying hydraulic retention time (HRT) are compared. COD removal efficiencies in the thermophilic MBR varied from 75% to 98% and remained constant at 94% in the conventional MBR. The O & G removal efficiencies were 66-86% and 98% in the thermophilic and conventional MBR, respectively. Interestingly, high concentrations of VFA were recorded, equivalent to 50-73% of total COD, in the thermophilic MBR effluent. The observed yield in the thermophilic MBR was 40% of that observed in the conventional MBR.

  17. Caenibacterium thermophilum gen. nov., sp. nov., isolated from a thermophilic aerobic digester of municipal sludge.

    PubMed

    Manaia, Célia M; Nunes, Olga C; Nogales, Balbina

    2003-09-01

    A bacterial strain, N2-680(T) (=DSM 15264(T)=LMG 21760(T)), isolated from a thermophilic aerobic digester of municipal sludge, was characterized with respect to its morphology, physiology and taxonomy. Phenotypically, the isolate was a Gram-negative rod with a polar flagellum, catalase- and oxidase-positive, containing cytoplasmic inclusions of poly-beta-hydroxybutyrate and had an optimal growth temperature of about 47 degrees C. Strain N2-680(T) was unable to reduce nitrate and could use organic acids, amino acids and carbohydrates as single carbon sources. Chemotaxonomic analysis revealed that ubiquinone 8 was the major respiratory quinone of this organism and that phosphatidylethanolamine and phosphatidylglycerol were the major polar lipids. At 50 degrees C, the major components in fatty acid methyl ester analysis were C(16 : 0) and cyclo-C(17 : 0). The highest 16S rDNA sequence identity of isolate N2-680(T) was to Leptothrix mobilis and Ideonella dechloratans (95.7 %) and to Rubrivivax gelatinosus and Aquabacterium commune (95.6 %). 16S rDNA sequence similarities to species of two related thermophilic genera, Caldimonas manganoxidans and Tepidimonas ignava, were lower (93.6 and 94.7 %). On the basis of phylogenetic analyses and physiological and chemotaxonomic characteristics, it is proposed that isolate N2-680(T) represents a new genus and species, for which the name Caenibacterium thermophilum gen. nov., sp. nov. is proposed.

  18. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  19. Aerobic thermophilic treatment of sewage sludge at pilot plant scale. 2. Technical solutions and process design.

    PubMed

    Ponti, C; Sonnleitner, B; Fiechter, A

    1995-01-15

    The performance of the ATS process depends essentially on the oxygen transfer efficiency. Improvement of the mass transfer capacity of a bioreactor allowed to reduce the incubation time necessary to attain sludge stabilization. It is important to use equipment with a high aeration efficiency such as an injector aeration system. The ratio between the total oxygen consumption and the organic matter degradation (delta COD) ranged between 0.4 and 0.8 in the pilot plant, whereas 1.23 was found in completely mixed bioreactors (Bomio, 1990). No significant improvement of the bacterial degradation efficiency was attained with a specific power input exceeding 6-8 kW m-3. A mean residence time of less than 1 d allowed organic matter removals up to 40% with specific power consumption of 10 kWh kg-1 COD oxidized. The sludge hygienization is one of the objectives and benefits of the thermophilic treatment: not only temperature but also the total solids content were important factors affecting inactivation of pathogens. The inactivation rate was promoted by the increase of temperature, while the residual colony forming units decreased with reducing the total solids content of sewage sludge. It is concluded that continuous operation mode would not affect the quality of the hygienization but could display the high degradation potential of the aerobic system.

  20. Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR).

    PubMed

    Tiirola, Marja A; Suvilampi, Juhani E; Kulomaa, Markku S; Rintala, Jukka A

    2003-05-01

    A two-stage pilot-scale thermophilic aerobic suspended carrier biofilm process (SCBP) was set up for the on-site treatment of pulp and paper mill whitewater lining. The microbial diversity in this process was analyzed by length heterogeneity analysis of PCR-amplified 16S ribosomal DNA. The primer pair selected for PCR amplification was first evaluated by a computational analysis of fragment lengths in ten main phylogenetical eubacterial groups. The fragment contained the first third of the 16S rRNA gene, which was shown to vary naturally between 465 and 563 bp in length. The length heterogeneity analysis of polymerase chain reaction (LH-PCR) profile of the biomass attached to carrier elements was found to be diverse in both stages of the SCBP. During normal operating conditions, sequences belonging to beta-Proteobacteria, Cytophaga/Flexibacter/Bacteroides group and gamma-Proteobacteria were assigned to the most prominent LH-PCR peak. Samples from the suspended biomass consisted of completely different bacterial populations, which were, however, similar in the serial reactors. The pilot process experienced alkaline shocks, after which Bacillus-like sequences were detected in both the biofilm and suspended biomass. However, when the conditions were reversed, the normal microbial population in the biofilm recovered rapidly without further biomass inoculations. This study shows that LH-PCR is a valuable method for profiling microbial diversity and dynamics in industrial wastewater processes.

  1. Biodegradation of potato slops from a rural distillery by thermophilic aerobic bacteria.

    PubMed

    Cibis, Edmund; Kent, Christopher A; Krzywonos, Malgorzata; Garncarek, Zbigniew; Garncarek, Barbara; Miśkiewicz, Tadeusz

    2002-10-01

    A study has been made of thermophilic aerobic biodegradation of the liquid fraction of potato slops (distillation residue) from a rural distillery. The COD of this fraction ranged from 49 to 104 g O2/l, the main contributions to the COD coming from organic acids, reducing substances, and glycerol. It was found that biodegradation could be divided into the following stages: organic acids were removed first, followed by reducing substances and glycerol. The extent of removal varied according to the process temperature. At 50 degrees C, acetic and malic acids were removed completely, but the amount of isobutyric acid increased. At 60 degrees C, organic acid removal ranged from 51.2% (isobutyric acid) to 99.6% (lactic acid). Removals of glycerol and reducing substances were 86.2% and 87.4%, respectively. COD reduction was also temperature dependent, the highest removal efficiency (76.7%) being achieved at 60 degrees C. Dissolved oxygen may have limited the biodegradation process, as indicated by the DOT-versus-time profile.

  2. Disinhibition of the ammonium nitrogen in autothermal thermophilic aerobic digestion for sewage sludge by chemical precipitation.

    PubMed

    Yuan, Haiping; Xu, Changwen; Zhu, Nanwen

    2014-10-01

    Magnesium ammonium phosphate (MAP) precipitation was introduced to remove ammonium nitrogen (NH4(+)-N) in autothermal thermophilic aerobic digestion (ATAD) in this study by addition of MgCl2 · 6H2O and NaH2PO4 · 2H2O. The results showed that the lowest NH4(+)-N concentration was found in the D2 digester after 2nd day dosing treatment and 38.12% of VS removal efficiency was obtained after 15 days ATAD treatment. Sludge stabilization was achieved in the D2 digester 6 days earlier than the non-dosing digester when 8.7 g/L MgCl2 · 6H2O and 6.7 g/L NaH2PO4 · 2H2O were added into the digester. Furthermore, the highest VS removal efficiency of 40.03% was observed after 21 days digestion in D2 digesters. Therefore, MAP precipitation was an effective method for the ammonium nitrogen disinhibition when 8.7 g/L MgCl2 · 6H2O and 6.7 g/L NaH2PO4 · 2H2O were added into on the 2nd day after the digester startup.

  3. Evaluation of specific biological heat potential of oily wastewater in an autothermal thermophilic aerobic treatment system.

    PubMed

    Hung, Jui Min; Chen, Chang Yu; Wu, Yeong Shing; Lu, Chih Jen

    2008-09-01

    This study focuses on the specific biological heat potential (h(b)) of oil and grease wastewaterin an autothermal thermophilic aerobic treatment (ATAT) system. A novel experimental device was applied to evaluate h(b) by using heat balance model under steady state. In the study the treatment system was daily fed with realistic and artificial wastewater at 11250 and 17420 mg COD l(-1), respectively. The wastewater was rich in oil and grease at 1220 and 600 mg l(-1), respectively. The sludge retention time (SRT) was controlled at 5 days. The results showed that the average values of h(b) were 3.7 and 3.1 kcal g(-1) COD removed and the true growth yield (Y0) were 0.10 and 0.13 mg MLSS mg(-1) COD for realistic and artificial wastewater respectively. These two systems could maintain reactoroperating temperatures at 43 degrees C and 48 degrees C, respectively. The COD removal efficiency was as high as 90 to 97%. The oil and grease reduction was 68 to 72%. The high organic matter removal capacity and low sludge yield of ATAT process have been demonstrated.

  4. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.

    PubMed

    Ugwuanyi, J Obeta

    2008-05-01

    Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.

  5. Draft Genome Sequence of Anoxybacillus mongoliensis Strain MB4, a Sulfur-Utilizing Aerobic Thermophile Isolated from a Hot Spring in Tattapani, Central India

    PubMed Central

    Mittal, Parul; Saxena, Rituja

    2017-01-01

    ABSTRACT Anoxybacillus mongoliensis strain MB4, an aerobic thermophile, was isolated from a hot spring located in central India. Its first draft genome sequence reported in this study comprises 2,807,516 bp and 2,853 protein-coding genes. Detailed genomic analysis indicates that it is capable of performing sulfur metabolism. PMID:28254979

  6. Draft Genome Sequence of Anoxybacillus mongoliensis Strain MB4, a Sulfur-Utilizing Aerobic Thermophile Isolated from a Hot Spring in Tattapani, Central India.

    PubMed

    Mittal, Parul; Saxena, Rituja; Sharma, Vineet K

    2017-03-02

    Anoxybacillus mongoliensis strain MB4, an aerobic thermophile, was isolated from a hot spring located in central India. Its first draft genome sequence reported in this study comprises 2,807,516 bp and 2,853 protein-coding genes. Detailed genomic analysis indicates that it is capable of performing sulfur metabolism.

  7. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.

    PubMed

    Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald

    2012-10-01

    This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  9. Wastewater treatment by means of thermophilic aerobic membrane reactors: respirometric tests and numerical models for the determination of stoichiometric/kinetic parameters.

    PubMed

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Torretta, Vincenzo; Katsoyiannis, Ioannis Anastasios

    2017-10-09

    Existing wastewater/aqueous waste treatment plants often need to be upgraded in order to improve their performance. The satisfactory operation of biological treatment plants requires appropriate monitoring, and respirometric techniques are needed to determine the kinetic parameters that regulate biological processes. Innovative technologies are treating industrial wastewater/aqueous waste, such as thermophilic aerobic treatments. Thermophilic aerobic biological systems operate at temperatures higher than 45°C. Such temperature levels can be reached, at a reasonable cost, using wastewater with a high organic loading and reactors, which are appropriately thermally insulated. This kind of treatment shows high removal kinetics of biodegradable substrates and a very low sludge production. This paper describes the application of respirometric tests in thermophilic conditions on the biomass derived from a thermophilic aerobic membrane reactor in order to model the process, with a particular focus on the rapidly biodegradable chemical oxygen demand (rbCOD). The utility of rbCOD determination is related to the optimal treatment that the aqueous waste should undergo. Calculating the kinetic parameters is critical to the biological modelling used in the management and control of wastewater treatment plants.

  10. Thermophilic aerobic digestion process for producing animal nutrients and other digested products

    SciTech Connect

    Coulthard, T.L.; Townsley, P.M.; Saben, H.S.

    1981-09-29

    Waste materials are digested by thermophilic bacteria to produce single-cell protein and vitamin B12. The bacteria are contained in the waste and are not inoculated. Thus, a hog manure slurry containing 10% solids was stirred with aeration in an insulated reactor to allow the temperature to be maintained at greater than 55/sup 0/. The temperature was maintained at 55-65/sup 0/ and the dissolved O/sub 2/ concentration at 1.5-3 ppm for 6 days. After 10 days reaction, the product was fed to hogs as 10% of their nutrient supply with no apparent adverse effects.

  11. Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment

    PubMed Central

    Cardenas, Juan P.; Quatrini, Raquel; Holmes, David S.

    2016-01-01

    Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the “aerobic-type” lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with “whiffs” of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one. PMID:27917155

  12. Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment.

    PubMed

    Cardenas, Juan P; Quatrini, Raquel; Holmes, David S

    2016-01-01

    Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the "aerobic-type" lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with "whiffs" of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.

  13. Integrated thermophilic submerged aerobic membrane bioreactor and electrochemical oxidation for pulp and paper effluent treatment--towards system closure.

    PubMed

    Qu, X; Gao, W J; Han, M N; Chen, A; Liao, B Q

    2012-07-01

    A novel integrated thermophilic submerged aerobic membrane bioreactor (TSAMBR) and electrochemical oxidation (EO) technology was developed for thermomechanical pulping pressate treatment with the aim of system closure. The TSAMBR was able to achieve a chemical oxygen demand (COD) removal efficiency of 88.6 ± 1.9-92.3 ± 0.7% under the organic loading rate of 2.76 ± 0.13-3.98 ± 0.23 kg COD/(m(3) d). An optimal hydraulic retention time (HRT) of 1.1 ± 0.1d was identified for COD removal. Cake formation was identified as the dominant mechanism of membrane fouling. The EO of the TSAMBR permeate was performed using a Ti/SnO(2)-Sb(2)O(5)-IrO(2) electrode. After 6-h EO, a complete decolourization was achieved and the COD removal efficiency was increased to 96.2 ± 1.2-98.2 ± 0.3%. The high-quality effluent produced by the TSAMBR-EO system can be reused as process water for system closure in pulp and paper mill.

  14. Effect of dosing time on the ammonium nitrogen disinhibition in autothermal thermophilic aerobic digestion for sewage sludge by chemical precipitation.

    PubMed

    Xu, Changwen; Yuan, Haiping; Lou, Ziyang; Zhang, Guofang; Gong, Junzhe; Zhu, Nanwen

    2013-12-01

    Magnesium ammonium phosphate (MAP) precipitation was introduced to remove ammonium nitrogen (NH4(+)-N) in autothermal thermophilic aerobic digestion (ATAD) in this study. The dosing time of MgCl2 · 6H2O and NaH2PO4 · 2H2O will influence the removal efficiency of ammonium nitrogen greatly, and the time interval of 2nd, 7th, 12th day were chosen in ATAD process. The lowest NH4(+)-N concentration was found in the 2nd day dosing digester, and 38.37% of VS removal rate was obtained after 12 days digestion, which achieved stabilization 9 days earlier than the non-dosing digester. It revealed that removal of ammonium nitrogen could accelerate the sludge stabilization process. Meanwhile, 49.30% of VS removal rate was found in the 2nd day dosing digester in the 21st day, much higher than that in the non-dosing digester, the 7th day dosing digester, and the 12th day dosing digester, with the corresponding value of 38.37%, 38.38% and 37.04%, respectively.

  15. Influence of bulking agents and microbial activator on thermophilic aerobic transformation of sewage sludge.

    PubMed

    Pasda, N; Limtong, P; Oliver, R; Montange, D; Panichsakpatana, S

    2005-10-01

    Bangkok, while improving the wastewater treatment in order to alleviate the river pollution, faces important amounts of sewage sludge. The sewage sludge contains organic matter, nitrogen and phosphorus available for plant growth. However, it may contain pathogenic microorganisms. To be used for agricultural purposes, these pathogens should be destroyed, which can be achieved with the thermophilic phase of composting. As the sewage sludge is dense and unable to compost alone (low C/N ratio), it should be mixed with an organic by-product. Two by-products available in large quantities in Thailand (wood chips and rice husk) have been tested for mixture with sewage sludge. As these products are not easy to decompose (presence of silica in rice husk and lignin/tannins in wood chips), the addition of a microbial activator for composting has been tested in controlled conditions (small quantities of organic mixtures, 55 degrees C, moisture maintained at 60-70% of water holding capacity). The monitoring of the decomposition has been made by measuring the carbon dioxide respiration, pH, organic matter and nitrogen contents and the evolution of enzymatic activities. When mixed with sewage sludge, wood chips and rice husk do not show significant differences concerning decomposition after 63 days. The use of an activator within the experimental conditions does not improve the decomposition of organic matter contained in the mixture of sewage sludge and rice husk or wood chips.

  16. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  17. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    PubMed

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg.

  18. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment.

    PubMed

    Chi, Yongzhi; Li, Yuyou; Fei, Xuening; Wang, Shaopo; Yuan, Hongying

    2011-01-01

    Abstract Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency. Uniform design was applied to determine the combination of target temperature (11 degrees-210 degrees C), microwave holding time (1-51 min), and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization. Maximum solubilization ratio (85.1%) of VSS was observed at 210 degrees C with 0.2 g-NaOH/g-SS and 35 min holding time. The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP). Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge. The highest CMP was a 27% improvement over the control. In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge, a semi-continuous thermophilic reactor fed with pretreated TWAS without neutralization (at 170 degrees C with 1 min holding time and 0.05 g NaOH/g SS) was stable and functioned well, with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%, respectively, which were higher than those of the control system. Additionally, methane yields (L@STP/g-CODadded, at standard temperature and pressure (STP) conditions of 0 degree C and 101.325 kPa) and (L@STP/g VSadded) increased by 17% and 13%, respectively, compared to the control reactor.

  19. Phylogenetic analysis of the bacterial community in a full scale autothermal thermophilic aerobic digester (ATAD) treating mixed domestic wastewater sludge for land spread.

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, J Tony

    2012-05-15

    The bacterial community associated with a full scale autothermal thermophilic aerobic digester (ATAD) treating sludge, originating from domestic wastewater and destined for land spread, was analysed using a number of molecular approaches optimised specifically for this high temperature environment. 16S rDNA genes were amplified directly from sludge with universally conserved and Bacteria-specific rDNA gene primers and a clone library constructed that corresponded to the late thermophilic stage (t = 23 h) of the ATAD process. Sequence analyses revealed various 16S rDNA gene sequence types reflective of high bacterial community diversity. Members of the bacterial community included α- and β-Proteobacteria, Actinobacteria with High G + C content and Gram-Positive bacteria with a prevalence of the Firmicutes (Low G + C) division (class Clostridia and Bacillus). Most of the ATAD clones showed affiliation with bacterial species previously isolated or detected in other elevated temperature environments, at alkaline pH, or in cellulose rich environments. Several phylotypes associated with Fe(III)- and Mn(IV)-reducing anaerobes were also detected. The presence of anaerobes was of interest in such large scale systems where sub-optimal aeration and mixing is often the norm while the presence of large amounts of capnophiles suggest the possibility of limited convection and entrapment of CO(2) within the sludge matrix during digestion. Comparative analysis with organism identified in other ATAD systems revealed significant differences based on optimised techniques. The abundance of thermophilic, alkalophilic and cellulose-degrading phylotypes suggests that these organisms are responsible for maintaining the elevated temperature at the later stages of the ATAD process.

  20. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Impact of batch, repeated-batch (with cell recycle and medium replacement) and continuous processes on the course and efficiency of aerobic thermophilic biodegradation of potato processing wastewater.

    PubMed

    Lasik, Małgorzata; Nowak, Jacek; Krzywonos, Małgorzata; Cibis, Edmund

    2010-05-01

    The aim of the study was to assess the course and efficiency of aerobic thermophilic treatment of a high-strength (COD=35gO(2)/l) effluent from potato processing. A comparative analysis was conducted of the treatment effects achieved using batch, repeated-batch (with cell recycle and medium replacement) and continuous treatment operations. The analysis consisted in (1) examining the extent of removal for the major parameters of the wastewater: COD, TOC, TN and TP (chemical oxygen demand, total organic carbon, total nitrogen and total phosphorus), and (2) determining the impact of oxygen deficit on the formation and assimilation of organic acids in the course of the three treatment operations. When use was made of the repeated-batch operation, the values of the COD and TOC removal rates were more than twice as high as those obtained with the continuous process, and more than five times as high as those obtained with the batch process.

  2. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.

    PubMed

    Kevbrin, Vadim V; Zengler, Karsten; Lysenko, Anatolii M; Wiegel, Juergen

    2005-10-01

    A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geo-thermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B(12). Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH(25 C) 6.8-8.5 and 60 degrees C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by T(m) assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4(T) (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985.

  3. Health-Promoting Effects of Serial vs. Integrated Combined Strength and Aerobic Training.

    PubMed

    Karatrantou, K; Gerodimos, V; Häkkinen, K; Zafeiridis, A

    2017-01-01

    Combined strength and aerobic training programs are widely used for improving markers of physical fitness and health. We compared the efficiency of a serial and an integrated combined training program on health and overall fitness in middle-aged females. 54 females (46.7±4.5yrs) were assigned to a serial (SCG) or an integrated (ICG) combined training group or to a control group (CG). The SCG and ICG performed a 3-month training combining aerobic dance and calisthenics. The 2 training programs differ in the sequence of aerobic and strength exercises. SCG performed the strength exercises prior to aerobic; in ICG, the aerobic and strength exercises were altered in a predetermined order. Body composition/circumferences, blood pressure, respiratory function, flexibility, balance, muscle strength/endurance, power and aerobic capacity were measured before and after training. SCG and ICG significantly increased muscle strength and endurance, power, aerobic capacity, flexibility, balance, fat-free mass and respiratory function (p<0.001-0.05), while significant reductions were observed for blood pressure, heart rate and body fat/circumferences (p<0.001-0.05). However, there were no significant differences between SCG and ICG after training. Serial and integrated combined training programs confer analogous adaptations and can be used interchangeably for counteracting the detrimental effects of sedentary lifestyle on indices of physical fitness and health. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Combined aerobic and resistance training: are there additional benefits for older hypertensive adults?

    PubMed

    Lima, Leandra G; Bonardi, José T M; Campos, Giulliard O; Bertani, Rodrigo F; Scher, Luria M L; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2017-06-01

    The objective of this study was to compare the effects of a combination of aerobic and resistance training to those of isolated aerobic training on blood pressure, body composition, and insulin sensitivity in hypertensive older adults. Forty-four patients were randomly assigned to the aerobic group, resistance and aerobic group, and control group. Before and after 10 weeks, the following data were obtained: 24-hour ambulatory blood pressure data, abdominal circumference, waist circumference, body mass index, lean mass, fat mass, and insulin sensitivity. The study was conducted with 3 training sessions per week. Comparison revealed significant reductions in the body mass index, abdominal and waist circumferences, and ambulatory blood pressure (24-hour, wakefulness and sleep systolic/diastolic blood pressures) in both the aerobic group and the resistance and aerobic (combined) group. The fat mass only changed in the combined group. There was no difference in the insulin sensitivity in any group. The combined treatment and aerobic treatment alone were equally effective in reducing the blood pressure, body mass index, and abdominal and waist circumferences, although the addition of the resistance component also helped reduce the fat mass.

  5. Combined aerobic and resistance training: are there additional benefits for older hypertensive adults?

    PubMed Central

    Lima, Leandra G.; Bonardi, José T.M.; Campos, Giulliard O.; Bertani, Rodrigo F.; Scher, Luria M.L.; Moriguti, Júlio C.; Ferriolli, Eduardo; Lima, Nereida K.C.

    2017-01-01

    OBJECTIVES: The objective of this study was to compare the effects of a combination of aerobic and resistance training to those of isolated aerobic training on blood pressure, body composition, and insulin sensitivity in hypertensive older adults. METHOD: Forty-four patients were randomly assigned to the aerobic group, resistance and aerobic group, and control group. Before and after 10 weeks, the following data were obtained: 24-hour ambulatory blood pressure data, abdominal circumference, waist circumference, body mass index, lean mass, fat mass, and insulin sensitivity. The study was conducted with 3 training sessions per week. RESULTS: Comparison revealed significant reductions in the body mass index, abdominal and waist circumferences, and ambulatory blood pressure (24-hour, wakefulness and sleep systolic/diastolic blood pressures) in both the aerobic group and the resistance and aerobic (combined) group. The fat mass only changed in the combined group. There was no difference in the insulin sensitivity in any group. CONCLUSIONS: The combined treatment and aerobic treatment alone were equally effective in reducing the blood pressure, body mass index, and abdominal and waist circumferences, although the addition of the resistance component also helped reduce the fat mass. PMID:28658436

  6. Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage-treatment process.

    PubMed

    Shigeri, Yasushi; Matsui, Tatsunobu; Watanabe, Kunihiko

    2009-11-01

    In order to develop a practical method for the decomposition of intact chicken feathers, a moderate thermophile strain, Meiothermus ruber H328, having strong keratinolytic activity, was used in a bio-type garbage-treatment machine working with an acidulocomposting process. The addition of strain H328 cells (15 g) combined with acidulocomposting in the garbage machine resulted in 70% degradation of intact chicken feathers (30 g) within 14 d. This degradation efficiency is comparable to a previous result employing the strain as a single bacterium in flask culture, and it indicates that strain H328 can promote intact feather degradation activity in a garbage machine currently on the market.

  7. Thermophilic Beta-Glycosidase

    NASA Technical Reports Server (NTRS)

    Grogan, Dennis W.

    1992-01-01

    Report describes identification of thermophilic Beta-glycosidase enzyme from isolate of Sulfolobus solfataricus, sulfur-metabolizing archaebacteria growing aerobically and heterotrophically to relatively high cell yields. Enzyme useful in enzymatic conversion of cellulose to D-glucose and important in recycling of biomass. Used for removal of lactose from milk products. Offers promise as model substance for elucidation of basic principles of structural stabilization of proteins.

  8. Thermophilic Beta-Glycosidase

    NASA Technical Reports Server (NTRS)

    Grogan, Dennis W.

    1992-01-01

    Report describes identification of thermophilic Beta-glycosidase enzyme from isolate of Sulfolobus solfataricus, sulfur-metabolizing archaebacteria growing aerobically and heterotrophically to relatively high cell yields. Enzyme useful in enzymatic conversion of cellulose to D-glucose and important in recycling of biomass. Used for removal of lactose from milk products. Offers promise as model substance for elucidation of basic principles of structural stabilization of proteins.

  9. Thermalkalibacillus uzonensis gen. nov. sp. nov, a novel aerobic alkali-tolerant thermophilic bacterium isolated from a hot spring in Uzon Caldera, Kamchatka.

    PubMed

    Zhao, Weidong; Weber, Carolyn; Zhang, Chuanlun L; Romanek, Christopher S; King, Gary M; Mills, Gary; Sokolova, Tatyana; Wiegel, Juergen

    2006-08-01

    A novel thermophilic, alkali-tolerant, and CO-tolerant strain JW/WZ-YB58(T) was isolated from green mat samples obtained from the Zarvarzin II hot spring in the Uzon Caldera, Kamchatka (Far East Russia). Cells were Gram-type and Gram stain-positive, strictly aerobic, 0.7-0.8 mum in width and 5.5-12 mum in length and produced terminal spherical spores of 1.2-1.6 mum in diameter with the mother cell swelling around 2 mum in diameter (drumstick-type morphology). Cells grew optimally at pH(25 degrees C) 8.2-8.4 and temperature 50-52 degrees C and tolerated maximally 6% (w/v) NaCl. They were strict heterotrophs and could not use either CO or CO(2 )(both with or without H(2)) as sole carbon source, but tolerated up to 90% (v/v) CO in the headspace. The isolate grew on various complex substrates such as yeast extract, on carbohydrates, and organic acids, which included starch, D: -galactose, D: -mannose, glutamate, fumarate and acetate. Catalase reaction was negative. The membrane polar lipids were dominated by branched saturated fatty acids, which included iso-15:0 (24.5%), anteiso-15:0 (18.3%), iso-16:0 (9.9%), iso-17:0 (17.5%) and anteiso-17:0 (9.7%) as major constituents. The DNA G+C content of the strain is 45 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain JW/WZ-YB58(T) is distantly (<93% similarity) related to members of Bacillaceae. On the basis of 16S rRNA gene sequence, physiological and phenotypic characteristics, the isolate JW/WZ-YB58(T) (ATCC BAA-1258; DSM 17740) is proposed to be the type strain for the type species of the new taxa within the family Bacillaceae, Thermalkalibacillus uzoniensis gen. nov. sp. nov. The Genbank accession number for the 16S rRNA gene sequence is DQ221694.

  10. Correlates of meeting the combined and independent aerobic and strength exercise guidelines in hematologic cancer survivors.

    PubMed

    Vallerand, James R; Rhodes, Ryan E; Walker, Gordon J; Courneya, Kerry S

    2017-03-28

    Most previous research on the correlates of physical activity has examined the aerobic or strength exercise guidelines separately. Such an approach does not allow an examination of the correlates of meeting the combined guidelines versus a single guideline, or one guideline versus the other. Here, we report the prevalence and correlates of meeting the combined and independent exercise guidelines in hematologic cancer survivors (HCS). In a population-based, cross-sectional survey of 606 HCS from Alberta, Canada using a mailed questionnaire, we obtained separate assessments of aerobic and strength exercise behaviors, as well as separate assessments for motivations, regulations, and reflective processes using the multi-process action control framework (M-PAC). Overall, 22% of HCS met the combined exercise guideline, 22% met aerobic-only, 10% met strength-only, and 46% met neither exercise guideline. HCS were more likely to meet the combined guideline over the aerobic-only guideline if they had no children living at home, and over both the aerobic and strength-only guidelines if they had completed university. As hypothesized, those meeting the combined guideline also had a more favorable strength-specific M-PAC profile (i.e., motivations, regulations, and reflective processes) than those meeting the aerobic-only guideline, and a more favorable aerobic-specific M-PAC profile than those meeting the strength-only guideline. Interestingly and unexpectedly, HCS meeting the combined guidelines also reported significantly greater aerobic-specific perceived control, planning, and obligation/regret than those meeting the aerobic-only guideline, and greater strength-specific perceived control, planning, and obligation/regret than those meeting the strength-only guideline. Few HCS are meeting the combined exercise guidelines. M-PAC based variables are strong correlates of meeting the combined guidelines compared to aerobic or strength only guidelines. Strategies to help HCS meet

  11. Biocatalysis mechanism for p-fluoronitrobenzene degradation in the thermophilic bioelectrocatalysis system: Sequential combination of reduction and oxidation.

    PubMed

    Wang, Yanfeng; Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Shen, Dongsheng; Long, Yuyang; Zhou, Yuyang; Dai, Qizhou

    2016-09-01

    To verify the potentially synthetic anodic and cathodic biocatalysis mechanism in bioelectrocatalysis systems (BECSs), a single-chamber thermophilic bioelectrocatalysis system (R3) was operated under strictly anaerobic conditions using the biocathode donated dual-chamber (R1) and bioanode donated dual-chamber (R2) BECSs as controls. Direct bioelectrocatalytic oxidation was found to be infeasible while bioelectrocatalytic reduction was the dominant process for p-Fluoronitrobenzene (p-FNB) removal, with p-FNB removal of 0.188 mM d(-1) in R1 and 0.182 mM d(-1) in R3. Cyclic voltammetry experiments confirmed that defluorination in the BECSs was an oxidative metabolic process catalyzed by bioanodes following the reductive reaction, which explained the 0.034 mM d(-1) defluorination in R3, but negligible defluorination in controls. Taken together, these results revealed a sequentially combined reduction and oxidation mechanism in the thermophilic BECS for p-FNB removal. Moreover, the enrichment of Betaproteobacteria and uniquely selected Bacilli in R3 were probably functional populations for p-FNB degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I in Premenopausal Women

    DTIC Science & Technology

    2005-08-01

    1-0361 TITLE: Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and...COVERED (From - To) 17 SEP 2001 - 16 SEP 2005 4. TITLE AND SUBTITLE Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on 5a...14. ABSTRACT This proposal entitled “Effects of moderate aerobic exercise combined with caloric restriction on circulating estrogens and IGF- 1 in

  13. Aerobic training alone or combined with strength training affects fitness in elderly: Randomized trial.

    PubMed

    Burich, Rasmus; Teljigović, Sanel; Boyle, Eleanor; Sjøgaard, Gisela

    2015-01-01

    To investigate if combined strength and aerobic training can enhance aerobic capacity in the elderly to a similar extent as aerobic training alone when training duration is matched. Elderly men and women (age 63.2 ± 4.7) were randomized into two intervention groups: an aerobic group (AG, n = 17) and a combined group (CG, n = 16). Subjects trained 40 minutes three times a week for 12 weeks. Both groups trained 20 minutes at 65% of heart rate reserve on ergometer cycles followed by another 20 minutes on the ergometer cycles for AG and 20-minute strength training for the lower body for CG. The primary outcome was VO2max. Secondary outcomes were maximal voluntary contraction (MVC) in isometric knee extension, 1 repetition maximum in three leg exercises, body fat, waist-to-hip ratio, blood pressure and score on the Health Survey Short Form 36 (SF-36). Both groups improved VO2max (p < .01) and MVC (p < .001). VO2max increased 17% confidence interval (CI) [7.4-26] in CG and 26% CI [14.1-38.2] in AG, with no significant difference between groups. MVC increased 22% CI [16.3-27.7] in CG and 9% CI [4.6-13.5] in AG with CG improving MVC more than AG (p < .01). CG's score on the general health dimension on the SF-36 health survey improved more than AG's score. Elderly can substitute a part of their aerobic training with strength training and still improve VO2max to a clinically significant degree when strength training is performed with large muscle groups subsequently to the aerobic training. Combined training additionally improves strength and self-assessed general health more than aerobic training alone.

  14. Two-stage process combines anaerobic and aerobic methods

    SciTech Connect

    Kayhanian, M.; Lindenauer, K.; Hardy, S.; Tchobanoglous, G.

    1991-03-01

    The organic fraction of the material diverted from landfills has potential to be utilized as a raw material to be recycled, used for the production of compost, converted to energy in waste-to-energy facilities, or used for the production of other end products. Given the uncertainties concerning the future availability, production costs, and market prices for conventional fuels, any potential source of alternate energy and alternative energy technologies deserve serious consideration. Faced with an uncertain energy future, several European countries have already started using biomass and MSW as a source of energy. An innovative high-solids anaerobic digestion/aerobic composting process currently under investigation at the University of California, Davis is as an ideal candidate for processing a large fraction of the organic matter in MSW. The principal advantages of this innovative process which is described and discussed in this paper are: (1) the recovery of biogas that can be used as a fuel for the production of energy, and (2) the production of humus-like material that can be used as a high-quality soil amendment or as boiler fuel. The fact that a liquid waste stream that needs further treatment is not generated in this process is another significant advantage.

  15. Effect of aerobic exercise and raloxifene combination therapy on senile osteoporosis

    PubMed Central

    Zhao, Chengjin; Hou, Haibing; Chen, Yutao; Lv, Kai

    2016-01-01

    [Purpose] This study assessed the effects of combined application of raloxifene and aerobic exercise on senile osteoporosis. [Subjects and Methods] A total of 70 elderly patients with osteoporosis, who treated at our hospital between April 2013 and August 2014, were divided into equal-sized observation and control groups. The control group was administered raloxifene, whereas the observation group received raloxifene treatment plus aerobic exercise. [Results] Outpatient outcomes were considered dependent variables. After treatment, the two groups differed significantly in terms of lumbar spine (L2–L4) and proximal femoral bone mineral density. The urine pyridine/creatinine ratio decreased significantly and serum calcitonin level increased significantly in the observation group. These differences were statistically significant. [Conclusion] Raloxifene combined with aerobic exercise therapy significantly improves bone density and promotes bone formation in patients with senile osteoporosis. PMID:27390417

  16. Effect of aerobic exercise and raloxifene combination therapy on senile osteoporosis.

    PubMed

    Zhao, Chengjin; Hou, Haibing; Chen, Yutao; Lv, Kai

    2016-06-01

    [Purpose] This study assessed the effects of combined application of raloxifene and aerobic exercise on senile osteoporosis. [Subjects and Methods] A total of 70 elderly patients with osteoporosis, who treated at our hospital between April 2013 and August 2014, were divided into equal-sized observation and control groups. The control group was administered raloxifene, whereas the observation group received raloxifene treatment plus aerobic exercise. [Results] Outpatient outcomes were considered dependent variables. After treatment, the two groups differed significantly in terms of lumbar spine (L2-L4) and proximal femoral bone mineral density. The urine pyridine/creatinine ratio decreased significantly and serum calcitonin level increased significantly in the observation group. These differences were statistically significant. [Conclusion] Raloxifene combined with aerobic exercise therapy significantly improves bone density and promotes bone formation in patients with senile osteoporosis.

  17. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment.

    PubMed

    Sangave, Preeti C; Gogate, Parag R; Pandit, Aniruddha B

    2007-05-01

    Laboratory-scale experiments were conducted in order to investigate the effect of ozone as pre-aerobic treatment and post-aerobic treatment for the treatment of the distillery wastewater. The degradation of the pollutants present in distillery spent wash was carried out by ozonation, aerobic biological degradation processes alone and by using the combinations of these two processes to investigate the synergism between the two modes of wastewater treatment and with the aim of reducing the overall treatment costs. Pollutant removal efficiency was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and the color removal efficiency in terms of absorbance of the sample at 254 nm. Ozone was found to be effective in bringing down the COD (up to 27%) during the pretreatment step itself. In the combined process, pretreatment of the effluent led to enhanced rates of subsequent biological oxidation step, almost 2.5 times increase in the initial oxidation rate has been observed. Post-aerobic treatment with ozone led to further removal of COD along with the complete discoloration of the effluent. The integrated process (ozone-aerobic oxidation-ozone) achieved approximately 79% COD reduction along with discoloration of the effluent sample as compared to 34.9% COD reduction for non-ozonated sample, over a similar treatment period.

  18. A complete mass balance of a complex combined anaerobic/aerobic municipal source-separated waste treatment plant.

    PubMed

    Pognani, Michele; Barrena, Raquel; Font, Xavier; Sánchez, Antoni

    2012-05-01

    In this study a combined anaerobic/aerobic full-scale treatment plant designed for the treatment of the source-separated organic fraction of municipal solid waste (OFMSW) was monitored over a period of one year. During this period, full information was collected about the waste input material, the biogas production, the main rejects and the compost characteristics. The plant includes mechanical pre-treatment, dry thermophilic anaerobic digestion, tunnel composting system and a curing phase to produce compost. To perform the monitoring of the entire plant and the individual steps, traditional chemical methods were used but they present important limitations in determining the critical points and the efficiency of the stabilization of the organic matter. Respiration indices (dynamic and cumulative) allowed for the quantitative calculation of the efficiency of each treatment unit. The mass balance was calculated and expressed in terms of Mgy(-1) of wet (total) matter, carbon, nitrogen and phosphorus. Results show that during the pre-treatment step about 32% of the initial wet matter is rejected without any treatment. This also reduces the biodegradability of the organic matter that continues to the treatment process. About 50% of the initial nitrogen and 86.4% of the initial phosphorus are found in the final compost. The final compost also achieves a high level of stabilization with a dynamic respiration index of 0.3±0.1g O(2) per kg of total solids per hour, which implies a reduction of 93% from that of the raw OFMSW, without considering the losses of biodegradable organic matter in the refuse (32% of the total input). The anaerobic digestion process is the main contributor to this stabilization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Investigating Aerobic, Anaerobic Combine Technical Trainings' Effects on Performance in Tennis Players

    ERIC Educational Resources Information Center

    Suna, Gürhan; Kumartasli, Mehmet

    2017-01-01

    The aim of this study is to investigate eight-week aerobic, anaerobic combine technical trainings' effects on developments of performance. 21 athletes of tennis proficiency students from Sports Sciences Department were joined to the study voluntarily. Participated in the research athletes' ages' mean was 22,2 ± 0,3 year, lengths' mean was 177,3 ±…

  20. Combined Aerobic/Strength Training and Energy Expenditure in Older Women

    PubMed Central

    Hunter, Gary R.; Bickel, C. Scott; Fisher, Gordon; Neumeier, William; McCarthy, John

    2013-01-01

    Purpose To examine the effects of three different frequencies of combined resistance and aerobic training on total energy expenditure (TEE) and activity related energy expenditure (AEE) in a group of older adults. Methods Seventy-two women, 60 – 74 years old, were randomly assigned to one of three groups: 1 day/week of aerobic and 1 day/week of resistance (1+1); 2 days/week of aerobic and 2 days/week resistance (2+2); or 3 days/week aerobic and 3 days/week resistance (3+3). Body composition (DXA), feeling of fatigue, depression, and vigor (questionnaire), strength (1RM), serum cytokines (ELISA), maximal oxygen uptake (progressive treadmill test), resting energy expenditure, and TEE were measured before and after 16 weeks of training. Aerobic training consisted of 40 minutes of aerobic exercise at 80% maximum heart rate and resistance training consisted of 2 sets of 10 repetitions for 10 different exercises at 80% of one repetition maximum. Results All groups increased fat free mass, strength and aerobic fitness and decreased fat mass. No changes were observed in cytokines or perceptions of fatigue/depression. No time by group interaction was found for any fitness/body composition variable. TEE and AEE increased with the 2+2 group but not with the other two groups. Non-exercise training AEE (NEAT) increased significantly in the 2+2 group (+200 kcal/day), group 1×1 showed a trend for an increase (+68 kcal/day) and group 3+3 decreased significantly (−150 kcal/day). Conclusion Results indicate that 3+3 training may inhibit NEAT by being too time consuming and does not induce superior training adaptations to 1+1 and 2+2 training. Key words: physical activity, older adults, total energy expenditure, maximum oxygen uptake. PMID:23774582

  1. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke

    PubMed Central

    Constans, Annabelle; Pin-barre, Caroline; Temprado, Jean-Jacques; Decherchi, Patrick; Laurin, Jérôme

    2016-01-01

    Stroke often aggravated age-related cognitive impairments that strongly affect several aspects of quality of life. However, few studies are, to date, focused on rehabilitation strategies that could improve cognition. Among possible interventions, aerobic training is well known to enhance cardiovascular and motor functions but may also induce beneficial effects on cognitive functions. To assess the effectiveness of aerobic training on cognition, it seems necessary to know whether training promotes the neuroplasticity in brain areas involved in cognitive functions. In the present review, we first explore in both human and animal how aerobic training could improve cognition after stroke by highlighting the neuroplasticity mechanisms. Then, we address the potential effect of combinations between aerobic training with other interventions, including resistance exercises and pharmacological treatments. In addition, we postulate that classic recommendations for aerobic training need to be reconsidered to target both cognition and motor recovery because the current guidelines are only focused on cardiovascular and motor recovery. Finally, methodological limitations of training programs and cognitive function assessment are also developed in this review to clarify their effectiveness in stroke patients. PMID:27445801

  2. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke.

    PubMed

    Constans, Annabelle; Pin-Barre, Caroline; Temprado, Jean-Jacques; Decherchi, Patrick; Laurin, Jérôme

    2016-01-01

    Stroke often aggravated age-related cognitive impairments that strongly affect several aspects of quality of life. However, few studies are, to date, focused on rehabilitation strategies that could improve cognition. Among possible interventions, aerobic training is well known to enhance cardiovascular and motor functions but may also induce beneficial effects on cognitive functions. To assess the effectiveness of aerobic training on cognition, it seems necessary to know whether training promotes the neuroplasticity in brain areas involved in cognitive functions. In the present review, we first explore in both human and animal how aerobic training could improve cognition after stroke by highlighting the neuroplasticity mechanisms. Then, we address the potential effect of combinations between aerobic training with other interventions, including resistance exercises and pharmacological treatments. In addition, we postulate that classic recommendations for aerobic training need to be reconsidered to target both cognition and motor recovery because the current guidelines are only focused on cardiovascular and motor recovery. Finally, methodological limitations of training programs and cognitive function assessment are also developed in this review to clarify their effectiveness in stroke patients.

  3. Continuous Thermophilic Composting12

    PubMed Central

    Schulze, K. L.

    1962-01-01

    Under complete mixing conditions, aerobic decomposition of mixed organic waste materials has been maintained continuously in the thermophilic phase in a 55-gal rotating drum. Temperatures ranged between 53 and 70 C. Raw material was added daily or every second day in amounts up to 18 lb per 100 lb of decomposing material. The weight of material removed ranged between 42 and 60% of the raw material added. Factors influencing the operation of the composting unit were studied in detail. Images FIG. 2 PMID:13909559

  4. Effects of combined training vs aerobic training on cognitive functions in COPD: a randomized controlled trial

    PubMed Central

    Aquino, Giovanna; Iuliano, Enzo; di Cagno, Alessandra; Vardaro, Angela; Fiorilli, Giovanni; Moffa, Stefano; Di Costanzo, Alfonso; De Simone, Giuseppe; Calcagno, Giuseppe

    2016-01-01

    Aim The aim of this study was to investigate the effects of high-intensity aerobic training (AT) and high-intensity aerobic training combined with resistance training (ie, combined training [CT]) on cognitive function in patients with COPD. Methods Twenty-eight Caucasian male patients (68.35±9.64 years; mean ± SD) with COPD were recruited and randomized into two groups, AT and CT. Both groups performed physical reconditioning for 4 weeks, with a frequency of five training sessions per week. The CT group completed two daily sessions of 30 minutes: one aerobic session and one strength session, respectively; The AT group performed two 30-minute aerobic endurance exercise sessions on treadmill. Physical and cognitive function tests were performed before and after the training intervention performances. Results Exercise training improved the following cognitive functions: long-term memory, verbal fluency, attentional capacity, apraxia, and reasoning skills (P<0.01). Moreover, the improvements in the CT group were significantly greater than those in the AT group in long-term memory, apraxia, and reasoning skills (P<0.05). Conclusion CT may be a possible strategy to prevent cognitive decline and associated comorbidities in male patients with COPD. PMID:27110107

  5. Step aerobic combined with resistance training improves cutaneous microvascular reactivity in overweight women.

    PubMed

    Suksom, D; Phanpheng, Y; Soogarun, S; Sapwarobol, S

    2015-12-01

    The aim of the present study was to determine the effect of combined aerobic and resistance exercise training on body weight and cutaneous microvascular reactivity in overweight individuals. A total of 41 overweight women aged 30-45 years (BMI 25-29.9 kg/m²) were randomized into sedentary time control (CON; N.=15), traditional aerobic dance (AD; N.=11), and step aerobic dance combined with upper-body resistance training (SAR; N.=15) groups. Exercise programs were 50 minutes/session, 3 times/week for 12 weeks. Maximal oxygen consumption and 1-RM strength of lower body increased (P<0.05) in the AD and SAR groups. Body mass and BMI decreased (P<0.05) in the SAR group. Plasma concentration of adiponectin increased (P<0.05) whereas leptin concentration did not change. Peak postocclusive reactive hyperemia measured by laser-Doppler fluxmeter improved (P<0.05) in the SAR group. These changes were not observed in the CON or AD groups. Peak occlusive reactive hyperemia was positively and significantly correlated with adiponectin level (r=0.23). The present findings suggest that simultaneously performed step aerobic dance and resistance training exerts more favorable effects on weight loss and improving cutaneous microvascular reactivity in overweight women.

  6. Cardiovascular Fitness and Energy Expenditure Response during a Combined Aerobic and Circuit Weight Training Protocol

    PubMed Central

    Benito, Pedro J.; Alvarez-Sánchez, María; Díaz, Víctor; Morencos, Esther; Peinado, Ana B.; Cupeiro, Rocio

    2016-01-01

    Objectives The present study describes the oxygen uptake and total energy expenditure (including both aerobic and anaerobic contribution) response during three different circuit weight training (CWT) protocols of equivalent duration composed of free weight exercises, machine exercises, and a combination of free weight exercises intercalating aerobic exercise. Design Controlled, randomized crossover designs. Methods Subjects completed in a randomized order three circuit weight training protocols of the same duration (3 sets of 8 exercises, 45min 15s) and intensity (70% of 15 repetitions maximum). The circuit protocols were composed of free weight exercises, machine exercises, or a combination of free weight exercises with aerobic exercise. Oxygen consumption and lactate concentration were measured throughout the circuit to estimate aerobic and anaerobic energy expenditure respectively. Results Energy expenditure is higher in the combined exercise protocol (29.9±3.6 ml/kg/min), compared with Freeweight (24.2±2.8ml/kg/min) and Machine (20.4±2.9ml/kg/min). The combined exercise protocol produced the highest total energy expenditure but the lowest lactate concentration and perceived exertion. The anaerobic contribution to total energy expenditure was higher in the machine and free weight protocols compared with the combined exercise protocol (6.2%, 4.6% and 2.3% respectively). Conclusions In the proposed protocols, the combined exercise protocol results in the highest oxygen consumption. Total energy expenditure is related to the type of exercise included in the circuit. Anaerobic contributions to total energy expenditure during circuit weight training may be modest, but lack of their estimation may underestimate total energy expenditure. Trial Registration ClinicalTrials.gov NCT01116856 PMID:27832062

  7. A combined continuous and interval aerobic training improves metabolic syndrome risk factors in men

    PubMed Central

    Sari-Sarraf, Vahid; Aliasgarzadeh, Akbar; Naderali, Mohammad-Mahdi; Esmaeili, Hamid; Naderali, Ebrahim K

    2015-01-01

    Individuals with metabolic syndrome have significantly higher risk of cardiovascular disease and type 2 diabetes leading to premature death mortality. Metabolic syndrome has a complex etiology; thus, it may require a combined and multi-targeted aerobic exercise regimen to improve risk factors associated with it. Therefore, the aim of this study was to evaluate the effect of combined continuous and interval aerobic training on patients with metabolic syndrome. Thirty adult male with metabolic syndrome (54±8 years) were randomly divided into two groups: test training group (TTG; n=15) and control group (CG; n=15). Subjects in TTG performed combined continuous and interval aerobic training using a motorized treadmill three times per week for 16 weeks. Subjects in CG were advised to continue with their normal activities of life. Twenty-two men completed the study (eleven men in each group). At the end of the study, in TTG, there were significant (for all, P<0.05) reductions in total body weight (−3.2%), waist circumference (−3.43 cm), blood pressure (up to −12.7 mmHg), and plasma insulin, glucose, and triacylglyceride levels. Moreover, there were significant (for all, P<0.05) increases VO2max (−15.3%) and isometric strength of thigh muscle (28.1%) and high-density lipoprotein in TTG. None of the above indices were changed in CG at the end of 16-week study period. Our study suggests that adoption of a 16-week combined continuous and interval aerobic training regimen in men with metabolic syndrome could significantly reduce cardiovascular risk factors in these patients. PMID:26056487

  8. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment.

  9. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    PubMed

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-02-02

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns.

  10. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    PubMed Central

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  11. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: A review.

    PubMed

    Li, Yanlei; Hanssen, Henner; Cordes, Mareike; Rossmeissl, Anja; Endes, Simon; Schmidt-Trucksäss, Arno

    2015-01-01

    Exercise training has different effects on arterial stiffness according to training modalities. The optimal exercise modality for improvement of arterial function in normotensive and hypertensive individuals has not been well established. In this review, we aim to evaluate the effects of aerobic, resistance and combined aerobic and resistance training on arterial stiffness in individuals with and without hypertension. We systematically searched the Pubmed and Web of Science database from 1985 until December 2013 for relevant randomised controlled trials (RCTs). The data were extracted by one investigator and checked by a second investigator. The training effects on arterial stiffness were estimated using weighted mean differences of the relative changes (%) with 95% confidence intervals (CIs). We finally reviewed the results from 17 RCTs. The available evidence indicates that aerobic exercise tends to have a beneficial effect on arterial stiffness in normotensive and hypertensive patients, but does not affect arterial stiffness in patients with isolated systolic hypertension. Resistance exercise has differing effects on arterial stiffness depending on type and intensity. Vigorous resistance training is associated with an increase in arterial stiffness. There seem to be no unfavourable effects on arterial stiffness if the training is of low intensity, in a slow eccentric manner or with lower limb in healthy individuals. Combined training has neutral or even a beneficial effect on arterial stiffness. In conclusion, our review shows that exercise training has varying effects on arterial stiffness depending on the exercise modalities.

  12. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    PubMed

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  13. Effects of Moderate Aerobic Exercise Combined With Calorie Restriction on Circulating Estrogens and IGF-I in Premenopausal Women

    DTIC Science & Technology

    2004-10-01

    Kines 496c Kines 496c Kines 596c Kines 597i Kines 395b Scientific basis of Exercise for Older Adults Independent Study 3 Fitness Appraisal 4...AD Award Number: DAMD17-01-1-0360 TITLE: Effects of Moderate Aerobic Exercise Combined with Calorie Restriction on Circulating Estrogens and IGF...AND DATES COVERED Annual Summary (17 Sep 2003 - 16 Sep 2004) 4. TITLE AND SUBTITLE Effects of Moderate Aerobic Exercise Combined with

  14. Combination of aerobic and vacuum packaging to control lipid oxidation and off-odor volatiles of irradiated raw turkey breast.

    PubMed

    Nam, K C; Ahn, D U

    2003-03-01

    Effects of the combination of aerobic and anaerobic packaging on color, lipid oxidation, and volatile production were determined to establish a modified packaging method to control quality changes in irradiated raw turkey meat. Lipid oxidation was the major problem with aerobically packaged irradiated turkey breast, while retaining characteristic irradiation off-odor volatiles such as dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide was the concern for vacuum-packaged breast during the 10-day refrigerated storage. Vacuum packaging of aerobically packaged irradiated turkey breast meat at 1 or 3 days of storage lowered the amounts of S-volatiles and lipid oxidation products compared with vacuum- and aerobically packaged meats, respectively. Irradiation increased the a-value of raw turkey breast, but exposing the irradiated meat to aerobic conditions alleviated the intensity of redness.

  15. Thermophilic cellobiohydrolase

    DOEpatents

    Sapra, Rajat; Park, Joshua I.; Datta, Supratim; Simmons, Blake A.

    2017-04-18

    The present invention provides for a composition comprising a polypeptide comprising a first amino acid sequence having at least 70% identity with the amino acid sequence of Csac GH5 wherein said first amino acid sequence has a thermostable or thermophilic cellobiohydrolase (CBH) or exoglucanase activity.

  16. Effects of a combined aerobic and strength training program in youth patients with acute lymphoblastic leukemia.

    PubMed

    Perondi, Maria Beatriz; Gualano, Bruno; Artioli, Guilherme Gianini; de Salles Painelli, Vítor; Filho, Vicente Odone; Netto, Gabrieli; Muratt, Mavi; Roschel, Hamilton; de Sá Pinto, Ana Lúcia

    2012-01-01

    Cure rates of youth with Acute Lymphoblastic Leukemia (ALL) have increased in the past decades, but survivor's quality of life and physical fitness has become a growing concern. Although previous reports showed that resistance training is feasible and effective, we hypothesized that a more intense exercise program would also be feasible, but more beneficial than low- to moderate-intensity training programs. We aimed to examine the effects of an exercise program combining high-intensity resistance exercises and moderate-intensity aerobic exercises in young patients undergoing treatment for ALL. A quasi-experimental study was conducted. The patients (n = 6; 5-16 years of age) underwent a 12-week intra-hospital training program involving high-intensity strength exercises and aerobic exercise at 70% of the peak oxygen consumption. At baseline and after 12 weeks, we assessed sub-maximal strength (10 repetition-maximum), quality of life and possible adverse effects. A significant improvement was observed in the sub maximal strength for bench press (71%), lat pull down (50%), leg press (73%) and leg extension (64%) as a result of the training (p < 0.01). The parents' evaluations of their children's quality of life revealed an improvement in fatigue and general quality of life, but the children's self-reported quality of life was not changed. No adverse effects occurred. A 12-week in-hospital training program including high-intensity resistance exercises promotes marked strength improvements in patients during the maintenance phase of the treatment for Acute Lymphoblastic Leukemia without side-effects. Parents' evaluations of their children revealed an improvement in the quality of life. Key pointsPatients with ALL present low muscle strength and poor quality of life.High-intensity resistance exercises combined with moderate-intensity aerobic exercise improved muscle strength and quality of life during the maintenance phase of ALL treatment.The exercise training program

  17. Sanitising black water by auto-thermal aerobic digestion (ATAD) combined with ammonia treatment.

    PubMed

    Nordin, Annika C; Vinnerås, Björn

    2015-01-01

    The effect of a two-step process on the concentration of pathogens and indicator microorganisms in black water (0.9-1% total solids) was studied. The treatment combined auto-thermal aerobic digestion (ATAD) and ammonia sanitisation. First, the temperature of the black water was increased through ATAD and when a targeted temperature was reached (33, 41 and 45.5 °C studied), urea was added to a 0.5% concentration (total ammonia nitrogen >2.9 g L⁻¹). Escherichia coli and Salmonella spp. were reduced to non-detectable levels within 3 days following urea addition at temperatures above 40 °C, whereas when urea was added at 33 °C E. coli was still present after 8 days. By adding urea at temperatures of 40 °C and above, a 5 log10 reduction in Enterococcus spp. and a 3 log10 reduction in Ascaris suum eggs was achieved 1 week after the addition. With combined ATAD and ammonia treatment using 0.5% ww urea added at an aerobic digestion temperature >40 °C, black water was sanitised regarding the pathogens studied in 2 weeks of total treatment time.

  18. Anaerobic thermophiles.

    PubMed

    Canganella, Francesco; Wiegel, Juergen

    2014-02-26

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  19. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  20. Does Combined Dry Land Strength and Aerobic Training Inhibit Performance of Young Competitive Swimmers?

    PubMed Central

    Garrido, Nuno; Marinho, Daniel A.; Reis, Victor M.; van den Tillaar, Roland; Costa, Aldo M.; Silva, António J.; Marques, Mário C.

    2010-01-01

    The aim of the current study was twofold: (i) to examine the effects of eight weeks of combined dry land strength and aerobic swimming training for increasing upper and lower body strength, power and swimming performance in young competitive swimmers and, (ii) to assess the effects of a detraining period (strength training cessation) on strength and swimming performance. The participants were divided into two groups: an experimental group (eight boys and four girls) and a control group (six boys and five girls). Apart from normal practice sessions (six training units per week of 1 h and 30 min per day), the experimental group underwent eight weeks (two sessions per week) of strength training. The principal strength exercises were the bench press, the leg extension, and two power exercises such as countermovement jump and medicine ball throwing. Immediately following this strength training program, all the swimmers undertook a 6 week detraining period, maintaining the normal swimming program, without any strength training. Swimming (25 m and 50 m performances, and hydrodynamic drag values), and strength (bench press and leg extension) and power (throwing medicine ball and countermovement jump) performances were tested in three moments: (i) before the experimental period, (ii) after eight weeks of combined strength and swimming training, and (iii) after the six weeks of detraining period. Both experimental and control groups were evaluated. A combined strength and aerobic swimming training allow dry land strength developments in young swimmers. The main data can not clearly state that strength training allowed an enhancement in swimming performance, although a tendency to improve sprint performance due to strength training was noticed. The detraining period showed that, although strength parameters remained stable, swimming performance still improved. Key points This study investigated the effect of dry land strength training on sprint performance in young

  1. A randomized 9-month study of blood pressure and body fat responses to aerobic training versus combined aerobic and resistance training in older men.

    PubMed

    Sousa, Nelson; Mendes, Romeu; Abrantes, Catarina; Sampaio, Jaime; Oliveira, José

    2013-08-01

    This randomized study evaluated the impact of different exercise training modalities on blood pressure and body fat responses in apparently healthy older men. Forty-eight elderly men (aged 65-75 years) were randomly assigned to an aerobic training group (ATG, n=15), a combined aerobic and resistance training group (CTG, n=16), or a control group (n=17). Both exercise training programs were moderate-to-vigorous intensity, three days/week for 9-months. Strength, aerobic endurance, body fat and blood pressure were measured on five different occasions. The data were analyzed using a mixed-model ANOVA, and the independence between systolic blood pressure (SBP), diastolic blood pressure (DBP) and group was tested. A significant main effect of group (p<0.001) was observed in strength and aerobic endurance, with higher performance observed in the CTG. A significant main effect of group (p<0.001) and time (p=0.029) was observed in body fat percentage, with a 2.3% decrease in CTG. A significant main effect of time was observed in SBP (p=0.005) and in DBP (p=0.011) for both ATG and CTG. Mean decreases in SBP and DBP, respectively, were 15 and 6 mmHg for ATG and 24 and 12 mmHg for CTG. There was a significant association for SBP (p=0.008) and DBP (p=0.005) in the CTG, with significant individual BP profile modifications. Both exercise-training programs reduce resting blood pressure. However, only the combined exercise training was effective at reducing body fat percentage; consequently, there were larger changes in blood pressure, which result in a significant reduction in hypertensive subjects.

  2. Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10.

    PubMed

    Lee, Kevin C-Y; Dunfield, Peter F; Morgan, Xochitl C; Crowe, Michelle A; Houghton, Karen M; Vyssotski, Mikhail; Ryan, Jason L J; Lagutin, Kirill; McDonald, Ian R; Stott, Matthew B

    2011-10-01

    An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49(T), was isolated from geothermally heated soil at Hell's Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49(T) is the first representative of a new class in the newly described phylum Armatimonadetes, formerly known as candidate division OP10. Cells of strain T49(T) stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49(T) grew at 50-73 °C with an optimum temperature of 68 °C, and at pH 4.7-5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h(-1) was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49(T) was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49(T) represents a novel bacterial genus and species within the new class Chthonomonadetes classis nov. of the phylum Armatimonadetes. The type strain of Chthonomonas calidirosea gen. nov., sp. nov. is T49(T) ( = DSM 23976(T) = ICMP 18418(T)).

  3. Activities of drug combinations against Mycobacterium tuberculosis grown in aerobic and hypoxic acidic conditions.

    PubMed

    Piccaro, Giovanni; Giannoni, Federico; Filippini, Perla; Mustazzolu, Alessandro; Fattorini, Lanfranco

    2013-03-01

    Mycobacterium tuberculosis is exposed to hypoxia and acidity within granulomatous lesions. In this study, an acidic culture model of M. tuberculosis was used to test drug activity against aerobic 5-day-old (A5) and hypoxic 5-, 12-, and 19-day-old (H5, H12, and H19, respectively) bacilli after 7, 14, and 21 days of exposure. In A cultures, CFU and pH rapidly increased, while in H cultures growth stopped and pH increased slightly. Ten drugs were tested: rifampin (R), isoniazid (I), pyrazinamide (Z), ethambutol (E), moxifloxacin (MX), amikacin (AK), metronidazole (MZ), nitazoxanide (NZ), niclosamide (NC), and PA-824 (PA). Rifampin was the most active against A5, H5, H12, and H19 bacilli. Moxifloxacin and AK efficiently killed A5 and H5 cells, I was active mostly against A5 cells, Z was most active against H12 and H19 cells, and E showed low activity. Among nitrocompounds, NZ, NC, and PA were effective against A5, H5, H12, and H19 cells, while MZ was active against H12 and H19 cells. To kill all A and H cells, A5- and H5-active agents R, MX, and AK were used in combination with MZ, NZ, NC, or PA, in comparison with R-I-Z-E, currently used for human therapy. Mycobacterial viability was determined by CFU and a sensitive test in broth (day to positivity, MGIT 960 system). As shown by lack of regrowth in MGIT, the most potent combination was R-MX-AK-PA, which killed all A5, H5, H12, and H19 cells in 14 days. These observations demonstrate the sterilizing effect of drug combinations against cells of different M. tuberculosis stages grown in aerobic and hypoxic acidic conditions.

  4. How much will older adults exercise? A feasibility study of aerobic training combined with resistance training.

    PubMed

    Falck, Ryan S; Davis, Jennifer C; Milosevic, Elizabeth; Liu-Ambrose, Teresa

    2017-01-01

    Both aerobic training (AT) and resistance training (RT) have multidimensional health benefits for older adults including increased life expectancy and decreased risk of chronic diseases. However, the volume (i.e., frequency*time) of AT combined with RT in which untrained older adults can feasibly and safely participate remains unclear. Thus, our primary objective was to investigate the feasibility and safety of a high-volume exercise program consisting of twice weekly AT combined with twice weekly RT (i.e., four times weekly exercise) on a group of untrained older adults. In addition, we investigated the effects of the program on physical function, aerobic capacity, muscular strength, and explored factors related to participant adherence. We recruited eight inactive older adults (65+ years) to participate in a 6-week, single-group pre-post exercise intervention, consisting of 2 days/week of AT plus 2 days/week of progressive RT for 6 weeks. We recorded program attendance and monitored for adverse events during the course of the program. Participants were tested at both baseline and follow-up on the following: (1) physical function (i.e., timed-up-and-go test (TUG) and short physical performance battery (SPPB)), (2) aerobic capacity (VO2max) using the modified Bruce protocol; and (3) muscular strength on the leg press and lat pull-down. Post intervention, we performed qualitative semi-structured interviews of all participants regarding their experiences in the exercise program. We used these responses to examine themes that may affect continued program adherence to a high-volume exercise program. We recorded an average attendance rate of 83.3% with the lowest attendance for one session being five out of eight participants; no significant adverse events occurred. Significant improvements were observed for SPPB score (1.6; 95% CI: [0.3, 2.9]), VO2max (8.8 ml/kg/min; 95% CI: [2.8, 14.8]), and lat pull-down strength (11.8 lbs; 95% CI: [3.3, 20.2]). Qualitative

  5. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system.

    PubMed

    Frijters, C T M J; Vos, R H; Scheffer, G; Mulder, R

    2006-03-01

    The wastewater originating from the bleaching and dyeing processes in the textile factory Ten Cate Protect in Nijverdal (the Netherlands) was successfully treated in a sequential anaerobic/aerobic system. In the system, a combination of an anaerobic 70-m3 fluidized bed reactor and a 450-m3 aerobic basin with integrated tilted plate settlers, 80-95% of the color was removed. The color was largely removed in the preacidification basin and the anaerobic reactor. Color, deriving from both reactive as well as disperse, was anaerobically removed, indicating that these type of dyes were reduced to colorless products. Interestingly, the vat dyes, the anthraquinones and indigoids, which were thought to be removed mainly aerobically, were largely anaerobically decolorized. Apparently the anaerobic system is capable of effectively removing the color of both soluble as insoluble dyes. The treated effluent of the sequential anaerobic/aerobic treatment showed no toxicity towards the bioluminescent bacterium Vibrio fisheri (EC20 (95%) > 45%). Partially bypassing the anaerobic stage resulted in increased toxicity (EC20 (95%) of 9% and 14%) in the effluent of the aerobic treatment and caused significant decrease of color removal. The results of this study show a main contribution of anaerobic treatment in decolorizing and detoxifying the textile wastewater in the sequential anaerobic/aerobic system.

  6. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  7. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  8. Effects of combined aerobic and resistance exercise on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis.

    PubMed

    Lee, Yong Hee; Park, Soo Hyun; Yoon, Eun Sun; Lee, Chong-Do; Wee, Sang Ouk; Fernhall, Bo; Jae, Sae Young

    2015-09-01

    The effects of combined aerobic and resistance exercise training on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis were investigated. Twenty-six patients with chronic poststroke hemiparesis were randomly assigned to either the combined aerobic and resistance exercise group (n = 14) or the control group (n = 12). The exercise intervention group received a combined aerobic and resistance exercise training (1 hr/day, three times/week for 16 wks), whereas the control group received usual care. Central arterial stiffness was determined by pulse wave velocity and augmentation index. Gait velocity was assessed using the 6-min walk test, 10-m walk test, and the Timed Up-and-Go test. Patients in the exercise intervention group had greater improvement of mean pulse wave velocity (P < 0.001), augmentation index (P = 0.048), and gait velocity (6-min walk test, P < 0.001; 10-m walk test, P < 0.001) than did patients in the control group. Patients in the exercise intervention group also had greater improvements in physical fitness component (grip strength, P < 0.001; muscular strength of upper and lower limbs, P < 0.027; flexibility, P < 0.001) when compared with control patients. The combined aerobic and resistance exercise program significantly reduced central arterial stiffness and increased gait velocity in patients with chronic poststroke hemiparesis.

  9. Heart Rate Recovery and Variability Following Combined Aerobic and Resistance Exercise Training in Adults with and without Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2013-01-01

    Persons with Down syndrome (DS) are at high risk for cardiovascular morbidity and mortality, and there is compelling evidence of autonomic dysfunction in these individuals. The main purpose of this study was to determine whether a combined aerobic and resistance exercise intervention produces similar results in cardiac autonomic function between…

  10. Heart Rate Recovery and Variability Following Combined Aerobic and Resistance Exercise Training in Adults with and without Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2013-01-01

    Persons with Down syndrome (DS) are at high risk for cardiovascular morbidity and mortality, and there is compelling evidence of autonomic dysfunction in these individuals. The main purpose of this study was to determine whether a combined aerobic and resistance exercise intervention produces similar results in cardiac autonomic function between…

  11. Combined effects of aerobic exercise and diet on lipids and lipoproteins in overweight and obese adults: a meta-analysis

    USDA-ARS?s Scientific Manuscript database

    This study used the aggregate data meta-analytic approach to determine the combined effects of aerobic exercise and diet on lipids and lipoproteins in overweight and obese adults. Twelve studies representing 859 men and women (443 intervention, 416 control) were included. Using random-effects models...

  12. Combined Iron Deficiency and Low Aerobic Fitness Doubly Burden Academic Performance among Women Attending University.

    PubMed

    Scott, Samuel P; De Souza, Mary Jane; Koehler, Karsten; Murray-Kolb, Laura E

    2017-01-01

    Academic success is a key determinant of future prospects for students. Cognitive functioning has been related to nutritional and physical factors. Here, we focus on iron status and aerobic fitness in young-adult female students given the high rate of iron deficiency and declines in fitness reported in this population. We sought to explore the combined effects of iron status and fitness on academic success and to determine whether these associations are mediated by cognitive performance. Women (n = 105) aged 18-35 y were recruited for this cross-sectional study. Data were obtained for iron biomarkers, peak oxygen uptake (VO2peak), grade point average (GPA), performance on computerized attention and memory tasks, and motivation and parental occupation. We compared the GPA of groups 1) with low compared with normal iron status, 2) among different fitness levels, and 3) by using a combined iron status and fitness designation. Mediation analysis was applied to determine whether iron status and VO2peak influence GPA through attentional and mnemonic function. After controlling for age, parental occupation, and motivation, GPA was higher in women with normal compared with low ferritin (3.66 ± 0.06 compared with 3.39 ± 0.06; P = 0.01). In analyses of combined effects of iron status and fitness, GPA was higher in women with normal ferritin and higher fitness (3.70 ± 0.08) than in those with 1) low ferritin and lower fitness (3.36 ± 0.08; P = 0.02) and 2) low ferritin and higher fitness (3.44 ± 0.09; P = 0.04). Path analysis revealed that working memory mediated the association between VO2peak and GPA. Low iron stores and low aerobic fitness may prevent female college students from achieving their full academic potential. Investigators should explore whether integrated lifestyle interventions targeting nutritional status and fitness can benefit cognitive function, academic success, and postgraduate prospects. © 2017 American Society for Nutrition.

  13. Comparison of Combined Aerobic and High-Force Eccentric Resistance Exercise With Aerobic Exercise Only for People With Type 2 Diabetes Mellitus

    PubMed Central

    Marcus, Robin L; Smith, Sheldon; Morrell, Glen; Addison, Odessa; Dibble, Leland E; Wahoff-Stice, Donna; LaStayo, Paul C

    2008-01-01

    Background and Purpose: The purpose of this study was to compare the outcomes between a diabetes exercise training program using combined aerobic and high-force eccentric resistance exercise and a program of aerobic exercise only. Subjects and Methods: Fifteen participants with type 2 diabetes mellitus (T2DM) participated in a 16-week supervised exercise training program: 7 (mean age=50.7 years, SD=6.9) in a combined aerobic and eccentric resistance exercise program (AE/RE group) and 8 (mean age=58.5 years, SD=6.2) in a program of aerobic exercise only (AE group). Outcome measures included thigh lean tissue and intramuscular fat (IMF), glycosylated hemoglobin, body mass index (BMI), and 6-minute walk distance. Results: Both groups experienced decreases in mean glycosylated hemoglobin after training (AE/RE group: −0.59% [95% confidence interval (CI)=−1.5 to 0.28]; AE group: −0.31% [95% CI=−0.60 to −0.03]), with no significant between-group differences. There was an interaction between group and time with respect to change in thigh lean tissue cross-sectional area, with the AE/RE group gaining more lean tissue (AE/RE group: 15.1 cm2 [95% CI=7.6 to 22.5]; AE group: −5.6 cm2 [95% CI=−10.4 to 0.76]). Both groups experienced decreases in mean thigh IMF cross-sectional area (AE/RE group: −1.2 cm2 [95% CI=−2.6 to 0.26]; AE group: −2.2 cm2 [95% CI=−3.5 to −0.84]) and increases in 6-minute walk distance (AE/RE group: 45.5 m [95% CI=7.5 to 83.6]; AE group: 29.9 m [95% CI=−7.7 to 67.5]) after training, with no between-group differences. There was an interaction between group and time with respect to change in BMI, with the AE/RE group experiencing a greater decrease in BMI. Discussion and Conclusion: Significant improvements in long-term glycemic control, thigh composition, and physical performance were demonstrated in both groups after participating in a 16-week exercise program. Subjects in the AE/RE group demonstrated additional improvements in

  14. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2015-09-01

    The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain

  15. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome.

    PubMed

    Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun

    2013-12-01

    The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity.

  16. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome

    PubMed Central

    Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun

    2013-01-01

    The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity. PMID:25566424

  17. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives.

    PubMed

    Fenty-Stewart, Nicola; Park, Joon-Young; Roth, Stephen M; Hagberg, James M; Basu, Samar; Ferrell, Robert E; Brown, Michael D

    2009-01-01

    Abstract Angiotensin II (AngII), via the AngII type 1 receptor (AT(1)R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and -825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF(2alpha) significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the -825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF(2alpha) (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress.

  18. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives

    PubMed Central

    FENTY-STEWART, NICOLA; PARK, JOON-YOUNG; ROTH, STEPHEN M.; HAGBERG, JAMES M.; BASU, SAMAR; FERRELL, ROBERT E.; BROWN, MICHAEL D.

    2010-01-01

    Angiotensin II (AngII), via the AngII type 1 receptor (AT1R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and −825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF2α significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the −825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF2α (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress. PMID:19593696

  19. Effect of low-impact aerobic exercise combined with music therapy on patients with fibromyalgia. A pilot study.

    PubMed

    Espí-López, Gemma V; Inglés, Marta; Ruescas-Nicolau, María-Arántzazu; Moreno-Segura, Noemí

    2016-10-01

    Fibromyalgia is a pathological entity characterized by chronic widespread musculoskeletal pain and the presence of "tender points". It constitutes a significant health problem because of its prevalence and economic impact. The aim of the present study was to determine the therapeutic benefits of low impact aerobic exercise alone or in combination with music therapy in patients with fibromyalgia. A single-blind randomized controlled pilot trial was performed. Thirty-five individuals with fibromyalgia were divided into three groups: (G1) therapeutic aerobic exercise with music therapy (n=13); (G2) therapeutic aerobic exercise at any rhythm (n=13) and (CG) control (n=9). The intervention period lasted eight weeks. Depression, quality of life, general discomfort and balance were assessed before and after intervention. At post-intervention, group G1 improved in all variables (depression (p=0.002), quality of life (p=0.017), general discomfort (p=0.001), and balance (p=0.000)), while group G2 improved in general discomfort (p=0.002). The change observed in balance was statistically different between groups (p=0.01). Therapeutic aerobic exercise is effective in improving depression and general discomfort in individuals with fibromyalgia. However, effectiveness is higher when combined with music therapy, which brings about further improvements in quality of life and balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Efficacy of aerobic physical retraining in a case of combined pulmonary fibrosis and emphysema syndrome: a case report.

    PubMed

    De Simone, Giuseppe; Aquino, Giovanna; Di Gioia, Claudio; Mazzarella, Gennaro; Bianco, Andrea; Calcagno, Giuseppe

    2015-04-19

    Combined pulmonary fibrosis and emphysema has recently been recognized as a syndrome but remains under-diagnosed. Neither clinical management nor therapeutic approaches have been clearly defined. Pulmonary rehabilitation has not been considered within the therapeutic options for combined pulmonary fibrosis and emphysema. In this case we explored the potential benefits of a specific aerobic physical retraining program in the management of combined pulmonary fibrosis and emphysema. We describe the case of a 65-year-old Caucasian man with combined pulmonary fibrosis and emphysema and respiratory failure who was receiving long-term oxygen therapy. Our patient underwent physical retraining with moderate intensity aerobic and breathing exercises for four weeks. Clinical and motor tests, as well as questionnaires assessing quality of life and depression levels, were performed prior to and following the retraining. At the end of the retraining program a relevant reduction of long-term oxygen therapy requirement was registered; improvements in terms of physical performance, quality of life, and mood were observed in our patient but no change in respiratory parameters. A program of aerobic physical retraining appears to be beneficial to patients with combined pulmonary fibrosis and emphysema and may be considered as an additional therapeutic option.

  1. Combined aerobic and resistance training in breast cancer survivors: A randomized, controlled pilot trial.

    PubMed

    Herrero, F; San Juan, A F; Fleck, S J; Balmer, J; Pérez, M; Cañete, S; Earnest, C P; Foster, C; Lucía, A

    2006-07-01

    The purpose of this pilot study was to examine the effects of a combined cardiorespiratory and resistance exercise training program of short duration on the cardiorespiratory fitness, strength endurance, task specific functional muscle capacity, body composition and quality of life (QOL) in women breast cancer survivors. Sixteen subjects were randomly assigned to either a training (n = 8; age: 50 +/- 5 yrs) or control non-exercising group (n = 8; age: 51 +/- 10 yrs). The training group followed an 8-week exercise program consisting of 3 weekly sessions of 90-min duration, supervised by an experienced investigator and divided into resistance exercises and aerobic training. Before and after the intervention period, all of the subjects performed a cardiorespiratory test to measure peak oxygen uptake (VO2peak), a dynamic strength endurance test (maximum number of repetitions for chest and leg press exercise at 30 - 35 % and 100 - 110 % of body mass, respectively) and a sit-stand test. Quality of life was assessed using the European Organization for Research and Treatment of Cancer QLQ-C30 (EORTC-C30) questionnaire. In response to training, QOL, VO2peak (mean 3.9 ml/kg/min; 95 % CI, 0.93, 6.90) performance in leg press (17.9 kg; 95 % CI, 12.8, 22.4) and sit-stand test (- 0.67 s; 95 % CI, - 0.52, - 1.2) improved (p < or = 0.05). We observed no significant changes in the control group. Combined cardiorespiratory and resistance training, even of very brief duration, improves the QOL and the overall physical fitness of women breast cancer survivors.

  2. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    PubMed

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater.

  3. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems.

    PubMed

    Jun, H B; Park, S M; Park, J K; Choi, C O; Lee, J S

    2004-01-01

    A new nitrogen removal process (up-flow sludge blanket and aerobic filter, USB-AF) was proposed and tested with real sewage. In the USB reactor, the larger part of influent organic and nitrogen matters were removed, and ammonia was effectively oxidized in the subsequent aerobic filter. The role of the aerobic filter was to convert ammonia into nitrate, an electron acceptor that could convert soluble organic matters into volatile suspended solid (VSS) in the USB. The accumulated as well as influent VSS in the USB was finally degraded to fermented products that were another good carbon source for denitrification. Total COD, settleable COD and soluble COD in the raw sewage were 325, 80 and 140 mg/l, respectively. Most unsettleable COD as well as some SCOD in the influent was successfully removed in the USB. TCOD removal in the anoxic filter was by denitrification with the recycled nitrate. Low COD input to the aerobic filter could increase nitrification efficiency, reduce the start-up period and save the aeration energy in the USB-AF system. About 95% of ammonia was nitrified in the aerobic filter with no relation to the influent ammonia concentration. Denitrification efficiency of the recycled nitrate in the anoxic filter was about 85, 83, and 72% at recycle ratios of 100, 200, and 300%, respectively. T-N removal efficiency was 70% at recycle ratio of 300%.

  4. WIse-2005: Combined Aerobic and Resistive Exercise May Help Mitigate Bone Loss During 60-D Simulated Microgravity in Women

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Heer, M. A.; Lee, S. M. C.; Macias, B. R.; Schneider, S. M.; Trappe, S. M.; Hargens, A. R.

    2006-01-01

    Exercise can attenuate bone loss associated with disuse during bed rest (BR), an analog of space flight. Previous studies have examined the efficacy of aerobic or resistive exercise countermeasures, but not in combination. We sought to determine the effect of a combined resistive and aerobic exercise regimen on bone metabolism during BR. After a 20-d ambulatory adaptation to confinement and diet, 16 women participated in a 60-d head-down-tilt BR. Control subjects (CN, n=8) performed no countermeasures. Exercise subjects, (EX, n=8) participated in exercise alternating daily between supine treadmill exercise within lower body negative pressure and resistive fly-wheel exercise (6-d wk(sup -1)). In the last week of BR, bone resorption was greater (p less than 79 plus or minus 44%, mean plus or minus SD) and EX groups (64 50%). N-telopeptide also increased (CN: 51 plus or minus 34%; EX: 43 plus or minus 56%). However, bone-specific alkaline phosphatase, a bone formation marker, tended to be higher in EX (26 plus or minus 18%) than in CN (8 plus or minus 33%) groups. The combination of resistive and aerobic exercise does not prevent bone resorption, but may promote formation, potentially mitigating the net bone loss associated with simulated microgravity. This study was supported by CNES, CSA, ESA, NASA, and NASA grant NNJ04HF71G to ARH. MEDES (French Institute for Space Medicine and Physiology) organized the study.

  5. WIse-2005: Combined Aerobic and Resistive Exercise May Help Mitigate Bone Loss During 60-D Simulated Microgravity in Women

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Heer, M. A.; Lee, S. M. C.; Macias, B. R.; Schneider, S. M.; Trappe, S. M.; Hargens, A. R.

    2006-01-01

    Exercise can attenuate bone loss associated with disuse during bed rest (BR), an analog of space flight. Previous studies have examined the efficacy of aerobic or resistive exercise countermeasures, but not in combination. We sought to determine the effect of a combined resistive and aerobic exercise regimen on bone metabolism during BR. After a 20-d ambulatory adaptation to confinement and diet, 16 women participated in a 60-d head-down-tilt BR. Control subjects (CN, n=8) performed no countermeasures. Exercise subjects, (EX, n=8) participated in exercise alternating daily between supine treadmill exercise within lower body negative pressure and resistive fly-wheel exercise (6-d wk(sup -1)). In the last week of BR, bone resorption was greater (p less than 79 plus or minus 44%, mean plus or minus SD) and EX groups (64 50%). N-telopeptide also increased (CN: 51 plus or minus 34%; EX: 43 plus or minus 56%). However, bone-specific alkaline phosphatase, a bone formation marker, tended to be higher in EX (26 plus or minus 18%) than in CN (8 plus or minus 33%) groups. The combination of resistive and aerobic exercise does not prevent bone resorption, but may promote formation, potentially mitigating the net bone loss associated with simulated microgravity. This study was supported by CNES, CSA, ESA, NASA, and NASA grant NNJ04HF71G to ARH. MEDES (French Institute for Space Medicine and Physiology) organized the study.

  6. Association of Resistance Exercise, Independent of and Combined With Aerobic Exercise, With the Incidence of Metabolic Syndrome.

    PubMed

    Bakker, Esmée A; Lee, Duck-Chul; Sui, Xuemei; Artero, Enrique G; Ruiz, Jonatan R; Eijsvogels, Thijs M H; Lavie, Carl J; Blair, Steven N

    2017-08-01

    To determine the association of resistance exercise, independent of and combined with aerobic exercise, with the risk of development of metabolic syndrome (MetS). The study cohort included adults (mean ± SD age, 46±9.5 years) who received comprehensive medical examinations at the Cooper Clinic in Dallas, Texas, between January 1, 1987, and December, 31, 2006. Exercise was assessed by self-reported frequency and minutes per week of resistance and aerobic exercise and meeting the US Physical Activity Guidelines (resistance exercise ≥2 d/wk; aerobic exercise ≥500 metabolic equivalent min/wk) at baseline. The incidence of MetS was based on the National Cholesterol Education Program Adult Treatment Panel III criteria. We used Cox regression to generate hazard ratios (HRs) and 95% CIs. Among 7418 participants, 1147 (15%) had development of MetS during a median follow-up of 4 years (maximum, 19 years; minimum, 0.1 year). Meeting the resistance exercise guidelines was associated with a 17% lower risk of MetS (HR, 0.83; 95% CI, 0.73-0.96; P=.009) after adjusting for potential confounders and aerobic exercise. Further, less than 1 hour of weekly resistance exercise was associated with 29% lower risk of development of MetS (HR, 0.71; 95% CI, 0.56-0.89; P=.003) compared with no resistance exercise. However, larger amounts of resistance exercise did not provide further benefits. Individuals meeting both recommended resistance and aerobic exercise guidelines had a 25% lower risk of development of MetS (HR, 0.75; 95% CI, 0.63-0.89; P<.001) compared with meeting neither guideline. Participating in resistance exercise, even less than 1 hour per week, was associated with a lower risk of development of MetS, independent of aerobic exercise. Health professionals should recommend that patients perform resistance exercise along with aerobic exercise to reduce MetS. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  7. Removal of organics and nutrients from food wastewater using combined thermophilic two-phase anaerobic digestion and shortcut biological nitrogen removal.

    PubMed

    Cui, Fenghao; Lee, Seungho; Kim, Moonil

    2011-10-15

    A process combining pilot-scale two-phase anaerobic digestion and shortcut biological nitrogen removal (SBNR) was developed to treat organics and nutrients (nitrogen and phosphorus) from food wastewater. The thermophilic two-phase anaerobic digestion process was investigated without adjusting the pH of the wastewater for the pre-acidification process. The digested food wastewater was treated using the SBNR process without supplemental carbon sources or alkalinity. Under these circumstances, the combined system was able to remove about 99% of COD, 88% of TN, and 97% of TP. However, considerable amounts of nutrients were removed due to chemical precipitation processes between the anaerobic digestion and SBNR. The average TN removal efficiency of the SBNR process was about 74% at very low C/N (TCOD/TN) ratio of 2. The SBNR process removed about 39% of TP from the digested food wastewater. Conclusively, application of the combined system improved organic removal efficiency while producing valuable energy (biogas), removed nitrogen at a low C/N ratio, and conserved additional resources (carbon and alkalinity). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I in Premenopausal Women

    DTIC Science & Technology

    2003-10-01

    kcals; P< 0.05 pre vs post in both groups). The combination of moderate exercise and diet produced significant weight loss in both groups (Low BMI...Kines 481W Scientific basis of 3 50 Exercise for Older Adults Kines 496C Independent Study 3 1 Spring 1998 Kines 456 Fitness Appraisal 4 96 Kines...N AD_ Award Number: DAMD17-01-1-0360 TITLE: Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I

  9. Biomass characterization of laboratory-scale thermophilic-mesophilic wastewater treatment processes.

    PubMed

    Suvilampi, J; Lehtomäki, A; Rintala, J

    2006-01-01

    Two thermophilic-mesophilic wastewater treatment processes, one as the combination of the thermophilic activated sludge process (ASP), followed by the mesophilic ASP and the other as thermophilic suspended carrier biofilm process (SCBP), followed by the mesophilic ASP, were used to study sludge characteristics and floc formation. Thermophilic bacteria in both ASP and SCBP were able to form flocs, which were <50 microm in size and had a weak structure and irregular shape. Flocs in both the mesophilic ASPs were larger in size (50-500 microm) and had more compact structures. Filamentous bacteria played an important role in both the thermophilic and mesophilic processes by forming bridges between small flocs. Both thermophilic processes showed a high density of dispersed particles, such as free bacteria. When hydraulic retention time (HRT) was decreased the biofilm was retained in the thermophilic SCBP better than the flocs in the thermophilic ASP. The mesophilic ASPs efficiently removed dispersed particles originating from the thermophilic processes.

  10. Effects of aerobic training, resistance training, or combined resistance-aerobic training on the left ventricular myocardium in a rat model.

    PubMed

    De Souza, Mônica Rodrigues; Pimenta, Leo; Pithon-Curi, Tania Cristina; Bucci, Marco; Fontinele, Renata Gabriel; De Souza, Romeu Rodrigues

    2014-09-01

    This study follows the left ventricular (LV) hypertrophy in rats undergoing aerobic training alone (A), resistance training alone (R), or combined resistance and aerobic training (RA) (usually referred as concurrent training) program. A sedentary control group (C) was included. LV remodeling was evaluated using electron and light microscopy. The LV weight to body weight (LVW: BW) increased 11.4% in A group, 35% in the R group, and 18% in the RA group compared to the C group. The LV thickness increased 6% in the A group, 17% in the R group, and 10% in the RA group. The LV internal diameter increased 19% in the A group, 3% in the R group, and 8% in the RA group compared with the C group. The cross-sectional area of cardiomyocyte increased by 1% with the A group, 27% with R group, and 12% with RA training. The capillary density increased by 5.4% with A training, 11.0% with R training, and 7.7% with RA training compared with the C group. The volume fraction of interstitial collagen increased by 0.4% with training A, increased by 2.8% with R training, and 0.9% with RA training. In conclusion, except for the LV internal diameter, which increased more in the A group, the cardiac parameters increased more in the R group than in the other groups and in RA group than in A group. Collagen density increased from 5.4 ± 0.8% in the C group to 5.8 ± 0.6% in the A group (n. s.) (P > 0.05), to 8.2 ± 0.7% in the R group (P < 0.05), and to 6.3 ± 0.4% in the RA group (P < 0.05). These results demonstrate a significant increase for collagen content in the LV with R and RA exercise, but the increase was higher with R training alone than with RA training. © 2014 Wiley Periodicals, Inc.

  11. Evaluation of a combined anaerobic and aerobic system for the treatment of slaughterhouse wastewater.

    PubMed

    López-López, A; Vallejo-Rodríguez, R; Méndez-Romero, D C

    2010-03-01

    A laboratory scale anaerobic/aerobic (An/Ar) system, comprising an anaerobic filter (AF) coupled to an aerobic sequential batch reactor (SBR), was developed to treat wastewater from a slaughterhouse. The AF operated with organic loadings (OL) from 3.7 to 16.5 kg m(-3) d(-1) and a hydraulic retention time (HRT) ranging from 16 to 72 h. The efficiency of chemical oxygen demand (COD) removal was between 50 and 81% and was shown to be related inversely to the value of the OL. The production rate of methane was in the region of 411 mL per g of COD removed. On the other hand, the degradation of organic matter (OM) by an aerobic pathway in the SBR followed first-order kinetics with regard to OM concentration; 85% of the remaining OM from the AF was eliminated within 6 h of aeration, and over 95% of total OM was eliminated as COD within 9 h. The optimal treatment conditions in this system were found at OL = 11.0 kg m-3 d(-1) and HRT = 24 h in the AF, whereas the SBR was most efficient at 9 h of aeration.

  12. Small sewage treatment system with an anaerobic-anoxic-aerobic combined biofilter.

    PubMed

    Park, S M; Jun, H B; Hong, S P; Kwon, J C

    2003-01-01

    The objective of this study was to investigate a small sewage treatment system that could improve nitrogen and BOD5 removal efficiency as well as generate less solid using an anaerobic-anoxic-aerobic biofiltration system. Wastewater temperature was in the range of 14-25 degrees C, and hydraulic residual times were 12 h for each reactor. The upflow anaerobic digester equipped with anoxic filter was fed with both raw sewage and recycled effluent from the aerobic filter to induce denitrification and solid reduction simultaneously. In the subsequent aerobic filter, residual organic carbon and ammonia might be oxidized and finally nitrate formed. In the anaerobic reactor, about 71% of influent TCOD was removed by sedimentation of the un-filterable COD at the recycle ratio of 300%. Another 20% of influent TCOD was removed in the anoxic filter by denitrification of the recycled nitrate. After 100 days operation, solid reduction and nitrification efficiency were about 30% and 95%, respectively. Overall removal efficiencies of COD and total nitrogen (T-N) were above 94% and 70% at the recycle ratio of 300%, respectively. Total wasted solid from the system after 100 days operation was about 316 g, which was only 44% of the solid generated from a controlled activated sludge system operated at sludge retention time of 8 days.

  13. Psychological Responses to Acute Aerobic, Resistance, or Combined Exercise in Healthy and Overweight Individuals: A Systematic Review.

    PubMed

    Elkington, Thomas J; Cassar, Samantha; Nelson, André R; Levinger, Itamar

    2017-01-01

    Psychological distress and depression are risk factors for cardiovascular disease (CVD). As such, a reduction in psychological distress and increase in positive well-being may be important to reduce the risk for future development of CVD. Exercise training may be a good strategy to prevent and assist in the management of psychological disorders. The psychological effects of the initial exercise sessions may be important to increase exercise adherence. The aims of this systematic review were (a) to examine whether acute aerobic, resistance, or a combination of the 2 exercises improves psychological well-being and reduces psychological distress in individuals with healthy weight and those who are overweight/obese but free from psychological disorders, and (b) if so, to examine which form of exercise might yield superior results. The online database PubMed was searched for articles using the PICO (patient, intervention, comparison, and outcome) framework for finding scientific journals based on key terms. Forty-two exercise studies met the inclusion criteria. A total of 2187 participants were included (age: 18-64 years, body mass index [BMI]: 21-39 kg/m2). Only 6 studies included participants with a BMI in the overweight/obese classification. Thirty-seven studies included aerobic exercise, 2 included resistance exercise, 1 used a combination of aerobic and resistance, and 2 compared the effects of acute aerobic exercise versus the effects of acute resistance exercise. The main findings of the review were that acute aerobic exercise improves positive well-being and have the potential to reduce psychological distress and could help reduce the risks of future CVD. However, due to the limited number of studies, it is still unclear which form of exercise yields superior psychological benefits. Obese, overweight, and healthy weight individuals can exhibit psychological benefits from exercise in a single acute exercise session, and these positive benefits of exercise should

  14. Psychological Responses to Acute Aerobic, Resistance, or Combined Exercise in Healthy and Overweight Individuals: A Systematic Review

    PubMed Central

    Elkington, Thomas J; Cassar, Samantha; Nelson, André R; Levinger, Itamar

    2017-01-01

    Introduction: Psychological distress and depression are risk factors for cardiovascular disease (CVD). As such, a reduction in psychological distress and increase in positive well-being may be important to reduce the risk for future development of CVD. Exercise training may be a good strategy to prevent and assist in the management of psychological disorders. The psychological effects of the initial exercise sessions may be important to increase exercise adherence. The aims of this systematic review were (a) to examine whether acute aerobic, resistance, or a combination of the 2 exercises improves psychological well-being and reduces psychological distress in individuals with healthy weight and those who are overweight/obese but free from psychological disorders, and (b) if so, to examine which form of exercise might yield superior results. Methods: The online database PubMed was searched for articles using the PICO (patient, intervention, comparison, and outcome) framework for finding scientific journals based on key terms. Results: Forty-two exercise studies met the inclusion criteria. A total of 2187 participants were included (age: 18-64 years, body mass index [BMI]: 21-39 kg/m2). Only 6 studies included participants with a BMI in the overweight/obese classification. Thirty-seven studies included aerobic exercise, 2 included resistance exercise, 1 used a combination of aerobic and resistance, and 2 compared the effects of acute aerobic exercise versus the effects of acute resistance exercise. The main findings of the review were that acute aerobic exercise improves positive well-being and have the potential to reduce psychological distress and could help reduce the risks of future CVD. However, due to the limited number of studies, it is still unclear which form of exercise yields superior psychological benefits. Conclusions: Obese, overweight, and healthy weight individuals can exhibit psychological benefits from exercise in a single acute exercise session

  15. A Self Directed Adherence Management Program for Patients' with Heart Failure Completing Combined Aerobic and Resistance Exercise Training

    PubMed Central

    Duncan, Kathleen; Pozehl, Bunny; Norman, Joseph F.; Hertzog, Melody

    2009-01-01

    This study measured the impact of the Exercise Adherence Management Program (EAMP) provided to 20 patients with heart failure (HF) who participated in a combined resistance and aerobic exercise training program during two, 12 week phases. The EAMP included strategies designed to support exercise self-efficacy and adherence. Results indicate an improvement in exercise self-efficacy occurred during the study period while exercise adherence declined during the unsupervised phase. The highest rated adherence strategy for helpfulness and self-efficacy was group sessions. The study supports the use of adherence strategies based on self-efficacy in exercise programs for patients with HF. PMID:22099469

  16. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  17. Thermophilic biogasification of biomass

    SciTech Connect

    Ghosh, S.; Klass, D.L.; Edwards, V.H.; Christopher, R.W.

    1980-01-01

    Secondary sewage effluent- and fresh-water-grown water hyacinths (Eichhornia crassipes), Coastal Bermuda grass (Cynodon dactylon), and a hyacinth-grass-municipal solid waste-sludge (biomass-waste) blend were used as test feeds to develop a fast thermophilic biomass- digestion process. For the pure biomass feeds thermophilic digestion has no apparent advantage over mesophilic digestion, but the reverse is true for the biomass-waste blend. Alkaline pretreatment of the feed improved thermophilic digester performance substantially. For a given plant feed load, the reactor volume, culture-heating requirements, and CH4 production rate for thermophilic digestion of the pretreated biomass-waste feed were 18,46, and 135% of those for conventional mesophilic digestion. For a biomass-waste feed the respective volatile solids reduction and energy recovery efficiencies were 46 and 49% for thermophilic and 36 and 43% for mesophilic digestions.

  18. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    PubMed Central

    Webb, Kimberly M.; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell. PMID:23209374

  19. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    PubMed

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  20. Fermentation characteristics and aerobic stability of wet corn distillers grains with solubles ensiled in combination with whole plant corn.

    PubMed

    Mjoun, Kamal; Kalscheur, Kenneth F; Garcia, Alvaro D

    2011-05-01

    Wet corn distillers grains with solubles (WDG) are prone to aerobic spoilage when stored for an extended period of time. The objective of this study was to evaluate the fermentation characteristics of ensiling WDG with whole plant corn (WPC) using the following combinations: (1) 100% WPC; (2) 75% WPC + 25% WDG; (3) 50% WPC + 50% WDG; and (4) 100% WDG. The initial pH was greatest for 100% WPC and lowest for 100% WDG (5.7, 4.6, 4.0, and 3.1, respectively). Concentrations of ammonia nitrogen (12.0, 26.8, 40.7, and 50.8 g kg(-1) dry matter (DM)) and Crude protein (CP) (98.7, 155.8, 206.8, and 307.9 g kg(-1) of DM) increased with increasing concentrations of WDG. Lactic acid concentration prior to ensiling was greatest for 100% WDG (9.0 g kg(-1) DM) and decreased with WPC in the silage. Acetic, propionic, and butyric acids were not present prior to ensiling. The pH of the ensiled feeds dropped below 4.0 by day 3, with no further decrease over time. Acetic acid increased from undetected amounts at day 0 to 38.8, 43.9, 43.2, and 2.2 g kg(-1) of DM at day 129 as concentration of WDG increased. Aerobic stability was enhanced with increasing WDG concentration in the silage. Fermentation, nutrient profile, and aerobic stability can be improved when ensiling wet distillers grains with whole plant corn. Copyright © 2011 Society of Chemical Industry.

  1. Combined effects of aerobic exercise and high-carbohydrate meal on plasma acylated ghrelin and levels of hunger.

    PubMed

    Becker, Geórgia Franco; Macedo, Rodrigo Cauduro Oliveira; Cunha, Giovani Dos Santos; Martins, Jocelito Bijoldo; Laitano, Orlando; Reischak-Oliveira, Alvaro

    2012-02-01

    The present study investigated the effect of an aerobic exercise bout associated with a high-carbohydrate (CHO) meal on plasma levels of acylated ghrelin and hunger sensation. Eight healthy males performed an exercise (ET) and a control (CT) trial. In ET, participants performed a 60-min cycling exercise (∼70% of maximal oxygen uptake) after consuming a high-CHO meal. In the CT, participants remained at rest throughout the whole period after consuming the high-CHO meal. Hunger sensation was assessed and blood samples were taken to determine the levels of acylated ghrelin, glucose, insulin, total cholesterol (TC), and triglycerides (TG). There was suppression of hunger after consuming the meal in ET and CT (p = 0.028 and p = 0.011, respectively). Hunger increased in CT in the period correspondent to the exercise session (p = 0.017) and remained suppressed in the ET. The area under the curve for acylated ghrelin showed that its levels were lower in the ET compared with CT in the period of the exercise plus the immediate period (1 h) postexercise (60.7 vs. 96.75 pg·mL(-1)·2 h(-1), respectively; p = 0.04). Inverse correlations between acylated ghrelin levels and insulin, TC, and TG levels at different time points were observed. In conclusion, these findings suggest that 1 bout of aerobic exercise maintains the meal-induced suppression of hunger. The mechanism underlying this effect may involve the exercise-induced suppression of acylated ghrelin. These results implicate that the combination of a high-CHO meal and aerobic exercise may effectively improve appetite control and body weight management.

  2. Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats.

    PubMed

    Rizo-Roca, D; Ríos-Kristjánsson, J G; Núñez-Espinosa, C; Santos-Alves, E; Gonçalves, I O; Magalhães, J; Ascensão, A; Pagès, T; Viscor, G; Torrella, J R

    2017-03-01

    Unaccustomed eccentric exercise leads to muscle morphological and functional alterations, including microvasculature damage, the repair of which is modulated by hypoxia. We present the effects of intermittent hypobaric hypoxia and exercise on recovery from eccentric exercise-induced muscle damage (EEIMD). Soleus muscles from trained rats were excised before (CTRL) and 1, 3, 7, and 14 days after a double session of EEIMD protocol. A recovery treatment consisting of one of the following protocols was applied 1 day after the EEIMD: passive normobaric recovery (PNR), a 4-h daily exposure to passive hypobaric hypoxia at 4,000 m (PHR), or hypobaric hypoxia exposure followed by aerobic exercise (AHR). EEIMD produced an increase in the percentage of abnormal fibers compared with CTRL, and it affected the microvasculature by decreasing capillary density (CD, capillaries per mm(2)) and the capillary-to-fiber ratio (CF). After 14 days, AHR exhibited CD and CF values similar to those of CTRL animals (789 and 3.30 vs. 746 and 3.06) and significantly higher than PNR (575 and 2.62) and PHR (630 and 2.92). Furthermore, VEGF expression showed a significant 43% increase in AHR when compared with PNR. Moreover, after 14 days, the muscle fibers in AHR had a more oxidative phenotype than the other groups, with significantly smaller cross-sectional areas (AHR, 3,745; PNR, 4,502; and PHR, 4,790 µm(2)), higher citrate synthase activity (AHR, 14.8; PNR, 13.1; and PHR, 12 µmol·min(-1)·mg(-1)) and a significant 27% increment in PGC-1α levels compared with PNR. Our data show that hypoxia combined with exercise attenuates or reverses the morphofunctional alterations induced by EEIMD.NEW & NOTEWORTHY Our study provides new insights into the use of intermittent hypobaric hypoxia combined with exercise as a strategy to recover muscle damage induced by eccentric exercise. We analyzed the effects of hypobaric exposure combined with aerobic exercise on histopathological features of muscle

  3. Heart rate recovery and variability following combined aerobic and resistance exercise training in adults with and without Down syndrome.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2013-01-01

    Persons with Down syndrome (DS) are at high risk for cardiovascular morbidity and mortality, and there is compelling evidence of autonomic dysfunction in these individuals. The main purpose of this study was to determine whether a combined aerobic and resistance exercise intervention produces similar results in cardiac autonomic function between adults with and without DS. Twenty-five participants (13 DS; 12 non-DS), aged 27-50 years, were included. Aerobic training was performed 3 days/week for 30 min at 65-85% of peak oxygen uptake (VO(2peak)). Resistance training was prescribed for 2 days/week and consisted of two rotations in a circuit of 9 exercises at 12-repetition-maximum. There was a significant improvement in the VO(2peak) and muscle strength of participants with and without DS after training. Heart rate recovery improved at 1 min post-exercise, but only in participants with DS. Both groups of participants exhibited a similar increase in normalized high frequency power and of decrease in normalized low frequency power after training. Therefore, 12 weeks of exercise training enhanced the heart rate recovery in adults with DS, but not in those without DS. Contrasting, the intervention elicited similar gains between groups for cardiovagal modulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effects of 12 weeks combined aerobic and resistance exercise on heart rate variability in type 2 diabetes mellitus patients

    PubMed Central

    Kang, Seol-Jung; Ko, Kwang-Jun; Baek, Un-Hyo

    2016-01-01

    [Purpose] This study evaluated the effects of 12 weeks combined aerobic and resistance exercise on heart rate variability in patients with Type 2 diabetes mellitus. [Subjects and Methods] The subjects were 16 female patients with Type 2 diabetes mellitus selected among the participants of a chronic disease management exercise class at C Region Public Health Center in South Korea. Subjects were randomly assigned to the exercise group (n=8; age, 55.97 ± 7.37) or the control group (n=8; age, 57.53 ± 4.63) The exercise group performed aerobic and resistance exercises for 60 minutes per day, 3 times per week for 12 weeks. Anthropometric measurements, biochemical markers, physical fitness, and heart rate variability were examined. [Results] After 12 weeks of exercise, weight, body fat percentage, waist circumference, blood glucose, insulin resistance, glycated hemoglobin level, systolic blood pressure, and diastolic blood pressure significantly decreased and cardiorespiratory fitness and muscular strength significantly increased in the exercise group. Although heart rate variability measures showed favorable changes with the exercise program, none were significant. [Conclusion] Although the exercise program did not show notable changes in heart rate variability in patients with Type 2 diabetes within the timeframe of the study, exercise may contribute to the prevention and control of cardiovascular autonomic neuropathy. PMID:27512271

  5. Effects of 12 weeks combined aerobic and resistance exercise on heart rate variability in type 2 diabetes mellitus patients.

    PubMed

    Kang, Seol-Jung; Ko, Kwang-Jun; Baek, Un-Hyo

    2016-07-01

    [Purpose] This study evaluated the effects of 12 weeks combined aerobic and resistance exercise on heart rate variability in patients with Type 2 diabetes mellitus. [Subjects and Methods] The subjects were 16 female patients with Type 2 diabetes mellitus selected among the participants of a chronic disease management exercise class at C Region Public Health Center in South Korea. Subjects were randomly assigned to the exercise group (n=8; age, 55.97 ± 7.37) or the control group (n=8; age, 57.53 ± 4.63) The exercise group performed aerobic and resistance exercises for 60 minutes per day, 3 times per week for 12 weeks. Anthropometric measurements, biochemical markers, physical fitness, and heart rate variability were examined. [Results] After 12 weeks of exercise, weight, body fat percentage, waist circumference, blood glucose, insulin resistance, glycated hemoglobin level, systolic blood pressure, and diastolic blood pressure significantly decreased and cardiorespiratory fitness and muscular strength significantly increased in the exercise group. Although heart rate variability measures showed favorable changes with the exercise program, none were significant. [Conclusion] Although the exercise program did not show notable changes in heart rate variability in patients with Type 2 diabetes within the timeframe of the study, exercise may contribute to the prevention and control of cardiovascular autonomic neuropathy.

  6. Extensions to modeling aerobic carbon degradation using combined respirometric-titrimetric measurements in view of activated sludge model calibration.

    PubMed

    Sin, Gürkan; Vanrolleghem, Peter A

    2007-08-01

    Recently a model was introduced to interpret the respirometric (OUR) -titrimetric (Hp) data obtained from aerobic oxidation of different carbon sources in view of calibration of Activated Sludge Model No.1 (ASM1). The model requires, among others, the carbon dioxide transfer rate (CTR) to be relatively constant during aerobic experiments. As CTR is an inherently nonlinear process, this assumption may not hold for certain experimental conditions. Hence, we extended the model to describe the nonlinear CTR behavior. A simple calibration procedure of the CO2 model was developed only using titrimetric data. The identifiable parameter subset of this model when using titrimetric data only contained the first equilibrium constant of the CO2 dissociation, pK1, the initial aqueous CO2 concentration, C(Tinit) and the nitrogen content of biomass, i(NBM). The extended model was then successfully applied to interpret typical data obtained from respirometric-titrimetric measurements with a nonlinear CO2 stripping process. The parameter estimation results using titrimetric data were consistent with the results estimated using respirometric data (OUR) alone or combined OUR and Hp data, thereby supporting the validity of the dynamic CO2 model and its calibration approach. The increased range of applicability and accurate utilization of the titrimetric data are expected to contribute particularly to the improvement of calibration of ASM models using batch experiments.

  7. Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats

    PubMed Central

    Linden, Melissa A.; Fletcher, Justin A.; Morris, E. Matthew; Meers, Grace M.; Kearney, Monica L.; Crissey, Jacqueline M.; Laughlin, M. Harold; Booth, Frank W.; Sowers, James R.; Ibdah, Jamal A.; Thyfault, John P.

    2013-01-01

    Here, we sought to compare the efficacy of combining exercise and metformin for the treatment of type 2 diabetes and nonalcoholic fatty liver disease (NAFLD) in hyperphagic, obese, type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. OLETF rats (age: 20 wk, hyperglycemic and hyperinsulinemic; n = 10/group) were randomly assigned to sedentary (O-SED), SED plus metformin (O-SED + M; 300 mg·kg−1·day−1), moderate-intensity exercise training (O-EndEx; 20 m/min, 60 min/day, 5 days/wk treadmill running), or O-EndEx + M groups for 12 wk. Long-Evans Tokushima Otsuka (L-SED) rats served as nonhyperphagic controls. O-SED + M, O-EndEx, and O-EndEx + M were effective in the management of type 2 diabetes, and all three treatments lowered hepatic steatosis and serum markers of liver injury; however, O-EndEx lowered liver triglyceride content and fasting hyperglycemia more than O-SED + M. In addition, exercise elicited greater improvements compared with metformin alone on postchallenge glycemic control, liver diacylglycerol content, hepatic mitochondrial palmitate oxidation, citrate synthase, and β-HAD activities and in the attenuation of markers of hepatic fatty acid uptake and de novo fatty acid synthesis. Surprisingly, combining metformin and aerobic exercise training offered little added benefit to these outcomes, and in fact, metformin actually blunted exercise-induced increases in complete mitochondrial palmitate oxidation and β-HAD activity. In conclusion, aerobic exercise training was more effective than metformin administration in the management of type 2 diabetes and NAFLD outcomes in obese hyperphagic OLETF rats. Combining therapies offered little additional benefit beyond exercise alone, and findings suggest that metformin potentially impairs exercise-induced hepatic mitochondrial adaptations. PMID:24326426

  8. Treatment of cheese whey wastewater: combined coagulation-flocculation and aerobic biodegradation.

    PubMed

    Rivas, Javier; Prazeres, Ana R; Carvalho, Fatima; Beltrán, Fernando

    2010-07-14

    Cheese wastewater has been treated by means of a coagulation-flocculation process. Three different coagulants have been used, namely, FeSO(4), Al(2)(SO(4))(3), and FeCl(3). When FeSO(4) was used, the optimum conditions were obtained using 250 ppm of the salt at pH 8.5. At these conditions, 50 and 60% of chemical oxygen demand (COD) and biological oxygen demand (BOD) were reduced, respectively. Al(2)(SO(4))(3) achieved slightly lower reductions of COD and BOD; however, the amount needed was significantly higher (1000 ppm). When FeCl(3) was added, similar results to those obtained with FeSO(4) were experienced; again, 250 ppm was enough to eliminate COD and BOD contents in the range of 40-60%, depending upon operating conditions. The sludge formed in the coagulation-flocculation process did show acceptable settling properties, which is crucial in settling tank design. A first approach to sedimentation tank design is also conducted on the basis of experimental results. The aerobic biodegradation of cheese whey wastewater achieves the reduction of the main contaminant indicators (COD and BOD) to values close to 100%; however, effluents coming from the coagulation-flocculation pre-stage necessitate half of the time required by the non-pretreated raw wastewater.

  9. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate.

    PubMed

    Wang, Xiao-Jun; Song, Yang; Mai, Jun-Sheng

    2008-12-30

    The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe2+ dosage of 600mgL(-1) and a H2O2 dosage of 120mgL(-1), the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490mgL(-1) to 230 and 23mgL(-1) after 40min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5mgL(-1), corresponding to a removal efficiencies of over 94% and 99%, respectively.

  10. Aerobic Fitness for Young Athletes: Combining Game-based and High-intensity Interval Training.

    PubMed

    Harrison, C B; Kinugasa, T; Gill, N; Kilding, A E

    2015-11-01

    This study compared the effect of game-based training (GT) vs. a mix of game-based training and high-intensity interval training (MT) on physical performance characteristics. 26 young athletes (13.9±0.3 years) were assigned to either GT (n=13) or MT (n=13) for 6 weeks. Game-based training consisted of 2×8-11 min 3 vs. 3 'bucketball' SSGs separated by 3 min of passive rest twice per week, while MT consisted of one SSGs session and one high-intensity session of 15 s runs at 90-95% of the speed reached at the end of the 30-15 intermittent fitness test (VIFT) interspersed with 15 s passive recovery. Peak oxygen uptake (V˙ O2peak), VIFT, jump height, and speed were assessed pre- and post-training. Following training, V˙ O2peak (5.5±3.3%; ES=large) improved after MT, whereas VIFT improved after MT (6.6±3.2%; ES, large) and GT (4.2±5.5%, ES=small). 5-m sprint improved after GT (ES=small), while 20 m sprint and jump height were unchanged. In conclusion, while MT and GT were both effective at increasing performance parameters, greater effects were seen following MT. Therefore, MT should be considered as the preferred training method for improving aerobic power in young athletes.

  11. Mineralization and kinetics of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic bioprocess inoculated with the coculture of fungus and bacterium.

    PubMed

    Shi, Shengnan; Ma, Fang; Sun, Tieheng; Li, Ang; Zhou, Jiti; Qu, Yuanyuan

    2014-01-01

    Mineralization of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic process which was inoculated with the co-culture of Penicillium sp. QQ and Exiguobacterium sp. TL was studied. The optimal conditions of decolorization were investigated by response surface methodology as follows: 132.67 g/L of strain QQ wet spores, 1.09 g/L of strain TL wet cells, 2.25 g/L of glucose, 2.10 g/L of yeast extract, the initial dye concentration of 235.14 mg/L, pH 6.5, and 33 °C. The maximal decolorization rate was about 96 % within 12 h under the above conditions. According to the Haldane kinetic equation, the maximal specific decolorization rate was 89.629 mg/g˙h. It was suggested that in the anaerobic-aerobic combined process, decolorization occurred in the anaerobic unit and chemical oxygen demand (COD) was mainly removed in the aerobic one. Inoculation of fungus QQ in the anaerobic unit was important for mineralization of X-3B. Besides, the divided anaerobic-aerobic process showed better performance of COD removal than the integrated one. It was suggested that the combined anaerobic-aerobic process which was inoculated with co-culture was potentially useful for the field application.

  12. Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease.

    PubMed

    Nilsson, M I; MacNeil, L G; Kitaoka, Y; Suri, R; Young, S P; Kaczor, J J; Nates, N J; Ansari, M U; Wong, T; Ahktar, M; Brandt, L; Hettinga, B P; Tarnopolsky, M A

    2015-10-01

    A unifying feature in the pathogenesis of aging, neurodegenerative disease, and lysosomal storage disorders is the progressive deposition of macromolecular debris impervious to enzyme catalysis by cellular waste disposal mechanisms (e.g., lipofuscin). Aerobic exercise training (AET) has pleiotropic effects and stimulates mitochondrial biogenesis, antioxidant defense systems, and autophagic flux in multiple organs and tissues. Our aim was to explore the therapeutic potential of AET as an ancillary therapy to mitigate autophagic buildup and oxidative damage and rejuvenate the mitochondrial-lysosomal axis in Pompe disease (GSD II/PD). Fourteen weeks of combined recombinant acid α-glucosidase (rhGAA) and AET polytherapy attenuated mitochondrial swelling, fortified antioxidant defense systems, reduced oxidative damage, and augmented glycogen clearance and removal of autophagic debris/lipofuscin in fast-twitch skeletal muscle of GAA-KO mice. Ancillary AET potently augmented the pool of PI4KA transcripts and exerted a mild restorative effect on Syt VII and VAMP-5/myobrevin, collectively suggesting improved endosomal transport and Ca(2+)- mediated lysosomal exocytosis. Compared with traditional rhGAA monotherapy, AET and rhGAA polytherapy effectively mitigated buildup of protein carbonyls, autophagic debris/lipofuscin, and P62/SQSTM1, while enhancing MnSOD expression, nuclear translocation of Nrf-2, muscle mass, and motor function in GAA-KO mice. Combined AET and rhGAA therapy reactivates cellular clearance pathways, mitigates mitochondrial senescence, and strengthens antioxidant defense systems in GSD II/PD. Aerobic exercise training (or pharmacologic targeting of contractile-activity-induced pathways) may have therapeutic potential for mitochondrial-lysosomal axis rejuvenation in lysosomal storage disorders and related conditions (e.g., aging and neurodegenerative disease).

  13. Aerobic Exercise Combined With Noninvasive Positive Pressure Ventilation Increases Serum Brain-Derived Neurotrophic Factor in Healthy Males.

    PubMed

    Kawazu, Takamitsu; Nakamura, Takeshi; Moriki, Takashi; Kamijo, Yoshi-Ichiro; Nishimura, Yukihide; Kinoshita, Tokio; Tajima, Fumihiro

    2016-12-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in enhancing neuronal health. Exercise and noninvasive positive-pressure ventilation (NPPV) are known to independently alter BDNF levels in patients with depression, dementia, type 2 diabetes, chronic obstructive pulmonary disease, and obstructive sleep apnea syndrome. However, the combined effects of exercise and NPPV on serum BDNF in normal subjects are unknown. To determine the effects of the combination of acute aerobic exercise under NPPV on serum BDNF in normal adults. Cross-over design study. Wakayama Medical University. Ten healthy young men. The subjects exercised on a cycle ergometer at 60% of pretraining maximal oxygen uptake (V.O2max) for 30 minutes daily for 5 consecutive days with or without NPPV (12 cmH2O). The 5-day exercise protocol was repeated after a 3-week washout period with or without NPPV. Serum BDNF, plasma cortisol, and platelet, lymphocyte, and monocyte counts were measured at 24 hours before the first day exercise with or without NPPV and 24 hour after last day exercise with or without NPPV at resting condition. Measurements were also made on the first day exercise; serum BDNF level was measured immediately before and immediately after exercise, as well as at 1, 2, and 3 hours after exercise with or without NPPV. The 5-day exercise protocol significantly (P < .05) increased serum BDNF when combined with NPPV, but not without NPPV, and did not change plasma cortisol level, platelet, or lymphocyte counts, with or without NPPV. The 5-day exercise protocol also significantly (P < .05) decreased monocyte count without NPPV, but not with NPPV, relative to baseline. Changes noticed immediately after the first day of exercise included significant (P < .05) increase in serum BDNF compared with immediately before the exercise, with or without NPPV. The results indicated that a 5-day exercise protocol combined with NPPV increased serum BDNF, suggesting that NPPV synergistically enhances

  14. [Effects of acupuncture combined with dietary adjustments and aerobic exercise on body weight, body mass index and serum leptin level in simple obesity patients].

    PubMed

    Yang, Ji-jun; Xing, Hai-jiao; Wang, Shao-jin; Xiao, Hong-ling; Li, Mei; Li, Qing

    2010-12-01

    To observe the effect of acupuncture combined with dietary adjustments and aerobic exercise on the body weight, body mass index (BMI) and serum leptin content of patients with simple obesity, so as to evaluate the efficacy of the present therapy in the treatment of simple obesity. A total of 61 cases of out-patients were randomly divided into control (n=30) and treatment (n=31) groups. Patients in the control group were treated with dietary adjustments and aerobic exercise everyday (30 min/d), continuously for 51 days, and those of the treatment group were treated with acupuncture [Zhong-wan (CV 12), Tianshu (ST 25), Guanyuan (CV 4), etc.] plus dietary adjustment and aerobic exercise everyday, with 15 days being a course of treatment, 3 days' interval between every two courses, and 3 courses altogether. Serum leptin content was detected by using radioimmunoassay. Compared with pre-treatment, the body weight and BMI and serum leptin levels in the control and treatment groups were all decreased significantly (P < 0.01). Comparison between the two groups showed that the body weight at the end of the 1st and 3rd course of treatment, the BMI at the end of the 1st, 2nd and 3rd course of treatment, and serum leptin level after the treatment in the treatment group were all significantly lower than those in the control group (P < 0.05, P < 0.01). The difference values of body weight and BMI between pre-treatment and post-treatment of the treatment group were obviously higher than those of the control group (P < 0.01), suggesting a better therapeutic effect of acupuncture combined with dietary adjustments and aerobic exercise in the treatment of simple obesity. Acupuncture combined with dietary adjustments and aerobic exercise can reduce the body weight, BMI and serum leptin level, which is better than dietary adjustments plus aerobic exercise.

  15. Thermophilic biogasification of biomass

    SciTech Connect

    Ghosh, S.; Klass, D.L.; Christopher, R.W.; Edwards, V.H.

    1980-01-01

    Mesophilic and thermophilic digestion runs were conducted with the pure land-based biomass species, water hyacinth (Eichhornia crassipes) and Coastal Bermuda grass (Cynodon dactylon), and a blend of hyacinth, grass, MSW, and sewage sludge. A mixed biomass-waste hybrid feed was included because it has a superior nutritional balance relative to the pure feeds and it facilitates year-round operation of a biomass-to-SNG process. (7) The studies were conducted at 35/sup 0/ and 55/sup 0/C, generally believed to be optimum for mesophilic and thermophilic digestion of organic feeds. Results of mesophilic digestion were to provide baseline performance data for evaluation of thermophilic digester performance. It was decided that the feed affording the best thermophilic performance would be pretreated with dilute sodium hydroxide solution at the selected digestion temperature of 55/sup 0/C to improve methane production rate and yield. In addition, thermophilic runs were planned to investigate ways to reduce chemical requirements for alkaline pretreatment and feed slurry neutralization.

  16. Similar hypotensive effects of combined aerobic and resistance exercise with 1 set versus 3 sets in women with metabolic syndrome.

    PubMed

    Tibana, Ramires A; Nascimento, Dahan da C; de Sousa, Nuno M F; de Almeida, Jeeser A; Moraes, Milton R; Durigan, João Luiz Quagliotti; Collier, Scott R; Prestes, Jonato

    2015-11-01

    The aim of the present study was to compare the response of systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP) following combined training with 1 set or with 3 sets of resistance exercise (RE). Sixteen women with metabolic syndrome (MetS) were randomly assigned to perform two combined exercise protocols and a control session (CON): 1-set, 30 min of aerobic exercise (AE) at 65-70% of reserve heart rate and 1 set of 8-12 repetitions at 80% of 10-RM in six resistance exercises; 3-sets, same protocol but with 3 sets; and CON, 30 min of seated rest. The SBP, MBP and DBP were measured before and every 15 min during 90 min following the experimental sessions. The SBP displayed a decrease (P ≤ 0.05) during the 90 min following the RE session with 1-set and 3-set, while MBP was decreased (P ≤ 0.05) up to 75 min after 1-set and up to 30 min after the 3-set exercise session compared with pre-intervention values. There was a decrease in DBP only for the greatest individual decrease following 1-set (-6.1 mmHg) and 3-set (-4.9 mmHg) combined exercise sessions, without differences between them. The rate-pressure product and heart rate remained significantly higher (P ≤ 0.05) 75 min and 90 min after the combined exercise session with 1- and 3-sets compared with the CON, respectively. In conclusion, a low-volume RE combined with AE resulted in similar decrease of SBP when compared with RE with 3-sets in women with MetS, which could be beneficial in situations of limited time. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  17. High-load domestic wastewater treatment using a combined anaerobic-aerobic bio-filter with coal cinder as medium.

    PubMed

    Liu, Yaoxing; Lei, Yuxin; Xi, Yin; Liao, Zaiyi; Zhang, Xia

    2017-03-13

    A combined anaerobic-aerobic bio-filter technology was used for field treatment of high-organic-load domestic wastewater with coal cinder as the bio-filter medium. The effects of parameters, including hydraulic retention time (HRT) and backflow ratio, on the decrease in the chemical oxygen demand (COD), NH3-N, total nitrogen (TN), total phosphorus (TP), and turbidity were investigated. The results showed the obvious influence of the HRT and ratio of backflow on wastewater treatment. Under the optimal HRT condition of 18 h, the removal efficiencies of COD, NH3-N, TN, TP, and turbidity were 67.9%, 95.6%, 30.4%, 65.6%, and 83.8%, respectively. When the backflow ratio (2:1) was added to the treatment system, the TN removal obviously increased, and the removal efficiencies of COD, NH3-N, TN, TP, and turbidity were 88.1%, 91.7%, 69.9%, 69.6%, and 97.5%, respectively. These results indicated that the combined technology has the potential as a treatment method for high-organic-load domestic wastewater.

  18. Aerobic exercise combined with antioxidative treatment does not counteract moderate- or mid-stage Alzheimer-like pathophysiology of APP/PS1 mice.

    PubMed

    Xu, Zhi-Qiang; Zhang, Lu-Qing; Wang, Qin; Marshall, Charles; Xiao, Na; Gao, Jun-Ying; Wu, Ting; Ding, Jiong; Hu, Gang; Xiao, Ming

    2013-10-01

    The present study evaluated the combined treatment effects of aerobic exercise and antioxidative stress on moderate-stage Alzheimer's disease (AD). Ten-month-old APP/PS1 mice were given antioxidative treatment with acetylcysteine, along with aerobic exercise for 6 weeks. Spatial learning and memory were tested using the Morris water maze, and β-amyloid (Aβ) plaque deposits in the forebrain were quantified by Thioflavin-S staining. Levels of soluble Aβ1-42, β-secretase enzyme, ү-secretase enzyme, oxidative and antioxidant stress markers nitrotyrosine and peroxiredoxin-1, glial markers glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1, and synaptic protein synaptophysin in the hippocampus were all measured by western blotting and/or immunohistochemistry. APP/PS1 mice showed severe declines in spatial learning and memory compared with their wild-type littermates, which were not attenuated by aerobic exercise combined with antioxidative treatment. The pathologic analysis revealed that Aβ deposition and production, oxidative stress, glial inflammation, and synaptic loss were not mitigated in the brain of exercised APP/PS1 mice, compared with the sedentary APP/PS1 animals. This study reveals that a combined treatment of aerobic exercise plus antioxidative stress does not counteract pathophysiology in the moderate- or mid-stages of AD. © 2013 John Wiley & Sons Ltd.

  19. A Combination of Schwann-Cell Grafts and Aerobic Exercise Enhances Sciatic Nerve Regeneration

    PubMed Central

    Souto, Allana; Oliveira, Júlia Teixeira; de Lima, Silmara; Tonda-Turo, Chiara; Marques, Suelen Adriani; de Almeida, Fernanda Martins; Martinez, Ana Maria Blanco

    2014-01-01

    Background Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process. Objective Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury. Methods Sciatic nerve transection was performed in adult C57BL/6 mice; the proximal and distal stumps of the nerve were sutured into the conduit. Four groups were analyzed: acellular grafts (DMEM group), Schwann cell grafts (3×105/2 µL; SC group), treadmill training (TMT group), and treadmill training and Schwann cell grafts (TMT + SC group). Locomotor function was assessed weekly by Sciatic Function Index and Global Mobility Test. Animals were anesthetized after eight weeks and dissected for morphological analysis. Results Combined therapies improved nerve regeneration, and increased the number of myelinated fibers and myelin area compared to the DMEM group. Motor recovery was accelerated in the TMT + SC group, which showed significantly better values in sciatic function index and in global mobility test than in the other groups. The TMT + SC group showed increased levels of trophic-factor expression compared to DMEM, contributing to the better functional outcome observed in the former group. The number of neurons in L4 segments was significantly higher in the SC and TMT + SC groups when compared to DMEM group. Counts of dorsal root ganglion sensory neurons revealed that TMT group had a significant increased number of neurons compared to DMEM group, while the SC and TMT + SC groups had a slight but not significant increase in the total number of motor neurons. Conclusion These data provide evidence that this combination of therapeutic strategies can

  20. Aerobic Exercise Effects on Ocular Dominance Plasticity with a Phase Combination Task in Human Adults.

    PubMed

    Zhou, Jiawei; Reynaud, Alexandre; Hess, Robert F

    2017-01-01

    Several studies have shown that short-term monocular patching can induce ocular dominance plasticity in normal adults, in which the patched eye becomes stronger in binocular viewing. There is a recent study showing that exercise enhances this plasticity effect when assessed with binocular rivalry. We address one question, is this enhancement from exercise a general effect such that it is seen for measures of binocular processing other than that revealed using binocular rivalry? Using a binocular phase combination task in which we directly measure each eye's contribution to the binocularly fused percept, we show no additional effect of exercise after short-term monocular occlusion and argue that the enhancement of ocular dominance plasticity from exercise could not be demonstrated with our approach.

  1. Aerobic Exercise Effects on Ocular Dominance Plasticity with a Phase Combination Task in Human Adults

    PubMed Central

    Reynaud, Alexandre; Hess, Robert F.

    2017-01-01

    Several studies have shown that short-term monocular patching can induce ocular dominance plasticity in normal adults, in which the patched eye becomes stronger in binocular viewing. There is a recent study showing that exercise enhances this plasticity effect when assessed with binocular rivalry. We address one question, is this enhancement from exercise a general effect such that it is seen for measures of binocular processing other than that revealed using binocular rivalry? Using a binocular phase combination task in which we directly measure each eye's contribution to the binocularly fused percept, we show no additional effect of exercise after short-term monocular occlusion and argue that the enhancement of ocular dominance plasticity from exercise could not be demonstrated with our approach. PMID:28357142

  2. Estimating time-variable aerobic respiration in the streambed by combining electrical conductivity and dissolved oxygen time series

    NASA Astrophysics Data System (ADS)

    Vieweg, Michael; Kurz, Marie J.; Trauth, Nico; Fleckenstein, Jan H.; Musolff, Andreas; Schmidt, Christian

    2016-08-01

    Aerobic respiration is an important component of in-stream metabolism. The larger part occurs in the streambed, where it is difficult to directly determine actual respiration rates. Existing methods for determining respiration are based on indirect estimates from whole-stream metabolism or provide time invariant results estimated from oxygen consumption measurements in enclosed chambers that do not account for the influence of hydrological changes. In this study we demonstrate a simple method for determining time-variable hyporheic respiration. We use a windowed cross-correlation approach for deriving time-variable travel times from the naturally changing electrical conductivity signal that is transferred into the sediment. By combining the results with continuous in situ dissolved oxygen measurements, variable oxygen consumption rate coefficients in the streambed are obtained. An empirical temperature relationship is derived and used for standardizing the respiration rate coefficients to isothermal conditions. For demonstrating the method, we compare two independent measurement spots in the streambed, which were located upstream and downstream of an in-stream gravel bar and thus exposed strongly diverse travel times. The derived respiration rate results are in accordance with findings of other stream studies. By comparing the travel time and respiration rate coefficient (i.e., Damköhler number) we estimate the contribution of each to the oxygen consumption in the streambed.

  3. Combined Aerobic and Resistance Training Effects on Glucose Homeostasis, Fitness, and Other Major Health Indices: A Review of Current Guidelines.

    PubMed

    Johannsen, Neil M; Swift, Damon L; Lavie, Carl J; Earnest, Conrad P; Blair, Steven N; Church, Timothy S

    2016-12-01

    The combination of aerobic and resistance training (AER + RES) is recommended by almost every major organization to improve health-related risk factors associated with sedentary behavior. Since the release of the Physical Activity Guidelines for Americans in 2008, several large well-controlled trials and ancillary reports have been published that provide further insight into the effects of AER + RES on health-related outcomes. The current manuscript examines the literature on the effects of AER + RES on major clinical outcomes, including glucose homeostasis, cardiorespiratory fitness (CRF), and muscular strength, as well as other important clinical outcomes, including metabolic syndrome, hypertension, dyslipidemia, and quality of life. Collectively, research suggests that AER + RES and AER or RES alone improves glycemic control and insulin sensitivity compared with continued sedentary behavior. Significant changes in CRF are also observed, suggesting a reduction in cardiovascular disease-related mortality risk. Reduced adiposity, especially abdominal adiposity, and increased strength may also interact with CRF to promote additional health benefits associated with AER + RES. While findings from our review support current physical activity guidelines, a paucity of research limits the generalizability of the results.

  4. Performance evaluation of an UASB reactor used for combined treatment of domestic sewage and excess aerobic sludge from a trickling filter.

    PubMed

    Pontes, P P; Chernicharo, C A L; Frade, E C; Porto, M T R

    2003-01-01

    This work aimed at evaluating the influence of the excess sludge produced in a trickling filter (TF) on the performance of a UASB reactor used for the combined treatment of domestic sewage and aerobic sludge. During phase 1 of the research, the UASB reactor/TF system was fed with domestic sewage pumped directly from the sewer collector of Arrudas stream, in Belo Horizonte-Brazil. During phase 2, besides feeding the reactor with domestic sewage, the UASB reactor was also fed with the aerobic sludge from the trickling filter. The UASB reactor, with a volume of 420 litres, was operated at a mean hydraulic detention time of 5.6 hours in both operational phases. After 133 days of continuous monitoring, no detrimental effect was noticed on the performance of the UASB reactor regarding the return of the aerobic sludge produced in the TF. On the contrary, the COD results indicated a higher percentage of compliance with the discharge standards set forth by the Brazilian environmental legislation. During phase 2 of the research, when the UASB reactor was used for combined treatment of domestic sewage and excess aerobic sludge from the TF, the anaerobic effluent presented mean concentrations of 108 mgCOD x L(-1), 57 mgBOD x L(-1) and 18 mgTSS x L(-1).

  5. Dose–response effects of aerobic exercise on energy compensation in postmenopausal women: combined results from two randomized controlled trials

    PubMed Central

    McNeil, J; Brenner, D R; Courneya, K S; Friedenreich, C M

    2017-01-01

    Background/objectives: Despite the clear health benefits of exercise, exercised-induced weight loss is often less than expected. The term ‘exercise energy compensation’ is used to define the amount of weight loss below what is expected for the amount of exercise energy expenditure. We examined the dose–response effects of exercise volume on energy compensation in postmenopausal women. Participants/methods: Data from Alberta Physical Activity and Breast Cancer Prevention (ALPHA) and Breast Cancer and Exercise Trial in Alberta (BETA) were combined for the present analysis. The ALPHA and BETA trials were two-centred, two-armed, 12-month randomized controlled trials. The ALPHA trial included 160 participants randomized to 225 min per week of aerobic exercise, and the BETA trial randomized 200 participants to each 150 and 300 min per week of aerobic exercise. All participants were aged 50–74 years, moderately inactive (<90 min per week of exercise), had no previous cancer diagnosis and a body mass index between 22 and 40 kg m−2. Energy compensation was based on changes in body composition (dual-energy X-ray absorptiometry scan) and estimated exercise energy expenditure from completed exercise volume. Associations between Δenergy intake, ΔVO2peak and Δphysical activity time with energy compensation were assessed. Results: No differences in energy compensation were noted between interventions. However, there were large inter-individual differences in energy compensation between participants; 9.4% experienced body composition changes that were greater than expected based on exercise energy expenditure, 64% experienced some degree of energy compensation and 26.6% experienced weight gain based on exercise energy expenditure. Increases in VO2peak were associated with reductions in energy compensation (β=−3.44 ml kg−1 min−1, 95% confidence interval for β=−4.71 to −2.17 ml kg−1 min−1; P=0.0001). Conclusions: Large inter

  6. Dose-response effects of aerobic exercise on energy compensation in postmenopausal women: combined results from two randomized controlled trials.

    PubMed

    McNeil, J; Brenner, D R; Courneya, K S; Friedenreich, C M

    2017-08-01

    Despite the clear health benefits of exercise, exercised-induced weight loss is often less than expected. The term 'exercise energy compensation' is used to define the amount of weight loss below what is expected for the amount of exercise energy expenditure. We examined the dose-response effects of exercise volume on energy compensation in postmenopausal women. Data from Alberta Physical Activity and Breast Cancer Prevention (ALPHA) and Breast Cancer and Exercise Trial in Alberta (BETA) were combined for the present analysis. The ALPHA and BETA trials were two-centred, two-armed, 12-month randomized controlled trials. The ALPHA trial included 160 participants randomized to 225 min per week of aerobic exercise, and the BETA trial randomized 200 participants to each 150 and 300 min per week of aerobic exercise. All participants were aged 50-74 years, moderately inactive (<90 min per week of exercise), had no previous cancer diagnosis and a body mass index between 22 and 40 kg m(-2). Energy compensation was based on changes in body composition (dual-energy X-ray absorptiometry scan) and estimated exercise energy expenditure from completed exercise volume. Associations between Δenergy intake, ΔVO2peak and Δphysical activity time with energy compensation were assessed. No differences in energy compensation were noted between interventions. However, there were large inter-individual differences in energy compensation between participants; 9.4% experienced body composition changes that were greater than expected based on exercise energy expenditure, 64% experienced some degree of energy compensation and 26.6% experienced weight gain based on exercise energy expenditure. Increases in VO2peak were associated with reductions in energy compensation (β=-3.44 ml kg(-1) min(-1), 95% confidence interval for β=-4.71 to -2.17 ml kg(-1) min(-1); P=0.0001). Large inter-individual differences in energy compensation were noted, despite no differences between

  7. Effects of Combined Aerobic and Resistance Exercise on Exercise Capacity, Muscle Strength and Quality of Life in HIV-Infected Patients: A Systematic Review and Meta-Analysis

    PubMed Central

    Gomes Neto, Mansueto; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira; Brites, Carlos

    2015-01-01

    Background Many HIV-infected patients demonstrate disability and lower aerobic capacity. The inclusion of resistance training combined with aerobic exercise in a single program is known as combined aerobic and resistance exercise (CARE) and seems to be an effective strategy to improve muscle weakness, as well as aerobic capacity in HIV-infected patients. We performed a meta-analysis to investigate the effects of CARE in HIV-infected patients. Methods We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, CINAHL (from the earliest date available to august 2014) for controlled trials that evaluated the effects of CARE in HIV-infected patients. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed using the I2 test. Results Seven studies met the study criteria. CARE resulted in improvement in Peak VO2 WMD (4.48 mL·kg-1·min-1 95% CI: 2.95 to 6.0), muscle strength of the knee extensors WMD (25.06 Kg 95% CI: 10.46 to 39.66) and elbow flexors WMD (4.44 Kg 95% CI: 1.22 to 7.67) compared with no exercise group. The meta-analyses also showed significant improvement in Health status, Energy/Vitality and physical function domains of quality of life for participants in the CARE group compared with no exercise group. A nonsignificant improvement in social function domain of quality of life was found for participants in the CARE group compared with no exercise group. Conclusions Combined aerobic and resistance exercise may improve peak VO2, muscle strength and health status, energy and physical function domains of quality of life and should be considered as a component of care of HIV-infected individuals. PMID:26378794

  8. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  9. Thermophilic microorganisms in biomining.

    PubMed

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  10. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification.

    PubMed

    Chen, Xingxing; Wu, Xiaoli; Gan, Min; Xu, Feng; He, Lihua; Yang, Dong; Xu, Hengyi; Shah, Nagendra P; Wei, Hua

    2015-03-01

    Staphylococcus aureus is one of the main pathogens in dairy and meat products; therefore, developing a highly sensitive and rapid method for its detection is necessary. In this study, a quantitative detection method for Staph. aureus was developed using silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. First, genomic DNA was extracted from lysed bacteria using silica-coated magnetic nanoparticles and amplified using thermophilic helicase-dependent isothermal amplification. After adding the nucleic-acid dye SYBR Green I to the amplicons, the fluorescence intensity was observed using a UV lamp or recorded using a fluorescence spectrophotometer. This detection system had a detection limit of 5×10(0) cfu/mL in pure culture and milk-powder samples and 5×10(1) cfu/mL in pork samples using a UV light in less than 2h. In addition, a good linear relationship was obtained between fluorescence intensity and bacterial concentrations ranging from 10(2) to 10(4) cfu/mL under optimal conditions. Furthermore, the results from contaminated milk powder and pork samples suggested that the detection system could be used for the quantitative analysis of Staph. aureus and applied potentially to the food industry for the detection of this pathogen. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Can a Single Session of a Community-Based Group Exercise Program Combining Step Aerobics and Bodyweight Resistance Exercise Acutely Reduce Blood Pressure?

    PubMed Central

    Mendes, Romeu; Sousa, Nelson; Garrido, Nuno; Cavaco, Braulio; Quaresma, Luís; Reis, Victor Machado

    2014-01-01

    This study aimed to analyze the acute effects of a single session of a community-based group exercise program combining step aerobics and bodyweight resistance exercise on blood pressure in healthy young adult women. Twenty-three healthy young adult women (aged 31.57 ± 7.87 years) participated in two experimental sessions (exercise and control) in a crossover study design. Blood pressure was monitored before, immediately after and at 10, 20 and 30 min of recovery. The exercise session consisted of four phases: 1) a warm-up (5 min of dance aerobics); 2) aerobic exercise training (30 min of step aerobics); 3) resistance exercise training (six sets of 12 repetitions of three bodyweight exercises in a circuit mode, 10 min); and 4) a cool-down (5 min of breathing and flexibility exercises); totaling 50 min of duration. Systolic blood pressure after exercise was significantly lower compared to control at the 10th min (−10.83 ± 2.13 vs. −2.6 ± 2.13 mmHg; p = 0.009), 20th min (−11.26 ± 2.13 vs. −3.04 ± 2.13 mmHg; p = 0.009) and 30th min of recovery (−10.87 ± 2.39 vs. −0.48 ± 2.39 mmHg; p = 0.004). A single session of a community-based group exercise program combining step aerobics and bodyweight resistance exercise was effective in inducing significant post-exercise hypotension in healthy young adult women. This type of low-cost exercise interventions may have an important role in the prevention of cardiovascular diseases and in community health promotion. PMID:25713644

  12. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass

    PubMed Central

    Eichorst, Stephanie A.; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A.

    2014-01-01

    Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction. PMID:25261509

  13. Aggregated effects of combining daily milk consumption and aerobic exercise on short-term memory and sustained attention among female students.

    PubMed

    Leong, In-Tyng; Moghadam, Sedigheh; Hashim, Hairul A

    2015-02-01

    Regular aerobic exercise and milk consumption have been found to have positive effects on certain cognitive functions such as short-term memory and sustained attention. However, aggregated effects of combining these modalities have not been explored. This study examined the combined effects of milk supplementation and aerobic exercise on the short-term memory and sustained attention of female students aged 16 yr. (N = 81). The intervention involved serving of 250 ml of regular milk during school days and/or a 1-hr. aerobic exercise period twice per week for 6 weeks. The Digit Span Test and Digit Vigilance Test were used to measure short-term memory and sustained attention, respectively. The combination group (milk and exercise) and exercise group performed significantly better than did the milk and control groups in terms of short-term memory. No significant interaction or group differences were found for sustained attention. The results suggest benefits of regular exercise for students' short-term memory.

  14. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males

    PubMed Central

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721

  15. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males.

    PubMed

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.

  16. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae

    PubMed Central

    Pace, Laura A.; Ward, Lewis M.; Fischer, Woodward W.

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  17. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    PubMed

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts.

  18. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    PubMed

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  20. Integration between chemical oxidation and membrane thermophilic biological process.

    PubMed

    Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R

    2010-01-01

    Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.

  1. Feasibility of a combined aerobic and strength training program and its effects on cognitive and physical function in institutionalized dementia patients. A pilot study.

    PubMed

    Bossers, Willem J R; Scherder, Erik J A; Boersma, Froukje; Hortobágyi, Tibor; van der Woude, Lucas H V; van Heuvelen, Marieke J G

    2014-01-01

    We examined the feasibility of a combined aerobic and strength training program in institutionalized dementia patients and studied the effects on cognitive and physical function. Thirty-three patients with dementia, recruited from one nursing home, participated in this non-randomized pilot study (25 women; age = 85.2±4.9 years; Mini Mental State Examination = 16.8±4.0). In phase 1 of the study, seventeen patients in the Exercise group (EG) received a combined aerobic and strength training program for six weeks, five times per week, 30 minutes per session, in an individually supervised format and successfully concluded the pre and posttests. In phase 2 of the study, sixteen patients in the Social group (SG) received social visits at the same frequency, duration, and format and successfully concluded the pre and posttests. Indices of feasibility showed that the recruitment and adherence rate, respectively were 46.2% and 86.3%. All EG patients completed the exercise program according to protocol without adverse events. After the six-week program, no significant differences on cognitive function tests were found between the EG and SG. There was a moderate effect size in favor for the EG for the Visual Memory Span Forward; a visual attention test. There were significant differences between groups in favor for the EG with moderate to large effects for the physical tests Walking Speed (p = .003), Six-Minute Walk Test (p = .031), and isometric quadriceps strength (p = .012). The present pilot study showed that it is feasible to conduct a combined aerobic and strength training program in institutionalized patients with dementia. The selective cognitive visual attention improvements and more robust changes in motor function in favor of EG vs. SG could serve as a basis for large randomized clinical trials. trialregister.nl 1230.

  2. Feasibility of a Combined Aerobic and Strength Training Program and Its Effects on Cognitive and Physical Function in Institutionalized Dementia Patients. A Pilot Study

    PubMed Central

    Bossers, Willem J. R.; Scherder, Erik J. A.; Boersma, Froukje; Hortobágyi, Tibor; van der Woude, Lucas H. V.; van Heuvelen, Marieke J. G.

    2014-01-01

    Objectives We examined the feasibility of a combined aerobic and strength training program in institutionalized dementia patients and studied the effects on cognitive and physical function. Methods Thirty-three patients with dementia, recruited from one nursing home, participated in this non-randomized pilot study (25 women; age = 85.2±4.9 years; Mini Mental State Examination = 16.8±4.0). In phase 1 of the study, seventeen patients in the Exercise group (EG) received a combined aerobic and strength training program for six weeks, five times per week, 30 minutes per session, in an individually supervised format and successfully concluded the pre and posttests. In phase 2 of the study, sixteen patients in the Social group (SG) received social visits at the same frequency, duration, and format and successfully concluded the pre and posttests. Results Indices of feasibility showed that the recruitment and adherence rate, respectively were 46.2% and 86.3%. All EG patients completed the exercise program according to protocol without adverse events. After the six-week program, no significant differences on cognitive function tests were found between the EG and SG. There was a moderate effect size in favor for the EG for the Visual Memory Span Forward; a visual attention test. There were significant differences between groups in favor for the EG with moderate to large effects for the physical tests Walking Speed (p = .003), Six-Minute Walk Test (p = .031), and isometric quadriceps strength (p = .012). Conclusions The present pilot study showed that it is feasible to conduct a combined aerobic and strength training program in institutionalized patients with dementia. The selective cognitive visual attention improvements and more robust changes in motor function in favor of EG vs. SG could serve as a basis for large randomized clinical trials. Trial Registration trialregister.nl 1230 PMID:24844772

  3. Thermophilic degradation of cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  4. Combined steam-ultrasound treatment of 2 seconds achieves significant high aerobic count and Enterobacteriaceae reduction on naturally contaminated food boxes, crates, conveyor belts, and meat knives.

    PubMed

    Musavian, Hanieh S; Butt, Tariq M; Larsen, Annette Baltzer; Krebs, Niels

    2015-02-01

    Food contact surfaces require rigorous sanitation procedures for decontamination, although these methods very often fail to efficiently clean and disinfect surfaces that are visibly contaminated with food residues and possible biofilms. In this study, the results of a short treatment (1 to 2 s) of combined steam (95°C) and ultrasound (SonoSteam) of industrial fish and meat transportation boxes and live-chicken transportation crates naturally contaminated with food and fecal residues were investigated. Aerobic counts of 5.0 to 6.0 log CFU/24 cm(2) and an Enterobacteriaceae spp. level of 2.0 CFU/24 cm(2) were found on the surfaces prior to the treatment. After 1 s of treatment, the aerobic counts were significantly (P < 0.0001) reduced, and within 2 s, reductions below the detection limit (<10 CFU) were reached. Enterobacteriaceae spp. were reduced to a level below the detection limit with only 1 s of treatment. Two seconds of steam-ultrasound treatment was also applied on two different types of plastic modular conveyor belts with hinge pins and one type of flat flexible rubber belt, all visibly contaminated with food residues. The aerobic counts of 3.0 to 5.0 CFU/50 cm(2) were significantly (P < 0.05) reduced, while Enterobacteriaceae spp. were reduced to a level below the detection limit. Industrial meat knives were contaminated with aerobic counts of 6.0 log CFU/5 cm(2) on the handle and 5.2 log CFU/14 cm(2) on the steel. The level of Enterobacteriaceae spp. contamination was approximately 2.5 log CFU on the handle and steel. Two seconds of steam-ultrasound treatment reduced the aerobic counts and Enterobacteriaceae spp. to levels below the detection limit on both handle and steel. This study shows that the steam-ultrasound treatment may be an effective replacement for disinfection processes and that it can be used for continuous disinfection at fast process lines. However, the treatment may not be able to replace efficient cleaning processes used to remove high

  5. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    PubMed

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  6. Does Intrasession Concurrent Strength and Aerobic Training Order Influence Training-Induced Explosive Strength and V[Combining Dot Above]O2max in Prepubescent Children?

    PubMed

    Alves, Ana R; Marta, Carlos C; Neiva, Henrique P; Izquierdo, Mikel; Marques, Mário C

    2016-12-01

    Alves, AR, Marta, C, Neiva, HP, Izquierdo, M, and Marques, MC. Does intrasession concurrent strength and aerobic training order influence training-induced explosive strength and V[Combining Dot Above]O2max in prepubescent children?. J Strength Cond Res 30(12): 3267-3277, 2016-The aim of this study was to analyze the interference of strength and aerobic training order over an 8-week period on explosive skills and maximal oxygen uptake (V[Combining Dot Above]O2max) in prepubescent children. One hundred twenty-eight prepubescent children aged 10-11 years (10.9 ± 0.5 years) were randomly selected and assigned to 1 of the 3 groups: intrasession concurrent aerobic before (GAS: n = 39) or after strength training (GSA: n = 45) or control group (GC: n = 44; no training program). The GC maintained their baseline level performance, and training-induced differences were found in the experimental groups. Increases were found in the 1-kg and 3-kg medicine ball throws: GAS: +3%, +5.5%, p ≤ 0.05, p < 0.001; GSA: +5.7%, +8.7%, p < 0.001, respectively; in the counter movement jump height and standing long jump length: GAS: +6.5%, +3.4%, p ≤ 0.05; GSA: +7%, +4.5%, p < 0.001, respectively; in the 20-m shuttle-run time: GAS: +2.3%; GSA: +4.6%, p < 0.001; and, in the V[Combining Dot Above]O2max: GAS: +7.3%, p < 0.001; GSA: +3.8%, p < 0.001 from pretraining to post-training. All programs were effective, but GSA produced better results than GAS for muscle strength variables, and GAS produced better results than GSA for aerobic capacity variables. The present study explored an unknown issue and added useful information to the literature in this area. These training methods should be taken into consideration to optimize explosive strength and cardiorespiratory fitness training in school-based programs and sports club programs.

  7. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial.

    PubMed

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf

    2016-01-01

    Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.

  8. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    PubMed Central

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso RF

    2016-01-01

    Background Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. Objective The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. Design This study was a randomized and controlled trial. Participants A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). Intervention The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Evaluations Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. Results After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Conclusion Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment. PMID:27822031

  9. Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores.

    PubMed

    Bartholomew, J W; Paik, G

    1966-09-01

    Bartholomew, J. W. (University of Southern California, Los Angeles), and George Paik. Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores. J. Bacteriol. 92:635-638. 1966.-Obligate thermophilic sporeforming aerobic bacilli were isolated from 11 ocean basin cores taken from locations in a 150 mile long area off of the coast from Ensenada, Mexico, to Santa Catalina Island, and ranging as far out from shore as 160 miles. Isolated strains of bacilli were all identified as being identical, or closely related, to Bacillus stearothermophilus.

  10. Novel process combining anaerobic-aerobic digestion and ion exchange resin for full recycling of cassava stillage in ethanol fermentation.

    PubMed

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2017-04-01

    A novel cleaner ethanol production process has been developed. Thin stillage is treated initially by anaerobic digestion followed by aerobic digestion and then further treated by chloride anion exchange resin. This allows the fully-digested and resin-treated stillage to be completely recycled for use as process water in the next ethanol fermentation batch, which eliminates wastewater discharges and minimizes consumption of fresh water. The method was evaluated at the laboratory scale. Process parameters were very similar to those found using tap water. Maximal ethanol production rate in the fully-recycled stillage was 0.9g/L/h, which was similar to the 0.9g/L/h found with the tap water control. The consumption of fresh water was reduced from 4.1L/L (fresh water/ethanol) to zero. Compared with anaerobically-aerobically digested stillage which had not been treated with resin, the fermentation time was reduced by 28% (from 72h to 52h) and reached the level achieved with tap water. This novel process can assist in sustainable development of the ethanol industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromyalgia: A Randomized Placebo-Controlled Clinical Trial

    PubMed Central

    Mendonca, Mariana E.; Simis, Marcel; Grecco, Luanda C.; Battistella, Linamara R.; Baptista, Abrahão F.; Fregni, Felipe

    2016-01-01

    Fibromyalgia is a chronic pain syndrome that is associated with maladaptive plasticity in neural central circuits. One of the neural circuits that are involved in pain in fibromyalgia is the primary motor cortex. We tested a combination intervention that aimed to modulate the motor system: transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) and aerobic exercise (AE). In this phase II, sham-controlled randomized clinical trial, 45 subjects were assigned to 1 of 3 groups: tDCS + AE, AE only, and tDCS only. The following outcomes were assessed: intensity of pain, level of anxiety, quality of life, mood, pressure pain threshold, and cortical plasticity, as indexed by transcranial magnetic stimulation. There was a significant effect for the group-time interaction for intensity of pain, demonstrating that tDCS/AE was superior to AE [F(13, 364) = 2.25, p = 0.007] and tDCS [F(13, 364) = 2.33, p = 0.0056] alone. Post-hoc adjusted analysis showed a difference between tDCS/AE and tDCS group after the first week of stimulation and after 1 month intervention period (p = 0.02 and p = 0.03, respectively). Further, after treatment there was a significant difference between groups in anxiety and mood levels. The combination treatment effected the greatest response. The three groups had no differences regarding responses in motor cortex plasticity, as assessed by TMS. The combination of tDCS with aerobic exercise is superior compared with each individual intervention (cohen's d effect sizes > 0.55). The combination intervention had a significant effect on pain, anxiety and mood. Based on the similar effects on cortical plasticity outcomes, the combination intervention might have affected other neural circuits, such as those that control the affective-emotional aspects of pain. Trial registration: (www.ClinicalTrials.gov), identifier NTC02358902. PMID:27014012

  12. DNA replication in thermophiles.

    PubMed

    Majerník, A I; Jenkinson, E R; Chong, J P J

    2004-04-01

    DNA replication enzymes in the thermophilic Archaea have previously attracted attention due to their obvious use in methods such as PCR. The proofreading ability of the Pyrococcus furiosus DNA polymerase has resulted in a commercially successful product (Pfu polymerase). One of the many notable features of the Archaea is the fact that their DNA processing enzymes appear on the whole to be more like those found in eukaryotes than bacteria. These proteins also appear to be simpler versions of those found in eukaryotes. For these reasons, archaeal organisms make potentially interesting model systems to explore the molecular mechanisms of processes such as DNA replication, repair and recombination. Why archaeal DNA-manipulation systems were adopted over bacterial systems by eukaryotic cells remains a most interesting question that we suggest may be linked to thermophily.

  13. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications.

  14. Mathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2 under Aerobic or Evacuated Storage Conditions

    PubMed Central

    Lee, Jeeyeon; Gwak, Eunji; Ha, Jimyeong; Kim, Sejeong; Lee, Soomin; Lee, Heeyoung; Oh, Mi-Hwa; Park, Beom-Young; Oh, Nam Su; Choi, Kyoung-Hee; Yoon, Yohan

    2016-01-01

    The objective of this study was to describe the growth patterns of Staphylococcus aureus in combinations of NaCl and NaNO2, using a probabilistic model. A mixture of S. aureus strains (NCCP10826, ATCC13565, ATCC14458, ATCC23235, and ATCC27664) was inoculated into nutrient broth plus NaCl (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and NaNO2 (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm). The samples were then incubated at 4, 7, 10, 12 and 15℃ for up to 60 d under aerobic or vacuum conditions. Growth responses [growth (1) or no growth (0)] were then determined every 24 h by turbidity, and analyzed to select significant parameters (p<0.05) by a stepwise selection method, resulting in a probabilistic model. The developed models were then validated with observed growth responses. S. aureus growth was observed only under aerobic storage at 10-15℃. At 10-15℃, NaCl and NaNO2 did not inhibit S. aureus growth at less than 1.25% NaCl. Concentration dependency was observed for NaCl at more than 1.25%, but not for NaNO2. The concordance percentage between observed and predicted growth data was approximately 93.86%. This result indicates that S. aureus growth can be inhibited in vacuum packaging and even aerobic storage below 10℃. Furthermore, NaNO2 does not effectively inhibit S. aureus growth. PMID:28115886

  15. Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration.

    PubMed

    Grilli, Selene; Piscitelli, Daniela; Mattioli, Davide; Casu, Stefania; Spagni, Alessandro

    2011-01-01

    This study evaluated the treatability of textile wastewaters in a bench-scale experimental system, comprising an anaerobic biofilter, an anoxic reactor and an aerobic membrane bioreactor (MBR). The MBR effluent was thereafter treated by a nanofiltration (NF) membrane. The proposed system was demonstrated to be effective in the treatment of the textile wastewater under the operating conditions applied in the study. The MBR system achieved a good COD (90-95%) removal; due to the presence of the anaerobic biofilter, also effective color removal was obtained (70%). The addition of the NF membrane allowed the further improvement in COD (50-80%), color (70-90%) and salt removal (60-70% as conductivity). In particular the NF treatment allowed the almost complete removal of the residual color and a reduction of the conductivity such as to achieve water quality suitable for reuse.

  16. The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial.

    PubMed

    AbouAssi, Hiba; Slentz, Cris A; Mikus, Catherine R; Tanner, Charles J; Bateman, Lori A; Willis, Leslie H; Shields, A Tamlyn; Piner, Lucy W; Penry, Lorrie E; Kraus, Erik A; Huffman, Kim M; Bales, Connie W; Houmard, Joseph A; Kraus, William E

    2015-06-15

    Most health organizations recommend a combination of aerobic training (AT) and resistance training (RT), yet few studies have compared their acute (within 24 h of the last exercise bout) and sustained (after 14 days of no exercise training) effects alone and in combination on glucose metabolism. The present study (Studies Targeting Risk Reduction Interventions through Defined Exercise-Aerobic Training and/or Resistance Training) compared the effects of AT, RT, and the combination (AT/RT) on insulin action at both acute and sustained phases. Subjects (N = 196) were 18-70 yr old (mean age = 50 yr), overweight (mean body mass index = 30 kg/m2), sedentary with moderate dyslipidemia, and were randomized into one of three 8-mo exercise groups: 1) RT: 3 days/wk, 8 exercises, 3 sets/exercise, 8-12 repetitions/set; 2) AT: equivalent to ∼19.2 km/wk (12 miles/wk) at 75% peak O2 consumption; 3) AT/RT: the combination of AT and RT. One hundred forty-four subjects completed the intervention. Eighty-eight subjects completed all pre- and postintervention testing visits. Insulin sensitivity, glucose effectiveness, and disposition index were measured via a frequently sampled intravenous glucose tolerance test with subsequent minimal model analyses. AT/RT resulted in greater improvements in insulin sensitivity, β-cell function (disposition index), and glucose effectiveness than either AT or RT alone (all P < 0.05). Approximately 52% of the improvement in insulin sensitivity by AT/RT was retained 14 days after the last exercise training bout. Neither AT or RT led to acute or chronic improvement in sensitivity index. In summary, only AT/RT (which required twice as much time as either alone) led to significant acute and sustained benefits in insulin sensitivity

  17. Combined effects of aerobic exercise and l-arginine ingestion on blood pressure in normotensive postmenopausal women: A crossover study.

    PubMed

    Puga, Guilherme M; de P Novais, Iane; Katsanos, Christos S; Zanesco, Angelina

    2016-04-15

    After menopause the incidence of cardiovascular diseases increases in women. A decrease in nitric oxide (NO) bioavailability has been pointed out to play a major role in this phenomenon. Since it is believed that l-arginine administration could improve NO bioavailability, the aim of this study was to examine the effects of acute l-arginine administration associated with aerobic exercise on blood pressure (BP), redox state and inflammatory biomarkers in normotensive postmenopausal women (NPW). Sixteen volunteers (57±6yr) were subjected to four experimental sessions (crossover design): arginine+exercise (A-E); arginine (ARG); exercise+placebo (EXE); control (CON). Each session was initiated with either 9g of l-arginine ingestion (ARG or A-E days), placebo (EXE day), or nothing (CON day). The participants performed 30min of aerobic exercise (A-E and EXE days) or sitting rest (CON and ARG days). Blood samples were collected before each session and 45min after the intervention. Office BP and ambulatory blood pressure monitoring (ABPM) were evaluated. NO/cGMP pathway, redox state and inflammatory biomarkers were measured. Systolic BP decreased during the 24-hour in A-E and EXE sessions. However, diastolic BP reduced only in A-E session. No changes were found in the biomarkers concentrations. In conclusion, the association was effective in lowering diastolic BP in NPW. Additionally, physical exercise alone promoted a long lasting effect on systolic BP measured by ABPM in this population, although this beneficial effect was not associated with changes in the cardio-inflammatory biomarkers. Possibly, other factors such as neural influences could be mediating this effect.

  18. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  19. Characteristics of the soil-like substrates produced with a novel technique combining aerobic fermentation and earthworm treatment

    NASA Astrophysics Data System (ADS)

    Kang, Wenli; He, Wenting; Li, Leyuan; Liu, Hong

    2012-12-01

    The soil-like substrate (SLS) technique is key for improving the closure of bioregenerative life support system (BLSS) by recycling the inedible biomass of higher plants. In this study, a novel SLS technique (NSLST) was proposed: aerobic fermentations at 35 °C for 1 day, then 60 °C for 6 days, finally 30 °C for 3 days, followed by earthworm treatment for 70 days. Comparing with the original SLS technique (OSLST), its process cycle was 13 days shorter, and the dry weight loss rate (81.1%) was improved by 24.77%. The cellulose and lignin degradation rates were 96.6% and 94.6%. The concentrations of available N, P and K in mature SLS were respectively 776.1 mg/L, 348.0 mg/L and 7943.0 mg/L. Low CH4 and NH3 production was observed, but no accumulation. According to the seed germination test, the SLSs were feasible for plant growth. This investigation will provide a preliminary foundation for BLSS design.

  20. A combined upflow anaerobic sludge bed, aerobic, and anoxic fixed-bed reactor system for removing tetramethylammonium hydroxide and nitrogen from light-emitting diode wastewater.

    PubMed

    Lin, Han-Lin; Chen, Sheng-Kun; Huang, Yu-Wen; Chen, Wei-Cheng; Chien, Wei-Cheng; Cheng, Sheng-Shung

    2016-01-01

    A laboratory study using a combined upflow anaerobic sludge bed (UASB) and aerobic and anoxic fixed-bed reactor system was undertaken to explore its capability for removing tetramethylammonium hydroxide (TMAH) and nitrogen from light-emitting diode wastewater. When the organic loading rate was maintained at 0.26-0.65 kg TMAH m(-3 )d(-1), the UASB reactor removed 70-100% of TMAH through methanogenesis. When the [Formula: see text] -N loading rate was maintained at 0.73-1.4 kg [Formula: see text]-N m(-3 )d(-1), the aerobic reactor oxidized 31-59% of [Formula: see text]-N to [Formula: see text]-N through nitritation. When the nitrogen loading rate was maintained at 0.42-0.75 kg N m(-3 )d(-1), the anoxic reactor removed 27-63% of nitrogen through anammox. The performance data of the combined reactor system agreed well with the stoichiometric relationships of methanogenesis, nitritation, and anammox. The batch studies showed that a higher initial TMAH concentration of up to 2520 mg L(-1) gave a higher methanogenic activity of up to 16 mL CH4 g(-1) VSS d(-1). An increase in the initial TMAH concentration of up to 500 mg L(-1) gradually decreased the activity of ammonia-oxidizing bacteria; whereas an increase in the initial TMAH concentration of up to 47 mg L(-1) imposed a marked inhibiting effect on the activity of anammox bacteria.

  1. Were the original eubacteria thermophiles?

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Stetter, K. O.; Woese, C. R.; Johnson, P. C. (Principal Investigator)

    1987-01-01

    Thermotoga maritima is one of the more unusual eubacteria: It is highly thermophilic, growing at temperatures higher than any other eubacterium; its cell wall appears to have a unique structure and its lipids a unique composition; and the organism is surrounded by a loose-fitting sheath of unknown function. Its phenotypic uniqueness is matched by its phylogenetic position; Thermotoga maritima represents the deepest known branching in the eubacterial line of descent, as measured by ribosomal RNA sequence comparisons. T. maritima also represents the most slowly evolving of eubacterial lineages. The fact that the two deepest branchings in the eubacterial line of descent (the other, the green non-sulfur bacteria and relatives, i.e. Chloroflexus, Thermomicrobium, etc.) are both basically thermophilic and slowly evolving, strongly suggests that all eubacteria have ultimately arisen from a thermophilic ancestor.

  2. Were the original eubacteria thermophiles?

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Stetter, K. O.; Woese, C. R.; Johnson, P. C. (Principal Investigator)

    1987-01-01

    Thermotoga maritima is one of the more unusual eubacteria: It is highly thermophilic, growing at temperatures higher than any other eubacterium; its cell wall appears to have a unique structure and its lipids a unique composition; and the organism is surrounded by a loose-fitting sheath of unknown function. Its phenotypic uniqueness is matched by its phylogenetic position; Thermotoga maritima represents the deepest known branching in the eubacterial line of descent, as measured by ribosomal RNA sequence comparisons. T. maritima also represents the most slowly evolving of eubacterial lineages. The fact that the two deepest branchings in the eubacterial line of descent (the other, the green non-sulfur bacteria and relatives, i.e. Chloroflexus, Thermomicrobium, etc.) are both basically thermophilic and slowly evolving, strongly suggests that all eubacteria have ultimately arisen from a thermophilic ancestor.

  3. Combining eddy-covariance measurements and Penman-Monteith type models to estimate evapotranspiration of flooded and aerobic rice

    NASA Astrophysics Data System (ADS)

    Facchi, Arianna; Masseroni, Daniele; Gharsallah, Olfa; Gandolfi, Claudio

    2014-05-01

    Rice is of great importance both from a food supply point of view, since it represents the main food in the diet of over half the world's population, and from a water resources point of view, since it consumes almost 40% of the water amount used for irrigation. About 90% of global production takes place in Asia, while European production is quantitatively modest (about 3 million tons). However, Italy is the Europe's leading producer, with over half of total production, almost totally concentrated in a large traditional paddy rice area between the Lombardy and Piedmont regions, in the north-western part of the country. In this area, irrigation of rice is traditionally carried out by continuous flooding. The high water requirement of this irrigation regime encourages the introduction of water saving irrigation practices, as flood irrigation after sowing in dry soil and intermittent irrigation (aerobic rice). In the agricultural season 2013 an intense monitoring activity was conducted on three experimental fields located in the Padana plain (northern Italy) and characterized by different irrigation regimes (traditional flood irrigation, flood irrigation after sowing in dry soil, intermittent irrigation), with the aim of comparing the water balance terms for the three irrigation treatments. Actual evapotranspiration (ET) is one of the terms, but, unlike others water balance components, its field monitoring requires expensive instrumentation. This work explores the possibility of using only one eddy covariance system and Penman-Monteith (PM) type models for the determination of ET fluxes for the three irrigation regimes. An eddy covariance station was installed on the levee between the traditional flooded and the aerobic rice fields, to contemporaneously monitor the ET fluxes from this two treatments as a function of the wind direction. A detailed footprint analysis was conducted - through the application of three different analytical models - to determine the position

  4. Evaluation of thermophilic anaerobic digestion

    SciTech Connect

    Shamskhorzani, R.

    1989-01-01

    The objectives of this study were to examine the effect of temperature on the digestion of a synthetic substrate, alone and with waste activated sludge (WAS), and to determine the effect of nickel, cobalt and molybdenum on thermophilic digestion. Two different types of reactors, batch fed and continuous flow, were operated in four separate phases for over two years. The data indicated that thermophilic digestion could be established from digesting mesophilic domestic sewage sludge by setting the temperature at 50C. An additional acclimation period of about 15 days was required for stimulation of thermophilic bacteria at 60C. Thermophilic digestion at temperatures up to 75C could easily be established in a few days, provided that the digester was well adapted at 60C. The rate of metabolism increased with temperature, reaching an optimum between 60C and 65C. It was possible to shift from 50C to 37C and back to thermophilic temperatures with a minimum of difficulties. Temperature fluctuation of less than 5C did not cause any upset in the performance of the thermophilic digesters operating at 50C to 65C. Addition of Ni, Co and Mo at 1 mg/L appeared to be satisfactory with the suspended solids maintained in the system at long SRT periods. The best substrate removal at 50C was 99.6% reduction at 10 g/L/d COD and 99.6% reduction at 14 g/L/d COD at 55C. The limits for COD loading under a once daily batch fed operations were 24 g/d at 50C and 33 g/d at 55C. The continuous flow fixed-film digester was able to digest WAS with liquid detention times as short as 8 hours. Thirty percent digestion of the volatile solids in WAS was obtained at a 3-day LDT and 16% at an 8-hr LDT.

  5. Concurrent Training in Prepubescent Children: The Effects of 8 Weeks of Strength and Aerobic Training on Explosive Strength and V[Combining Dot Above]O2max.

    PubMed

    Alves, Ana R; Marta, Carlos C; Neiva, Henrique P; Izquierdo, Mikel; Marques, Mário C

    2016-07-01

    Alves, AR, Marta, CC, Neiva, HP, Izquierdo, M, and Marques, MC. Concurrent training in prepubescent children: the effects of 8 weeks of strength and aerobic training on explosive strength and V[Combining Dot Above]O2max. J Strength Cond Res 30(7): 2019-2032, 2016-The purpose of this study was to compare the effects of 8-week training periods of strength training alone (GS), combined strength and aerobic training in the same session (GCOM1), or in 2 different sessions (GCOM2) on explosive strength and maximal oxygen uptake (V[Combining Dot Above]O2max) in prepubescent children. Of note, 168 healthy children, aged 10-11 years (10.9 ± 0.5), were randomly selected and assigned to 3 training groups to train twice a week for 8 weeks: GS (n = 41), GCOM1 (n = 45), GCOM2 (n = 38) groups, and a control group (GC) (n = 44; no training program). The GC maintained the baseline level, and trained-induced differences were found in the experimental groups. Differences were observed in the 1 and 3-kg medicine ball throws (GS: +5.8 and +8.1%, respectively; GCOM1: +5.7 and +8.7%, respectively; GCOM2: +6.2 and +8%, respectively, p < 0.001) and in the countermovement jump height and in the standing long jump length (GS: +5.1 and +5.2%, respectively; GCOM1: +4.2 and +7%, respectively; GCOM2: +10.2 and +6.4%, respectively, p < 0.001). In addition, the training period induced gains in the 20-m time (GS: +2.1%; GCOM1: +2.1%; GCOM2: +2.3%, p < 0.001). It was shown that the experimental groups (GCOM1, GCOM2, and GS) increased V[Combining Dot Above]O2max, muscular strength, and explosive strength from pretraining to posttraining. The higher gains were observed for concurrent training when it was performed in different sessions. These results suggest that concurrent training in 2 different sessions seems to be an effective and useful method for training-induced explosive strength and V[Combining Dot Above]O2max in prepubescent children. This could be considered as an alternative way to

  6. Bacterial community structure transformed after thermophilically composting human waste in Haiti

    PubMed Central

    Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610

  7. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  8. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    PubMed

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  9. Circulating bioactive and immunoreactive IGF-I remain stable in women, despite physical fitness improvements after 8 weeks of resistance, aerobic, and combined exercise training.

    PubMed

    Nindl, Bradley C; Alemany, Joseph A; Tuckow, Alexander P; Rarick, Kevin R; Staab, Jeffery S; Kraemer, William J; Maresh, Carl M; Spiering, Barry A; Hatfield, Disa L; Flyvbjerg, Allan; Frystyk, Jan

    2010-07-01

    Insulin-like growth factor-I (IGF-I) is regulated by a number of IGF-binding proteins (IGFBPs) and proteases that influence IGF-I bioactivity. A specific IGF-I kinase receptor activation assay (KIRA) has been developed that determines the ability of IGF-I to activate the IGF-I receptor by quantification of intracellular receptor autophosphorylation on IGF-I binding. KIRA-assessed IGF-I bioactivity has not been utilized within the context of chronic exercise training paradigms. This study measured total and free immunoreactive IGF-I, bioactive IGF-I, and IGFBP-1, -2, and -3 before (Pre), during (Mid), and after (Post) 8 wk of exercise training in young, healthy women, who were randomized into one of four groups: control (n = 10), resistance (n = 18), aerobic (n = 13), and combined (n = 15) exercise training. The training programs were effective in improving physical fitness specific to the exercise mode engaged in: increases were observed for lean mass ( approximately 2%), aerobic fitness (6-7%), and upper (20-24%) and lower (15-48%) body strength (all P values < 0.05). By contrast, no time, group, or interaction effects were observed for the circulating IGF-I system, as immunoreactive total (Pre = 264 +/- 16 microg/l; Mid = 268 +/- 17 microg/l; Post = 271 +/- 17 microg/l), free (Pre = 0.70 +/- 0.1 microg/l; Mid = 0.63 +/- 0.1 microg/l; Post = 0.63 +/- 0.2 microg/l) and bioactive (Pre = 2.35 +/- 0.3 microg/l; Mid = 2.25 +/- 0.3 microg/l; Post = 2.33 +/- 0.3 microg/l) IGF-I were unchanged throughout the study. All IGFBP measures were also unchanged. We conclude that increased lean mass, aerobic fitness, and upper and lower body strength resulting from an 8-wk exercise training programs can occur without concomitant increases in either circulating bioactive or immunoreactive IGF-I, as well as associated IGFBPs. In terms of reflecting positive anabolic neuromuscular outcomes, these data do not support a role for endocrine-derived IGF-I.

  10. [Thermophilic prokaryotes from deep subterranean habitats].

    PubMed

    Slobodkin, A I; Slobodkina, G B

    2014-01-01

    The deep continental biosphere consists of geologically isolated ecosystems differing in their physicochemical, geological, and trophic parameters. Most of the deep ecosystems exist at elevated temperatures (50-120 degrees C), which favor the development of thermophilic microorganisms. In many cases, indigenous nature of subsurface microorganisms is questionable due to problems of collecting representative and non-contaminated samples. In spite of the numerous studies on the deep biosphere microbial communities, the number of cultivated thermophiles isolated from subsurface environments not associated with petroleum deposits does not exceed 30 species. More than half of the thermophilic species isolated from deep subsurface belong to the Firmicutes. Majority of the underground thermophiles are subsurface strict or facultative anaerobes, with capacity for sulfate and iron reduction are notably widespread. Most thermophilic subsurface microorganisms are organotrophs, although chemolithoautotrophic thermophiles also have been reported. This review deals with the phylogenetic diversity and physiological properties of the cultivated thermophilic prokaryotes isolated from various deep subterranean habitats.

  11. Diet and diet combined with chronic aerobic exercise decreases body fat mass and alters plasma and adipose tissue inflammatory markers in obese women.

    PubMed

    Lakhdar, Nadia; Denguezli, Myriam; Zaouali, Monia; Zbidi, Abdelkrim; Tabka, Zouhair; Bouassida, Anissa

    2013-12-01

    The purpose of this study was to investigate the effect of 6 months aerobic exercise and diet alone or in combination on markers of inflammation (MOI) in circulation and in adipose abdominal tissue (AT) in obese women. Thirty obese subjects were randomized into a 24-week intervention: (1) exercise (EX), (2) diet (DI), and (3) exercise and diet (EXD). Blood samples were collected at baseline, after 12 and 24 weeks. AT biopsies were obtained only at baseline and after 24 weeks. In the EXD and DI groups, the fat loss was after 12 weeks was -13.74 and -7.8 % (P < 0.01) and after 24 weeks was -21.82 and -17 % (P < 0.01) with no changes in the EX group. After 12 and 24 weeks, maximal oxygen consumption (VO2max) was increased by 21.81-39.54 % (P < 0.05) in the EXD group and 18.09-40.95 % in the EX group with no changes in the DI group. In the EXD and DI groups, circulating levels of tumor necrosis factor α and interleukin 6 were decreased after 24 weeks for both groups (P < 0.01). No changes in the EX group. Homeostatic model assessment for insulin resistance decreased (P < 0.05) only after 24 weeks in the EXD group. In AT biopsies, subjects in the EXD and DI groups exhibited a significant decrease in MO (P < 0.01 for all). No changes in AT biopsies were found in the EX group. In conclusion, chronic aerobic exercise was found to have no effects on circulating and AT MOI despite an increased VO2max. Rather important body composition modifications were found to have beneficial effects on circulating and AT MOI in these obese women.

  12. Toxigenic Thermophilic and Thermotolerant Fungi

    PubMed Central

    Davis, N. D.; Wagener, R. E.; Morgan-Jones, G.; Diener, U.L.

    1975-01-01

    Twenty-three isolates of fungi, representing 13 thermophilic and thermotolerant species, were bioassayed for toxigenicity to brine shrimp, chicken embryos, and rats. Thirteen isolates representing nine genera were highly toxic to at least two of the three systems. Seven additional isolates of five genera were slightly toxic. PMID:1092262

  13. Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I in Premenopausal Women

    DTIC Science & Technology

    2002-10-01

    239 kcals; High BMI =2125 + 287 to 1450 + 264 kcals; P< 0.05 pre vs post in both groups). The combination of moderate exercise and diet produced...combination of moderate exercise and diet produced significant weight loss in both groups (Low BMI -X%; High BMI -X% P< 0.05). Significant changes in body...of Exercise for Older Adults 50 Kines496C Independent Study 3 1 Spring 1998 Kines456 Fitness Appraisal 4 96 Kines496C Independent Study 3 5 Kines

  14. Solubilization of Waste Activated Sludge and Nitrogenous Compounds Transformation During Solubilization by Thermophilic Enzyme (S-TE) Process.

    PubMed

    Yang, Qi; Luo, Kun; Li, Xiao-ming; Zhong, Yu; Chen, Hong-bo; Yang, Guo-jing; Shi, Yan-wei; Zeng, Guang-ming

    2015-06-01

    A representative thermophilic bacterial strain (AT06-1) capable of secreting protease was isolated from thermophilic aerobic digestion reactor, and 16S rRNA gene analysis indicated that it was Bacillus sp. The isolated strain was inoculated in waste activated sludge (WAS) to evaluate the performance of solubilization by thermophilic enzyme (S-TE) process under aerobic or microaerobic conditions at different temperatures (55-70 °C). Results showed that the inoculation of specific thermophilic strain significantly affected the volatile suspended solids (VSS) removal. At the optimal temperature of 65 °C, the maximum VSS removal of 43.6 % and highest SCOD of 4475 mg/L was achieved during microaerobic S-TE process. Compared to the noninoculation, more soluble protein was released during S-TE process due to the higher protease activity associated with the protein hydrolysis originated from cell lysis. The protease activity at aerobic and microaerobic S-TE process was respectively 1.73 and 1.88 times that of the noninoculation. Ammonia was the end nitrogenous compound of protein hydrolysis during S-TE process, which was stripped from the digestion system through continuous aeration.

  15. Effects of a Combined Aerobic and Resistance Exercise Program on C1q/TNF-Related Protein-3 (CTRP-3) and CTRP-5 Levels

    PubMed Central

    Choi, Hae Yoon; Park, Ji Woo; Lee, Namseok; Hwang, Soon Young; Cho, Geum Ju; Hong, Ho Cheol; Yoo, Hye Jin; Hwang, Taek Geun; Kim, Seon Mi; Baik, Sei Hyun; Park, Kyong Soo; Youn, Byung-Soo; Choi, Kyung Mook

    2013-01-01

    OBJECTIVE To examine the effect of a combined exercise program on C1q/tumor necrosis factor-related protein (CTRP) 3 and CTRP-5 levels and novel adiponectin paralogs suggested to be links between metabolism and inflammation and to evaluate sex differences and association with cardiometabolic risk factors in humans with use of a newly developed ELISA. RESEARCH DESIGN AND METHODS This cross-sectional study explored the implications of CTRP-3 and CTRP-5 on cardiometabolic parameters in 453 nondiabetic Korean adults. In addition, we evaluated the impact of a 3-month combined exercise program on CTRP-3 and CTRP-5 levels in 76 obese women. The exercise program consisted of 45 min of aerobic exercise at an intensity of 60–75% of the age-predicted maximum heart rate (300 kcal/session) and 20 min of resistance training (100 kcal/session) five times per week. RESULTS Both CTRP-3 and CTRP-5 concentrations were significantly higher in women (P < 0.001) than in men (P = 0.030). In a multiple stepwise regression analysis, CTRP-3 levels were independently associated with age, sex, and triglyceride, LDL cholesterol, adiponectin, and retinol-binding protein 4 (RBP4) levels (R2 = 0.182). After 3 months of a combined exercise program, cardiometabolic risk factors, including components of metabolic syndrome, insulin resistance, and RBP4 levels, decreased significantly. In particular, CTRP-3 levels decreased significantly (median [interquartile range] 444.3 [373.8–535.0] to 374.4 [297.2–435.9], P < 0.001), whereas CTRP-5 levels were slightly increased (34.1 [28.6–44.3] to 38.4 [29.8–55.1], P = 0.048). CONCLUSIONS A 3-month combined exercise program significantly decreased CTRP-3 levels and modestly increased CTRP-5 levels in obese Korean women. PMID:23780948

  16. A randomized controlled trial on the effects of combined aerobic-resistance exercise on muscle strength and fatigue, glycemic control and health-related quality of life of type 2 diabetes patients.

    PubMed

    Tomas-Carus, Pablo; Ortega-Alonso, Alfredo; Pietilainen, Kirsi H; Santos, Vitoria; Goncalves, Helena; Ramos, Jorge; Raimundo, Armando

    2016-05-01

    The aim of this paper was to evaluate the effects of a 12-weeks combined aerobic-resistance exercise therapy on fatigue and isokinetic muscle strength, glycemic control and health-related quality of life (HRQoL) in moderately affected type 2 diabetes (T2DM) patients. A randomized controlled trial design was employed. Forty-three T2DM patients were assigned to an exercise group (N.=22), performing 3 weekly sessions of 60 minutes of combined aerobic-resistance exercise for 12-weeks; or a no exercise control group (N.=21). Both groups were evaluated at a baseline and after 12-weeks of exercise therapy for: 1) muscle strength and fatigue by isokinetic dynamometry; 2) plasma glycated hemoglobin A1C (HbA1C); and 3) HRQoL utilizing the SF-36 questionnaire. The exercise therapy led to improvements in muscle fatigue in knee extensors (-55%) and increased muscle strength in knee flexors and extensors (+15 to +30%), while HbA1C decreased (-18%). In addition, the exercising patients showed sizeable improvements in HRQoL: physical function (+53%), vitality (+21%) and mental health (+40%). Twelve-weeks of combined aerobic-resistance exercise was highly effective to improve muscle strength and fatigue, glycemic control and several aspects of HRQoL in T2DM patients. These data encourage the use of aerobic and resistance exercise in the good clinical care of T2DM.

  17. Impact of a combined multimodal-aerobic and multimodal intervention compared to standard aerobic treatment in breast cancer survivors with chronic cancer-related fatigue - results of a three-armed pragmatic trial in a comprehensive cohort design.

    PubMed

    Kröz, Matthias; Reif, Marcus; Glinz, Augustina; Berger, Bettina; Nikolaou, Andreas; Zerm, Roland; Brinkhaus, Benno; Girke, Matthias; Büssing, Arndt; Gutenbrunner, Christoph

    2017-03-02

    Cancer-related fatigue (CRF) and insomnia are major complaints in breast cancer survivors (BC). Aerobic training (AT), the standard therapy for CRF in BC, shows only minor to moderate treatment effects. Other evidence-based treatments include cognitive behavioral therapy, e.g., sleep education/restriction (SE) and mindfulness-based therapies. We investigated the effectiveness of a 10-week multimodal program (MT) consisting of SE, psycho-education, eurythmy- and painting-therapy, administered separately or in combination with AT (CT) and compared both arms to AT alone. In a pragmatic comprehensive cohort study BC with chronic CRF were allocated randomly or by patient preference to (a) MT, (b) CT (MT + AT) or (c) AT alone. Primary endpoint was a composite score of the Pittsburgh Sleep Quality Index and the Cancer Fatigue Scale after 10 weeks of intervention (T1); a second endpoint was a follow-up assessment 6 months later (T2). The primary hypothesis stated superiority of CT and non-inferiority of MT vs. AT at T1. A closed testing procedure preserved the global α-level. The intention-to-treat analysis included propensity scores for the mode of allocation and for the preferred treatment, respectively. Altogether 126 BC were recruited: 65 were randomized and 61 allocated by preference; 105 started the intervention. Socio-demographic parameters were generally balanced at baseline. Non-inferiority of MT to AT at T1 was confirmed (p < 0.05), yet the confirmative analysis stopped as it was not possible to confirm superiority of CT vs. AT (p = 0.119). In consecutive exploratory analyses MT and CT were superior to AT at T1 and T2 (MT) or T2 alone (CT), respectively. The multimodal CRF-therapy was found to be confirmatively non-inferior to standard therapy and even yielded exploratively sustained superiority. A randomized controlled trial including a larger sample size and a longer follow-up to evaluate multimodal CRF-therapy is highly warranted. DRKS-ID: DRKS

  18. Treatment of gaseous alpha-pinene by a combined system containing photo oxidation and aerobic biotrickling filtration.

    PubMed

    Cheng, Zhuo-Wei; Zhang, Li-Li; Chen, Jian-Meng; Yu, Jian-Ming; Gao, Zeng-Liang; Jiang, Yi-Feng

    2011-09-15

    Biofiltration of hydrophobic and/or recalcitrant volatile pollutants is intrinsically limited. In the present study, a combined ultraviolet-biotrickling filter (UV-BTF) was developed to improve the removal of these compounds, and a single BTF as the control was operated under the same conditions. The experimental results showed that the UV-BTF provided higher removal efficiencies than the single BTF at an inlet concentration range of 600-1500 mg m(-3) under shorter residence times. The maximum elimination capacities (ECs) obtained were 94.2 mg m(-3)h(-1) and 44 mg m(-3)h(-1) in the combined UV-BTF and single BTF, respectively. The mass ratio of carbon dioxide produced to α-pinene removed in the UV-BTF was approximately 2.74, which was much higher than that of the single BTF (1.99). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis indicated that there was more complicated microbial community in the UV-BTF than that in the single BTF. In addition, we investigated the effect of starvation or stagnation on re-acclimation and removal performance from an engineering standpoint. The results showed that the combined UV-BTF could deal with fluctuating conditions or periods without any flow (air or liquid) supply much better than the single BTF. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    PubMed

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  20. Enhancing of Women Functional Status with Metabolic Syndrome by Cardioprotective and Anti-Inflammatory Effects of Combined Aerobic and Resistance Training

    PubMed Central

    Alsamir Tibana, Ramires; da Cunha Nascimento, Dahan; Frade de Sousa, Nuno Manuel; de Souza, Vinicius Carolino; Durigan, João; Vieira, Amilton; Bottaro, Martim; de Toledo Nóbrega, Otávio; de Almeida, Jeeser Alves; Navalta, James Wilfred; Franco, Octavio Luiz; Prestes, Jonato

    2014-01-01

    These data describe the effects of combined aerobic plus resistance training (CT) with regards to risk factors of metabolic syndrome (MetS), quality of life, functional capacity, and pro- and anti-inflammatory cytokines in women with MetS. In this context, thirteen women (35.4±6.2 yr) completed 10 weeks of CT consisting of three weekly sessions of ∼60 min aerobic training (treadmill at 65–70% of reserve heart rate, 30 min) and resistance training (3 sets of 8–12 repetitions maximum for main muscle groups). Dependent variables were maximum chest press strength; isometric hand-grip strength; 30 s chair stand test; six minute walk test; body mass; body mass index; body adiposity index; waist circumference; systolic (SBP), diastolic and mean blood pressure (MBP); blood glucose; HDL-C; triglycerides; interleukins (IL) 6, 10 and 12, osteoprotegerin (OPG) and serum nitric oxide metabolite (NOx); quality of life (SF-36) and Z-Score of MetS. There was an improvement in muscle strength on chest press (p = 0.009), isometric hand-grip strength (p = 0.03) and 30 s chair stand (p = 0.007). There was a decrease in SBP (p = 0.049), MBP (p = 0.041), Z-Score of MetS (p = 0.046), OPG (0.42±0.26 to 0.38±0.19 ng/mL, p<0.05) and NOx (13.3±2.3 µmol/L to 9.1±2.3 µmol/L; p<0.0005). IL-10 displayed an increase (13.6±7.5 to 17.2±12.3 pg/mL, p<0.05) after 10 weeks of training. Combined training also increased the perception of physical capacity (p = 0.011). This study endorses CT as an efficient tool to improve blood pressure, functional capacity, quality of life and reduce blood markers of inflammation, which has a clinical relevance in the prevention and treatment of MetS. Trial Registration Brazilian Clinical Trials Registry (ReBec) - RBR-6gdyvz - http://www.ensaiosclinicos.gov.br/rg/?q=RBR-6gdyvz PMID:25379699

  1. Two weekly sessions of combined aerobic and resistance exercise are sufficient to provide beneficial effects in subjects with Type 2 diabetes mellitus and metabolic syndrome.

    PubMed

    Fatone, C; Guescini, M; Balducci, S; Battistoni, S; Settequattrini, A; Pippi, R; Stocchi, L; Mantuano, M; Stocchi, V; De Feo, P

    2010-01-01

    This study was performed to establish whether only 2 sessions per week of combined aerobic and resistance exercise are enough to reduce glycated hemoglobin (HbA(1c)) and to induce changes in skeletal muscle gene expression in Type 2 diabetes mellitus (DM2) subjects with metabolic syndrome. Eight DM2 subjects underwent a 1-yr exercise program consisting of 2 weekly sessions of 140 min that combined aerobic [at 55-70% of maximal oxygen uptake (VO(2max))] and resistance circuit training [at 60-80% of 1 repetition maximum (RM)]. The training significantly improved VO(2max) (from 33.5+/-3.8 ml/kg/min to 38.2+/-3.5 ml/kg/min, p=0.0085) and muscle strength (p<0.05). Changes over baseline were significant for HbA(1c), reduced by 0.45% (p=0.0084), fasting blood glucose (from 8.8+/-1.5 to 6.9+/-2.2 mmol/l, p=0.0132), waist circumference (from 98.9+/-4.8 to 95.9+/-4.6 cm, p=0.0054), body weight (from 87.5+/-10.7 to 85.7+/-10.1 kg, p=0.0375), systolic blood pressure (from 137+/-15 to 126+/-8 mmHg, p=0.0455), total cholesterol (from 220+/-24 to 184+/-13 mg/dl, p=0.0057), and LDL-cholesterol (from 150+/-16 to 105+/-15 mg/dl, p=0.0004). Mitochondrial DNA/nuclear DNA ratio at 6 and 12 months did not change. There was a significant increase of mRNA of peroxisome proliferator- activated receptor (PPAR)-gamma after 6 months of train - ing (p=0.024); PPARalpha mRNA levels were significantly increased at 6 (p=0.035) and 12 months (p=0.044). The mRNA quantification of other genes measured [mitochondrially encoded cytochrome c oxidase subunit II (MTCO2), cytochrome c oxidase subunit Vb (COX5b), PPARgamma coactivator 1alpha (PGC- 1alpha), glucose transporter 4 (GLUT 4), forkhead transcription factor BOX O1 (FOXO-1), carnitine palmitoyltransferase 1 (CPT-1), lipoprotein lipase (LPL), and insulin receptor substrate 1 (IRS-1)] did not show significant changes at 6 and 12 months. This study suggests that a twice-per-week frequency of exercise is sufficient to improve glucose control and the

  2. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors.

    PubMed

    Hill, Alison M; Buckley, Jonathan D; Murphy, Karen J; Howe, Peter R C

    2007-05-01

    Regular exercise and consuming long-chain n-3 fatty acids (FAs) from fish or fish oil can independently improve cardiovascular and metabolic health, but combining these lifestyle modifications may be more effective than either treatment alone. We examined the individual and combined effects of n-3 FA supplements and regular exercise on body composition and cardiovascular health. Overweight volunteers [body mass index (BMI; in kg/m(2)): >25] with high blood pressure, cholesterol, or triacylglycerols were randomly assigned to one of the following interventions: fish oil (FO), FO and exercise (FOX), sunflower oil (SO; control), or SO and exercise (SOX). Subjects consumed 6 g tuna FO/d ( approximately 1.9 g n-3 FA) or 6 g SO/d. The exercise groups walked 3 d/wk for 45 min at 75% age-predicted maximal heart rate. Plasma lipids, blood pressure, and arterial function were assessed at 0, 6, and 12 wk. Body composition was assessed by dual-energy X-ray absorptiometry at 0 and 12 wk only. FO supplementation lowered triacylglycerols, increased HDL cholesterol, and improved endothelium-dependent arterial vasodilation (P<0.05). Exercise improved arterial compliance (P<0.05). Both fish oil and exercise independently reduced body fat (P<0.05). FO supplements and regular exercise both reduce body fat and improve cardiovascular and metabolic health. Increasing intake of n-3 FAs could be a useful adjunct to exercise programs aimed at improving body composition and decreasing cardiovascular disease risk.

  3. Combination of aerobic exercise and an arginine, alanine, and phenylalanine mixture increases fat mobilization and ketone body synthesis.

    PubMed

    Ueda, Keisuke; Sanbongi, Chiaki; Takai, Shoko; Ikegami, Shuji; Fujita, Satoshi

    2017-07-01

    During exercise, blood levels of several hormones increase acutely. We hypothesized that consumption of a specific combination of amino acids (arginine, alanine, and phenylalanine; A-mix) may be involved in secretion of glucagon, and when combined with exercise may promote fat catabolism. Ten healthy male volunteers were randomized in a crossover study to ingest either A-mix (3 g/dose) or placebo (3 g of dextrin/dose). Thirty minutes after ingesting, each condition subsequently performed workload trials on a cycle ergometer at 50% of maximal oxygen consumption for 1 h. After oral intake of A-mix, the concentrations of plasma ketone bodies and adrenalin during and post-exercise were significantly increased. The area under the curve for glycerol and glucagon was significantly increased in the post-exercise by A-mix administration. These results suggest that pre-exercise ingestion of A-mix causes a shift of energy source from carbohydrate to fat combustion by increasing secretion of adrenalin and glucagon.

  4. Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes.

    PubMed

    Liebensteiner, Martin G; Pinkse, Martijn W H; Nijsse, Bart; Verhaert, Peter D E M; Tsesmetzis, Nicolas; Stams, Alfons J M; Lomans, Bart P

    2015-12-01

    This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. Aeropyrum pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in Ae. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with the observations made on Ar. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats

    PubMed Central

    Kapravelou, Garyfallia; Martínez, Rosario; López-Jurado, María; Aranda, Pilar; Cantarero, Samuel; Galisteo, Milagros; Porres, Jesus M.

    2017-01-01

    Metabolic syndrome (MetS) is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD). Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean (Vigna radiata), a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65–85% VO2 max) has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles) factorial ANOVA (Analysis of Variance) statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS. PMID:28753963

  6. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats.

    PubMed

    Kapravelou, Garyfallia; Martínez, Rosario; Nebot, Elena; López-Jurado, María; Aranda, Pilar; Arrebola, Francisco; Cantarero, Samuel; Galisteo, Milagros; Porres, Jesus M

    2017-07-19

    Metabolic syndrome (MetS) is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD). Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean (Vigna radiata), a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65-85% VO₂ max) has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles) factorial ANOVA (Analysis of Variance) statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.

  7. Thermophilic microbes in ethanol production

    SciTech Connect

    Slapack, G.E.; Russell, I.; Stewart, G.G.

    1987-01-01

    General and specific properties of thermophilic ethanol-producing bacteria are reviewed and their relative merits in ethanol production assessed. The studies examine the use of bacteria in mono- and co-culture fermentations for ethanol production from cellulosics; in particular, the cellulase system of Clostridium thermocellum is considered. Thermotolerant yeasts and physiological factors influencing their growth and fermentation at high temperatures are discussed. Emphasis is placed on multidisciplinary approaches to develop economical processes for ethanol production at high temperatures. Relevant topics considered include: adaptation, nutrition, heat shock, ethanol tolerance, metabolic control, genetic improvement, and fermentation/process design. General aspects of thermophily for both bacteria and yeasts (definitions, ecological aspects, merits and limitations, other industrial uses, thermostability of cellular components, and consequences of thermophilic fermentation) are discussed and the volume references over 1100 relevant articles.

  8. Identification of a thermophilic plasmid origin and its cloning within a new Thermus-E. coli shuttle vector.

    PubMed

    Wayne, J; Xu, S Y

    1997-08-22

    A pUC19-based vector has been generated for selecting functional thermophilic origins (oris) of Thermus ssp. Once combined with thermophilic DNA, the vector can be amplified in ampicillin resistant (Ap(R)) E. coli, prior to transformation and kanamycin (Km) selection in Thermus thermophilus. The Km(R) Thermus transformants replicate any newly-formed shuttle vectors via introduced thermophilic oris. Using this "ori-selecting" vector, three novel thermophilic oris were cloned from randomly digested Thermus cryptic plasmid DNA. These shuttle vectors are useful for genetic analyses, as well as protein engineering within thermophiles. The smallest ori-containing sequence of 4.2 kb has been subcloned, sequenced, and further refined to 2.3 kb. A significant ORF of 341 amino acids (aa), with a Thermus promoter and RBS, is found within the thermophilic ori. Deleting part of this ORF abolishes the shuttle vector's ability to replicate in T. thermophilus. Therefore, we postulate that this ORF encodes a replication protein (Rep) necessary for thermophilic plasmid replication. The thermophilic ori also contains two sequences which resemble DnaA boxes.

  9. Benefits of combined aerobic/resistance/inspiratory training in patients with chronic heart failure. A complete exercise model? A prospective randomised study.

    PubMed

    Laoutaris, Ioannis D; Adamopoulos, Stamatis; Manginas, Athanassios; Panagiotakos, Demosthenes B; Kallistratos, Manolis S; Doulaptsis, Costas; Kouloubinis, Alexandros; Voudris, Vasilis; Pavlides, Gregory; Cokkinos, Dennis V; Dritsas, Athanasios

    2013-09-01

    We hypothesised that combined aerobic training (AT) with resistance training (RT) and inspiratory muscle training (IMT) could result in additional benefits over AT alone in patients with chronic heart failure (CHF). Twenty-seven patients, age 58 ± 9 years, NYHA II/III and LVEF 29 ± 7% were randomly assigned to a 12-week AT (n=14) or a combined AT/RT/IMT (ARIS) (n=13) exercise program. AT consisted of bike exercise at 70-80% of max heart rate. ARIS training consisted of AT with RT of the quadriceps at 50% of 1 repetition maximum (1RM) and upper limb exercises using dumbbells of 1-2 kg as well as IMT at 60% of sustained maximal inspiratory pressure (SPI(max)). At baseline and after intervention patients underwent cardiopulmonary exercise testing, echocardiography, evaluation of dyspnea, muscle function and quality of life (QoL) scores. The ARIS program as compared to AT alone, resulted in additional improvement in quadriceps muscle strength (1RM, p=0.005) and endurance (50%1 RM × number of max repetitions, p=0.01), SPI(max) (p<0.001), exercise time (p=0.01), circulatory power (peak oxygen consumption × peak systolic blood pressure, p=0.05), dyspnea (p=0.03) and QoL (p=0.03). ARIS training was safe and resulted in incremental benefits in both peripheral and respiratory muscle weakness, cardiopulmonary function and QoL compared to that of AT. The present findings may add a new prospective to cardiac rehabilitation programs of heart failure patients whilst the clinical significance of these outcomes need to be addressed in larger randomised studies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. The effect of combined aerobic and resistance exercises on quality of life of women surviving breast cancer

    PubMed Central

    Taleghani, Fariba; Karimain, Jahangir; Babazadeh, Shadi; Mokarian, Fariborz; Tabatabaiyan, Maryam; Samimi, Mozhgan Alam; Aminian, Mohammad Reza Khajeh

    2012-01-01

    Background: Breast cancer is one of the most common cancers amongst women in developed and developing countries. It is associated with the highest mortality rate in low to average-income countries. Breast cancer investigation amongst Iranian women reveals that the number of its incidence is yet the highest in all cancer types. Despite recent longer survival time of women with breast cancer, most of the patients suffer from long term physical and mental distress due to combined treatments. Exercise interventions are among new approaches to promote the better quality of life of the patients, which has only recently been considered by researchers. This study aimed to investigate the effect of exercise intervention on the quality of life of breast cancer survivors. Materials and Methods: This is a clinical trial conducted on 80 women with I-III breast cancer, at 18-55 years of age mostly two years after the completion of their treatment in Seyed al Shohada hospital in Isfahan. They were randomly divided into two groups of study and control. Exercise intervention went on for 8 weeks in the study group (three sessions a week, 60 minutes). Quality of life in both groups was measured a day before, and at the end of the eight weeks period by the instrument of the National Medical Center and Beckman Research Institute. The data were analyzed by descriptive and inferential statistical tests of X2, t-test and Mac Hammer test. Findings: Results showed that there was no significant difference in the mean score of the physical dimension of quality of life in the study group before and after intervention while the score of physical health was significantly better in the control group (p < 0.00).The mean score of mental dimension had increased in the study group, while it had decreased in the control group. The mean score of social health showed no significant difference before and after intervention. The mean score of spiritual health had significantly decreased in the control

  11. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  12. Draft Genome Sequence of Ardenticatena maritima 110S, a Thermophilic Nitrate- and Iron-Reducing Member of the Chloroflexi Class Ardenticatenia

    PubMed Central

    Ward, Lewis M.; Pace, Laura A.; Fischer, Woodward W.

    2015-01-01

    We report here the draft genome sequence of Ardenticatena maritima 110S, the first sequenced member of class Ardenticatenia of the phylum Chloroflexi. This thermophilic organism is capable of a range of physiologies, including aerobic respiration and iron reduction. It also encodes a complete denitrification pathway with a novel nitric oxide reductase. PMID:26586887

  13. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China).

    PubMed

    Poltaraus, Andrey B; Sokolova, Diyana S; Grouzdev, Denis S; Ivanov, Timophey M; Malakho, Sophia G; Korshunova, Alena V; Rozanov, Aleksey S; Tourova, Tatiyana P; Nazina, Tamara N

    2016-06-09

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. Copyright © 2016 Poltaraus et al.

  14. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. PMID:27284131

  15. Temporal variation of microbial population in a thermophilic biofilter for SO₂ removal.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2016-01-01

    The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cubes (PUFC), on which thermophilic desulfurization bacteria were attached. The thermophilic biofilter effectively reduced SO2 within 10months of operation time, with a maximum elimination capacity of 48.29 g/m(3)/hr. Temporal shifts in the microbial population in the thermophilic biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and deoxyribonucleic acid (DNA) sequence analysis. The substrate species and environmental conditions in the biofilter influenced the microbial population. Oxygen distribution in the PUFC was analyzed using a microelectrode. When the water-containing rate in PUFC was over 98%, the oxygen distribution presented aerobic-anoxic-aerobic states along the test route on the PUFC. The appearance of sulfate-reducing bacteria was caused by the anaerobic conditions and sulfate formation after 4months of operation. Copyright © 2015. Published by Elsevier B.V.

  16. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions.

    PubMed

    García-Mancha, N; Monsalvo, V M; Puyol, D; Rodriguez, J J; Mohedano, A F

    2017-10-05

    This work presents a sustainable and cost-competitive solution for hardly biodegradable pesticides-bearing wastewater treatment in an anaerobic expanded granular sludge bed (EGSB) reactor at mesophilic (35°C) and thermophilic (55°C). The reactor was operated in continuous mode during 160days, achieving an average COD removal of 33 and 44% under mesophilic and thermophilic conditions, respectively. The increase of temperature improved the biomass activity and the production of methane by 35%. Around 96% of pesticides identified in raw wastewater were not detected in both mesophilic and thermophilic effluents. A dramatic selection of the microbial population in anaerobic granules was caused by the presence of pesticides, which also changed significantly when the temperature was increased. Pesticides caused a significant inhibition on methanogenesis, especially over acetoclastic methanogens. Aerobic biodegradability tests of the resulting anaerobic effluents revealed that aerobic post-treatment is also a feasible and effective option, yielding more than 60% COD reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. [Thermophiles and life science in space].

    PubMed

    Yamagishi, A

    2000-12-01

    Thermophiles are microorganisms that can grow at temperatures higher than 50 or 60 degrees C. There are thermophilic eubacteria and thermophilic archaebacteria. Thermophilic microorganisms can be found geothermally and hydrothermally active area. The water penetrates into deep subsurface around thermal area and reacts with hot basalt. Some of the compounds in the water are reduced by the reaction. The water returned to the surface and reacts with seawater or air, depending on the location of the thermal area. Many types of autotrophes and heterotrophes were found near thermally active area. The microorganisms form the ecosystem based on the redox chemical reactions. All of the structural elements in thermophilic microorganisms are thermophilic or thermostable. Proteins found in microorganisms are thermostable. Though several common characteristics can be found in thermostable proteins, it is not easy to attribute the stability to specific amino acid residues. DNA in thermophiles is stabilized by increasing the G+C content or by histone-like DNA binding proteins. There are several molecular biological and geological evidences to support the relation between ancient life forms and thermal activity on the Earth. Thermophiles of different life forms may be found in thermally active area, in such as those that may be present in satellites of Jupiter.

  18. Pressure Stabilization of Proteins from Extreme Thermophiles

    PubMed Central

    Hei, Derek J.; Clark, Douglas S.

    1994-01-01

    We describe the stabilization by pressure of enzymes, including a hydrogenase from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This is the first published report of proteins from thermophiles being stabilized by pressure. Inactivation studies of partially purified hydrogenases from an extreme thermophile (Methanococcus igneus), a moderate thermophile (Methanococcus thermolithotrophicus), and a mesophile (Methanococcus maripaludis), all from shallow marine sites, show that pressure stabilization is not unique to enzymes isolated from high-pressure environments. These studies suggest that pressure stabilization of an enzyme may be related to its thermophilicity. Further experiments comparing the effects of increased pressure on the stability of α-glucosidases from the hyperthermophile Pyrococcus furiosus and Saccharomyces cerevisiae support this possibility. We have also examined pressure effects on several highly homologous glyceraldehyde-3-phosphate dehydrogenases from mesophilic and thermophilic sources and a rubredoxin from P. furiosus. The results suggest that hydrophobic interactions, which have been implicated in the stabilization of many thermophilic proteins, contribute to the pressure stabilization of enzymes from thermophiles. PMID:16349220

  19. Benefits of a 12-week lifestyle modification program including diet and combined aerobic and resistance exercise on albuminuria in diabetic and non-diabetic Japanese populations.

    PubMed

    Yamamoto-Kabasawa, Keiko; Hosojima, Michihiro; Yata, Yusuke; Saito, Mariko; Tanaka, Noriko; Tanaka, Junta; Tanabe, Naohito; Narita, Ichiei; Arakawa, Masaaki; Saito, Akihiko

    2015-12-01

    Albuminuria is a biomarker for chronic kidney disease and an independent predictor of cardiovascular and all-cause mortality. A recent meta-analysis concluded that these risks increase with urinary albumin concentration, even when below the microalbuminuria threshold. Thus, minimizing urinary albumin may be a valuable therapeutic goal regardless of disease status. We investigated the benefits and safety of a 12-week lifestyle modification program including diet and combined aerobic and resistance exercise for reducing albuminuria in 295 normoalbuminuric or microalbuminuric Japanese adults, including 30 with type 2 diabetes mellitus (T2DM), 104 with metabolic syndrome (MS), and 145 with hypertension (HT). In the study population, the urinary albumin:creatinine ratio (UACR) was reduced significantly (ΔUACR -3.8 ± 16.8 mg/g, P < 0.001) with no change in estimated glomerular filtration rate (eGFR) (ΔeGFR -0.4 ± 7.4 mL/min/1.73 m(2), P = 0.343). The reduction in UACR was associated with decreased fasting plasma glucose (P < 0.05). The UACR was also reduced in the T2DM, MS, and HT groups with no change in eGFR. Reduced UACR was associated with decreased fasting plasma glucose in the MS group and decreased systolic blood pressure in the HT group. The UACR was also reduced in 46 subjects using renin-angiotensin system inhibitors with no change in eGFR. Our 12-week lifestyle modification program reduced UACR, maintained eGFR, and improved multiple fitness findings in Japanese subjects including T2DM, MS, and HT patients.

  20. Combined aerobic and resistance exercise is effective for achieving weight loss and reducing cardiovascular risk factors without deteriorating bone health in obese young adults

    PubMed Central

    Lim, Jung Sub; Jang, Gook-Chan; Moon, Kyung-Rye

    2013-01-01

    Purpose Weight loss reduces cardiovascular risk factors in the obese. However, weight reduction through diet negatively affects long-term bone health. The aim of study was to determine the ability of combined aerobic and resistance exercise (CE) to reduce weight and cardiovascular risk without diminishing bone health. Methods Twenty-five young adults participated in an 8-week weight loss CE program. Subjects were allocated to an obese group or a control group by body mass index (BMI). Body weight, BMI, body composition, and bone mineral density (BMD) of the lumbar spine and total hip were measured before and after the CE trial. Serum levels of metabolic markers, including adipokines and bone markers, were also evaluated. Results Weight loss was evident in the obese group after the 8 weeks CE trial. Fat mass was significantly reduced in both groups. Fasting insulin, homeostatic model assessment-insulin resistance (HOMA-IR), leptin and aminotransferases level were significantly reduced from baseline only in the obese group. High density lipoprotein cholesterol increased in both groups. Hip BMD increased in the obese group. In all study subjects, BMI changes were correlated with HOMA-IR, leptin, and HDL changes. BMI decreases were correlated with lumbar spine BMD increases, lumbar spine BMD increases were positively correlated with osteocalcin changes, and lumbar spine bone mineral content increases were correlated negatively with C-terminal telopeptide of type 1 collagen changes. Conclusion These findings suggest that CE provides effective weight loss and improves cardiovascular risk factors without diminishing BMD. Furthermore, they indicate that lumbar spine BMD might be maintained by increasing bone formation and decreasing bone resorption. PMID:24904847

  1. N2O emissions from an intermittently aerated semi-aerobic aged refuse bioreactor: Combined effect of COD and NH4(+)-N in influent leachate.

    PubMed

    Li, Weihua; Sun, Yingjie; Bian, Rongxing; Wang, Huawei; Zhang, Dalei

    2017-08-12

    The carbon-nitrogen ratio (COD/NH4(+)-N) is an important factor affecting nitrification and denitrification in wastewater treatment; this factor also influences nitrous oxide (N2O) emissions. This study investigated two simulated intermittently aerated semi-aerobic aged refuse bioreactors (SAARB) filled with 8-year old aged refuse (AR). The research analyzed how differences in and the combination of influent COD and NH4(+)-N impact N2O emissions in leachate treatment. Experimental results showed that N2O emissions increased as the influent COD/NH4(+)-N decreased. The influent COD had a greater effect on N2O emissions than NH4(+)-N at the same influent ratios of COD/NH4(+)-N (2.7 and 8.0, respectively). The maximum N2O emission accounted for 8.82±2.65% of the total nitrogen removed from the influent leachate; the maximum level occurred when the COD was 2000mg/L. An analysis of differences in influent carbon sources at the same COD/NH4(+)-N ratios concluded that the availability of biodegradable carbon substrates (i.e. glucose) is an important factor affecting N2O emissions. At a low influent COD/NH4(+)-N ratio (2.7), the N2O conversion rate was greater when there were more biodegradable carbon substrates. Although the SAARB included the N2O generation and reduction processes, N2O reduction mainly occurred later in the process, after leachate recirculation. The maximum N2O emission rate occurred in the first hour of single-period (24h) experiments, as leachate contacted the surface AR. In practical SAARB applications, N2O emissions may be reduced by measures such as reducing the initial recirculation loading of NH4(+)-N substrates, adding a later supplement of biodegradable carbon substrates, and/or prolonging hydraulic retention time (HRT) of influent leachate. Copyright © 2017. Published by Elsevier Ltd.

  2. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment.

    PubMed

    Köbe, Theresa; Witte, A Veronica; Schnelle, Ariane; Lesemann, Anne; Fabian, Sonja; Tesky, Valentina A; Pantel, Johannes; Flöel, Agnes

    2016-05-01

    Previous studies in older adults suggested beneficial effects of omega-3 fatty acid (FA) supplementation, aerobic exercise, or cognitive stimulation on brain structure and function. However, combined effects of these interventions in patients suffering from mild cognitive impairment (MCI) are unknown. Using a randomized interventional design, we evaluated the effect of combined omega-3 FA supplementation, aerobic exercise and cognitive stimulation (target intervention) versus omega-3 FA supplementation and non-aerobic exercise (control intervention) on cognitive function and gray matter volume in patients with MCI. Moreover, we analyzed potential vascular, metabolic or inflammatory mechanisms underlying these effects. Twenty-two MCI patients (8 females; 60-80years) successfully completed six months of omega-3 FA intake, aerobic cycling training and cognitive stimulation (n=13) or omega-3 FA intake and non-aerobic stretching and toning (n=9). Before and after the interventions, cognitive performance, magnetic resonance imaging of the brain at 3T (n=20), intima-media thickness of the internal carotid artery and serum markers of glucose control, lipid and B-vitamin metabolism, and inflammation were assessed. Intervention-related changes in gray matter volume of Alzheimer's disease (AD)-related brain regions, i.e., frontal, parietal, temporal and cingulate cortex were examined using voxel-based morphometry of high resolution T1-weighted images. After the intervention period, significant differences emerged in brain structure between groups: Gray matter volume decreased in the frontal, parietal and cingulate cortex of patients in the control intervention, while gray matter volume in these areas was preserved or even increased after the target intervention. Decreases in homocysteine levels in the target intervention group were associated with increases in gray matter volume in the middle frontal cortex (p=0.010). No significant differences in cognitive performance or

  3. Comparison of the effects of Crataegus oxyacantha extract, aerobic exercise and their combination on the serum levels of ICAM-1 and E-Selectin in patients with stable angina pectoris.

    PubMed

    Jalaly, Leila; Sharifi, Gholamreza; Faramarzi, Mohammad; Nematollahi, Alireza; Rafieian-kopaei, Mahmoud; Amiri, Masoud; Moattar, Fariborz

    2015-12-19

    Adhesion molecules play an important role in the development and progression of coronary atherosclerosis. The aim of this study was comparing the effect of Cratagol herbal tablet, aerobic exercise and their combination on the serum levels of Intercellular adhesion molecule (ICAM)-1 and E-Selectin in patients with stable angina pectoris. Eighty stable angina pectoris patients aged between 45 and 65 years, were randomly divided into four groups including three experimental groups and one control group: aerobic exercise (E), Crataegus oxyacantha extract (S), aerobic exercise and Crataegus oxyacantha extract (S+E), and control (C). Blood sampling was taken 24 h before and after 12 weeks of aerobic exercise and Crataegus oxyacantha extract consumption. The results of serum levels of ICAM-1 and E-selectin were compared. Intergroup comparison of the data revealed a significant reduction (P <0.01) in serum levels of ICAM-1 and E-selectin in experimental groups. Analysis of data showed that the serum levels of ICAM-1 had significant difference when group S+E was compared with groups S and C, but not group E (P = 0.021, P = 0.000 and P = 0.068, respectively). Also the difference between the levels of E-selectin was significant comparing S+E and S but not E with group C (P = 0.021, P = 0.000 and P = 0.052, respectively). Twelve weeks effects of aerobic exercise and Crataegus oxyacantha extract consuming is an effective complementary strategy to significantly lower the risk of atherosclerosis and heart problems.

  4. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions.

    PubMed

    Cusick, Kathleen D; Fitzgerald, Lisa A; Cockrell, Allison L; Biffinger, Justin C

    2015-01-01

    The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification

  5. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions

    PubMed Central

    Cusick, Kathleen D.; Fitzgerald, Lisa A.; Cockrell, Allison L.; Biffinger, Justin C.

    2015-01-01

    The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification

  6. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  7. Finding extraterrestrial sites for thermophiles.

    PubMed

    Naylor, T

    2004-04-01

    Virtually our entire knowledge of the universe comes from two sorts of measurement of the electromagnetic radiation from the stars and galaxies within it; either their flux through relatively wide bandpasses (photometry), or measurements of the shape and wavelength of relatively narrow lines via spectroscopy. These techniques are now being used to discover planets outside our solar system, and perhaps in the next 10 years will begin to characterize them. If a serious search is to be made for extraterrestrial thermophiles, we need predictions for the effects of thermophiles on their host planets that are observable with these techniques. In this paper I shall outline what sorts of observation are likely to be used in the next 15 years for extra-solar planet work. All of the journal articles quoted here can be found through http://adsabs.harvard.edu/abstract_service.html, and often also accessed as preprints at http://uk.arxiv.org/form/astro%20ph?MULTI=form%20+/-%20interface.

  8. Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns

    PubMed Central

    Mohr, Georg; Ghanem, Eman; Lambowitz, Alan M.

    2010-01-01

    Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. PMID:20543989

  9. Extremely thermophilic energy metabolisms: biotechnological prospects.

    PubMed

    Straub, Christopher T; Zeldes, Benjamin M; Schut, Gerrit J; Adams, Michael Ww; Kelly, Robert M

    2017-03-16

    New strategies for metabolic engineering of extremely thermophilic microorganisms to produce bio-based fuels and chemicals could leverage pathways and physiological features resident in extreme thermophiles for improved outcomes. Furthermore, very recent advances in genetic tools for these microorganisms make it possible for them to serve as metabolic engineering hosts. Beyond providing a higher temperature alternative to mesophilic platforms, exploitation of strategic metabolic characteristics of high temperature microorganisms grants new opportunities for biotechnological products. This review considers recent developments in extreme thermophile biology as they relate to new horizons for energy biotechnology.

  10. Aerobic exercise (image)

    MedlinePlus

    Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

  11. Probing the Folding-Unfolding Transition of a Thermophilic Protein, MTH1880

    PubMed Central

    Jung, Youngjin; Han, Jeongmin; Yun, Ji-Hye; Chang, Iksoo; Lee, Weontae

    2016-01-01

    The folding mechanism of typical proteins has been studied widely, while our understanding of the origin of the high stability of thermophilic proteins is still elusive. Of particular interest is how an atypical thermophilic protein with a novel fold maintains its structure and stability under extreme conditions. Folding-unfolding transitions of MTH1880, a thermophilic protein from Methanobacterium thermoautotrophicum, induced by heat, urea, and GdnHCl, were investigated using spectroscopic techniques including circular dichorism, fluorescence, NMR combined with molecular dynamics (MD) simulations. Our results suggest that MTH1880 undergoes a two-state N to D transition and it is extremely stable against temperature and denaturants. The reversibility of refolding was confirmed by spectroscopic methods and size exclusion chromatography. We found that the hyper-stability of the thermophilic MTH1880 protein originates from an extensive network of both electrostatic and hydrophobic interactions coordinated by the central β-sheet. Spectroscopic measurements, in combination with computational simulations, have helped to clarify the thermodynamic and structural basis for hyper-stability of the novel thermophilic protein MTH1880. PMID:26766214

  12. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  13. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  14. Supine Treadmill Exercise in Lower Body Negative Pressure Combined with Resistive Exercise Counteracts Bone Loss, Reduced Aerobic Upright Exercise Capacity and Reduced Muscle Strength

    NASA Technical Reports Server (NTRS)

    Meuche, Sabine; Schneider, S. M.; Lee, S. M. C.; Macias, B. R.; Smith, S. M.; Watenpaugh, D. E.; Hargens, A. R.

    2006-01-01

    Long-term exposure to weightlessness leads to cardiovascular and musculoskeletal deconditioning. In this report, the effectiveness of combined supine treadmill exercise in a lower body negative pressure chamber (LBNPex) and flywheel resistive exercise (Rex) countermeasures was determined to prevent bone loss, reduced aerobic upright exercise capacity and reduced muscle strength. We hypothesized that exercise subjects would show less decrease in bone mineral density (BMD), peak oxygen consumption (VO2pk) and knee extensor strength (KES) than control subjects. Sixteen healthy female subjects participated in a 60-d 6(sup 0) head-down tilt bed rest (BR) study after providing written informed consent. Subjects were assigned to one of two groups: a non-exercising control group CON or an exercise group EX performing LBNPex 2-4 d/wk and Rex every 3rd-d. VO2pk was measured with a maximal, graded, upright treadmill test performed pre-BR and on 3-d after BR. BMD was assessed before and 3-d after BR. Isokinetic KES was measured before and 5-d after BR. Two-way repeated measures ANOVA were performed. Statistical significance was set at p less than 0.05. CON experienced a significant decrease in BMD in the trochanter (PRE: 0.670 plus or minus 0.045; POST: 0.646 plus or minus 0.352 g (raised dot) per square centimeter) and in the whole hip (PRE=0.894 plus or minus 0.059; POST: 0.858 plus or minus 0.057 g (raised dot) per square centimeter). BMD also decreased significantly in EX in the trochanter (PRE: 0.753 plus or minus 0.0617; POST: 0.741 plus or minus 0.061 g (raised dot) per square centimeter) and whole hip (PRE: 0.954 plus or minus 0.067; POST: 0.935 plus or minus 0.069 g (raised dot) per square centimeter). BMD losses were significantly less in EX than in CON subjects. VO2pk was significantly decreased in the CON after BR (PRE: 38.0 plus or minus 4.8; POST: 29.9 plus or minus 4.2 ml (raised dot) per kilogram per minute), but not in the EX (PRE: 39.0 plus or minus 2.0; POST

  15. Supine Treadmill Exercise in Lower Body Negative Pressure Combined with Resistive Exercise Counteracts Bone Loss, Reduced Aerobic Upright Exercise Capacity and Reduced Muscle Strength

    NASA Technical Reports Server (NTRS)

    Meuche, Sabine; Schneider, S. M.; Lee, S. M. C.; Macias, B. R.; Smith, S. M.; Watenpaugh, D. E.; Hargens, A. R.

    2006-01-01

    Long-term exposure to weightlessness leads to cardiovascular and musculoskeletal deconditioning. In this report, the effectiveness of combined supine treadmill exercise in a lower body negative pressure chamber (LBNPex) and flywheel resistive exercise (Rex) countermeasures was determined to prevent bone loss, reduced aerobic upright exercise capacity and reduced muscle strength. We hypothesized that exercise subjects would show less decrease in bone mineral density (BMD), peak oxygen consumption (VO2pk) and knee extensor strength (KES) than control subjects. Sixteen healthy female subjects participated in a 60-d 6(sup 0) head-down tilt bed rest (BR) study after providing written informed consent. Subjects were assigned to one of two groups: a non-exercising control group CON or an exercise group EX performing LBNPex 2-4 d/wk and Rex every 3rd-d. VO2pk was measured with a maximal, graded, upright treadmill test performed pre-BR and on 3-d after BR. BMD was assessed before and 3-d after BR. Isokinetic KES was measured before and 5-d after BR. Two-way repeated measures ANOVA were performed. Statistical significance was set at p less than 0.05. CON experienced a significant decrease in BMD in the trochanter (PRE: 0.670 plus or minus 0.045; POST: 0.646 plus or minus 0.352 g (raised dot) per square centimeter) and in the whole hip (PRE=0.894 plus or minus 0.059; POST: 0.858 plus or minus 0.057 g (raised dot) per square centimeter). BMD also decreased significantly in EX in the trochanter (PRE: 0.753 plus or minus 0.0617; POST: 0.741 plus or minus 0.061 g (raised dot) per square centimeter) and whole hip (PRE: 0.954 plus or minus 0.067; POST: 0.935 plus or minus 0.069 g (raised dot) per square centimeter). BMD losses were significantly less in EX than in CON subjects. VO2pk was significantly decreased in the CON after BR (PRE: 38.0 plus or minus 4.8; POST: 29.9 plus or minus 4.2 ml (raised dot) per kilogram per minute), but not in the EX (PRE: 39.0 plus or minus 2.0; POST

  16. Draft Genome Sequence of Brevibacillus borstelensis cifa_chp40, a Thermophilic Strain Having Biotechnological Importance

    PubMed Central

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Sen, Rinil; Maji, Ushajyoti; Samanta, Mrinal; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2016-01-01

    Brevibacillus borstelensis cifa_chp40 is a thermophilic, strictly aerobic gram positive motile bacteria isolated from the alkaline hot water spring located in the Eastern Ghats zone of India. It could grow in a wide range of temperature and degrade low-density polythene at 37°C. The strain cifa_chp40 produces essential enzymes like protease, lipase, esterase and amidase at 50°C. Here, we report the draft genome sequence of B. borstelensis cifa_chp40 which will provide further insight into the metabolic capabilities, function and evolution of this important organism. PMID:26958091

  17. DNA probe culture confirmation assay for identification of thermophilic Campylobacter species.

    PubMed Central

    Tenover, F C; Carlson, L; Barbagallo, S; Nachamkin, I

    1990-01-01

    We studied the ability of a new DNA probe-based assay system to correctly identify isolates of the thermophilic campylobacters Campylobacter jejuni, C. coli, and C. laridis grown in vitro. We examined 424 organisms, including 214 Campylobacter isolates and 210 other aerobic and anaerobic isolates. The probe assay, which uses a new homogeneous system in which all reactions take place within a single tube, demonstrated 100% accuracy, producing neither false-positive nor false-negative results. The assay does not, however, distinguish among C. jejuni, C. coli, and C. laridis. PMID:2380357

  18. Consolidated bioprocessing method using thermophilic microorganisms

    DOEpatents

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  19. Industrial relevance of thermophilic Archaea.

    PubMed

    Egorova, Ksenia; Antranikian, Garabed

    2005-12-01

    The dramatic increase of newly isolated extremophilic microorganisms, analysis of their genomes and investigations of their enzymes by academic and industrial laboratories demonstrate the great potential of extremophiles in industrial (white) biotechnology. Enzymes derived from extremophiles (extremozymes) are superior to the traditional catalysts because they can perform industrial processes even under harsh conditions, under which conventional proteins are completely denatured. In particular, enzymes from thermophilic and hyperthermophilic Archaea have industrial relevance. Despite intensive investigations, our knowledge of the structure-function relationships of their enzymes is still limited. Information concerning the molecular properties of their enzymes and genes has to be obtained to be able to understand the mechanisms that are responsible for catalytic activity and stability at the boiling point of water.

  20. Variations of culturable thermophilic microbe numbers and bacterial communities during the thermophilic phase of composting.

    PubMed

    Li, Rong; Li, Linzhi; Huang, Rong; Sun, Yifei; Mei, Xinlan; Shen, Biao; Shen, Qirong

    2014-06-01

    Composting is a process of stabilizing organic wastes through the degradation of biodegradable components by microbial communities under controlled conditions. In the present study, genera and species diversities, amylohydrolysis, protein and cellulose degradation abilities of culturable bacteria in the thermophilic phase of composting of cattle manure with plant ash and rice bran were investigated. The number of culturable thermophilic bacteria and actinomyces decreased with the increasing temperature. At the initiation and end of the thermophilic phase, genera and specie diversities and number of bacteria possessing degradation abilities were higher than during the middle phase. During the thermophilic composting phase, Bacillus, Geobacillus and Ureibacillus were the dominant genera, and Geobacillus thermodenitrificans was the dominant species. In later thermophilic phases, Geobacillus toebii and Ureibacillus terrenus were dominant. Bacillus, at the initiation, and Ureibacillus and Geobacillus, at the later phase, contributed the multiple degradation abilities. These data will facilitate the control of composting in the future.

  1. Thermophilic Fungi: Their Physiology and Enzymes†

    PubMed Central

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  2. Thermophilic fungi: their physiology and enzymes.

    PubMed

    Maheshwari, R; Bharadwaj, G; Bhat, M K

    2000-09-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending up to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and

  3. Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation.

    PubMed

    Xue, Wenchao; Wu, Chunying; Xiao, Kang; Huang, Xia; Zhou, Haidong; Tsuno, Hiroshi; Tanaka, Hiroaki

    2010-12-01

    The occurrence and elimination of 19 micro-organic pollutants including endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in a full-scale anaerobic/anoxic/aerobic-membrane bioreactor process was investigated. The investigated process achieved over 70% removal of the target EDCs and 50%-100% removal of most of the PPCPs, with influent concentration ranging from ng/L to μg/L. Three PPCPs, carbamazepine, diclofenac and sulpiride were not well removed, with the removal efficiency below 20%. A rough mass balance suggests that the targets were eliminated through sludge-adsorption and/or biodegradation, the former of which was particularly significant for the removal of hydrophobic compounds. The two-phase fate model was employed to describe the kinetics of sludge-adsorption and biodegradation. It was found that the fast sludge adsorption (indicated by mass-transfer rates greater than 10 for most compounds) is responsible for the rapid decline of the aqueous concentration of the targets in the first compartment of the treatment process (i.e. in the anaerobic tank). In contrast, the slow biodegradation proved to be the rate-determining step for the entire degradation process, and the rates are generally positively related to the dissolved oxygen level. On the other hand, this study showed that the removal rates of most targets can reach a quasi-plateau in 5 h under aerobic conditions, indicating that hydraulic retention time of ca. 5 h in aerobic tanks should be sufficient for the elimination of most targets. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Thermophilic fungi isolated from a heated aquatic habitat

    SciTech Connect

    Ellis, D.H.

    1980-09-01

    The cooling pond for the Hazelwood Power Station, Morwell, Victoria, Australia, was studied for the presence of thermophilic fungi. A total of five species was recorded: Chaetomium thermophile, Aspergillus fumigatus, Humicola grisea, Humicola insolens, and Thermomyces lanuginosus. (ACR)

  5. Naphthalene Degradation and Incorporation of Naphthalene-Derived Carbon into Biomass by the Thermophile Bacillus thermoleovorans

    PubMed Central

    Annweiler, E.; Richnow, H. H.; Antranikian, G.; Hebenbrock, S.; Garms, C.; Franke, S.; Francke, W.; Michaelis, W.

    2000-01-01

    The thermophilic aerobic bacterium Bacillus thermoleovorans Hamburg 2 grows at 60°C on naphthalene as the sole source of carbon and energy. In batch cultures, an effective substrate degradation was observed. The carbon balance, including naphthalene, metabolites, biomass, and CO2, was determined by the application of [1-13C]naphthalene. The incorporation of naphthalene-derived carbon into the bulk biomass as well as into specified biomass fractions such as fatty acids and amino acids was confirmed by coupled gas chromatography-mass spectrometry (GC-MS) and isotope analyses. Metabolites were characterized by GC-MS; the established structures allow tracing the degradation pathway under thermophilic conditions. Apart from typical metabolites of naphthalene degradation known from mesophiles, intermediates such as 2,3-dihydroxynaphthalene, 2-carboxycinnamic acid, and phthalic and benzoic acid were identified for the pathway of this bacterium. These compounds indicate that naphthalene degradation by the thermophilic B. thermoleovorans differs from the known pathways found for mesophilic bacteria. PMID:10653712

  6. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans

    SciTech Connect

    Annweiler, E.; Richnow, H.H.; Antranikian, G.; Hebenbrock, S.; Garms, C.; Franke, S.; Francke, W.; Michaelis, W.

    2000-02-01

    The thermophilic aerobic bacterium Bacillus thermoleovorans Hamburg 2 grows at 60 C on naphthalene as the sole source of carbon and energy. In batch cultures, an effective substrate degradation was observed. The carbon balance, including naphthalene, metabolites, biomass, and CO{sub 2}, was determined by the application of [1-{sup 13}C]naphthalene. The incorporation of naphthalene-derived carbon into the bulk biomass as well as into specified biomass fractions such as fatty acids and amino acids was confirmed by coupled gas chromatography-mass spectrometry (GC-MS) and isotope analyses. Metabolites were characterized by GC-MS; the established structures allow tracing the degradation pathway under thermophilic conditions. Apart from typical metabolites of naphthalene degradation known from mesophiles, intermediates such as 2,3-dihydroxynaphthalene, 2-carboxycinnamic acid, and phthalic and benzoic acid were identified for the pathway of this bacterium. These compounds indicate that naphthalene degradation by the thermophilic B. thermoleovorans differs from the known pathways found for mesophilic bacteria.

  7. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL Apical Domain with implications for substrate interactions

    SciTech Connect

    Hua, Q. X. H.; Dementieva, I. S. D.; Walsh, M. A. W.; Hallenga, K. H.; Weiss, M. A. W.; Joachimiak, A. J.; Biosciences Division; Case Western Reserve Univ.; IRBM P. Angeletti; Purdue Univ.

    2001-02-23

    A homologue of the Escherichia coli GroEL apical domain was obtained from thermophilic eubacterium Thermus thermophilus. The domains share 70 % sequence identity (101 out of 145 residues). The thermal stability of the T. thermophilus apical domain (T{sub m}>100{sup o}C as evaluated by circular dichroism) is at least 35{sup o}C greater than that of the E. coli apical domain (T{sub m}=65{sup o}C). The crystal structure of a selenomethione-substituted apical domain from T. thermophilus was determined to a resolution of 1.78 {angstrom} using multiwavelength-anomalous-diffraction phasing. The structure is similar to that of the E. coli apical domain (root-mean-square deviation 0.45 {angstrom} based on main-chain atoms). The thermophilic structure contains seven additional salt bridges of which four contain charge-stabilized hydrogen bonds. Only one of the additional salt bridges would face the 'Anfinsen cage' in GroEL. High temperatures were exploited to map sites of interactions between the apical domain and molten globules. NMR footprints of apical domain-protein complexes were obtained at elevated temperature using {sup 15}N-{sup 1}H correlation spectra of {sup 15}N-labeled apical domain. Footprints employing two polypeptides unrelated in sequence or structure (an insulin monomer and the SRY high-mobility-group box, each partially unfolded at 50{sup o}C) are essentially the same and consistent with the peptide-binding surface previously defined in E. coli GroEL and its apical domain-peptide complexes. An additional part of this surface comprising a short N-terminal {alpha}-helix is observed. The extended footprint rationalizes mutagenesis studies of intact GroEL in which point mutations affecting substrate binding were found outside the 'classical' peptide-binding site. Our results demonstrate structural conservation of the apical domain among GroEL homologues and conservation of an extended non-polar surface recognizing diverse polypeptides.

  8. Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops.

    PubMed

    Wong, Man-Ling; An, Dongshan; Caffrey, Sean M; Soh, Jung; Dong, Xiaoli; Sensen, Christoph W; Oldenburg, Thomas B P; Larter, Steve R; Voordouw, Gerrit

    2015-10-01

    Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops

    PubMed Central

    Wong, Man-Ling; An, Dongshan; Caffrey, Sean M.; Soh, Jung; Dong, Xiaoli; Sensen, Christoph W.; Oldenburg, Thomas B. P.; Larter, Steve R.

    2015-01-01

    Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity. PMID:26209669

  10. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.

    PubMed

    Molanouri Shamsi, M; Chekachak, S; Soudi, S; Quinn, L S; Ranjbar, K; Chenari, J; Yazdi, M H; Mahdavi, M

    2017-02-01

    Cancer cachexia is characterized by inflammation, loss of skeletal muscle and adipose tissue mass, and functional impairment. Oxidative stress and inflammation are believed to regulate pathways controlling skeletal muscle wasting. The aim of this study was to determine the effects of aerobic interval training and the purported antioxidant treatment, selenium nanoparticle supplementation, on expression of IL-15 and inflammatory cytokines in 4T1 breast cancer-bearing mice with cachexia. Selenium nanoparticle supplementation accelerated cachexia symptoms in tumor-bearing mice, while exercise training prevented muscle wasting in tumor-bearing mice. Also, aerobic interval training enhanced the anti-inflammatory indices IL-10/TNF-α ratio and IL-15 expression in skeletal muscle in tumor-bearing mice. However, combining exercise training and antioxidant supplementation prevented cachexia and muscle wasting and additionally decreased tumor volume in 4T1 breast cancer mice. These finding suggested that combining exercise training and antioxidant supplementation could be a strategy for managing tumor volume and preventing cachexia in breast cancer.

  11. Effect of seeding during thermophilic composting of sewage sludge

    SciTech Connect

    Nakasaki, K.; Sasaki, M.; Shoda, M.; Kubota, H.

    1985-03-01

    The effect of seeding on the thermophilic composting of sewage sludge was examined by measuring the changes in CO/sub 2/ evolution rates and microbial numbers. Although the succession of thermophilic bacteria and thermophilic actinomycetes clearly reflected the effect of seeding, no clear difference was observed in the overall rate of composting or quality of the composted product. 7 references.

  12. Hemicellulases from anaerobic thermophiles. Progress report

    SciTech Connect

    Wiegel, J.

    1994-05-01

    The longterm goal of this research effort is to obtain an anaerobic thermophilic bacterium that efficiently converts various hemicellulose-containing biomass to ethanol over a broad pH range. The strategy is to modify the outfit and regulation of the rate-limiting xylanases, glycosidases and xylan esterases in the ethanologenic, anaerobic thermophile Thermoanaerobacter ethanolicus, which grows between pH 4.5 and 9.5. Although it utilizes xylans, the xylanase, acetyl(xylan) esterase and O-methylglucuronidase activities in T. ethanolicus are barely measurable and regarded as the rate limiting steps in its xylan utilization. Thus, and also due to the presently limited knowledge of hemicellulases in anaerobic thermophiles, we characterize the hemicellulolytic enzymes from this and other anaerobic thermophiles as enzyme donors. Beside the active xylosidase/arabinosidase from T. ethanolicus, exhibiting the two different activities, we characterized 2 xylosidases, two acetyl(xylan) esterases, and an O-methylglucuronidase from Thermoanaerobacterium spec. We will continue with the characterization of xylanases from novel isolated slightly acidophilic, neutrophilic and slightly alkalophilic thermophiles. We have cloned, subcloned and partially sequenced the 165,000 Da (2 x 85,000) xylosidase/arabinosidase from T. ethanolicus and started with the cloning of the esterases from Thermoanaerobacterium spec. Consequently, we will develop a shuttle vector and continue to apply electroporation of autoplasts as a method for cloning into T. ethanolicus.

  13. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years

    PubMed Central

    de Rezende, Júlia Rosa; Kjeldsen, Kasper Urup; Hubert, Casey R J; Finster, Kai; Loy, Alexander; Jørgensen, Bo Barker

    2013-01-01

    Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 °C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer-enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca. 104 per cm3 at the surface and decreased exponentially to 100 per cm3 at 6.5 m depth, corresponding to 4500 years of sediment age. Thus, a half-life of ca. 300 years was estimated for the thermophilic SRB endospores deposited in Aarhus Bay sediments. These endospores were similarly detected in the overlying water column, indicative of passive dispersal in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments. PMID:22832348

  14. Bioprospecting thermophiles for cellulase production: a review

    PubMed Central

    Acharya, Somen; Chaudhary, Anita

    2012-01-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production. PMID:24031898

  15. Bioprospecting thermophiles for cellulase production: a review.

    PubMed

    Acharya, Somen; Chaudhary, Anita

    2012-07-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  16. A molecular phylogeny of thermophilic fungi.

    PubMed

    Morgenstern, Ingo; Powlowski, Justin; Ishmael, Nadeeza; Darmond, Corinne; Marqueteau, Sandrine; Moisan, Marie-Claude; Quenneville, Geneviève; Tsang, Adrian

    2012-04-01

    Sequences from 86 fungal genomes and from the two outgroup genomes Arabidopsis thaliana and Drosophila melanogaster were analyzed to construct a robust molecular phylogeny of thermophilic fungi, which are potentially rich sources of industrial enzymes. To provide experimental reference points, growth characteristics of 22 reported thermophilic or thermotolerant fungi, together with eight mesophilic species, were examined at four temperatures: 22 °C, 34 °C, 45 °C, and 55 °C. Based on the relative growth performances, species with a faster growth rate at 45 °C than at 34 °C were classified as thermophilic, and species with better or equally good growth at 34 °C compared to 45 °C as thermotolerant. We examined the phylogenetic relationships of a diverse range of fungi, including thermophilic and thermotolerant species, using concatenated amino acid sequences of marker genes mcm7, rpb1, and rpb2 obtained from genome sequencing projects. To further elucidate the phylogenetic relationships in the thermophile-rich orders Sordariales and Eurotiales, we used nucleotide sequences from the nuclear ribosomal small subunit (SSU), the 5.8S gene with internal transcribed spacers 1 and 2 (ITS 1 and 2), and the ribosomal large subunit (LSU) to include additional species for analysis. These phylogenetic analyses clarified the position of several thermophilic taxa. Thus, Myriococcum thermophilum and Scytalidium thermophilum fall into the Sordariales as members of the Chaetomiaceae, Thermomyces lanuginosus belongs to the Eurotiales, Malbranchea cinnamomea is a member of the Onygenales, and Calcarisporiella thermophila is assigned to the basal fungi close to the Mucorales. The mesophilic alkalophile Acremonium alcalophilum clusters with Verticillium albo-atrum and Verticillium dahliae, placing them in the recently established order Glomerellales. Taken together, these data indicate that the known thermophilic fungi are limited to the Sordariales, Eurotiales, and

  17. Short-term thermophilic treatment cannot remove tetracycline resistance genes in pig manures but exhibits controlling effects on their accumulation and spread in soil.

    PubMed

    Kang, Yijun; Li, Qing; Xia, Dan; Shen, Min; Mei, Lijuan; Hu, Jian

    2017-10-15

    In this work, a microcosm experiment was conducted to merely mimic thermophilic phase in aerobic composting with pig manures in order to explore: (i) the effect of thermophilic phase in composting on the abundances of tetracycline resistance genes (TRGs); and (ii) the impacts of the treated manures on the abundances of TRGs in soil. It was found that 4days of thermophilic process reduced the abundance of TRGs in pig manures by ∼1 lg unit compared to the samples without treatments, suggesting that other phases in composting may play significant roles in removal of TRGs. Once pig manures with thermophilic treatment were applied to soil, TRGs abundances decreased to the levels in unfertilized soil. With correlation analyses, it was concluded that pig manure derived tetracycline-resistant bacteria (TRB) and nutrients exerted different effects on TRGs abundances in soil. In conclusion, short-term thermophilic treatment cannot remove tetracycline resistance genes in pig manures but exhibits controlling effects on their accumulation and spread in soil. Nutrients enrichment in soil following manuring of treated pig manures, together with a large proportion of gram-positive TRB left in treated pig manures with less risk to TRGs spread, contributed to the controlling effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phylogenomic re-assessment of the thermophilic genus Geobacillus.

    PubMed

    Aliyu, Habibu; Lebre, Pedro; Blom, Jochen; Cowan, Don; De Maayer, Pieter

    2016-12-01

    Geobacillus is a genus of Gram-positive, aerobic, spore-forming obligate thermophiles. The descriptions and subsequent affiliations of the species in the genus have mostly been based on polyphasic taxonomy rules that include traditional sequence-based methods such as DNA-DNA hybridization and comparison of 16S rRNA gene sequences. Currently, there are fifteen validly described species within the genus. The availability of whole genome sequences has provided an opportunity to validate and/or re-assess these conventional estimates of genome relatedness. We have applied whole genome approaches to estimate the phylogenetic relatedness among the sixty-three Geobacillus strains for which genome sequences are currently publicly available, including the type strains of eleven validly described species. The phylogenomic metrics AAI (Average Amino acid Identity), ANI (Average Nucleotide Identity) and dDDH (digital DNA-DNA hybridization) indicated that the current genus Geobacillus is comprised of sixteen distinct genomospecies, including several potentially novel species. Furthermore, a phylogeny constructed on the basis of the core genes identified from the whole genome analyses indicated that the genus clusters into two monophyletic clades that clearly differ in terms of nucleotide base composition. The G+C content ranges for clade I and II were 48.8-53.1% and 42.1-44.4%, respectively. We therefore suggest that the Geobacillus species currently residing within clade II be considered as a new genus. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Systematic Underutilization of Glutamine In Thermophile Proteins

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Weber, Arthur; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Rapid racemization above 100 C of L-amino acids to Domino acids, as well as deamidation, is probably a hazard for high temperature life. For example, the half-life of some asparaginyl peptides can be as short as 10 minutes at 100 C. High temperature organisms could protect themselves by reducing usage of amino acids that are easily racemized/deamidazed, by having a rapid rate of protein turnover which requires energy, or by adapting special cis-peptide conformations. We have searched eight completely sequenced thermophile genomes, and compare them to mesophile genomes, in order to identify underutilized amino acids. To our surprise, asparagine, the most unstable amino acid to deamidation, is used at about the same level in thermophile proteins in comparison to mesophiles whereas it is the second most unstable amino acid, glutamine, that is underutilized in all of eight thermophile species. Glutamines are present at 2% level in a typical thermophile protein, instead of 4% in mesophile. We argue that it is easier to protect asparagines from deamidation by cis-peptide conformations. We discuss statistical as well as structural evidence in support of our conclusions.

  20. Systematic Underutilization of Glutamine In Thermophile Proteins

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Weber, Arthur; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Rapid racemization above 100 C of L-amino acids to Domino acids, as well as deamidation, is probably a hazard for high temperature life. For example, the half-life of some asparaginyl peptides can be as short as 10 minutes at 100 C. High temperature organisms could protect themselves by reducing usage of amino acids that are easily racemized/deamidazed, by having a rapid rate of protein turnover which requires energy, or by adapting special cis-peptide conformations. We have searched eight completely sequenced thermophile genomes, and compare them to mesophile genomes, in order to identify underutilized amino acids. To our surprise, asparagine, the most unstable amino acid to deamidation, is used at about the same level in thermophile proteins in comparison to mesophiles whereas it is the second most unstable amino acid, glutamine, that is underutilized in all of eight thermophile species. Glutamines are present at 2% level in a typical thermophile protein, instead of 4% in mesophile. We argue that it is easier to protect asparagines from deamidation by cis-peptide conformations. We discuss statistical as well as structural evidence in support of our conclusions.

  1. Influence of Thermal and Bacterial Pretreatment of Microalgae on Biogas Production in Mesophilic and Thermophilic Conditions.

    PubMed

    Vidmar, Beti; Marinšek Logar, Romana; Panjičko, Mario; Fanedl, Lijana

    2017-01-01

    Microalgae biomass has a great potential in search for new alternative energy sources. They can be used as a substrate for the biogas production in anaerobic digestion. When using microalgae, the efficiency of this process is hampered due to the resistant cell wall. In order to accelerate the hydrolysis of cell wall and increase the efficiency of biogas production we applied two different pretreatments - biological and thermal under mesophilic and thermophilic conditions. During biological pretreatment we incubated microalgae with anaerobic hydrolytic bacteria Pseudobutyrivibrio xylanivorans Mz5T. In thermal pretreatment we incubated microalgae at 90 °C. We also tested a combined thermal and biological pretreatment in which we incubated P. xylanivorans Mz5T with thermally pretreated microalgae. Thermal pretreatment in mesophilic and thermophilic process has increased methane production by 21% and 6%, respectively. Biological pretreatment of microalgae has increased methane production by 13%, but only under thermophilic conditions (pretreatment under mesophilic conditions showed no effect on methane production). Thermal-biological pretreatment increased methane production by 12% under thermophilic conditions and by 6% under mesophilic conditions.

  2. Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea.

    PubMed

    Zhang, Wei; Yang, Ruijuan; Fang, Wenjun; Yan, Liang; Lu, Jun; Sheng, Jun; Lv, Jie

    2016-06-16

    This study aimed to characterize the thermophilic fungi in pile-fermentation process of Pu-erh tea. Physicochemical analyses showed that the high temperature and low pH provided optimal conditions for propagation of fungi. A number of fungi, including Blastobotrys adeninivorans, Thermomyces lanuginosus, Rasamsonia emersonii, Aspergillus fumigatus, Rhizomucor pusillus, Rasamsonia byssochlamydoides, Rasamsonia cylindrospora, Aspergillus tubingensis, Aspergillus niger, Candida tropicalis and Fusarium graminearum were isolated as thermophilic fungi under combination of high temperature and acid culture conditions from Pu-erh tea pile-fermentation. The fungal communities were analyzed by PCR-DGGE. Results revealed that those fungi are closely related to Debaryomyces hansenii, Cladosporium cladosporioides, A. tubingensis, R. emersonii, R. pusillus, A. fumigatus and A. niger, and the last four presented as dominant species in the pile process. These four preponderant thermophilic fungi reached the order of magnitude of 10(7), 10(7), 10(7) and 10(6)copies/g dry tea, respectively, measured by real-time quantitative PCR (q-PCR). The results indicate that the thermophilic fungi play an important role in Pu-erh tea pile fermentation.

  3. Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents.

    PubMed

    Müller, Albert Leopold; de Rezende, Júlia Rosa; Hubert, Casey R J; Kjeldsen, Kasper Urup; Lagkouvardos, Ilias; Berry, David; Jørgensen, Bo Barker; Loy, Alexander

    2014-06-01

    Microbial biogeography is influenced by the combined effects of passive dispersal and environmental selection, but the contribution of either factor can be difficult to discern. As thermophilic bacteria cannot grow in the cold seabed, their inactive spores are not subject to environmental selection. We therefore conducted a global experimental survey using thermophilic endospores that are passively deposited by sedimentation to the cold seafloor as tracers to study the effect of dispersal by ocean currents on the biogeography of marine microorganisms. Our analysis of 81 different marine sediments from around the world identified 146 species-level 16S rRNA phylotypes of endospore-forming, thermophilic Firmicutes. Phylotypes showed various patterns of spatial distribution in the world oceans and were dispersal-limited to different degrees. Co-occurrence of several phylotypes in locations separated by great distances (west of Svalbard, the Baltic Sea and the Gulf of California) demonstrated a widespread but not ubiquitous distribution. In contrast, Arctic regions with water masses that are relatively isolated from global ocean circulation (Baffin Bay and east of Svalbard) were characterized by low phylotype richness and different compositions of phylotypes. The observed distribution pattern of thermophilic endospores in marine sediments suggests that the impact of passive dispersal on marine microbial biogeography is controlled by the connectivity of local water masses to ocean circulation.

  4. Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents

    PubMed Central

    Müller, Albert Leopold; de Rezende, Júlia Rosa; Hubert, Casey R J; Kjeldsen, Kasper Urup; Lagkouvardos, Ilias; Berry, David; Jørgensen, Bo Barker; Loy, Alexander

    2014-01-01

    Microbial biogeography is influenced by the combined effects of passive dispersal and environmental selection, but the contribution of either factor can be difficult to discern. As thermophilic bacteria cannot grow in the cold seabed, their inactive spores are not subject to environmental selection. We therefore conducted a global experimental survey using thermophilic endospores that are passively deposited by sedimentation to the cold seafloor as tracers to study the effect of dispersal by ocean currents on the biogeography of marine microorganisms. Our analysis of 81 different marine sediments from around the world identified 146 species-level 16S rRNA phylotypes of endospore-forming, thermophilic Firmicutes. Phylotypes showed various patterns of spatial distribution in the world oceans and were dispersal-limited to different degrees. Co-occurrence of several phylotypes in locations separated by great distances (west of Svalbard, the Baltic Sea and the Gulf of California) demonstrated a widespread but not ubiquitous distribution. In contrast, Arctic regions with water masses that are relatively isolated from global ocean circulation (Baffin Bay and east of Svalbard) were characterized by low phylotype richness and different compositions of phylotypes. The observed distribution pattern of thermophilic endospores in marine sediments suggests that the impact of passive dispersal on marine microbial biogeography is controlled by the connectivity of local water masses to ocean circulation. PMID:24351936

  5. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans

    PubMed Central

    Glynn, Erin L.; Piner, Lucy W.; Huffman, Kim M.; Slentz, Cris A.; Elliot-Penry, Lorraine; AbouAssi, Hiba; White, Phillip J.; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga R.; Stevens, Robert D.; Porter Starr, Kathryn N.; Bales, Connie W.; Volpi, Elena; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.

    2016-01-01

    Aims/hypotheses Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. Methods Whole-body leucine turnover, IS by hyperinsulinaemic–euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). Results IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. Conclusions/interpretation A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. Trial registration Clinicaltrials.gov NCT01786941 PMID:26254576

  6. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans.

    PubMed

    Glynn, Erin L; Piner, Lucy W; Huffman, Kim M; Slentz, Cris A; Elliot-Penry, Lorraine; AbouAssi, Hiba; White, Phillip J; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga R; Stevens, Robert D; Porter Starr, Kathryn N; Bales, Connie W; Volpi, Elena; Brosnan, M Julia; Trimmer, Jeff K; Rolph, Timothy P; Newgard, Christopher B; Kraus, William E

    2015-10-01

    Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. Whole-body leucine turnover, IS by hyperinsulinaemic-euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. Clinicaltrials.gov NCT01786941.

  7. [Testing aerobic power].

    PubMed

    Lehance, C; Bury, T

    2008-01-01

    Maximal oxygen uptake (VO2 max) is regarded by some as the best single measurement of aerobic fitness. An other major determinant of successful endurance performance is the percentage of VO2 max that an athlete can maintain for a prolonged period. It is related to the lactate threshold. Two other factors also appear to be important for endurance activities as high economy of effort, or low VO2 value for the same rate of work; high percentage of ST muscle fibers. In the laboratory, the usual measurements of aerobic power include the determination of maximum oxygen consumption and the identification of lactate threshold. Testing aerobic power can help determine the type of aerobic training that should be emphasized.

  8. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  9. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring.

    PubMed

    Hatzenpichler, Roland; Lebedeva, Elena V; Spieck, Eva; Stoecker, Kilian; Richter, Andreas; Daims, Holger; Wagner, Michael

    2008-02-12

    The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46 degrees C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase (amoA and amoB) were detected via PCR, no hints for known ammonia-oxidizing bacteria were obtained. Comparative sequence analyses of these gene fragments demonstrated the presence of a single operational taxonomic unit and thus enabled the assignment of the amoA and amoB sequences to the respective 16S rRNA phylotype, which belongs to the widely distributed group I.1b (soil group) of the Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH combined with microautoradiography (MAR) demonstrated metabolic activity of this archaeon in the presence of ammonium. This finding was corroborated by the detection of amoA gene transcripts in the enrichment. CARD-FISH/MAR showed that the moderately thermophilic AOA is highly active at 0.14 and 0.79 mM ammonium and is partially inhibited by a concentration of 3.08 mM. The enriched AOA, which is provisionally classified as "Candidatus Nitrososphaera gargensis," is the first described thermophilic ammonia oxidizer and the first member of the crenarchaeotal group I.1b for which ammonium oxidation has been verified on a cellular level. Its preference for thermophilic conditions reinvigorates the debate on the thermophilic ancestry of AOA.

  10. Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

    PubMed Central

    Li, Duo-Chuan; Li, An-Na; Papageorgiou, Anastassios C.

    2011-01-01

    Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications. PMID:22145076

  11. Cellulases from thermophilic fungi: recent insights and biotechnological potential.

    PubMed

    Li, Duo-Chuan; Li, An-Na; Papageorgiou, Anastassios C

    2011-01-01

    Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications.

  12. Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic-aerobic and UV/H2O2 processes.

    PubMed

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar

    2014-02-15

    The objective of this study is to evaluate the operating costs of treating slaughterhouse wastewater (SWW) using combined biological and advanced oxidation processes (AOPs). This study compares the performance and the treatment capability of an anaerobic baffled reactor (ABR), an aerated completely mixed activated sludge reactor (AS), and a UV/H2O2 process, as well as their combination for the removal of the total organic carbon (TOC). Overall efficiencies are found to be up to 75.22, 89.47, 94.53, 96.10, 96.36, and 99.98% for the UV/H2O2, ABR, AS, combined AS-ABR, combined ABR-AS, and combined ABR-AS-UV/H2O2 processes, respectively. Due to the consumption of electrical energy and reagents, operating costs are calculated at optimal conditions of each process. A cost-effectiveness analysis (CEA) is performed at optimal conditions for the SWW treatment by optimizing the total electricity cost, H2O2 consumption, and hydraulic retention time (HRT). The combined ABR-AS-UV/H2O2 processes have an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m(3) of treated SWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removal and $21.65/m(3) treated SWW, equivalent to $6.79/m(3) day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Thermophilic biohydrogen production: how far are we?

    PubMed

    Pawar, Sudhanshu S; van Niel, Ed W J

    2013-09-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen production through fermentation of commercially viable substrates produced from readily available renewable resources, such as agricultural residues. The route to commercially viable biohydrogen production is a multidisciplinary enterprise. Microbiological studies have pointed out certain desirable physiological characteristics in H2-producing microorganisms. More process-oriented research has identified best applicable reactor types and cultivation conditions. Techno-economic and life cycle analyses have identified key process bottlenecks with respect to economic feasibility and its environmental impact. The review has further identified current limitations and gaps in the knowledge, and also deliberates directions for future research and development of thermophilic biohydrogen production.

  14. Thermophilic enzymes and their biotechnological potential.

    PubMed

    Lasa, I; Berenguer, J

    1993-12-01

    The ability of many microorganisms to grow at high temperatures has held a particular fascination for microbiologists and biochemists since a long time. As any of their cellular components, their proteins are inherently more stable to heat than those of conventional organisms. This thermal stability is not due to any specific characteristic, but results a consequence of various changes which contribute to the whole stability of the protein in an additive manner. These enzymes are not only more thermostable, but also more resistant to chemical agents than their mesophilic homologous, what makes them extremely interesting for industrial processes. Despite this, most of the enzymes used at present in industrial processes have been isolated from mesophiles due to the limited knowledge and difficulties to grow thermophiles in high scale. The objective of this review is to consider briefly the importance of the thermostability in order to apply enzymes in the industry, and to overview the most recent advances in the identification of new thermophilic organisms and enzymes. Furthermore, the recent development of genetic model systems for moderate and extreme thermophiles are referred.

  15. Advanced thermophilic digestion of biomass blends

    SciTech Connect

    Ghosh, S.

    1982-05-01

    The development of an advanced thermophilic biomass-digestion process that could be operated at much higher loading and slurry throughput rates than those of conventional high-rate digestion was reported. The biomass blend (mixture of hyacinth, Bermuda grass, refuse, and sludge) effected superior digester performance than the pure biomass feeds. For the pure feeds, mesophilic (35/sup 0/C) digestion was better than thermophilic (55/sup 0/C) digestion; the reverse was true for the biomass-waste blend substrate. The blend feed had higher biodegradability, and was selected as the substrate for an advanced digestion process. The advanced thermophilic process consisted of alkaline pretreatment of the undiluted blend feed at 55/sup 0/C, recycling of spent alkali to treat the fresh feed, neutralization of the treated feed with digester gas to a high pH (9 to 10), and digestion in a complete-mix digester. Methane yield and gas production rate from the advanced process were significantly higher than those from conventional digestion despite the fact that loading and hydraulic throughput rates for the former process were considerably higher than those of the latter. Reactor volume for the advanced process could be less than 20% and net energy production more than double those for conventional mesophilic high-rate digestion.

  16. Thermophilic fungi in an aridland ecosystem.

    PubMed

    Powell, Amy J; Parchert, Kylea J; Bustamante, Joslyn M; Ricken, J Bryce; Hutchinson, Miriam I; Natvig, Donald O

    2012-01-01

    We report a comprehensive multi-year study of thermophilic fungi at the Sevilleta National Wildlife Refuge in central New Mexico. Recovery of thermophilic fungi from soils showed seasonal fluctuations, with greater abundance correlating with spring and summer precipitation peaks. In addition to grassland soils, we obtained and characterized isolates from grassland and riparian litter, herbivore dung and biological soil crusts. All strains belonged to either the Eurotiales or Sordariales (Chaetomiaceae). No particular substrate or microhabitat associations were detected. Molecular typing of strains revealed substantial phylogenetic diversity, eight ad hoc phylogroups across the two orders were identified and genetic diversity was present within each phylogroup. Growth tests over a range of temperatures showed substantial variation in maximum growth rates among strains and across phylogroups but consistency within phylogroups. Results demonstrated that 45-50 C represents the optimal temperature for growth of most isolates, with a dramatic decline at 60 C. Most strains grew at 60 C, albeit slowly, whereas none grew at 65 C, providing empirical confirmation that 60 C presents an evolutionary threshold for fungal growth. Our results support the hypothesis that fungal thermophily is an adaptation to transient seasonal and diurnal high temperatures, rather than simply an adaptation to specialized high-temperature environments. We note that the diversity observed among strains and the frequently confused taxonomy within these groups highlight the need for comprehensive biosystematic revision of thermophilic taxa in both orders.

  17. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions

    SciTech Connect

    Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.; Simmons, Blake A.; Singer, Steven W.; VanderGheynst, Jean S.

    2015-12-02

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under

  18. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions

    DOE PAGES

    Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.; ...

    2015-12-02

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methodsmore » included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival

  19. [Effect of aerobic fermentation on the survival of Salmonella typhimurium (DT 104) and Escherichia coli in swine liquid manure].

    PubMed

    Herold, T; Kliche, R; Hensel, A

    1999-12-01

    In this study aerobic-thermophilic fermentation of untreated liquid pig manure was examined for the potential of inactivating pathogenic microorganisms. As microbial tracer organisms, Salmonella typhimurium DT 104 and Escherichia coli were used. An effective reduction of survival of these microorganisms could be demonstrated by aerobic fermentation at temperatures of 50 degrees C for at least 3 h. However, these optimal process conditions without the need of additional heating, can only be achieved by microbial substrate reduction. In contrast to the impact of temperature on hygienization processes, alteration of the pH value which occurs during fermentation had no or little influence on the tenacity of the tracer bacteria. Even under mesophilic reaction conditions the influence of the pH value was not measurable. A technical realisation of such an aerobic-thermophilic fermentation process for prophylactic disinfection is questionable since a large technical expenditure is necessary to control ammonia emission. Effective partial reduction of nitrogen, phosphate, and free carbon in liquid manure requires retention times of at least 48 h. However, thermophilic reaction conditions may ensure an effective hygienization of the final fermentation products.

  20. Vocal Problems among Aerobic Instructors and Aerobic Participants.

    ERIC Educational Resources Information Center

    Heidel, Sandra E.; Torgerson, John K.

    1993-01-01

    Comparison of vocal problems of 50 female aerobic instructors and 50 female aerobic participants by means of questionnaires found that aerobic instructors generally experienced more hoarseness and episodes of voice loss during and after instructing and exhibited a significantly higher prevalence of nodules. (Author/DB)

  1. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  2. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  3. Biodegradation of high-concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus.

    PubMed

    Bustard, Mark T; Whiting, Samantha; Cowan, Don A; Wright, Phillip C

    2002-08-01

    The aerobic biodegradation of high-concentration, to 24 g l(-1), 2-propanol (IPA) by a thermophilic isolate ST3, identified as Bacillus pallidus, was successfully carried out for the first time. This solvent-tolerant B. pallidus utilized IPA as the sole carbon source within a minimal salts medium. Cultivation was carried out in 100-ml shake flasks at 60 degrees C and compared with cultivation within a 1-l stirred tank reactor (STR). Specific growth rate (micro) was about 0.2 h(-1) for both systems, with a maximum cell density of 2.4 x 10(8) cells ml(-1) obtained with STR cultivation. During exponential growth and stationary phase, IPA biodegradation rates were found to be 0.14 and 0.02 g l(-1) h(-1), respectively, in shake-flask experiments, whereas corresponding values of 0.09 and 0.018 g l(-1) h(-1) were achievable in the STR. Generation of acetone, the major intermediate in aerobic IPA biodegradation, was also monitored as an indicator of microbial IPA utilization. Acetone levels reached a maximum of 2.2-2.3 g l(-1) after 72 and 58 h for 100-ml and 1-l systems, respectively. Both IPA and acetone were completely removed from the medium following 160 and 175 h, respectively, during STR growth, although this was not demonstrated within shake-flask reactions. Growth of B. pallidus on acetone or IPA alone demonstrated that the maximum growth rate ( micro ) obtainable was 0.247 h(-1) at 4 g l(-1) acetone and 0.202 h(-1) at 8 g l(-1) IPA within shake-flask cultivation. These results indicate the potential of the solvent-tolerant thermophile B. pallidus ST3 in the bioremediation of hot solvent-containing industrial waste streams.

  4. Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A.

    PubMed

    Sunna, A; Prowe, S G; Stoffregen, T; Antranikian, G

    1997-03-15

    Three strictly aerobic strains (K-1, K-3d and K-4) were isolated from a hot-spring in Kobe, Japan, and a facultative anaerobic strain LB3A was isolated from sediments collected from the alkaline Lake Bogoria, Kenya. All strains were thermophilic and capable of growth on xylan. On the basis of morphological, physiological and phylogenetic studies the new aerobic isolates resemble the thermophilic species Bacillus thermoleovorans while the facultative anaerobic isolate LB3A resembles the facultative anaerobic thermophilic species Bacillus flavothermus. When grown on xylan as sole carbon source, all isolates produce thermoactive xylanases, Xylanases from strains K-3d and LB3A are active at temperatures between 40 and 90 degrees C and pH values between 5.0 and 9.0. Applying SDS-PAGE the crude xylanase complex of isolate K-3d was shown to be composed of two active bands, with molecular masses of 40 and 69 kDa. The crude xylanase complex of isolate LB3A, on the other hand, is composed of at least four activity bands with molecular masses ranging from 80 to 130 kDa. Due to the product pattern of xylan hydrolysis both enzymes are classified as endoxylanases. The xylanolytic enzyme system of isolate K-3d produces xylotriose, xylotetraose and larger xylooligosacharides, whereas the xylanases from isolate LB3A release xylotetraose as the major product of hydrolysis.

  5. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  6. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  7. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  8. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  9. Diversity of thermophilic and non-thermophilic Crenarchaeota at 80 degrees C.

    PubMed

    Kvist, Thomas; Mengewein, Anett; Manzei, Stefanie; Ahring, Birgitte K; Westermann, Peter

    2005-03-01

    A hot spring in the solfataric field of Pisciarelli (Naples-Italy) was analysed for Archaeal diversity. Total DNA was extracted from the environment, archaeal 16S rRNA genes were amplified with Archaea specific primers, and a clone library consisting of 201 clones was established. The clones were grouped in 10 different groups each representing a specific band pattern using restriction fragment length polymorphism (RFLP). Members of all 10 groups were sequenced and phylogenetically analyzed. Surprisingly, a high abundance of clones belonging to non-thermophilic Crenarchaeal clusters were detected together with the thermophilic archaeon Acidianus infernus in this thermophilic environment. Neither Sulfolobus species nor other hyperthermophilic Crenarchaeota were detected in the clone library. The relative abundance of the sequenced clones was confirmed by terminal restriction fragment analyses. Amplification of 16S rRNA genes from Archaea transferred from the surrounding environment was considered negligible because DNA from non-thermophilic Crenarchaeota incubated under conditions similar to the solfatara could not be PCR amplified after 5 min.

  10. The hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and similar anaerobic thermophiles. Annual technical progress report

    SciTech Connect

    Wiegel, J.

    1995-07-01

    A Xylanase was fractionated from Thermoanaerobacter ethanolicus, an ethanologenic thermophile, and the preparation so obtained was used to determined enzymatic parameters such as pH profile of enzyme activity. The ability of various mono- and di-saccharides as well as temperature variations to induce this enzyme activity were studied.

  11. Combined training (strength plus aerobic) potentiates a reduction in body fat but only functional training reduced low-density lipoprotein cholesterol in postmenopausal women with a similar training load.

    PubMed

    Rossi, Fabrício Eduardo; Fortaleza, Ana Claudia S; Neves, Lucas M; Diniz, Tiego A; de Castro, Marcela R; Buonani, Camila; Mota, Jorge; Freitas, Ismael F

    2017-06-01

    The aim of this study was to compare the effects of combined (CT; strength plus aerobic) and functional training (FT) on the body composition and metabolic profile with a similar training load in postmenopausal women. The participants were divided into three groups: CT (n=20), FT (n=17), and control group (CG, n=15). The trunk FM, fat mass (FM), percentage of FM (FM%), and fat-free mass were estimated by dual-energy X-ray absorptiometry. The metabolic profile, glucose, triacylglycerol, total cholesterol, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (LDL-c) were assessed. There were main effects of time in trunk fat, FM, and FM% (P<0.05). There were statistically significant interaction for FM (P=0.015), FM% (P=0.017) with lower values for CT group. For LDL-c, there was significant interaction (P=0.002) with greater values for FT group in relation to CG and CT. Furthermore, when performed the post hoc test on the "mean absolute differences" (Δ), it can observed statistically significant difference between FT, CT, and CG (-13.0±16.5 mg/dL vs. 4.8±18.4 mg/dL vs. 9.2±18.8 mg/dL, P<0.05). In conclusion, when training loads are equivalent CT potentiated a reduction in FM and FM%, however, only FT reduced LDL-c in postmenopausal women.

  12. Paraquat toxicity and effect of hydrogen peroxide on thermophilic bacteria.

    PubMed

    Allgood, G S; Perry, J J

    1985-01-01

    Paraquat (PQ++) increased cyanide-resistant univalent respiration in cell suspensions of five strains of obligately thermophilic bacteria. PQ++ was reduced by an NADH: or NADPH:paraquat diaphorase and selectivity for NADH, NADPH, or both electron donors varied among the thermophiles. Superoxide anion production that was dependent on the presence of PQ++ was shown by following the superoxide dismutase-inhibitable reduction of cytochrome c. In addition, the PQ++-dependent formation of hydrogen peroxide from superoxide anion was evident in two of the thermophilic strains. Catalase synthesis was induced by adding hydrogen peroxide to the growth medium of the thermophiles. The induction of catalase to eliminate hydrogen peroxide appears to be an important response of these thermophilic bacteria to oxygen toxicity.

  13. Characterization of thermolide biosynthetic genes and a new thermolide from sister thermophilic fungi.

    PubMed

    Niu, Xuemei; Chen, Li; Yue, Qun; Wang, Baile; Zhang, Junxian; Zhu, Chunyan; Zhang, Keqin; Bills, Gerald F; An, Zhiqiang

    2014-07-18

    Prior chemical analysis of obligate thermophilic fungus Talaromyces thermophilus led to the discovery of thermolides A-F, six previously undescribed members of the lactam-bearing macrolactone class. A combination of chemical screening, genome analyses, and genetic manipulation led to the identification of the thermolide biosynthetic genes from sister thermophilic fungi T. thermophilus and Thermomyces lanuginosus and a new thermolide. The biosynthetic locus for the thermolides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS). Our results reveal the first fungal hybrid iterative PKS-NRPS genes involved in the biosynthesis of bacterial-like hybrid macrolactones instead of typical fungal tetramic acids-containing metabolites. The finding provides an insight into the convergent biosynthetic end products that bridge the gap between the modular and iterative PKS-NRPS hybrids.

  14. The Effect of Interdialytic Combined Resistance and Aerobic Exercise Training on Health Related Outcomes in Chronic Hemodialysis Patients: The Tunisian Randomized Controlled Study.

    PubMed

    Frih, Bechir; Jaafar, Hamdi; Mkacher, Wajdi; Ben Salah, Zohra; Hammami, Mohamed; Frih, Ameur

    2017-01-01

    Background: Tunisia has the highest prevalence of hemodialysis patients compared to the other countries in North Africa. Dialysis centers rarely offer an exercise program to prevent physiological and psychological dialysis therapy-related alterations in chronic hemodialysis patients. Aim: To examine the effect of combined endurance-resistance training program on physiological and psychological outcomes in patients undergoing hemodialysis. Methods: We designed a single blinded, randomized, controlled study for a period of 4 months. Patients were randomized to intervention group or control group. Intervention group patients received 4 training sessions per week, held on non-hemodialysis days for a period of 4 months, whereas control group patients continued their regular lifestyle practice without direct intervention from the personnel of this investigation. Patients were evaluated at baseline (initial assessment) and after the four-month study period (final assessment) by the same investigator blinded to treatment group assignment using physical, physiological, and psychological measurements. Results: Compared with control group, intervention group showed significant improvement in physical performance during the sit-to-stand-to-sit tests (STS-10: -16.2%, ES = -1.65; STS-60: +23.43%, ES = 1.18), handgrip force task (+23.54%, ES = 1.16), timed up and go test (-13.86%, ES = -1.13), and 6-min walk test (+15.94%, ES = 2.09). Likewise, mini nutritional assessment long form scores after intervention period were significantly higher in the intervention group compared to the control group (ES = 1.43). Physical and mental component scores of SF-36 questionnaire increased significantly in the intervention group (ES = 1.10 and ES = 2.06, respectively), whereas hospital anxiety and depression scale scores decreased significantly (ES = -1.65 and ES = -2.72, respectively). Regarding biological parameters, intervention group displayed improvement in systolic and diastolic blood

  15. Thermophile bacteria in permafrost: model for astrobiology

    NASA Astrophysics Data System (ADS)

    Gilichinsky, D.; Rivkina, E.; Shcherbakova, V.; Laurinavichius, K.; Kholodov, A.; Abramov, A.

    2003-04-01

    According the NASA point of view, one way to have liquid water on Mars at shallow depths would be through subglacial volcanism. Such volcano-ice interactions could be going on beneath the polar caps of Mars today, or even within the adjacent permafrost around the margins of the ice caps. This is why one of the Earth's models, close to extraterrestrial environment, represented by active volcanoes in permafrost areas and the main question is - does such econishes as volcanoes and associated environment contain recently microbial communities? The first step of this study was carried out on volcano Stromboli (Italy), using the marine water samples extracted from the borehole near the island marine coast, surrounding the volcano. According the temperatures (45^oC), this thermal water has the hydraulic connection with volcano. Microscopy analyses of studied water shown the presence of different morphological types of microorganisms: small mobile roads, coccoid and sarcina-like organisms and long fixed roads, as well as rest forms (spores and cysts). To separate this community on marine and volcano microorganisms, the common mineral media with added CO_2, acetate or glucose-peptone as a source of carbon were used for culturing, and Fe3+, S^o, SO_42- were added as a electron acceptors. We attempt to isolate thermophilic anaerobic microorganisms of different metabolic groups - methanogens, acetogens, iron-, sulfur- and sulfate-reducers, and to test each group of microorganisms on the presence of halophilic forms. After 24 hours of incubation at temperatures varied 55 to 85^o, the grow relatively the control media was observed at CO_2+H_2 and glucose-peptone media. Microscopy study of preparations showed small coccus of irregular shape that was unable to reduce S^o or SO_42-. During the subsequent re-seeding were obtained the enrichment cultures of themophilic bacteria, genetically closed to genera Thermococcus: heterotrophic, growing up to 95^oC with the growth optimum at

  16. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain

    PubMed Central

    2012-01-01

    Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious

  17. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain.

    PubMed

    Xiao, Zijun; Wang, Xiangming; Huang, Yunling; Huo, Fangfang; Zhu, Xiankun; Xi, Lijun; Lu, Jian R

    2012-12-06

    Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography-mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious biological resource. Thermophilic

  18. Thermophilic fungi in the new age of fungal taxonomy.

    PubMed

    de Oliveira, Tássio Brito; Gomes, Eleni; Rodrigues, Andre

    2015-01-01

    Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences.

  19. Studies on structural stability of thermophilic Sulfolobus acidocaldarius ribosomes.

    PubMed

    Yangala, Kalavathi; Suryanarayana, Tangirala

    2007-02-01

    Structural stability of thermophilic archaeon Sulfolobus acidocaldarius ribosomes, with respect their susceptibility to pancreatic RNase A and stability to temperature (deltaTm), on treatment with various stabilizing (polyamines) and destabilizing (sulfhydryl and intercalating) agents were studied and compared with mesophilic E. coli ribosomes, to understand the structural differences between thermophilic and mesophilic ribosomes. Thermophilic archaeal ribosomes and their subunits were 10-times less susceptible to pancreatic RNase A, compared to mesophilic ribosomes, showing the presence of strong and compact structural organization in them. Thermophilic ribosomes treated with destabilizing agents, such as sulfhydryl reagents [5,5'-Dithio-bis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercurybenzoate) and intercalating agents (ethidium bromide, EtBr) showed higher stability to RNase A, compared to similarly treated mesophilic ribosomes, indicating the unavailability of thiol-reactive groups and the presence of strong solvent inaccessible inner core. Higher stability of thermophilic ribosomes compared to mesophilic ribosomes to unfolding agents like urea further supported the presence of strong inner core particle. Thermophilic ribosomes treated with intercalating agents, such as EtBr were less susceptible to RNase A, though they bound to more reagent, showing the rigidity or resilience of their macromolecular structure to alterations caused by destabilizing agents. Overall, these results indicated that factors such as presence of strong solvent inaccessible inner core and rigidity of ribosome macromolecular structure contributed stability of thermophilic ribosomes to RNase A and other destabilizing agents, when compared to mesophilic ribosomes.

  20. How Do Thermophilic Proteins and Proteomes Withstand High Temperature?

    PubMed Central

    Sawle, Lucas; Ghosh, Kingshuk

    2011-01-01

    We attempt to understand the origin of enhanced stability in thermophilic proteins by analyzing thermodynamic data for 116 proteins, the largest data set achieved to date. We compute changes in entropy and enthalpy at the convergence temperature where different driving forces are maximally decoupled, in contrast to the majority of previous studies that were performed at the melting temperature. We find, on average, that the gain in enthalpy upon folding is lower in thermophiles than in mesophiles, whereas the loss in entropy upon folding is higher in mesophiles than in thermophiles. This implies that entropic stabilization may be responsible for the high melting temperature, and hints at residual structure or compactness of the denatured state in thermophiles. We find a similar trend by analyzing a homologous set of proteins classified based only on the optimum growth temperature of the organisms from which they were extracted. We find that the folding free energy at the temperature of maximal stability is significantly more favorable in thermophiles than in mesophiles, whereas the maximal stability temperature itself is similar between these two classes. Furthermore, we extend the thermodynamic analysis to model the entire proteome. The results explain the high optimal growth temperature in thermophilic organisms and are in excellent quantitative agreement with full thermal growth rate data obtained in a dozen thermophilic and mesophilic organisms. PMID:21723832

  1. Prevalence and Antimicrobial Resistance of Thermophilic Campylobacter spp. from Cattle Farms in Washington State

    PubMed Central

    Bae, Wonki; Kaya, Katherine N.; Hancock, Dale D.; Call, Douglas R.; Park, Yong Ho; Besser, Thomas E.

    2005-01-01

    The prevalence of thermophilic Campylobacter spp. was investigated in cattle on Washington State farms. A total of 350 thermophilic Campylobacter isolates were isolated from 686 cattle sampled on 15 farms (eight dairies, two calf rearer farms, two feedlots, and three beef cow-calf ranches). Isolate species were identified with a combination of phenotypic tests, hipO colony blot hybridization, and multiplex lpxA PCR. Breakpoint resistance to four antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, and doxycycline) was determined by agar dilution. Campylobacter jejuni was the most frequent species isolated (34.1%), followed by Campylobacter coli (7.7%) and other thermophilic campylobacters (1.5%). The most frequently detected resistance was to doxycycline (42.3% of 350 isolates). Isolates from calf rearer facilities were more frequently doxycycline resistant than isolates from other farm types. C. jejuni was most frequently susceptible to all four of the antimicrobial drugs studied (58.8% of 272 isolates). C. coli isolates were more frequently resistant than C. jejuni, including resistance to quinolone antimicrobials (89.3% of isolates obtained from calves on calf rearer farms) and to erythromycin (72.2% of isolates obtained from feedlot cattle). Multiple drug resistance was more frequent in C. coli (51.5%) than in C. jejuni (5.1%). The results of this study demonstrate that C. jejuni is widely distributed among Washington cattle farms, while C. coli is more narrowly distributed but significantly more resistant. PMID:15640184

  2. Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses.

    PubMed

    Pan, Wen-Zheng; Huang, Xiao-Wei; Wei, Kang-Bi; Zhang, Chun-Mei; Yang, Dong-Mei; Ding, Jun-Mei; Zhang, Ke-Qin

    2010-04-01

    The geothermal sites near neutral and alkalescent thermal springs in Tengchong Rehai National Park were examined through cultivation-dependent approach to determine the diversity of thermophilic fungi in these environments. Here, we collected soils samples in this area, plated on agar media conducive for fungal growth, obtained pure cultures, and then employed the method of internal transcribed spacer (ITS) sequencing combined with morphological analysis for identification of thermophilic fungi to the species level. In total, 102 strains were isolated and identified as Rhizomucor miehei, Chaetomium sp., Talaromyces thermophilus, Talaromyces byssochlamydoides, Thermoascus aurantiacus Miehe var. levisporus, Thermomyces lanuginosus, Scytalidium thermophilum, Malbranchea flava, Myceliophthora sp. 1, Myceliophthora sp. 2, Myceliophthora sp. 3, and Coprinopsis sp. Two species, T. lanuginosus and S. thermophilum were the dominant species, representing 34.78% and 28.26% of the sample, respectively. Our results indicated a greater diversity of thermophilic fungi in neutral and alkaline geothermal sites than acidic sites around hot springs reported in previous studies. Most of our strains thrived at alkaline growth conditions.

  3. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile.

    PubMed

    Baßler, Jochen; Ahmed, Yasar Luqman; Kallas, Martina; Kornprobst, Markus; Calviño, Fabiola R; Gnädig, Marén; Thoms, Matthias; Stier, Gunter; Ismail, Sherif; Kharde, Satyavati; Castillo, Nestor; Griesel, Sabine; Bastuck, Sonja; Bradatsch, Bettina; Thomson, Emma; Flemming, Dirk; Sinning, Irmgard; Hurt, Ed

    2017-02-01

    Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre-ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre-ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in-depth analysis of their protein-protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2-hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein-protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre-ribosome factors forming the ctUTP-A and ctUTP-B modules, and the Brix-domain containing assembly factors of the pre-60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile. © 2017 The Protein Society.

  4. A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus.

    PubMed

    Gilbert, M; Yaguchi, M; Watson, D C; Wong, K K; Breuil, C; Saddler, J N

    1993-12-01

    Two thermophilic xylanases (xylanase II from Thielavia terrestris 255B and the 32-kDa xylanase from Thermoascus crustaceus 235E) were studied to determine if they had different and complementary modes of action when they hydrolysed various types of xylans. Partial amino acid sequencing showed that these two enzymes belonged to different families of beta-1,4-glycanases. Xylanase II achieved faster solubilization of insoluble xylan whereas the 32-kDa xylanase was more effective in producing xylose and short xylo-oligomers. An assessment of the combined hydrolytic action of the two xylanases did not reveal any co-operative action. The sugars released when the two thermophilic xylanases were used together were almost identical to those released when the 32-kDa xylanase acted alone. The two xylanases were able to remove about 12% of the xylan remaining in an aspen kraft pulp. This indicated that either one of these thermophilic enzymes may be useful for enhancing the bleaching of kraft pulps.

  5. Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium.

    PubMed

    Odintsova, E V; Jannasch, H W; Mamone, J A; Langworthy, T A

    1996-04-01

    A new aerobic, obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium, Thermothrix azorensis, was isolated from a hot spring on Sao Miguel Island in the Azores. The cells of this organism are gram negative, nonsporulating, and rod shaped. Filament formation appears to occur as a response to nonoptimal growth conditions. Growth occurs at 63 to 86 degrees C, and the optimum temperature is 76 to 78 degrees C. The optimum pH range for growth is 7.0 to 7.5. The G+C content of the DNA of our isolate is 39.7 mol%. This isolate uses thiosulfate, tetrathionate, hydrogen sulfide, and elemental sulfur as energy sources. Of particular interest are the absence of Calvin cycle enzymes and the initial appearance of sulfide during the lag phase of growth of aerobic cultures grown on elemental sulfur. The subsequent formation of thiosulfate is followed by oxidation of the thiosulfate to sulfate. T. azorensis differs from the only other Thermothrix species that has been described, Thermothrix thiopara, by having higher optimum and maximum growth temperatures, by being an obligate chemolithoautotroph, and by its close but separate position on a 16S rRNA sequence-based phylogenetic tree. Our T. azorensis isolate has been deposited in the American Type Culture Collection as strain ATCC 51754T (T = type strain).

  6. Anaerobic Growth, a Property Horizontally Transferred by an Hfr-Like Mechanism among Extreme Thermophiles

    PubMed Central

    Ramírez-Arcos, Sandra; Fernández-Herrero, Luis A.; Marín, Irma; Berenguer, José

    1998-01-01

    Despite the fact that the extreme thermophilic bacteria belonging to the genus Thermus are classified as strict aerobes, we have shown that Thermus thermophilus HB8 (ATCC 27634) can grow anaerobically when nitrate is present in the growth medium. This strain-specific property is encoded by a respiratory nitrate reductase gene cluster (nar) whose expression is induced by anoxia and nitrate (S. Ramírez-Arcos, L. A. Fernández-Herrero, and J. Berenguer, Biochim. Biophys. Acta, 1396:215–1997). We show here that this nar operon can be transferred by conjugation to an aerobic Thermus strain, enabling it to grow under anaerobic conditions. We show that this transfer takes place through a DNase-insensitive mechanism which, as for the Hfr (high frequency of recombination) derivatives of Escherichia coli, can also mobilize other chromosomal markers in a time-dependent way. Three lines of evidence are presented to support a genetic linkage between nar and a conjugative plasmid integrated into the chromosome. First, the nar operon is absent from a plasmid-free derivative and from a closely related strain. Second, we have identified an origin for autonomous replication (oriV) overlapping the last gene of the nar cluster. Finally, the mating time required for the transfer of the nar operon is in good agreement with the time expected if the transfer origin (oriT) were located nearby and downstream of nar. PMID:9620963

  7. [The evaluation of thermophilic fungi in raw coffee beans].

    PubMed

    Falkowski, Joachim; Jakubowska, Barbara; Janda, Katarzyna

    2002-01-01

    The purpose of the study was the attempt of the isolation of the thermophilic fungi from raw coffee beans. The material constituted of 24 coffee beans samples came from 12 countries. The isolation and the identification of the thermophilic fungi was conducted according to Biłaj [2], Biłaj and Zacharczenko [3]. The study proved, that raw coffee beans were the rich source of the thermophilic mycoflora. From all tested samples 270 species were isolated. The most refused sample came from Ecuador--81% coffee beans were infected. The most of species (90% from among isolated) were species belonged to the Thermomyces lanuginosus.

  8. Extreme Thermophiles: Moving beyond single-enzyme biocatalysis.

    PubMed

    Frock, Andrew D; Kelly, Robert M

    2012-11-12

    Extremely thermophilic microorganisms have been sources of thermostable and thermoactive enzymes for over 30 years. However, information and insights gained from genome sequences, in conjunction with new tools for molecular genetics, have opened up exciting new possibilities for biotechnological opportunities based on extreme thermophiles that go beyond single-step biotransformations. Although the pace for discovering novel microorganisms has slowed over the past two decades, genome sequence data have provided clues to novel biomolecules and metabolic pathways, which can be mined for a range of new applications. Furthermore, recent advances in molecular genetics for extreme thermophiles have made metabolic engineering for high temperature applications a reality.

  9. Combined training (strength plus aerobic) potentiates a reduction in body fat but only functional training reduced low-density lipoprotein cholesterol in postmenopausal women with a similar training load

    PubMed Central

    Rossi, Fabrício Eduardo; Fortaleza, Ana Claudia S.; Neves, Lucas M.; Diniz, Tiego A.; de Castro, Marcela R.; Buonani, Camila; Mota, Jorge; Freitas, Ismael F.

    2017-01-01

    The aim of this study was to compare the effects of combined (CT; strength plus aerobic) and functional training (FT) on the body composition and metabolic profile with a similar training load in postmenopausal women. The participants were divided into three groups: CT (n=20), FT (n=17), and control group (CG, n=15). The trunk FM, fat mass (FM), percentage of FM (FM%), and fat-free mass were estimated by dual-energy X-ray absorptiometry. The metabolic profile, glucose, triacylglycerol, total cholesterol, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (LDL-c) were assessed. There were main effects of time in trunk fat, FM, and FM% (P<0.05). There were statistically significant interaction for FM (P=0.015), FM% (P=0.017) with lower values for CT group. For LDL-c, there was significant interaction (P=0.002) with greater values for FT group in relation to CG and CT. Furthermore, when performed the post hoc test on the “mean absolute differences” (Δ), it can observed statistically significant difference between FT, CT, and CG (−13.0±16.5 mg/dL vs. 4.8±18.4 mg/dL vs. 9.2±18.8 mg/dL, P<0.05). In conclusion, when training loads are equivalent CT potentiated a reduction in FM and FM%, however, only FT reduced LDL-c in postmenopausal women. PMID:28702444

  10. Evaluation of the detoxication efficiencies for acrylonitrile wastewater treated by a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process: Acute toxicity and zebrafish embryo toxicity.

    PubMed

    Na, Chunhong; Zhang, Ying; Deng, Minjie; Quan, Xie; Chen, Shuo; Zhang, Yaobin

    2016-07-01

    Acrylonitrile (ACN) wastewater generated during ACN production has been reported to be toxic to many aquatic organisms. However, few studies have evaluated toxicity removal of ACN wastewater during and after the treatment process. In this study, the detoxication ability of an ACN wastewater treatment plant (WWTP) was evaluated using Daphnia magna, Danio rerio and zebrafish embryo. This ACN WWTP has a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process upgraded from the traditional anaerobic oxic (A/O) process. Moreover, the potential toxicants of the ACN wastewaters were identified by gas chromatography-mass spectrometry (GC-MS). The raw ACN wastewater showed high acute and embryo toxicity. 3-Cyanopyridine, succinonitrile and a series of nitriles were detected as the toxic contributors of ACN wastewater. The A/O process was effective for the acute and embryo toxicity removal, as well as the organic toxicants. However, the A/O effluent still showed acute and embryo toxicity which was attributed by the undegraded and the newly generated toxicants during the A/O process. The residual acute and embryo toxicity as well as the organic toxicants in the A/O effluent were further reduced after going through the downstream ABFT process system. The final effluent displayed no significant acute and embryo toxicity, and less organic toxicants were detected in the final effluent. The upgrade of this ACN WWTP results in the improved removal efficiencies for acute and embryo toxicity, as well as the organic toxicants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise on markers of bone metabolism, microarchitecture and turnover in obese Zucker rats.

    PubMed

    Nebot, Elena; Aparicio, Virginia A; Coll-Risco, Irene; Camiletti-Moirón, Daniel; Schneider, Johannes; Kapravelou, Garyfallia; Heimel, Patrick; Martínez, Rosario; Andrade, Ana; Slezak, Paul; Redl, Heinz; Porres, Jesús M; López-Jurado, María; Pietschmann, Peter; Aranda, Pilar

    2016-11-01

    Weight loss is a public health concern in obesity-related diseases such as metabolic syndrome, and the protein level of the diets seem to be crucial for the development and maintenance of bone. The nature of exercise and whether exercise in combination with moderately high-protein dietary interventions could protect against potential bone mass deficits remains unclear. To investigate the effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise (IASE) protocol on bone status, and to assess potential interaction effects (i.e. diet*IASE). Male Zucker fatty rats were randomized distributed into 4 groups (n=8): normoprotein+sedentary; normoprotein+exercise; moderately high-protein+sedentary, and moderately high-protein+exercise. Training groups conducted an IASE program, 5days/week for 2months. Markers of bone metabolism were measured in plasma. Parameters of bone mass and 3D outcomes for trabecular and cortical bone microarchitecture were assessed by micro-computed tomography. Femur length, plasma osteocalcin, sclerostin, osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, insulin, leptin, PTH, uric acid and urinary phosphorus levels were lower in the moderately high-protein compared to the normoprotein groups (all, p<0.05), whereas plasma alkaline phosphatase, aspartate aminotransferase, alanine transaminase, and urinary uric acid concentrations, and cortical total volume (TV) and bone volume (BV) were higher in the moderately high-protein (all, p<0.01). Final body weight and alkaline phosphatase levels were lower in the exercise compared to the sedentary (both, p<0.05), whereas femur length and weight, aminoterminal propeptides of type I procollagen and C-terminal telopeptides of type I collagen concentrations, and cortical TV and BV were higher in the exercise compared to the sedentary groups (all, p<0.05). The combination of interventions may be effective to enhance trabecular bone

  12. A novel thermophilic methane-oxidizing bacteria from thermal springs of Uzon volcano caldera, Kamchatka

    NASA Astrophysics Data System (ADS)

    Dvorianchikova, E.; Kizilova, A.; Kravchenko, I.; Galchenko, V.

    2012-04-01

    Methane is a radiatively active trace gas, contributing significantly to the greenhouse effect. It is 26 times more efficient in absorbing and re-emitting infrared radiation than carbon dioxide. Methanotrophs play an essential role in the global carbon cycle by oxidizing 50-75% of the biologically produced methane in situ, before it reaches the atmosphere. Methane-oxidizing bacteria are isolated from the various ecosystems and described at present. Their biology, processes of methane oxidation in fresh-water, marsh, soil and marine habitats are investigated quite well. Processes of methane oxidation in places with extreme physical and chemical conditions (high or low , salinity and temperature values) are studied in much smaller degree. Such ecosystems occupy a considerable part of the Earth's surface. The existence of aerobic methanotrophs inhabiting extreme environments has been verified so far by cultivation experiments and direct detection of methane monooxygenase genes specific to almost all aerobic methanotrophs. Thermophilic and thermotolerant methanotrophs have been isolated from such extreme environments and consist of the gammaproteobacterial (type I) genera Methylothermus, Methylocaldum, Methylococcus and the verrucomicrobial genus Methylacidiphilum. Uzon volcano caldera is a unique area, where volcanic processes still happen today. Hydrothermal springs of the area are extreme ecosystems which microbial communities represent considerable scientific interest of fundamental and applied character. A thermophilic aerobic methane-oxidising bacterium was isolated from a sediment sample from a hot spring (56.1; 5.3) of Uzon caldera. Strain S21 was isolated using mineral low salt medium. The headspace gas was composed of CH4, Ar, CO2, and O2 (40:40:15:5). The temperature of cultivation was 50, pH 5.5. Cells of strain S21 in exponential and early-stationary phase were coccoid bacilli, about 1 μm in diameter, and motile with a single polar flagellum. PCR and

  13. Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization.

    PubMed

    Singh, Bijender; Satyanarayana, T

    2008-03-01

    Culture variables affecting phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation were optimized. Soluble starch, peptone, Tween-80 and sodium phytate were identified by Plackett-Burman design as the most significant factors to affect phytase production. The 2(4) full factorial central composite design of response surface methodology was applied for optimizing the concentrations of the significant variables and to delineate their interactions. Starch, Tween-80, peptone and sodium phytate at 0.4%, 1.0%, 0.3% and 0.3% supported maximum enzyme titres, respectively. An overall 3.73-fold improvement in phytase production was achieved due to optimization. When sodium phytate was substituted with wheat bran (3%), the phytase titre in the former was comparable with that in the latter.

  14. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential.

    PubMed

    Singh, Bijender

    2016-01-01

    Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.

  15. The universal ancestor was a thermophile or a hyperthermophile.

    PubMed

    Di Giulio, M

    2001-12-27

    By exploiting the correlation between the optimal growth temperature of organisms and a thermophily index based on the propensity of amino acids to enter thermophile/hyperthermophile proteins, an analysis is conducted in order to establish whether the last universal common ancestor (LUCA) was a mesophile or a (hyper)thermophile. This objective is reached by using maximum parsimony and maximum likelihood to reconstruct the ancestral sequences of the LUCA for two pairs of sets of paralogous protein sequences by means of the phylogenetic tree topology derived from the small subunit ribosomal RNA, even if this is rooted in all three possible ways. The thermophily index of all the reconstructed ancestral sequences of the LUCA belongs to the set of the thermophile/hyperthermophile sequences, thus supporting the hypotheses that see the LUCA as a thermophile or a hyperthermophile.

  16. Thermophilic bacteria from Mexican thermal environments: isolation and potential applications.

    PubMed

    Pinzón-Martínez, D L; Rodríguez-Gómez, C; Miñana-Galbis, D; Carrillo-Chávez, J A; Valerio-Alfaro, G; Oliart-Ros, R

    2010-01-01

    Extremophiles are microorganisms that possess application possibilities in several industrial fields, including agricultural, chemical, laundry, pharmaceutical, food, petroleum and bioremediation. This work reports the isolation of 19 thermophilic, alkalitolerant and halotolerant bacterial strains from two thermal sites in Veracruz, México: El Carrizal thermal pool and Los Baños hot spring. These strains belong to the Geobacillus, Anoxybacillus and Aeribacillus genera. The strains produce lipases, proteases, and amylases under thermophilic conditions. They may have good potential for application in microbial enhanced oil recovery, since they are thermophilic and halotolerant, produce exopolymers (up to 11.8 mg/mg) and acids, show emulsifying activity (E24 up to 7.5%), and are able to grow in kerosene as carbon source; these strains may also be used in biodesulphurization since they can grow in dibenzothiophene producing 2-hydroxybiphenyl under thermophilic conditions (up to 2.9 mg/L).

  17. Aerobic scope in chicken embryos.

    PubMed

    Ide, Satoko T; Ide, Ryoji; Mortola, Jacopo P

    2017-10-01

    We investigated the aerobic scope of chicken embryos, that is, the margin of increase of oxygen consumption ( [Formula: see text] ) above its normal value. [Formula: see text] was measured by an open-flow methodology at embryonic ages E3, E7, E11, E15, E19 and at E20 at the internal (IP) and external pipping (EP) phases, at the normal incubation temperature (Ta=38°C), in hypothermia (Ta=30°C) and in hyperthermia (Ta=41 and 44°C). In the cold, Q10 averaged ~2 at all ages, except in IP and EP when lower values (~1.5) indicated some degree of thermogenesis. In hyperthermia (38-44°C) Q10 was between 1 and 1.4. Hyperthermia had no significant effects on [Formula: see text] whether the results combined all ages or considered individual age groups, except in IP (in which [Formula: see text] increased 8% with 44°C) and EP embryos (+13%). After opening the air cell, which exposed the embryo to a higher O2 pressure, hyperthermic [Formula: see text] was significantly higher than in normothermia in E19 (+13%), IP (+22%) and EP embryos (+22%). We conclude that in chicken embryos throughout most of incubation neither heat nor oxygen availability limits the normal (normoxic-normothermic) values of [Formula: see text] . Only close to hatching O2-diffusion represents a limiting factor to the embryo's [Formula: see text] . Hence, embryos differ from postnatal animals for a nearly absent aerobic scope, presumably because their major sources of energy expenditure (growth and tissue maintenance) are constantly maximized. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  19. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  20. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  1. Aerobic glycolysis: beyond proliferation.

    PubMed

    Jones, William; Bianchi, Katiuscia

    2015-01-01

    Aerobic glycolysis has been generally associated with cancer cell proliferation, but fascinating and novel data show that it is also coupled to a series of further cellular functions. In this Mini Review, we will discuss some recent findings to illustrate newly defined roles for this process, in particular in non-malignant cells, supporting the idea that metabolism can be considered as an integral part of cellular signaling. Consequently, metabolism should be regarded as a plastic and highly dynamic determinant of a wide range of cellular specific functions.

  2. Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria.

    PubMed

    Ibrahim, M H A; Willems, A; Steinbüchel, A

    2010-11-01

    This study aimed at isolating thermophilic bacteria that utilize cheap carbon substrates for the economically feasible production of poly(3-hydroxybutyrate), poly(3HB), at elevated temperatures. Thermophilic bacteria were enriched from an aerobic organic waste treatment plant in Germany, and from hot springs in Egypt. Using the viable colony staining method for hydrophobic cellular inclusions with Nile red in mineral salts medium (MSM) containing different carbon sources, six Gram-negative bacteria were isolated. Under the cultivation conditions used in this study, strains MW9, MW11, MW12, MW13 and MW14 formed stable star-shaped cell-aggregates (SSCAs) during growth; only strain MW10 consisted of free-living rod-shaped cells. The phylogenetic relationships of the strains as derived from 16S rRNA gene sequence comparisons revealed them as members of the Alphaproteobacteria. The 16S rRNA gene sequences of the isolates were very similar (>99% similarity) and exhibited similarities ranging from 93 to 99% with the most closely related species that were Chelatococcus daeguensis, Chelatococcus sambhunathii,Chelatococcus asaccharovorans, Bosea minatitlanensis, Bosea thiooxidans and Methylobacterium lusitanum. Strains MW9, MW10, MW13 and MW14 grew optimally in MSM with glucose, whereas strains MW11 and MW12 preferred glycerol as sole carbon source for growth and poly(3HB) accumulation. The highest cell density and highest poly(3HB) content attained were 4·8g l(-l) (cell dry weight) and 73% (w/w), respectively. Cells of all strains grew at temperatures between 37 and 55°C with the optimum growth at 50°C. New PHA-accumulating thermophilic bacterial strains were isolated and characterized to produce poly(3HB) from glucose or glycerol in MSM at 50°C. SSCAs formation was reported during growth. To the best of our knowledge, this is the first report on the formation of SSCAs by PHA-accumulating bacteria and also by thermophilic bacteria. PHA-producing thermophiles can

  3. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria

    PubMed Central

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K.; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J.; Misra, Anup K.; Chakraborty, Ranadhir; Nanda, Ashish K.; Mukhopadhyay, Subhra K.; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0–8.5 pH) mid-temperature (55–85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml−1 vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D

  4. (Hyper)thermophilic enzymes: production and purification.

    PubMed

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  5. Combined radiation-protective and radiation-sensitizing agents. II. Radiosensitivity of hypoxic or aerobic Chinese hamster fibroblasts in the presence of cysteamine and misonidazole: implications for the oxygen effect (with Appendix on calculation of dose-modifying factors. [/sup 60/Co

    SciTech Connect

    Koch, C.J.; Howell, R.L.

    1981-08-01

    Experiments have been done to test whether a hypoxic cell radiosensitizing agent (misonidazole) can be combined with a radioprotecting agent (cysteamine) to equalize partially the radiation response of hypoxic and aerobic mammalian cells in tissue culture. The results indicate that cysteamine will protect against the radiosensitization of a hypoxic cell sensitizing drug (2.5 mM misonidazole) at much lower concentration than it will protect against the radiosensitization of oxygen (350 ..mu..M). Thus the addition of a radiation-protective drug tends to cancel the drug benefit of the radiosensitizer and therefore increases the differential response of hypoxic and aerobic cells rather than equalizing this response. The data suggest that even in situations where tumor tissue absorbs far less radioprotective drug than normal tissue (e.g., WR 2721), one might expect difficulties with the simultaneous administration of radiosensitizing and radioprotecting drugs.

  6. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study.

    PubMed Central

    Georis, J.; de Lemos Esteves, F.; Lamotte-Brasseur, J.; Bougnet, V.; Devreese, B.; Giannotta, F.; Granier, B.; Frère, J. M.

    2000-01-01

    In a general approach to the understanding of protein adaptation to high temperature, molecular models of the closely related mesophilic Streptomyces sp. S38 Xyl1 and thermophilic Thermomonospora fusca TfxA family 11 xylanases were built and compared with the three-dimensional (3D) structures of homologous enzymes. Some of the structural features identified as potential contributors to the higher thermostability of TfxA were introduced in Xyl1 by site-directed mutagenesis in an attempt to improve its thermostability and thermophilicity. A new Y11-Y16 aromatic interaction, similar to that present in TfxA and created in Xyl1 by the T11Y mutation, improved both the thermophilicity and thermostability. Indeed, the optimum activity temperature (70 vs. 60 degrees C) and the apparent Tm were increased by about 9 degrees C, and the mutant was sixfold more stable at 57 degrees C. The combined mutations A82R/F168H/N169D/delta170 potentially creating a R82-D169 salt bridge homologous to that present in TfxA improved the thermostability but not the thermophilicity. Mutations R82/D170 and S33P seemed to be slightly destabilizing and devoid of influence on the optimal activity temperature of Xyl1. Structural analysis revealed that residues Y11 and Y16 were located on beta-strands B1 and B2, respectively. This interaction should increase the stability of the N-terminal part of Xyl1. Moreover, Y11 and Y16 seem to form an aromatic continuum with five other residues forming putative subsites involved in the binding of xylan (+3, +2, +1, -1, -2). Y11 and Y16 might represent two additional binding subsites (-3, -4) and the T11Y mutation could thus improve substrate binding to the enzyme at higher temperature and thus the thermophilicity of Xyl1. PMID:10752608

  7. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  8. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  9. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  10. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: effect of pH.

    PubMed

    Liu, Xiaoguang; Dong, Bin; Dai, Xiaohu

    2013-11-01

    This study investigated the effect of pH (uncontrolled, 8.0, 10.0 and 12.0) and temperature (mesophilic, thermophilic and extreme thermophilic) on hydrolysis and acidification of dewatered sludge in 7-day batch fermentation experiment. Solublization of COD, protein and carbohydrates as well as concentration and composition of VFAs were investigated. Sludge hydrolysis was enhanced with higher pH and temperature. The maximum SCOD, soluble protein and carbohydrates was observed at pH 12.0 at extreme thermophilic condition. The maximum VFAs yield was obtained at thermophilic and was 2.15 times that at mesophilic condition, but it took more time to reach the maximum. The VFAs consisted of acetic, propionic, iso-butyric, n-butyric, iso-valeric, and n-valeric acids, and acetic acid was the prevalent product in most cases except for uncontrolled pH and pH 8.0 at mesophilic condition. The methane production was as follows: pH 8.0>pH 10.0>uncontrolled (0.015)>pH 12.0; mesophilic>thermophilic>extreme thermophilic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  12. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  13. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    SciTech Connect

    Basen, M; Schut, GJ; Nguyen, DM; Lipscomb, GL; Benn, RA; Prybol, CJ; Vaccaro, BJ; Poole, FL; Kelly, RM; Adams, MWW

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  14. Involvement of thermophilic archaea in the biocorrosion of oil pipelines.

    PubMed

    Davidova, Irene A; Duncan, Kathleen E; Perez-Ibarra, B Monica; Suflita, Joseph M

    2012-07-01

    Two thermophilic archaea, strain PK and strain MG, were isolated from a culture enriched at 80°C from the inner surface material of a hot oil pipeline. Strain PK could ferment complex organic nitrogen sources (e.g. yeast extract, peptone, tryptone) and was able to reduce elemental sulfur (S°), Fe(3+) and Mn(4+) . Phylogenetic analysis revealed that the organism belonged to the order Thermococcales. Incubations of this strain with elemental iron (Fe°) resulted in the abiotic formation of ferrous iron and the accumulation of volatile fatty acids during yeast extract fermentation. The other isolate, strain MG, was a H(2) :CO(2) -utilizing methanogen, phylogenetically affiliated with the genus Methanothermobacter family. Co-cultures of the strains grew as aggregates that produced CH(4) without exogenous H(2) amendment. The co-culture produced the same suite but greater concentrations of fatty acids from yeast extract than did strain PK alone. Thus, the physiological characteristics of organisms both alone and in combination could conceivably contribute to pipeline corrosion. The Thermococcus strain PK could reduce elemental sulfur to sulfide, produce fatty acids and reduce ferric iron. The hydrogenotrophic methanogen strain MG enhanced fatty acid production by fermentative organisms but could not couple the dissolution Fe° with the consumption of water-derived H(2) like other methanogens. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius.

    PubMed

    Lin, Paul P; Rabe, Kersten S; Takasumi, Jennifer L; Kadisch, Marvin; Arnold, Frances H; Liao, James C

    2014-07-01

    The potential advantages of biological production of chemicals or fuels from biomass at high temperatures include reduced enzyme loading for cellulose degradation, decreased chance of contamination, and lower product separation cost. In general, high temperature production of compounds that are not native to the thermophilic hosts is limited by enzyme stability and the lack of suitable expression systems. Further complications can arise when the pathway includes a volatile intermediate. Here we report the engineering of Geobacillus thermoglucosidasius to produce isobutanol at 50°C. We prospected various enzymes in the isobutanol synthesis pathway and characterized their thermostabilities. We also constructed an expression system based on the lactate dehydrogenase promoter from Geobacillus thermodenitrificans. With the best enzyme combination and the expression system, 3.3g/l of isobutanol was produced from glucose and 0.6g/l of isobutanol from cellobiose in G. thermoglucosidasius within 48h at 50°C. This is the first demonstration of isobutanol production in recombinant bacteria at an elevated temperature. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Single gene insertion drives bioalcohol production by a thermophilic archaeon.

    PubMed

    Basen, Mirko; Schut, Gerrit J; Nguyen, Diep M; Lipscomb, Gina L; Benn, Robert A; Prybol, Cameron J; Vaccaro, Brian J; Poole, Farris L; Kelly, Robert M; Adams, Michael W W

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  17. Resistance versus aerobic exercise training in chronic heart failure.

    PubMed

    Mandic, Sandra; Myers, Jonathan; Selig, Steve E; Levinger, Itamar

    2012-03-01

    It is now accepted that exercise training is a safe and effective therapeutic intervention to improve clinical status, functional capacity, and quality of life in people with chronic heart failure (CHF). Nevertheless, this therapeutic modality remains underprescribed and underutilized. Both aerobic and resistance training improve exercise capacity and may partially reverse some of the cardiac, vascular, and skeletal muscle abnormalities in individuals with CHF. Aerobic training has more beneficial effects on aerobic power (peak oxygen consumption) and cardiac structure and function than resistance exercise training, while the latter is more effective for increasing muscle strength and endurance and promoting favorable arterial remodeling. Combined aerobic and resistance training is the preferred exercise intervention to reverse or attenuate the loss of muscle mass and improve exercise and functional capacity, muscle strength, and quality of life in individuals with CHF. The challenge now is to translate these research findings into clinical practice.

  18. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a.

    PubMed

    Rooney, Elise A; Rowe, Kenneth T; Guseva, Anna; Huntemann, Marcel; Han, James K; Chen, Amy; Kyrpides, Nikos C; Mavromatis, Konstantinos; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Liolios, Konstantinos; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Shapiro, Nicole; Woyke, Tanja; Lynd, Lee R; Izquierdo, Javier A

    2015-07-23

    Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain.

  19. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments.

    PubMed

    Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki

    2005-12-01

    Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.

  20. LC-ESI-MS/MS identification of polar lipids of two thermophilic Anoxybacillus bacteria containing a unique lipid pattern.

    PubMed

    Rezanka, Tomáš; Kambourova, Margarita; Derekova, Anna; Kolouchová, Irena; Sigler, Karel

    2012-07-01

    Phospholipids and glycolipids from two recently described species belonging to the thermophilic genus Anoxybacillus were analyzed by liquid chromatography-electrospray tandem mass spectrometry (LC/ESI-MS/MS). Analysis of total lipids from the facultatively anaerobic A. bogrovensis on a HILIC (Hydrophilic Interaction LIquid Chromatography) column succeeded in separating diacyl- and plasmalogen phospholipids. The LC/ESI-MS/MS analysis of the strict aerobe A. rupiensis revealed the presence of different unique polar lipids, predominantly alanyl-, lysyl-, and glucosyl-phosphatidylglycerols and cardiolipins. Each of the classes of polar lipids was then analyzed by means of the ESI-MS/MS and more than 140 molecular species of six lipid classes from A. bogrovensis and nearly 200 molecular species of nine classes of polar lipids from A. rupiensis were identified. Five classes of unidentified polar lipids were detected in both strains. Plasmalogens were thus determined for the first time in a facultatively anaerobic bacterium, i.e. A. bogrovensis.

  1. The contribution of thermophilic anaerobic digestion to the stable operation of wastewater sludge treatment.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Zaplatílková, P; Kutil, J

    2002-01-01

    Thermophilic anaerobic digestion of sewage sludge has been successfully operated in full-scale tanks almost three years. The higher loading capacity and specific biogas production rate in comparison with mesophilic digestion was proved. Thermophilic anaerobic sludge is also more resistant against foaming problems. Biogas from thermophilic tanks contains less hydrogen sulphide and other malodorous substances. Pathogens removal rate is apparently more efficient in the thermophilic process.

  2. Thermophiles Microbe Signature in Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Bulat, S. A.; Alekhina, I. A.; Blot, M.; Petit, J.; Waggenbach, D.; Lipenkov, V. Y.; Raynaud, D.; Lukin, V. V.

    2002-05-01

    Molecular biology studies by PCR-based analyses of 16S rDNA in Vostok ice showed that glacier ice, accreted ice and thus likely the lake water itself are incredibly pure in regard to microbes. Very low DOC (Dissolved Organic Carbon) content is at range 0.0-24.7 ppb in accreted and glacier ice along, suggesting together with the DNA content for an autotrophic rather than heterotrophic life in the lake. The bacterial biomass in both accreted and glacier ice is expected to be less than 10 to 50 cells/mL of meltwater, a value close to detection limits of PCR (Polymerase Chain Reaction) implemented (2-8 cells/mL). In addition, prospect for glacier-released microbes to be active in the lake seems to be rather questionable due to possible DNA degradation through oxidation within oxygen-rich glacier ice during its long (1000 kyr) transit from the surface to the base of the ice sheet. This may explain our failure with confident microbial DNA findings in glacier ice. The glacier-released microbes that may be alive or decayed would represent a very low input to lake biota and to DOC content. Also, the postulated excess of oxygen released into the lake by glacier melting is unlikely to be consumed much microbiologically. By comparing glacier and accreted ice cores facilitated by analysis the external (contaminated) part of the iced cores vs. the internal uncontaminated region from accreted ice samples, we detected so far three bacteria as clone assortment that are believed indigenous in the lake Vostok. They all by closely related database DNA signatures represent (expected to be) thermophiles. One of them is known extant species identified in hot springs and capable to grow as a chemolithoautotroph oxidizing H2 and reducing CO2 at reduced O2 tensions. Two other taxa are not identified in the current databases, but showed relatedness to bacteria associated to hydrothermal vents and surface sediments nearby. Among them are thiosulfate-oxidizers and anaerobic methanotrophs (96

  3. Aerobic granular sludge: recent advances.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong; Show, Kuan-Yeow; Tay, Joo-Hwa

    2008-01-01

    Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described. This paper provides an up-to-date review on recent research development in aerobic biogranulation technology and applications in treating toxic industrial and municipal wastewaters. Factors affecting granulation, granule characterization, granulation hypotheses, effects of different operational parameters on aerobic granulation, response of aerobic granules to different environmental conditions, their applications in bioremediations, and possible future trends were delineated. The review attempts to shed light on the fundamental understanding in aerobic granulation by newly employed confocal laser scanning microscopic techniques and microscopic observations of granules.

  4. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  5. Use of PCR-DGGE Based Molecular Methods to Analyse Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD Wastewater Sludge Treatment Process as an Aid to Performance Monitoring

    PubMed Central

    Piterina, Anna V.; Pembroke, J. Tony

    2013-01-01

    PCR and PCR-DGGE techniques have been evaluated to monitor biodiversity indexes within an ATAD (autothermal thermophilic aerobic digestion) system treating domestic sludge for land spread, by examining microbial dynamics in response to elevated temperatures during treatment. The ATAD process utilises a thermophilic population to generate heat and operates at elevated pH due to degradation of sludge solids, thus allowing pasteurisation and stabilisation of the sludge. Genera-specific PCR revealed that Archaea, Eukarya and Fungi decline when the temperature reaches 59°C, while the bacterial lineage constitutes the dominant group at this stage. The bacterial community at the thermophilic stage, its similarity index to the feed material, and the species richness present were evaluated by PCR-DGGE. Parameters such as choice of molecular target (16S rDNA or rpoB genes), and electrophoresis condition, were optimised to maximise the resolution of the method for ATAD. Dynamic analysis of microbial communities was best observed utilising PCR-DGGE analysis of the V6-V8 region of 16S rDNA, while rpoB gene profiles were less informative. Unique thermophilic communities were shown to quickly adapt to process changes, and shown to be quite stable during the process. Such techniques may be used as a monitoring technique for process health and efficiency. PMID:25937969

  6. Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae.

    PubMed

    van den Brink, Joost; Facun, Kryss; de Vries, Michel; Stielow, J Benjamin

    2015-12-01

    Thermophilic fungi have the potential to produce industrial-relevant thermostable enzymes, in particular for the degradation of plant biomass. Sordariales is one of the few fungal orders containing several thermophilic taxa, of which many have been associated with the production of thermostable enzymes. The evolutionary affiliation of Sordariales fungi, especially between thermophiles and non-thermophilic relatives, is however poorly understood. Phylogenetic analysis within the current study was based on sequence data, derived from a traditional Sanger and highly multiplexed targeted next generation sequencing approach of 45 isolates. The inferred phylogeny and detailed growth analysis rendered the trait 'thermophily' as polyphyletic within Chaetomiaceae (Sordariales, Sordariomycetes), and characteristic to: Myceliophthora spp., Thielavia terrestris, Chaetomium thermophilum, and Mycothermus thermophilus. Compared to mesophiles, the isolates within thermophilic taxa produced enzyme mixtures with the highest thermostability of known cellulase activities. Temperature profiles of the enzyme activities correlated strongly with the optimal growth temperatures of the isolates but not with their phylogenetic relationships. This strong correlation between growth and enzyme characteristics indicated that detailed analysis of growth does give predictive information on enzyme physiology. The variation in growth and enzyme characteristics reveals these fungi as an excellent platform to better understand fungal thermophily and enzyme thermostability. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling.

    PubMed

    Yazdani, Ramin; Mostafid, M Erfan; Han, Byunghyun; Imhoff, Paul T; Chiu, Pei; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2010-08-15

    A bioreactor landfill cell at Yolo County, California was operated aerobically for six months to quantify the extent of aerobic degradation and mechanisms limiting aerobic activity during air injection and liquid addition. The portion of the solid waste degraded anaerobically was estimated and tracked through time. From an analysis of in situ aerobic respiration and gas tracer data, it was found that a large fraction of the gas-filled pore space was in immobile zones where it was difficult to maintain aerobic conditions, even at relatively moderate landfill cell-average moisture contents of 33-36%. Even with the intentional injection of air, anaerobic activity was never less than 13%, and sometimes exceeded 65%. Analyses of gas tracer and respiration data were used to quantify rates of respiration and rates of mass transfer to immobile gas zones. The similarity of these rates indicated that waste degradation was influenced significantly by rates of oxygen transfer to immobile gas zones, which comprised 32-92% of the gas-filled pore space. Gas tracer tests might be useful for estimating the size of the mobile/immobile gas zones, rates of mass transfer between these regions, and the difficulty of degrading waste aerobically in particular waste bodies.

  8. Protease Production by Different Thermophilic Fungi

    NASA Astrophysics Data System (ADS)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 — using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  9. Characterization of hemicellulases from thermophilic fungi.

    PubMed

    Maijala, P; Kango, N; Szijarto, N; Viikari, L

    2012-05-01

    The thermophilic fungi Thermomyces lanuginosus, Malbranchea cinnamomea, Myceliophthora fergusii and the thermotolerant Aspergillus terreus were cultivated on various carbon sources, and hemicellulolytic and cellulolytic enzyme profiles were evaluated. All fungi could grow on locust bean galactomannan (LBG), Solka floc, wheat bran and pectin, except T. lanuginosus, which failed to utilize LBG for growth. Different levels of cellulase and hemicellulase activities were produced by these fungal strains. Depending on the carbon source, variable ratios of thermostable hydrolytic enzymes were obtained, which may be useful in various applications. All strains were found to secrete xylanolytic and mannanolytic enzymes. Generally, LBG was the most efficient carbon source to induce mannanase activities, although T. lanuginosus was able to produce mannanase only on wheat bran as a carbon source. Xylanolytic activities were usually highest on wheat bran medium, but in contrast to other investigated fungi, xylanase production by M. fergusii was enhanced on pectin medium. Preliminary thermostability screening indicated that among the investigated species, thermotolerant glycosidases can be found. Some of the accessory activities, including the α-arabinosidase activity, were surprisingly high. The capability of the produced enzymes to improve the hydrolysis of lignocellulosic pretreated substrate was evaluated and revealed potential for these enzymes.

  10. Protease production by different thermophilic fungi.

    PubMed

    Macchione, Mariana M; Merheb, Carolina W; Gomes, Eleni; da Silva, Roberto

    2008-03-01

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi--Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37--using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  11. Stabilization of Enzymes by Using Thermophiles.

    PubMed

    Ribeiro, Ana Luisa; Sánchez, Mercedes; Hidalgo, Aurelio; Berenguer, José

    2017-01-01

    Manufactured steroid compounds have many applications in the pharmaceutical industry. Due to the chemical complexity and chirality of steroids, there is an increasing demand for enzyme-based bioconversion processes to replace those based on chemical synthesis. In this context, thermostability of the involved enzymes is a highly desirable property as both the increased half-life of the enzyme and the enhanced solubility of substrates and products will improve the yield of the reactions. Metagenomic libraries from thermal environments are potential sources of thermostable enzymes of prokaryotic origin, but the number of expected hits could be quite low for enzymes handling substrates such as steroids, rarely found in prokaryotes. An alternative to metagenome screening is the selection of thermostable variants of well-known steroid-processing enzymes. Here we review and detail a protocol for such selection, where error-prone PCR (epPCR) is used to introduce random mutations into a gene to create a variants library for further selection of thermostable variants in the thermophile Thermus thermophilus. The method involves the use of folding interference vectors where the proper folding of the enzyme of interest at high temperature is linked to the folding of a reporter encoding a selectable property such as thermostable resistance to kanamycin, leading to a life-or-death selection of variants of reinforced folding independently of the activity of the enzyme.

  12. Microbial influenced corrosion by thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  13. Thermophilic biotrickling filtration of ethanol vapors.

    PubMed

    Cox, H H; Sexton, T; Shareefdeen, Z M; Deshusses, M A

    2001-06-15

    The treatment of ethanol vapors in biotrickling filters for air pollution control was investigated. Two reactors were operated in parallel, one at ambient temperature (22 degrees C) and one at high temperature (53 degrees C). After a short adaptation phase, the removal of ethanol was similar in both reactors. At a bed contact time of 57 s, the elimination capacity exceeded 220 g m(-3) h(-1) at both temperatures. The experiments performed revealed that the process was most likely limited by biodegradation in the biofilm. The high-temperature biotrickling filter exhibited a higher degree of ethanol mineralization to CO2 (60 vs 46% at ambient temperature); hence, a lower rate of biomass accumulation was observed. Plating and cultivation of biofilm samples revealed that the high-temperature biotrickling filter hosted a process culture composed of both mesophilic and thermotolerant or thermophilic microorganisms, whereas the ambient-temperature reactor lacked microorganisms capable of growing at high temperature. Consequently, the performance of the control biotrickling filter was significantly affected by a short incursion at 53 degrees C. The upper temperature limit for treatment was 62 degrees C. Overall, the results of this study open new possibilities for biotrickling filtration of hot gases.

  14. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults.

    PubMed

    Berryman, Nicolas; Bherer, Louis; Nadeau, Sylvie; Lauzière, Séléna; Lehr, Lora; Bobeuf, Florian; Lussier, Maxime; Kergoat, Marie Jeanne; Vu, Thien Tuong Minh; Bosquet, Laurent

    2014-01-01

    The effects of physical activity on cognition in older adults have been extensively investigated in the last decade. Different interventions such as aerobic, strength, and gross motor training programs have resulted in improvements in cognitive functions. However, the mechanisms underlying the relationship between physical activity and cognition are still poorly understood. Recently, it was shown that acute bouts of exercise resulted in reduced executive control at higher relative exercise intensities. Considering that aging is characterized by a reduction in potential energy ([Formula: see text] max - energy cost of walking), which leads to higher relative walking intensity for the same absolute speed, it could be argued that any intervention aimed at reducing the relative intensity of the locomotive task would improve executive control while walking. The objective of the present study was to determine the effects of a short-term (8 weeks) high-intensity strength and aerobic training program on executive functions (single and dual task) in a cohort of healthy older adults. Fifty-one participants were included and 47 (age, 70.7 ± 5.6) completed the study which compared the effects of three interventions: lower body strength + aerobic training (LBS-A), upper body strength + aerobic training (UBS-A), and gross motor activities (GMA). Training sessions were held 3 times every week. Both physical fitness (aerobic, neuromuscular, and body composition) and cognitive functions (RNG) during a dual task were assessed before and after the intervention. Even though the LBS-A and UBS-A interventions increased potential energy to a higher level (Effect size: LBS-A-moderate, UBS-A-small, GMA-trivial), all groups showed equivalent improvement in cognitive function, with inhibition being more sensitive to the intervention. These findings suggest that different exercise programs targeting physical fitness and/or gross motor skills may lead to equivalent improvement in

  15. Physiological plasticity of the thermophilic ammonia oxidizing archaeon Nitrosocaldus yellowstonii in response to a changing environment

    NASA Astrophysics Data System (ADS)

    Jewell, T.; Johnson, A.; Gelsinger, D.; de la Torre, J. R.

    2012-12-01

    Our understanding of nitrogen biogeochemical cycling in high temperature environments underwent a dramatic revision with the discovery of ammonia oxidizing archaea (AOA). The importance of AOA to the global nitrogen cycle came to light when recent studies of marine AOA demonstrated the dominance of these organisms in the ocean microbiome and their role as producers of the greenhouse gas nitrous oxide (N2O). Understanding how AOA respond to fluctuating environments is crucial to fully comprehending their contribution to global biogeochemical cycling and climate change. In this study we use the thermophilic AOA Nitrosocaldus yellowstonii strain HL72 to explore the physiological plasticity of energy metabolism in these organisms. Previous studies have shown that HL72 grows autotrophically by aerobically oxidizing ammonia (NH3) to nitrite (NO2-). Unlike studies of marine AOA, we find that HL72 can grow over a wide ammonia concentration range (0.25 - 10 mM NH4Cl) with comparable generation times when in the presence of 0.25 to 4 mM NH4Cl. However, preliminary data indicate that amoA, the alpha subunit of ammonia monooxygenase (AMO), is upregulated at low ammonia concentrations (<50 μM) compared to growth at 1 mM. Although the ammonia oxidation pathway has not been fully elucidated, we have shown that nitric oxide (NO) appears to be a key intermediate: exponentially growing HL72 produces significant NO and the removal of NO using a scavenger reversibly inhibits growth. In addition to AMO, the HL72 genome also contains sequences for a urease encoded by subunits ureABC and an active urea transporter. Urea ((NH2)2CO) is an organic compound ubiquitous to aquatic and soil habitats that, when hydrolyzed, forms NH3 and CO2. We examined urea as an alternate source of ammonia for the ammonia oxidation pathway. HL72 grows over a wide range of urea concentrations (0.25 - 10 mM) at rates comparable to growth on ammonia. In a substrate competition experiment HL72 preferentially

  16. The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    PubMed Central

    GILLEN, ZACHARY M.; WYATT, FRANK B.; WINCHESTER, JASON B.; SMITH, DALTON A.; GHETIA, VIDHI

    2016-01-01

    Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance. PMID:27990224

  17. Experimental evidence for the thermophilicity of ancestral life.

    PubMed

    Akanuma, Satoshi; Nakajima, Yoshiki; Yokobori, Shin-ichi; Kimura, Mitsuo; Nemoto, Naoki; Mase, Tomoko; Miyazono, Ken-ichi; Tanokura, Masaru; Yamagishi, Akihiko

    2013-07-02

    Theoretical studies have focused on the environmental temperature of the universal common ancestor of life with conflicting conclusions. Here we provide experimental support for the existence of a thermophilic universal common ancestor. We present the thermal stabilities and catalytic efficiencies of nucleoside diphosphate kinases (NDK), designed using the information contained in predictive phylogenetic trees, that seem to represent the last common ancestors of Archaea and of Bacteria. These enzymes display extreme thermal stabilities, suggesting thermophilic ancestries for Archaea and Bacteria. The results are robust to the uncertainties associated with the sequence predictions and to the tree topologies used to infer the ancestral sequences. Moreover, mutagenesis experiments suggest that the universal ancestor also possessed a very thermostable NDK. Because, as we show, the stability of an NDK is directly related to the environmental temperature of its host organism, our results indicate that the last common ancestor of extant life was a thermophile that flourished at a very high temperature.

  18. Potential and utilization of thermophiles and thermostable enzymes in biorefining.

    PubMed

    Turner, Pernilla; Mamo, Gashaw; Karlsson, Eva Nordberg

    2007-03-15

    In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.

  19. Discrimination of thermostable and thermophilic lipases using support vector machines.

    PubMed

    Zhao, Wei; Wang, Xunzhang; Deng, Riqiang; Wang, Jinwen; Zhou, Hongbo

    2011-07-01

    Discriminating thermophilic lipases from their similar thermostable counterparts is a challenging task and it would help to design stable proteins. In this study, the distributions of N (N=2, 3) neighboring amino acids and the non-adjacent di-residue coupling patterns in the sequences of 65 thermostable and 77 thermophilic lipases had been systematically analyzed. It was found that the hydrophobic residues Leu, Pro, Met, Phe, Trp, as well as the polar residue Tyr had higher occurrence in thermophilic lipases than thermostable ones. The occurrence frequencies of KC EE KE RE, VE, YI, EK, VK, EV, YV, EY, KY, VY and YY in thermophilic proteins were significantly higher, while the occurrence frequencies of QC, QH, QN, HQ, MQ, NQ, QQ, TQ, QS and QT were significantly lower. CXP or CPX showed significantly positive to lipase thermostability, while XXQ or QXX showed significantly negative to lipase thermostability. Non-adjacent di-residue coupling patterns of PR14, RY32, YR47, LE53, LE64, PP64, RP70 and PP101 were significantly different in thermophilic lipases and their thermostable counterparts. The composition of dipeptide, tripeptide and non-adjacent di-residue patterns contained more information than amino acid composition. A statistical method based on support vector machines (SVMs) was developed for discriminating thermophilic and thermostable lipases. The accuracy of this method for the training dataset was 97.17?. Furthermore, the highest accuracy of the method for testing datasets was 98.41?. The influence of some specific patterns on lipase thermostability was also discussed.

  20. Bioconversion and binding of sterols by thermophilic moulds.

    PubMed

    Satyanarayana, T; Chavant, L

    1987-01-01

    None of the fourteen thermophilic moulds was able to break down the aliphatic side chain of sterols, viz. cholesterol, lanosterol, sitosterol, and stigmasterol so as to yield 4-androstene-3,17-dione, 1,4-androstadiene-3,17-dione and progesterone. In Acremonium alabamensis and Talaromyces emersonii, cholestenone was detected as a product of fermentation of cholesterol whereas the former yielded stigmastadienone from stigmasterol and sitosterol. Lanosterol appeared to be resistant to fungal bioconversion. All the thermophilic moulds exhibited avidity for binding sterols to the mycelium, but the ability to bind sterol seemed to depend upon the nature of the organism and the sterol.

  1. (Microbial ecology of thermophilic anaerobic digestion): (Progress report, Year 4)

    SciTech Connect

    Zinder, S.H.

    1988-01-01

    The goal of this project is to gain a more complete understanding of the microorganisms converting a lignocellulose waste to methane in a thermophilic (58/degree/C) anaerobic bioreactor. We have directly examined microbial populations in the bioreactor and have examined the properties of microorganisms isolated from the bioreactor. The primary focus has been on anaerobic thermophiles involved in the formation and degradation of acetic acid, the precursor of two-thirds of the methane produced in the bioreactor. Also, novel organisms of fundamental and practical significance have been isolated and characterized.

  2. Aerobic Requirements for Moving Handweights through Various Ranges of Motion While Walking.

    ERIC Educational Resources Information Center

    Auble, Thomas E.; And Others

    1987-01-01

    Comparison of the aerobic metabolic requirements of normal walking with and without 1-, 2-, and 3-pound handweights among nine adult males indicated that walking while moving handweights through large ranges of motion provides a combined upper and lower body aerobic stimulus that is sufficient for endurance training for persons with poor to…

  3. Aerobic Requirements for Moving Handweights through Various Ranges of Motion While Walking.

    ERIC Educational Resources Information Center

    Auble, Thomas E.; And Others

    1987-01-01

    Comparison of the aerobic metabolic requirements of normal walking with and without 1-, 2-, and 3-pound handweights among nine adult males indicated that walking while moving handweights through large ranges of motion provides a combined upper and lower body aerobic stimulus that is sufficient for endurance training for persons with poor to…

  4. THERMOPHILE ENDOSPORES HAVE RESPONSIVE EXOSPORIUM FOR ATTACHMENT

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.T.; WARREN,J.; SABATINI,R.

    1999-08-01

    Recently studies examining the colonization of Clostridial pathogens on agar and human tissue culture cells, demonstrated that (C. sporogenes ATCC 3584, C. difficile ATCC 43594 [patient isolate], C. difficile ATCC 9689 [non-clinical], C. clostridioforme [patient isolate]) bacterial spores (endospores) of the genus Clostridia have an outer membrane that becomes responsive at activation and exhibits extensions of the exosporial membrane that facilitate and maintain spore attachment to a nutritive substrate during germination and initial outgrowth of the newly developed bacterial cell. Therefore this attachment phenomenon plays an important role in insuring bacterial colonization of a surface and the initial stages of the infective process. To see if other non-clinical members of this genus also have this ability to attach to a substrate or food-source during spore germination, and how this attachment process in environmental thermophiles compares to the clinical paradigm (in relation to time sequence, exosporial membrane structure, type of attachment structures, composition of the membrane etc...), sediment samples were collected in sterile transport containers at 4 geothermal sites at Yellowstone National Park in Wyoming. Because spore forming bacteria will produce spores when conditions are unfavorable for growth, the samples were sealed and stored at 4 C. After 8 months the samples were screened for the presence of spores by light microscope examination using malachite green/safranin, and traditional endospores were identified in significant quantities from the Terrace Spring site (a 46 C lake with bacterial mats and a rapidly moving run-off channel leading to a traditional hot spring). The highest spore population was found in the top sediment and benthic water of the run-off channel, pH 8.1.

  5. Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs

    PubMed Central

    Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

    1996-01-01

    The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere. PMID:16535321

  6. Complete genome sequence of the thermophilic Acidobacteria, Pyrinomonas methylaliphatogenes type strain K22(T).

    PubMed

    Lee, Kevin C Y; Morgan, Xochitl C; Power, Jean F; Dunfield, Peter F; Huttenhower, Curtis; Stott, Matthew B

    2015-01-01

    Strain K22(T) is the type species of the recently- described genus Pyrinomonas, in subdivision 4 of the phylum Acidobacteria (Int J Syst Evol Micr. 2014; 64(1):220-7). It was isolated from geothermally-heated soil from Mt. Ngauruhoe, New Zealand, using low-nutrient medium. P. methylaliphatogenes K22(T) has a chemoheterotrophic metabolism; it can hydrolyze a limited range of simple carbohydrates and polypeptides. Its cell membrane is dominated by iso-branching fatty acids, and up to 40 % of its lipid content is membrane-spanning and ether lipids. It is obligately aerobic, thermophilic, moderately acidophilic, and non-spore-forming. The 3,788,560 bp genome of P. methylaliphatogenes K22(T) has a G + C content of 59.36 % and contains 3,189 protein-encoding and 55 non-coding RNA genes. Genomic analysis was consistent with nutritional requirements; in particular, the identified transporter classes reflect the oligotrophic nature of this strain.

  7. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    SciTech Connect

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  8. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    PubMed

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  9. Simultaneous metal leaching and sludge digestion by thermophilic microorganisms: effect of solids content.

    PubMed

    Chen, Shen-Yi; Pan, Sheng-Hsien

    2010-07-15

    High concentrations of heavy metal in livestock manures limit land application of their sludges. A practical and economical method of sludge treatment is important for converting the livestock sludge into soil conditioners or fertilizers. In this study, the effect of solid contents on the simultaneous aerobic digestion and metal leaching at thermophilic condition were investigated in a batch reactor. Different solid contents in the range of 0.5-4% (dry-w/v) were studied. The results showed that an increase of solid content decreased the pH reducing rate. It was the result of increase in buffering capacity and possible microbial inhibition at a higher solid content. Similar results were also found in the variations of ORP and sulfate concentrations during this process. In most cases, this biological process is able to solubilize 82-99% of heavy metals from the livestock sludge. It was found that the efficiency and rate of metal solubilization decreased with increasing solid contents. In addition, 54-80% of organic matter in the sludge was degraded after 28 days of reaction. A low sludge digestion efficiency was found at a high solid content. Moreover, the dewaterability of sludge was improved and the fertility (N, P and K) of sludge did not change significantly after this bioprocess.

  10. Melghiribacillus thermohalophilus gen. nov., sp. nov., a novel filamentous, endospore-forming, thermophilic and halophilic bacterium.

    PubMed

    Addou, Nariman Ammara; Schumann, Peter; Spröer, Cathrin; Ben Hania, Wajdi; Hacene, Hocine; Fauque, Guy; Cayol, Jean-Luc; Fardeau, Marie-Laure

    2015-04-01

    A novel filamentous, endospore-forming, thermophilic and moderately halophilic bacterium designated strain Nari2A(T) was isolated from soil collected from an Algerian salt lake, Chott Melghir. The novel isolate was Gram-staining-positive, aerobic, catalase-negative and oxidase-positive. Optimum growth occurred at 50-55 °C, 7-10% (w/v) NaCl and pH 7-8. The strain exhibited 95.4, 95.4 and 95.2% 16S rRNA gene sequence similarity to Thalassobacillus devorans G19.1(T), Sediminibacillus halophilus EN8d(T) and Virgibacillus kekensis YIM-kkny16(T), respectively. The major menaquinone was MK-7. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three unknown phosphoglycolipids and two unknown phospholipids. The predominant cellular fatty acids were iso-C(15 : 0) and iso-C(17 : 0). The DNA G+C content was 41.9 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain Nari2A(T) is considered to represent a novel species of a new genus in the family Bacillaceae , order Bacillales , for which the name Melghiribacillus thermohalophilus gen. nov., sp. nov. is proposed. The type strain of Melghiribacillus thermohalophilus is Nari2A(T) ( = DSM 25894(T) = CCUG 62543(T)).

  11. Identification of extracellular enzyme producing thermophilic bacilli from Balcova (Agamemnon) geothermal site by ITS rDNA RFLP.

    PubMed

    Yavuz, E; Gunes, H; Harsa, S; Yenidunya, A F

    2004-01-01

    Molecular characterization of extracellular enzyme producing thermophilic bacilli from Balcova geothermal site. Three types of geothermal samples were collected: mud, re-injection water, and samples from uncontrolled hydrothermal vents. Isolates grown at 55 degrees C in culture media prepared in sterilized re-injection water, were screened for extracellular enzyme activity by using eight different substrates: casein, carboxymethylcellulose, pectin, polygalacturonic acid (PGA), soluble starch, Tween 20 and 80, and xylan. In total, 109 thermoaerophilic isolates were selected. All of the isolates could hydrolyse Tween 20 (100%) but not Tween 80. Soluble starch was hydrolysed by 96%, casein by 55%, xylan and carboxymethylcellulose by 9%, and pectin and PGA by 2% of the isolates. The isolates were grouped into 14 different homology groups by the restriction pattern analysis of 16S-internal transcribed spacer (ITS) rDNA RFLP. Each of the RFLP groups was also studied by 16S rRNA gene partial sequence analysis. Plasmid DNA profiles revealed that 15 of the isolated strains contained small plasmid DNA molecules ranging in size from 12 000 to 35 000 bp. Combined analysis of 16S-ITS rDNA RFLP and 16S rRNA gene partial sequence results indicated the presence of novel or existing species of Anoxybacillus (nine species) and Geobacillus (three species). In this study 16S-ITS rDNA RFLP was applied for the first time to differentiate thermophilic bacilli. It was also the first study on thermophilic bacilli of Balcova geothermal site.

  12. Cellulolytic potential of thermophilic species from four fungal orders

    PubMed Central

    2013-01-01

    Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles. Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45°C. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we found that some fungi such as Melanocarpus albomyces readily grew on crystalline cellulose and produced cellulases. These results indicate that there are large differences in the cellulolytic potential of different isolates of the same species. Furthermore, all the selected species were able to degrade cellulose but the differences in cellulolytic potential and thermostability of the secretome did not correlate to the taxonomic position. PCR amplification and sequencing of 22 cellulase genes from the fungi showed that the level of thermostability of the cellulose-degrading activity could not be inferred from the phylogenetic relationship of the cellulases. PMID:23958135

  13. Sporotrichum thermophile growth, cellulose degradation, and cellulase activity

    SciTech Connect

    Bhat, K.M.; Maheshwari, R.

    1987-09-01

    The activity of components of the extracellular cellulase system of the thermophilic fungus Sporotrichum thermophile showed appreciable differences between strains; ..beta..-glucosidase was the most variable component. Although its endoglucanase and exoglucanase activities were markedly lower, S. thermophile degraded cellulose faster than Trichoderma reesei. The production of ..beta..-glucosidase lagged behind that of endoglucanase and exoglucanase. The latter activities were produced during active growth. When growth was inhibited by cycloheximide treatment, the hydrolysis of cellulose was lower than in the control in spite of the presence of both endoglucanase and exoglucanase activities in the culture medium. Degradation of cellulose was a growth-associated process, with cellulase preparations hydrolyzing cellulose only to a limited extent. The growth rate and cell density of S. thermophile were similar in media containing cellulose or glucose. A distinctive feature of fungal development in media incorporating cellulose or lactose (inducers of cellulase activity) was the rapid differentiation of reproductive units and autolysis of hyphal cells to liberate propagules which were capable of renewing growth immediately.

  14. Cellulolytic potential of thermophilic species from four fungal orders.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-08-19

    Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles. Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45°C. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we found that some fungi such as Melanocarpus albomyces readily grew on crystalline cellulose and produced cellulases. These results indicate that there are large differences in the cellulolytic potential of different isolates of the same species. Furthermore, all the selected species were able to degrade cellulose but the differences in cellulolytic potential and thermostability of the secretome did not correlate to the taxonomic position. PCR amplification and sequencing of 22 cellulase genes from the fungi showed that the level of thermostability of the cellulose-degrading activity could not be inferred from the phylogenetic relationship of the cellulases.

  15. Moderately Thermophilic Magnetotactic Bacteria from Hot Springs in Nevada▿ †

    PubMed Central

    Lefèvre, Christopher T.; Abreu, Fernanda; Schmidt, Marian L.; Lins, Ulysses; Frankel, Richard B.; Hedlund, Brian P.; Bazylinski, Dennis A.

    2010-01-01

    Populations of a moderately thermophilic magnetotactic bacterium were discovered in Great Boiling Springs, Nevada, ranging from 32 to 63°C. Cells were small, Gram-negative, vibrioid to helicoid in morphology, and biomineralized a chain of bullet-shaped magnetite magnetosomes. Phylogenetically, based on 16S rRNA gene sequencing, the organism belongs to the phylum Nitrospirae. PMID:20382815

  16. [Conversion of acetic acid to methane by thermophiles: Progress report

    SciTech Connect

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  17. (Conversion of acetic acid to methane by thermophiles: Progress report)

    SciTech Connect

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  18. Moderately thermophilic magnetotactic bacteria from hot springs in Nevada.

    PubMed

    Lefèvre, Christopher T; Abreu, Fernanda; Schmidt, Marian L; Lins, Ulysses; Frankel, Richard B; Hedlund, Brian P; Bazylinski, Dennis A

    2010-06-01

    Populations of a moderately thermophilic magnetotactic bacterium were discovered in Great Boiling Springs, Nevada, ranging from 32 to 63 degrees C. Cells were small, Gram-negative, vibrioid to helicoid in morphology, and biomineralized a chain of bullet-shaped magnetite magnetosomes. Phylogenetically, based on 16S rRNA gene sequencing, the organism belongs to the phylum Nitrospirae.

  19. Relative importance of aerobic versus resistance training for healthy aging

    USDA-ARS?s Scientific Manuscript database

    This review will focus on the importance of aerobic and resistance modes of physical activity for healthy aging as supported by findings in 2007. In line with public health recommendations, several studies in 2007 employed an exercise paradigm that combined both modes of physical activity. While a...

  20. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field.

    PubMed

    Chamkha, Mohamed; Mnif, Sami; Sayadi, Sami

    2008-06-01

    An aerobic, thermophilic, halotolerant and Gram-positive bacterium, designated strain C5, was isolated from a high-temperature oil field, located in Sfax, Tunisia, after enrichment on tyrosol. Strain C5 grew between 25 and 70 degrees C and optimally at 50 degrees C. It grew in the presence of 0-12% (w/v) NaCl, with optimum growth at 3% (w/v) NaCl. Strain C5 was able to degrade tyrosol aerobically, in the presence of 30 g L(-1) NaCl and under warm conditions (55 degrees C). The degradation of tyrosol proceeded via p-hydroxyphenylacetic and 3,4-dihydroxyphenylacetic acids. The products were confirmed by HPLC and GC-MS analyses. Strain C5 was also found to degrde a wide range of other aromatic compounds, including benzoic, p-hydroxybenzoic, protocatechuic, vanillic, p-hydroxyphenylacetic, 3,4-dihydroxyphenylacetic, cinnamic and ferulic acids, phenol and m-cresol. Moreover, strain C5 was grown on diesel and crude oil as sole carbon and energy sources. Strain C5 was also able to utilize several carbohydrates. Phenotypic characteristics and phylogenetic analysis of the 16S rRNA gene sequence of strain C5 revealed that it was related to members of the genus Geobacillus, being most closely related to the type strain of G. pallidus (99% sequence similarity). In addition, we report on growth of the type strain of G. pallidus on different aromatic compounds and hydrocarbons.

  1. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics.

    PubMed

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-12-12

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.

  2. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  3. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics

    PubMed Central

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-01-01

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology. PMID:27941956

  4. Particle-Scale Modeling of Methane Emission during Pig Manure/Wheat Straw Aerobic Composting.

    PubMed

    Ge, Jinyi; Huang, Guangqun; Huang, Jing; Zeng, Jianfei; Han, Lujia

    2016-04-19

    Inefficient aerobic composting techniques significantly contribute to the atmospheric methane (CH4) levels. Macro-scale models assuming completely aerobic conditions cannot be used to analyze CH4 generation in strictly anaerobic environments. This study presents a particle-scale model for aerobic pig manure/wheat straw composting that incorporates CH4 generation and oxidation kinetics. Parameter estimation revealed that pig manure is characterized by high CH4 yield coefficient (0.6414 mol CH4 mol(-1) Cman) and maximum CH4 oxidation rate (0.0205 mol CH4 kg(-1) VS(aero) h(-1)). The model accurately predicted CH4 emissions (R(2) = 0.94, RMSE = 2888 ppmv, peak time deviation = 0 h), particularly in the self-heating and cooling phases. During mesophilic and thermophilic stages, a rapid increase of CH4 generation (0.0130 mol CH4 kg(-1) VS h(-1)) and methanotroph inactivation were simulated, implying that additional measures should be performed during these phases to mitigate CH4 emissions. Furthermore, CH4 oxidation efficiency was related to oxygen permeation through the composting particles. Reducing the ambient temperature and extending the aeration duration can decrease CH4 emission, but the threshold temperature is required to trigger the self-heating phase. These findings provide insights into CH4 emission during composting and may inform responsible strategies to counteract climate change.

  5. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  6. Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: analysis of the advantages of microbial community and metabolism.

    PubMed

    Zheng, He-Shan; Guo, Wan-Qian; Yang, Shan-Shan; Feng, Xiao-Chi; Du, Juan-Shan; Zhou, Xian-Jiao; Chang, Jo-Shu; Ren, Nan-Qi

    2014-11-01

    In this study, the effects of thermophilic bacteria pretreatment and elevated fermentation temperature on hydrogen production from sludge were examined. The highest hydrogen yield of 19.9mlH2g(-1) VSS was achieved at 55°C by using pretreated sludge, which was 48.6% higher than raw sludge without pretreatment, and 28.39% higher than when fermented at 35°C. To explore the internal factors of this superior hydrogen production performance, the microbial community and the metabolism analysis were performed by using high-throughput sequencing and excitation-emission matrix. The pretreated sludge showed better utilization of dissolved organic matter and less inhibition of metabolism, especially at thermophilic condition. The 454 sequencing data indicated that microbial abundance was distinctly reduced and extremely high proportion of hydrogen-producing bacteria was found in the thermophilic community (Thermoanaerobacterium accounted for 93.75%). Thus, the pretreated sludge and thermophilic condition showed significant advantages in the hydrogen production using waste sludge as substrate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Combined Dual-Task Gait Training and Aerobic Exercise to Improve Cognition, Mobility, and Vascular Health in Community-Dwelling Older Adults at Risk for Future Cognitive Decline1.

    PubMed

    Gregory, Michael A; Boa Sorte Silva, Narlon C; Gill, Dawn P; McGowan, Cheri L; Liu-Ambrose, Teresa; Shoemaker, J Kevin; Hachinski, Vladimir; Holmes, Jeff; Petrella, Robert J

    2017-03-10

    This 6-month experimental case series study investigated the effects of a dual-task gait training and aerobic exercise intervention on cognition, mobility, and cardiovascular health in community-dwelling older adults without dementia. Participants exercised 40 min/day, 3 days/week for 26 weeks on a Biodex GaitTrainer2 treadmill. Participants were assessed at baseline (V0), interim (V1: 12-weeks), intervention endpoint (V2: 26-weeks), and study endpoint (V3: 52-weeks). The study outcomes included: cognition [executive function (EF), processing speed, verbal fluency, and memory]; mobility: usual & dual-task gait (speed, step length, and stride time variability); and vascular health: ambulatory blood pressure, carotid arterial compliance, and intima-media thickness (cIMT). Fifty-six participants [age: 70(6) years; 61% female] were included in this study. Significant improvements following the exercise program (V2) were observed in cognition: EF (p = 0.002), processing speed (p < 0.001), verbal fluency [digit symbol coding (p < 0.001), phonemic verbal fluency (p < 0.001)], and memory [immediate recall (p < 0.001) and delayed recall (p < 0.001)]; mobility: usual & dual-task gait speed (p = 0.002 and p < 0.001, respectively) and step length (p = 0.001 and p = 0.003, respectively); and vascular health: cIMT (p = 0.002). No changes were seen in the remaining outcomes. In conclusion, 26 weeks of dual-task gait training and aerobic exercise improved performance on a number of cognitive outcomes, while increasing usual & dual-task gait speed and step length in a sample of older adults without dementia.

  8. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  9. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  10. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

    SciTech Connect

    Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique; Hazen, Terry C.; Myers, Samuel; Reichmuth, David; Blanch, Harvey; Keasling, Jay D.

    2009-01-20

    A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.

  11. Health Fitness Standards. Aerobic Endurance.

    ERIC Educational Resources Information Center

    Dotson, Chuck

    1988-01-01

    An exploration of the current thinking about levels of fitness necessary to meet health fitness standards, with particular focus on aerobic capacity, discusses major health problems, the prevalence of heart disease, how health standards are set, and how health habits change as people age. (CB)

  12. Aerobic Development of Elite Youth Ice Hockey Players.

    PubMed

    Leiter, Jeff R; Cordingley, Dean M; MacDonald, Peter B

    2015-11-01

    Ice hockey is a physiologically complex sport requiring aerobic and anaerobic energy metabolism. College and professional teams often test aerobic fitness; however, there is a paucity of information regarding aerobic fitness of elite youth players. Without this knowledge, training of youth athletes to meet the standards of older age groups and higher levels of hockey may be random, inefficient, and or effective. Therefore, the purpose of this study was to determine the aerobic fitness of elite youth hockey players. A retrospective database review was performed for 200 male AAA hockey players between the ages of 13 and 17 (age, 14.4 ± 1.2 years; height, 174.3 ± 8.5 cm; body mass, 67.2 ± 11.5 kg; body fat, 9.8 ± 3.5%) before the 2012-13 season. All subjects performed a graded exercise test on a cycle ergometer, whereas expired air was collected by either a Parvo Medics TrueOne 2400 or a CareFusion Oxycon Mobile metabolic cart to determine maximal oxygen consumption (V[Combining Dot Above]O2max). Body mass, absolute V[Combining Dot Above]O2max, and the power output achieved during the last completed stage increased in successive age groups from age 13 to 15 years (p ≤ 0.05). Ventilatory threshold (VT) expressed as a percentage of V[Combining Dot Above]O2max and the heart rate (HR) at which VT occurred decreased between the ages of 13 and 14 years (p ≤ 0.05), whereas the V[Combining Dot Above]O2 at which VT occurred increased from the age of 14-15 years. There were no changes in relative V[Combining Dot Above]O2max or HRmax between any successive age groups. The aerobic fitness levels of elite youth ice hockey players increased as players age and mature physically and physiologically. However, aerobic fitness increased to a lesser extent at older ages. This information has the potential to influence off-season training and maximize the aerobic fitness of elite amateur hockey players, so that these players can meet standards set by advanced elite age groups.

  13. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  14. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  15. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    PubMed

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting.

  16. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females.

    PubMed

    Myers, Terrence R; Schneider, Matthew G; Schmale, Matthew S; Hazell, Tom J

    2015-06-01

    This study aimed to determine whether a time-effective whole-body aerobic resistance training circuit using only body weight exercises is as effective in improving aerobic and anaerobic fitness, as well as muscular strength and endurance as a traditional concurrent style training combining resistance and endurance training. Thirty-four sedentary females (20.9 ± 3.2 years; 167.6 ± 6.4 cm; 65.0 ± 15.2 kg) were assigned to either: (a) a combined resistance and aerobic exercise group (COMBINED; n = 17) or (b) a circuit-based whole-body aerobic resistance training circuit group (CIRCUIT; n = 17). Training was 3 days per week for 5 weeks. Pre- and post-training measures included a (Equation is included in full-text article.)test, anaerobic Wingate cycling test, and muscular strength and endurance tests. After training, (Equation is included in full-text article.)improved with CIRCUIT by 11% (p = 0.015), with no change for COMBINED (p = 0.375). Both relative peak power output and relative average power output improved with CIRCUIT by 5% (p = 0.027) and 3.2% (p = 0.006), respectively, and with COMBINED by 5.3% (p = 0.025) and 5.1% (p = 0.003). Chest and hamstrings 1 repetition maximum (1RM) improved with CIRCUIT by 20.6% (p = 0.011) and 8.3% (p = 0.022) and with COMBINED by 35.6% (p < 0.001) and 10.2% (p = 0.004), respectively. Only the COMBINED group improved back (11.7%; p = 0.017) and quadriceps (9.6%; p = 0.006) 1RM. The COMBINED group performed more repetitions at 60% of their pretraining 1RM for back (10.0%; p = 0.006) and hamstring (23.3%; p = 0.056) vs. CIRCUIT. Our results suggest that a circuit-based whole-body aerobic resistance training program can elicit a greater cardiorespiratory response and similar muscular strength gains with less time commitment compared with a traditional resistance training program combined with aerobic exercise.

  17. Use of an Intelligent Control System To Evaluate Multiparametric Effects on Iron Oxidation by Thermophilic Bacteria

    PubMed Central

    Stoner, Daphne L.; Miller, Karen S.; Fife, Dee Jay; Larsen, Eric D.; Tolle, Charles R.; Johnson, John A.

    1998-01-01

    A learning-based intelligent control system, the BioExpert, was developed and applied to the evaluation of multiparametric effects on iron oxidation by enrichment cultures of moderately thermophilic, acidophilic mining bacteria. The control system acquired and analyzed the data and then selected and maintained the sets of conditions that were evaluated. Through multiple iterations, the BioExpert selected sets of conditions that resulted in improved iron oxidation rates. The results obtained with the BioExpert suggested that temperature and pH were coupled, or interactive, parameters. Elevated temperatures (51.5°C) in combination with a moderately high pH (pH 1.84) impaired the growth of and iron oxidation by the enrichment culture. Moderate-to-high oxidation rates were achieved with a relatively high pH in combination with a relatively low temperature or, conversely, with a relatively low pH in combination with a relatively high temperature. The interactive effect of pH and temperature was not apparent from the results obtained in an experiment in which temperature was the only parameter that was varied. When the BioExpert was applied to a mixed culture containing mesophilic and thermophilic bacteria, the computer “learned” that pH 1.8, 45°C, and an inlet iron concentration from 30 to 35 mM were most favorable for iron oxidation. In conclusion, this study demonstrated that the learning-based intelligent control system BioExpert was an effective experimental tool that can be used to examine multiparametric effects on the growth and metabolic activity of mining bacteria. PMID:9797322

  18. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  19. Life on the second sun. [thermophilic life possibility on Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.

    1976-01-01

    The possibility of thermophilic life on Jupiter is considered. A speculative toruslike atmospheric biosphere is described, the environment within this 'biotorus' is discussed, and environmental niches available to thermophilic bacteria are considered. Effects of temperature on such organisms are examined along with the origins and evolutionary antecedents of thermophiles. It is concluded that the probability of life in the atmosphere of Jupiter, Saturn, or Uranus would appear to be low.

  20. Aerobic biodegradation kinetics of solid organic wastes on earth and for applications in space

    NASA Astrophysics Data System (ADS)

    Ramirez Perez, Javier Christian

    Aerobic biodegradation plays an important role in recycling organic matter and nutrients on earth. It is also a candidate technology for waste processing and resource recovery in Advanced Life Support (ALS) systems, such as a proposed planetary base on Mars. Important questions are how long should wastes be treated, and what is the quality (stability/maturity) of the product. To address these questions two aerobic composting systems were evaluated. One treated (252 days) horse manure and cranberry fruit in duplicate open windrows (HCC) as a reference earth application. The other was a pilot-scale (330 L) enclosed, in-vessel system treating (162 days) inedible biomass collected from plant growth systems at NASA, amended with food and human wastes simulant for potential space application (ALSC). Samples were taken from both systems over time and product quality assessed with a range of physical, chemical, biological, toxicological, respirometry and plant growth analyses that were developed and standardized. Because plant growth analyses take so long, a hypothesis was that some parameters could be used to predict compost quality and suitability for growing plants. Maximum temperatures in the thermophilic range were maintained for both systems (HCC > 60°C for >129 days, ALSC > 55°C for >40 days. Fecal streptococci were reduced by 4.8 log-units for HCC and 7.8 for ALSC. Volume/mass reductions achieved were 63%/62% for HCC and 79%/67% for ALSC. Phytotoxicity tests performed on aqueous extracts to recover plant nutrients found decreasing sensitivity: arabidopsis > lettuce > tomato > wheat > cucumber, corresponding with seed size and food reserve capacity. The germination index (GI) of HCC increased over composting time indicating decreasing phytotoxicity. However, GIs for ALSC leachate decreased or fluctuated over composting time. Selected samples of HCC at 31, 157 and 252 days alone and combined with promix (1:1), and of ALSC at 7, 14, 21, 28, 40 and 84 days, or fresh

  1. Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions.

    PubMed

    Chauhan, Kanika; Dhakal, Rajat; Seale, R Brent; Deeth, Hilton C; Pillidge, Christopher J; Powell, Ian B; Craven, Heather; Turner, Mark S

    2013-07-15

    Due to their ubiquity in the environment and ability to survive heating processes, sporeforming bacteria are commonly found in foods. This can lead to product spoilage if spores are present in sufficient numbers and where storage conditions favour spore germination and growth. A rapid method to identify the major aerobic sporeforming groups in dairy products, including Bacillus licheniformis group, Bacillus subtilis group, Bacillus pumilus group, Bacillus megaterium, Bacillus cereus group, Geobacillus species and Anoxybacillus flavithermus was devised. This method involves real-time PCR and high resolution melt analysis (HRMA) of V3 (~70 bp) and V6 (~100 bp) variable regions in the 16S rDNA. Comparisons of HRMA curves from 194 isolates of the above listed sporeforming bacteria obtained from dairy products which were identified using partial 16S rDNA sequencing, allowed the establishment of criteria for differentiating them from each other and several non-sporeforming bacteria found in samples. A blinded validation trial on 28 bacterial isolates demonstrated complete accuracy in unambiguous identification of the 7 different aerobic sporeformers. The reliability of HRMA method was also verified using boiled extractions of crude DNA, thereby shortening the time needed for identification. The HRMA method described in this study provides a new and rapid approach to identify the dominant mesophilic and thermophilic aerobic sporeforming bacteria found in a wide variety of dairy products.

  2. Radioisotopic, Culture-Based, and Oligonucleotide Microchip Analyses of Thermophilic Microbial Communities in a Continental High-Temperature Petroleum Reservoir†

    PubMed Central

    Bonch-Osmolovskaya, Elizaveta A.; Miroshnichenko, Margarita L.; Lebedinsky, Alexander V.; Chernyh, Nikolai A.; Nazina, Tamara N.; Ivoilov, Valery S.; Belyaev, Sergey S.; Boulygina, Eugenia S.; Lysov, Yury P.; Perov, Alexander N.; Mirzabekov , Andrei D.; Hippe, Hans; Stackebrandt, Erko; L'Haridon, Stéphane; Jeanthon, Christian

    2003-01-01

    Activity measurements by radioisotopic methods and cultural and molecular approaches were used in parallel to investigate the microbial biodiversity and its physiological potential in formation waters of the Samotlor high-temperature oil reservoir (Western Siberia, Russia). Sulfate reduction with rates not exceeding 20 nmol of H2S liter−1 day−1 occurred at 60 and 80°C. In upper horizons (AB, A, and B), methanogenesis (lithotrophic and/or acetoclastic) was detected only in wells in which sulfate reduction did not occur. In some of the wells from deeper (J) horizons, high-temperature sulfate reduction and methanogenesis occurred simultaneously, the rate of lithotrophic methanogenesis exceeding 80 nmol of CH4 liter−1 day−1. Enrichment cultures indicated the presence of diverse physiological groups representing aerobic and anaerobic thermophiles and hyperthermophiles; fermentative organotrophs were predominant. Phylogenetic analyses of 15 isolates identified representatives of the genera Thermotoga, Thermoanaerobacter, Geobacillus, Petrotoga, Thermosipho, and Thermococcus, the latter four being represented by new species. Except for Thermosipho, the isolates were members of genera recovered earlier from similar habitats. DNA obtained from three samples was hybridized with a set of oligonucleotide probes targeting selected microbial groups encompassing key genera of thermophilic bacteria and archaea. Oligonucleotide microchip analyses confirmed the cultural data but also revealed the presence of several groups of microorganisms that escaped cultivation, among them representatives of the Aquificales/Desulfurobacterium-Thermovibrio cluster and of the genera Desulfurococcus and Thermus, up to now unknown in this habitat. The unexpected presence of these organisms suggests that their distribution may be much wider than suspected. PMID:14532074

  3. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  4. Study of the performance of a thermophilic biological methanation system.

    PubMed

    Guneratnam, Amita Jacob; Ahern, Eoin; FitzGerald, Jamie A; Jackson, Stephen A; Xia, Ao; Dobson, Alan D W; Murphy, Jerry D

    2017-02-01

    This study investigated the operation of ex-situ biological methanation at two thermophilic temperatures (55°C and 65°C). Methane composition of 85-88% was obtained and volumetric productivities of 0.45 and 0.4LCH4/Lreactor were observed at 55°C and 65°C after 24h respectively. It is postulated that at 55°C the process operated as a mixed culture as the residual organic substrates in the starting inoculum were still available. These were consumed prior to the assessment at 65°C; thus the methanogens were now dependent on gaseous substrates CO2 and H2. The experiment was repeated at 65°C with fresh inoculum (a mixed culture); methane composition and volumetric productivity of 92% and 0.46LCH4/Lreactor were achieved in 24h. Methanothermobacter species represent likely and resilient candidates for thermophilic biogas upgrading.

  5. [Conversion of acetic acid to methane by thermophiles

    SciTech Connect

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  6. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    PubMed

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sulfur reduction by the extremely thermophilic archaebacterium Pyrodictium occultum

    SciTech Connect

    Parameswaran, A.K.; Provan, C.N.; Sturm, F.J.; Kelly, R.M.

    1987-07-01

    The relationship between growth and biological sulfur reduction for the extremely thermophilic archaebacterium Pyrodictium occultum was studied over a temperature range of 98 to 105/sup 0/C. The addition of yeast extract (0.2 g/liter) to the medium was found to increase hydrogen sulfide production significantly, especially at higher temperatures. Sulfide production in uninoculated controls with and without yeast extract was noticeable but substantially below the levels observed in samples containing the microorganism.

  8. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications.

    PubMed

    Shivlata, L; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  9. Application of thermophilic enzymes and water jet system to cassava pulp.

    PubMed

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations.

  11. Thermophilic biofilter for SO2 removal: performance and microbial characteristics.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2015-03-01

    A bench-scale thermophilic biofilter was applied to remove SO2 at 60°C in the present study. The SO2 concentration in the inlet stream ranged from 100mg/m(3) to 200mg/m(3). An average SO2 removal efficiency of 93.10% was achieved after developing acclimated organisms that can degrade SO2. The thermophilic biofilter effectively reduced SO2, with a maximum elimination capacity of 50.67g/m(3)/h at a loading rate of 51.44g/m(3)/h. Removal efficiency of the thermophilic biofilter was largely influenced by the water containing rate of the packing materials. The SO2 transfer in the biofilter included adsorption by the packing materials, dissolution in liquid, and microbial degradation. The main product of SO2 degradation was SO4(2-). The temporal shifts in the bacterial community that formed in the biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequence analysis. These shifts revealed a correlation between biofilter performance and bacterial community structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Continuous bio-hydrogen production by mesophilic and thermophilic cultures].

    PubMed

    Zhang, Wei; Zuo, Jian-E; Cui, Long-Tao; Xing, Wei; Yang, Yang

    2006-01-01

    Anaerobic biological hydrogen productions were achieved successfully in two lab-scale anaerobic hydrogen production reactors under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions, respectively. The mesophilic reactor, a CSTR, was operated over 4 months by seeding with river sediments and feeding with glucose solution, in which the highest hydrogen production rate was 8.6 L/(L x d) and the substrate hydrogen production molar ratio (H2/glucose) was 1.98. After seeded with anaerobic methanogenic granules, a UASB reactor was thermophilically operated by feeding with sucrose solution and during its steady operation period, the hydrogen production rate was 6.8 L/(L x d) and the substrate hydrogen production molar ratio (H2/sucrose) was 3.6. Within the produced gas, the H2 percentages were about 43% and others were CO2, no methane could be detected. Thermophilic hydrogen-producing granules were successfully cultivated in the UASB reactor, which were grey-white in color, the diameters were about 0.8 - 1.2 mm, and typical settling velocities were about 30 - 40 m/h. Through SEM a great number of bacilli could be found on the surface of the granules which made the surface rough. Total DNA of these two hydrogen production sludges were extracted and purified, and the PCR and DGGE process were conducted, the results indicate that most of the eubacteria in two sludges are the same, but the dominant species are obviously different with each other.

  13. Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation.

    PubMed

    Beblo, Kristina; Rabbow, Elke; Rachel, Reinhard; Huber, Harald; Rettberg, Petra

    2009-05-01

    We examined short- and long-term desiccation tolerance of 31 strains of thermophilic and hyperthermophilic Archaea and thermophilic phylogenetically deep-branching Bacteria. Seventeen organisms showed a significant high ability to withstand desiccation. The desiccation tolerance turned out to be species-specific and was influenced by several parameters such as storage temperature, pH, substrate or presence of oxygen. All organisms showed a higher survival rate at low storage temperatures (-20 degrees C or below) than at room temperature. Anaerobic and microaerophilic strains are influenced negatively in their survival by the presence of oxygen during desiccation and storage. The desiccation tolerance of Sulfolobales strains is co-influenced by the pH and the substrate of the pre-culture. The distribution of desiccation tolerance in the phylogenetic tree of life is not domain specific. Surprisingly, there are dramatic differences in desiccation tolerance among organisms from the same order and even from closely related strains of the same genus. Our results show that tolerance of vegetative cells to desiccation is a common phenomenon of thermophilic and hyperthermophilic microorganisms although they originated from quite different non-arid habitats like boiling acidic springs or black smoker chimneys.

  14. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    PubMed Central

    Turner, Pernilla; Mamo, Gashaw; Karlsson, Eva Nordberg

    2007-01-01

    In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts. PMID:17359551

  15. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates.

    PubMed

    Chinn, Mari S; Nokes, Sue E; Strobel, Herbert J

    2006-01-01

    Interest in solid substrate cultivation (SSC) techniques is gaining for biochemical production from renewable resources; however, heat and mass transfer problems may limit application of this technique. The use of anaerobic thermophiles in SSC offers a unique solution to overcoming these challenges. The production potential of nine thermophilic anaerobic bacteria was examined on corn stover, sugar cane bagasse, paper pulp sludge, and wheat bran in submerged liquid cultivation (SmC) and SSC. Production of acetate, ethanol, and lactate was measured over a 10 day period, and total product concentrations were used to compare the performance of different organism-substrate combinations using the two cultivation methods. Overall microbial activity in SmC and SSC was dependent on the organism and growth substrate. Clostridium thermocellum strains JW20, LQRI, and 27405 performed significantly better in SSC when grown on sugar cane bagasse and paper pulp sludge, producing at least 70 and 170 mM of total products, respectively. Growth of C. thermocellum strains in SSC on paper pulp sludge proved to be most favorable, generating at least twice the concentration of total products produced in SmC (p-value < 0.05). Clostridium thermolacticum TC21 demonstrated growth on all substrates producing 30-80 and 60-116 mM of total product in SmC and SSC, respectively. Bacterial species with optimal growth temperatures of 70 degrees C grew best on wheat bran in SmC, producing total product concentrations of 45-75 mM. For some of the organism-substrate combinations total end product concentrations in SSC exceeded those in SmC, indicating that SSC may be a promising alternative for microbial activity and value-added biochemical production.

  16. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  17. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  18. Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults.

    PubMed

    Lima, Leandra G; Bonardi, José M T; Campos, Giulliard O; Bertani, Rodrigo F; Scher, Luria M L; Louzada-Junior, Paulo; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2015-08-01

    There is a relationship between high levels of inflammatory markers and low adhesion to the practice of physical activity in the older population. The objective of the present study was to compare the effect of two types of exercise programs, i.e., aerobic training and aerobic plus resistance training on the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) of elderly hypertensive subjects. Hypertensive older volunteers in use of antihypertensive drugs were randomized to three groups: aerobic group (AG), resistance and aerobic group (RAG) and control group (CG). Training lasted 10 weeks, with sessions held three times a week. Blood samples were collected before training and 24 h after completion of the 30 sessions for the determination of serum IL-6 and TNF-α levels. Body mass index was obtained before and after 10 weeks. After intervention, BMI values were lower in AG and RAG compared to CG (p < 0.001), IL-6 was reduced in AG compared to CG (p = 0.04), and TNF-α levels were lower only in RAG compared to CG (p = 0.01). Concluding, both types of training were effective in reducing BMI values in hypertensive older subjects. Aerobic exercise produced the reduction of plasma IL-6 levels. However, the combination of aerobic and resistance exercise, which would be more indicated for the prevention of loss of functionality with aging, showed lower TNF-α mediator after training than control group and a greater fall of TNF-α levels associated to higher BMI reduction.

  19. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  20. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  1. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  2. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  3. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  4. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    PubMed

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  5. Strength training and aerobic exercise training for muscle disease.

    PubMed

    Voet, Nicoline B M; van der Kooi, Elly L; Riphagen, Ingrid I; Lindeman, Eline; van Engelen, Baziel G M; Geurts, Alexander C H

    2013-07-09

    Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004. To examine the safety and efficacy of strength training and aerobic exercise training in people with a muscle disease. We searched the Cochrane Neuromuscular Disease Group Specialized Register (July 2012), CENTRAL (2012 Issue 3 of 4), MEDLINE (January 1946 to July 2012), EMBASE (January 1974 to July 2012), EMBASE Classic (1947 to 1973) and CINAHL (January 1982 to July 2012). Randomised or quasi-randomised controlled trials comparing strength training or aerobic exercise programmes, or both, to no training, and lasting at least six weeks, in people with a well-described diagnosis of a muscle disease.We did not use the reporting of specific outcomes as a study selection criterion. Two authors independently assessed trial quality and extracted the data obtained from the full text-articles and from the original investigators. We collected adverse event data from included studies. We included five trials (170 participants). The first trial compared the effect of strength training versus no training in 36 people with myotonic dystrophy. The second trial compared aerobic exercise training versus no training in 14 people with polymyositis and dermatomyositis. The third trial compared strength training versus no training in a factorial trial that also compared albuterol with placebo, in 65 people with facioscapulohumeral muscular dystrophy (FSHD). The fourth trial compared combined strength training and aerobic exercise versus no training in 18 people with mitochondrial myopathy. The fifth trial compared combined strength training and aerobic exercise versus no training in 35 people with myotonic dystrophy type 1.In both myotonic dystrophy trials and the dermatomyositis and polymyositis trial there were no significant differences

  6. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-02

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  7. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov.

    PubMed

    Banat, Ibrahim M; Marchant, Roger; Rahman, Thahira J

    2004-11-01

    Several aerobic, motile, rod-shaped, thermophilic, spore-forming Geobacillus bacteria predominantly giving a Gram-positive staining reaction were isolated from a cool soil environment in Northern Ireland and taxonomically investigated. Two isolates, F10 and Tf(T), showed low 16S rRNA gene sequence similarity to recognized members of the genus Geobacillus. Phylogenetic tree investigation using neighbour-joining, maximum-likelihood and parsimony methods indicated that strains F10 and Tf(T) represent a single novel species, for which the name Geobacillus debilis sp. nov. is proposed, with type strain Tf(T) (=DSM 16016(T)=NCIMB 13995(T)) and which belongs to a subgroup of the genus Geobacillus comprising Geobacillus toebii and Geobacillus caldoxylosilyticus. However, G. debilis showed closest affinities to Bacillus pallidus, which we propose should become Geobacillus pallidus comb. nov.

  8. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).

  9. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  10. From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures.

    PubMed

    Abendroth, Christian; Simeonov, Claudia; Peretó, Juli; Antúnez, Oreto; Gavidia, Raquel; Luschnig, Olaf; Porcar, Manuel

    2017-01-01

    Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underlying fermentation process in more detail, a combination of high-throughput sequencing and proteomics on the acidification step of plant material (grass) at both mesophilic and thermophilic temperatures (37 and 55 °C, respectively) was applied for the first time. High-strength liquor from acidified grass biomass exhibited a low biodiversity, which differed greatly depending on temperature. It was dominated by Bacteroidetes and Firmicutes at 37 °C, and by Firmicutes and Proteobacteria at 55 °C. At the methane stage, Methanosaeta, Methanomicrobium and Methanosarcina proved to be highly sensitive to environmental changes as their abundance in the seed sludges dropped dramatically after transferring the seed sludges from the respective reactors into the experimental setup. Further, an increase in Actinobacteria coincided with reduced biogas production at the end of the experiment. Over 1700 proteins were quantified from the first cycle of acidification samples using label-free quantitative proteome analysis and searching protein databases. The most abundant proteins included an almost complete set of glycolytic enzymes indicating that the microbial population is basically engaged in the degradation and catabolism of sugars. Differences in protein abundances clearly separated samples into two clusters corresponding to culture temperature. More differentially expressed proteins were found under mesophilic (120) than thermophilic (5) conditions. Our results are the first multi-omics characterisation of a two-stage biogas production system with separated acidification and suggest that screening approaches targeting specific taxa such as Methanosaeta

  11. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, OR

    SciTech Connect

    Ledbetter, Rhesa N.; Connon, Stephanie A.; Neal, Andrew L.; Dohnalkova, Alice; Magnuson, Timothy S.

    2007-09-01

    The Alvord Basin in southeast Oregon, USA contains a variety of hydrothermal features, which have never been microbiologically characterized. Murky Pot (61°C, pH 7.1) was selected for this study. Sampling of Murky Pot led to the isolation of a novel arsenic-metabolizing organism (YeAs), which produces an arsenic sulfide mineral known as beta-realgar, a mineral that has not previously been observed as a product of bacterial arsenic metabolism. Our goal was to characterize and identify YeAs based on its phylogenetic, physiological, and morphological characteristics. 16S rRNA gene analysis revealed that YeAs has 98.9% sequence similarity to that of Thermobrachium celere. YeAs was grown on a freshwater medium and could utilize a variety of organic substrates, particularly carbohydrates and organic acids. Optimum growth of the organism was seen at 55ºC, but showed growth at a range of 37° to 75°C. No growth was observed when YeAs was grown under aerobic conditions. Microscopic examination revealed Gram-indeterminate, non-spore forming, rod shaped cells. Electron microscopy and elemental analysis revealed significant arsenic sulfide mineralization of cell walls, and extracellular particulate deposition of arsenic sulfide minerals. YeAs showed no detectable respiratory arsenate reductase; however, the organism did display significant detoxification arsenate reductase activity. The phylogenetic, physiological, and morphological characteristics of YeAs demonstrate that it is an anaerobic, moderately thermophilic, arsenic-reducing bacterium. This organism and its associated metabolism could have major implications in the search for innovative methods for arsenic waste management and in the search for novel biogenic signatures.

  12. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, Oregon.

    PubMed

    Ledbetter, Rhesa N; Connon, Stephanie A; Neal, Andrew L; Dohnalkova, Alice; Magnuson, Timothy S

    2007-09-01

    The Alvord Basin in southeast Oregon contains a variety of hydrothermal features which have never been microbiologically characterized. A sampling of Murky Pot (61 degrees C; pH 7.1) led to the isolation of a novel arsenic-metabolizing organism (YeAs) which produces an arsenic sulfide mineral known as beta-realgar, a mineral that has not previously been observed as a product of bacterial arsenic metabolism. YeAs was grown on a freshwater medium and utilized a variety of organic substrates, particularly carbohydrates and organic acids. The temperature range for growth was 37 to 75 degrees C (optimum, 55 degrees C), and the pH range for growth was 6.0 to 8.0 (optimum, pH 7.0 to 7.5). No growth was observed when YeAs was grown under aerobic conditions. The doubling time when the organism was grown with yeast extract and As(V) was 0.71 h. Microscopic examination revealed Gram stain-indeterminate, non-spore-forming, nonmotile, rod-shaped cells, with dimensions ranging from 0.1 to 0.2 microm wide by 3 to 10 microm long. Arsenic sulfide mineralization of cell walls and extracellular arsenic sulfide particulate deposition were observed with electron microscopy and elemental analysis. 16S rRNA gene analysis placed YeAs in the family Clostridiaceae and indicated that the organism is most closely related to the Caloramator and Thermobrachium species. The G+C content was 35%. YeAs showed no detectable respiratory arsenate reductase but did display significant detoxification arsenate reductase activity. The phylogenetic, physiological, and morphological characteristics of YeAs demonstrate that it is an anaerobic, moderately thermophilic, arsenic-reducing bacterium. This organism and its associated metabolism could have major implications in the search for innovative methods for arsenic waste management and in the search for novel biogenic mineral signatures.

  13. Chloroflexus islandicus sp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from geyser Strokkur (Iceland).

    PubMed

    Gaisin, Vasil A; Kalashnikov, Alexander M; Grouzdev, Denis S; Sukhacheva, Marina V; Kuznetsov, Boris B; Gorlenko, Vladimir M

    2017-01-23

    A novel, thermophilic filamentous anoxygenic phototrophic bacterium, strain isl-2T, was isolated from the Strokkur Geyser, Iceland. Strain isl-2T formed unbranched multicellular filaments with gliding motility. The cells formed no spores and stained Gram-negative. The existence of pili was described in Chloroflexus spp. for the first time. Optimal growth occurred in a pH range of 7.5-7.7 and at a temperature of 55°C. Strain isl-2T grew photoheterotrophically under anaerobic conditions in the light and chemoheterotrophically under aerobic conditions in the dark. The major cellular fatty acids were C18:1ω9, C16:0, C18:0, and C18:0-OH. The major quinone was menaquinone-10. The photosynthetic pigments were bacteriochlorophylls c and a as well as β- and γ-carotenes. Phylogenetic analysis of the 16S rRNA gene sequences placed strain isl-2T into the genus Chloroflexus of the phylum Chloroflexi with Chloroflexus aggregans DSM 9485T as the closest relative (97.0% identity). The whole-genome sequence of strain isl-2T was determined. Average nucleotide identity values obtained for strain isl-2T in comparison to available genomic sequences of other strains of Chloroflexus spp. were ≤81.4% and digital DNA-DNA hybridisation values ≤ 22.8%. Additional phylogenetic analysis of the PufLM and BchG amino acid sequences supported the separate position of the isl-2T phylotype from other Chloroflexus phylotypes. Based on physiological and phylogenetic data as well as on genomic data, it was suggested that strain isl-2T represents a novel species within the genus Chloroflexus, with the proposed name Chloroflexus islandicus sp. nov. The type strain of the species is isl-2T (=VKM B-2978T, =DSM 29225T, =JCM 30533T).

  14. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area.

    PubMed

    Ming, Hong; Yin, Yi-Rui; Li, Shuai; Nie, Guo-Xing; Yu, Tian-Tian; Zhou, En-Min; Liu, Lan; Dong, Lei; Li, Wen-Jun

    2014-02-01

    Two thermophilic bacterial strains, designated YIM 77925(T) and YIM 77777, were isolated from two hot springs, one in the Hydrothermal Explosion (Shuirebaozhaqu) area and Frog Mouth Spring in Tengchong county, Yunnan province, south-western China. The taxonomic positions of the two isolates were investigated by a polyphasic approach. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They were able to grow at 50-70 °C, pH 6.0-8.0 and with a NaCl tolerance up to 0.5% (w/v). Colonies are circular, convex, non-transparent and produce yellow pigment. Phylogenetic analyses based on 16S rRNA gene sequences comparison clearly demonstrated that strains YIM 77925(T) and YIM 77777 represent members of the genus Thermus, and they also detected low-level similarities of 16S rRNA gene sequences (below 97%) compared with all other species in this genus. Their predominant menaquinone was MK-8. The genomic DNA G+C contents of strains YIM 77925(T) and YIM 77777 were 65.6 mol% and 67.2 mol%, respectively. Based on the results of physiological and biochemical tests and phylogenetic analyses, strains YIM 77925(T) and YIM 77777 could not be classified as representing any species of the genus Thermus with a validly published name. Thus the two strains are considered to represent a novel species of the genus Thermus, for which the name Thermus caliditerrae sp. nov. is proposed. The type strain is YIM 77925(T) ( = DSM 25901(T) = CCTCC 2012061(T)).

  15. Chelatococcus thermostellatus sp. nov., a new thermophile for bioplastic synthesis: comparative phylogenetic and physiological study.

    PubMed

    Ibrahim, Mohammad H A; Lebbe, Liesbeth; Willems, Anne; Steinbüchel, Alexander

    2016-12-01

    The poly(3-hydroxybutyrate), PHB, accumulating thermophilic strain MW9(T), isolated from an aerobic organic waste treatment plant, was characterized by detailed physiological and phylogenetic studies. The strain is a Gram-stain-negative, rod shaped, non-spore forming member of Alphaproteobacteria. It shows optimum growth at 50 °C. Based on 16S rRNA gene sequence similarity, the strain together with five very similar isolates, was affiliated to the genus Chelatococcus (Ibrahim et al. in J Appl Microbiol 109:1579-1590, 2010). Rep-PCR genomic fingerprints and partial dnaK gene sequence also revealed that these isolates are very similar, but differ from other Chelatococcus type strains. The major fatty acids were similar to those of other strains of the genus Chelatococcus. DNA-DNA hybridization of strain MW9(T) with Chelatococcus species type strains revealed 11.0-47.7 % relatedness. G+C content of DNA was 67.1 mol%, which is comparable with the other strains of Chelatococcus species. The physiological and phenotypic characteristics of the new strain MW9(T) are sufficient to differentiate it from previously described species in the genus Chelatococcus. Strain MW9(T) is considered to represent a novel species of the genus Chelatococcus, for which the name Chelatococcus thermostellatus is proposed. The type strain is MW9(T) (=LMG 27009(T) = DSM 28244(T)). Compared to known Chelatococcus strains, strain MW9(T) could be a potent candidate for bioplastic production at elevated temperature.

  16. Tibeticola sediminis gen. nov., sp. nov., a thermophilic bacterium isolated from hot spring.

    PubMed

    Khan, Inam Ullah; Hussain, Firasat; Tian, Ye; Habib, Neeli; Xian, Wen-Dong; Jiang, Zhao; Amin, Arshia; Yuan, Chang-Guo; Zhou, En-Min; Zhi, Xiao-Yang; Li, Wen-Jun

    2017-01-06

    Two closely related thermophilic bacterial strains, designated YIM 73013T and YIM 73008 were isolated from a sediment sample collected from a hot spring in Tibet, western Tibet province, China. Taxonomic positions of the two isolates were investigated using a polyphasic approach. The novel isolates were Gram-staining negative, aerobic, short rod shaped and motile by means of a polar flagellum. They were oxidase and catalase positive and were able to grow at 30-55 °C (optimum, 37-45 °C), pH 6.0-8.0 (optimum, pH 7.0) and with NaCl tolerance up to 1 % (w/v). Phylogenetic analyses based on 16S rRNA gene sequences showed that strains YIM 73013T and YIM 73008 formed a distinct lineage with respect to closely related genera in the family Comamonadaceae and shared highest 16S rRNA gene sequences similarities with Acidovorax caeni R-24608T (96.3 % and 96.4 %, respectively). The respiratory quinone was ubiquinone-8 (Q-8) and the major cellular fatty acids observed were C17:1ω6c, C16:0 and Summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The genomic DNA G+C contents of strains YIM 73013T and YIM 73008 were 68.7 mol% and 68.3 mol%, respectively. Based on the morphological, phylogenetic and chemotaxonomic results, the two isolates merit representation of a novel species in a new genus, for which the name Tibeticola sediminis gen. nov., sp. nov. is proposed. The type strain is YIM 73013T (=DSM 101684T =KCTC 42873T).

  17. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats.

    PubMed

    Gomez-Garcia, Maria R; Davison, Michelle; Blain-Hartnung, Matthew; Grossman, Arthur R; Bhaya, Devaki

    2011-01-01

    Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B', isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C-P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B' can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.

  18. Meiothermus roseus sp. nov., a thermophilic bacterium isolated from a geothermal area.

    PubMed

    Ming, Hong; Duan, Yan-Yan; Guo, Qian-Qian; Yin, Yi-Rui; Zhou, En-Min; Liu, Lan; Li, Shuai; Nie, Guo-Xing; Li, Wen-Jun

    2015-10-01

    Two closely related thermophilic bacterial strains, designated YIM 71031(T) and YIM 71039, were isolated from a hot spring in Tengchong county, Yunnan province, south-western China. The novel isolates were observed to be Gram-negative, aerobic, rod-shaped and yellow-pigmented bacteria. The strains were found to be able to grow at 37-65 °C, pH 6.0-9.0 and with a NaCl tolerance up to 1.0 % (w/v). Phylogenetic analysis based on 16S rRNA gene sequences placed these two isolates in the genus Meiothermus. They were found to be closely related to Meiothermus timidus DSM 17022(T) (98.6 % similarity), and formed a cluster with this species. The predominant menaquinone was identified as MK-8 and the major fatty acids (>10 %) as anteiso-C15:0, iso-C15:0, anteiso-C17:0, iso-C16:0 and C16:0. The genomic DNA G+C contents of strains YIM 71031(T) and YIM 71039 were determined to be 64.0 and 65.4 mol%, respectively. DNA-DNA hybridizations showed low values between strains YIM 71031(T) and YIM 71039 and their closely related neighbour M. timidus DSM 17022(T). Morphological phylogenetic and chemotaxonomic results suggest that strains YIM 71031(T) and YIM 71039 are representatives of a new species within the genus Meiothermus, for which the name Meiothermus roseus sp. nov. is proposed. The type strain is YIM 71031(T) (=KCTC 42495(T) =NBRC 110900(T)).

  19. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    PubMed

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  20. Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface.

    PubMed

    Yamamoto, Kyosuke; Haruta, Shin; Kato, Souichiro; Ishii, Masaharu; Igarashi, Yasuo

    2010-01-01

    We focused on bacterial interspecies relationships at the air-liquid interface where the formation of pellicles by aerobes was observed. Although an obligate aerobe (Brevibacillus sp. M1-5) was initially dominant in the pellicle population, a facultative aerobe (Pseudoxanthomonas sp. M1-3) emerged and the viability of M1-5 rapidly decreased due to severe competition for oxygen. Supplementation of the medium with carbohydrates allowed the two species to coexist at the air-liquid interface. These results indicate that the population dynamics within pellicles are primarily governed by oxygen utilization which was affected by a combination of carbon sources.

  1. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy

    PubMed Central

    Schadler, Keri L.; Thomas, Nicholas J.; Galie, Peter A.; Bhang, Dong Ha; Roby, Kerry C.; Addai, Prince; Till, Jacob E.; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S.; Ryeom, Sandra

    2016-01-01

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant. PMID:27589843

  2. Draft Genome Sequences of Thermophiles Isolated from Yates Shaft, a Deep-Subsurface Environment.

    PubMed

    Singh, Nitin K; Carlson, Courtney; Sani, Rajesh K; Venkateswaran, Kasthuri

    2017-06-01

    The whole-genome sequences of seven thermophiles that could grow at >55°C, but not at 37°C, were generated. These thermophilic bacteria will play a useful role as model microorganisms, and analyzing their genomes will help to understand the observed production of novel bioactive compounds, including thermozymes and macromolecules. Copyright © 2017 Singh et al.

  3. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a

    PubMed Central

    Rooney, Elise A.; Rowe, Kenneth T.; Guseva, Anna; Huntemann, Marcel; Han, James K.; Chen, Amy; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Markowitz, Victor M.; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Liolios, Konstantinos; Nordberg, Henrik P.; Cantor, Michael N.; Hua, Susan X.; Shapiro, Nicole; Woyke, Tanja; Lynd, Lee R.

    2015-01-01

    Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain. PMID:26205857

  4. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica.

    PubMed

    Redl, Stephanie; Sukumara, Sumesh; Ploeger, Tom; Wu, Liang; Ølshøj Jensen, Torbjørn; Nielsen, Alex Toftgaard; Noorman, Henk

    2017-01-01

    Syngas fermentation is a promising option for the production of biocommodities due to its abundance and compatibility with anaerobic fermentation. Using thermophilic production strains in a syngas fermentation process allows recovery of products with low boiling point from the off-gas via condensation. In this study we analyzed the production of acetone from syngas with the hypothetical production host derived from Moorella thermoacetica in a bubble column reactor at 60 °C with respect to thermodynamic and economic feasibility. We determined the cost of syngas production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gas-liquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas- and corn stover-derived syngas were determined to be higher due to the higher feedstock costs (1724 and 2878 $/t acetone, respectively). We applied an approach of combining thermodynamic and economic assessment to analyze a hypothetical bioprocess in which the volatile product acetone is produced from syngas with a thermophilic microorganism. Our model allowed us to identify process metrics and quantify the variable production costs for different scenarios. Economical production of bulk chemicals is challenging, making rigorous thermodynamic/economic modeling critical before undertaking an experimental program and as an ongoing guide during the program. We intend this study to give an incentive to apply the demonstrated approach to other bioproduction processes.

  5. Comparison of two aerobic field tests in young tennis players.

    PubMed

    Fargeas-Gluck, Marie-Agnès; Léger, Luc A

    2012-11-01

    This study compares the maximal responses of a new aerobic tennis field test, the NAVTEN to a known aerobic field test, often used with young tennis players, that is, the continuous multistage 20-m shuttle run test (20-m SRT). The NAVTEN is an intermittent (1-minute/1-minute) multistage test with side-to-side displacements and ball hitting. Ten young elite tennis players aged 12.9 ± 0.3 (mean ± SD) randomly performed both tests and were continuously monitored for heart rate (HR) and oxygen uptake (V[Combining Dot Above]O2) using the Vmax ST (Sensormedics). The 20-m SRT and NAVTEN show similar HRpeak (202 ± 6.1 vs. 208 ± 9.5, respectively) and V[Combining Dot Above]O2peak (54.2 ± 5.9 vs. 54.9 ± 6.0 ml·kg·min). Pearson correlations between both tests were 0.88 and 0.92 for V[Combining Dot Above]O2peak and maximal speed, respectively. The NAVTEN yielded V[Combining Dot Above]O2peak values that are typical for active subjects of that age and are similar to the 20-m SRT supporting its use to measure aerobic fitness of young tennis players in specific and entertaining field conditions. The fact that two-thirds of the tennis players achieved a different ranking (±1 rank) with the NAVTEN and the 20-m SRT suggests that the NAVTEN may be more specific than the 20-m SRT to assess aerobic fitness of tennis players. From a practical point of view, the NAVTEN test is more specific and pedagogical for young tennis players even though both tests yield similar maximal values.

  6. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    SciTech Connect

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  7. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris.

    PubMed

    Berka, Randy M; Grigoriev, Igor V; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M; Lombard, Vincent; Natvig, Donald O; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P; Allijn, Iris E; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J; Paulsen, Ian T; Elbourne, Liam D H; Baker, Scott E; Magnuson, Jon; Laboissiere, Sylvie; Clutterbuck, A John; Martinez, Diego; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  8. Rapid start-up of thermophilic anaerobic digestion with the turf fraction of MSW as inoculum.

    PubMed

    Suwannoppadol, Suwat; Ho, Goen; Cord-Ruwisch, Ralf

    2011-09-01

    This study aims to determine suitable start-up conditions and inoculum sources for thermophilic anaerobic digestion. Within days of incubation MSW at 55°C, methane was produced at a high rate. In an attempt to narrow down which components of typical MSW contained the thermophilic methanogens, vacuum cleaner dust, banana peel, kitchen waste, and garden waste were tested as inoculum for thermophilic methanogenesis with acetate as the substrate. Results singled out grass turf as the key source of thermophilic acetate degrading methanogenic consortia. Within 4 days of anaerobic incubation (55°C), anaerobically incubated grass turf samples produced methane accompanied by acetate degradation enabling successful start-up of thermophilic anaerobic digestion. Other essential start-up conditions are specified. Stirring of the culture was not conducive for successful start-up as it resulted specifically in propionate accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    SciTech Connect

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W.; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  10. Regional aerobic glycolysis in the human brain

    PubMed Central

    Vaishnavi, S. Neil; Vlassenko, Andrei G.; Rundle, Melissa M.; Snyder, Abraham Z.; Mintun, Mark A.; Raichle, Marcus E.

    2010-01-01

    Aerobic glycolysis is defined as glucose utilization in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water. Aerobic glycolysis is present in the normal human brain at rest and increases locally during increased neuronal activity; yet its many biological functions have received scant attention because of a prevailing energy-centric focus on the role of glucose as substrate for oxidative phosphorylation. As an initial step in redressing this neglect, we measured the regional distribution of aerobic glycolysis with positron emission tomography in 33 neurologically normal young adults at rest. We show that the distribution of aerobic glycolysis in the brain is differentially present in previously well-described functional areas. In particular, aerobic glycolysis is significantly elevated in medial and lateral parietal and prefrontal cortices. In contrast, the cerebellum and medial temporal lobes have levels of aerobic glycolysis significantly below the brain mean. The levels of aerobic glycolysis are not strictly related to the levels of brain energy metabolism. For example, sensory cortices exhibit high metabolic rates for glucose and oxygen consumption but low rates of aerobic glycolysis. These striking regional variations in aerobic glycolysis in the normal human brain provide an opportunity to explore how brain systems differentially use the diverse cell biology of glucose in support of their functional specializations in health and disease. PMID:20837536

  11. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov.

    PubMed

    Logan, N A; Lebbe, L; Hoste, B; Goris, J; Forsyth, G; Heyndrickx, M; Murray, B L; Syme, N; Wynn-Williams, D D; De Vos, P

    2000-09-01

    Aerobic endospore-forming bacteria were isolated from soils taken from active fumaroles on Mount Rittmann and Mount Melbourne in northern Victoria Land, Antarctica, and from active and inactive fumaroles on Candlemas Island, South Sandwich archipelago. The Mt Rittmann and Mt Melbourne soils yielded a dominant, moderately thermophilic and acidophilic, aerobic endospore-former growing at pH 5.5 and 50 degrees C, and further strains of the same organism were isolated from a cold, dead fumarole at Clinker Gulch, Candlemas Island. Amplified rDNA restriction analysis, SDS-PAGE and routine phenotypic tests show that the Candlemas Island isolates are not distinguishable from the Mt Rittmann strains, although the two sites are 5600 km apart, and 16S rDNA sequence comparisons and DNA relatedness data support the proposal of a new species, Bacillus fumarioli, the type strain of which is LMG 17489T.

  12. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    PubMed Central

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  13. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    PubMed

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes.

  14. Part I: Characterization of the Extracellular Proteome of the Extreme Thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2

    PubMed Central

    Muddiman, David; Andrews, Genna; Lewis, Derrick; Notey, Jaspreet; Kelly, Robert

    2013-01-01

    The proteome of extremely thermophilic microorganisms affords a glimpse into the dynamics of microbial ecology of high temperature environments. The secretome, or extracellular proteome of these microorganisms no doubt harbors technologically important enzymes and other thermostable biomolecules that to date have been characterized only to a limited extent. In the first of a two part study on selected thermophiles, defining the secretome requires a sample preparation method that has no negative impact on all downstream experiments. Following efficient secretome purification, GeLC-MS2 analysis and prediction servers suggest probable protein secretion to complement experimental data. In an effort to define the extracellular proteome of the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus, several techniques were considered regarding sample processing to achieve the most in-depth analysis of secreted proteins. Order of operation experiments all including the C18 bead technique demonstrated that two levels of sample purification were necessary to effectively de-salt the sample and provide sufficient protein identifications. Five sample preparation combinations yielded 71 proteins and the majority described as enzymatic and putative uncharacterized proteins anticipating consolidated bioprocessing applications. Nineteen proteins were predicted by Phobius, SignalP, SecretomeP, or TatP for extracellular secretion and 11 contain transmembrane domain stretches suggested by Phobius and TMHMM. The sample preparation technique demonstrating the most effective outcome for C. saccharolyticus secreted proteins in this study involves acetone precipitation followed by the C18 bead method in which 2.4% (63 proteins) of the predicted proteome was indentified including proteins suggested to have secretion and transmembrane moieties. PMID:20623222

  15. Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation.

    PubMed

    Georgieva, Tania I; Skiadas, Ioannis V; Ahring, Birgitte K

    2007-12-15

    The low ethanol tolerance of thermophilic anaerobic bacteria (<2%, v/v) is a major obstacle for their industrial exploitation for ethanol production. The ethanol tolerance of the thermophilic anaerobic ethanol-producing strain Thermoanaerobacter A10 was studied during batch tests of xylose fermentation at a temperature range of 50-70 degrees C with exogenously added ethanol up to approximately 6.4% (v/v). At the optimum growth temperature of 70 degrees C, the strain was able to tolerate 4.7% (v/v) ethanol, and growth was completely inhibited at 5.6% (v/v). A higher ethanol tolerance was found at lower temperatures. At 60 degrees C, the strain was able to tolerate at least 5.1% (v/v) ethanol. A generalized form of Monod kinetic equation proposed by Levenspiel was used to describe the ethanol (product) inhibition. The model predicted quite well the experimental data for the temperature interval 50-70 degrees C, and the maximum specific growth rate and the toxic power (n), which describes the order of ethanol inhibition at each temperature, were estimated. The toxic power (n) was 1.33 at 70 degrees C, and corresponding critical inhibitory product concentration (P(crit)) above which no microbial growth occurs was determined to be 5.4% (v/v). An analysis of toxic power (n) and P(crit) showed that the optimum temperature for combined microbial growth and ethanol tolerance was 60 degrees C. At this temperature, the toxic power (n), and P(crit) were 0.50, and 6.5% (v/v) ethanol, respectively. From a practical point of view, the model may be applied to compare the ethanol inhibition (ethanol tolerance) on microbial growth of different thermophilic anaerobic bacterial strains.

  16. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load.

  17. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.

    PubMed

    Ho, L; Ho, G

    2012-09-15

    High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite

  18. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    PubMed

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    PubMed

    Lopez-Vazquez, C M; Kubare, M; Saroj, D P; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2014-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification-two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.

  20. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers

    PubMed Central

    Zhao, Yu; Caspers, Martien P. M.; Metselaar, Karin I.; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C.; Abee, Tjakko

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  1. Thermophilic anaerobic oxidation of methane by marine microbial consortia.

    PubMed

    Holler, Thomas; Widdel, Friedrich; Knittel, Katrin; Amann, Rudolf; Kellermann, Matthias Y; Hinrichs, Kai-Uwe; Teske, Andreas; Boetius, Antje; Wegener, Gunter

    2011-12-01

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.

  2. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    PubMed Central

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  3. Biosynthesis of anti-HCV compounds using thermophilic microorganisms.

    PubMed

    Rivero, Cintia W; De Benedetti, Eliana C; Sambeth, Jorge E; Lozano, Mario E; Trelles, Jorge A

    2012-10-01

    This work describes the application of thermophilic microorganisms for obtaining 6-halogenated purine nucleosides. Biosynthesis of 6-chloropurine-2'-deoxyriboside and 6-chloropurine riboside was achieved by Geobacillus stearothermophilus CECT 43 with a conversion of 90% and 68%, respectively. Furthermore, the selected microorganism was satisfactorily stabilized by immobilization in an agarose matrix. This biocatalyst can be reused at least 70 times without significant loss of activity, obtaining 379mg/L of 6-chloropurine-2'-deoxyriboside. The obtained compounds can be used as antiviral agents.

  4. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  5. Caenibacillus caldisaponilyticus gen. nov., sp. nov., a thermophilic, spore-forming and phospholipid-degrading bacterium isolated from acidulocompost.

    PubMed

    Tsujimoto, Yoshiyuki; Saito, Ryo; Furuya, Hiroto; Ishihara, Daisuke; Sahara, Takehiko; Kimura, Nobutada; Nishino, Tokuzo; Tsuruoka, Naoki; Shigeri, Yasushi; Watanabe, Kunihiko

    2016-07-01

    A thermophilic and phospholipid-degrading bacterium, designated strain B157T, was isolated from acidulocompost, a garbage compost processed under acidic conditions at moderately high temperature. The organism was Gram-stain-positive, aerobic, spore-forming and rod-shaped. Growth was observed to occur at 40-65 °C and pH 4.8-8.1 (optimum growth: 50-60 °C, pH 6.2). The strain was catalase- and oxidase-positive. The cell wall contained meso-diaminopimelic acid, alanine, glutamic acid and galactose. The predominant respiratory quinone was menaquinone-7 (MK-7) and the major fatty acids were anteiso-C17 : 0 and iso-C17 : 0. Comparative 16S rRNA gene sequence analysis showed that strain B157T was related most closely to Tuberibacillus calidus 607T (94.8 % identity), and the phylogenetic analysis revealed that it belonged to the family Sporolactobacillaceae. The DNA G+C content was determined as 51.8 mol%. In spite of many similarities with the type strains of members of the family Sporolactobacillaceae, genotypic analyses suggest that strain B157T represents a novel species of a new genus, Caenibacilluscaldisaponilyticus gen. nov., sp. nov. The type strain of Caenibacilluscaldisaponilyticus is B157T (=NBRC 111400T=DSM 101100T).

  6. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  7. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  8. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  9. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  10. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  11. Skeletal muscle hypertrophy after aerobic exercise training.

    PubMed

    Konopka, Adam R; Harber, Matthew P

    2014-04-01

    Current dogma suggests that aerobic exercise training has minimal effects on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise countermeasures for populations prone to muscle loss.

  12. Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles.

    PubMed

    Chellapandi, P; Ranjani, J

    2015-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are direct features of the prokaryotic genomes involved in resistance to their bacterial viruses and phages. Herein, we have identified CRISPR loci together with CRISPR-associated sequences (CAS) genes to reveal their immunity against genome invaders in the thermophilic archaea and bacteria. Genomic survey of this study implied that genomic distribution of CRISPR-CAS systems was varied from strain to strain, which was determined by the degree of invading mobiloms. Direct repeats found to be equal in some extent in many thermopiles, but their spacers were differed in each strain. Phylogenetic analyses of CAS superfamily revealed that genes cmr, csh, csx11, HD domain, devR were belonged to the subtypes of cas gene family. The members in cas gene family of thermophiles were functionally diverged within closely related genomes and may contribute to develop several defense strategies. Nevertheless, genome dynamics, geological variation and host defense mechanism were contributed to share their molecular functions across the thermophiles. A thermophilic archaean, Thermococcus gammotolerans and thermophilic bacteria, Petrotoga mobilis and Thermotoga lettingae have shown superoperons-like appearance to cluster cas genes, which were typically evolved for their defense pathways. A cmr operon was identified with a specific promoter in a thermophilic archaean, Caldivirga maquilingensis. Overall, we concluded that knowledge-based genomic survey and phylogeny-based functional assignment have suggested for designing a reliable genetic regulatory circuit naturally from CRISPR-CAS systems, acquired defense pathways, to thermophiles in future synthetic biology.

  13. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    PubMed

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal poo