Sample records for combined thermophilic aerobic

  1. Autoheated thermophilic aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeny, K.; Hahn, H.; Leonhard, D.

    1991-10-01

    Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD systems are two-stage aerobic digestion processes that operate under thermophilic temperature conditions (40 to 80C) without supplemental heat. Like composting, the systems rely on the conservation of heat released during digestion itself to attain and sustain the desired operating temperature.more » Typical ATAD systems operate at 55C and may reach temperatures of 60 to 65C in the second-stage reactor. Perhaps because of the high operating temperature, this process has been referred to as Liquid Composting.' Major advantages associated with thermophilic operation include high biological reaction rates and a substantial degree of pathogen reduction.« less

  2. Combined mesophilic anaerobic and thermophilic aerobic digestion process: effect on sludge degradation and variation of sludge property.

    PubMed

    Cheng, Jiehong; Ji, Yuehong; Kong, Feng; Chen, Xian

    2013-12-01

    One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.

  3. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    PubMed

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Diversity of thermophilic populations during thermophilic aerobic digestion of potato peel slurry.

    PubMed

    Ugwuanyi, J O; Harvey, L M; McNeil, B

    2008-01-01

    To study the diversity of thermophiles during thermophilic aerobic digestion (TAD) of agro-food waste slurries under conditions similar to full-scale processes. Population diversity and development in TAD were studied by standard microbiological techniques and the processes monitored by standard fermentation procedures. Facultative thermophiles were identified as Bacillus coagulans and B. licheniformis, while obligate thermophiles were identified as B. stearothermophilus. They developed rapidly to peaks of 10(7) to 10(8) in thermophiles increased with process temperatures. Thermophiles were unstable at process pH above or below neutral, but developed rapidly at all aeration rates. Peak populations were higher in the median than at extremes of aeration rates. Obligate thermophiles were unstable at low aeration rates. Process self-heating was higher at lower than at higher aeration rate. Beyond 96 h most thermophiles were present as spores. Limited range of indigenous thermophiles drives TAD of slurry. They develop rapidly and are stable at most digestion conditions. Development and stability of thermophiles in TAD suggest that the process may be operated in a wide range of conditions; and even at short HRT in continuous processes without compromising efficiency.

  5. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION OF MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This document describes a promising technology — autothermal thermophilic aerobic digestion — for meeting the current and proposed U.S. federal requirements for pathogen controJ and land application of municipal wastewater sludge. Autothermal thermophilic aerobic digestion, or AT...

  6. Gas analysis reveals novel aerobic deammonification in thermophilic aerobic digestion.

    PubMed

    Yi, Y S; Kim, S; An, S; Choi, S I; Choi, E; Yun, Z

    2003-01-01

    A laboratory-scale thermophilic aerobic digester was operated with piggery wastewater. The operating temperature varied from 50-70 degrees C. It has been found that excessive nitrogen removal occurred in the laboratory-scale thermophilic system at various HRTs. Nitrite and nitrate were not observed in the effluent. Gas measurement reveals the presence of significant amount of N2O along with NH3 gas. The rational production of N2O gas in accordance with temperature and HRT suggests that biologically mediated deammonification processes significantly contribute to the N removal. Although further microbiological investigation is required to clarify the exact nitrogen removal mechanism, the large production of N2O gas seems to be a result of the existence of a rapid growing heterotrophic deammonification process in the thermophilic system.

  7. Aeration control of thermophilic aerobic digestion using fluorescence monitoring.

    PubMed

    Kim, Young-Kee; Oh, Byung-Keun

    2009-01-01

    The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

  8. Isolation, identification and utilization of thermophilic strains in aerobic digestion of sewage sludge.

    PubMed

    Liu, Shugen; Zhu, Nanwen; Li, Loretta Y; Yuan, Haiping

    2011-11-15

    Two representative thermophilic bacterial strains (T1 and T2) were isolated from a one-stage autothermal thermophilic aerobic digestion pilot-scale reactor. 16S rRNA gene analysis indicated that they were Hydrogenophilaceae and Xanthomonodaceae. These isolated strains were inoculated separately and/or jointly in sewage sludge, to investigate their effects on sludge stabilization under thermophilic aerobic digestion condition. Four digestion conditions were tested for 480 h. Digestion without inoculation and inoculation with strain T2, as well as joint- inoculation with strains T1 and T2, achieved 32.6%, 43.0%, and 38.2% volatile solids (VS) removal, respectively. Removal in a digester inoculated with stain T1 only reached 27.2%. For the first 144 h, the three inoculated digesters all experienced higher VS removal than the digester without inoculations. Both specific thermophilic strains and micro-environment significantly affected the VS removal. DGGE profiles revealed that the isolated strains T1 and T2 can successfully establish in the thermophilic digesters. Other viable bacteria (including anaerobic or facultative microbes) also appeared in the digestion system, enhancing the microbial activity. Copyright © 2011. Published by Elsevier Ltd.

  9. Inter-stage thermophilic aerobic digestion may increase organic matter removal from wastewater sludge without decreasing biogas production.

    PubMed

    Hafner, Sasha D; Madsen, Johan T; Pedersen, Johanna M; Rennuit, Charlotte

    2018-02-01

    Combining aerobic and anaerobic digestion in a two-stage system can improve the degradation of wastewater sludge over the use of either technology alone. But use of aerobic digestion as a pre-treatment before anaerobic digestion generally reduces methane production due to loss of substrate through oxidation. An inter-stage configuration may avoid this reduction in methane production. Here, we evaluated the use of thermophilic aerobic digestion (TAD) as an inter-stage treatment for wastewater sludge using laboratory-scale semi-continuous reactors. A single anaerobic digester was compared to an inter-stage system, where a thermophilic aerobic digester (55 °C) was used between two mesophilic anaerobic digesters (37 °C). Both systems had retention times of approximately 30 days, and the comparison was based on measurements made over 97 days. Results showed that the inter-stage system provided better sludge destruction (52% volatile solids (VS) removal vs. 40% for the single-stage system, 44% chemical oxygen demand (COD) removal vs. 34%) without a decrease in total biogas production (methane yield per g VS added was 0.22-0.24 L g -1 for both systems).

  10. Kinetics of autothermal thermophilic aerobic digestion - application and extension of Activated Sludge Model No 1 at thermophilic temperatures.

    PubMed

    Kovács, R; Miháltz, P; Csikor, Zs

    2007-01-01

    The application of an ASM1-based mathematical model for the modeling of autothermal thermophilic aerobic digestion is demonstrated. Based on former experimental results the original ASM1 was extended by the activation of facultative thermophiles from the feed sludge and a new component, the thermophilic biomass was introduced. The resulting model was calibrated in the temperature range of 20-60 degrees C. The temperature dependence of the growth and decay rates in the model is given in terms of the slightly modified Arrhenius and Topiwala-Sinclair equations. The capabilities of the calibrated model in realistic ATAD scenarios are demonstrated with a focus on autothermal properties of ATAD systems at different conditions.

  11. Effect of temperature on solids reductions and on degradation kinetics during thermophilic aerobic digestion of a simulated sludge.

    PubMed

    Toki, C J

    2008-07-01

    Laboratory-scale experiments were conducted to determine the influence of higher thermophilic temperatures on thermophilic aerobic digestion treatment of a simulated sludge. The efficiency of the process was evaluated in respect of solids removal and degradation rate constants at four thermophilic temperatures. Batch runs were operated at a retention time of one day and temperatures of 65, 70, 72 and 75 degrees C. The results indicated that temperature increase did not impart any significant benefits to the digestion operation in terms of suspended solids and biochemichal oxygen demand reduction. The findings from this research also suggested that the treatment would not appear to benefit from temperatures higher than 65 degrees C, as classically suggested by Van't Hoff-Arrhenius. Therefore, increase of thermophilic temperature in the tested 65-75 degrees C range does not enhance the efficiency of thermophilic, aerobic sludge digestion treatment.

  12. Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Růziciková, H; Vránová, A

    2003-01-01

    The study is focused on the comparison of autothermal thermophilic aerobic digestion, thermophilic and mesophilic anaerobic digestion, based on long-term monitoring of all processes in full-scale wastewater treatment plants, with an emphasis on the efficiency in destroying pathogens. The hygienisation effect was evaluated as a removal of counts of indicator bacteria, thermotolerant coliforms and enterococci as CFU/g total sludge solids and a frequency of a positive Salmonella spp. detection. Both thermophilic technologies of municipal wastewater sludge stabilisation had the capability of producing sludge A biosolids suitable for agricultural land application when all operational parameters (mainly temperature, mixing and retention time) were stable and maintained at an appropriate level.

  13. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    food production for human thus rely on local Martian resources. A tree growing subsystem will also give an interesting feature to Martian agriculture. In addition to producing excess oxygen, trees’ rigid body will provide structural material, which can be used for habitat construction. The combination of hyper-thermophilic aerobic composting, plant cultivation, and tree growing with utilizing in-situ natural local resources available on Mars can provide important elements which can enable space agriculture on Mars.

  14. Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB).

    PubMed

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2012-12-01

    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  16. Nitrogen removal characteristics analyzed with gas and microbial community in thermophilic aerobic digestion for piggery waste treatment.

    PubMed

    Lee, J W; Lee, H W; Kim, S W; Lee, S Y; Park, Y K; Han, J H; Choi, S I; Yi, Y S; Yun, Z

    2004-01-01

    In order to characterize the nitrogen conversion characteristics in a thermophilic aerobic digestion (TAD) system, a laboratory study has been conducted with the analysis of effluent gas and microbial community in the sludge samples. The lab TAD system was operated with HRT of 3 days and 60 degrees C. Based on the nitrogen mass balance, it has been found that about 2/3 of the daily load of nitrogen was converted to the gaseous form of nitrogen whereas cellular transformation and unmetabolized nitrogen accounted for about 1/3. Among the gaseous nitrogen transformation, significant amount of influent nitrogen had been converted to N2 gas (29% of influent N) and N2O (9% of influent N). Ammonia conversion was only 28% of influent N. The detection of N2O gas is a clear indication of the biological nitrogen reduction process in the thermophilic aerobic digester. No conclusive evidence for the existence of aerobic deammonification has been found. The microbial community analysis showed that thermophilic bacteria such as Bacillus thermocloacae, Bacillus sp. and Clostridial groups dominated in this TAD reactor. The diverse microbial community in TAD sludge may play an important role in removing both strong organics and nitrogen from piggery waste.

  17. Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors.

    PubMed

    Kurian, R; Acharya, C; Nakhla, G; Bassi, A

    2005-11-01

    Although thermophilic treatment systems have recently gained considerable interest, limited information exists on the comparative performances of membrane-coupled bioreactors (MBR) at thermophilic and conventional conditions. In this study aerobic MBRs operating at room temperature (20 degrees C) and at lower thermophilic range (45 degrees C) were investigated for the treatment of dissolved air flotation (DAF) pretreated pet food wastewater. The particular wastewater is characterized by oil and grease (O & G) concentrations as high as 6 g/L, COD of 51 g/L, BOD of 16 g/L and volatile fatty acid (VFA) of 8.3 g/L. The performances of the two systems in terms of COD, BOD and O & G removal at varying hydraulic retention time (HRT) are compared. COD removal efficiencies in the thermophilic MBR varied from 75% to 98% and remained constant at 94% in the conventional MBR. The O & G removal efficiencies were 66-86% and 98% in the thermophilic and conventional MBR, respectively. Interestingly, high concentrations of VFA were recorded, equivalent to 50-73% of total COD, in the thermophilic MBR effluent. The observed yield in the thermophilic MBR was 40% of that observed in the conventional MBR.

  18. Chemical and microbial changes during autothermal thermophilic aerobic digestion (ATAD) of sewage sludge.

    PubMed

    Liu, Shugen; Song, Fanyong; Zhu, Nanwen; Yuan, Haiping; Cheng, Jiehong

    2010-12-01

    Autothermal thermophilic aerobic digestion (ATAD) is a promising process for sewage sludge stabilization. Batch experiments were conducted on sewage sludge collected from a municipal wastewater treatment plant in Shanghai, China, to evaluate the effectiveness of the ATAD system by determining changes in volatile suspended solids (VSSs) and to study its microbial diversity by denaturing gradient gel electrophoresis of 16S rRNA gene sequences amplified by PCR. The digestion system achieved rapid degradation of the organic substrate at 55 degrees C. The VSS was removed by up to 45.3% and 50.4% at 216 h and 264 h, respectively, while NH(4)(+)-N, chemical oxidation demand and total organic carbon of supernatant as well as total nitrogen did not exhibit obvious declines after 168 h. The microbial diversity changed during the thermophilic process as thermophiles belonging to the Hydrogenophilaceae, Thermotogaceae, Clostridiaceae and the genus Ureibacillus replaced less temperature-tolerant microorganisms such as Sphingobacteriaceae and the genus Trichococcus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Combined mesophilic anaerobic and thermophilic aerobic digestion process for high-strength food wastewater to increase removal efficiency and reduce sludge discharge.

    PubMed

    Jang, H M; Park, S K; Ha, J H; Park, J M

    2014-01-01

    In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.

  20. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: stabilization process and mechanism.

    PubMed

    Liu, Shugen; Zhu, Nanwen; Li, Loretta Y

    2012-01-01

    Batch experiment was carried out in a simulated thermophilic aerobic digester to investigate the digestion process of one-stage autothermal thermophilic aerobic digester and to explore the sludge stabilization mechanism. Volatile solids removal was 38.4% at 408 h and 45.0% at 552 h. Chemical oxidation demand, total nitrogen, and ammonia nitrogen in supernatant increased rapidly up to 168 h, and all of them fluctuated moderately after 360 h. Volatile fatty acid (VFA) accumulated rapidly up to 24 to 168 h, then declined sharply, reaching a low concentration after 312 h. Propionic, iso-valeric, and iso-butyric acids, in addition to acetic acids, were also the major components of VFA. As the biochemical metabolic process was inhibited under oxygen-deficiency condition, the digestion system can produce acetic, propionic, butyric acids and other VFA constituents to meet the demand for NAD(+) and maximize ATP generation. The ORP affected the VFA production and depletion as well as sulfate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effects of stabilization and sludge properties in a combined process of anaerobic digestion and thermophilic aerobic digestion.

    PubMed

    Cheng, Jiehong; Kong, Feng; Zhu, Jun; Wu, Xiao

    2015-01-01

    A novel process of combining mesophilic (<35°C) anaerobic digestion with the thermophilic (55°C) aerobic digestion process (AN-TAD) was designed to stabilize sludge and economize aeration energy. Effects of stabilization and sludge properties for AN-TAD process were evaluated by batch experiments during a 25 d digestion period. The sludges digested by AN-TAD process achieved the requirements for Class-A sludge standard. The sludge at total solid (TS) 5.4% had the highest value of decay coefficient K(d(55)) at 0.1851 d(-1) among the three TS contents according to the first-order kinetics equation. Oxidation reduction potential at below 0 mV remained for sludges at TSs of 6.5%, 5.4%, and 4.6% for at least 15 d because of initial hydrolytic-acidification. Concentrations of nitrogen and phosphorus in sludges at TSs of 6.5%, 5.4%, and 4.6% gradually increased up to the highest values in the supernatant during the initial 13 d, causing low utilized value in land application as a fertilizer. Prolonging the retention time for more than 15 d was considered because soluble phosphorus precipitated in the solid phase. High content of soluble organic matters of the soluble chemical oxygen demand, protein, and polysaccharide in the supernatant caused deterioration in sludge dewaterability rates.

  2. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  3. Linamarase activities in Bacillus spp. responsible for thermophilic aerobic digestion of agricultural wastes for animal nutrition.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2007-01-01

    Thermophilic Bacillus spp. isolated from thermophilic aerobic digestion (TAD) of model agricultural slurry were screened for ability to secret linamarase activity and degrade linamarin, a cyanogenic glycoside toxin abundant in cassava. Screening was performed by both linamarin - picrate assay and by p-nitrophenyl beta-D-glucoside (PNPG) degradation, and results of both assays were related. Linamarase positive isolates were identified as Bacillus coagulans, Bacillus licheniformis and Bacillus stearothermophilus. Enzyme production was growth related and peak production was reached in 48 h in B. coagulans and 36 h in B. stearothermophilus. B. coagulans produced over 40 times greater activity than B. stearothermophilus. Enzyme productivity in shake flask was not strictly related to screening assay result. Crude enzyme of B. coagulans was optimally active at 75 degrees C while that of B. stearothermophilus was optimally active at 80 degrees C and both had optimum activity at pH 8.0. The thermophilic and neutrophilic- to marginally alkaline activity of the crude enzymes could be very useful in the detoxification and reprocessing of cyanogens containing cassava wastes by TAD for use in animal nutrition.

  4. Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge.

    PubMed

    Li, Xuesong; Ma, Hongzhi; Wang, Qunhui; Matsumoto, Shoichiro; Maeda, Toshinari; Ogawa, Hiroaki I

    2009-05-01

    A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40 kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the sterilized sludge digestion experiment inoculated with Brevibacillus sp. KH3, the maximum protease activity was 0.41 U/ml at pH 8 and 50 degrees C, and maximum TSS removal ratio achieved 32.8% after 120 h digestion at pH 8 and 50 degrees C. In the case of un-sterilized sludge digestion inoculated with Brevibacillus sp. KH3, TSS removal ratio in inoculated-group was 54.8%, increasing at 11.86% compared with un-inoculation (46.2%). The result demonstrated that inoculation of Brevibacillus sp. KH3 could help to degrade the EPS and promote the collapse of cells and inhibit the growth of certain kinds of microorganisms. It indicated that Brevibacillus sp. KH3 strain had a high potential to enhance WAS-degradation efficiency in thermophilic aerobic digestion.

  5. Evaluation of Autothermal Thermophilic Aerobic Digester Performance for the Stabilization of Municipal Wastewater Sludge.

    PubMed

    Shokoohi, Reza; Rahmani, Alireza; Asgari, Ghorban; Dargahi, Abdollah; Vaziri, Yaser; Abbasi, Mohammad Attar

    2017-01-01

    Sludge stabilization process in terms of operational, environmental and economic indexes is the most important stage of treatment and its disposal. This study was aimed to determine the performance of Autothermal Thermophilic Aerobic Digestion (ATAD) system as one of the low-cost and biocompatible methods of sludge treatment. This study has been done using a laboratory scale Autothermal Thermophilic Aerobic Digestion (ATAD). The reactor was consisted of two polyethylene tanks with a final capacity of 100 L for each tank. Both tanks with all fittings were installed on a metal frame. The variables of study were temperature, dissolved oxygen, pH, volatile organic compounds, total solids, COD and the number of Ascaris eggs and fecal coliforms per gram of dry matter of the sludge. The temperature was measured hourly and the pH and dissolved oxygen were measured and controlled twice per day. One-way ANNOVA was applied to analyze reasults. According to the results, the temperature of sludge increased from 11.7-61.2°C by biological reactions. Pathogen organisms were reduced from 80×106 to 503 in number during 72 h. After 6 days pathogen organisms and Ascaris eggs were removed completely. Volatile organic compounds and COD were reduced 42 and 38.3% respectively during the 6 days. It is concluded that the performance of ATAD in removing organic compounds from wastewater sludge were desirable. Resulted sludge from stabilization process were appropriate for use in agriculture as a soil supplement and met the indexes of class A sludge according to EPA's standards (CFR 40 Part 503).

  6. Removal of slowly biodegradable COD in combined thermophilic UASB and MBBR systems.

    PubMed

    Ji, M; Yu, J; Chen, H; Yue, P L

    2001-09-01

    Starch, cellulose and polyvinyl alcohol (PVA) are common substrates of the slowly biodegradable COD (SBCOD) in industrial wastewaters. Removal of the individual and mixed SbCOD substrates was investigated in a combined system of thermophilic upflow anaerobic sludge blanket (TUASB) reactor (55 degrees C) and aerobic moving bed biofilm reactor (MBBR). The removal mechanisms of the three SBCOD substrates were quite different. Starch-COD was almost equally utilized and removed in the two reactors. Cellulose-COD was completely (97-98%) removed from water in the TUASB reactor by microbial entrapment and sedimentation of the cellulose fibers. PVA alone was hardly biodegraded and removed by the combined reactors. However, PVA-COD could be removed to some extent in a binary solution of starch (77%) plus PVA (23%). The PVA macromolecules in the binary solution actually affected the microbial activity in the TUASB reactor resulting accumulation of volatile fatty acids, which shifted the overall COD removal from the TUASB to the MBBR reactor where SBCOD including PVA-COD was removed. Since the three SBCOD substrates were removed by different mechanisms, the combined reactors showed a better and more stable performance than individual reactors.

  7. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.

    PubMed

    Ugwuanyi, J Obeta

    2008-05-01

    Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.

  8. Biodegradation of potato slops from a rural distillery by thermophilic aerobic bacteria.

    PubMed

    Cibis, Edmund; Kent, Christopher A; Krzywonos, Malgorzata; Garncarek, Zbigniew; Garncarek, Barbara; Miśkiewicz, Tadeusz

    2002-10-01

    A study has been made of thermophilic aerobic biodegradation of the liquid fraction of potato slops (distillation residue) from a rural distillery. The COD of this fraction ranged from 49 to 104 g O2/l, the main contributions to the COD coming from organic acids, reducing substances, and glycerol. It was found that biodegradation could be divided into the following stages: organic acids were removed first, followed by reducing substances and glycerol. The extent of removal varied according to the process temperature. At 50 degrees C, acetic and malic acids were removed completely, but the amount of isobutyric acid increased. At 60 degrees C, organic acid removal ranged from 51.2% (isobutyric acid) to 99.6% (lactic acid). Removals of glycerol and reducing substances were 86.2% and 87.4%, respectively. COD reduction was also temperature dependent, the highest removal efficiency (76.7%) being achieved at 60 degrees C. Dissolved oxygen may have limited the biodegradation process, as indicated by the DOT-versus-time profile.

  9. Disinhibition of excessive volatile fatty acids to improve the efficiency of autothermal thermophilic aerobic sludge digestion by chemical approach.

    PubMed

    Jin, Ningben; Jin, Bo; Zhu, Nanwen; Yuan, Haiping; Ruan, Jianbo

    2015-01-01

    In this study, we explored a chemical approach to eliminate inhibition of excessive volatile fatty acids (VFAs) in autothermal thermophilic aerobic digestion (ATAD). Ferric nitrate, ferric chloride, potassium nitrate and potassium chloride were employed to demonstrate the combined action of ferric ion and nitrate ion. Supplementation of ferric nitrate in the sludge digestion system resulted in reducing the concentration of Total VFAs (TVFA) by round 5000mg/L and more than 2000mg/L of acetic acid at the end of digestion. Lower TVFA concentration contributed to faster sludge stabilization rate and the VS removal of ferric nitrate dosed digester achieved 38.18% after 12days digestion which was 9days in advance compared with the stabilization time of sludge in digester without chemicals addition. Lower concentrations of NH4(+)-N and SCOD in supernatant while higher content of TP in digestion sludge were obtained in digester with ferric nitrate added. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.

    PubMed

    Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald

    2012-10-01

    This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  12. Evaluation of the removal of indicator bacteria from domestic sludge processed by Autothermal Thermophilic Aerobic Digestion (ATAD).

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, Tony J

    2010-09-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing.

  13. Efficiency of autothermal thermophilic aerobic digestion under two different oxygen flow rates.

    PubMed

    Aynur, Sebnem Koyunluoglu; Riffat, Rumana; Murthy, Sudhir

    2014-01-01

    The objective of this research was to understand the influence of oxygenation at two different oxygen flow rates (0.105 and 0.210 L/L/h) on autothermal thermophilic aerobic digestion (ATAD), and on the overall performance of Dual Digestion (DD). Profile experiments on an ATAD reactor showed that a significant portion of volatile fatty acids and ammonia were produced in the first 12 h period, and both followed first order kinetics. Ammonia concentrations of ATAD effluent were 1015 mg/L and 1450 mg/L, respectively, at the two oxygenation rates. Ammonia production was not complete in the ATAD reactor at the lower oxygenation rate. However, it was sufficient to maximize volatile solids reduction in the DD process. The biological heat of oxidations were 14,300 J/g Volatile Solids (VS) removed and 15,900 J/g VS removed for the two oxygen flow rates, respectively. The ATAD step provided enhanced digestion for the DD process with higher volatile solids removal and methane yield when compared to conventional digestion.

  14. Thermophilic Beta-Glycosidase

    NASA Technical Reports Server (NTRS)

    Grogan, Dennis W.

    1992-01-01

    Report describes identification of thermophilic Beta-glycosidase enzyme from isolate of Sulfolobus solfataricus, sulfur-metabolizing archaebacteria growing aerobically and heterotrophically to relatively high cell yields. Enzyme useful in enzymatic conversion of cellulose to D-glucose and important in recycling of biomass. Used for removal of lactose from milk products. Offers promise as model substance for elucidation of basic principles of structural stabilization of proteins.

  15. Pilot-scale comparison of thermophilic aerobic suspended carrier biofilm process and activated sludge process in pulp and paper mill effluent treatment.

    PubMed

    Suvilampi, J E; Rintala, J A

    2004-01-01

    Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13+/-5 h and 16+/-6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7+/-0.9 and 2.2+/-1.0 kg CODfilt m(-3)d(-1). Temperatures varied between 46 to 60 degrees C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m(-3)d(-1). Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89+/-2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35 degrees C and 55 degrees C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.

  16. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of

  17. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation.

    PubMed

    Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-15

    Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of biopolymer on the dewatering characteristics of autothermal thermophilic aerobic digestion of sludges.

    PubMed

    Agarwal, S; Abu-Orf, M M; Novak, J T

    2006-03-01

    Autothermal thermophilic aerobic digestion of sludge is known to produce poorly dewatering sludges. Laboratory studies were conducted to investigate the reasons for the poor dewatering. It was found that, during digestion, proteins and polysaccharides were released into solution, and that these could be linked to the deterioration in dewatering. The biopolymer release was accompanied by an increase in the monovalent-to-divalent (M/D) cation ratio. The degree to which the M/D caused deterioration of the sludges depended on the presence of iron in sludge. When the iron content was high, the release of protein and polysaccharides was low. When iron was low, the release of protein and polysaccharides increased linearly with the M/D ratio. The dose of conditioning chemicals, cationic polymer or ferric chloride, was related to the amount of colloidal biopolymer present in solution. The findings suggest that the addition of iron during the digestion process has the potential to produce better dewatering sludges.

  19. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions.

    PubMed

    García-Mancha, N; Monsalvo, V M; Puyol, D; Rodriguez, J J; Mohedano, A F

    2017-10-05

    This work presents a sustainable and cost-competitive solution for hardly biodegradable pesticides-bearing wastewater treatment in an anaerobic expanded granular sludge bed (EGSB) reactor at mesophilic (35°C) and thermophilic (55°C). The reactor was operated in continuous mode during 160days, achieving an average COD removal of 33 and 44% under mesophilic and thermophilic conditions, respectively. The increase of temperature improved the biomass activity and the production of methane by 35%. Around 96% of pesticides identified in raw wastewater were not detected in both mesophilic and thermophilic effluents. A dramatic selection of the microbial population in anaerobic granules was caused by the presence of pesticides, which also changed significantly when the temperature was increased. Pesticides caused a significant inhibition on methanogenesis, especially over acetoclastic methanogens. Aerobic biodegradability tests of the resulting anaerobic effluents revealed that aerobic post-treatment is also a feasible and effective option, yielding more than 60% COD reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge.

    PubMed

    Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo

    2018-02-01

    This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A Unique Autothermal Thermophilic Aerobic Digestion Process Showing a Dynamic Transition of Physicochemical and Bacterial Characteristics from the Mesophilic to the Thermophilic Phase.

    PubMed

    Tashiro, Yukihiro; Kanda, Kosuke; Asakura, Yuya; Kii, Toshihiko; Cheng, Huijun; Poudel, Pramod; Okugawa, Yuki; Tashiro, Kosuke; Sakai, Kenji

    2018-03-15

    A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria ( Arcobacter trophiarum , 19 to 43%; Acinetobacter towneri , 6.3 to 30%), Bacteroidetes ( Moheibacter sediminis , 43 to 54%), and Firmicutes ( Thermaerobacter composti , 11 to 28%; Heliorestis baculata , 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration. IMPORTANCE Although the autothermal thermophilic aerobic digestion (ATAD) process has several advantages, such as a high degradation

  3. Combined anaerobic/aerobic digestion: effect of aerobic retention time on nitrogen and solids removal.

    PubMed

    Kim, Jongmin; Novak, John T

    2011-09-01

    A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.

  4. Protein enrichment of corn cob heteroxylan waste slurry by thermophilic aerobic digestion using Bacillus stearothermophilus.

    PubMed

    Ugwuanyi, J Obeta; Harvey, Linda M; McNeil, Brian

    2008-10-01

    Thermophilic aerobic digestion (TAD) of heteroxylan waste was implemented at waste load of 30gL(-1) with mineral nitrogen supplementation to study effect of the process on waste degradation, protein accretion and quality. Digestions were carried out at 45 50, 55, 60 and 65 degrees C using Bacillusstearothermophilus in a CSTR under batch conditions at 1.0vvm aeration rate, pH 7.0 for a maximum of 120h. Amylase and xylanase activities appeared rapidly in the digest, while basal protease activity appeared early in the digestion and increased towards end of the processes. Highest degradation of volatile suspended solid, hemicellulose and fibre occurred at 55 degrees C while highest degradation of total suspended solid occurred at 60 degrees C. Highest protein accretion (258.8%) and assimilation of mineral nitrogen and soluble protein occurred at 55 degrees C. The % content of amino acids of digest crude protein increased relative to raw waste and with digestion temperature. Quality of digest protein was comparable to the FAO standard for feed use. TAD has potentials for use in the protein enrichment of waste.

  5. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process.

    PubMed

    Kim, Young-Kee; Bae, Jin-Hye; Oh, Byung-Keun; Lee, Won Hong; Choi, Jeong-Woo

    2002-04-01

    Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.

  6. Sugar Metabolism of the First Thermophilic Planctomycete Thermogutta terrifontis: Comparative Genomic and Transcriptomic Approaches

    PubMed Central

    Elcheninov, Alexander G.; Menzel, Peter; Gudbergsdottir, Soley R.; Slesarev, Alexei I.; Kadnikov, Vitaly V.; Krogh, Anders; Bonch-Osmolovskaya, Elizaveta A.; Peng, Xu; Kublanov, Ilya V.

    2017-01-01

    Xanthan gum, a complex polysaccharide comprising glucose, mannose and glucuronic acid residues, is involved in numerous biotechnological applications in cosmetics, agriculture, pharmaceuticals, food and petroleum industries. Additionally, its oligosaccharides were shown to possess antimicrobial, antioxidant, and few other properties. Yet, despite its extensive usage, little is known about xanthan gum degradation pathways and mechanisms. Thermogutta terrifontis, isolated from a sample of microbial mat developed in a terrestrial hot spring of Kunashir island (Far-East of Russia), was described as the first thermophilic representative of the Planctomycetes phylum. It grows well on xanthan gum either at aerobic or anaerobic conditions. Genomic analysis unraveled the pathways of oligo- and polysaccharides utilization, as well as the mechanisms of aerobic and anaerobic respiration. The combination of genomic and transcriptomic approaches suggested a novel xanthan gum degradation pathway which involves novel glycosidase(s) of DUF1080 family, hydrolyzing xanthan gum backbone beta-glucosidic linkages and beta-mannosidases instead of xanthan lyases, catalyzing cleavage of terminal beta-mannosidic linkages. Surprisingly, the genes coding DUF1080 proteins were abundant in T. terrifontis and in many other Planctomycetes genomes, which, together with our observation that xanthan gum being a selective substrate for many planctomycetes, suggest crucial role of DUF1080 in xanthan gum degradation. Our findings shed light on the metabolism of the first thermophilic planctomycete, capable to degrade a number of polysaccharides, either aerobically or anaerobically, including the biotechnologically important bacterial polysaccharide xanthan gum. PMID:29163426

  7. Combined aerobic and resistance training: are there additional benefits for older hypertensive adults?

    PubMed Central

    Lima, Leandra G.; Bonardi, José T.M.; Campos, Giulliard O.; Bertani, Rodrigo F.; Scher, Luria M.L.; Moriguti, Júlio C.; Ferriolli, Eduardo; Lima, Nereida K.C.

    2017-01-01

    OBJECTIVES: The objective of this study was to compare the effects of a combination of aerobic and resistance training to those of isolated aerobic training on blood pressure, body composition, and insulin sensitivity in hypertensive older adults. METHOD: Forty-four patients were randomly assigned to the aerobic group, resistance and aerobic group, and control group. Before and after 10 weeks, the following data were obtained: 24-hour ambulatory blood pressure data, abdominal circumference, waist circumference, body mass index, lean mass, fat mass, and insulin sensitivity. The study was conducted with 3 training sessions per week. RESULTS: Comparison revealed significant reductions in the body mass index, abdominal and waist circumferences, and ambulatory blood pressure (24-hour, wakefulness and sleep systolic/diastolic blood pressures) in both the aerobic group and the resistance and aerobic (combined) group. The fat mass only changed in the combined group. There was no difference in the insulin sensitivity in any group. CONCLUSIONS: The combined treatment and aerobic treatment alone were equally effective in reducing the blood pressure, body mass index, and abdominal and waist circumferences, although the addition of the resistance component also helped reduce the fat mass. PMID:28658436

  8. Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal.

    PubMed

    Novak, John T; Banjade, Sarita; Murthy, Sudhir N

    2011-01-01

    A unique sludge digestion system consisting of anaerobic digestion followed by aerobic digestion and then a recycle step where thickened sludge from the aerobic digester was recirculated back to the anaerobic unit was studied to determine the impact on volatile solids (VS) reduction and nitrogen removal. It was found that the combined anaerobic/aerobic/anaerobic (ANA/AER/ANA) system provided 70% VS reduction compared to 50% for conventional mesophilic anaerobic digestion with a 20 day SRT and 62% for combined anaerobic/aerobic (ANA/AER) digestion with a 15 day anaerobic and a 5 day aerobic SRT. Total Kjeldahl nitrogen (TKN) removal for the ANA/AER/ANA system was 70% for sludge wasted from the aerobic unit and 43.7% when wasted from the anaerobic unit. TKN removal was 64.5% for the ANA/AER system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    PubMed

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  10. Effect of aerobic vs combined aerobic-strength training on 1-year, post-cardiac rehabilitation outcomes in women after a cardiac event.

    PubMed

    Arthur, Heather M; Gunn, Elizabeth; Thorpe, Kevin E; Ginis, Kathleen Martin; Mataseje, Lin; McCartney, Neil; McKelvie, Robert S

    2007-11-01

    To compare the effect and sustainability of 6 months combined aerobic/strength training vs aerobic training alone on quality of life in women after coronary artery by-pass graft surgery or myocardial infarction. Prospective, 2-group, randomized controlled trial. Ninety-two women who were 8-10 weeks post-coronary artery by-pass graft surgery or myocardial infarction, able to attend supervised exercise, and fluent in English. The aerobic training alone group had supervised exercise twice a week for 6 months. The aerobic/strength training group received aerobic training plus upper and lower body resistance exercises. The amount of active exercise time was matched between groups. The primary outcome, quality of life, was measured by the MOS SF-36; secondary outcomes were self-efficacy, strength and exercise capacity. After 6 months of supervised exercise training both groups showed statistically significant improvements in physical quality of life (p = 0.0002), peak VO2 (19% in aerobic/strength training vs 22% in aerobic training alone), strength (p < 0.0001) and self-efficacy for stair climbing (p = 0.0024), lifting (p < 0.0001) and walking (p = 0.0012). However, by 1-year follow-up there was a statistically significant difference in physical quality of life in favor of the aerobic/strength training group (p = 0.05). Women with coronary artery disease stand to benefit from both aerobic training alone and aerobic/strength training. However, continued improvement in physical quality of life may be achieved through combined strength and aerobic training.

  11. Integration between chemical oxidation and membrane thermophilic biological process.

    PubMed

    Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R

    2010-01-01

    Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.

  12. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    PubMed

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Disinhibition of the ammonium nitrogen in autothermal thermophilic aerobic digestion for sewage sludge by chemical precipitation.

    PubMed

    Yuan, Haiping; Xu, Changwen; Zhu, Nanwen

    2014-10-01

    Magnesium ammonium phosphate (MAP) precipitation was introduced to remove ammonium nitrogen (NH4(+)-N) in autothermal thermophilic aerobic digestion (ATAD) in this study by addition of MgCl2 · 6H2O and NaH2PO4 · 2H2O. The results showed that the lowest NH4(+)-N concentration was found in the D2 digester after 2nd day dosing treatment and 38.12% of VS removal efficiency was obtained after 15 days ATAD treatment. Sludge stabilization was achieved in the D2 digester 6 days earlier than the non-dosing digester when 8.7 g/L MgCl2 · 6H2O and 6.7 g/L NaH2PO4 · 2H2O were added into the digester. Furthermore, the highest VS removal efficiency of 40.03% was observed after 21 days digestion in D2 digesters. Therefore, MAP precipitation was an effective method for the ammonium nitrogen disinhibition when 8.7 g/L MgCl2 · 6H2O and 6.7 g/L NaH2PO4 · 2H2O were added into on the 2nd day after the digester startup. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion.

    PubMed

    Jin, Yiying; Li, Huan; Mahar, Rasool Bux; Wang, Zhiyu; Nie, Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment > NaOH treatment followed by ultrasonic treatment > ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  15. Correlates of meeting the combined and independent aerobic and strength exercise guidelines in hematologic cancer survivors.

    PubMed

    Vallerand, James R; Rhodes, Ryan E; Walker, Gordon J; Courneya, Kerry S

    2017-03-28

    Most previous research on the correlates of physical activity has examined the aerobic or strength exercise guidelines separately. Such an approach does not allow an examination of the correlates of meeting the combined guidelines versus a single guideline, or one guideline versus the other. Here, we report the prevalence and correlates of meeting the combined and independent exercise guidelines in hematologic cancer survivors (HCS). In a population-based, cross-sectional survey of 606 HCS from Alberta, Canada using a mailed questionnaire, we obtained separate assessments of aerobic and strength exercise behaviors, as well as separate assessments for motivations, regulations, and reflective processes using the multi-process action control framework (M-PAC). Overall, 22% of HCS met the combined exercise guideline, 22% met aerobic-only, 10% met strength-only, and 46% met neither exercise guideline. HCS were more likely to meet the combined guideline over the aerobic-only guideline if they had no children living at home, and over both the aerobic and strength-only guidelines if they had completed university. As hypothesized, those meeting the combined guideline also had a more favorable strength-specific M-PAC profile (i.e., motivations, regulations, and reflective processes) than those meeting the aerobic-only guideline, and a more favorable aerobic-specific M-PAC profile than those meeting the strength-only guideline. Interestingly and unexpectedly, HCS meeting the combined guidelines also reported significantly greater aerobic-specific perceived control, planning, and obligation/regret than those meeting the aerobic-only guideline, and greater strength-specific perceived control, planning, and obligation/regret than those meeting the strength-only guideline. Few HCS are meeting the combined exercise guidelines. M-PAC based variables are strong correlates of meeting the combined guidelines compared to aerobic or strength only guidelines. Strategies to help HCS meet

  16. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions.

    PubMed

    Juris, P; Plachý, P; Lauková, A

    1995-05-01

    The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.

  18. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    PubMed

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  19. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase.

    PubMed

    Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji

    2018-04-12

    Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Biomass characterization of laboratory-scale thermophilic-mesophilic wastewater treatment processes.

    PubMed

    Suvilampi, J; Lehtomäki, A; Rintala, J

    2006-01-01

    Two thermophilic-mesophilic wastewater treatment processes, one as the combination of the thermophilic activated sludge process (ASP), followed by the mesophilic ASP and the other as thermophilic suspended carrier biofilm process (SCBP), followed by the mesophilic ASP, were used to study sludge characteristics and floc formation. Thermophilic bacteria in both ASP and SCBP were able to form flocs, which were <50 microm in size and had a weak structure and irregular shape. Flocs in both the mesophilic ASPs were larger in size (50-500 microm) and had more compact structures. Filamentous bacteria played an important role in both the thermophilic and mesophilic processes by forming bridges between small flocs. Both thermophilic processes showed a high density of dispersed particles, such as free bacteria. When hydraulic retention time (HRT) was decreased the biofilm was retained in the thermophilic SCBP better than the flocs in the thermophilic ASP. The mesophilic ASPs efficiently removed dispersed particles originating from the thermophilic processes.

  1. [Cognitive training combined with aerobic exercises in multiple sclerosis patients: a pilot study].

    PubMed

    Jimenez-Morales, R M; Herrera-Jimenez, L F; Macias-Delgado, Y; Perez-Medinilla, Y T; Diaz-Diaz, S M; Forn, C

    2017-06-01

    The scientific evidences associated to the effectiveness of different techniques of cognitive rehabilitation are still contradictory. To compare a program of combined training (physical and cognitive) in front of a program of physical training and to observe their effectiveness about the optimization of the cognitive functions in patients with multiple sclerosis (MS). It was carried out an experimental study in 32 patients with MS. The patients were distributed in two groups: 16 to the experimental group (combined cognitive training with aerobic exercises) and 16 patients to the control group (aerobic exercises). The intervention was planned for six weeks combining cognitive tasks by means of a game of dynamic board of cubes and signs (TaDiCS ®) and a program of aerobic exercises. The Brief Repeatable Battery of Neuropsychological Test and the Stroop Test were applied to evaluate the cognitive yield. Also, the Beck Depression Inventory was administered. There were found significant differences in the intergrupal analysis after the intervention in the variable learning and visuoespacial long term memory (p = 0.000), attention (p = 0.026) and inhibitory control (p = 0.007). Also, in the intragroup analysis there were found significant differences in these variables and information processing speed in the group that received the combined training. These patients also showed a significant improvement in the emotional state (p = 0.043). The cognitive training combined with the aerobic exercises is effective to improve the cognitive performance.

  2. Improved control of multiple-antibiotic-resistance-related microbial risk in swine manure wastes by autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Park, Joonhong

    2009-01-01

    In this study, we microbiologically evaluated antibiotic resistance and pathogenicity in livestock (swine) manure as well as its biologically stabilized products. One of new livestock manure stabilization techniques is ATAD (Autothermal Thermophilic Aerobic Digestion). Because of its high operation temperature (60-65 degrees C), it has been speculated to have effective microbial risk control in livestock manure. This hypothesis was tested by evaluating microbial risk in ATAD-treated swine manure. Antibiotic resistance, multiple antibiotic resistance (MAR), and pathogenicity were microbiologically examined for swine manure as well as its conventionally stabilized (anaerobically fermented) and ATAD-stabilized products. In the swine manure and its conventionally stabilized product, antibiotic resistant (tetracycline-, kanamycine-, ampicillin-, and rifampicin-resistant) bacteria and the pathogen indicator bacteria were detected. Furthermore, approximately 2-5% of the Staphylococcus and Salmonella colonies from their selective culture media were found to exhibit a MAR-phenotypes, suggesting a serious level of microbe induced health risk. In contrast, after the swine manure was stabilized with a pilot-scale ATAD treatment for 3 days at 60-65 degrees C, antibiotic resistant bacteria, pathogen indicator bacteria, and MAR-exhibiting pathogens were all undetected. These findings support the improved control of microbial risk in livestock wastes by ATAD treatment.

  3. Bacterial community structure transformed after thermophilically composting human waste in Haiti

    PubMed Central

    Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610

  4. Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD.

    PubMed

    Watson, Emma L; Gould, Douglas W; Wilkinson, Thomas J; Xenophontos, Soteris; Clarke, Amy L; Vogt, Barbara Perez; Viana, João L; Smith, Alice C

    2018-06-01

    There is a growing consensus that patients with chronic kidney disease (CKD) should engage in regular exercise, but there is a lack of formal guidelines. In this report, we determined whether combined aerobic and resistance exercise would elicit superior physiological gains, in particular muscular strength, compared with aerobic training alone in nondialysis CKD. Nondialysis patients with CKD stages 3b-5 were randomly allocated to aerobic exercise {AE, n = 21; 9 men; median age 63 [interquartile range (IQR) 58-71] yr; median estimated glomerular filtration rate (eGFR) 24 (IQR 20-30) ml·min -1 ·1.73 m -2 } or combined exercise [CE, n = 20, 9 men, median age 63 (IQR 51-69) yr, median eGFR 27 (IQR 22-32) ml·min -1 ·1.73 m -2 ], preceded by a 6-wk run-in control period. Patients then underwent 12 wk of supervised AE (treadmill, rowing, or cycling exercise) or CE training (as AE plus leg extension and leg press exercise) performed three times per week. Outcome assessments of knee extensor muscle strength, quadriceps muscle volume, exercise capacity, and central hemodynamics were performed at baseline, following the 6-wk control period, and at the end of the intervention. AE and CE resulted in significant increases in knee extensor strength of 16 ± 19% (mean ± SD; P = 0.001) and 48 ± 37% ( P < 0.001), respectively, which were greater after CE ( P = 0.02). AE and CE resulted in 5 ± 7% ( P = 0.04) and 9 ± 7% ( P < 0.001) increases in quadriceps volume, respectively ( P < 0.001), which were greater after CE ( P = 0.01). Both AE and CE increased distance walked in the incremental shuttle walk test [28 ± 44 m ( P = 0.01) and 32 ± 45 m ( P = 0.01), respectively]. In nondialysis CKD, the addition of resistance exercise to aerobic exercise confers greater increases in muscle mass and strength than aerobic exercise alone.

  5. Combined Aerobic/Strength Training and Energy Expenditure in Older Women

    PubMed Central

    Hunter, Gary R.; Bickel, C. Scott; Fisher, Gordon; Neumeier, William; McCarthy, John

    2013-01-01

    Purpose To examine the effects of three different frequencies of combined resistance and aerobic training on total energy expenditure (TEE) and activity related energy expenditure (AEE) in a group of older adults. Methods Seventy-two women, 60 – 74 years old, were randomly assigned to one of three groups: 1 day/week of aerobic and 1 day/week of resistance (1+1); 2 days/week of aerobic and 2 days/week resistance (2+2); or 3 days/week aerobic and 3 days/week resistance (3+3). Body composition (DXA), feeling of fatigue, depression, and vigor (questionnaire), strength (1RM), serum cytokines (ELISA), maximal oxygen uptake (progressive treadmill test), resting energy expenditure, and TEE were measured before and after 16 weeks of training. Aerobic training consisted of 40 minutes of aerobic exercise at 80% maximum heart rate and resistance training consisted of 2 sets of 10 repetitions for 10 different exercises at 80% of one repetition maximum. Results All groups increased fat free mass, strength and aerobic fitness and decreased fat mass. No changes were observed in cytokines or perceptions of fatigue/depression. No time by group interaction was found for any fitness/body composition variable. TEE and AEE increased with the 2+2 group but not with the other two groups. Non-exercise training AEE (NEAT) increased significantly in the 2+2 group (+200 kcal/day), group 1×1 showed a trend for an increase (+68 kcal/day) and group 3+3 decreased significantly (−150 kcal/day). Conclusion Results indicate that 3+3 training may inhibit NEAT by being too time consuming and does not induce superior training adaptations to 1+1 and 2+2 training. Key words: physical activity, older adults, total energy expenditure, maximum oxygen uptake. PMID:23774582

  6. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    PubMed

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  7. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  8. Effect of dosing time on the ammonium nitrogen disinhibition in autothermal thermophilic aerobic digestion for sewage sludge by chemical precipitation.

    PubMed

    Xu, Changwen; Yuan, Haiping; Lou, Ziyang; Zhang, Guofang; Gong, Junzhe; Zhu, Nanwen

    2013-12-01

    Magnesium ammonium phosphate (MAP) precipitation was introduced to remove ammonium nitrogen (NH4(+)-N) in autothermal thermophilic aerobic digestion (ATAD) in this study. The dosing time of MgCl2 · 6H2O and NaH2PO4 · 2H2O will influence the removal efficiency of ammonium nitrogen greatly, and the time interval of 2nd, 7th, 12th day were chosen in ATAD process. The lowest NH4(+)-N concentration was found in the 2nd day dosing digester, and 38.37% of VS removal rate was obtained after 12 days digestion, which achieved stabilization 9 days earlier than the non-dosing digester. It revealed that removal of ammonium nitrogen could accelerate the sludge stabilization process. Meanwhile, 49.30% of VS removal rate was found in the 2nd day dosing digester in the 21st day, much higher than that in the non-dosing digester, the 7th day dosing digester, and the 12th day dosing digester, with the corresponding value of 38.37%, 38.38% and 37.04%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops

    PubMed Central

    Wong, Man-Ling; An, Dongshan; Caffrey, Sean M.; Soh, Jung; Dong, Xiaoli; Sensen, Christoph W.; Oldenburg, Thomas B. P.; Larter, Steve R.

    2015-01-01

    Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity. PMID:26209669

  10. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1.

    PubMed

    Yang, Yunlong; Lin, Ershu; Huang, Shaobin

    Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Selective simplification and reinforcement of microbial community in autothermal thermophilic aerobic digestion to enhancing stabilization process of sewage sludge by conditioning with ferric nitrate.

    PubMed

    Jin, Ningben; Shou, Zongqi; Yuan, Haiping; Lou, Ziyang; Zhu, Nanwen

    2016-03-01

    The effect of ferric nitrate on microbial community and enhancement of stabilization process for sewage sludge was investigated in autothermal thermophilic aerobic digestion. The disinhibition of volatile fatty acids (VFA) was obtained with alteration of individual VFA concentration order. Bacterial taxonomic identification by 454 high-throughput pyrosequencing found the dominant phylum Proteobacteria in non-dosing group was converted to phylum Firmicutes in dosing group after ferric nitrate added and simplification of bacteria phylotypes was achieved. The preponderant Tepidiphilus sp. vanished, and Symbiobacterium sp. and Tepidimicrobium sp. were the most advantageous phylotypes with conditioning of ferric nitrate. Consequently, biodegradable substances in dissolved organic matters increased, which contributed to the favorable environment for microbial metabolism and resulted in acceleration of sludge stabilization. Ultimately, higher stabilization level was achieved as ratio of soluble chemical oxygen demand to total chemical oxygen demand (TCOD) decreased while TCOD reduced as well in dosing group comparing to non-dosing group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Probing the Folding-Unfolding Transition of a Thermophilic Protein, MTH1880

    PubMed Central

    Jung, Youngjin; Han, Jeongmin; Yun, Ji-Hye; Chang, Iksoo; Lee, Weontae

    2016-01-01

    The folding mechanism of typical proteins has been studied widely, while our understanding of the origin of the high stability of thermophilic proteins is still elusive. Of particular interest is how an atypical thermophilic protein with a novel fold maintains its structure and stability under extreme conditions. Folding-unfolding transitions of MTH1880, a thermophilic protein from Methanobacterium thermoautotrophicum, induced by heat, urea, and GdnHCl, were investigated using spectroscopic techniques including circular dichorism, fluorescence, NMR combined with molecular dynamics (MD) simulations. Our results suggest that MTH1880 undergoes a two-state N to D transition and it is extremely stable against temperature and denaturants. The reversibility of refolding was confirmed by spectroscopic methods and size exclusion chromatography. We found that the hyper-stability of the thermophilic MTH1880 protein originates from an extensive network of both electrostatic and hydrophobic interactions coordinated by the central β-sheet. Spectroscopic measurements, in combination with computational simulations, have helped to clarify the thermodynamic and structural basis for hyper-stability of the novel thermophilic protein MTH1880. PMID:26766214

  13. Bioflocculation of mesophilic and thermophilic activated sludge.

    PubMed

    Vogelaar, J C T; De Keizer, A; Spijker, S; Lettinga, G

    2005-01-01

    Thermophilic activated sludge treatment is often hampered by a turbid effluent. Reasons for this phenomenon are so far unknown. Here, the hypothesis of the temperature dependency of the hydrophobic interaction as a possible cause for diminished thermophilic activated sludge bioflocculation was tested. Adsorption of wastewater colloidal particles was monitored on different flat surfaces as a function of temperature. Adsorption on a hydrophobic surface varied with temperature between 20 and 60 degrees C and no upward or downward trend could be observed. This makes the hydrophobic interaction hypothesis unlikely in explaining the differences in mesophilic and thermophilic activated sludge bioflocculation. Both mesophilic and thermophilic biomass did not flocculate with wastewater colloidal particles under anaerobic conditions. Only in the presence of oxygen, with biologically active bacteria, the differences in bioflocculation behavior became evident. Bioflocculation was shown only to occur with the combination of wastewater and viable mesophilic biomass at 30 degrees C, in the presence of oxygen. Bioflocculation did not occur in case the biomass was inactivated or when oxygen was absent. Thermophilic activated sludge hardly showed any bioflocculation, also under mesophilic conditions. Despite the differences in bioflocculation behavior, sludge hydrophobicity and sludge zetapotentials were almost similar. Theoretical calculations using the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory showed that flocculation is unlikely in all cases due to long-range electrostatic forces. These calculations, combined with the fact that bioflocculation actually did occur at 30 degrees C and the unlikelyness of the hydrophobic interaction, point in the direction of bacterial exo-polymers governing bridging flocculation. Polymer interactions are not included in the DLVO theory and may vary as a function of temperature.

  14. Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process.

    PubMed

    Suvilampi, J; Lehtomäki, A; Rintala, J

    2003-07-01

    A combined thermophilic-mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF/A-filtered COD (COD(filt)) of 1900+/-190 mgl(-1)). With hydraulic retention times (HRTs) of 12-18 h the thermophilic ASP and thermophilic SCBP removed 60+/-13% and 62+/-7% of COD(filt), respectively, with HRT of 8 h the removals were 48+/-1% and 69+/-4%. The sludge volume index (SVI) was notably lower in the thermophilic SCBP (measured from suspended sludge) than in the thermophilic ASP. Under the lowest HRT the mesophilic ASP gave better performance (as SVI, COD(filt), and COD(tot) removals) after the thermophilic SCBP than after the thermophilic ASP. Measured sludge yields were low (less than 0.1 kg suspended solids (SS) kg COD(filt removed)(-1)) in all processes. Both thermophilic treatments removed 80-85% of soluble COD (COD(sol)) whereas suspended COD (COD(susp)) and colloidal COD (COD(col)) were increased. Both mesophilic post-treatments removed all COD(col) and most of the COD(susp) from the thermophilic effluents. In conclusion, combined thermophilic-mesophilic treatment appeared to be easily operable and produced high effluent quality.

  15. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass.

    PubMed

    Eichorst, Stephanie A; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A; Singer, Steven W

    2014-12-01

    Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Thermophilic aerobic digestion process for producing animal nutrients and other digested products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulthard, T.L.; Townsley, P.M.; Saben, H.S.

    1981-09-29

    Waste materials are digested by thermophilic bacteria to produce single-cell protein and vitamin B12. The bacteria are contained in the waste and are not inoculated. Thus, a hog manure slurry containing 10% solids was stirred with aeration in an insulated reactor to allow the temperature to be maintained at greater than 55/sup 0/. The temperature was maintained at 55-65/sup 0/ and the dissolved O/sub 2/ concentration at 1.5-3 ppm for 6 days. After 10 days reaction, the product was fed to hogs as 10% of their nutrient supply with no apparent adverse effects.

  17. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke

    PubMed Central

    Constans, Annabelle; Pin-barre, Caroline; Temprado, Jean-Jacques; Decherchi, Patrick; Laurin, Jérôme

    2016-01-01

    Stroke often aggravated age-related cognitive impairments that strongly affect several aspects of quality of life. However, few studies are, to date, focused on rehabilitation strategies that could improve cognition. Among possible interventions, aerobic training is well known to enhance cardiovascular and motor functions but may also induce beneficial effects on cognitive functions. To assess the effectiveness of aerobic training on cognition, it seems necessary to know whether training promotes the neuroplasticity in brain areas involved in cognitive functions. In the present review, we first explore in both human and animal how aerobic training could improve cognition after stroke by highlighting the neuroplasticity mechanisms. Then, we address the potential effect of combinations between aerobic training with other interventions, including resistance exercises and pharmacological treatments. In addition, we postulate that classic recommendations for aerobic training need to be reconsidered to target both cognition and motor recovery because the current guidelines are only focused on cardiovascular and motor recovery. Finally, methodological limitations of training programs and cognitive function assessment are also developed in this review to clarify their effectiveness in stroke patients. PMID:27445801

  18. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome

    PubMed Central

    Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun

    2013-01-01

    The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity. PMID:25566424

  19. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome.

    PubMed

    Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun

    2013-12-01

    The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p < .001), HDL-C (p = .010) and waist circumference (p = .016). Triglyceride and waist circumference was significantly decreased in combined group than muscle strength exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity.

  20. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  1. Thermophilic biogasification of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Klass, D.L.; Edwards, V.H.

    1980-01-01

    Secondary sewage effluent- and fresh-water-grown water hyacinths (Eichhornia crassipes), Coastal Bermuda grass (Cynodon dactylon), and a hyacinth-grass-municipal solid waste-sludge (biomass-waste) blend were used as test feeds to develop a fast thermophilic biomass- digestion process. For the pure biomass feeds thermophilic digestion has no apparent advantage over mesophilic digestion, but the reverse is true for the biomass-waste blend. Alkaline pretreatment of the feed improved thermophilic digester performance substantially. For a given plant feed load, the reactor volume, culture-heating requirements, and CH4 production rate for thermophilic digestion of the pretreated biomass-waste feed were 18,46, and 135% of those for conventional mesophilic digestion.more » For a biomass-waste feed the respective volatile solids reduction and energy recovery efficiencies were 46 and 49% for thermophilic and 36 and 43% for mesophilic digestions.« less

  2. Thermophilic lignocellulose deconstruction.

    PubMed

    Blumer-Schuette, Sara E; Brown, Steven D; Sander, Kyle B; Bayer, Edward A; Kataeva, Irina; Zurawski, Jeffrey V; Conway, Jonathan M; Adams, Michael W W; Kelly, Robert M

    2014-05-01

    Thermophilic microorganisms are attractive candidates for conversion of lignocellulose to biofuels because they produce robust, effective, carbohydrate-degrading enzymes and survive under harsh bioprocessing conditions that reflect their natural biotopes. However, no naturally occurring thermophile is known that can convert plant biomass into a liquid biofuel at rates, yields and titers that meet current bioprocessing and economic targets. Meeting those targets requires either metabolically engineering solventogenic thermophiles with additional biomass-deconstruction enzymes or engineering plant biomass degraders to produce a liquid biofuel. Thermostable enzymes from microorganisms isolated from diverse environments can serve as genetic reservoirs for both efforts. Because of the sheer number of enzymes that are required to hydrolyze plant biomass to fermentable oligosaccharides, the latter strategy appears to be the preferred route and thus has received the most attention to date. Thermophilic plant biomass degraders fall into one of two categories: cellulosomal (i.e. multienzyme complexes) and noncellulosomal (i.e. 'free' enzyme systems). Plant-biomass-deconstructing thermophilic bacteria from the genera Clostridium (cellulosomal) and Caldicellulosiruptor (noncellulosomal), which have potential as metabolic engineering platforms for producing biofuels, are compared and contrasted from a systems biology perspective. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Thermophilic biogasification of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Klass, D.L.; Christopher, R.W.

    1980-01-01

    Mesophilic and thermophilic digestion runs were conducted with the pure land-based biomass species, water hyacinth (Eichhornia crassipes) and Coastal Bermuda grass (Cynodon dactylon), and a blend of hyacinth, grass, MSW, and sewage sludge. A mixed biomass-waste hybrid feed was included because it has a superior nutritional balance relative to the pure feeds and it facilitates year-round operation of a biomass-to-SNG process. (7) The studies were conducted at 35/sup 0/ and 55/sup 0/C, generally believed to be optimum for mesophilic and thermophilic digestion of organic feeds. Results of mesophilic digestion were to provide baseline performance data for evaluation of thermophilic digestermore » performance. It was decided that the feed affording the best thermophilic performance would be pretreated with dilute sodium hydroxide solution at the selected digestion temperature of 55/sup 0/C to improve methane production rate and yield. In addition, thermophilic runs were planned to investigate ways to reduce chemical requirements for alkaline pretreatment and feed slurry neutralization.« less

  4. Investigating Aerobic, Anaerobic Combine Technical Trainings' Effects on Performance in Tennis Players

    ERIC Educational Resources Information Center

    Suna, Gürhan; Kumartasli, Mehmet

    2017-01-01

    The aim of this study is to investigate eight-week aerobic, anaerobic combine technical trainings' effects on developments of performance. 21 athletes of tennis proficiency students from Sports Sciences Department were joined to the study voluntarily. Participated in the research athletes' ages' mean was 22,2 ± 0,3 year, lengths' mean was 177,3 ±…

  5. Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage-treatment process.

    PubMed

    Shigeri, Yasushi; Matsui, Tatsunobu; Watanabe, Kunihiko

    2009-11-01

    In order to develop a practical method for the decomposition of intact chicken feathers, a moderate thermophile strain, Meiothermus ruber H328, having strong keratinolytic activity, was used in a bio-type garbage-treatment machine working with an acidulocomposting process. The addition of strain H328 cells (15 g) combined with acidulocomposting in the garbage machine resulted in 70% degradation of intact chicken feathers (30 g) within 14 d. This degradation efficiency is comparable to a previous result employing the strain as a single bacterium in flask culture, and it indicates that strain H328 can promote intact feather degradation activity in a garbage machine currently on the market.

  6. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications.

  7. Improvement in cardiac dysfunction with a novel circuit training method combining simultaneous aerobic-resistance exercises. A randomized trial.

    PubMed

    Dor-Haim, Horesh; Barak, Sharon; Horowitz, Michal; Yaakobi, Eldad; Katzburg, Sara; Swissa, Moshe; Lotan, Chaim

    2018-01-01

    Exercise is considered a valuable nonpharmacological intervention modality in cardiac rehabilitation (CR) programs in patients with ischemic heart disease. The effect of aerobic interval exercise combined with alternating sets of resistance training (super-circuit training, SCT) on cardiac patients' with reduced left ventricular function, post-myocardial infarction (MI) has not been thoroughly investigated. to improve cardiac function with a novel method of combined aerobic-resistance circuit training in a randomized control trial by way of comparing the effectiveness of continuous aerobic training (CAT) to SCT on mechanical cardiac function. Secondary to compare their effect on aerobic fitness, manual strength, and quality of life in men post MI. Finally, to evaluate the safety and feasibility of SCT. 29 men post-MI participants were randomly assigned to either 12-weeks of CAT (n = 15) or SCT (n = 14). Both groups, CAT and SCT exercised at 60%-70% and 75-85% of their heart rate reserve, respectively. The SCT group also engaged in intermittently combined resistance training. Primary outcome measure was echocardiography. Secondary outcome measures were aerobic fitness, strength, and quality of life (QoL). The effectiveness of the two training programs was examined via paired t-tests and Cohen's d effect size (ES). Post-training, only the SCT group presented significant changes in echocardiography (a reduction in E/e' and an increase in ejection fraction, P<0.05). Similarly, only the SCT group presented significant changes in aerobic fitness (an increase in maximal metabolic equivalent, P<0.05). In addition, SCT improvement in the physical component of QoL was greater than this observed in the CAT group. In both training programs, no adverse events were observed. Men post-MI stand to benefit from both CAT and SCT. However, in comparison to CAT, as assessed by echocardiography, SCT may yield greater benefits to the left ventricle mechanical function as well as to the

  8. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  9. Combined aerobic and resistance training improves physical capacity in women treated for gynecological cancer.

    PubMed

    Hausmann, F; Iversen, V V; Kristoffersen, M; Gundersen, H; Johannsson, E; Vika, M

    2018-04-14

    The purpose of this study was to evaluate the effects of 16 weeks combined aerobic and resistance training, twice a week, on the physical performance in women treated for gynecological cancer. Sixty women (56.9 ± 13.3 years) who had completed curative treatment for gynecological cancer were divided into two groups: a physical training group (PT) (n = 29) or a control group (C) (n = 31). The PT group performed two sessions of combined aerobic and resistance training weekly for 16 weeks. Peak oxygen consumption (V̇O 2peak ) and one repetition maximum (1RM) of leg press, leg extension, and chest press were measured before group assignment, after 16 weeks and at the 1-year follow-up. A significant increase in V̇O 2peak (ml min -1  kg -1 ) (29.7 ± 8.0 vs. 31.3 ± 8.3, p = .009), leg press (kg) (113.0 ± 27.3 vs. 116.7 ± 29.2, p = .047), leg extension (kg) (44.2 ± 10.1 vs. 48.0 ± 10.6, p < .001), and chest press (kg) (24.5 ± 7.5 vs. 26.9 ± 8.2, p = .001) was seen in the PT group from pre- to post-measurement. The PT group maintained the improved aerobic condition and muscle strength 1 year after the training intervention. In the C group, there were no significant differences between pre- and post-measurements, but a significant decrease (28.2 ± 7.5 vs. 27.0 ± 7.3, p = .040) in the V̇O 2peak from post to 1-year follow-up measurements. Combined aerobic and resistance training twice a week in 16 weeks improves V̇O 2peak and maximal strength in women treated for gynecological cancer. The training effects were sustained after 1 year in the PT group.

  10. Combined Training (Aerobic Plus Strength) Potentiates a Reduction in Body Fat but Demonstrates No Difference on the Lipid Profile in Postmenopausal Women When Compared With Aerobic Training With a Similar Training Load.

    PubMed

    Rossi, Fabrício E; Fortaleza, Ana C S; Neves, Lucas M; Buonani, Camila; Picolo, Malena R; Diniz, Tiego A; Kalva-Filho, Carlos A; Papoti, Marcelo; Lira, Fabio S; Freitas Junior, Ismael F

    2016-01-01

    The aim of this study was to verify the effects of aerobic and combined training on the body composition and lipid profile of obese postmenopausal women and to analyze which of these models is more effective after equalizing the training load. Sixty-five postmenopausal women (age = 61.0 ± 6.3 years) were divided into 3 groups: aerobic training (AT, n = 15), combined training (CT [strength + aerobic], n = 32), and control group (CG, n = 18). Their body composition upper body fat (TF), fat mass (FM), percentage of FM, and fat-free mass (FFM) were estimated by dual-energy x-ray absorptiometry. The lipid profile, total cholesterol, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein cholesterol were assessed. There was a statistically significant difference in the TF (AT = -4.4%, CT = -4.4%, and CG = 1.0%, p = 0.001) and FFM (AT = 1.7%, CT = 2.6%, and CG = -1.4%, p = 0.0001) between the experimental and the control groups. Regarding the percentage of body fat, there was a statistically significant difference only between the CT and CG groups (AT = -2.8%, CT = -3.9%, and CG = 0.31%; p = 0.004). When training loads were equalized, the aerobic and combined training decreased core fat and increased FFM, but only the combined training potentiated a reduction in percentage of body fat in obese postmenopausal women after the training program. High-density lipoprotein-c levels increased in the combined group, and the chol/HDL ratio (atherogenic index) decreased in the aerobic group; however, there were no significant differences between the intervention programs. Taken together, both the exercise training programs were effective for improving body composition and inducing an antiatherogenic status.

  11. A randomized 9-month study of blood pressure and body fat responses to aerobic training versus combined aerobic and resistance training in older men.

    PubMed

    Sousa, Nelson; Mendes, Romeu; Abrantes, Catarina; Sampaio, Jaime; Oliveira, José

    2013-08-01

    This randomized study evaluated the impact of different exercise training modalities on blood pressure and body fat responses in apparently healthy older men. Forty-eight elderly men (aged 65-75 years) were randomly assigned to an aerobic training group (ATG, n=15), a combined aerobic and resistance training group (CTG, n=16), or a control group (n=17). Both exercise training programs were moderate-to-vigorous intensity, three days/week for 9-months. Strength, aerobic endurance, body fat and blood pressure were measured on five different occasions. The data were analyzed using a mixed-model ANOVA, and the independence between systolic blood pressure (SBP), diastolic blood pressure (DBP) and group was tested. A significant main effect of group (p<0.001) was observed in strength and aerobic endurance, with higher performance observed in the CTG. A significant main effect of group (p<0.001) and time (p=0.029) was observed in body fat percentage, with a 2.3% decrease in CTG. A significant main effect of time was observed in SBP (p=0.005) and in DBP (p=0.011) for both ATG and CTG. Mean decreases in SBP and DBP, respectively, were 15 and 6 mmHg for ATG and 24 and 12 mmHg for CTG. There was a significant association for SBP (p=0.008) and DBP (p=0.005) in the CTG, with significant individual BP profile modifications. Both exercise-training programs reduce resting blood pressure. However, only the combined exercise training was effective at reducing body fat percentage; consequently, there were larger changes in blood pressure, which result in a significant reduction in hypertensive subjects. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  13. [Characteristics of novel wastewater treatment technology by swimming bed combined with aerobic granular sludge].

    PubMed

    Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie

    2007-10-01

    Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.

  14. Effects of combined aerobic and resistance exercise on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis.

    PubMed

    Lee, Yong Hee; Park, Soo Hyun; Yoon, Eun Sun; Lee, Chong-Do; Wee, Sang Ouk; Fernhall, Bo; Jae, Sae Young

    2015-09-01

    The effects of combined aerobic and resistance exercise training on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis were investigated. Twenty-six patients with chronic poststroke hemiparesis were randomly assigned to either the combined aerobic and resistance exercise group (n = 14) or the control group (n = 12). The exercise intervention group received a combined aerobic and resistance exercise training (1 hr/day, three times/week for 16 wks), whereas the control group received usual care. Central arterial stiffness was determined by pulse wave velocity and augmentation index. Gait velocity was assessed using the 6-min walk test, 10-m walk test, and the Timed Up-and-Go test. Patients in the exercise intervention group had greater improvement of mean pulse wave velocity (P < 0.001), augmentation index (P = 0.048), and gait velocity (6-min walk test, P < 0.001; 10-m walk test, P < 0.001) than did patients in the control group. Patients in the exercise intervention group also had greater improvements in physical fitness component (grip strength, P < 0.001; muscular strength of upper and lower limbs, P < 0.027; flexibility, P < 0.001) when compared with control patients. The combined aerobic and resistance exercise program significantly reduced central arterial stiffness and increased gait velocity in patients with chronic poststroke hemiparesis.

  15. Effect of process temperature, pH and suspended solids content upon pasteurization of a model agricultural waste during thermophilic aerobic digestion.

    PubMed

    Ugwuanyi, J O; Harvey, L M; McNeil, B

    1999-09-01

    Thermophilic aerobic digestion(TAD), or liquid composting, is a versatile new process for the treatment and stabilization of high strength wastes of liquid or, perhaps more importantly, slurry consistency. The pattern of inactivation of various pathogenic and indicator organisms was studied using batch digestions under conditions that may be expected to be found in full-scale TAD processes. Rapid inactivation of test populations occurred within the first 10 min from the start of digestion. The inactivation rate was slightly lower when digestions were conducted below 60 degrees C. In some instances, a 'tail' was apparent, possibly indicating the survival of relatively resistant sub-populations particularly in the case of Serratia marcescens and Enterococcus faecalis, or of clumping or attachment of cells to particulate materials. The effect of pH on the inactivation of the test populations depended on the temperature of digestion, but varied with the test population. At 55 degrees C Escherichia coli was more sensitive to temperature effects at pH 7 than at pH 8, but was more sensitive at pH 8, 60 degrees C. The reverse was the case at 60 degrees C for Ent. faecalis. An increase in the solid content of the digesting waste caused a progressive increase in the protection of test organisms from thermal inactivation. Challenging a TAD process with test strains allows (via estimation of D-values) a quantification of the cidal effects of such processes, with a view to manipulating process variables to enhance such effects.

  16. Effect of low-impact aerobic exercise combined with music therapy on patients with fibromyalgia. A pilot study.

    PubMed

    Espí-López, Gemma V; Inglés, Marta; Ruescas-Nicolau, María-Arántzazu; Moreno-Segura, Noemí

    2016-10-01

    Fibromyalgia is a pathological entity characterized by chronic widespread musculoskeletal pain and the presence of "tender points". It constitutes a significant health problem because of its prevalence and economic impact. The aim of the present study was to determine the therapeutic benefits of low impact aerobic exercise alone or in combination with music therapy in patients with fibromyalgia. A single-blind randomized controlled pilot trial was performed. Thirty-five individuals with fibromyalgia were divided into three groups: (G1) therapeutic aerobic exercise with music therapy (n=13); (G2) therapeutic aerobic exercise at any rhythm (n=13) and (CG) control (n=9). The intervention period lasted eight weeks. Depression, quality of life, general discomfort and balance were assessed before and after intervention. At post-intervention, group G1 improved in all variables (depression (p=0.002), quality of life (p=0.017), general discomfort (p=0.001), and balance (p=0.000)), while group G2 improved in general discomfort (p=0.002). The change observed in balance was statistically different between groups (p=0.01). Therapeutic aerobic exercise is effective in improving depression and general discomfort in individuals with fibromyalgia. However, effectiveness is higher when combined with music therapy, which brings about further improvements in quality of life and balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aggregated effects of combining daily milk consumption and aerobic exercise on short-term memory and sustained attention among female students.

    PubMed

    Leong, In-Tyng; Moghadam, Sedigheh; Hashim, Hairul A

    2015-02-01

    Regular aerobic exercise and milk consumption have been found to have positive effects on certain cognitive functions such as short-term memory and sustained attention. However, aggregated effects of combining these modalities have not been explored. This study examined the combined effects of milk supplementation and aerobic exercise on the short-term memory and sustained attention of female students aged 16 yr. (N = 81). The intervention involved serving of 250 ml of regular milk during school days and/or a 1-hr. aerobic exercise period twice per week for 6 weeks. The Digit Span Test and Digit Vigilance Test were used to measure short-term memory and sustained attention, respectively. The combination group (milk and exercise) and exercise group performed significantly better than did the milk and control groups in terms of short-term memory. No significant interaction or group differences were found for sustained attention. The results suggest benefits of regular exercise for students' short-term memory.

  18. Sanitising black water by auto-thermal aerobic digestion (ATAD) combined with ammonia treatment.

    PubMed

    Nordin, Annika C; Vinnerås, Björn

    2015-01-01

    The effect of a two-step process on the concentration of pathogens and indicator microorganisms in black water (0.9-1% total solids) was studied. The treatment combined auto-thermal aerobic digestion (ATAD) and ammonia sanitisation. First, the temperature of the black water was increased through ATAD and when a targeted temperature was reached (33, 41 and 45.5 °C studied), urea was added to a 0.5% concentration (total ammonia nitrogen >2.9 g L⁻¹). Escherichia coli and Salmonella spp. were reduced to non-detectable levels within 3 days following urea addition at temperatures above 40 °C, whereas when urea was added at 33 °C E. coli was still present after 8 days. By adding urea at temperatures of 40 °C and above, a 5 log10 reduction in Enterococcus spp. and a 3 log10 reduction in Ascaris suum eggs was achieved 1 week after the addition. With combined ATAD and ammonia treatment using 0.5% ww urea added at an aerobic digestion temperature >40 °C, black water was sanitised regarding the pathogens studied in 2 weeks of total treatment time.

  19. Thermophilic Fungi: Their Physiology and Enzymes†

    PubMed Central

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  20. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential.

    PubMed

    Singh, Bijender

    2016-01-01

    Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.

  1. Thermophilic microorganisms in biomining.

    PubMed

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  2. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    PubMed Central

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  3. Comparison of Combined Aerobic and High-Force Eccentric Resistance Exercise With Aerobic Exercise Only for People With Type 2 Diabetes Mellitus

    PubMed Central

    Marcus, Robin L; Smith, Sheldon; Morrell, Glen; Addison, Odessa; Dibble, Leland E; Wahoff-Stice, Donna; LaStayo, Paul C

    2008-01-01

    Background and Purpose: The purpose of this study was to compare the outcomes between a diabetes exercise training program using combined aerobic and high-force eccentric resistance exercise and a program of aerobic exercise only. Subjects and Methods: Fifteen participants with type 2 diabetes mellitus (T2DM) participated in a 16-week supervised exercise training program: 7 (mean age=50.7 years, SD=6.9) in a combined aerobic and eccentric resistance exercise program (AE/RE group) and 8 (mean age=58.5 years, SD=6.2) in a program of aerobic exercise only (AE group). Outcome measures included thigh lean tissue and intramuscular fat (IMF), glycosylated hemoglobin, body mass index (BMI), and 6-minute walk distance. Results: Both groups experienced decreases in mean glycosylated hemoglobin after training (AE/RE group: −0.59% [95% confidence interval (CI)=−1.5 to 0.28]; AE group: −0.31% [95% CI=−0.60 to −0.03]), with no significant between-group differences. There was an interaction between group and time with respect to change in thigh lean tissue cross-sectional area, with the AE/RE group gaining more lean tissue (AE/RE group: 15.1 cm2 [95% CI=7.6 to 22.5]; AE group: −5.6 cm2 [95% CI=−10.4 to 0.76]). Both groups experienced decreases in mean thigh IMF cross-sectional area (AE/RE group: −1.2 cm2 [95% CI=−2.6 to 0.26]; AE group: −2.2 cm2 [95% CI=−3.5 to −0.84]) and increases in 6-minute walk distance (AE/RE group: 45.5 m [95% CI=7.5 to 83.6]; AE group: 29.9 m [95% CI=−7.7 to 67.5]) after training, with no between-group differences. There was an interaction between group and time with respect to change in BMI, with the AE/RE group experiencing a greater decrease in BMI. Discussion and Conclusion: Significant improvements in long-term glycemic control, thigh composition, and physical performance were demonstrated in both groups after participating in a 16-week exercise program. Subjects in the AE/RE group demonstrated additional improvements in

  4. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  5. Comparisons of low-intensity versus moderate-intensity combined aerobic and resistance training on body composition, muscle strength, and functional performance in older women.

    PubMed

    Shiotsu, Yoko; Yanagita, Masahiko

    2018-06-01

    This study aimed to examine the effects of exercise order of combined aerobic and low- or moderate-intensity resistance training into the same session on body composition, functional performance, and muscle strength in healthy older women. Furthermore, this study compared the effects of different (low- vs moderate-) intensity combined training. A total of 60 healthy older women (age 61-81 y) were randomly assigned to five groups that performed aerobic exercise before low-intensity resistance training (AR-L, n = 12) or after resistance training (RA-L, n = 12), performed aerobic exercise before moderate-intensity resistance training (AR-M, n = 12) or after resistance training (RA-M, n = 12), or nonintervention control conditions (CON, n = 12). Body composition, functional performance, and muscle strength were evaluated before and after the 10-week training. No effects of exercise order of combined aerobic and low- or moderate-intensity resistance training (AR-L vs RA-L, AR-M vs RA-M) were observed in body composition, functional performance, or muscle strength, whereas the effects of training intensity of combined training (AR-L vs AR-M, RA-L vs RA-M) were observed on functional performance. All combined trainings significantly increased muscle strength and gait ability (P < 0.01, respectively). Functional reach test significantly increased in the AR-M and RA-M groups (P < 0.01, respectively), and there were significant group differences between AR-L and AR-M (P = 0.002), RA-L and RA-M (P = 0.014). Preliminary findings suggest that combined aerobic and low- or moderate-intensity resistance training increases muscle strength and improves gait ability, regardless of the exercise order. Also, greater improvement in dynamic balance capacity, a risk factor associated with falling, is observed in moderate-intensity combined training.

  6. Thermophilic degradation of cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  7. A novel thermophilic methane-oxidizing bacteria from thermal springs of Uzon volcano caldera, Kamchatka

    NASA Astrophysics Data System (ADS)

    Dvorianchikova, E.; Kizilova, A.; Kravchenko, I.; Galchenko, V.

    2012-04-01

    Methane is a radiatively active trace gas, contributing significantly to the greenhouse effect. It is 26 times more efficient in absorbing and re-emitting infrared radiation than carbon dioxide. Methanotrophs play an essential role in the global carbon cycle by oxidizing 50-75% of the biologically produced methane in situ, before it reaches the atmosphere. Methane-oxidizing bacteria are isolated from the various ecosystems and described at present. Their biology, processes of methane oxidation in fresh-water, marsh, soil and marine habitats are investigated quite well. Processes of methane oxidation in places with extreme physical and chemical conditions (high or low , salinity and temperature values) are studied in much smaller degree. Such ecosystems occupy a considerable part of the Earth's surface. The existence of aerobic methanotrophs inhabiting extreme environments has been verified so far by cultivation experiments and direct detection of methane monooxygenase genes specific to almost all aerobic methanotrophs. Thermophilic and thermotolerant methanotrophs have been isolated from such extreme environments and consist of the gammaproteobacterial (type I) genera Methylothermus, Methylocaldum, Methylococcus and the verrucomicrobial genus Methylacidiphilum. Uzon volcano caldera is a unique area, where volcanic processes still happen today. Hydrothermal springs of the area are extreme ecosystems which microbial communities represent considerable scientific interest of fundamental and applied character. A thermophilic aerobic methane-oxidising bacterium was isolated from a sediment sample from a hot spring (56.1; 5.3) of Uzon caldera. Strain S21 was isolated using mineral low salt medium. The headspace gas was composed of CH4, Ar, CO2, and O2 (40:40:15:5). The temperature of cultivation was 50, pH 5.5. Cells of strain S21 in exponential and early-stationary phase were coccoid bacilli, about 1 μm in diameter, and motile with a single polar flagellum. PCR and

  8. Combined effects of aerobic exercise and omega-3 fatty acids in hyperlipidemic persons.

    PubMed

    Warner, J G; Ullrich, I H; Albrink, M J; Yeater, R A

    1989-10-01

    Because both aerobic exercise and fish oil ingestion have been shown to decrease plasma lipids, we examined the effects of combining these modalities in hyperlipidemic subjects. Thirty-four subjects were randomly assigned to one of four groups as follows: fish oil and exercise (FE), N = 7, 50 ml of oil daily and 3 d.wk-1 of aerobic exercise; fish oil (F), N = 7, 50 ml of oil daily; corn oil (CN), N = 10, 50 ml of oil daily; and control (C), N = 10. Blood samples were drawn at baseline and at the end of 4, 8, and 12 wk. The FE and F groups showed significantly lower triglycerides with respect to treatment as compared to the CN and C groups. The FE, F, and CN groups exhibited lower total cholesterol values than the control group but were not different from each other. HDL cholesterol was significantly increased after treatment in the FE and F groups as compared to the CN and C groups. Serum apo-B, LDL cholesterol, and LDL protein decreased significantly in the FE group but not the F group from baseline to 12 wk. VO2max increased and percent fat decreased only in the FE group. In conclusion, aerobic exercise improved the effects of fish oil on LDL cholesterol and apo-B and improved fitness and body composition in hyperlipidemic subjects.

  9. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    PubMed

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria.

    PubMed

    Sun, Weimin; Krumins, Valdis; Dong, Yiran; Gao, Pin; Ma, Chunyan; Hu, Min; Li, Baoqin; Xia, Bingqing; He, Zijun; Xiong, Shangling

    2018-01-01

    Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13 C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13 C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13 C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13 C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13 C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.

  11. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  12. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands.

    PubMed

    Ridley, Christina M; Voordouw, Gerrit

    2018-06-01

    Little is known about the microbial ecology of the subsurface oil sands in Northern Alberta, Canada. Biodegradation of low molecular weight hydrocarbons by indigenous microbes has enriched high molecular weight hydrocarbons, resulting in highly viscous bitumen. This extreme subsurface environment is further characterized by low nutrient availability and limited access to water, thus resulting in low microbial biomass. Improved DNA isolation protocols and increasingly sensitive sequencing methods have allowed an in-depth investigation of the microbial ecology of this unique subsurface environmental niche. Community analysis was performed on core samples (n = 62) that were retrieved from two adjacent sites located in the Athabasca Oil Sands at depths from 220 to 320 m below the surface. Microbial communities were dominated by aerobic taxa, including Pseudomonas and Acinetobacter. Only one core sample microbial community was dominated by anaerobic taxa, including the methanogen Methanoculleus, as well as Desulfomicrobium and Thauera. Although the temperature of the bitumen-containing subsurface is low (8°C), two core samples had high fractions of the potentially thermophilic taxon, Thermus. Predominance of aerobic taxa in the subsurface suggests the potential for in situ aerobic hydrocarbon degradation; however, more studies are required to determine the functional role of these taxa within this unique environment.

  14. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type1 Diabetes.

    PubMed

    Dotzert, Michelle S; McDonald, Matthew W; Murray, Michael R; Nickels, J Zachary; Noble, Earl G; Melling, C W James

    2017-12-04

    Abnormal skeletal muscle lipid metabolism is associated with insulin resistance in people with type 1 diabetes. Although lipid metabolism is restored with aerobic exercise training, the risk for postexercise hypoglycemia is increased with this modality. Integrating resistance and aerobic exercise is associated with reduced hypoglycemic risk; however, the effects of this exercise modality on lipid metabolism and insulin resistance remain unknown. We compared the effects of combined (aerobic + resistance) versus aerobic exercise training on oxidative capacity and muscle lipid metabolism in a rat model of type 1 diabetes. Male Sprague-Dawley rats were divided into 4 groups: sedentary control (C), sedentary control + diabetes (CD), diabetes + high-intensity aerobic exercise (DAE) and diabetes + combined aerobic and resistance exercise (DARE). Following diabetes induction (20 mg/kg streptozotocin over five days), DAE rats ran for 12 weeks (5 days/week for 1 hour) on a motorized treadmill (27 m/min at a 6-degree grade), and DARE rats alternated daily between running and incremental weighted ladder climbing. After training, DAE showed reduced muscle CD36 protein content and lipid content compared to CD (p≤0.05). DAE rats also had significantly increased citrate synthase (CS) activity compared to CD (p≤0.05). DARE rats showed reduced CD36 protein content compared to CD and increased CS activity compared to CD and DAE rats (p≤0.05). DARE rats demonstrated increased skeletal muscle lipid staining, elevated lipin-1 protein content and insulin sensitivity (p≤0.05). Integration of aerobic and resistance exercise may exert a synergistic effect, producing adaptations characteristic of the "athlete's paradox," including increased capacity to store and oxidize lipids. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Psychological Responses to Acute Aerobic, Resistance, or Combined Exercise in Healthy and Overweight Individuals: A Systematic Review

    PubMed Central

    Elkington, Thomas J; Cassar, Samantha; Nelson, André R; Levinger, Itamar

    2017-01-01

    Introduction: Psychological distress and depression are risk factors for cardiovascular disease (CVD). As such, a reduction in psychological distress and increase in positive well-being may be important to reduce the risk for future development of CVD. Exercise training may be a good strategy to prevent and assist in the management of psychological disorders. The psychological effects of the initial exercise sessions may be important to increase exercise adherence. The aims of this systematic review were (a) to examine whether acute aerobic, resistance, or a combination of the 2 exercises improves psychological well-being and reduces psychological distress in individuals with healthy weight and those who are overweight/obese but free from psychological disorders, and (b) if so, to examine which form of exercise might yield superior results. Methods: The online database PubMed was searched for articles using the PICO (patient, intervention, comparison, and outcome) framework for finding scientific journals based on key terms. Results: Forty-two exercise studies met the inclusion criteria. A total of 2187 participants were included (age: 18-64 years, body mass index [BMI]: 21-39 kg/m2). Only 6 studies included participants with a BMI in the overweight/obese classification. Thirty-seven studies included aerobic exercise, 2 included resistance exercise, 1 used a combination of aerobic and resistance, and 2 compared the effects of acute aerobic exercise versus the effects of acute resistance exercise. The main findings of the review were that acute aerobic exercise improves positive well-being and have the potential to reduce psychological distress and could help reduce the risks of future CVD. However, due to the limited number of studies, it is still unclear which form of exercise yields superior psychological benefits. Conclusions: Obese, overweight, and healthy weight individuals can exhibit psychological benefits from exercise in a single acute exercise session

  16. Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea.

    PubMed

    Zhang, Wei; Yang, Ruijuan; Fang, Wenjun; Yan, Liang; Lu, Jun; Sheng, Jun; Lv, Jie

    2016-06-16

    This study aimed to characterize the thermophilic fungi in pile-fermentation process of Pu-erh tea. Physicochemical analyses showed that the high temperature and low pH provided optimal conditions for propagation of fungi. A number of fungi, including Blastobotrys adeninivorans, Thermomyces lanuginosus, Rasamsonia emersonii, Aspergillus fumigatus, Rhizomucor pusillus, Rasamsonia byssochlamydoides, Rasamsonia cylindrospora, Aspergillus tubingensis, Aspergillus niger, Candida tropicalis and Fusarium graminearum were isolated as thermophilic fungi under combination of high temperature and acid culture conditions from Pu-erh tea pile-fermentation. The fungal communities were analyzed by PCR-DGGE. Results revealed that those fungi are closely related to Debaryomyces hansenii, Cladosporium cladosporioides, A. tubingensis, R. emersonii, R. pusillus, A. fumigatus and A. niger, and the last four presented as dominant species in the pile process. These four preponderant thermophilic fungi reached the order of magnitude of 10(7), 10(7), 10(7) and 10(6)copies/g dry tea, respectively, measured by real-time quantitative PCR (q-PCR). The results indicate that the thermophilic fungi play an important role in Pu-erh tea pile fermentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Were the original eubacteria thermophiles?

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Stetter, K. O.; Woese, C. R.; Johnson, P. C. (Principal Investigator)

    1987-01-01

    Thermotoga maritima is one of the more unusual eubacteria: It is highly thermophilic, growing at temperatures higher than any other eubacterium; its cell wall appears to have a unique structure and its lipids a unique composition; and the organism is surrounded by a loose-fitting sheath of unknown function. Its phenotypic uniqueness is matched by its phylogenetic position; Thermotoga maritima represents the deepest known branching in the eubacterial line of descent, as measured by ribosomal RNA sequence comparisons. T. maritima also represents the most slowly evolving of eubacterial lineages. The fact that the two deepest branchings in the eubacterial line of descent (the other, the green non-sulfur bacteria and relatives, i.e. Chloroflexus, Thermomicrobium, etc.) are both basically thermophilic and slowly evolving, strongly suggests that all eubacteria have ultimately arisen from a thermophilic ancestor.

  18. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions.

    PubMed

    Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S

    2015-01-01

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and

  19. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions

    DOE PAGES

    Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.; ...

    2015-12-02

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methodsmore » included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival

  20. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years.

    PubMed

    de Rezende, Júlia Rosa; Kjeldsen, Kasper Urup; Hubert, Casey R J; Finster, Kai; Loy, Alexander; Jørgensen, Bo Barker

    2013-01-01

    Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 °C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer-enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca. 10(4) per cm(3) at the surface and decreased exponentially to 10(0) per cm(3) at 6.5 m depth, corresponding to 4500 years of sediment age. Thus, a half-life of ca. 300 years was estimated for the thermophilic SRB endospores deposited in Aarhus Bay sediments. These endospores were similarly detected in the overlying water column, indicative of passive dispersal in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments.

  1. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years

    PubMed Central

    de Rezende, Júlia Rosa; Kjeldsen, Kasper Urup; Hubert, Casey R J; Finster, Kai; Loy, Alexander; Jørgensen, Bo Barker

    2013-01-01

    Patterns of microbial biogeography result from a combination of dispersal, speciation and extinction, yet individual contributions exerted by each of these mechanisms are difficult to isolate and distinguish. The influx of endospores of thermophilic microorganisms to cold marine sediments offers a natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85 °C, and by subsequent molecular diversity analyses of 16S rRNA and of the dissimilatory (bi)sulfite reductase (dsrAB) genes within the endospore-forming SRB genus Desulfotomaculum. The thermophilic Desulfotomaculum community in Aarhus Bay sediments consisted of at least 23 species-level 16S rRNA sequence phylotypes. In two cases, pairs of identical 16S rRNA and dsrAB sequences in Arctic surface sediment 3000 km away showed that the same phylotypes are present in both locations. Radiotracer-enhanced most probable number analysis revealed that the abundance of endospores of thermophilic SRB in Aarhus Bay sediment was ca. 104 per cm3 at the surface and decreased exponentially to 100 per cm3 at 6.5 m depth, corresponding to 4500 years of sediment age. Thus, a half-life of ca. 300 years was estimated for the thermophilic SRB endospores deposited in Aarhus Bay sediments. These endospores were similarly detected in the overlying water column, indicative of passive dispersal in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments. PMID:22832348

  2. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

    PubMed

    Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon

    2013-02-28

    Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor

  3. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    PubMed

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain

    PubMed Central

    2012-01-01

    Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious

  5. Cultivation and Genomic Analysis of “Candidatus Nitrosocaldus islandicus,” an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland

    PubMed Central

    Daebeler, Anne; Herbold, Craig W.; Vierheilig, Julia; Sedlacek, Christopher J.; Pjevac, Petra; Albertsen, Mads; Kirkegaard, Rasmus H.; de la Torre, José R.; Daims, Holger; Wagner, Michael

    2018-01-01

    Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one§ enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as “Candidatus Nitrosocaldus islandicus,” is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. “Ca. N. islandicus” encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation§. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as “Ca. N. islandicus” is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that “Ca. N. islandicus” has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes§ – one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and

  6. Association of Resistance Exercise, Independent of and Combined With Aerobic Exercise, With the Incidence of Metabolic Syndrome.

    PubMed

    Bakker, Esmée A; Lee, Duck-Chul; Sui, Xuemei; Artero, Enrique G; Ruiz, Jonatan R; Eijsvogels, Thijs M H; Lavie, Carl J; Blair, Steven N

    2017-08-01

    To determine the association of resistance exercise, independent of and combined with aerobic exercise, with the risk of development of metabolic syndrome (MetS). The study cohort included adults (mean ± SD age, 46±9.5 years) who received comprehensive medical examinations at the Cooper Clinic in Dallas, Texas, between January 1, 1987, and December, 31, 2006. Exercise was assessed by self-reported frequency and minutes per week of resistance and aerobic exercise and meeting the US Physical Activity Guidelines (resistance exercise ≥2 d/wk; aerobic exercise ≥500 metabolic equivalent min/wk) at baseline. The incidence of MetS was based on the National Cholesterol Education Program Adult Treatment Panel III criteria. We used Cox regression to generate hazard ratios (HRs) and 95% CIs. Among 7418 participants, 1147 (15%) had development of MetS during a median follow-up of 4 years (maximum, 19 years; minimum, 0.1 year). Meeting the resistance exercise guidelines was associated with a 17% lower risk of MetS (HR, 0.83; 95% CI, 0.73-0.96; P=.009) after adjusting for potential confounders and aerobic exercise. Further, less than 1 hour of weekly resistance exercise was associated with 29% lower risk of development of MetS (HR, 0.71; 95% CI, 0.56-0.89; P=.003) compared with no resistance exercise. However, larger amounts of resistance exercise did not provide further benefits. Individuals meeting both recommended resistance and aerobic exercise guidelines had a 25% lower risk of development of MetS (HR, 0.75; 95% CI, 0.63-0.89; P<.001) compared with meeting neither guideline. Participating in resistance exercise, even less than 1 hour per week, was associated with a lower risk of development of MetS, independent of aerobic exercise. Health professionals should recommend that patients perform resistance exercise along with aerobic exercise to reduce MetS. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  7. Thermophilic biofiltration of benzene and toluene.

    PubMed

    Cho, Kyung-Suk; Yoo, Sun-Kyung; Ryu, Hee Wook

    2007-12-01

    In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

  8. Studies on the Thermophilic Actinomycetes1

    PubMed Central

    Tendler, M. D.; Burkholder, P. R.

    1961-01-01

    A total of 1,000 isolates of thermophilic actinomycetes representing two genera, Streptomyces and Thermoactinomyces, were studied. Media for cultivation and for physiological studies were designed. Differences between the two genera are noted and taxonomic criteria for the genus Thermoactinomyces are suggested. The importance of the nutritional environment to the thermophilic habit is noted. PMID:13775873

  9. Thermophilic cellobiohydrolase

    DOEpatents

    Sapra, Rajat; Park, Joshua I.; Datta, Supratim; Simmons, Blake A.

    2017-04-18

    The present invention provides for a composition comprising a polypeptide comprising a first amino acid sequence having at least 70% identity with the amino acid sequence of Csac GH5 wherein said first amino acid sequence has a thermostable or thermophilic cellobiohydrolase (CBH) or exoglucanase activity.

  10. WIse-2005: Combined Aerobic and Resistive Exercise May Help Mitigate Bone Loss During 60-D Simulated Microgravity in Women

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Heer, M. A.; Lee, S. M. C.; Macias, B. R.; Schneider, S. M.; Trappe, S. M.; Hargens, A. R.

    2006-01-01

    Exercise can attenuate bone loss associated with disuse during bed rest (BR), an analog of space flight. Previous studies have examined the efficacy of aerobic or resistive exercise countermeasures, but not in combination. We sought to determine the effect of a combined resistive and aerobic exercise regimen on bone metabolism during BR. After a 20-d ambulatory adaptation to confinement and diet, 16 women participated in a 60-d head-down-tilt BR. Control subjects (CN, n=8) performed no countermeasures. Exercise subjects, (EX, n=8) participated in exercise alternating daily between supine treadmill exercise within lower body negative pressure and resistive fly-wheel exercise (6-d wk(sup -1)). In the last week of BR, bone resorption was greater (p less than 79 plus or minus 44%, mean plus or minus SD) and EX groups (64 50%). N-telopeptide also increased (CN: 51 plus or minus 34%; EX: 43 plus or minus 56%). However, bone-specific alkaline phosphatase, a bone formation marker, tended to be higher in EX (26 plus or minus 18%) than in CN (8 plus or minus 33%) groups. The combination of resistive and aerobic exercise does not prevent bone resorption, but may promote formation, potentially mitigating the net bone loss associated with simulated microgravity. This study was supported by CNES, CSA, ESA, NASA, and NASA grant NNJ04HF71G to ARH. MEDES (French Institute for Space Medicine and Physiology) organized the study.

  11. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome.

    PubMed

    Wewege, Michael A; Thom, Jeanette M; Rye, Kerry-Anne; Parmenter, Belinda J

    2018-05-03

    Exercise is beneficial to individuals with metabolic syndrome (MetS). An understudied group, who represent the majority of the MetS population, are individuals who have not developed diabetes. This review examined aerobic, resistance and combined (aerobic + resistance) exercise for cardiovascular risk factors in MetS without diabetes. Eight electronic databases were searched up to September 2017 for randomised controlled trials >4 weeks in duration that compared an exercise intervention to the non-exercise control in MetS without diabetes. MetS criteria, cardiorespiratory fitness and cardiovascular risk factors were meta-analysed in a random effects model. Eleven studies with 16 interventions were included (12 aerobic, 4 resistance). Aerobic exercise significantly improved waist circumference -3.4 cm (p < 0.01), fasting glucose -0.15 mmol/L (p = 0.03), high-density cholesterol 0.05 mmol/L (p = 0.02), triglycerides -0.29 mmol/L (p < 0.01), diastolic blood pressure -1.6 mmHg (p = 0.01), and cardiorespiratory fitness 4.2 ml/kg/min (p < 0.01), among other outcomes. No significant effects were determined following resistance exercise possibly due to limited data. Sub-analyses suggested that aerobic exercise progressed to vigorous intensity, and conducted 3 days/week for ≥12 weeks offered larger and more widespread improvements. Aerobic exercise following current guidelines offers widespread benefits to individuals with MetS without diabetes. More studies on resistance/combined exercise programs in MetS are required to improve the quality of evidence. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease: Evaluating and modeling methane production.

    PubMed

    Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert; Sartaj, Majid

    2016-12-01

    Renewable energy and clean environment are two crucial requirements for our modern world. Low cost, energy production and limited environmental impact make anaerobic digestion (AD) a promising technology for stabilizing organic waste and in particular, sewage waste. The anaerobic co-digestion of thickened waste activated sludge (TWAS) and sewage treatment plant trapped fat, oil and grease (FOG) using different FOG-TWAS mixtures (20, 40, 60 and 80% of FOG based on total volatile solids (TVS)) were investigated in this study using both thermophilic (55 ± 1 °C) and two stages hyper-thermophilic/thermophilic (70 ± 1 °C and 55 ± 1 °C) anaerobic co-digestion. The hyper-thermophilic co-digestion approach as a part of the co-digestion process has been shown to be very useful in improving the methane production. During hyper-thermophilic biochemical methane potential (BMP) assay testing the sample with 60% FOG (based on TVS) has been shown to significantly increase the maximum methane production to 673.1 ± 14.0 ml of methane as compared to 316.4 ± 14.3 ml of methane for the control sample. This represents a 112.7% increase in methane production compared to the control sample considered in this paper. These results signify the importance of hyper-thermophilic digestion to the co-digestion of TWAS-FOG field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Combined exercise is more effective than aerobic exercise in the improvement of fall risk factors: a randomized controlled trial in community-dwelling older men.

    PubMed

    Sousa, Nelson; Mendes, Romeu; Silva, André; Oliveira, José

    2017-04-01

    To compare the long-term effects of two community-based exercise programs on fall risk factors, such as balance, postural control, mobility and leg strength, in community-dwelling older men. Single-blinded randomized controlled trial, comparing three groups, with follow-ups at eight, 16, 24 and 32 weeks. Older men independent-living residing in Maia city, Portugal. A total of 66 older men (aged 69.0 ±4.9 years) were randomly assigned to an aerobic exercise group ( n = 22), a combined aerobic and resistance exercise group ( n = 22) or a control group ( n = 22). Both community-based exercise programs consisted of three sessions each week for 32 consecutive weeks and were planned for moderate-to-vigorous intensity. The control group had no exercise intervention. Main outcomes were measured by the Timed Up and Go Test, functional reach test, 30-second chair stand test and 6-minute walk test, on five different occasions. Repeated measures of analysis of covariance revealed significant main effects between time × group interaction in all outcomes over time (Timed Up and Go Test: p < 0.001; functional reach test: p = 0.002; 30-second chair stand: p = 0.001; 6-minute walk test: p < 0.001). Both exercise groups reported improvements; however, better performance was identified in the combined aerobic and resistance exercise group compared with the aerobic exercise group (-20.3% vs. -9.1% on the Timed Up and Go Test, +27.5% vs. +10.9% on the functional reach test, +20.8% vs. +7.3% on 30-second chair stand, +10.9% vs. +3.5% on 6-minute walk test). Adding resistance exercise to aerobic exercise improves factors associated with an increased risk of falls. However, both exercise regimes, combined or aerobic alone, are more effective than no exercise in the reduction of fall risk factors. ClinicalTrials.org #NCT01874132.

  14. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    PubMed

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  15. Thermophilic fungi in the new age of fungal taxonomy.

    PubMed

    de Oliveira, Tássio Brito; Gomes, Eleni; Rodrigues, Andre

    2015-01-01

    Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences.

  16. Thermophiles in the genomic era: Biodiversity, science, and applications.

    PubMed

    Urbieta, M Sofía; Donati, Edgardo R; Chan, Kok-Gan; Shahar, Saleha; Sin, Lee Li; Goh, Kian Mau

    2015-11-01

    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Consolidated bioprocessing method using thermophilic microorganisms

    DOEpatents

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  18. Domestic sewage sludge composting in a rotary drum reactor: optimizing the thermophilic stage.

    PubMed

    Rodríguez, Luis; Cerrillo, María I; García-Albiach, Valentín; Villaseñor, José

    2012-12-15

    The aim of this paper was to study the influence of four process variables (turning frequency, gas-phase oxygen level, type of bulking agent and sludge/bulking agent mixing ratio) on the performance of the sewage sludge composting process using a rotary drum pilot scale reactor, in order to optimize the thermophilic stage and reduce the processing time. Powdered sawdust, wood shavings, wood chips, prunings waste and straw were used as bulking agents and the thermophilic stage temperature profile was used as the main indicator for gauging if the composting process was developing correctly. Our results showed that a 12 h(-1) turning frequency and an oxygen concentration of 10% were the optimal conditions for the composting process to develop. The best results were obtained by mixing the sewage sludge with wood shavings in a 3:1 w/w ratio (on a wet basis), which adapted the initial moisture content and porosity to an optimal range and led to a maximum temperature of 70 °C being reached thus ensuring the complete removal of pathogens. Moisture, C:N ratio, pH, organic matter, heavy metals, pathogens and stability were all analysed for every mixture obtained at the end of the thermophilic stage. These parameters were compared with the limits established by the Spanish regulation on fertilizers (RD 824/2005) in order to assess if the compost obtained could be used on agricultural soils. The right combination of having optimal process variables combined with an appropriate reactor design allowed the thermophilic stage of the composting process to be speeded up, hence obtaining a compost product, after just two weeks of processing that (with the exception of the moisture content) complied with the Spanish legal requirements for fertilizers, without requiring a later maturation stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.

    PubMed

    Maugini, Elisa; Tronelli, Daniele; Bossa, Francesco; Pascarella, Stefano

    2009-04-01

    Enzymes from thermophilic and, particularly, from hyperthermophilic organisms are surprisingly stable. Understanding of the molecular origin of protein thermostability and thermoactivity attracted the interest of many scientist both for the perspective comprehension of the principles of protein structure and for the possible biotechnological applications through application of protein engineering. Comparative studies at sequence and structure levels were aimed at detecting significant differences of structural parameters related to protein stability between thermophilic and hyperhermophilic structures and their mesophilic homologs. Comparative studies were useful in the identification of a few recurrent themes which the evolution utilized in different combinations in different protein families. These studies were mostly carried out at the monomer level. However, maintenance of a proper quaternary structure is an essential prerequisite for a functional macromolecule. At the environmental temperatures experienced typically by hyper- and thermophiles, the subunit interactions mediated by the interface must be sufficiently stable. Our analysis was therefore aimed at the identification of the molecular strategies adopted by evolution to enhance interface thermostability of oligomeric enzymes. The variation of several structural properties related to protein stability were tested at the subunit interfaces of thermophilic and hyperthermophilic oligomers. The differences of the interface structural features observed between the hyperthermophilic and thermophilic enzymes were compared with the differences of the same properties calculated from pairwise comparisons of oligomeric mesophilic proteins contained in a reference dataset. The significance of the observed differences of structural properties was measured by a t-test. Ion pairs and hydrogen bonds do not vary significantly while hydrophobic contact area increases specially in hyperthermophilic interfaces. Interface

  20. Water-based aerobic and combined training in elderly women: Effects on functional capacity and quality of life.

    PubMed

    Silva, Mariana Ribeiro; Alberton, Cristine Lima; Portella, Elisa Gouvêa; Nunes, Gabriela Neves; Martin, Daniela Gomez; Pinto, Stephanie Santana

    2018-06-01

    This study aimed to investigate the effects of two water-based training programs (aerobic and combined) and a non-periodized physical activity program on functional capacity and quality of life (QoL) of elderly women. Forty-one elderly female volunteers (65 ± 4 years) were divided into three groups: aerobic training group (WBA, n = 13), combined training (sequence: resistance/aerobic; WBC; n = 11) and a control group of non-periodized physical activity program (CG, n = 9). The participants performed the water-based trainings twice a week for 12 weeks. The resistance training sets were performed at maximal effort and the aerobic training was performed in the percentage of the heart rate corresponding to the anaerobic threshold (85-110%) determined in an aquatic progressive test. Assessments of QoL perception (WHOQOL-BREF) and functional tests 30-Second Chair Stand, 6-Minute Walk and 8-Foot Up-and-go were performed before and after training. The data were analyzed using Generalized Estimating Equations (GEE), and Bonferroni post-hoc test (α = 0.05). In CG, QoL perception in the physical domain decreased (12 ± 10%) and there was no difference in the other domains. On the other hand, QoL perception was significantly increased in the water-based training groups after the training period in the physical (WBC: 13 ± 16%), psychological (WBA: 9 ± 16%; WBC: 10 ± 11%), social relationships (WBA: 19 ± 42%; WBC: 16 ± 21%) and environmental (WBA: 10 ± 17%; WBC: 16 ± 28%) domains and overall QoL (WBA: 17 ± 22%). No significant difference was observed in the physical domain for WBA and in the overall for WBC. Significant improvements were observed for all groups in the functional tests 30-Second Chair Stand (WBA: 32 ± 11%; WBC: 24 ± 14%; CG: 20 ± 9), 6-Minute Walk (WBA: 10 ± 7%; WBC: 7 ± 6%; CG: 7 ± 5%) and 8-Foot Up-and-go (WBA: 11 ± 5%; WBC: 10 ± 9%; CG: 10 ± 6

  1. Use of PCR-DGGE Based Molecular Methods to Analyse Microbial Community Diversity and Stability during the Thermophilic Stages of an ATAD Wastewater Sludge Treatment Process as an Aid to Performance Monitoring

    PubMed Central

    Piterina, Anna V.; Pembroke, J. Tony

    2013-01-01

    PCR and PCR-DGGE techniques have been evaluated to monitor biodiversity indexes within an ATAD (autothermal thermophilic aerobic digestion) system treating domestic sludge for land spread, by examining microbial dynamics in response to elevated temperatures during treatment. The ATAD process utilises a thermophilic population to generate heat and operates at elevated pH due to degradation of sludge solids, thus allowing pasteurisation and stabilisation of the sludge. Genera-specific PCR revealed that Archaea, Eukarya and Fungi decline when the temperature reaches 59°C, while the bacterial lineage constitutes the dominant group at this stage. The bacterial community at the thermophilic stage, its similarity index to the feed material, and the species richness present were evaluated by PCR-DGGE. Parameters such as choice of molecular target (16S rDNA or rpoB genes), and electrophoresis condition, were optimised to maximise the resolution of the method for ATAD. Dynamic analysis of microbial communities was best observed utilising PCR-DGGE analysis of the V6-V8 region of 16S rDNA, while rpoB gene profiles were less informative. Unique thermophilic communities were shown to quickly adapt to process changes, and shown to be quite stable during the process. Such techniques may be used as a monitoring technique for process health and efficiency. PMID:25937969

  2. Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns

    PubMed Central

    Mohr, Georg; Ghanem, Eman; Lambowitz, Alan M.

    2010-01-01

    Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. PMID:20543989

  3. Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.

    PubMed

    Colleran, E; Pender, S

    2002-01-01

    The effect of sulphate at an influent chemical oxygen demand (COD):sulphate ratio of 4 on the operational performance of anaerobic hybrid reactors treating molasses wastewater was investigated under mesophilic and thermophilic conditions in a long-term laboratory-scale study over a 1,081 day period. The presence of sulphate reduced the COD removal efficiency under both mesophilic and thermophilic conditions. At 55 degrees C, effluent acetate levels were consistently greater than 4000 mg l(-1) indicating that thermophilic acetate-utilising methane-producing bacteria (MPB) or sulphate-reducing bacteria (SRB) had not developed in the reactor under the conditions applied. At 37 degrees C, acetate was exclusively utilised by acetoclastic methanogens, whereas H2-utilising SRB predominated over H2-utilising MPB in the competition for hydrogen. By contrast, hydrogenotrophic MPB were shown to outcompete H2-utilising SRB during long-term thermophilic operation. 16SrDNA analysis of the seed sludge and reactor biomass on conclusion of the 37 degrees C and 55 degrees C trials illustrated that the dominant methanogen present on conclusion of the thermophilic trial in the absence of influent sulphate was related to Methanocorpusculum parvuum, and was capable of growth on both acetate and hydrogen. By contrast, an organism closely related to Methanobacterium thermoautotrophicum was the dominant methanogen present in the sulphate-fed reactor on completion of the thermophilic trial.

  4. State of the art and future perspectives of thermophilic anaerobic digestion.

    PubMed

    Ahring, B K; Mladenovska, Z; Iranpour, R; Westermann, P

    2002-01-01

    The state of the art of thermophilic digestion is discussed. Thermophilic digestion is a well established technology in Europe for treatment of mixtures of waste in common large scale biogas plants or for treatment of the organic fraction of municipal solid waste. Due to a large number of failures over time with thermophilic digestion of sewage sludge this process has lost its appeal in the USA. New demands on sanitation of biosolids before land use will, however, bring the attention back to the use of elevated temperatures during sludge stabilization. In the paper we show how the use of a start-up strategy based on the actual activity of key microbes can be used to ensure proper and fast transfer of mesophilic digesters into thermophilic operation. Extreme thermophilic temperatures of 65 degrees C or more may be necessary in the future to meet the demands for full sanitation of the waste material before final disposal. We show data of anaerobic digestion at extreme thermophilic temperatures.

  5. Heart Rate Recovery and Variability Following Combined Aerobic and Resistance Exercise Training in Adults with and without Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2013-01-01

    Persons with Down syndrome (DS) are at high risk for cardiovascular morbidity and mortality, and there is compelling evidence of autonomic dysfunction in these individuals. The main purpose of this study was to determine whether a combined aerobic and resistance exercise intervention produces similar results in cardiac autonomic function between…

  6. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  7. An immunological assay for detection and enumeration of thermophilic biomining microorganisms.

    PubMed

    Amaro, A M; Hallberg, K B; Lindström, E B; Jerez, C A

    1994-09-01

    A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes.

  8. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    PubMed

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  9. Combined aerobic and resistance exercise program improves task performance in patients with heart failure.

    PubMed

    Gary, Rebecca A; Cress, M Elaine; Higgins, Melinda K; Smith, Andrew L; Dunbar, Sandra B

    2011-09-01

    To assess the effects of a home-based aerobic and resistance training program on the physical function of adults with New York Heart Association (NYHA) class II and III patients and systolic heart failure (HF). Randomized controlled trial. Home based. Stable patients (N=24; mean age, 60 ± 10 y; left ventricular ejection fraction, 25% ± 9%; 50% white; 50% women) with New York Heart Association (NYHA) classes II and III (NYHA class III, 58%) systolic heart failure (HF). A 12-week progressive home-based program of moderate-intensity aerobic and resistance exercise. Attention control wait list participants performed light stretching and flexibility exercises. A 10-item performance-based physical function measure, the Continuous Scale Physical Functional Performance test (CS-PFP10), was the major outcome variable and included specific physical activities measured in time to complete a task, weight carried during a task, and distance walked. Other measures included muscle strength, HRQOL (Minnesota Living With Heart Failure Questionnaire, Epworth Sleepiness Scale), functional capacity (Duke Activity Status Index), and disease severity (brain natriuretic peptide) levels. After the exercise intervention, 9 of 10 specific task activities were performed more rapidly, with increased weight carried by exercise participants compared with the attention control wait list group. Exercise participants also showed significant improvements in CS-PFP10 total score (P<.025), upper and lower muscle strength, and HRQOL (P<.001) compared with the attention control wait list group. Adherence rates were 83% and 99% for the aerobic and resistance training, respectively. Patients with stable HF who participate in a moderate-intensity combined aerobic and resistance exercise program may improve performance of routine physical activities of daily living by using a home-based exercise approach. Performance-based measures such as the CS-PFP10 may provide additional insights into physical

  10. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  11. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    PubMed

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting.

  12. An Immunological Assay for Detection and Enumeration of Thermophilic Biomining Microorganisms

    PubMed Central

    Amaro, Ana M.; Hallberg, Kevin B.; Lindström, E. Börje; Jerez, Carlos A.

    1994-01-01

    A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes. Images PMID:16349398

  13. Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses.

    PubMed

    Pan, Wen-Zheng; Huang, Xiao-Wei; Wei, Kang-Bi; Zhang, Chun-Mei; Yang, Dong-Mei; Ding, Jun-Mei; Zhang, Ke-Qin

    2010-04-01

    The geothermal sites near neutral and alkalescent thermal springs in Tengchong Rehai National Park were examined through cultivation-dependent approach to determine the diversity of thermophilic fungi in these environments. Here, we collected soils samples in this area, plated on agar media conducive for fungal growth, obtained pure cultures, and then employed the method of internal transcribed spacer (ITS) sequencing combined with morphological analysis for identification of thermophilic fungi to the species level. In total, 102 strains were isolated and identified as Rhizomucor miehei, Chaetomium sp., Talaromyces thermophilus, Talaromyces byssochlamydoides, Thermoascus aurantiacus Miehe var. levisporus, Thermomyces lanuginosus, Scytalidium thermophilum, Malbranchea flava, Myceliophthora sp. 1, Myceliophthora sp. 2, Myceliophthora sp. 3, and Coprinopsis sp. Two species, T. lanuginosus and S. thermophilum were the dominant species, representing 34.78% and 28.26% of the sample, respectively. Our results indicated a greater diversity of thermophilic fungi in neutral and alkaline geothermal sites than acidic sites around hot springs reported in previous studies. Most of our strains thrived at alkaline growth conditions.

  14. Thermophilic xylanases: from bench to bottle.

    PubMed

    Basit, Abdul; Liu, Junquan; Rahim, Kashif; Jiang, Wei; Lou, Huiqiang

    2018-01-17

    Lignocellulosic biomass is a valuable raw material. As technology has evolved, industrial interest in new ways to take advantage of this raw material has grown. Biomass is treated with different microbial cells or enzymes under ideal industrial conditions to produce the desired products. Xylanases are the key enzymes that degrade the xylosidic linkages in the xylan backbone of the biomass, and commercial enzymes are categorized into different glycoside hydrolase families. Thermophilic microorganisms are excellent sources of industrially relevant thermostable enzymes that can withstand the harsh conditions of industrial processing. Thermostable xylanases display high-specific activity at elevated temperatures and distinguish themselves in biochemical properties, structures, and modes of action from their mesophilic counterparts. Natural xylanases can be further improved through genetic engineering. Rapid progress with genome editing, writing, and synthetic biological techniques have provided unlimited potential to produce thermophilic xylanases in their natural hosts or cell factories including bacteria, yeasts, and filamentous fungi. This review will discuss the biotechnological potential of xylanases from thermophilic microorganisms and the ways they are being optimized and produced for various industrial applications.

  15. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  16. Bioprospecting thermophiles for cellulase production: a review.

    PubMed

    Acharya, Somen; Chaudhary, Anita

    2012-07-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  17. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching.

    PubMed

    Chen, Shen-Yi; Chou, Li-Chieh

    2016-08-01

    Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.

  18. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation ofmore » hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.« less

  19. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation ofmore » hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).« less

  20. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    PubMed

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  1. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments.

    PubMed

    Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki

    2005-12-01

    Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.

  2. Bioprospecting thermophiles for cellulase production: a review

    PubMed Central

    Acharya, Somen; Chaudhary, Anita

    2012-01-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production. PMID:24031898

  3. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.

    PubMed

    Hadad, D; Geresh, S; Sivan, A

    2005-01-01

    To select a polyethylene-degrading micro-organism and to study the factors affecting its biodegrading activity. A thermophilic bacterium Brevibaccillus borstelensis strain 707 (isolated from soil) utilized branched low-density polyethylene as the sole carbon source and degraded it. Incubation of polyethylene with B. borstelensis (30 days, 50 degrees C) reduced its gravimetric and molecular weights by 11 and 30% respectively. Brevibaccillus borstelensis also degraded polyethylene in the presence of mannitol. Biodegradation of u.v. photo-oxidized polyethylene increased with increasing irradiation time. Fourier Transform Infra-Red (FTIR) analysis of photo-oxidized polyethylene revealed a reduction in carbonyl groups after incubation with the bacteria. This study demonstrates that polyethylene--considered to be inert--can be biodegraded if the right microbial strain is isolated. Enrichment culture methods were effective for isolating a thermophilic bacterium capable of utilizing polyethylene as the sole carbon and energy source. Maximal biodegradation was obtained in combination with photo-oxidation, which showed that carbonyl residues formed by photo-oxidation play a role in biodegradation. Brevibaccillus borstelensis also degraded the CH2 backbone of nonirradiated polyethylene. Biodegradation of polyethylene by a single bacterial strain contributes to our understanding of the process and the factors affecting polyethylene biodegradation.

  4. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  5. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE PAGES

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; ...

    2016-01-07

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  6. Genetic tool development underpins recent advances in thermophilic whole‐cell biocatalysts

    PubMed Central

    Taylor, M. P.; van Zyl, L.; Tuffin, I. M.; Leak, D. J.; Cowan, D. A.

    2011-01-01

    Summary The environmental value of sustainably producing bioproducts from biomass is now widely appreciated, with a primary target being the economic production of fuels such as bioethanol from lignocellulose. The application of thermophilic prokaryotes is a rapidly developing niche in this field, driven by their known catabolic versatility with lignocellulose‐derived carbohydrates. Fundamental to the success of this work has been the development of reliable genetic and molecular systems. These technical tools are now available to assist in the development of other (hyper)thermophilic strains with diverse phenotypes such as hemicellulolytic and cellulolytic properties, branched chain alcohol production and other ‘valuable bioproduct’ synthetic capabilities. Here we present an insight into the historical limitations, recent developments and current status of a number of genetic systems for thermophiles. We also highlight the value of reliable genetic methods for increasing our knowledge of thermophile physiology. We argue that the development of robust genetic systems is paramount in the evolution of future thermophilic based bioprocesses and make suggestions for future approaches and genetic targets that will facilitate this process. PMID:21310009

  7. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms

    PubMed Central

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367

  8. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    PubMed

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  9. Effect of anthracycline combined with aerobic exercise on the treatment of breast cancer.

    PubMed

    Ma, Zhijun

    2018-05-01

    Anthracycline is a standard drug for the treatment of breast cancer. However, anthracycline has great cardiotoxicity. Some patients stop chemotherapy during severe chemotherapy and even undergo serious heart failure. At the same time, there is lack of clinical study on whether aerobic exercise can reduce the cardiotoxicity of chemotherapy drugs. The purpose of this study is to investigate the effects of aerobic exercise on the cardiac function of patients with breast cancer after anthracycline therapy. The results showed that the control group LVEF decreased significantly. In addition, the E/A value decreased and the DT interval prolonged in the control group, show that anthracycline on myocardial damage, and the observation group LVEF increased significantly (P<0.05), the results show that aerobic exercise can improve heart function, and to a certain extent, it could reverse the damage of chemotherapy drugs on the heart.

  10. Treatment of synthetic kraft evaporator condensate using thermophilic and mesophilic membrane aerated biofilm reactors.

    PubMed

    Liao, B Q; Zheng, M R; Ratana-Rueangsri, L

    2010-01-01

    A comparative study on the treatment of synthetic kraft evaporator condensate was conducted using thermophilic (55 degrees C) and mesophilic (30 degrees C) membrane aerated biofilm reactors (MABRs) and sequencing batch reactors (SBRs) for 8 months. Under tested conditions, a chemical oxygen demand (COD) removal efficiency of 80-95% was achieved with both thermophilic and mesophilic MABRs and SBRs. The COD removal efficiency of thermophilic MABR (80-90%) was slightly lower than that of the mesophilic MABR (85-95%) and the thermophilic SBR (90-95%). A significant amount (13-37%) of COD was stripped by conventional aeration in the SBRs, while stripping in MABRs was negligible. Simultaneous COD removal and denitrification were observed in the mesophilic MABR, while the thermophilic MABR contributed mainly for COD removal. Nitrification was not significant in both the thermophilic and mesophilic MABRs. The results suggest that treatment of kraft evaporator condensate is feasible with the use of both thermophilic and mesophilic MABRs in terms of COD removal with the advantages of negligible stripping.

  11. Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae.

    PubMed

    van den Brink, Joost; Facun, Kryss; de Vries, Michel; Stielow, J Benjamin

    2015-12-01

    Thermophilic fungi have the potential to produce industrial-relevant thermostable enzymes, in particular for the degradation of plant biomass. Sordariales is one of the few fungal orders containing several thermophilic taxa, of which many have been associated with the production of thermostable enzymes. The evolutionary affiliation of Sordariales fungi, especially between thermophiles and non-thermophilic relatives, is however poorly understood. Phylogenetic analysis within the current study was based on sequence data, derived from a traditional Sanger and highly multiplexed targeted next generation sequencing approach of 45 isolates. The inferred phylogeny and detailed growth analysis rendered the trait 'thermophily' as polyphyletic within Chaetomiaceae (Sordariales, Sordariomycetes), and characteristic to: Myceliophthora spp., Thielavia terrestris, Chaetomium thermophilum, and Mycothermus thermophilus. Compared to mesophiles, the isolates within thermophilic taxa produced enzyme mixtures with the highest thermostability of known cellulase activities. Temperature profiles of the enzyme activities correlated strongly with the optimal growth temperatures of the isolates but not with their phylogenetic relationships. This strong correlation between growth and enzyme characteristics indicated that detailed analysis of growth does give predictive information on enzyme physiology. The variation in growth and enzyme characteristics reveals these fungi as an excellent platform to better understand fungal thermophily and enzyme thermostability. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp.

    PubMed

    Gagliano, M C; Braguglia, C M; Petruccioli, M; Rossetti, S

    2015-05-01

    Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anaerobic thermophilic microbes identified in several studies focused on the analysis of the microbial community structure in anaerobic thermophilic reactors. They are currently classified in the phylum Firmicutes; nevertheless, several authors showed that the Coprothermobacter group is most closely related to the phyla Dictyoglomi and Thermotoga. Since only a few proteolytic anaerobic thermophiles have been characterized so far, this microorganism has attracted the attention of researchers for its potential applications with high-temperature environments. In addition to proteolysis, Coprothermobacter spp. showed several metabolic abilities and may have a biotechnological application either as source of thermostable enzymes or as inoculum in anaerobic processes. Moreover, they can improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea. To gain a better understanding of the phylogenesis, metabolic capabilities and adaptations of these microorganisms, it is of importance to better define the role in thermophilic environments and to disclose properties not yet investigated. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    PubMed

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  14. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.

    PubMed

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2015-06-01

    Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats.

    PubMed

    Rizo-Roca, D; Ríos-Kristjánsson, J G; Núñez-Espinosa, C; Santos-Alves, E; Gonçalves, I O; Magalhães, J; Ascensão, A; Pagès, T; Viscor, G; Torrella, J R

    2017-03-01

    Unaccustomed eccentric exercise leads to muscle morphological and functional alterations, including microvasculature damage, the repair of which is modulated by hypoxia. We present the effects of intermittent hypobaric hypoxia and exercise on recovery from eccentric exercise-induced muscle damage (EEIMD). Soleus muscles from trained rats were excised before (CTRL) and 1, 3, 7, and 14 days after a double session of EEIMD protocol. A recovery treatment consisting of one of the following protocols was applied 1 day after the EEIMD: passive normobaric recovery (PNR), a 4-h daily exposure to passive hypobaric hypoxia at 4,000 m (PHR), or hypobaric hypoxia exposure followed by aerobic exercise (AHR). EEIMD produced an increase in the percentage of abnormal fibers compared with CTRL, and it affected the microvasculature by decreasing capillary density (CD, capillaries per mm 2 ) and the capillary-to-fiber ratio (CF). After 14 days, AHR exhibited CD and CF values similar to those of CTRL animals (789 and 3.30 vs. 746 and 3.06) and significantly higher than PNR (575 and 2.62) and PHR (630 and 2.92). Furthermore, VEGF expression showed a significant 43% increase in AHR when compared with PNR. Moreover, after 14 days, the muscle fibers in AHR had a more oxidative phenotype than the other groups, with significantly smaller cross-sectional areas (AHR, 3,745; PNR, 4,502; and PHR, 4,790 µm 2 ), higher citrate synthase activity (AHR, 14.8; PNR, 13.1; and PHR, 12 µmol·min -1 ·mg -1 ) and a significant 27% increment in PGC-1α levels compared with PNR. Our data show that hypoxia combined with exercise attenuates or reverses the morphofunctional alterations induced by EEIMD. NEW & NOTEWORTHY Our study provides new insights into the use of intermittent hypobaric hypoxia combined with exercise as a strategy to recover muscle damage induced by eccentric exercise. We analyzed the effects of hypobaric exposure combined with aerobic exercise on histopathological features of muscle

  16. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique

    2009-01-20

    A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (includingmore » the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.« less

  17. Combined Iron Deficiency and Low Aerobic Fitness Doubly Burden Academic Performance among Women Attending University.

    PubMed

    Scott, Samuel P; De Souza, Mary Jane; Koehler, Karsten; Murray-Kolb, Laura E

    2017-01-01

    Academic success is a key determinant of future prospects for students. Cognitive functioning has been related to nutritional and physical factors. Here, we focus on iron status and aerobic fitness in young-adult female students given the high rate of iron deficiency and declines in fitness reported in this population. We sought to explore the combined effects of iron status and fitness on academic success and to determine whether these associations are mediated by cognitive performance. Women (n = 105) aged 18-35 y were recruited for this cross-sectional study. Data were obtained for iron biomarkers, peak oxygen uptake (VO 2peak ), grade point average (GPA), performance on computerized attention and memory tasks, and motivation and parental occupation. We compared the GPA of groups 1) with low compared with normal iron status, 2) among different fitness levels, and 3) by using a combined iron status and fitness designation. Mediation analysis was applied to determine whether iron status and VO 2peak influence GPA through attentional and mnemonic function. After controlling for age, parental occupation, and motivation, GPA was higher in women with normal compared with low ferritin (3.66 ± 0.06 compared with 3.39 ± 0.06; P = 0.01). In analyses of combined effects of iron status and fitness, GPA was higher in women with normal ferritin and higher fitness (3.70 ± 0.08) than in those with 1) low ferritin and lower fitness (3.36 ± 0.08; P = 0.02) and 2) low ferritin and higher fitness (3.44 ± 0.09; P = 0.04). Path analysis revealed that working memory mediated the association between VO 2peak and GPA. Low iron stores and low aerobic fitness may prevent female college students from achieving their full academic potential. Investigators should explore whether integrated lifestyle interventions targeting nutritional status and fitness can benefit cognitive function, academic success, and postgraduate prospects. © 2017 American Society for Nutrition.

  18. Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.

    PubMed

    Mohammad, Balsam T; Veiga, María C; Kennes, Christian

    2007-08-15

    This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.

  19. Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts.

    PubMed

    Taylor, M P; van Zyl, L; Tuffin, I M; Leak, D J; Cowan, D A

    2011-07-01

    The environmental value of sustainably producing bioproducts from biomass is now widely appreciated, with a primary target being the economic production of fuels such as bioethanol from lignocellulose. The application of thermophilic prokaryotes is a rapidly developing niche in this field, driven by their known catabolic versatility with lignocellulose-derived carbohydrates. Fundamental to the success of this work has been the development of reliable genetic and molecular systems. These technical tools are now available to assist in the development of other (hyper)thermophilic strains with diverse phenotypes such as hemicellulolytic and cellulolytic properties, branched chain alcohol production and other 'valuable bioproduct' synthetic capabilities. Here we present an insight into the historical limitations, recent developments and current status of a number of genetic systems for thermophiles. We also highlight the value of reliable genetic methods for increasing our knowledge of thermophile physiology. We argue that the development of robust genetic systems is paramount in the evolution of future thermophilic based bioprocesses and make suggestions for future approaches and genetic targets that will facilitate this process. © 2011 The Authors. Journal compilation © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Aerobic exercise deconditioning and countermeasures during bed rest.

    PubMed

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.

  1. Force-dependent melting of supercoiled DNA at thermophilic temperatures.

    PubMed

    Galburt, E A; Tomko, E J; Stump, W T; Ruiz Manzano, A

    2014-01-01

    Local DNA opening plays an important role in DNA metabolism as the double-helix must be melted before the information contained within may be accessed. Cells finely tune the torsional state of their genomes to strike a balance between stability and accessibility. For example, while mesophilic life forms maintain negatively superhelical genomes, thermophilic life forms use unique mechanisms to maintain relaxed or even positively supercoiled genomes. Here, we use a single-molecule magnetic tweezers approach to quantify the force-dependent equilibrium between DNA melting and supercoiling at high temperatures populated by Thermophiles. We show that negatively supercoiled DNA denatures at 0.5 pN lower tension at thermophilic vs. mesophilic temperatures. This work demonstrates the ability to monitor DNA supercoiling at high temperature and opens the possibility to perform magnetic tweezers assays on thermophilic systems. The data allow for an estimation of the relative energies of base-pairing and DNA bending as a function of temperature and support speculation as to different general mechanisms of DNA opening in different environments. Lastly, our results imply that average in vivo DNA tensions range between 0.3 and 1.1 pN. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Interface Matters: The Stiffness Route to Stability of a Thermophilic Tetrameric Malate Dehydrogenase

    PubMed Central

    Kalimeri, Maria; Girard, Eric; Madern, Dominique; Sterpone, Fabio

    2014-01-01

    In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate. PMID:25437494

  3. Interface matters: the stiffness route to stability of a thermophilic tetrameric malate dehydrogenase.

    PubMed

    Kalimeri, Maria; Girard, Eric; Madern, Dominique; Sterpone, Fabio

    2014-01-01

    In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate.

  4. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  5. [Effects of aerobic exercise combined with resistance training on the cardiorespiratory fitness and exercise capacity of patients with stable coronary artery disease].

    PubMed

    Liu, S X; Chen, Y Y; Xie, K L; Zhang, W L

    2017-12-24

    Objective: To observe the effects of aerobic exercise combined with resistance training on the cardiorespiratory fitness and exercise capacity of patients with stable coronary artery disease (CAD) . Methods: From June 2014 to December 2015, 73 patients with stable CAD in our department were recruited and randomly assigned to two groups: the control group ( n= 38) and the exercise group ( n= 35) . Patients in both groups received conventional medical treatment for CAD and related cardiac health education. While for patients in exercise group, a twelve-week aerobic exercise combined with resistance training program were applied on top of conventional treatment and health education. Cardiorespiratory fitness and exercise capacity were evaluated by cardiopulmonary exercise testing. Results: (1) The exercise capacity was significantly increased in the exercise group after 12 weeks training as compared to baseline level: peak oxygen uptake per kilogram ( (26.25±5.14) ml·kg(-1)·min(-1) vs. (20.88±4.59) ml·kg(-1)·min(-1)) , anaerobic threshold ( (15.24±2.75) ml·kg(-1)·min(-1) vs. (13.52±2.92) ml·kg(-1)·min(-1)], peak oxygen pulse ( (11.91±2.89) ml/beat vs. (9.77±2.49) ml/beat) , peak Watts ( (113.2±34.0) W vs. (103.7±27.9) W) , peak metabolic equivalent ( (7.57±1.46) METs vs. (6.00±1.32) METs) (all P< 0.05 vs. baseline) . (2) The degree of improvement of peak oxygen uptake per kilogram ( (26.25±5.14) ml·kg(-1)·min(-1) vs. (22.32±4.00) ml·kg(-1)·min(-1)) , anaerobic threshold ( (15.24±2.75) ml·kg(-1)·min(-1) vs. (13.76±2.51) ml·kg(-1)·min(-1)) , peak oxygen pulse ( (11.91±2.89) ml/beat vs. (9.99±2.15) ml/beat) and peak metabolic equivalent ( (7.57±1.46) METs vs. (6.47±1.17) METs) were significantly higher in exercise group than in control group (all P< 0.05) . Conclusion: Aerobic training at an aerobic threshold level combined with Thera-band resistance training is safe for patients with stable coronary artery disease. This combined

  6. Reducing waste contamination from animal-processing plants by anaerobic thermophilic fermentation and by flesh fly digestion.

    PubMed

    Marchaim, U; Gelman, A; Braverman, Y

    2003-01-01

    There is currently no market in Israel for the large amounts of waste from fish- and poultry-processing plants. Therefore, this waste is incinerated, as part of the measures to prevent the spread of pathogens. Anaerobic methanogenic thermophilic fermentation (AMTF) of wastes from the cattle-slaughtering industry was examined previously, as an effective system to treat pathogenic bacteria, and in this article, we discuss a combined method of digestion by thermophilic anaerobic bacteria and by flesh flies, as a means of waste treatment. The AMTF process was applied to the wastes on a laboratory scale, and digestion by rearing of flesh fly (Phaenicia sericata) and housefly (Musca domestica) larvae on the untreated raw material was done on a small scale and showed remarkable weight conversion to larvae. The yield from degradation of poultry waste by flesh fly was 22.47% (SD = 3.89) and that from fish waste degradation was 35.34% (SD = 12.42), which is significantly higher than that from rearing houseflies on a regular rearing medium. Bacterial contents before and after thermophilic anaerobic digestion, as well as the changes in the chemical composition of the components during the rearing of larvae, were also examined.

  7. Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water.

    PubMed

    Takai, K; Komatsu, T; Horikoshi, K

    2001-07-01

    A novel extreme thermophile was isolated from a water sample derived from a deep subsurface geothermal water pool at a depth of 1500 m in the Hacchoubaru geothermal plant in Oita Prefecture, Japan. The cells were found to be straight rods, each being motile by means of a polar flagellum. Growth was observed at temperatures between 60 and 85 degrees C (optimum 78 degrees C; 120 min doubling time) and between pH 5.5 and pH 9.0 (optimum 7.5). The isolate was a strictly aerobic heterotroph capable of utilizing a number of substrates such as yeast extract, peptone, tryptone, various carbohydrates, sugars, amino acids and organic acids. Elemental sulfur, thiosulfate, sulfide or cysteine-hydrochloride was required as an electron donor for growth. Hydrogen gas did not support growth. The G+C content of the genomic DNA was 44.7 mol%. Phylogenetic analysis based on 16S rDNA sequences and DNA-DNA hybridization analysis indicated that the isolate was closely related to members of the hydrogen-oxidizing, autotrophic and thermophilic genera Hydrogenobacter and Calderobacterium. However this isolate was differentiated from the previously described species of these genera on the basis of the physiological and molecular properties of the new isolate. The name Hydrogenobacter subterraneus sp. nov. is proposed; the type strain is HGP1T (= JCM 10560T = IFO 16485T).

  8. Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1.

    PubMed

    Liu, Bin; Zhou, Fengfeng; Wu, Suijie; Xu, Ying; Zhang, Xiaobo

    2009-03-01

    Phages are present wherever life is found, and play roles in many biogeochemical and ecological processes. The thermophilic bacteriophages, however, have not been well studied. In this study, phage GBSV1 was obtained from a thermophilic bacterium Geobacillus sp. 6k51 isolated from a hot spring. GBSV1 contains a double-stranded linear DNA of 34,683bp, which encodes 54 putative open reading frames (ORFs). Thirty three of these 54 ORFs exhibit sequence similarities to genes from 7 species of Geobacillus or Bacillus bacteria, as well as of bacteriophages infecting these bacteria. Twenty-two ORFs have been functionally annotated based on both their sequence similarities to known genes and predicted Pfam protein domains. Five structural proteins of the purified GBSV1 virion have been identified by proteomic analyses. Surprisingly, 7 of the GBSV1 ORFs share sequence similarities with genes from bacteria relevant to human diseases. This is the first report that genes of human disease-inducing bacteria are found in a thermophilic phage. It is suggested that thermophilic phages may be the potential evolutionary link between thermophiles and human pathogens. The characterization of GBSV1 may possibly lead to new insights into virus-host interactions and to a better understanding of gene transfers and evolution of life on earth in general.

  9. [Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter].

    PubMed

    Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Ding, Wen-iie; Li, Lin; Lin, Jian; Liu, Jun-xin

    2016-01-15

    A thermophilic biofilter was employed to treat the flue gas generated from sludge drying process, and the performance in both the start period and the stationary phase was studied under the gas flow rate of 2 700-3 100 m3 x h(-1) and retention time of 21.88-25.10 s. The results showed that the thermophilic biofilter could effectively treat gases containing sulfur dioxide, ammonia and volatile organic compounds (VOC). The removal efficiencies could reach 100%, 93.61% and 87.01%, respectively. Microbial analysis indicated that most of the population belonged to thermophilic bacteria. Paenibacillus sp., Chelatococcus sp., Bacillus sp., Clostridium thermosuccinogenes, Pseudoxanthomonas sp. and Geobacillus debilis which were abundant in the thermophilic biofilter, had the abilities of denitrification, desulfurization and degradation of volatile organic compounds.

  10. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  11. Treatment of Diabetic Mice with a Combination of Ketogenic Diet and Aerobic Exercise via Modulations of PPARs Gene Programs

    PubMed Central

    Xu, Lingyan; Xia, Jie; Wang, Dongmei; Qian, Min

    2018-01-01

    Type 2 diabetes is a prevalent chronic disease arising as a serious public health problem worldwide. Diet intervention is considered to be a critical strategy in glycemic control of diabetic patients. Recently, the low-carbohydrate ketogenic diet is shown to be effective in glycemic control and weight loss. However, hepatic lipid accumulation could be observed in mice treated with ketogenic diet. On the other hand, exercise is a well-known approach for treating nonalcoholic fatty liver disease. We thus hypothesize that the combination of ketogenic diet and exercise could improve insulin sensitivity, while minimizing adverse effect of hepatic steatosis. In order to test this hypothesis, we established diabetic mice model with streptozotocin (STZ) and divided them into control group, ketogenic diet group, and ketogenic diet with aerobic exercise group. We found that after six weeks of intervention, mice treated with ketogenic diet and ketogenic diet combined with exercise both have lower body weights, HbAlc level, HOMA index, and improvements in insulin sensitivity, compared with diabetes group. In addition, mice in ketogenic diet intervention exhibited hepatic steatosis shown by serum and hepatic parameters, as well as histochemistry staining in the liver, which could be largely relieved by exercise. Furthermore, gene analysis revealed that ketogenic diet in combination with exercise reduced PPARγ and lipid synthetic genes, as well as enhancing PPARα and lipid β-oxidation gene program in the liver compared to those in ketogenic diet without exercise. Overall, the present study demonstrated that the combination of ketogenic diet and a moderate-intensity aerobic exercise intervention improved insulin sensitivity in diabetic mice, while avoiding hepatic steatosis, which provided a novel strategy in the combat of diabetes. PMID:29743883

  12. Treatment of Diabetic Mice with a Combination of Ketogenic Diet and Aerobic Exercise via Modulations of PPARs Gene Programs.

    PubMed

    Zhang, Qiang; Xu, Lingyan; Xia, Jie; Wang, Dongmei; Qian, Min; Ding, Shuzhe

    2018-01-01

    Type 2 diabetes is a prevalent chronic disease arising as a serious public health problem worldwide. Diet intervention is considered to be a critical strategy in glycemic control of diabetic patients. Recently, the low-carbohydrate ketogenic diet is shown to be effective in glycemic control and weight loss. However, hepatic lipid accumulation could be observed in mice treated with ketogenic diet. On the other hand, exercise is a well-known approach for treating nonalcoholic fatty liver disease. We thus hypothesize that the combination of ketogenic diet and exercise could improve insulin sensitivity, while minimizing adverse effect of hepatic steatosis. In order to test this hypothesis, we established diabetic mice model with streptozotocin (STZ) and divided them into control group, ketogenic diet group, and ketogenic diet with aerobic exercise group. We found that after six weeks of intervention, mice treated with ketogenic diet and ketogenic diet combined with exercise both have lower body weights, HbAlc level, HOMA index, and improvements in insulin sensitivity, compared with diabetes group. In addition, mice in ketogenic diet intervention exhibited hepatic steatosis shown by serum and hepatic parameters, as well as histochemistry staining in the liver, which could be largely relieved by exercise. Furthermore, gene analysis revealed that ketogenic diet in combination with exercise reduced PPAR γ and lipid synthetic genes, as well as enhancing PPAR α and lipid β -oxidation gene program in the liver compared to those in ketogenic diet without exercise. Overall, the present study demonstrated that the combination of ketogenic diet and a moderate-intensity aerobic exercise intervention improved insulin sensitivity in diabetic mice, while avoiding hepatic steatosis, which provided a novel strategy in the combat of diabetes.

  13. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria).

    PubMed Central

    Edmonds, C G; Crain, P F; Gupta, R; Hashizume, T; Hocart, C H; Kowalak, J A; Pomerantz, S C; Stetter, K O; McCloskey, J A

    1991-01-01

    Nucleoside modification has been studied in unfractionated tRNA from 11 thermophilic archaea (archaebacteria), including phylogenetically diverse representatives of thermophilic methanogens and sulfur-metabolizing hyperthermophiles which grow optimally in the temperature range of 56 (Thermoplasma acidophilum) to 105 degrees C (Pyrodictium occultum), and for comparison from the most thermophilic bacterium (eubacterium) known, Thermotoga maritima (80 degrees C). Nine nucleosides are found to be unique to the archaea, six of which are structurally novel in being modified both in the base and by methylation in ribose and occur primarily in tRNA from the extreme thermophiles in the Crenarchaeota of the archaeal phylogenetic tree. 2-Thiothymine occurs in tRNA from Thermococcus sp., and constitutes the only known occurrence of the thymine moiety in archaeal RNA, in contrast to its near-ubiquitous presence in tRNA from bacteria and eukarya. A total of 33 modified nucleosides are rigorously characterized in archaeal tRNA in the present study, demonstrating that the structural range of posttranscriptional modifications in archaeal tRNA is more extensive than previously known. From a phylogenetic standpoint, certain tRNA modifications occur in the archaea which are otherwise unique to either the bacterial or eukaryal domain, although the overall patterns of modification are more typical of eukaryotes than bacteria. PMID:1708763

  14. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    PubMed

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate.

    PubMed

    Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu

    2017-06-29

    In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.

  16. Diversity of Cultured Thermophilic Anaerobes in Hot Springs of Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Lin, L.; Lu, Y.; Dong, X.; Liu, X.; Wei, Y.; Ji, X.; Zhang, C.

    2010-12-01

    Thermophilic anaerobes including Archaea and Bacteria refer to those growing optimally at temperatures above 50°C and do not use oxygen as the terminal electron acceptor for growth. Study on thermophilic anaerobes will help to understand how life thrives under extreme conditions. Meanwhile thermophilic anaerobes are of importance in potential application and development of thermophilic biotechnology. We have surveyed culturable thermophilic anaerobes in hot springs (pH6.5-7.5; 70 - 94°C) in Rehai of Tengchong, Bangnazhang of Longlin, Eryuan of Dali,Yunnan, China. 50 strains in total were cultured from the hot springs water using Hungate anaerobic technique, and 30 strains were selected based on phenotypic diversity for analysis of 16S rDNA sequences. Phylogenetic analysis showed that 28 strains belonged to the members of five genera: Caldanaerobacter, Calaramator, Thermoanaerobacter, Dictyoglomus and Fervidobacterium, which formed five branches on the phylogenetic tree. Besides, 2 strains of methanogenic archaea were obtained. The majority of the isolates were the known species, however, seven strains were identified as novel species affiliated to the five genera based on the lower 16S rDNA sequence similarities (less than 93 - 97%) with the described species. This work would provide the future study on their diversity, distribution among different regions and the potential application of thermophilic enzyme. Supported by State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences(SKLMR-080605)and the Foundation of State Natural Science (30660009, 30960022, 31081220175).

  17. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    PubMed

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes

  18. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems.

    PubMed

    Marneri, Matina; Mamais, Daniel; Koutsiouki, Efi

    2009-04-14

    The scope of the study presented in this paper is to determine the fate of the filamentous bacteria Gordona amarae and Microthrix parvicella in anaerobic digestion operating under mesophilic and thermophilic conditions. In order to detect and quantify foaming bacteria in the anaerobic digesters, a fluorescent in situ hybridization (FISH) method was developed and applied. This paper presents the results of a laboratory-scale study that involved the operation of four lab-scale anaerobic digestion systems operating in the mesophilic (35 degrees C) and thermophilic (55 degrees C) temperature ranges at 20 days' detention time. According to the FISH counts of G. amarae and M. parvicella, it appears that thermophilic conditions resulted in a higher destruction of both filamentous bacteria, averaging approximately 97% and 94% for the single thermophilic digester and the dual thermophilic/mesophilic system, respectively. Within the context of this study, the overall performance of the four different anaerobic digestion systems was evaluated in terms of biogas production per mass of volatile solids destroyed, COD destruction, sludge dewaterability and foaming characteristics. The dual stage systems used in this study outperformed the single stage digesters.

  19. A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features.

    PubMed

    Lu, Haiqiang; Zhang, Huitu; Shi, Pengjun; Luo, Huiying; Wang, Yaru; Yang, Peilong; Yao, Bin

    2013-09-01

    A novel β-mannanase gene, man5XZ7, was cloned from thermophilic fungus Thielavia arenaria XZ7, and successfully expressed in Pichia pastoris. The gene (1,110 bp) encodes a 369-amino acid polypeptide with a molecular mass of approximately 40.8 kDa. The deduced sequence of Man5XZ7 consists of a putative 17-residue signal peptide and a catalytic module belonging to glycoside hydrolase (GH) family 5, and displays 76 % identity with the experimentally verified GH 5 endo-β-1,4-mannanase from Podospora anserina. Recombinant Man5XZ7 was optimally active at 75 °C and pH 5.0 and exhibited high activity at a wide temperature range (>50.0 % activity at 50-85 °C). Moreover, it had good adaptability to acidic to basic pH (>74.1 % activity at pH 4.0-7.0 and 25.6 % even at pH 9.0) and good stability from pH 3.0 to 10.0. These enzymatic properties showed that Man5XZ7 was a new thermophilic and alkali-tolerant β-mannanase. Further amino acid composition analysis indicated that Man5XZ7 has several characteristic features of thermophilic enzymes.

  20. Degradation characteristics of polylactide in thermophilic anaerobic digestion with hyperthermophilic solubilization condition.

    PubMed

    Wang, F; Hidaka, T; Oishi, T; Osumi, S; Tsubota, J; Tsuno, H

    2011-01-01

    To test whether hyperthermophilic treatment promotes polylactide (PLA) dissolution and methane conversion under anaerobic digestion conditions, a single thermophilic control reactor (55 °C) and a two-phase system consisting of a hyperthermophilic reactor (80 °C) and a thermophilic reactor (55 °C) were continuously fed with a mixture of PLA and artificial kitchen garbage. In Runs 1 and 2, the PLA dissolution ratios in the two-phase system were 79.2 ± 6.5% and 85.2 ± 7.0%, respectively, higher than those of the control. Batch experimental results indicated that hyperthermophilic treatment could promote PLA dissolution to a greater degree as compared with single thermophilic treatment and that ammonia addition also had a promotional effect on PLA dissolution. In the two-phase system, after hyperthermophilic treatment, dissolved PLA was converted to methane gas under the subsequent thermophilic condition.

  1. [Treatment of aerobic vaginitis and clinically uncertain causes of vulvovaginal discomfort].

    PubMed

    Cepický, P; Malina, J; Kuzelová, M

    2003-11-01

    The treatment of clinically uncertain conditions of vaginal discomforts with a mixed preparation of nifuratel + nystatin (Macmiror complex) and the relation of uncertain conditions to aerobic vaginitis. A prospective study. Gynecology-Obstetrics Outpatient Department LEVRET Ltd., AescuLab Ltd., Laboratory of Microbiology, Prague. 50 women with vaginal discomfort, causes of which had not been clarified by gynecological examination, determination of pH and the amine test, were examined by vaginal smears using microscopy. The results were evaluated in relation to aerobic vaginitis in a pure form or in combination with other nosological units. The authors also evaluated results of therapy by oral nifuratel (Macmiror tbl) 3 x 200 mg daily and a vaginal combined preparation containing nifuratel 500 mg + nystatin 200 kIU (Macmiror complex 500 glo vag) for the period of 7 days. In 50 women candida was demonstrated 24 times, presence of key cells 11 times, lactobacillus nine times with more than 50 in the field, six women were affected by aerobic vaginitis. In all these cases the pH was 4.8 or higher, leukocytes were significantly represented in all cases (> 15 in the field), as well as gram-negative bacteria and/or cocci (> 30 in the field), indicating a combined picture of mycosis, anaerobic vaginosis or lactobacillosis with aerobic vaginitis. The therapy was successful in all cases, the relapse of complaints during one month occurred in three cases. Aerobic vaginitis in a pure form or with anaerobic vaginosis, mycosis or lactobacillosis is frequently concealed under clinically uncertain pictures of vulvo-vaginal discomfort. The therapy by a combination of nifurated 3 x 200 mg orally together with the combined vaginal preparation nifuratel 500 mg + nystatin 200 kIU for the period of 7 days exerts high effect and a low number of relapses.

  2. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  3. Recurrence of fecal coliforms and Salmonella species in biosolids following thermophilic anaerobic digestion.

    PubMed

    Iranpour, Reza; Cox, Huub H J

    2006-09-01

    The U.S. Environmental Protection Agency (U.S. EPA) Part 503 Biosolids Rule requires the fecal coliform (indicator) or Salmonella species (pathogen) density requirements for Class A biosolids to be met at the last point of plant control (truck-loading facility and/or farm for land application). The three Southern Californian wastewater treatment plants in this study produced biosolids by thermophilic anaerobic digestion and all met the Class A limits for both fecal coliforms and Salmonella sp. in the digester outflow biosolids. At two plants, however, a recurrence of fecal coliforms was observed in postdigestion biosolids, which caused exceedance of the Class A limit for fecal coliforms at the truck-loading facility and farm for land application. Comparison of observations at the three plants and further laboratory tests indicated that the recurrence of fecal coliforms can possibly be related to the following combination of factors: (1) incomplete destruction of fecal coliforms during thermophilic anaerobic digestion, (2) contamination of Class A biosolids with fecal coliforms from external sources during postdigestion, (3) a large drop of the postdigestion biosolids temperature to below the maximum for fecal coliform growth, (4) an unknown effect of biosolids dewatering in centrifuges. At Hyperion Treatment Plant (City of Los Angeles, California), fecal coliform recurrence could be prevented by the following: (1) complete conversion to thermophilic operation to exclude contamination by mesophilically digested biosolids and (2) insulation and electrical heat-tracing of postdigestion train for maintaining a high biosolids temperature in postdigestion.

  4. Finding extraterrestrial sites for thermophiles.

    PubMed

    Naylor, T

    2004-04-01

    Virtually our entire knowledge of the universe comes from two sorts of measurement of the electromagnetic radiation from the stars and galaxies within it; either their flux through relatively wide bandpasses (photometry), or measurements of the shape and wavelength of relatively narrow lines via spectroscopy. These techniques are now being used to discover planets outside our solar system, and perhaps in the next 10 years will begin to characterize them. If a serious search is to be made for extraterrestrial thermophiles, we need predictions for the effects of thermophiles on their host planets that are observable with these techniques. In this paper I shall outline what sorts of observation are likely to be used in the next 15 years for extra-solar planet work. All of the journal articles quoted here can be found through http://adsabs.harvard.edu/abstract_service.html, and often also accessed as preprints at http://uk.arxiv.org/form/astro%20ph?MULTI=form%20+/-%20interface.

  5. Ethanol production by engineered thermophiles.

    PubMed

    Olson, Daniel G; Sparling, Richard; Lynd, Lee R

    2015-06-01

    We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Temperature effects on the aerobic metabolism of glycogen-accumulating organisms.

    PubMed

    Lopez-Vazquez, Carlos M; Song, Young-Il; Hooijmans, Christine M; Brdjanovic, Damir; Moussa, Moustafa S; Gijzen, Huub J; van Loosdrecht, Mark C M

    2008-10-01

    Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.

  7. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field.

    PubMed

    Chamkha, Mohamed; Mnif, Sami; Sayadi, Sami

    2008-06-01

    An aerobic, thermophilic, halotolerant and Gram-positive bacterium, designated strain C5, was isolated from a high-temperature oil field, located in Sfax, Tunisia, after enrichment on tyrosol. Strain C5 grew between 25 and 70 degrees C and optimally at 50 degrees C. It grew in the presence of 0-12% (w/v) NaCl, with optimum growth at 3% (w/v) NaCl. Strain C5 was able to degrade tyrosol aerobically, in the presence of 30 g L(-1) NaCl and under warm conditions (55 degrees C). The degradation of tyrosol proceeded via p-hydroxyphenylacetic and 3,4-dihydroxyphenylacetic acids. The products were confirmed by HPLC and GC-MS analyses. Strain C5 was also found to degrde a wide range of other aromatic compounds, including benzoic, p-hydroxybenzoic, protocatechuic, vanillic, p-hydroxyphenylacetic, 3,4-dihydroxyphenylacetic, cinnamic and ferulic acids, phenol and m-cresol. Moreover, strain C5 was grown on diesel and crude oil as sole carbon and energy sources. Strain C5 was also able to utilize several carbohydrates. Phenotypic characteristics and phylogenetic analysis of the 16S rRNA gene sequence of strain C5 revealed that it was related to members of the genus Geobacillus, being most closely related to the type strain of G. pallidus (99% sequence similarity). In addition, we report on growth of the type strain of G. pallidus on different aromatic compounds and hydrocarbons.

  8. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanismsmore » in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.« less

  9. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanismsmore » in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.« less

  10. Comparison of methods for isolation and enumeration of thermophilic actinomycetes from dust.

    PubMed Central

    Treuhaft, M W; Arden Jones, M P

    1982-01-01

    Thermophilic actinomycetes are the primary sensitizing agents in farmer's lung disease. We compared dilution pour-plate and spread-plate methods for their usefulness in enumerating thermophilic actinomycetes in moldy silage dust and evaluated the ability of a nonquantitative gravity settling technique to recover thermophilic actinomycetes from moldy silage. Spread plates and pour plates yielded similar estimates of total thermophiles. Higher counts were observed on spread plates (P less than 0.05) for Thermoactinomyces candidus, Micropolyspora faeni, and Saccharomonospora viridis. M. faeni and S. viridis were less efficient than T. candidus in breaking through the agar of pour plates to form colonies which could be identified. Coefficients of variability were less than 10% for the two methods. The relative proportion of organisms recovered by the settling method correlated well with that recovered on spread plates for M. faeni (r = 0.79), S. viridis (r = 0.88), and Thermomonospora spp. (r = 0.79), but not well for T. candidus (r = 0.28). When sophisticated air-sampling equipment is not available, dilution spread plates of dust washings provide a reproducible method for enumerating a broad range of thermophilic actinomycetes of interest. The gravity settling method is a simple, rapid alternative when isolation is all that is required. PMID:6761363

  11. The 'aerobic/resistance/inspiratory muscle training hypothesis in heart failure'.

    PubMed

    Laoutaris, Ioannis D

    2018-01-01

    Evidence from large multicentre exercise intervention trials in heart failure patients, investigating both moderate continuous aerobic training and high intensity interval training, indicates that the 'crème de la crème' exercise programme for this population remains to be found. The 'aerobic/resistance/inspiratory (ARIS) muscle training hypothesis in heart failure' is introduced, suggesting that combined ARIS muscle training may result in maximal exercise pathophysiological and functional benefits in heart failure patients. The hypothesis is based on the decoding of the 'skeletal muscle hypothesis in heart failure' and on revision of experimental evidence to date showing that exercise and functional intolerance in heart failure patients are associated not only with reduced muscle endurance, indication for aerobic training (AT), but also with reduced muscle strength and decreased inspiratory muscle function contributing to weakness, dyspnoea, fatigue and low aerobic capacity, forming the grounds for the addition of both resistance training (RT) and inspiratory muscle training (IMT) to AT. The hypothesis will be tested by comparing all potential exercise combinations, ARIS, AT/RT, AT/IMT, AT, evaluating both functional and cardiac indices in a large sample of heart failure patients of New York Heart Association class II-III and left ventricular ejection fraction ≤35% ad hoc by the multicentre randomized clinical trial, Aerobic Resistance, InSpiratory Training OutcomeS in Heart Failure (ARISTOS-HF trial).

  12. A randomized controlled trial on the effects of combined aerobic-resistance exercise on muscle strength and fatigue, glycemic control and health-related quality of life of type 2 diabetes patients.

    PubMed

    Tomas-Carus, Pablo; Ortega-Alonso, Alfredo; Pietilainen, Kirsi H; Santos, Vitoria; Goncalves, Helena; Ramos, Jorge; Raimundo, Armando

    2016-05-01

    The aim of this paper was to evaluate the effects of a 12-weeks combined aerobic-resistance exercise therapy on fatigue and isokinetic muscle strength, glycemic control and health-related quality of life (HRQoL) in moderately affected type 2 diabetes (T2DM) patients. A randomized controlled trial design was employed. Forty-three T2DM patients were assigned to an exercise group (N.=22), performing 3 weekly sessions of 60 minutes of combined aerobic-resistance exercise for 12-weeks; or a no exercise control group (N.=21). Both groups were evaluated at a baseline and after 12-weeks of exercise therapy for: 1) muscle strength and fatigue by isokinetic dynamometry; 2) plasma glycated hemoglobin A1C (HbA1C); and 3) HRQoL utilizing the SF-36 questionnaire. The exercise therapy led to improvements in muscle fatigue in knee extensors (-55%) and increased muscle strength in knee flexors and extensors (+15 to +30%), while HbA1C decreased (-18%). In addition, the exercising patients showed sizeable improvements in HRQoL: physical function (+53%), vitality (+21%) and mental health (+40%). Twelve-weeks of combined aerobic-resistance exercise was highly effective to improve muscle strength and fatigue, glycemic control and several aspects of HRQoL in T2DM patients. These data encourage the use of aerobic and resistance exercise in the good clinical care of T2DM.

  13. Optimal subset selection of primary sequence features using the genetic algorithm for thermophilic proteins identification.

    PubMed

    Wang, LiQiang; Li, CuiFeng

    2014-10-01

    A genetic algorithm (GA) coupled with multiple linear regression (MLR) was used to extract useful features from amino acids and g-gap dipeptides for distinguishing between thermophilic and non-thermophilic proteins. The method was trained by a benchmark dataset of 915 thermophilic and 793 non-thermophilic proteins. The method reached an overall accuracy of 95.4 % in a Jackknife test using nine amino acids, 38 0-gap dipeptides and 29 1-gap dipeptides. The accuracy as a function of protein size ranged between 85.8 and 96.9 %. The overall accuracies of three independent tests were 93, 93.4 and 91.8 %. The observed results of detecting thermophilic proteins suggest that the GA-MLR approach described herein should be a powerful method for selecting features that describe thermostabile machines and be an aid in the design of more stable proteins.

  14. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge.

    PubMed

    Gagliano, M C; Braguglia, C M; Gallipoli, A; Gianico, A; Rossetti, S

    2015-05-01

    Anaerobic digestion (AD) is one of the few sustainable technologies that both produce energy and treat waste streams. Driven by a complex and diverse community of microbes, AD may be affected by different factors, many of which also influence the composition and activity of the microbial community. In this study, the biodiversity of microbial populations in innovative mesophilic/thermophilic temperature-phased AD of sludge was evaluated by means of fluorescence in situ hybridization (FISH). The increase of digestion temperature drastically affected the microbial composition and selected specialized biomass. Hydrogenotrophic Methanobacteriales and the protein fermentative bacterium Coprothermobacter spp. were identified in the thermophilic anaerobic biomass. Shannon-Weaver diversity (H') and evenness (E) indices were calculated using FISH data. Species richness was lower under thermophilic conditions compared with the values estimated in mesophilic samples, and it was flanked by similar trend of the evenness indicating that thermophilic communities may be therefore more susceptible to sudden changes and less prompt to adapting to operative variations.

  15. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.

    PubMed

    Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B

    2002-04-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under

  16. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    NASA Astrophysics Data System (ADS)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  17. Prevalence and Antimicrobial Resistance of Thermophilic Campylobacter spp. from Cattle Farms in Washington State

    PubMed Central

    Bae, Wonki; Kaya, Katherine N.; Hancock, Dale D.; Call, Douglas R.; Park, Yong Ho; Besser, Thomas E.

    2005-01-01

    The prevalence of thermophilic Campylobacter spp. was investigated in cattle on Washington State farms. A total of 350 thermophilic Campylobacter isolates were isolated from 686 cattle sampled on 15 farms (eight dairies, two calf rearer farms, two feedlots, and three beef cow-calf ranches). Isolate species were identified with a combination of phenotypic tests, hipO colony blot hybridization, and multiplex lpxA PCR. Breakpoint resistance to four antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, and doxycycline) was determined by agar dilution. Campylobacter jejuni was the most frequent species isolated (34.1%), followed by Campylobacter coli (7.7%) and other thermophilic campylobacters (1.5%). The most frequently detected resistance was to doxycycline (42.3% of 350 isolates). Isolates from calf rearer facilities were more frequently doxycycline resistant than isolates from other farm types. C. jejuni was most frequently susceptible to all four of the antimicrobial drugs studied (58.8% of 272 isolates). C. coli isolates were more frequently resistant than C. jejuni, including resistance to quinolone antimicrobials (89.3% of isolates obtained from calves on calf rearer farms) and to erythromycin (72.2% of isolates obtained from feedlot cattle). Multiple drug resistance was more frequent in C. coli (51.5%) than in C. jejuni (5.1%). The results of this study demonstrate that C. jejuni is widely distributed among Washington cattle farms, while C. coli is more narrowly distributed but significantly more resistant. PMID:15640184

  18. Enhanced aerobic exercise performance in women by a combination of three mineral Chelates plus two conditionally essential nutrients.

    PubMed

    DiSilvestro, Robert A; Hart, Staci; Marshall, Trisha; Joseph, Elizabeth; Reau, Alyssa; Swain, Carmen B; Diehl, Jason

    2017-01-01

    Certain essential and conditionally essential nutrients (CENs) perform functions involved in aerobic exercise performance. However, increased intake of such nutrient combinations has not actually been shown to improve such performance. For 1 mo, aerobically fit, young adult women took either a combination of 3 mineral glycinate complexes (daily dose: 36 mg iron, 15 mg zinc, and 2 mg copper) + 2 CENs (daily dose: 2 g carnitine and 400 mg phosphatidylserine), or the same combination with generic mineral complexes, or placebo ( n  = 14/group). In Trial 1, before and after 1 mo, subjects were tested for 3 mile run time (primary outcome), followed by distance covered in 25 min on a stationary bike (secondary outcome), followed by a 90 s step test (secondary outcome). To test reproducibility of the run results, and to examine a lower dose of carnitine, a second trial was done. New subjects took either mineral glycinates + CENs (1 g carnitine) or placebo ( n  = 17/group); subjects were tested for pre- and post-treatment 3 mile run time (primary outcome). In Trial 1, the mineral glycinates + CENs decreased 3 mile run time (25.6 ± 2.4 vs 26.5 ± 2.3 min, p  < 0.05, paired t-test) increased stationary bike distance after 25 min (6.5 ± 0.6 vs 6.0 ± 0.8 miles, p  < 0.05, paired t-test), and increased steps in the step test (43.8 ± 4.8 vs 40.3 ± 6.4 steps, p < 0.05, paired t-test). The placebo significantly affected only the biking distance, but it was less than for the glycinates-CENs treatment (0.2 ± 0.4. vs 0.5 ± 0.1 miles, p < 0.05, ANOVA + Tukey). The generic minerals + CENs only significantly affected the step test (44.1 ± 5.2 vs 41.0 ± 5.9 steps, p < 0.05, paired t-test) In Trial 2, 3 mile run time was decreased for the mineral glycinates + CENs (23.9 ± 3.1 vs 24.7 ± 2.5, p  < 0.005, paired t-test), but not by the placebo. All changes for Test Formula II or III were

  19. Radioisotopic, Culture-Based, and Oligonucleotide Microchip Analyses of Thermophilic Microbial Communities in a Continental High-Temperature Petroleum Reservoir†

    PubMed Central

    Bonch-Osmolovskaya, Elizaveta A.; Miroshnichenko, Margarita L.; Lebedinsky, Alexander V.; Chernyh, Nikolai A.; Nazina, Tamara N.; Ivoilov, Valery S.; Belyaev, Sergey S.; Boulygina, Eugenia S.; Lysov, Yury P.; Perov, Alexander N.; Mirzabekov , Andrei D.; Hippe, Hans; Stackebrandt, Erko; L'Haridon, Stéphane; Jeanthon, Christian

    2003-01-01

    Activity measurements by radioisotopic methods and cultural and molecular approaches were used in parallel to investigate the microbial biodiversity and its physiological potential in formation waters of the Samotlor high-temperature oil reservoir (Western Siberia, Russia). Sulfate reduction with rates not exceeding 20 nmol of H2S liter−1 day−1 occurred at 60 and 80°C. In upper horizons (AB, A, and B), methanogenesis (lithotrophic and/or acetoclastic) was detected only in wells in which sulfate reduction did not occur. In some of the wells from deeper (J) horizons, high-temperature sulfate reduction and methanogenesis occurred simultaneously, the rate of lithotrophic methanogenesis exceeding 80 nmol of CH4 liter−1 day−1. Enrichment cultures indicated the presence of diverse physiological groups representing aerobic and anaerobic thermophiles and hyperthermophiles; fermentative organotrophs were predominant. Phylogenetic analyses of 15 isolates identified representatives of the genera Thermotoga, Thermoanaerobacter, Geobacillus, Petrotoga, Thermosipho, and Thermococcus, the latter four being represented by new species. Except for Thermosipho, the isolates were members of genera recovered earlier from similar habitats. DNA obtained from three samples was hybridized with a set of oligonucleotide probes targeting selected microbial groups encompassing key genera of thermophilic bacteria and archaea. Oligonucleotide microchip analyses confirmed the cultural data but also revealed the presence of several groups of microorganisms that escaped cultivation, among them representatives of the Aquificales/Desulfurobacterium-Thermovibrio cluster and of the genera Desulfurococcus and Thermus, up to now unknown in this habitat. The unexpected presence of these organisms suggests that their distribution may be much wider than suspected. PMID:14532074

  20. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen.

  1. Electrochemical Performance and Microbial Characterization of Thermophilic Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Wrighton, K. C.; Agbo, P.; Brodie, E. L.; Weber, K. A.; Desantis, T. Z.; Anderson, G. L.; Coates, J. D.

    2007-12-01

    Significant research effort is currently focused on microbial fuel cells (MFC) as a source of renewable energy. To date, most of these efforts have concentrated on MFCs operating at mesophilic temperatures. However, many previous studies have reported on the superiority of thermophilic conditions in anaerobic digestion and demonstrated a net gain in energy yield, in terms of methane, relative to the increased energy requirements of operation. Because of this, our recent studies on MFCs focused on investigating the operation and microbiology associated with thermophilic MFCs operating at 55°C. Over 100-day operation, these MFCs were highly stable and achieved a maximum power density of 24mW/m2 and a columbic efficiency of 89 percent with acetate as the sole electron donor. In order to characterize the microbial community involved in thermophilic electricity generation, DNA and RNA were isolated from the electrode and PhyloChip analyses performed. Exploring the changes in the microbial community over time in electricity producing MFC revealed an increase in relative abundance of populations belonging to the Firmicutes, Chloroflexi, and alpha Proteobacteria by at least one order of magnitude. In contrast, these populations decreased in the open circuit and no electron donor amended controls. In order to better characterize the active microbial populations, we enriched and isolated a novel organism, strain JR, from samples collected from an operating MFC. Based on 16S rRNA sequence analysis strain JR was a member of the family Peptococcaceae, within the Phylum Firmicutes, clustering with Thermincola ferriacetica (98 percent similarity). Phenotypic characterization revealed that strain JR was capable of thermophilic dissimilatory reduction of insoluble electron acceptors such as amorphous Fe(III); as well as reduction of the model quinone 2,6-anthraquinone disulfonate. Thermincola strain JR was also capable of producing current by coupling acetate oxidation to anodic

  2. Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges.

    PubMed

    Sekiguchi, Y; Kamagata, Y; Ohashi, A; Harada, H

    2002-01-01

    The microbial community structure of mesophilic (35 degrees C) and thermophilic (55 degrees C) methanogenic granular sludges was surveyed by using both cultivation-independent molecular approach and conventional cultivation technique in order to address the fundamental questions on the microbial populations, i.e. who are present, where they are located, and what they are doing there. To elucidate the microbial constituents within both sludges, we first constructed 16S ribosomal DNA clone libraries, and partial sequencing of the clones was conducted for phylogenetic analysis. In this experiment, we found a number of unidentifiable clones within the domain Bacteria as well as clones that were closely related with 16S rDNAs of cultured microbes. The unidentifiable clones accounted for approximately 60-70% of the total clones in both mesophilic and thermophilic libraries. 16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was subsequently employed to examine where the uncultured populations were located within sludge granules. Spatial organization of uncultured microbes was visualized in thin-sections of both types of granules using fluorescent oligonucleotide probes, which were designed based on the clone sequences of certain novel clusters. This resulted in the detection of two types of uncultured cells in specific locations inside the granules. Finally, the goal-directed conventional cultivation technique was employed to recover such uncultured anaerobes and uncover their physiology and functions. In this approach, a total of five new species of thermophilic microorganisms were isolated, including several types of syntrophs and a novel sugar-fermenting bacterium. In the previous molecular approaches, all of these isolates were suggested to be significant populations within thermophilic granular sludge, hence obtaining these isolates in pure culture decreased the fraction of unknown clones in the previous thermophilic clone

  3. Presence of Thermophilic Bacteria in Laundry and Domestic Hot-Water Heaters

    PubMed Central

    Brock, Thomas D.; Boylen, Kathryn L.

    1973-01-01

    Thermophilic bacteria resembling Thermus aquaticus were isolated from hot water taken from domestic and commercial hot-water tanks. Cold water from the same locations never yielded thermophilic bacteria, suggesting that the bacteria were growing in the tanks. In contrast to the T. aquaticus isolates from hot springs, the present isolates were rarely pigmented. In general, the hotter sources more frequently yielded bacteria. PMID:4568892

  4. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults

    PubMed Central

    Villareal, Dennis T.; Aguirre, Lina; Gurney, A. Burke; Waters, Debra L.; Sinacore, David R.; Colombo, Elizabeth; Armamento-Villareal, Reina; Qualls, Clifford

    2017-01-01

    BACKGROUND Obesity causes frailty in older adults; however, weight loss might accelerate age-related loss of muscle and bone mass and resultant sarcopenia and osteopenia. METHODS In this clinical trial involving 160 obese older adults, we evaluated the effectiveness of several exercise modes in reversing frailty and preventing reduction in muscle and bone mass induced by weight loss. Participants were randomly assigned to a weight-management program plus one of three exercise programs — aerobic training, resistance training, or combined aerobic and resistance training — or to a control group (no weight-management or exercise program). The primary outcome was the change in Physical Performance Test score from baseline to 6 months (scores range from 0 to 36 points; higher scores indicate better performance). Secondary outcomes included changes in other frailty measures, body composition, bone mineral density, and physical functions. RESULTS A total of 141 participants completed the study. The Physical Performance Test score increased more in the combination group than in the aerobic and resistance groups (27.9 to 33.4 points [21% increase] vs. 29.3 to 33.2 points [14% increase] and 28.8 to 32.7 points [14% increase], respectively; P=0.01 and P=0.02 after Bonferroni correction); the scores increased more in all exercise groups than in the control group (P<0.001 for between-group comparisons). Peak oxygen consumption (milliliters per kilogram of body weight per minute) increased more in the combination and aerobic groups (17.2 to 20.3 [17% increase] and 17.6 to 20.9 [18% increase], respectively) than in the resistance group (17.0 to 18.3 [8% increase]) (P<0.001 for both comparisons). Strength increased more in the combination and resistance groups (272 to 320 kg [18% increase] and 288 to 337 kg [19% increase], respectively) than in the aerobic group (265 to 270 kg [4% increase]) (P<0.001 for both comparisons). Body weight decreased by 9% in all exercise groups but

  5. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults.

    PubMed

    Villareal, Dennis T; Aguirre, Lina; Gurney, A Burke; Waters, Debra L; Sinacore, David R; Colombo, Elizabeth; Armamento-Villareal, Reina; Qualls, Clifford

    2017-05-18

    Obesity causes frailty in older adults; however, weight loss might accelerate age-related loss of muscle and bone mass and resultant sarcopenia and osteopenia. In this clinical trial involving 160 obese older adults, we evaluated the effectiveness of several exercise modes in reversing frailty and preventing reduction in muscle and bone mass induced by weight loss. Participants were randomly assigned to a weight-management program plus one of three exercise programs - aerobic training, resistance training, or combined aerobic and resistance training - or to a control group (no weight-management or exercise program). The primary outcome was the change in Physical Performance Test score from baseline to 6 months (scores range from 0 to 36 points; higher scores indicate better performance). Secondary outcomes included changes in other frailty measures, body composition, bone mineral density, and physical functions. A total of 141 participants completed the study. The Physical Performance Test score increased more in the combination group than in the aerobic and resistance groups (27.9 to 33.4 points [21% increase] vs. 29.3 to 33.2 points [14% increase] and 28.8 to 32.7 points [14% increase], respectively; P=0.01 and P=0.02 after Bonferroni correction); the scores increased more in all exercise groups than in the control group (P<0.001 for between-group comparisons). Peak oxygen consumption (milliliters per kilogram of body weight per minute) increased more in the combination and aerobic groups (17.2 to 20.3 [17% increase] and 17.6 to 20.9 [18% increase], respectively) than in the resistance group (17.0 to 18.3 [8% increase]) (P<0.001 for both comparisons). Strength increased more in the combination and resistance groups (272 to 320 kg [18% increase] and 288 to 337 kg [19% increase], respectively) than in the aerobic group (265 to 270 kg [4% increase]) (P<0.001 for both comparisons). Body weight decreased by 9% in all exercise groups but did not change significantly in

  6. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes

    PubMed Central

    DeCastro, María-Eugenia; Rodríguez-Belmonte, Esther; González-Siso, María-Isabel

    2016-01-01

    Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes. PMID:27729905

  7. LC-ESI-MS/MS identification of polar lipids of two thermophilic Anoxybacillus bacteria containing a unique lipid pattern.

    PubMed

    Rezanka, Tomáš; Kambourova, Margarita; Derekova, Anna; Kolouchová, Irena; Sigler, Karel

    2012-07-01

    Phospholipids and glycolipids from two recently described species belonging to the thermophilic genus Anoxybacillus were analyzed by liquid chromatography-electrospray tandem mass spectrometry (LC/ESI-MS/MS). Analysis of total lipids from the facultatively anaerobic A. bogrovensis on a HILIC (Hydrophilic Interaction LIquid Chromatography) column succeeded in separating diacyl- and plasmalogen phospholipids. The LC/ESI-MS/MS analysis of the strict aerobe A. rupiensis revealed the presence of different unique polar lipids, predominantly alanyl-, lysyl-, and glucosyl-phosphatidylglycerols and cardiolipins. Each of the classes of polar lipids was then analyzed by means of the ESI-MS/MS and more than 140 molecular species of six lipid classes from A. bogrovensis and nearly 200 molecular species of nine classes of polar lipids from A. rupiensis were identified. Five classes of unidentified polar lipids were detected in both strains. Plasmalogens were thus determined for the first time in a facultatively anaerobic bacterium, i.e. A. bogrovensis.

  8. Feasibility of a combined aerobic and strength training program and its effects on cognitive and physical function in institutionalized dementia patients. A pilot study.

    PubMed

    Bossers, Willem J R; Scherder, Erik J A; Boersma, Froukje; Hortobágyi, Tibor; van der Woude, Lucas H V; van Heuvelen, Marieke J G

    2014-01-01

    We examined the feasibility of a combined aerobic and strength training program in institutionalized dementia patients and studied the effects on cognitive and physical function. Thirty-three patients with dementia, recruited from one nursing home, participated in this non-randomized pilot study (25 women; age = 85.2±4.9 years; Mini Mental State Examination = 16.8±4.0). In phase 1 of the study, seventeen patients in the Exercise group (EG) received a combined aerobic and strength training program for six weeks, five times per week, 30 minutes per session, in an individually supervised format and successfully concluded the pre and posttests. In phase 2 of the study, sixteen patients in the Social group (SG) received social visits at the same frequency, duration, and format and successfully concluded the pre and posttests. Indices of feasibility showed that the recruitment and adherence rate, respectively were 46.2% and 86.3%. All EG patients completed the exercise program according to protocol without adverse events. After the six-week program, no significant differences on cognitive function tests were found between the EG and SG. There was a moderate effect size in favor for the EG for the Visual Memory Span Forward; a visual attention test. There were significant differences between groups in favor for the EG with moderate to large effects for the physical tests Walking Speed (p = .003), Six-Minute Walk Test (p = .031), and isometric quadriceps strength (p = .012). The present pilot study showed that it is feasible to conduct a combined aerobic and strength training program in institutionalized patients with dementia. The selective cognitive visual attention improvements and more robust changes in motor function in favor of EG vs. SG could serve as a basis for large randomized clinical trials. trialregister.nl 1230.

  9. Aerobic-synergized exercises may improve fall-related physical fitness in older adults.

    PubMed

    Chang, Yu-Chen; Wang, Jung-Der; Chen, Ho-Cheng; Hu, Susan C

    2017-05-01

    The purpose of the present study was to determine whether a synergistic exercise model based on aerobics with additional fall-preventive components could provide extra benefits compared with the same duration of aerobic-synergistic exercise alone. A total of 102 adults aged 65 years and over from three geographically separated communities were assigned to three groups: the general aerobic exercise (GAE) group (N.=44), the GAE plus ball game group (BG group; N.=30) and the GAE plus square-stepping exercise group (SSE group; N.=28). Each group participated in one hour of exercise intervention and two hours of leisure activities twice weekly for 12 weeks. Each exercise session consisted of one hour of combined exercises performed in the following order: 10 minutes of warm-up activities, 20 minutes of aerobics, 20 minutes of the respective exercise model, and 10 minutes of cool-down activities. Functional fitness tests, including aerobic endurance, leg strength, flexibility, reaction time, static balance and mobility, were measured before and after the intervention. Paired t-tests and mixed model analyses were conducted to compare the differences in each measurement within and among the groups. All of the groups exhibited significantly positive effects (P<0.05), including improvements in aerobic endurance, leg muscle strength, static balance, and mobility, after the intervention. There were no significant differences in these improvements in the other two groups compared with group GAE. However, group BG and group SSE showed significantly greater improvements in mobility compared with group GAE (P<0.05). We conclude that a combination of aerobics and selected fall-prevention exercises performed over a consistent period may improve mobility without compromising the fundamental benefits of aerobics. Future studies using randomized control trials with recorded fall events and a longer period of follow-up are indicated to validate the effects of fall prevention exercises.

  10. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    PubMed Central

    Turner, Pernilla; Mamo, Gashaw; Karlsson, Eva Nordberg

    2007-01-01

    In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts. PMID:17359551

  11. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.

    PubMed

    Ho, L; Ho, G

    2012-09-15

    High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite

  12. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    NASA Astrophysics Data System (ADS)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  13. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John E Aston; William A Apel; Brady D Lee

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completelymore » at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.« less

  14. Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making.

    PubMed

    Bala, Anju; Singh, Bijender

    2017-06-01

    Sporotrichum thermophile BJAMDU5 secreted high titres of xylanolytic and cellulolytic enzymes in solid state fermentation using mixture of wheat straw and cotton oil cake (ratio 1:1) at 45 °C, pH 5.0 after 72 h inoculated with 2.9 × 10 7  CFU/mL conidiospores. Supplementation of solid medium with lactose and ammonium sulphate further enhanced the production of hydrolytic enzymes. Among different surfactants studied, Tween 80 enhanced the production of all enzymes [3455 U/g DMR (dry mouldy residue), 879.26 U/g DMR, 976.28 U/g DMR and 35.10 U/g DMR for xylanase, CMCase (Carboxymethylcellulase), FPase (Filter paper activity) and β-glucosidase, respectively] as compared to other surfactants. Recycling of solid substrate reduced the production of all these enzymes after second cycle. End products analysis by TLC showed the ability of hydrolytic enzymes of S. thermophile to liberate monomeric (xylose and glucose) as well as oligomeric (xylobiose, cellobiose and higher ones) sugars. Supplementation of enzyme resulted in improved nutritional properties of the bread. Formation of oligomeric sugars by xylanase enzyme of S. thermophile BJAMDU5 make it a good candidate in food industry.

  15. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.

  16. Examining physiotherapist use of structured aerobic exercise testing to decrease barriers to aerobic exercise.

    PubMed

    Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark

    2018-04-03

    To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.

  17. Separation of swine wastewater into different concentration fractions and its contribution to combined anaerobic-aerobic process.

    PubMed

    Yang, Di; Deng, Liangwei; Zheng, Dan; Wang, Lan; Liu, Yi

    2016-03-01

    There are two problems associated with treatment of swine wastewater, low efficiency of anaerobic digestion during winter and poor performance for aerobic treatment of digested effluent. A strategy employing unbalanced distributions of the pollutant mass and wastewater volumes in anaerobic and aerobic units was proposed. To accomplish this, swine wastewater was separated into high content liquid (HCL) and low content liquid (LCL). Three separation ratios of HCL to LCL (v/v), 1:9 (S1), 2:8 (S2), and 3:7 (S3), were evaluated. Anaerobically digestion of the HCL accounted for only 10%, 20% and 30% of the total volume of raw wastewater, but produced 63.38%, 73.79% and 76.61% of the total methane output for S1, S2 and S3, respectively. The mixed liquid of digested effluents of HCL and LCL were treated aerobically using sequencing batch reactors. S2 generated the best performance, with removal efficiencies of 96.98% for COD, 98.95% for NH3-N, 91.69% for TN and 74.71% for TP. The results obtained for S1 were not as good as those for S2, but were better than those for S3. Based on methane output from the anaerobic unit and pollutants removal in the aerobic unit, S2 was the most suitable system for the treatment of swine wastewater. Additionally, the anaerobic digestion efficiency of S2 was 282% higher than that of previous techniques employing balanced distribution. Taken together, these findings indicate that unbalanced distribution could improve the efficiency of the anaerobic unit remarkably, while ensuring good performance of the aerobic unit. Copyright © 2015. Published by Elsevier Ltd.

  18. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae.

    PubMed

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-02-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2(T). Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing D-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD(+), and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds.

    PubMed

    Korniłłowicz-Kowalska, Teresa; Kitowski, Ignacy

    2013-02-01

    A study was performed on the numbers and species diversity of thermophilic fungi (growing at 45 °C in vitro) in 38 nests of 9 species of wetland birds, taking into account the physicochemical properties of the nests and the bird species. It was found that in nests with the maximum weight (nests of Mute Swan), the number and diversity of thermophilic fungi were significantly greater than in other nests, with lower weight. The diversity of the thermophilic biota was positively correlated with the individual mass of bird and with the level of phosphorus in the nests. The dominant species within the mycobiota under study was Aspergillus fumigatus which inhabited 95% of the nests under study, with average frequency of ca. 650 cfu g(-1) of dry mass of the nest material. In a majority of the nests studied (nests of 7 bird species), the share of A. fumigatus exceeded 50% of the total fungi growing at 45 °C. Significantly higher frequencies of the fungal species were characteristic of the nests of small and medium-sized piscivorous species, compared with the other bird species. The number of A. fumigatus increased with increase in the moisture level of the nests, whereas the frequency of occurrence of that opportunistic pathogen, opposite to the general frequency of thermophilic mycobiota, was negatively correlated with the level of phosphorus in the nest material, and with the body mass and length of the birds. The authors indicate the causes of varied growth of thermophilic fungi in nests of wetland birds and, in particular, present a discussion of the causes of accumulation of A. fumigatus, the related threats to the birds, and its role as a source of transmission in the epidemiological chain of aspergillosis.

  20. Study on rapid bio-drying technology of cow dung with CaO2

    NASA Astrophysics Data System (ADS)

    Chen, Xiaotian; Qu, Guangfei; Liu, Shugen; Xie, Ruosong; He, Yanhua

    2017-05-01

    Effect of CaO2 on cow dung rapid bio-drying technology was researched. A static aerobic composting system was applied to this experiment which combining natural ventilation with Turing in the process of composting. The physical characteristics of cow dung was observed and the compost temperature, moisture content, organic matter, total nitrogen, total phosphorus, potassium content was determined which in order to study the effect of CaO2 on rapid drying of cattle in the compost. In the initial stage of compost, adding CaO2 groups compared with the control group, the temperature rise faster, 4-6 days in advance to the thermophilic phase; at the end of composting, the CaO2 composition and moisture content decreased significantly to below 30%. The addition of CaO2 in fertilizer was shorten the composting time, extend the thermophilic phase, to provide sufficient oxygen meeting the growth needs of aerobic microorganisms. It convinced that the rapid bio-drying of dairy manure has a good effect and provided a new idea for the effective treatment of cow dung.

  1. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    PubMed

    Ribera, Judit; Estupiñán, Mónica; Fuentes, Alba; Fillat, Amanda; Martínez, Josefina; Diaz, Pilar

    2017-01-01

    A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  2. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past

    PubMed Central

    Ribera, Judit; Estupiñán, Mónica; Fuentes, Alba; Fillat, Amanda; Martínez, Josefina

    2017-01-01

    A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions. PMID:28742841

  3. Thermophilic biofilter for SO2 removal: performance and microbial characteristics.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2015-03-01

    A bench-scale thermophilic biofilter was applied to remove SO2 at 60°C in the present study. The SO2 concentration in the inlet stream ranged from 100mg/m(3) to 200mg/m(3). An average SO2 removal efficiency of 93.10% was achieved after developing acclimated organisms that can degrade SO2. The thermophilic biofilter effectively reduced SO2, with a maximum elimination capacity of 50.67g/m(3)/h at a loading rate of 51.44g/m(3)/h. Removal efficiency of the thermophilic biofilter was largely influenced by the water containing rate of the packing materials. The SO2 transfer in the biofilter included adsorption by the packing materials, dissolution in liquid, and microbial degradation. The main product of SO2 degradation was SO4(2-). The temporal shifts in the bacterial community that formed in the biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequence analysis. These shifts revealed a correlation between biofilter performance and bacterial community structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae.

    PubMed

    Drejer, Eivind B; Hakvåg, Sigrid; Irla, Marta; Brautaset, Trygve

    2018-05-10

    Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B. methanolicus , B. coagulans , B. smithii , B. licheniformis , Geobacillus thermoglucosidasius , G. kaustophilus , and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.

  5. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter.

    PubMed

    Gannoun, H; Bouallagui, H; Okbi, A; Sayadi, S; Hamdi, M

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  7. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly

  8. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  9. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.

    PubMed

    Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

    2005-01-01

    Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes.

  10. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.

    PubMed

    Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng

    2016-02-01

    Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  12. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    PubMed Central

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  13. The Denitrification Characteristics and Microbial Community in the Cathode of an MFC with Aerobic Denitrification at High Temperatures.

    PubMed

    Zhao, Jianqiang; Wu, Jinna; Li, Xiaoling; Wang, Sha; Hu, Bo; Ding, Xiaoqian

    2017-01-01

    Microbial fuel cells (MFCs) have attracted much attention due to their ability to generate electricity while treating wastewater. The performance of a double-chamber MFC with simultaneous nitrification and denitrification (SND) in the cathode for treating synthetic high concentration ammonia wastewater was investigated at different dissolved oxygen (DO) concentrations and high temperatures. The results showed that electrode denitrification and traditional heterotrophic denitrification co-existed in the cathode chamber. Electrode denitrification by aerobic denitrification bacterium (ADB) is beneficial for achieving a higher voltage of the MFC at high DO concentrations (3.0-4.2 mg/L), while traditional heterotrophic denitrification is conducive to higher total nitrogen (TN) removal at low DO (0.5-1.0 mg/L) concentrations. Under high DO conditions, the nitrous oxide production and TN removal efficiency were higher with a 50 Ω external resistance than with a 100 Ω resistance, which demonstrated that electrode denitrification by ADB occurred in the cathode of the MFC. Sufficient electrons were inferred to be provided by the electrode to allow ADB survival at low carbon:nitrogen ratios (≤0.3). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) results showed that increasing the DO resulted in a change of the predominant species from thermophilic autotrophic nitrifiers and facultative heterotrophic denitrifiers at low DO concentrations to thermophilic ADB at high DO concentrations. The predominant phylum changed from Firmicutes to Proteobacteria , and the predominant class changed from Bacilli to Alpha, Beta , and Gamma Proteobacteria .

  14. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis.

    PubMed

    García-Hermoso, Antonio; Ramírez-Vélez, Robinson; Ramírez-Campillo, Rodrigo; Peterson, Mark D; Martínez-Vizcaíno, Vicente

    2018-02-01

    To determine if the combination of aerobic and resistance exercise is superior to aerobic exercise alone for the health of obese children and adolescents. Systematic review with meta-analysis. Computerised search of 3 databases (MEDLINE, EMBASE, and Cochrane Controlled Trials Registry). Studies that compared the effect of supervised concurrent exercise versus aerobic exercise interventions, with anthropometric and metabolic outcomes in paediatric obesity (6-18 years old). The mean differences (MD) of the parameters from preintervention to postintervention between groups were pooled using a random-effects model. 12 trials with 555 youths were included in the meta-analysis. Compared with aerobic exercise alone, concurrent exercise resulted in greater reductions in body mass (MD=-2.28 kg), fat mass (MD=-3.49%; and MD=-4.34 kg) and low-density lipoprotein cholesterol (MD=-10.20 mg/dL); as well as greater increases in lean body mass (MD=2.20 kg) and adiponectin level (MD=2.59 μg/mL). Differences were larger for longer term programmes (>24 weeks). Concurrent aerobic plus resistance exercise improves body composition, metabolic profiles, and inflammatory state in the obese paediatric population. CRD42016039807. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Aerobic exercise (image)

    MedlinePlus

    Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

  16. Heart rate recovery and variability following combined aerobic and resistance exercise training in adults with and without Down syndrome.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2013-01-01

    Persons with Down syndrome (DS) are at high risk for cardiovascular morbidity and mortality, and there is compelling evidence of autonomic dysfunction in these individuals. The main purpose of this study was to determine whether a combined aerobic and resistance exercise intervention produces similar results in cardiac autonomic function between adults with and without DS. Twenty-five participants (13 DS; 12 non-DS), aged 27-50 years, were included. Aerobic training was performed 3 days/week for 30 min at 65-85% of peak oxygen uptake (VO(2peak)). Resistance training was prescribed for 2 days/week and consisted of two rotations in a circuit of 9 exercises at 12-repetition-maximum. There was a significant improvement in the VO(2peak) and muscle strength of participants with and without DS after training. Heart rate recovery improved at 1 min post-exercise, but only in participants with DS. Both groups of participants exhibited a similar increase in normalized high frequency power and of decrease in normalized low frequency power after training. Therefore, 12 weeks of exercise training enhanced the heart rate recovery in adults with DS, but not in those without DS. Contrasting, the intervention elicited similar gains between groups for cardiovagal modulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of 12 weeks combined aerobic and resistance exercise on heart rate variability in type 2 diabetes mellitus patients.

    PubMed

    Kang, Seol-Jung; Ko, Kwang-Jun; Baek, Un-Hyo

    2016-07-01

    [Purpose] This study evaluated the effects of 12 weeks combined aerobic and resistance exercise on heart rate variability in patients with Type 2 diabetes mellitus. [Subjects and Methods] The subjects were 16 female patients with Type 2 diabetes mellitus selected among the participants of a chronic disease management exercise class at C Region Public Health Center in South Korea. Subjects were randomly assigned to the exercise group (n=8; age, 55.97 ± 7.37) or the control group (n=8; age, 57.53 ± 4.63) The exercise group performed aerobic and resistance exercises for 60 minutes per day, 3 times per week for 12 weeks. Anthropometric measurements, biochemical markers, physical fitness, and heart rate variability were examined. [Results] After 12 weeks of exercise, weight, body fat percentage, waist circumference, blood glucose, insulin resistance, glycated hemoglobin level, systolic blood pressure, and diastolic blood pressure significantly decreased and cardiorespiratory fitness and muscular strength significantly increased in the exercise group. Although heart rate variability measures showed favorable changes with the exercise program, none were significant. [Conclusion] Although the exercise program did not show notable changes in heart rate variability in patients with Type 2 diabetes within the timeframe of the study, exercise may contribute to the prevention and control of cardiovascular autonomic neuropathy.

  18. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  19. Removal and toxicity reduction of naphthenic acids by ozonation and combined ozonation-aerobic biodegradation.

    PubMed

    Vaiopoulou, Eleni; Misiti, Teresa M; Pavlostathis, Spyros G

    2015-03-01

    A commercial naphthenic acids (NAs) mixture (TCI Chemicals) and five model NA compounds were ozonated in a semibatch mode. Ozonation of 25 and 35 mg/L NA mixture followed pseudo first-order kinetics (k(obs)=0.11±0.008 min(-1); r(2)=0.989) with a residual NAs concentration of about 5 mg/L. Ozone reacted preferentially with NAs of higher cyclicity and molecular weight and decreased both cyclicity and the acute Microtox® toxicity by 3.3-fold. The ozone reactivity with acyclic and monocyclic model NAs varied and depended on other structural features, such as branching and the presence of tertiary or quaternary carbons. Batch aerobic degradation of unozonated NA mixture using a NA-enriched culture resulted in 83% NA removal and a 6.7-fold decrease in toxicity, whereas a combination of ozonation-biodegradation resulted in 89% NA removal and a 15-fold decrease in toxicity. Thus, ozonation of NA-bearing waste streams coupled with biodegradation are effective treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males.

    PubMed

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.

  1. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males

    PubMed Central

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721

  2. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates.

    PubMed

    Chinn, Mari S; Nokes, Sue E; Strobel, Herbert J

    2006-01-01

    Interest in solid substrate cultivation (SSC) techniques is gaining for biochemical production from renewable resources; however, heat and mass transfer problems may limit application of this technique. The use of anaerobic thermophiles in SSC offers a unique solution to overcoming these challenges. The production potential of nine thermophilic anaerobic bacteria was examined on corn stover, sugar cane bagasse, paper pulp sludge, and wheat bran in submerged liquid cultivation (SmC) and SSC. Production of acetate, ethanol, and lactate was measured over a 10 day period, and total product concentrations were used to compare the performance of different organism-substrate combinations using the two cultivation methods. Overall microbial activity in SmC and SSC was dependent on the organism and growth substrate. Clostridium thermocellum strains JW20, LQRI, and 27405 performed significantly better in SSC when grown on sugar cane bagasse and paper pulp sludge, producing at least 70 and 170 mM of total products, respectively. Growth of C. thermocellum strains in SSC on paper pulp sludge proved to be most favorable, generating at least twice the concentration of total products produced in SmC (p-value < 0.05). Clostridium thermolacticum TC21 demonstrated growth on all substrates producing 30-80 and 60-116 mM of total product in SmC and SSC, respectively. Bacterial species with optimal growth temperatures of 70 degrees C grew best on wheat bran in SmC, producing total product concentrations of 45-75 mM. For some of the organism-substrate combinations total end product concentrations in SSC exceeded those in SmC, indicating that SSC may be a promising alternative for microbial activity and value-added biochemical production.

  3. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study.

    PubMed Central

    Georis, J.; de Lemos Esteves, F.; Lamotte-Brasseur, J.; Bougnet, V.; Devreese, B.; Giannotta, F.; Granier, B.; Frère, J. M.

    2000-01-01

    In a general approach to the understanding of protein adaptation to high temperature, molecular models of the closely related mesophilic Streptomyces sp. S38 Xyl1 and thermophilic Thermomonospora fusca TfxA family 11 xylanases were built and compared with the three-dimensional (3D) structures of homologous enzymes. Some of the structural features identified as potential contributors to the higher thermostability of TfxA were introduced in Xyl1 by site-directed mutagenesis in an attempt to improve its thermostability and thermophilicity. A new Y11-Y16 aromatic interaction, similar to that present in TfxA and created in Xyl1 by the T11Y mutation, improved both the thermophilicity and thermostability. Indeed, the optimum activity temperature (70 vs. 60 degrees C) and the apparent Tm were increased by about 9 degrees C, and the mutant was sixfold more stable at 57 degrees C. The combined mutations A82R/F168H/N169D/delta170 potentially creating a R82-D169 salt bridge homologous to that present in TfxA improved the thermostability but not the thermophilicity. Mutations R82/D170 and S33P seemed to be slightly destabilizing and devoid of influence on the optimal activity temperature of Xyl1. Structural analysis revealed that residues Y11 and Y16 were located on beta-strands B1 and B2, respectively. This interaction should increase the stability of the N-terminal part of Xyl1. Moreover, Y11 and Y16 seem to form an aromatic continuum with five other residues forming putative subsites involved in the binding of xylan (+3, +2, +1, -1, -2). Y11 and Y16 might represent two additional binding subsites (-3, -4) and the T11Y mutation could thus improve substrate binding to the enzyme at higher temperature and thus the thermophilicity of Xyl1. PMID:10752608

  4. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors.

    PubMed

    Tay, J H; Liu, Q S; Liu, Y

    2002-08-01

    Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.

  5. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries.

    PubMed

    Cobucci-Ponzano, Beatrice; Strazzulli, Andrea; Iacono, Roberta; Masturzo, Giuseppe; Giglio, Rosa; Rossi, Mosè; Moracci, Marco

    2015-10-01

    The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions.

    PubMed

    Pang, Long; Ge, Liming; Yang, Peijie; He, Han; Zhang, Hongzhong

    2018-05-01

    In this study, the degradation of organophosphate esters (OPEs) in sewage sludge with aerobic composting and anaerobic digestion was investigated. The total concentrations of six OPEs (ΣOPEs) in the whole treatment process reduced in the order of anaerobic digestion combined with pig manure (T3) > aerobic composting combined with pig manure (T1) > aerobic composting (T2) > anaerobic digestion (T4). The addition of pig manure significantly enhanced the removal rate of OPEs in both aerobic and anaerobic treatments. The abundance and diversity of bacterial community reduced after the treatment process. Shannon index, principal component analysis, network analysis, and heat map further confirmed the variation of bacterial community compositions among different treatments. Five genera (i.e., Flavobacterium, Bacillus, Alcaligene, Pseudomonas, and Bacillus megaterium) might be responsible for the degradation of OPE compounds in sewage sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature.

    PubMed

    Hao, Jiuxiao; Wang, Hui

    2015-01-01

    The volatile fatty acids (VFAs) productions, as well as hydrolases activities, microbial communities, and homoacetogens, of mesophilic and thermophilic sludge anaerobic fermentation were investigated to reveal the microbial responses to different fermentation temperatures. Thermophilic fermentation led to 10-fold more accumulation of VFAs compared to mesophilic fermentation. α-glucosidase and protease had much higher activities in thermophilic reactor, especially protease. Illumina sequencing manifested that raising fermentation temperature increased the abundances of Clostridiaceae, Microthrixaceae and Thermotogaceae, which could facilitate either hydrolysis or acidification. Real-time PCR analysis demonstrated that under thermophilic condition the relative abundance of homoacetogens increased in batch tests and reached higher level at stable fermentation, whereas under mesophilic condition it only increased slightly in batch tests. Therefore, higher fermentation temperature increased the activities of key hydrolases, raised the proportions of bacteria involved in hydrolysis and acidification, and promoted the relative abundance of homoacetogens, which all resulted in higher VFAs production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics

    PubMed Central

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-01-01

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology. PMID:27941956

  9. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics.

    PubMed

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-12-12

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.

  10. An innovative intermittent-vacuum assisted thermophilic anaerobic digestion process for effective animal manure utilization and treatment.

    PubMed

    Zhang, Renchuan; Anderson, Erik; Addy, Min; Deng, Xiangyuan; Kabir, Fayal; Lu, Qian; Ma, Yiwei; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2017-11-01

    Intermittent-vacuum stripping (IVS) was developed as a pretreatment for thermophilic anaerobic digestion (TAD) to improve methanogenesis and hydrolysis activity through preventing free ammonia and hydrogen sulfide (H 2 S) inhibition from liquid swine manure (LSM). Over 98% of ammonia and 38% organic nitrogen were removed in 60min from 55°C to 85°C with vacuum pressure (from 100.63±3.79mmHg to 360.91±7.39mmHg) at initial pH 10.0 by IVS. Thermophilic methanogenesis and hydrolysis activity of pretreated LSM increased 52.25% (from 11.56±1.75% to 17.60±0.49%) in 25days and 40% (from 10days to 6days) in bio-methane potential assay. Over 80% H 2 S and total nitrogen were removed by IVS assistance, while around 70% nitrogen was recycled as ammonium sulfate. Therefore, IVS-TAD combination could be an effective strategy to improve TAD efficiency, whose elution is more easily utilized in algae cultivation and/or hydroponic system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2015-09-01

    The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain

  12. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial.

    PubMed

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso Rf

    2016-01-01

    Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. This study was a randomized and controlled trial. A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG ( P <0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG ( P <0.001). Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment.

  13. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    PubMed

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    PubMed

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  15. Extremely thermophilic microorganisms for biomass conversion: status and prospects.

    PubMed

    Blumer-Schuette, Sara E; Kataeva, Irina; Westpheling, Janet; Adams, Michael Ww; Kelly, Robert M

    2008-06-01

    Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea (T(opt)>or=80 degrees C) utilize alpha- and beta-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria (T(opt)>or=80 degrees C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 degrees C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by 'free' primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as 'secondary cellulases') reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as 'hypothetical proteins'. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.

  16. Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile*

    PubMed Central

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-01-01

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. PMID:23740255

  17. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.

    PubMed

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-07-26

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.

  18. Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF)

    PubMed Central

    2012-01-01

    Background A previously developed mathematical model of low solids thermophilic simultaneous saccharification and fermentation (tSSF) with Avicel was unable to predict performance at high solids using a commercial cellulase preparation (Spezyme CP) and the high ethanol yield Thermoanaerobacterium saccharolyticum strain ALK2. The observed hydrolysis proceeded more slowly than predicted at solids concentrations greater than 50 g/L Avicel. Factors responsible for this inaccuracy were investigated in this study. Results Ethanol dramatically reduced cellulase activity in tSSF. At an Avicel concentration of 20 g/L, the addition of ethanol decreased conversion at 96 hours, from 75% in the absence of added ethanol down to 32% with the addition of 34 g/L initial ethanol. This decrease is much greater than expected based on hydrolysis inhibition results in the absence of a fermenting organism. The enhanced effects of ethanol were attributed to the reduced, anaerobic conditions of tSSF, which were shown to inhibit cellulase activity relative to hydrolysis under aerobic conditions. Cellulose hydrolysis in anaerobic conditions was roughly 30% slower than in the presence of air. However, this anaerobic inhibition was reversed by exposing the cellulase enzymes to air. Conclusion This work demonstrates a previously unrecognized incompatibility of enzymes secreted by an aerobic fungus with the fermentation conditions of an anaerobic bacterium and suggests that enzymes better suited to industrially relevant fermentation conditions would be valuable. The effects observed may be due to inactivation or starvation of oxygen dependent GH61 activity, and manipulation or replacement of this activity may provide an opportunity to improve biomass to fuel process efficiency. PMID:22703989

  19. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    PubMed

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. Copyright © 2010 S. Karger AG, Basel.

  1. Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting

    PubMed Central

    Lemos, Leandro N.; Pereira, Roberta V.; Quaggio, Ronaldo B.; Martins, Layla F.; Moura, Livia M. S.; da Silva, Amanda R.; Antunes, Luciana P.; da Silva, Aline M.; Setubal, João C.

    2017-01-01

    Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built

  2. The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial.

    PubMed

    AbouAssi, Hiba; Slentz, Cris A; Mikus, Catherine R; Tanner, Charles J; Bateman, Lori A; Willis, Leslie H; Shields, A Tamlyn; Piner, Lucy W; Penry, Lorrie E; Kraus, Erik A; Huffman, Kim M; Bales, Connie W; Houmard, Joseph A; Kraus, William E

    2015-06-15

    Most health organizations recommend a combination of aerobic training (AT) and resistance training (RT), yet few studies have compared their acute (within 24 h of the last exercise bout) and sustained (after 14 days of no exercise training) effects alone and in combination on glucose metabolism. The present study (Studies Targeting Risk Reduction Interventions through Defined Exercise-Aerobic Training and/or Resistance Training) compared the effects of AT, RT, and the combination (AT/RT) on insulin action at both acute and sustained phases. Subjects (N = 196) were 18-70 yr old (mean age = 50 yr), overweight (mean body mass index = 30 kg/m2), sedentary with moderate dyslipidemia, and were randomized into one of three 8-mo exercise groups: 1) RT: 3 days/wk, 8 exercises, 3 sets/exercise, 8-12 repetitions/set; 2) AT: equivalent to ∼19.2 km/wk (12 miles/wk) at 75% peak O2 consumption; 3) AT/RT: the combination of AT and RT. One hundred forty-four subjects completed the intervention. Eighty-eight subjects completed all pre- and postintervention testing visits. Insulin sensitivity, glucose effectiveness, and disposition index were measured via a frequently sampled intravenous glucose tolerance test with subsequent minimal model analyses. AT/RT resulted in greater improvements in insulin sensitivity, β-cell function (disposition index), and glucose effectiveness than either AT or RT alone (all P < 0.05). Approximately 52% of the improvement in insulin sensitivity by AT/RT was retained 14 days after the last exercise training bout. Neither AT or RT led to acute or chronic improvement in sensitivity index. In summary, only AT/RT (which required twice as much time as either alone) led to significant acute and sustained benefits in insulin sensitivity

  3. Aerobic exercise interventions for adults living with HIV/AIDS.

    PubMed

    O'Brien, Kelly; Nixon, Stephanie; Tynan, Anne-Marie; Glazier, Richard

    2010-08-04

    Access to combination antiretroviral therapy has turned HIV into a chronic and manageable disease for many. This increased chronicity has been mirrored by increased prevalence of health-related challenges experienced by people living with HIV (Rusch 2004). Exercise is a key strategy for people living with HIV and by rehabilitation professionals to address these disablements; however, knowledge about the effects of exercise among adults living with HIV still is emerging. To examine the safety and effectiveness of aerobic exercise interventions on immunologic and virologic, cardiopulmonary, psychologic outcomes and strength, weight, and body composition in adults living with HIV. Searches of MEDLINE, EMBASE, SCIENCE CITATION INDEX, CINAHL, HEALTHSTAR, PsycINFO, SPORTDISCUS and Cochrane Review Group Databases were conducted between 1980 and June 2009. Searches of published and unpublished abstracts and proceedings from major international and national HIV/AIDS conferences were conducted, as well as a handsearch of reference lists and tables of contents of relevant journals and books. We included studies of randomised controlled trials (RCTs) comparing aerobic exercise interventions with no aerobic exercise interventions or another exercise or treatment modality, performed at least three times per week for at least four weeks among adults (18 years of age or older) living with HIV. Data on study design, participants, interventions, outcomes, and methodological quality were abstracted from included studies by two reviewers. Meta-analyses, using RevMan 5 computer software, were performed on outcomes when possible. A total of 14 studies met inclusion criteria for this review and 30 meta-analyses over several updates were performed. Main results indicated that performing constant or interval aerobic exercise, or a combination of constant aerobic exercise and progressive resistive exercise for at least 20 minutes at least three times per week for at least five weeks appears

  4. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge.

    PubMed

    Xu, Rui; Yang, Zhao-Hui; Wang, Qing-Peng; Bai, Yang; Liu, Jian-Bo; Zheng, Yue; Zhang, Yan-Ru; Xiong, Wei-Ping; Ahmad, Kito; Fan, Chang-Zheng

    2018-01-15

    Spread of antibiotic resistance genes (ARGs) originating from sewage sludge is highlighted as an eminent health threat. This study established a thermophilic anaerobic digester using one-step startup strategy to quickly remove tetracycline and sulfonamides resistance genes from sewage sludge. At least 20days were saved in the startup period from mesophilic to thermophilic condition. Based on the results of 16S rDNA amplicons sequencing and predicted metagenomic method, the successful startup largely relied on the fast colonization of core thermophilic microbial population (e.g. Firmicutes, Proteobacteria, Actinobacteria). Microbial metabolic gene pathways for substrate degradation and methane production was also increased by one-step mode. In addition, real-time quantitative PCR approach revealed that most targeted tetracycline and sulfonamides resistance genes ARGs (sulI, tetA, tetO, tetX) were substantially removed during thermophilic digestion (removal efficiency>80%). Network analysis showed that the elimination of ARGs was attributed to the decline of their horizontal (intI1 item) and vertical (potential hosts) transfer-related elements under high-temperature. This research demonstrated that rapid startup thermophilic anaerobic digestion of wastewater solids would be a suitable technology for reducing quantities of various ARGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of thermal additions on the density and distribution of thermophilic amoebae and pathogenic Naegleria fowleri in a newly created cooling lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyndall, R.L.; Ironside, K.S.; Metler, P.L.

    1989-03-01

    Pathogenic Naegleria fowleri is the causative agent of fatal human amoebic meningoencephalitis. The protozoan is ubiquitous in nature, and its presence is enhanced by thermal additions. In this investigation, water and sediments from a newly created cooling lake were quantitatively analyzed for the presence of thermophilic amoebae, thermophilic Naegleria spp., and the pathogen Naegleria fowleri. During periods of thermal additions, the concentrations of thermophilic amoebae and thermophilic Naegleria spp. increased as much as 5 orders of magnitude, and the concentration of the pathogen N. fowleri increased as much as 2 orders of magnitude. Concentrations of amoebae returned to prior thermalmore » perturbation levels within 30 to 60 days after cessation of thermal additions. Increases in the thermophilic amoeba concentrations were noted in Savannah River oxbows downriver from the Savannah River plant discharge streams as compared with oxbows upriver from the discharges. Concentrations of thermophilic amoebae and thermophilic Naegleria spp. correlated significantly with temperature and conductivity. Air samples taken proximal to the lade during periods of thermal addition showed no evidence of thermophilic Naegleria spp. Isoenzyme patterns of the N. fowleri isolated from the cooling lake were identical to patterns of N. fowleri isolated from other sites in the United States and Belgium.« less

  6. Leaching: use of a thermophilic and chemoautotrophic microbe.

    PubMed

    Brierley, C L; Murr, L E

    1973-02-02

    A chemoautotrophic, thermophilic, and acidophilic microorganism capable of oxidizing reduced sulfur and iron compounds and leaching concentrates of molybdenite and chalcopyrite at 60 degrees C has been characterized by transmission and scanning electron microscopy. This constitutes the first direct observations of microorganisms on ore fines.

  7. An explanation of the methanogenic pathway for methane production in anaerobic digestion of nitrogen-rich materials under mesophilic and thermophilic conditions.

    PubMed

    Yin, Dong-Min; Westerholm, Maria; Qiao, Wei; Bi, Shao-Jie; Wandera, Simon M; Fan, Run; Jiang, Meng-Meng; Dong, Ren-Jie

    2018-05-18

    The impact of temperature on the anaerobic digestion of chicken manure was investigated by studying the process performance and pathway for continuously-fed digesters under mesophilic and thermophilic conditions. The mesophilic digester obtained a 15% higher methane yield compared with the thermophilic digester. Mesophilic and thermophilic digester had free ammonia of 31 and 145 mg/L, respectively. The stable carbon isotope analysis indicated that 41% and 50% of acetate was converted to methane through the syntrophic acetate oxidation and hydrogenotrophic methanogenesis (SAO-HM) pathway under mesophilic and thermophilic conditions, respectively. The genus Pseudomonas represented 10% and 16% under mesophilic and thermophilic conditions, respectively. A high abundance of the methanogens genus Methanoculleus (94% of total methanogens) in mesophilic and the genus Methanothermobacter (96%) in thermophilic digesters indicated they were the main hydrogenotrophic partners in SAO. The present study therefore illustrated that methanogenic pathway shifting, induced by free ammonia, closely correlated to the process performance. Copyright © 2018. Published by Elsevier Ltd.

  8. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  9. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    NASA Technical Reports Server (NTRS)

    Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  10. C-NMR assessment of the pattern of organic matter transformation during domestic wastewater treatment by autothermal aerobic digestion (ATAD).

    PubMed

    Piterina, Anna V; Barlett, John; Pembroke, J Tony

    2009-08-01

    The pattern of biodegradation and the chemical changes occurring in the macromolecular fraction of domestic sludge during autothermal thermophilic aerobic digestion (ATAD) was monitored and characterised via solid-state (13)C-NMR CP-MAS. Major indexes such as aromaticity, hydrophobicity and alkyl/O-alkyl ratios calculated for the ATAD processed biosolids were compared by means of these values to corresponding indexes reported for sludges of different origin such as manures, soil organic matter and certain types of compost. Given that this is the first time that these techniques have been applied to ATAD sludge, the data indicates that long-chain aliphatics are easily utilized by the microbial populations as substrates for metabolic activities at all stages of aerobic digestion and serve as a key substrate for the temperature increase, which in turn results in sludge sterilization. The ATAD biosolids following treatment had a prevalence of O-alkyl domains, a low aromaticity index (10.4%) and an alkyl/O-alkyl ratio of 0.48 while the hydrophobicity index of the sludge decreased from 1.12 to 0.62 during the treatment. These results have important implications for the evolution of new ATAD modalities particularly in relation to dewatering and the future use of ATAD processed biosolids as a fertilizer, particularly with respect to hydrological impacts on the soil behaviour.

  11. Aerobic conditioning for team sport athletes.

    PubMed

    Stone, Nicholas M; Kilding, Andrew E

    2009-01-01

    Team sport athletes require a high level of aerobic fitness in order to generate and maintain power output during repeated high-intensity efforts and to recover. Research to date suggests that these components can be increased by regularly performing aerobic conditioning. Traditional aerobic conditioning, with minimal changes of direction and no skill component, has been demonstrated to effectively increase aerobic function within a 4- to 10-week period in team sport players. More importantly, traditional aerobic conditioning methods have been shown to increase team sport performance substantially. Many team sports require the upkeep of both aerobic fitness and sport-specific skills during a lengthy competitive season. Classic team sport trainings have been shown to evoke marginal increases/decreases in aerobic fitness. In recent years, aerobic conditioning methods have been designed to allow adequate intensities to be achieved to induce improvements in aerobic fitness whilst incorporating movement-specific and skill-specific tasks, e.g. small-sided games and dribbling circuits. Such 'sport-specific' conditioning methods have been demonstrated to promote increases in aerobic fitness, though careful consideration of player skill levels, current fitness, player numbers, field dimensions, game rules and availability of player encouragement is required. Whilst different conditioning methods appear equivalent in their ability to improve fitness, whether sport-specific conditioning is superior to other methods at improving actual game performance statistics requires further research.

  12. Preseason Aerobic Capacity Is an Independent Predictor of In-Season Injury in Collegiate Soccer Players.

    PubMed

    Watson, Andrew; Brindle, Jacob; Brickson, Stacey; Allee, Tyler; Sanfilippo, Jennifer

    2017-05-01

    To determine whether preseason aerobic capacity is independently associated with in-season injury among collegiate soccer players. Prospective cohort study. University athletic department. Forty-three NCAA Division I soccer athletes (male = 23). Gender and preseason lean body mass (LBM), body fat percentage (BF%), and maximal aerobic capacity (V[Combining Dot Above]O2max). In-season injuries were recorded during the season, and body composition and fitness variables were compared between injured and uninjured players. Multivariate regression models were developed to predict injury during the entire season and during the first 4 weeks of the season. Thirty-five injuries among 25 players were recorded during the season. Players injured at any point during the season had lower V[Combining Dot Above]O2max (57.7 vs 63.4 mL·kg·min, P = 0.014) and Tmax (15.8 vs 17.2 minutes, P = 0.035), compared with uninjured players, but no differences were noted in age, gender, LBM, or BF%. Players injured during the first 4 weeks of the season had lower LBM (49.7 vs 56.0 kg, P = 0.038) and Tmax (15.1 vs 16.7 minutes, P = 0.043) than uninjured players. For injuries occurring throughout the entire season, V[Combining Dot Above]O2max was an independent predictor of injury (P = 0.043), whereas gender, LBM, and BF% were not. During the first 4 weeks of the season, V[Combining Dot Above]O2max (P = 0.035) and LBM (P = 0.049) were related to injury, whereas gender and BF% were not. Aerobic fitness is an independent predictor of in-season injury. Early-season injuries are related to aerobic fitness and LBM. Efforts to increase aerobic capacity and LBM among soccer players in the off-season may help reduce in-season injury.

  13. Co-digestion of bovine slaughterhouse wastes, cow manure, various crops and municipal solid waste at thermophilic conditions: a comparison with specific case running at mesophilic conditions.

    PubMed

    Pagés-Díaz, J; Sárvári-Horváth, I; Pérez-Olmo, J; Pereda-Reyes, I

    2013-01-01

    A co-digestion process was evaluated when mixing different ratios of agro-industrial residues, i.e. bovine slaughterhouse waste (SB); cow manure (M); various crop residues (VC); and municipal solid waste (MSW) by anaerobic batch digestion under thermophilic conditions (55 °C). A selected study case at mesophilic condition (37 °C) was also investigated. The performance of the co-digestion was evaluated by kinetics (k(0)). The best kinetic results were obtained under thermophilic operation when a mixture of 22% w/w SB, 22% w/w M, 45% w/w VC and 11% w/w MSW was co-digested, which showed a proper combination of high values in r(s)CH(4) and k(0) (0.066 Nm(3)CH(4)/kgVS*d, 0.336 d(-1)) during the anaerobic process. The effect of temperature on methane yield (Y(CH4)), specific methane rate (r(s)CH(4)) and k(0) was also analyzed for a specific study case; there a mixture of 25% w/w of SB, 37.5% w/w of M, 37.5% of VC and 0% of MSW was used. Response variables were severely affected by mesophilic conditions, diminishing to at least 45% of the thermophilic values obtained for a similar mixture. The effect of temperature suggested that thermophilic conditions are suitable to treat these residues.

  14. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.

    PubMed

    Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra

    2016-10-04

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.

  15. Aeribacillus composti sp. nov., a thermophilic bacillus isolated from olive mill pomace compost.

    PubMed

    Finore, Ilaria; Gioiello, Alessia; Leone, Luigi; Orlando, Pierangelo; Romano, Ida; Nicolaus, Barbara; Poli, Annarita

    2017-11-01

    A Gram-stain-positive, aerobic, endospore-forming, thermophilic bacterium, strain N.8 T , was isolated from the curing step of an olive mill pomace compost sample, collected at the Composting Experimental Centre (CESCO, Salerno, Italy). Strain N.8 T , based on 16S rRNA gene sequence similarities, was most closely related to Aeribacillus pallidus strain H12 T (=DSM 3670 T ) (99.8 % similarity value) with a 25 % DNA-DNA relatedness value. Cells were rod-shaped, non-motile and grew optimally at 60 °C and pH 9.0, forming cream colonies. Strain N.8 was able to grow on medium containing up to 9.0 % (w/v) NaCl with an optimum at 6.0 % (w/v) NaCl. The cellular membrane contained MK-7, and C16 : 0 (48.4 %), iso-C17 : 0 (19.4 %) and anteiso-C17 : 0 (14.6 %) were the major cellular fatty acids. The DNA G+C content was 40.5 mol%. Based on phenotypic characteristics, 16S rRNA gene sequences, DNA-DNA hybridization values and chemotaxonomic characteristics, strain N.8 T represents a novel species of the genus Aeribacillus, for which the name Aeribacillus composti sp. nov. is proposed. The type strain is N.8 T (=KCTC 33824 T =JCM 31580 T ).

  16. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  17. Enhancement of synthetic Trichoderma-based enzyme mixtures for biomass conversion with an alternative family 5 glycosyl hydrolase from Sporotrichum thermophile.

    PubMed

    Ye, Zhuoliang; Zheng, Yun; Li, Bingyao; Borrusch, Melissa S; Storms, Reginald; Walton, Jonathan D

    2014-01-01

    Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei. The S. thermophile extracts were fractionated and an enhancing factor identified as endo-β1,4-glucanase (StCel5A or EG2) of subfamily 5 of Glycosyl Hydrolase family 5 (GH5_5). In multi-component optimization experiments using a standard set of enzymes and either StCel5A or the ortholog from T. reesei (TrCel5A), reactions containing StCel5A yielded more Glc and Xyl. In a five-component optimization experiment (i.e., varying four core enzymes and the source of Cel5A), the optimal proportions for TrCel5A vs. StCel5A were similar for Glc yields, but markedly different for Xyl yields. Both enzymes were active on lichenan, glucomannan, and oat β-glucan; however, StCel5A but not TrCel5A was also active on β1,4-mannan, two types of galactomannan, and β1,4-xylan. Phylogenetically, fungal enzymes in GH5_5 sorted into two clades, with StCel5A and TrCel5A belonging to different clades. Structural differences with the potential to account for the differences in performance were deduced based on the known structure of TrCel5A and a homology-based model of StCel5A, including a loop near the active site of TrCel5A and the presence of four additional Trp residues in the active cleft of StCel5A. The results indicate that superior biomass-degrading enzymes can be identified by exploring taxonomic diversity combined with assays in the context of realistic enzyme combinations and realistic substrates. Substrate range may be a key factor contributing to superior performance

  18. Enhancement of Synthetic Trichoderma-Based Enzyme Mixtures for Biomass Conversion with an Alternative Family 5 Glycosyl Hydrolase from Sporotrichum thermophile

    PubMed Central

    Ye, Zhuoliang; Zheng, Yun; Li, Bingyao; Borrusch, Melissa S.; Storms, Reginald; Walton, Jonathan D.

    2014-01-01

    Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei. The S. thermophile extracts were fractionated and an enhancing factor identified as endo-β1,4- glucanase (StCel5A or EG2) of subfamily 5 of Glycosyl Hydrolase family 5 (GH5_5). In multi-component optimization experiments using a standard set of enzymes and either StCel5A or the ortholog from T. reesei (TrCel5A), reactions containing StCel5A yielded more Glc and Xyl. In a five-component optimization experiment (i.e., varying four core enzymes and the source of Cel5A), the optimal proportions for TrCel5A vs. StCel5A were similar for Glc yields, but markedly different for Xyl yields. Both enzymes were active on lichenan, glucomannan, and oat β-glucan; however, StCel5A but not TrCel5A was also active on β1,4-mannan, two types of galactomannan, and β1,4-xylan. Phylogenetically, fungal enzymes in GH5_5 sorted into two clades, with StCel5A and TrCel5A belonging to different clades. Structural differences with the potential to account for the differences in performance were deduced based on the known structure of TrCel5A and a homology-based model of StCel5A, including a loop near the active site of TrCel5A and the presence of four additional Trp residues in the active cleft of StCel5A. The results indicate that superior biomass-degrading enzymes can be identified by exploring taxonomic diversity combined with assays in the context of realistic enzyme combinations and realistic substrates. Substrate range may be a key factor contributing to superior

  19. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge.

    PubMed

    Li, Qian; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki; Shofie, Mohammad; Li, Yu-You

    2015-02-01

    This study was conducted to characterize the kinetics of an anaerobic process (hydrolysis, acetogenesis, acidogenesis and methanogenesis) under thermophilic (55 °C) and mesophilic (35 °C) conditions with coffee grounds and waste activated sludge (WAS) as the substrates. Special focus was given to the kinetics of propionic acid degradation to elucidate the accumulation of VFAs. Under the thermophilic condition, the methane production rate of all substrates (WAS, ground coffee and raw coffee) was about 1.5 times higher than that under the mesophilic condition. However, the effects on methane production of each substrate under the thermophilic condition differed: WAS increased by 35.8-48.2%, raw coffee decreased by 76.3-64.5% and ground coffee decreased by 74.0-57.9%. Based on the maximum reaction rate (Rmax) of each anaerobic stage obtained from the modified Gompertz model, acetogenesis was found to be the rate-limiting step for coffee grounds and WAS. This can be explained by the kinetics of propionate degradation under thermophilic condition in which a long lag-phase (more than 18 days) was observed, although the propionate concentration was only 500 mg/L. Under the mesophilic condition, acidogenesis and hydrolysis were found to be the rate-limiting step for coffee grounds and WAS, respectively. Even though reducing the particle size accelerated the methane production rate of coffee grounds, but did not change the rate-limiting step: acetogenesis in thermophilic and acidogenesis in mesophilic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    PubMed Central

    Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso RF

    2016-01-01

    Background Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. Objective The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. Design This study was a randomized and controlled trial. Participants A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). Intervention The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Evaluations Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. Results After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Conclusion Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment. PMID:27822031

  1. Comparison of the effects of Crataegus oxyacantha extract, aerobic exercise and their combination on the serum levels of ICAM-1 and E-Selectin in patients with stable angina pectoris.

    PubMed

    Jalaly, Leila; Sharifi, Gholamreza; Faramarzi, Mohammad; Nematollahi, Alireza; Rafieian-kopaei, Mahmoud; Amiri, Masoud; Moattar, Fariborz

    2015-12-19

    Adhesion molecules play an important role in the development and progression of coronary atherosclerosis. The aim of this study was comparing the effect of Cratagol herbal tablet, aerobic exercise and their combination on the serum levels of Intercellular adhesion molecule (ICAM)-1 and E-Selectin in patients with stable angina pectoris. Eighty stable angina pectoris patients aged between 45 and 65 years, were randomly divided into four groups including three experimental groups and one control group: aerobic exercise (E), Crataegus oxyacantha extract (S), aerobic exercise and Crataegus oxyacantha extract (S+E), and control (C). Blood sampling was taken 24 h before and after 12 weeks of aerobic exercise and Crataegus oxyacantha extract consumption. The results of serum levels of ICAM-1 and E-selectin were compared. Intergroup comparison of the data revealed a significant reduction (P <0.01) in serum levels of ICAM-1 and E-selectin in experimental groups. Analysis of data showed that the serum levels of ICAM-1 had significant difference when group S+E was compared with groups S and C, but not group E (P = 0.021, P = 0.000 and P = 0.068, respectively). Also the difference between the levels of E-selectin was significant comparing S+E and S but not E with group C (P = 0.021, P = 0.000 and P = 0.052, respectively). Twelve weeks effects of aerobic exercise and Crataegus oxyacantha extract consuming is an effective complementary strategy to significantly lower the risk of atherosclerosis and heart problems.

  2. Prevalence and strain diversity of thermophilic campylobacters in cattle, sheep and swine farms.

    PubMed

    Oporto, B; Esteban, J I; Aduriz, G; Juste, R A; Hurtado, A

    2007-10-01

    To determine prevalence and strain diversity of thermophilic campylobacters in healthy ruminants and swine. Faecal samples collected from 343 herds (120 sheep, 124 beef cattle, 82 dairy cattle and 17 swine) in the Basque Country were screened in pools for thermophilic campylobacters. Two hundred and three herds were positive (67.1% dairy cattle, 58.9% beef cattle, 55.0% sheep and 52.9% pig), and species-specific PCR identified Campylobacter jejuni in 20.7% of the herds and Campylobacter coli in 6.4%. Campylobacter coli was isolated from the four production systems and was the most prevalent species in swine, where C. jejuni was not found. Other thermophilic campylobacters were found in all production systems. Four hundred and ninety-three animals from 11 positive herds were individually analysed, detecting significantly higher within-herd prevalences in dairy cattle (66.7%) and swine (57.8%) than in sheep (8.8%) or beef cattle (5.4%). flaA PCR-RFLP and pulsed-field gel electrophoresis analysis of a selection of isolates showed high genetic diversity. Healthy swine, cattle and sheep are important reservoirs of thermophilic campylobacters of different species and high genetic diversity. Efficient farm-based intervention measures are needed to reduce risk of infection. Non-C. jejuni/C. coli species should be monitored to investigate their significance for infection.

  3. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures.

    PubMed

    Zaccardi, Margot J; Mannweiler, Olga; Boehr, David D

    2012-02-10

    Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    PubMed Central

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  5. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  6. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    PubMed

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  7. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.

    PubMed

    Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-12-01

    Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.

  8. Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.

    PubMed

    Pervin, Hasina M; Batstone, Damien J; Bond, Philip L

    2013-06-01

    Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  10. 13C-NMR Assessment of the Pattern of Organic Matter Transformation during Domestic Wastewater Treatment by Autothermal Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Barlett, John; Pembroke, J. Tony

    2009-01-01

    The pattern of biodegradation and the chemical changes occurring in the macromolecular fraction of domestic sludge during autothermal thermophilic aerobic digestion (ATAD) was monitored and characterised via solid-state 13C-NMR CP-MAS. Major indexes such as aromaticity, hydrophobicity and alkyl/O-alkyl ratios calculated for the ATAD processed biosolids were compared by means of these values to corresponding indexes reported for sludges of different origin such as manures, soil organic matter and certain types of compost. Given that this is the first time that these techniques have been applied to ATAD sludge, the data indicates that long-chain aliphatics are easily utilized by the microbial populations as substrates for metabolic activities at all stages of aerobic digestion and serve as a key substrate for the temperature increase, which in turn results in sludge sterilization. The ATAD biosolids following treatment had a prevalence of O-alkyl domains, a low aromaticity index (10.4%) and an alkyl/O-alkyl ratio of 0.48 while the hydrophobicity index of the sludge decreased from 1.12 to 0.62 during the treatment. These results have important implications for the evolution of new ATAD modalities particularly in relation to dewatering and the future use of ATAD processed biosolids as a fertilizer, particularly with respect to hydrological impacts on the soil behaviour. PMID:19742161

  11. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste*

    PubMed Central

    Wu, Man-Chang; Sun, Ke-Wei; Zhang, Yong

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 °C to 20 °C suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 °C) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation; (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation. PMID:16502503

  12. Improved fermentation performance in an expanded ectopic fermentation system inoculated with thermophilic bacteria.

    PubMed

    Guo, Hui; Zhu, Changxiong; Geng, Bing; Liu, Xue; Ye, Jing; Tian, Yunlong; Peng, Xiawei

    2015-12-01

    Previous research showed that ectopic fermentation system (EFS) inoculated with thermophilic bacteria is an excellent alternative for cow wastewater treatment. In this study, the effects of thermophilic bacterial consortium on the efficiency and quality of the fermentation process in EFS were evaluated by measuring physicochemical and environmental factors and the changes in organic matter composition. In parallel, the microbial communities correlated with fermentation performance were identified. Inoculation of EFS with thermophilic bacterial consortium led to higher temperatures, increased wastewater requirements for continuous fermentation, and improved quality of the litters in terms of physicochemical factors, security test, functional group analysis, and bacterial community composition. The relationship between the transformation of organic component and the dominant bacteria species indicated that environmental factors contributed to strain growth, which subsequently promoted the fermentation process. The results highlight the great potential of EFS model for wide application in cow wastewater treatment and re-utilization as bio-fertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  14. Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion.

    PubMed

    Menon, Ajay; Wang, Jing-Yuan; Giannis, Apostolos

    2017-01-01

    The aim of this study was to enhance the biogas productivity of two-phase thermophilic anaerobic digestion (AD) using food waste (FW) as the primary substrate. The influence of adding four trace metals (Ca, Mg, Co, and Ni) as micronutrient supplement in the methanogenic phase of the thermophilic system was investigated. Initially, Response Surface Methodology (RSM) was applied to determine the optimal concentration of micronutrients in batch experiments. The results showed that optimal concentrations of 303, 777, 7 and 3mg/L of Ca, Mg, Co and Ni, respectively, increased the biogas productivity as much as 50% and significantly reduced the processing time. The formulated supplement was tested in continuous two-phase thermophilic AD system with regard to process stability and productivity. It was found that a destabilized thermophilic AD process encountering high VFA accumulation recovered in less than two weeks, while the biogas production was improved by 40% yielding 0.46L CH 4 /gVS added /day. There was also a major increase in soluble COD utilization upon the addition of micronutrient supplement. The results of this study indicate that a micronutrient supplement containing Ca, Mg, Co and Ni could probably remedy any type of thermophilic AD process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Short-term water-based aerobic training promotes improvements in aerobic conditioning parameters of mature women.

    PubMed

    Costa, Rochelle Rocha; Reichert, Thais; Coconcelli, Leandro; Simmer, Nicole Monticelli; Bagatini, Natália Carvalho; Buttelli, Adriana Cristine Koch; Bracht, Cláudia Gomes; Stein, Ricardo; Kruel, Luiz Fernando Martins

    2017-08-01

    Aging is accompanied by a decrease in aerobic capacity. Therefore, physical training has been recommended to soften the effects of advancement age. The aim of this study was to assess the effects of a short-term water-based aerobic training on resting heart rate (HR rest ), heart rate corresponding to anaerobic threshold (HR AT ), peak heart rate (HR peak ), percentage value of HR AT in relation to HR peak and test duration (TD) of mature women. Twenty-two women (65.91 ± 4.83 years) were submitted to a five-week water-based interval aerobic training. Aerobic capacity parameters were evaluated through an aquatic incremental test. After training, there was an increase in TD (16%) and HR AT percentage in relation to HR peak (4.68%), and a reduction of HR rest (9%). It is concluded that a water-based aerobic interval training prescribed through HR AT of only five weeks is able to promote improvements in aerobic capacity of mature women. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Meiothermus roseus sp. nov., a thermophilic bacterium isolated from a geothermal area.

    PubMed

    Ming, Hong; Duan, Yan-Yan; Guo, Qian-Qian; Yin, Yi-Rui; Zhou, En-Min; Liu, Lan; Li, Shuai; Nie, Guo-Xing; Li, Wen-Jun

    2015-10-01

    Two closely related thermophilic bacterial strains, designated YIM 71031(T) and YIM 71039, were isolated from a hot spring in Tengchong county, Yunnan province, south-western China. The novel isolates were observed to be Gram-negative, aerobic, rod-shaped and yellow-pigmented bacteria. The strains were found to be able to grow at 37-65 °C, pH 6.0-9.0 and with a NaCl tolerance up to 1.0 % (w/v). Phylogenetic analysis based on 16S rRNA gene sequences placed these two isolates in the genus Meiothermus. They were found to be closely related to Meiothermus timidus DSM 17022(T) (98.6 % similarity), and formed a cluster with this species. The predominant menaquinone was identified as MK-8 and the major fatty acids (>10 %) as anteiso-C15:0, iso-C15:0, anteiso-C17:0, iso-C16:0 and C16:0. The genomic DNA G+C contents of strains YIM 71031(T) and YIM 71039 were determined to be 64.0 and 65.4 mol%, respectively. DNA-DNA hybridizations showed low values between strains YIM 71031(T) and YIM 71039 and their closely related neighbour M. timidus DSM 17022(T). Morphological phylogenetic and chemotaxonomic results suggest that strains YIM 71031(T) and YIM 71039 are representatives of a new species within the genus Meiothermus, for which the name Meiothermus roseus sp. nov. is proposed. The type strain is YIM 71031(T) (=KCTC 42495(T) =NBRC 110900(T)).

  17. Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates.

    PubMed

    Yokoyama, Hiroshi; Moriya, Naoko; Ohmori, Hideyuki; Waki, Miyoko; Ogino, Akifumi; Tanaka, Yasuo

    2007-11-01

    The present study analyzed the community structures of anaerobic microflora producing hydrogen under extreme thermophilic conditions by two culture-independent methods: denaturing gradient gel electrophoresis (DGGE) and clone library analyses. Extreme thermophilic microflora (ETM) was enriched from cow manure by repeated batch cultures at 75 degrees C, using a substrate of xylose, glucose, lactose, cellobiose, or soluble starch, and produced hydrogen at yields of 0.56, 2.65, 2.17, 2.68, and 1.73 mol/mol-monosaccharide degraded, respectively. The results from the DGGE and clone library analyses were consistent and demonstrated that the community structures of ETM enriched with the four hexose-based substrates (glucose, lactose, cellobiose, and soluble starch) consisted of a single species, closely related to a hydrogen-producing extreme thermophile, Caldoanaerobacter subterraneus, with diversity at subspecies levels. The ETM enriched with xylose was more diverse than those enriched with the other substrates, and contained the bacterium related to C. subterraneus and an unclassified bacterium, distantly related to a xylan-degrading and hydrogen-producing extreme thermophile, Caloramator fervidus.

  18. Determinative factors of competitive advantage between aerobic bacteria for niches at the air-liquid interface.

    PubMed

    Yamamoto, Kyosuke; Haruta, Shin; Kato, Souichiro; Ishii, Masaharu; Igarashi, Yasuo

    2010-01-01

    We focused on bacterial interspecies relationships at the air-liquid interface where the formation of pellicles by aerobes was observed. Although an obligate aerobe (Brevibacillus sp. M1-5) was initially dominant in the pellicle population, a facultative aerobe (Pseudoxanthomonas sp. M1-3) emerged and the viability of M1-5 rapidly decreased due to severe competition for oxygen. Supplementation of the medium with carbohydrates allowed the two species to coexist at the air-liquid interface. These results indicate that the population dynamics within pellicles are primarily governed by oxygen utilization which was affected by a combination of carbon sources.

  19. In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in the thermophilic anaerobic digestion process.

    PubMed

    Gagliano, Maria Cristina; Braguglia, Camilla Maria; Rossetti, Simona

    2014-09-01

    Thermophilic bacteria have recently attracted great attention because of their potential application in improving different biochemical processes such as anaerobic digestion of various substrates, wastewater treatment or hydrogen production. In this study we report on the design of a specific 16S rRNA-targeted oligonucleotide probe for detecting members of Coprothermobacter genus characterized by a strong protease activity to degrade proteins and peptides. The newly designed CTH485 probe and helper probes hCTH429 and hCTH439 were optimized for use in fluorescence in situ hybridization (FISH) on thermophilic anaerobic sludge samples. In situ probing revealed that thermo-adaptive mechanisms shaping the 16S rRNA gene may affect the identification of thermophilic microorganisms. The novel developed FISH probe extends the possibility to study the widespread thermophilic syntrophic interaction of Coprothermobacter spp. with hydrogenotrophic methanogenic archaea, whose establishment is a great benefit for the whole anaerobic system. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Combined steam-ultrasound treatment of 2 seconds achieves significant high aerobic count and Enterobacteriaceae reduction on naturally contaminated food boxes, crates, conveyor belts, and meat knives.

    PubMed

    Musavian, Hanieh S; Butt, Tariq M; Larsen, Annette Baltzer; Krebs, Niels

    2015-02-01

    Food contact surfaces require rigorous sanitation procedures for decontamination, although these methods very often fail to efficiently clean and disinfect surfaces that are visibly contaminated with food residues and possible biofilms. In this study, the results of a short treatment (1 to 2 s) of combined steam (95°C) and ultrasound (SonoSteam) of industrial fish and meat transportation boxes and live-chicken transportation crates naturally contaminated with food and fecal residues were investigated. Aerobic counts of 5.0 to 6.0 log CFU/24 cm(2) and an Enterobacteriaceae spp. level of 2.0 CFU/24 cm(2) were found on the surfaces prior to the treatment. After 1 s of treatment, the aerobic counts were significantly (P < 0.0001) reduced, and within 2 s, reductions below the detection limit (<10 CFU) were reached. Enterobacteriaceae spp. were reduced to a level below the detection limit with only 1 s of treatment. Two seconds of steam-ultrasound treatment was also applied on two different types of plastic modular conveyor belts with hinge pins and one type of flat flexible rubber belt, all visibly contaminated with food residues. The aerobic counts of 3.0 to 5.0 CFU/50 cm(2) were significantly (P < 0.05) reduced, while Enterobacteriaceae spp. were reduced to a level below the detection limit. Industrial meat knives were contaminated with aerobic counts of 6.0 log CFU/5 cm(2) on the handle and 5.2 log CFU/14 cm(2) on the steel. The level of Enterobacteriaceae spp. contamination was approximately 2.5 log CFU on the handle and steel. Two seconds of steam-ultrasound treatment reduced the aerobic counts and Enterobacteriaceae spp. to levels below the detection limit on both handle and steel. This study shows that the steam-ultrasound treatment may be an effective replacement for disinfection processes and that it can be used for continuous disinfection at fast process lines. However, the treatment may not be able to replace efficient cleaning processes used to remove high

  1. Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.

    PubMed

    Wiwczar, Jessica M; LaFountain, Amy M; Wang, Jimin; Frank, Harry A; Brudvig, Gary W

    2017-11-01

    Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.

  2. Height, Weight, and Aerobic Fitness Level in Relation to the Risk of Atrial Fibrillation.

    PubMed

    Crump, Casey; Sundquist, Jan; Winkleby, Marilyn A; Sundquist, Kristina

    2018-03-01

    Tall stature and obesity have been associated with a higher risk of atrial fibrillation (AF), but there have been conflicting reports of the effects of aerobic fitness. We conducted a national cohort study to examine interactions between height or weight and level of aerobic fitness among 1,547,478 Swedish military conscripts during 1969-1997 (97%-98% of all 18-year-old men) in relation to AF identified from nationwide inpatient and outpatient diagnoses through 2012 (maximal age, 62 years). Increased height, weight, and aerobic fitness level (but not muscular strength) at age 18 years were all associated with a higher AF risk in adulthood. Positive additive and multiplicative interactions were found between height or weight and aerobic fitness level (for the highest tertiles of height and aerobic fitness level vs. the lowest, relative excess risk = 0.51, 95% confidence interval (CI): 0.40, 0.62; ratio of hazard ratios = 1.50, 95% CI: 1.34, 1.65). High aerobic fitness levels were associated with higher risk among men who were at least 186 cm (6 feet, 1 inch) tall but were protective among shorter men. Men with the combination of tall stature and high aerobic fitness level had the highest risk (for the highest tertiles vs. the lowest, adjusted hazard ratio = 1.70, 95% CI: 1.61, 1.80). These findings suggest important interactions between body size and aerobic fitness level in relation to AF and may help identify high-risk subgroups.

  3. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats

    PubMed Central

    Gomez-Garcia, Maria R; Davison, Michelle; Blain-Hartnung, Matthew; Grossman, Arthur R; Bhaya, Devaki

    2011-01-01

    Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments. PMID:20631809

  4. Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering

    PubMed Central

    Blanchard, Kristen; Robic, Srebrenka

    2014-01-01

    Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications. PMID:24788326

  5. Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest.

    PubMed

    Watterson, M J; Kent, D J; Boor, K J; Wiedmann, M; Martin, N H

    2014-01-01

    Dairy powder products (e.g., sweet whey, nonfat dry milk, acid whey, and whey protein concentrate-80) are of economic interest to the dairy industry. According to the US Dairy Export Council, customers have set strict tolerances (<500 to <1,000/g) for thermophilic and mesophilic spores in dairy powders; therefore, understanding proliferation and survival of sporeforming organisms within dairy powder processing plants is necessary to control and reduce sporeformer counts. Raw, work-in-process, and finished product samples were collected from 4 dairy powder processing facilities in the northeastern United States over a 1-yr period. Two separate spore treatments: (1) 80°C for 12min (to detect sporeformers) and (2) 100°C for 30min (to detect highly heat resistant sporeformers) were applied to samples before microbiological analyses. Raw material, work-in-process, and finished product samples were analyzed for thermophilic, mesophilic, and psychrotolerant sporeformers, with 77.5, 71.0, and 4.6% of samples being positive for those organisms, respectively. Work-in-process and finished product samples were also analyzed for highly heat resistant thermophilic and mesophilic sporeformers, with 63.7 and 42.6% of samples being positive, respectively. Sporeformer prevalence and counts varied considerably by product and plant; sweet whey and nonfat dry milk showed a higher prevalence of thermophilic and mesophilic sporeformers compared with acid whey and whey protein concentrate-80. Unlike previous reports, we found limited evidence for increased spore counts toward the end of processing runs. Our data provide important insight into spore contamination patterns associated with production of different types of dairy powders and support that thermophilic sporeformers are the primary organism of concern in dairy powders. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults

    PubMed Central

    Flodin, Pär; Jonasson, Lars S.; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C. J.

    2017-01-01

    Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64–78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic

  7. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults.

    PubMed

    Flodin, Pär; Jonasson, Lars S; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C J

    2017-01-01

    Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO 2 -peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO 2 -peak was negativly related to BOLD-signal fluctuations (BOLD STD ) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO 2 -related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and

  8. Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'haeseleer, Patrik; Gladden, John M.; Allgaier, Martin

    2013-07-19

    Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilicmore » Paenibacilli and an uncultivated subdivision of the littlestudied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify .3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction.« less

  9. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2014-06-01

    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  11. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis.

    PubMed

    Xu, Lin; Wu, Yue-Hong; Zhou, Peng; Cheng, Hong; Liu, Qian; Xu, Xue-Wei

    2018-05-23

    Type strains of the genus Porphyrobacter belonging to the family Erythrobacteraceae and the class Alphaproteobacteria have been isolated from various environments, such as swimming pools, lake water and hot springs. P. cryptus DSM 12079 T and P. tepidarius DSM 10594 T out of all Erythrobacteraceae type strains, are two type strains that have been isolated from geothermal environments. Next-generation sequencing (NGS) technology offers a convenient approach for detecting situational types based on protein sequence differences between thermophiles and mesophiles; amino acid substitutions can lead to protein structural changes, improving the thermal stabilities of proteins. Comparative genomic studies have revealed that different thermal types exist in different taxa, and few studies have been focused on the class Alphaproteobacteria, especially the family Erythrobacteraceae. In this study, eight genomes of Porphyrobacter strains were compared to elucidate how Porphyrobacter thermophiles developed mechanisms to adapt to thermal environments. P. cryptus DSM 12079 T grew optimally at 50 °C, which was higher than the optimal growth temperature of other Porphyrobacter type strains. Phylogenomic analysis of the genus Porphyrobacter revealed that P. cryptus DSM 12079 T formed a distinct and independent clade. Comparative genomic studies uncovered that 1405 single-copy genes were shared by Porphyrobacter type strains. Alignments of single-copy proteins showed that various types of amino acid substitutions existed between P. cryptus DSM 12079 T and the other Porphyrobacter strains. The primary substitution types were changes from glycine/serine to alanine. P. cryptus DSM 12079 T was the sole thermophile within the genus Porphyrobacter. Phylogenomic analysis and amino acid frequencies indicated that amino acid substitutions might play an important role in the thermophily of P. cryptus DSM 12079 T . Bioinformatic analysis revealed that major amino acid substitutional types

  12. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 degrees C.

    PubMed

    Ferrer, Ivet; Palatsi, Jordi; Campos, Elena; Flotats, Xavier

    2010-10-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 degrees C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 degrees C and 55 degrees C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH(4)/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5L vs. 3-3.5 L CH(4)/kg COD x day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic.

    PubMed

    Tian, Zhe; Zhang, Yu; Yu, Bo; Yang, Min

    2016-07-01

    This study aimed to reveal how antibiotic resistance genes (ARGs) and their horizontal and vertical transfer-related items (mobilome and bacterial hosts) respond to the transformation of anaerobic digestion (AD) from mesophilic to thermophilic using one-step temperature increase. The resistomes and mobilomes of mesophilic and thermophilic sludge were investigated using metagenome sequencing, and the changes in 24 representative ARGs belonging to three categories, class 1 integron and bacterial genera during the transition period were further followed using quantitative PCR and 454-pyrosequencing. After the temperature increase, resistome abundance in the digested sludge decreased from 125.97 ppm (day 0, mesophilic) to 50.65 ppm (day 57, thermophilic) with the reduction of most ARG types except for the aminoglycoside resistance genes. Thermophilic sludge also had a smaller mobilome, including plasmids, insertion sequences and integrons, than that of mesophilic sludge, suggesting the lower horizontal transfer potential of ARGs under thermophilic conditions. On the other hand, the total abundance of 18 bacterial genera, which were suggested as the possible hosts for 13 ARGs through network analysis, decreased from 23.27% in mesophilic sludge to 11.92% in thermophilic sludge, indicating fewer hosts for the vertical expansion of ARGs after the increase in temperature. These results indicate that the better reduction of resistome abundance by thermophilic AD might be associated with the decrease of both the horizontal and vertical transferability of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A Numerical Evaluation on the Viability of Heap Thermophilic Bioleaching of Chalcopyrite

    NASA Astrophysics Data System (ADS)

    Vilcaez, J.; Suto, K.; Inoue, C.

    2007-03-01

    The present numerical evaluation explores into the interactions among the many variables governing the mass and heat transport processes that take place in a heap thermophilic bioleaching system. The necessity of using mesophiles together with thermophiles is proved by tracing the activity of both microorganisms individually at each point throughout the heap. The role of key variables such as the fraction of FeS2 per CuFeS2 leached was quantified and its importance highlighted. In this evaluation, the heat transfer process plays the main role because of the heat accumulation required to maintain the heap temperature within the range of 60 °C to 80 °C where thermophilic microorganisms are capable of completing the unfinished dissolution of copper started by mesophilic microorganisms at 30 °C. The evaluation was done taking into consideration: biological activity as function of the temperature in the heap, heat loss due to conduction and advection from the top and bottom of the heap, and mass transfer between the gas and liquid phases as a function of temperature. The exothermic nature of the leaching reactions of CuFeS2 and FeS2 makes the system auto-thermal.

  15. Enhancing Cognitive Training Through Aerobic Exercise After a First Schizophrenia Episode: Theoretical Conception and Pilot Study

    PubMed Central

    Nuechterlein, Keith H.; Ventura, Joseph; McEwen, Sarah C.; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L.

    2016-01-01

    Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. PMID:27460618

  16. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  17. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    PubMed

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  18. The Feasibility of Thermophilic Caldimonas manganoxidans as a Platform for Efficient PHB Production.

    PubMed

    Hsiao, Li-Jung; Lin, Ji-Hong; Sankatumvong, Pantitra; Wu, Tzong-Ming; Li, Si-Yu

    2016-11-01

    Recently, poly(3-hydroxybutyrate) (PHB) has been found in a few thermophilic strains where several advantages can be gained from running fermentation at high temperatures. Caldimonas manganoxidans, a thermophilic gram-negative bacterium, was investigated for the feasibility as a PHB-producing strain. It is suggested that the best fermentation strategy for achieving the highest PHB concentration of 5.4 ± 1.1 g/L (from 20 g/L glucose) in 24 h is to use the fermentation conditions that are favored for the bacterial growth, yet temperature and pH should be chosen at conditions that are favored for the PHB content. Besides, the above fermentation conditions produce PHB that has a high molecular weight of 1274 kDa with a low polydispersity index (PDI) of 1.45, where the highest Mw of PHB of 1399 kDa (PDI of 1.32) is obtained in this study. To the best knowledge of authors, C. manganoxidans has the best PHB productivity among the thermophiles and is comparable to those common PHB-producing mesophiles.

  19. The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process.

    PubMed

    Fu, Shan-Fei; He, Shuai; Shi, Xiao-Shuang; Katukuri, Naveen Reddy; Dai, Meng; Guo, Rong-Bo

    2015-12-01

    Thermophilic microaerobic pretreatment (TMP) was recently reported as an efficient pretreatment method of anaerobic digestion (AD). In this study, the chemical properties and microbial community were characterized to reveal how TMP working. Compared with thermophilic treatment under anaerobic condition (TMP0), cellulase activity obviously improved under microaerobic condition (TMP1), which was 10.9-49.0% higher than that of TMP0. Reducing sugar, SCOD and VFAs concentrations of TMP1 were 2.6-8.9%, 1.8-4.8% and 13.8-24% higher than those of TMP0, respectively. TMP gave obvious rise to phylum Firmicutes, which associated with extracellular enzymes production. The proportion of class Bacilli (belongs to phylum Firmicutes and mainly acts during hydrolysis) in TMP1 was 124.89% higher than that of TMP0, which reflected the greater hydrolytic ability under microaerobic condition. The improved abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) under microaerobic condition could be the fundamental reason for the improved AD performance of thermophilic microaerobic pretreated corn straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The effect of progressive resistance training on aerobic fitness and strength in adults with coronary heart disease: A systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Hollings, Matthew; Mavros, Yorgi; Freeston, Jonathan; Fiatarone Singh, Maria

    2017-08-01

    Design We aimed to evaluate the effect of progressive resistance training on cardiorespiratory fitness and muscular strength in coronary heart disease, when compared to control or aerobic training, and when combined with aerobic training. Secondary aims were to evaluate the safety and efficacy of progressive resistance training on other physiological and clinical outcomes. Methods and results Electronic databases were searched from inception until July 2016. Designs included progressive resistance training vs control, progressive resistance training vs aerobic training, and combined training vs aerobic training. From 268,778 titles, 34 studies were included (1940 participants; 71.9% male; age 60 ± 7 years). Progressive resistance training was more effective than control for lower (standardized mean difference 0.57, 95% confidence interval (0.17-0.96)) and upper (1.43 (0.73-2.13)) body strength. Aerobic fitness improved similarly after progressive resistance training (16.9%) or aerobic training (21.0%); (standardized mean difference -0.13, 95% confidence interval (-0.35-0.08)). Combined training was more effective than aerobic training for aerobic fitness (0.21 (0.09-0.34), lower (0.62 (0.32-0.92)) and upper (0.51 (0.27-0.74)) body strength. Twenty studies reported adverse event information, with five reporting 64 cardiovascular complications, 63 during aerobic training. Conclusion Isolated progressive resistance training resulted in an increase in lower and upper body strength, and improved aerobic fitness to a similar degree as aerobic training in coronary heart disease cohorts. Importantly, when progressive resistance training was added to aerobic training, effects on both fitness and strength were enhanced compared to aerobic training alone. Reporting of adverse events was poor, and clinical gaps were identified for women, older adults, high intensity progressive resistance training and long-term outcomes, warranting future trials to confirm safety and

  1. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  2. Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide.

    PubMed

    Sooch, Balwinder Singh; Kauldhar, Baljinder Singh; Puri, Munish

    2016-11-01

    A newly isolated microbial strain of thermophilic genus Geobacillus has been described with emphasis on polyphasic characterization and its application for degradation of hydrogen peroxide. The validation of this thermophilic strain of genus Geobacillus designated as BSS-7 has been demonstrated by polyphasic taxonomy approaches through its morphological, biochemical, fatty acid methyl ester profile and 16S rDNA sequencing. This thermophilic species of Geobacillus exhibited growth at broad pH and temperature ranges coupled with production of extraordinarily high quantities of intracellular catalase, the latter of which as yet not been reported in any member of this genus. The isolated thermophilic bacterial culture BSS-7 exhibited resistance against a variety of organic solvents. The immobilized whole cells of the bacterium successfully demonstrated the degradation of hydrogen peroxide (H2O2) in a packed bed reactor. This strain has potential application in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to applications in the textile, paper, food and pharmaceutical industries.

  3. A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    PubMed Central

    Lam, Sonia Y.; Yeung, Rachel C. Y.; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-01-01

    Background Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Methods and Findings Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Conclusions Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures. PMID:21423654

  4. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    PubMed

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  5. Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-11-01

    Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.

  6. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  7. Recent advances on biosorption by aerobic granular sludge.

    PubMed

    Wang, Li; Liu, Xiang; Lee, Duu-Jong; Tay, Joo-Hwa; Zhang, Yi; Wan, Chun-Li; Chen, Xiao-Feng

    2018-06-04

    Aerobic granular sludge is a form of microbial auto-aggregation, and a promising biotechnology for wastewater treatment. This review aims at providing the first comprehensive, systematic, and in-depth overview on the application of aerobic granules as biosorbents. The target pollutants encompass heavy metals (both cationic and oxyanionic), nuclides, dyes, and inorganic non-metal substances. Different granule types are discussed, i.e. intact and fragmented, compact and fluffy, original and modified, and the effects of granule surface modification are introduced. A detailed comparison is conducted on the characteristics of granular biomass, the conditions of the adsorption tests, and the resultant performance towards various sorbates. Analytical and mathematical tools typically employed are presented, and possible interactions between the pollutants and granules are theorized, leading to an analysis on the mechanisms of the adsorption processes. Original granules appear highly effective towards cationic metals, while surface modification by organic and inorganic agents can expand their applicability to other pollutants. Combined with their advantages of high mechanical strength, density, and settling speed, aerobic granules possess exceptional potential in real wastewater treatment as biosorbents. Possible future research, both fundamental and practical, is suggested to gain more insights into the mechanism of their function, and to advance their industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes

    PubMed Central

    Ji, Yuetong; He, Zhili; Pu, Yunting; Zhou, Jizhong; Xu, Jian

    2010-01-01

    Background Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. Methodology/Principal Findings Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6×102 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. Conclusions/Significance In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically. PMID:20838444

  9. Thermophilic archaeal enzymes and applications in biocatalysis.

    PubMed

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  10. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    PubMed

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    Thermoanaerobacter kivui is one of the very few thermophilic acetogenic microorganisms. It grows optimally at 66°C on sugars but also lithotrophically with H 2 + CO 2 or with CO, producing acetate as the major product. While a genome-derived model of acetogenesis has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in carbon and energy metabolism have been carried out. To address this issue, we developed a method for targeted markerless gene deletions and for integration of genes into the genome of T. kivui The strain naturally took up plasmid DNA in the exponential growth phase, with a transformation frequency of up to 3.9 × 10 -6 A nonreplicating plasmid and selection with 5-fluoroorotate was used to delete the gene encoding the orotate phosphoribosyltransferase ( pyrE ), resulting in a Δ pyrE uracil-auxotrophic strain, TKV002. Reintroduction of pyrE on a plasmid or insertion of pyrE into different loci within the genome restored growth without uracil. We subsequently studied fructose metabolism in T. kivui The gene fruK (TKV_c23150) encoding 1-phosphofructosekinase (1-PFK) was deleted, using pyrE as a selective marker via two single homologous recombination events. The resulting Δ fruK strain, TKV003, did not grow on fructose; however, growth on glucose (or on mannose) was unaffected. The combination of pyrE as a selective marker and the natural competence of the strain for DNA uptake will be the basis for future studies on CO 2 reduction and energy conservation and their regulation in this thermophilic acetogenic bacterium. IMPORTANCE Acetogenic bacteria are currently the focus of research toward biotechnological applications due to their potential for de novo synthesis of carbon compounds such as acetate, butyrate, or ethanol from H 2 + CO 2 or from synthesis gas. Based on available genome sequences and on biochemical experiments, acetogens differ in their energy metabolism. Thus, there is an

  11. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobicmore » condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed

  12. Microbial diversity of thermophiles with biomass deconstruction potential in a foliage-rich hot spring.

    PubMed

    Lee, Li Sin; Goh, Kian Mau; Chan, Chia Sing; Annie Tan, Geok Yuan; Yin, Wai-Fong; Chong, Chun Shiong; Chan, Kok-Gan

    2018-03-30

    The ability of thermophilic microorganisms and their enzymes to decompose biomass have attracted attention due to their quick reaction time, thermostability, and decreased risk of contamination. Exploitation of efficient thermostable glycoside hydrolases (GHs) could accelerate the industrialization of biofuels and biochemicals. However, the full spectrum of thermophiles and their enzymes that are important for biomass degradation at high temperatures have not yet been thoroughly studied. We examined a Malaysian Y-shaped Sungai Klah hot spring located within a wooded area. The fallen foliage that formed a thick layer of biomass bed under the heated water of the Y-shaped Sungai Klah hot spring was an ideal environment for the discovery and analysis of microbial biomass decay communities. We sequenced the hypervariable regions of bacterial and archaeal 16S rRNA genes using total community DNA extracted from the hot spring. Data suggested that 25 phyla, 58 classes, 110 orders, 171 families, and 328 genera inhabited this hot spring. Among the detected genera, members of Acidimicrobium, Aeropyrum, Caldilinea, Caldisphaera, Chloracidobacterium, Chloroflexus, Desulfurobacterium, Fervidobacterium, Geobacillus, Meiothermus, Melioribacter, Methanothermococcus, Methanotorris, Roseiflexus, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobaculum, and Thermosipho were the main thermophiles containing various GHs that play an important role in cellulose and hemicellulose breakdown. Collectively, the results suggest that the microbial community in this hot spring represents a good source for isolating efficient biomass degrading thermophiles and thermozymes. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    PubMed

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.

  14. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    PubMed

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills. Copyright © 2015. Published by Elsevier Ltd.

  15. Hydrogen Limitation, Competition and Syntrophy Among Thermophiles in the Hot Subseafloor

    NASA Astrophysics Data System (ADS)

    Holden, J. F.; Stewart, L. C.; Topcuoglu, B. D.

    2016-02-01

    To understand the biogeochemical impact of subseafloor life on surrounding environments and the overlying ocean, the rates of and constraints on growth and metabolite production must be determined for subseafloor microbes. The diversity of thermophiles and hyperthermophiles in the hot subseafloor is low, making them amenable to biogeochemical modeling. At hydrothermal vents, Methanothermococcus and Methanocaldococcus are common thermophilic and hyperthermophilic methanogens; Desulfurobacterium, common thermophilic autotrophic sulfur reducers; and Thermococcus, common hyperthermophilic H2-producing heterotrophs. Diffuse hydrothermal fluids (7-40°C) from Axial Seamount were incubated anaerobically at 55°C and 80°C. Microcosms with 1.2 mM added H2 produced 30-50 times more CH4 than those with 20 µM H2, demonstrating that H2 and heat were the primary constraints on the growth of thermophilic and hyperthermophilic methanogens. For Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii, the lower H2 thresholds and half-saturation constants (Ks) for growth in a chemostat were 9-20 µM and 47-69 µM, respectively, near their optimum growth temperatures. The lower H2 threshold and Ks for Desulfurobacterium sp. strain HR11 grown in a batch reactor at 72°C were <3 µM and 29 µM, respectively. Its catalytic efficiency (µmax/Ks) for H2 use was 4 times higher than those of M. thermolithotrophicus and M. jannaschii, but its Ks for thiosulfate was 19 µM, suggesting that it will only outcompete methanogens when sulfur is not growth limiting. Microcosm incubations at 55°C and 80°C supplemented with peptides in lieu of H2 produced the same amount of CH4 as microcosms with 1.2 mM H2. Co-culture incubations showed that H2 production by T. paralvinellae supported the growth of Methanothermococcus sp. strain BW11, Methanocaldococcus bathoardescens, and strain HR11 in H2-free medium, suggesting that syntrophy is a possible alternative H2 source in the

  16. Impact of Aerobic and Resistance Exercise on the Health of HIV-Infected Persons.

    PubMed

    Hand, Gregory A; Lyerly, G William; Jaggers, Jason R; Dudgeon, Wesley D

    2009-11-01

    Individuals infected with HIV experience numerous comorbidities caused by the disease progression and medications, lack of (or inability to perform) physical activity, malnutrition, or a combination of these causes. Common symptoms include loss of muscle mass, fatigue, lypodystrophy, lypoatrophy, and decreases in strength, functional capacity, and overall quality of life. Studies have shown that exercise is a potential treatment of many of these symptoms. Research suggests that exercise may produce beneficial physiological changes in the HIV-infected population such as improved body composition and increases in both strength and endurance. In addition, psychological conditions such as depression and anxiety have been shown to be positively affected by exercise. The purpose of this review is to examine the literature regarding effects of aerobic, resistance, and combined aerobic and resistance exercise training on HIV-infected individuals.

  17. Aerobic biodegradation kinetics of solid organic wastes on earth and for applications in space

    NASA Astrophysics Data System (ADS)

    Ramirez Perez, Javier Christian

    Aerobic biodegradation plays an important role in recycling organic matter and nutrients on earth. It is also a candidate technology for waste processing and resource recovery in Advanced Life Support (ALS) systems, such as a proposed planetary base on Mars. Important questions are how long should wastes be treated, and what is the quality (stability/maturity) of the product. To address these questions two aerobic composting systems were evaluated. One treated (252 days) horse manure and cranberry fruit in duplicate open windrows (HCC) as a reference earth application. The other was a pilot-scale (330 L) enclosed, in-vessel system treating (162 days) inedible biomass collected from plant growth systems at NASA, amended with food and human wastes simulant for potential space application (ALSC). Samples were taken from both systems over time and product quality assessed with a range of physical, chemical, biological, toxicological, respirometry and plant growth analyses that were developed and standardized. Because plant growth analyses take so long, a hypothesis was that some parameters could be used to predict compost quality and suitability for growing plants. Maximum temperatures in the thermophilic range were maintained for both systems (HCC > 60°C for >129 days, ALSC > 55°C for >40 days. Fecal streptococci were reduced by 4.8 log-units for HCC and 7.8 for ALSC. Volume/mass reductions achieved were 63%/62% for HCC and 79%/67% for ALSC. Phytotoxicity tests performed on aqueous extracts to recover plant nutrients found decreasing sensitivity: arabidopsis > lettuce > tomato > wheat > cucumber, corresponding with seed size and food reserve capacity. The germination index (GI) of HCC increased over composting time indicating decreasing phytotoxicity. However, GIs for ALSC leachate decreased or fluctuated over composting time. Selected samples of HCC at 31, 157 and 252 days alone and combined with promix (1:1), and of ALSC at 7, 14, 21, 28, 40 and 84 days, or fresh

  18. Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions.

    PubMed

    Terboven, Christiane; Ramm, Patrice; Herrmann, Christiane

    2017-10-01

    A newly developed fixed bed disc reactor (FBDR) which combines biofilm formation on biofilm carriers and reactor agitation in one single system was assessed for its applicability to demand-driven biogas production by variable feeding of sugar beet silage. Five different feeding patterns were studied at an organic loading of 4g VS L -1 d -1 under mesophilic and thermophilic conditions. High methane yields of 449-462L N kg VS were reached. Feeding variable punctual loadings caused immediate response with 1.2- to 3.5-fold increase in biogas production rates within 15min. Although variable feeding did not induce process instability, a temporary decrease in pH-value and methane concentration below 40% occurred. Thermophilic temperature was advantageous as it resulted in a more rapid, higher methane production and less pronounced decrease in methane content after feeding. The FBDR was demonstrated to be well-suited for flexible biogas production, but further research and comparison with traditional reactor systems are required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Yokohigashi, Yukako; Okano, Kenji; Omasa, Takeshi; Ohtake, Hisao

    2013-03-01

    The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher.

  20. Development of a Continuous Bioconversion System Using a Thermophilic Whole-Cell Biocatalyst

    PubMed Central

    Ninh, Pham Huynh; Yokohigashi, Yukako; Okano, Kenji; Omasa, Takeshi; Ohtake, Hisao

    2013-01-01

    The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher. PMID:23335777

  1. Thermophilic anaerobic co-digestion of poultry litter and thin stillage.

    PubMed

    Sharma, Deepak; Espinosa-Solares, Teodoro; Huber, David H

    2013-05-01

    The purpose of this study was to test whether the performance of a thermophilic CSTR digester that has been stabilized on poultry litter will be enhanced or diminished by the addition of thin stillage as co-substrate. Replicate laboratory digesters, derived from a stable pilot-scale digester, were operated with increasing ratios (w/w) of thin stillage/poultry litter feedstock. After a period of adaptation to 20% and 40% thin stillage, digester performance showed increases in biogas, percent methane and COD removal, as well as a decrease in volatile acids. Peak performance occurred with 60% thin stillage. However, 80% thin stillage caused significant reduction of performance, including declines of methanogenic activity and COD removal. In conclusion, supplementing the thermophilic digestion of poultry litter with thin stillage improved the bioenergy (methane) output, but thin stillage became inhibitory at high concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Enhancing of women functional status with metabolic syndrome by cardioprotective and anti-inflammatory effects of combined aerobic and resistance training.

    PubMed

    Tibana, Ramires Alsamir; Nascimento, Dahan da Cunha; de Sousa, Nuno Manuel Frade; de Souza, Vinicius Carolino; Durigan, João; Vieira, Amilton; Bottaro, Martim; Nóbrega, Otávio de Toledo; de Almeida, Jeeser Alves; Navalta, James Wilfred; Franco, Octavio Luiz; Prestes, Jonato

    2014-01-01

    These data describe the effects of combined aerobic plus resistance training (CT) with regards to risk factors of metabolic syndrome (MetS), quality of life, functional capacity, and pro- and anti-inflammatory cytokines in women with MetS. In this context, thirteen women (35.4 ± 6.2 yr) completed 10 weeks of CT consisting of three weekly sessions of ~60 min aerobic training (treadmill at 65-70% of reserve heart rate, 30 min) and resistance training (3 sets of 8-12 repetitions maximum for main muscle groups). Dependent variables were maximum chest press strength; isometric hand-grip strength; 30 s chair stand test; six minute walk test; body mass; body mass index; body adiposity index; waist circumference; systolic (SBP), diastolic and mean blood pressure (MBP); blood glucose; HDL-C; triglycerides; interleukins (IL) 6, 10 and 12, osteoprotegerin (OPG) and serum nitric oxide metabolite (NOx); quality of life (SF-36) and Z-Score of MetS. There was an improvement in muscle strength on chest press (p = 0.009), isometric hand-grip strength (p = 0.03) and 30 s chair stand (p = 0.007). There was a decrease in SBP (p = 0.049), MBP (p = 0.041), Z-Score of MetS (p = 0.046), OPG (0.42 ± 0.26 to 0.38 ± 0.19 ng/mL, p<0.05) and NOx (13.3 ± 2.3 µmol/L to 9.1 ± 2.3 µmol/L; p<0.0005). IL-10 displayed an increase (13.6 ± 7.5 to 17.2 ± 12.3 pg/mL, p < 0.05) after 10 weeks of training. Combined training also increased the perception of physical capacity (p = 0.011). This study endorses CT as an efficient tool to improve blood pressure, functional capacity, quality of life and reduce blood markers of inflammation, which has a clinical relevance in the prevention and treatment of MetS.

  3. Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1T) from a deep-sea hydrothermal vent chimney

    PubMed Central

    Copeland, Alex; Gu, Wei; Yasawong, Montri; Lapidus, Alla; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Tindall, Brian J.; Sikorski, Johannes; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1T was the first isolate within the phylum “Thermus-Deinococcus” to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22675595

  4. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats.

    PubMed

    Kapravelou, Garyfallia; Martínez, Rosario; Nebot, Elena; López-Jurado, María; Aranda, Pilar; Arrebola, Francisco; Cantarero, Samuel; Galisteo, Milagros; Porres, Jesus M

    2017-07-19

    Metabolic syndrome (MetS) is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD). Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean ( Vigna radiata ), a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65-85% VO₂ max) has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles) factorial ANOVA (Analysis of Variance) statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.

  5. Cleavage of the main carbon chain backbone of high molecular weight polyacrylamide by aerobic and anaerobic biological treatment.

    PubMed

    Song, Wenzhe; Zhang, Yu; Gao, Yingxin; Chen, Dong; Yang, Min

    2017-12-01

    High molecular weight partially hydrolyzed polyacrylamide (PAM) can be bio-hydrolyzed on the amide side group, however, solid evidence regarding the biological cleavage of its main carbon chain backbone is limited. In this study, viscometry, flow field-flow fractionation multi-angle light scattering (FFF-MALS), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis were used to investigate the biodegradability of PAM with a nominal molecular weight of 2 × 10 7  Da (Da) in two suspended aerobic (25 and 40 °C) and two upflow anaerobic blanket reactors (35 and 55 °C) operated for 470 d under a hydraulic residence time (HRT) of 2 d. Both anaerobic and aerobic biological treatment reduced the viscosity from 2.02 cp in the influent to 1.45-1.60 cp, and reduced the molecular weight of PAM using FFF-MALS from 2.17 × 10 7  Da to less than one-third its original size. The removals of both the amide group and carbon chain backbone in the PAM molecule were further supported by the FTIR analysis. In comparison with the other conditions, thermophilic anaerobic treatment exhibited higher efficiency for PAM biodegradation. Batch test excluded the influence of temperature on the molecular weight of PAM over the range 25-55 °C, suggesting that cleavage of the main carbon chain backbone was attributed to biological degradation. Our results suggested that high molecular weight PAM was biodegradable, but mineralization did not occur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermophilic Enzyme or Mesophilic Enzyme with Enhanced Thermostability: Can We Draw a Line?

    PubMed

    Jing, Xiaomin; Evangelista Falcon, Wilfredo; Baudry, Jerome; Serpersu, Engin H

    2017-07-27

    Aminoglycoside nucleotidyltransferase 4' (ANT) is a homodimeric enzyme that modifies the C4'-OH site of aminoglycoside antibiotics by nucleotidylation. A few single- and double-residue mutants of this enzyme (T130K, D80Y, and D80Y/T130K) from Bacillus stearothermophilus show increased thermostability. This article investigates how such residue replacements, which are distant from the active site and monomer-monomer interface, result in various changes of the thermostability of the enzyme. In this work, we show that the thermodynamic properties of enzyme-ligand complexes and protein dynamics may be indicators of a thermophilic behavior. Our data suggests that one of the single-site mutants of ANT, D80Y, may be a thermophilic protein and the other thermostable mutant, T130K, is actually a more heat-stable variant of the mesophilic wild type (WT) with a higher T m . Our data also suggest that T130K and D80Y adopt different global dynamics strategies to achieve different levels of thermostability enhancement and that the differences between the properties of the species can be described in terms of global dynamics rather than in terms of specific structural features. Thermophilicity of the D80Y comes at the cost of less favorable thermodynamic parameters for ligand binding relative to WT. On the other hand, the T130K species exhibits the same affinity to ligands and the same thermodynamic parameters of complex formation as the WT enzyme. These observations suggest that a quantitative characterization of ligand binding and protein dynamics can be used to differentiate thermophilic proteins from their simply more heat-stable mesophilic counterparts.

  7. The recA gene from the thermophile Thermus aquaticus YT-1: cloning, expression, and characterization.

    PubMed Central

    Angov, E; Camerini-Otero, R D

    1994-01-01

    We have cloned, expressed, and purified the RecA analog from the thermophilic eubacterium Thermus aquaticus YT-1. Analysis of the deduced amino acid sequence indicates that the T. aquaticus RecA is structurally similar to the Escherichia coli RecA and suggests that RecA-like function has been conserved in thermophilic organisms. Preliminary biochemical analysis indicates that the protein has an ATP-dependent single-stranded DNA binding activity and can pair and carry out strand exchange to form a heteroduplex DNA under reaction conditions previously described for E. coli RecA, but at 55 to 65 degrees C. Further characterization of a thermophilically derived RecA protein should yield important information concerning DNA-protein interactions at high temperatures. In addition, a thermostable RecA protein may have some general applicability in stabilizing DNA-protein interactions in reactions which occur at high temperatures by increasing the specificity (stringency) of annealing reactions. Images PMID:8113181

  8. Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus

    PubMed Central

    2005-01-01

    Extreme thermophiles produce two types of unusual polyamine: long linear polyamines such as caldopentamine and caldohexamine, and branched polyamines such as quaternary ammonium compounds [e.g. tetrakis(3-aminopropyl)ammonium]. To clarify the physiological roles of long linear and branched polyamines in thermophiles, we synthesized them chemically and tested their effects on the stability of ds (double-stranded) and ss (single-stranded) DNAs and tRNA in response to thermal denaturation, as measured by differential scanning calorimetry. Linear polyamines stabilized dsDNA in proportion to the number of amino nitrogen atoms within their molecular structure. We used the empirical results to derive formulae that estimate the melting temperature of dsDNA in the presence of polyamines of a particular molecular composition. ssDNA and tRNA were stabilized more effectively by tetrakis(3-aminopropyl)ammonium than any of the other polyamines tested. We propose that long linear polyamines are effective to stabilize DNA, and tetrakis(3-aminopropyl)ammonium plays important roles in stabilizing RNAs in thermophile cells. PMID:15673283

  9. Co-digestion of polylactide and kitchen garbage in hyperthermophilic and thermophilic continuous anaerobic process.

    PubMed

    Wang, Feng; Hidaka, Taira; Tsuno, Hiroshi; Tsubota, Jun

    2012-05-01

    Two series of two-phase anaerobic systems, consisting of a hyperthermophilic (80°C) reactor and a thermophilic (55°C) reactor, fed with a mixture of kitchen garbage (KG) and polylactide (PLA), was compared with a single-phase thermophilic reactor for the overall performance. The result indicated that ammonia addition under hyperthermophilic condition promoted the transformation of PLA particles to lactic acid. The systems with hyperthermophilic treatment had advantages on PLA transformation and methane conversion ratio to the control system. Under the organic loading rate (OLR) of 10.3 g COD/(L day), the PLA transformation ratios of the two-phase systems were 82.0% and 85.2%, respectively, higher than that of the control system (63.5%). The methane conversion ratios of the two-phase systems were 82.9% and 80.8%, respectively, higher than 70.1% of the control system. The microbial community analysis indicated that hyperthermophilic treatment is easily installed to traditional thermophilic anaerobic digestion plants without inoculation of special bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effects of composting process on the dissipation of extractable sulfonamides in swine manure.

    PubMed

    Liu, Bei; Li, Yanxia; Zhang, Xuelian; Feng, Chenghong; Gao, Min; Shen, Qiu

    2015-01-01

    Effects of composting on the fate of sulfonamides (SAs) in the manure-straw mixture were explored through a simulation of aerobic composting process. Additionally, factors of temperature and coexistence of heavy metal Cu that might influence the removal efficiency were particularly investigated. As shown in the results, the extractable SAs dissipated rapidly during the composting process. The coexistence of Cu in the composting process might have delayed the decline of SAs, but the drugs could still be completely removed by the end of the composting. In contrast to the thermophilic aerobic composting, extractable SAs in air-temperature-placed mixture dissipated much slower and 1.12-1.56mg/kg could be detected after 35days of incubation. The results confirmed that temperature could influence the dissipation of SAs, which was identified as a more important factor than Cu-coexistence. Hence, thermophilic aerobic composting is an effective process to eliminate VAs before manure land application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.

    PubMed

    Sadiq, Faizan A; Flint, Steve; Yuan, Lei; Li, Yun; Liu, TongJie; He, GuoQing

    2017-12-04

    Biofilms on the surface of dairy manufacturing plants are potential reservoirs of microbial contamination. These microbial aggregates may harbour pathogenic and spoilage organisms which contaminate dairy products. The biofilm forming capacity of many spore forming isolates of dairy origin has not been given much attention. The present study explored the biofilm forming potential of 148 isolates, comprising mesophilic and thermophilic bacteria, with particular emphasis on Bacillus licheniformis on polystyrene and stainless steel (SS) surfaces. We concluded that only four species are of significance for biofilm development on the surface of SS in the presence of skimmed milk, namely, B. licheniformis, Geobacillus stearothermophilus, Geobacillus thermoleovorans group and Anoxybacillus flavithermus. The maximum number of cells recovered from the biofilms developed on SS coupons in the presence of skimmed milk for these four species was as follows: 4.8, 5.2, 4.5 and 5.3logCFU/cm 2 , respectively. Number of cells recovered from biofilms on 1cm 2 SS coupons increased in the presence of tryptic soy broth (TSB) for all mesophiles including B. licheniformis, while decreased for G. stearothermophilus, G. thermoleovorans group and A. flavithermus. The crystal violet staining assay on polystyrene proved to be inadequate to predict cell counts on SS for the bacteria tested in our trial in the presence of either TSB or skimmed milk. The results support the idea that biofilm formation is an important part of bacterial survival strategy as only the most prevalent isolates from milk powders formed good biofilms on SS in the presence of skimmed milk. Biofilm formation also proved to be a strain-dependent characteristic and interestingly significant variation in biofilm formation was observed within the same RAPD groups of B. licheniformis which supports the previously reported genetic and phenotypic heterogeneity within the same RAPD based groups. The work reported in this manuscript

  12. Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis.

    PubMed

    Morris, E Matthew; Jackman, Matthew R; Johnson, Ginger C; Liu, Tzu-Wen; Lopez, Jordan L; Kearney, Monica L; Fletcher, Justin A; Meers, Grace M E; Koch, Lauren G; Britton, Stephen L; Rector, R Scott; Ibdah, Jamal A; MacLean, Paul S; Thyfault, John P

    2014-08-15

    Aerobic capacity/fitness significantly impacts susceptibility for fatty liver and diabetes, but the mechanisms remain unknown. Herein, we utilized rats selectively bred for high (HCR) and low (LCR) intrinsic aerobic capacity to examine the mechanisms by which aerobic capacity impacts metabolic vulnerability for fatty liver following a 3-day high-fat diet (HFD). Indirect calorimetry assessment of energy metabolism combined with radiolabeled dietary food was employed to examine systemic metabolism in combination with ex vivo measurements of hepatic lipid oxidation. The LCR, but not HCR, displayed increased hepatic lipid accumulation in response to the HFD despite both groups increasing energy intake. However, LCR rats had a greater increase in energy intake and demonstrated greater daily weight gain and percent body fat due to HFD compared with HCR. Additionally, total energy expenditure was higher in the larger LCR. However, controlling for the difference in body weight, the LCR has lower resting energy expenditure compared with HCR. Importantly, respiratory quotient was significantly higher during the HFD in the LCR compared with HCR, suggesting reduced whole body lipid utilization in the LCR. This was confirmed by the observed lower whole body dietary fatty acid oxidation in LCR compared with HCR. Furthermore, LCR liver homogenate and isolated mitochondria showed lower complete fatty acid oxidation compared with HCR. We conclude that rats bred for low intrinsic aerobic capacity show greater susceptibility for dietary-induced hepatic steatosis, which is associated with a lower energy expenditure and reduced whole body and hepatic mitochondrial lipid oxidation.

  13. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.

    PubMed

    Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu

    2018-05-01

    Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better

  14. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    PubMed

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    NASA Astrophysics Data System (ADS)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  16. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    PubMed

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  17. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  18. Enhancing Cognitive Training Through Aerobic Exercise After a First Schizophrenia Episode: Theoretical Conception and Pilot Study.

    PubMed

    Nuechterlein, Keith H; Ventura, Joseph; McEwen, Sarah C; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L

    2016-07-01

    Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Methanogenic H2 syntrophy among thermophiles: a model of metabolism, adaptation and survival in the subsurface

    NASA Astrophysics Data System (ADS)

    Topcuoglu, B. D.; Stewart, L. C.; Butterfield, D. A.; Huber, J. A.; Holden, J. F.

    2016-12-01

    Approximately 1 giga ton (Gt, 1015 g) of CH4 is formed globally per year from H2, CO2 and acetate through methanogenesis, largely by methanogens growing in syntrophic association with anaerobic microbes that hydrolyze and ferment biopolymers. However, our understanding of methanogenesis in hydrothermal regions of the subseafloor and potential syntrophic methanogenesis at thermophilic temperatures (i.e., >50°C) is nascent. In this study, the growth of natural assemblages of thermophilic methanogens from Axial Seamount was primarily limited by H2 availability. Heterotrophs supported thermophilic methanogenesis by H2 syntrophy in microcosm incubations of hydrothermal fluids at 55°C and 80°C supplemented with tryptone only. Based on 16S rRNA gene sequencing, only heterotrophic archaea that produce H2, H2-consuming methanogens, and sulfate reducing archaea were found in 80°C tryptone microcosms from Marker 113 vent. No bacteria were found. In 55°C tryptone microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. In order to model the impact of H2 syntrophy at hyperthemophilic temperatures, a co-culture was established consisting of the H2-producing hyperthermophilic heterotroph Thermococcus paralvinellae and a H2-consuming hyperthermophilic methanogen Methanocaldococcus bathoardescens. When grown alone in a chemostat, the growth rates and steady-state cell concentrations of T. paralvinellae decreased significantly when a high H2 (70 µM) background was present. H2 inhibition was ameliorated by the production of formate, but in silico modeling suggests less energetic yield for the cells. H2 syntrophy relieved H2 inhibition for both the heterotroph and the methanogenic partners. The results demonstrate that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important alternative energy source for thermophilic autotrophs in marine geothermal environments.

  20. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.

    PubMed

    Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M

    2018-06-01

    In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1  mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.

  1. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 {sup o}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrer, Ivet, E-mail: ivet.ferrer@upc.ed; Palatsi, Jordi; Campos, Elena

    2010-10-15

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 {sup o}C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 {sup o}C and 55 {sup o}C, with raw and pre-treatedmore » water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH{sub 4}/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH{sub 4}/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.« less

  2. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion.

    PubMed

    Hendriks, A T W M; van Lier, J B; de Kreuk, M K

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    PubMed Central

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  4. Strengthen effects of dominant strains on aerobic digestion and stabilization of the residual sludge.

    PubMed

    Liu, Yongjun; Gao, Min; Zhang, Aining; Liu, Zhe

    2017-07-01

    In order to strengthen the aerobic digestion of residual sludge, shorten the time of sludge stabilization and further reduce operating costs, 3 dominant strains identified as Pseudomonas sp. L3, Acinetobacter sp. L16 and Bacillus sp. L19 were isolated from long-term aerobic digestion sludge. Results showed that the sludge stabilization time were reduced by 3-4days compared with the control when the dominant strains were added to the process of sludge aerobic digestion. The addition of dominant strains accelerated the accumulation of TOC, nitrate nitrogen and ammonia nitrogen in the digestive solution at different levels, and it was beneficial to the dissolution of phosphorus. Controlling DO 3-5mg/L, pH 6.5, the strains of Pseudomonas sp. L3 and Bacillus sp. L19 were combined dosing with the dosage of 2% in the process of sludge aerobic digestion, compared with the control, digestion rates of TOC and MLSS were increased about 19% and 16%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of Cognitive Training with and without Aerobic Exercise on Cognitively-Demanding Everyday Activities

    PubMed Central

    McDaniel, Mark A.; Binder, Ellen F.; Bugg, Julie M.; Waldum, Emily R.; Dufault, Carolyn; Meyer, Amanda; Johanning, Jennifer; Zheng, Jie; Schechtman, Kenneth B.; Kudelka, Chris

    2015-01-01

    We investigated the potential benefits of a novel cognitive training protocol and an aerobic exercise intervention, both individually and in concert, on older adults’ performances in laboratory simulations of select real-world tasks. The cognitive training focused on a range of cognitive processes, including attentional coordination, prospective memory, and retrospective-memory retrieval, processes that are likely involved in many everyday tasks, and that decline with age. Primary outcome measures were three laboratory tasks that simulated everyday activities: Cooking Breakfast, Virtual Week, and Memory for Health Information. Two months of cognitive training improved older adults’ performance on prospective memory tasks embedded in Virtual Week. Cognitive training, either alone or in combination with six months of aerobic exercise, did not significantly improve Cooking Breakfast or Memory for Health Information. Although gains in aerobic power were comparable to previous reports, aerobic exercise did not produce improvements for the primary outcome measures. Discussion focuses on the possibility that cognitive training programs that include explicit strategy instruction and varied practice contexts may confer gains to older adults for performance on cognitively challenging everyday tasks. PMID:25244489

  6. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.

    PubMed

    Molanouri Shamsi, M; Chekachak, S; Soudi, S; Quinn, L S; Ranjbar, K; Chenari, J; Yazdi, M H; Mahdavi, M

    2017-02-01

    Cancer cachexia is characterized by inflammation, loss of skeletal muscle and adipose tissue mass, and functional impairment. Oxidative stress and inflammation are believed to regulate pathways controlling skeletal muscle wasting. The aim of this study was to determine the effects of aerobic interval training and the purported antioxidant treatment, selenium nanoparticle supplementation, on expression of IL-15 and inflammatory cytokines in 4T1 breast cancer-bearing mice with cachexia. Selenium nanoparticle supplementation accelerated cachexia symptoms in tumor-bearing mice, while exercise training prevented muscle wasting in tumor-bearing mice. Also, aerobic interval training enhanced the anti-inflammatory indices IL-10/TNF-α ratio and IL-15 expression in skeletal muscle in tumor-bearing mice. However, combining exercise training and antioxidant supplementation prevented cachexia and muscle wasting and additionally decreased tumor volume in 4T1 breast cancer mice. These finding suggested that combining exercise training and antioxidant supplementation could be a strategy for managing tumor volume and preventing cachexia in breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quality Matters: Extension of Clusters of Residues with Good Hydrophobic Contacts Stabilize (Hyper)Thermophilic Proteins

    PubMed Central

    2015-01-01

    Identifying determinant(s) of protein thermostability is key for rational and data-driven protein engineering. By analyzing more than 130 pairs of mesophilic/(hyper)thermophilic proteins, we identified the quality (residue-wise energy) of hydrophobic interactions as a key factor for protein thermostability. This distinguishes our study from previous ones that investigated predominantly structural determinants. Considering this key factor, we successfully discriminated between pairs of mesophilic/(hyper)thermophilic proteins (discrimination accuracy: ∼80%) and searched for structural weak spots in E. coli dihydrofolate reductase (classification accuracy: 70%). PMID:24437522

  8. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes.

    PubMed

    Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik

    2012-04-01

    Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production.

    PubMed

    Benassi, Vivian Machado; de Lucas, Rosymar Coutinho; Jorge, João Atílio; Polizeli, Maria de Lourdes Teixeira de Moraes

    2014-01-01

    Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 °C, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 °C. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form) were higher in cultures grown at high temperatures (35-40 °C), while the correspondent extracellular activities were favorably secreted from cultures at 30 °C. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes.

  10. Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor.

    PubMed

    Liao, B Q; Xie, K; Lin, H J; Bertoldo, Daniel

    2010-01-01

    The feasibility of using a thermophilic submerged anaerobic membrane bioreactor (SAnMBR) for kraft evaporator condensate treatment was studied at 55+/-1 degrees C over 6.5 months. Under tested organic loading rate of 1-7 kg COD/m(3) day, a soluble COD removal efficiency of 85-97% was obtained. The methane production rate was 0.35+/-0.1 L methane/g COD and the produced biogas was of excellent fuel quality with 80-90% methane. A higher membrane fouling rate was related to the presence of a larger portion of fine colloidal particles (1-10 mum). The thermophilic SAnMBR was sensitive to the presence of toxic compounds in feed and unexpected pH probe failure (leading to a higher pH). Feed toxic shock caused sludge deflocculation and thus deteriorated membrane performance. Operating the reactor as a conventional anaerobic reactor to waste some of the fine flocs in treated effluent during the start-up process was an effective strategy to reduce membrane fouling. The experimental results from this study indicate that treatment of kraft evaporator condensate is feasible in terms of COD removal and biogas production using thermophilic SAnMBRs but pre-treatment may be needed to remove toxic sulfur compounds and membrane fouling caused by the large portion of fine particles may be a challenge.

  11. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    PubMed

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  13. Aerobic and resistance training improves mood state among adults living with HIV.

    PubMed

    Jaggers, J R; Hand, G A; Dudgeon, W D; Burgess, S; Phillips, K D; Durstine, J L; Blair, S N

    2015-02-01

    The purpose of this investigation was to examine the effects of combined aerobic and resistance exercise training among self-reported mood disturbances, perceived stress, frequency of self-reported symptoms, and symptom distress in a sample of HIV+ adults. For this purpose, 49 participants were randomly assigned into an exercise (EX) or control (CON) group. Those in the EX group completed 50 min of supervised aerobic and resistance training at a moderate intensity twice a week for 6 weeks. The CON group reported to the university and engaged in sedentary activities. Data were collected at baseline before randomization and 6 weeks post intervention. Measures included the symptom distress scale (SDS), perceived stress scale (PSS), profile of mood states (POMS) total score, and the POMS sub-scale for depression and fatigue. A 2 way ANOVA was used to compare between and within group interactions. The EX group showed a significant decrease in reported depression scores (p=0.03) and total POMS (p=0.003). The CON group reported no change in POMS or SDS, but showed a significant increase in PSS. These findings indicate that combination aerobic and resistance training completed at a moderate intensity at least twice a week provides additional psychological benefits independent of disease status and related symptoms. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Seasonal Variability of Thermophilic Campylobacter Spp. in Raw Milk Sold by Automatic Vending Machines in Lombardy Region.

    PubMed

    Bertasi, Barbara; Losio, Marina Nadia; Daminelli, Paolo; Finazzi, Guido; Serraino, Andrea; Piva, Silvia; Giacometti, Federica; Massella, Elisa; Ostanello, Fabio

    2016-06-03

    In temperate climates, a seasonal trend was observed in the incidence of human campylobacteriosis cases, with peaks reported in spring and autumn in some countries, or in summer in others; a similar trend was observed in Campylobacter spp. dairy cattle faecal shedding, suggesting that cattle may play a role in the seasonal peak of human infection. The objectives of this study were to assess if a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk exists and to evaluate a possible relation between this and the increase of human campylobacteriosis incidence in summer months. The results showed a mean prevalence of 1.6% of milk samples positive for thermophilic Campylobacter spp. with a wide range (0.0-3.1%) in different months during the three years considered. The statistical analysis showed a significant difference (P<0.01) of the prevalence of positive samples for thermophilic Campylobacter spp. between warmer and cooler months (2.3 vs 0.6%). The evidence of a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk sold for direct consumption, with an increase of the prevalence in warmer months, may represent one of the possible links between seasonal trend in cattle faecal shedding and seasonal trend in human campylobacteriosis.

  15. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area.

    PubMed

    Ming, Hong; Yin, Yi-Rui; Li, Shuai; Nie, Guo-Xing; Yu, Tian-Tian; Zhou, En-Min; Liu, Lan; Dong, Lei; Li, Wen-Jun

    2014-02-01

    Two thermophilic bacterial strains, designated YIM 77925(T) and YIM 77777, were isolated from two hot springs, one in the Hydrothermal Explosion (Shuirebaozhaqu) area and Frog Mouth Spring in Tengchong county, Yunnan province, south-western China. The taxonomic positions of the two isolates were investigated by a polyphasic approach. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They were able to grow at 50-70 °C, pH 6.0-8.0 and with a NaCl tolerance up to 0.5% (w/v). Colonies are circular, convex, non-transparent and produce yellow pigment. Phylogenetic analyses based on 16S rRNA gene sequences comparison clearly demonstrated that strains YIM 77925(T) and YIM 77777 represent members of the genus Thermus, and they also detected low-level similarities of 16S rRNA gene sequences (below 97%) compared with all other species in this genus. Their predominant menaquinone was MK-8. The genomic DNA G+C contents of strains YIM 77925(T) and YIM 77777 were 65.6 mol% and 67.2 mol%, respectively. Based on the results of physiological and biochemical tests and phylogenetic analyses, strains YIM 77925(T) and YIM 77777 could not be classified as representing any species of the genus Thermus with a validly published name. Thus the two strains are considered to represent a novel species of the genus Thermus, for which the name Thermus caliditerrae sp. nov. is proposed. The type strain is YIM 77925(T) ( = DSM 25901(T) = CCTCC 2012061(T)).

  16. [Moderately haloalkaliphilic aerobic methylobacteria].

    PubMed

    Trotsenko, Iu A; Doronina, N V; Li, Ts D; Reshetnikov, A S

    2007-01-01

    Aerobic methylobacteria utilizing oxidized and substituted methane derivatives as carbon and energy sources are widespread in nature and involved in the global carbon cycle, being a unique biofilter on the path of these C1 compounds from different ecosystems to the atmosphere. New data on the biological features of moderately halophilic, neutrophilic, and alkaliphilic methylobacteria isolated from biotopes with higher osmolarity (seas, saline and soda lakes, saline soils, and deteriorating marble) are reviewed. Particular attention is paid to the latest advances in the study of the mechanisms of osmoadaptation of aerobic moderately haloalkaliphilic methylobacteria: formation of osmolytes, in particular, molecular and genetic aspects of biosynthesis of the universal bioprotectant ectoine. The prospects for further studies of the physiological and biochemical principles of haloalkalophily and for the application of haloalkaliphilic aerobic methylobacteria in biosynthesis and biodegradation are discussed.

  17. Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis

    PubMed Central

    Xia, Yu; Wang, Yubo; Fang, Herbert H. P.; Jin, Tao; Zhong, Huanzi; Zhang, Tong

    2014-01-01

    The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies. PMID:25330991

  18. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis.

    PubMed

    Sadaf, Ayesha; Khare, S K

    2014-02-01

    De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.

    PubMed

    Hubert, Casey; Loy, Alexander; Nickel, Maren; Arnosti, Carol; Baranyi, Christian; Brüchert, Volker; Ferdelman, Timothy; Finster, Kai; Christensen, Flemming Mønsted; Rosa de Rezende, Júlia; Vandieken, Verona; Jørgensen, Bo Barker

    2009-09-18

    Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis, fermentation, and sulfate reduction upon induction at 50 degrees C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may broadly influence microbial community composition in the marine environment.

  20. Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements.

    PubMed

    Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-06-01

    The effect of aerobic pretreatment and fly ash addition on the production of methane from mixed sludge is studied. Three assays with pretreated and not pretreated mixed sludge in the presence of fly ash (concentrations of 0, 10, 25, 50, 250 and 500mg/L) were run at mesophilic condition. It was found that the combined use of aerobic pretreatment and fly ash addition increases methane production up to 70% when the fly ash concentrations were lower than 50mg/L, while concentrations higher than 250mg/L cause up to 11% decrease of methane production. For the anaerobic treatment of mixed sludge without pretreatment, the fly ash improved methane generation at all the concentrations studied, with a maximum of 56%. The removal of volatile solids does not show an improvement compared to the separate use of an aerobic pre-treatment and fly ash addition. Therefore, the combined use of the aerobic pre-treatment and fly ash addition improves only the production of methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control.

    PubMed

    Suhartini, Sri; Heaven, Sonia; Banks, Charles J

    2014-01-01

    Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Identification of Residual Structure in the Unfolded State of Ribonuclease H1 from the Moderately Thermophilic Chlorobium tepidum: Comparison with Thermophilic and Mesophilic Homologues†

    PubMed Central

    Ratcliff, Kathleen; Marqusee, Susan

    2010-01-01

    Ribonucleases H from organisms that grow at different temperatures demonstrate a variable change in heat capacity upon unfolding (ΔC°P) [Ratcliff, K., et al. (2009) Biochemistry 48, 5890–5898]. This ΔC°P has been shown to correlate with a tolerance to higher temperatures and residual structure in the unfolded state of the thermophilic proteins. In the RNase H from Thermus thermophilus, the low ΔC°P has been shown to arise from the same region as the folding core of the protein, and mutagenic studies have shown that loss of a hydrophobic residue in this region can disrupt this residual unfolded state structure and result in a return to a more mesophile-like ΔC°P [Robic, S., et al. (2002) Protein Sci. 11, 381–389; Robic, S., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 11345–11349]. To understand further how residual structure in the unfolded state is encoded in the sequences of these thermophilic proteins, we subjected the RNase H from Chlorobium tepidum to similar studies. Analysis of new chimeric proteins reveals that like T. thermophilus RNase H, the folding core of C. tepidum RNaseH plays an important role in the unfolded state of this protein. Mutagenesis studies, based on both a computational investigation of the hydrophobic networks in the core region and comparisons with similar studies on T. thermophilus RNase H, identify new residues involved in this residual structure and suggest that the residual structure in the unfolded state of C. tepidum RNase H is more restricted than that of T. thermophilus. We conclude that while the folding core region determines the thermophilic-like behavior of this family of proteins, the residue-specific details vary. PMID:20491485

  3. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    NASA Astrophysics Data System (ADS)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  4. Hydrogenase activity in the thermophile mastigocladus laminosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benemann, J.R.; Miyamoto, K.; Hallenbeck, P.C.

    Hydrogenase activity in the thermophilic cyanobacterium, Mastigocladus laminosus was studied both in vivo and in vitro. In vivo hydrogen consumption required oxygen but not light, was about ten-fold higher than in mesophilic cyanobacteria, and was relatively insensitive to carbon monoxide. H/sub 2/-supported acetylene reduction in reductant-limited cultures was a light-dependent, but O/sub 2/-independent reaction. In vitro hydrogen evolution was unaffected by carbon monoxide, and this activity could be partially purified using a procedure developed for Anabaena cylindrica.

  5. Effects of high-impact aerobics vs. low-impact aerobics and strength training in overweight and obese women.

    PubMed

    Said, Mohamed; Lamya, Ncir; Olfa, Nejlaoui; Hamda, Mansour

    2017-03-01

    Regular exercise is one of the factors determining weight reduction and fat loss, and at the same time it is associated with important health benefits. The purpose of this study was to compare the effects of two different modalities of exercise on changes in body composition, physical fitness, and CVR factors in healthy overweight and obese women. Thirty-two women were randomly assigned in 2 groups: a high-impact aerobics group (HIA, N.=16) and a low-impact aerobics combined with a strength training program group (LIAS, N.=16). Body weight (BW), body composition, aerobic fitness (AF), speed and agility, vertical-jump distance (VJ), abdominal muscle endurance (AME), the flexibility of the lower back and hamstrings, heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP), total cholesterol (TC), triglyceride (TG), HDL-c, LDL-c, apolipoprotein A-I (Apo A-I) and B (Apo B) were measured at baseline and at the end of the training period. A significant decrease was noted in all anthropometric variables excepting fat-free mass (FFM) which increased in LIAS group (P<0.05). Comparisons between groups noted significant differences in favor of HIA group in BW, fat percentage and FM, and in favor of LIAS group in FFM (P<0.05 for all). DBP, HR, TC, LDL-c, TG, and Apo B significantly decreased, and HDL-c and Apo A-I significantly increased in both groups. No significant modifications were noted in SBP and glucose concentrations. Significant improvements in all physical fitness components were also noted in HIA group (P<0.05), however, only the AF, VJ, AME, and the flexibility were improved in LIAS group (P<0.01). Comparison between groups reported that values related to VJ and AME were higher in LIAS compared to HIA group (P<0.01). Our findings noted that a 24-week of HIA or LIAS training improved body composition, physical fitness and CVR factors in overweight and obese women. Nevertheless, the use of each training method remains tributary to wished effects. In fact

  6. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  7. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  8. Establishment of thermophilic anaerobic terephthalic acid degradation system through one-step temperature increase startup strategy - Revealed by Illumina Miseq Sequencing.

    PubMed

    Ma, Kai-Li; Li, Xiang-Kun; Wang, Ke; Meng, Ling-Wei; Liu, Gai-Ge; Zhang, Jie

    2017-10-01

    Over recent years, thermophilic digestion was constantly focused owing to its various advantage over mesophilic digestion. Notably, the startup approach of thermophilic digester needs to be seriously considered as unsuitable startup ways may result in system inefficiency. In this study, one-step temperature increase startup strategy from 37 °C to 55 °C was applied to establish a thermophilic anaerobic system treating terephthalic acid (TA) contained wastewater, meanwhile, the archaeal and bacterial community compositions at steady periods of 37 °C and 55 °C during the experimental process was also compared using Illumina Miseq Sequencing. The process operation demonstrated that the thermophilic TA degradation system was successfully established at 55 °C with over 95% COD reduction. For archaea community, the elevation of operational temperature from 37 °C to 55 °C accordingly increase the enrichment of hydrogenotrophic methanogens but decrease the abundance of the acetotrophic ones. While for bacterial community, the taxonomic analysis suggested that Syntrophorhabdus (27.40%) was the dominant genus promoting the efficient TA degradation under mesophilic condition, whereas OPB95 (24.99%) and TA06 (14.01%) related populations were largely observed and probably take some crucial role in TA degradation under thermophilic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2015-01-01

    Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions.

  10. Aerobic exercise enhances neural correlates of motor skill learning.

    PubMed

    Singh, Amaya M; Neva, Jason L; Staines, W Richard

    2016-03-15

    Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Application of thermophilic enzymes and water jet system to cassava pulp.

    PubMed

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. X-ray Crystallographic Structure of Thermophilic Rhodopsin

    PubMed Central

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-01-01

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a “thermal sensor.” These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. PMID:27129243

  13. The use of ozone, ozone plus UV radiation, and aerobic microorganisms in the purification of some agro-industrial wastewaters.

    PubMed

    Benitez, F Javier; Acero, Juan L; Gonzalez, Teresa; Garcia, Juan

    2002-08-01

    The oxidation of the pollutant organic matter present in wastewaters generated during different stages in the black table-olive industry was investigated by using ozone alone or combined with UV radiation; by using aerobic microorganisms; and finally, by aerobic degradation of the previously ozonated wastewaters. In the ozonation processes, the removal of substrate (COD) and aromatic compounds, the decreases in BOD5 and pH, and the ozone consumed in the reaction were evaluated. A kinetic study was conducted that led to the evaluation of the stoichiometric ratio for the chemical reaction, as well as the rate constants for the substrate reduction and ozone disappearance. In the single aerobic degradation treatment, the evolution of substrate and biomass was monitored during the process, and a kinetic study was performed by applying the Contois model to the experimental data, giving the specific biokinetic constant, the cell yield coefficient, and the rate constant for the microorganism death phase. Finally, a combined process was performed, consisting in the aerobic degradation of pre-ozonated wastewaters, and the effect of such chemical pretreatment on the substrate removal and kinetic parameters of the later biological stage is discussed.

  14. Effects of Exercise Modality During Additional "High-Intensity Interval Training" on Aerobic Fitness and Strength in Powerlifting and Strongman Athletes.

    PubMed

    Androulakis-Korakakis, Patroklos; Langdown, Louis; Lewis, Adam; Fisher, James P; Gentil, Paulo; Paoli, Antonio; Steele, James

    2018-02-01

    Androulakis-Korakakis, P, Langdown, L, Lewis, A, Fisher, JP, Gentil, P, Paoli, A, and Steele, J. Effects of exercise modality during additional "high-intensity interval training" on aerobic fitness and strength in powerlifting and strongman athletes. J Strength Cond Res 32(2): 450-457, 2018-Powerlifters and strongman athletes have a necessity for optimal levels of muscular strength while maintaining sufficient aerobic capacity to perform and recover between events. High-intensity interval training (HIIT) has been popularized for its efficacy in improving both aerobic fitness and strength but never assessed within the aforementioned population group. This study looked to compare the effect of exercise modality, e.g., a traditional aerobic mode (AM) and strength mode (SM), during HIIT on aerobic fitness and strength. Sixteen well resistance-trained male participants, currently competing in powerlifting and strongman events, completed 8 weeks of approximately effort- and volume-matched HIIT in 2 groups: AM (cycling, n = 8) and SM (resistance training, n = 8). Aerobic fitness was measured as predicted V[Combining Dot Above]O2max using the YMCA 3 minutes step test and strength as predicted 1 repetition maximum from a 4-6RM test using a leg extension. Both groups showed significant improvements in both strength and aerobic fitness. There was a significant between-group difference for aerobic fitness improvements favoring the AM group (p ≤ 0.05). There was no between-group difference for change in strength. Magnitude of change using within-group effect size for aerobic fitness and strength was considered large for each group (aerobic fitness, AM = 2.6, SM = 2.0; strength, AM = 1.9, SM = 1.9). In conclusion, our results support enhanced strength and aerobic fitness irrespective of exercise modality (e.g., traditional aerobic and resistance training). However, powerlifters and strongman athletes wishing to enhance their aerobic fitness should consider HIIT using an

  15. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  16. Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei.

    PubMed

    Zhou, Peng; Zhang, Guoqiang; Chen, Shangwu; Jiang, Zhengqiang; Tang, Yanbin; Henrissat, Bernard; Yan, Qiaojuan; Yang, Shaoqing; Chen, Chin-Fu; Zhang, Bing; Du, Zhenglin

    2014-04-21

    The zygomycete fungi like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. To date, over hundreds of fungal genomes are publicly available. However, Zygomycetes have been rarely investigated both genetically and genomically. Here, we report the genome of R. miehei CAU432 to explore the thermostable enzymatic repertoire of this fungus. The assembled genome size is 27.6-million-base (Mb) with 10,345 predicted protein-coding genes. Even being thermophilic, the G + C contents of fungal whole genome (43.8%) and coding genes (47.4%) are less than 50%. Phylogenetically, R. miehei is more closerly related to Phycomyces blakesleeanus than to Mucor circinelloides and Rhizopus oryzae. The genome of R. miehei harbors a large number of genes encoding secreted proteases, which is consistent with the characteristics of R. miehei being a rich producer of proteases. The transcriptome profile of R. miehei showed that the genes responsible for degrading starch, glucan, protein and lipid were highly expressed. The genome information of R. miehei will facilitate future studies to better understand the mechanisms of fungal thermophilic adaptation and the exploring of the potential of R. miehei in industrial-scale production of thermostable enzymes. Based on the existence of a large repertoire of amylolytic, proteolytic and lipolytic genes in the genome, R. miehei has potential in the production of a variety of such enzymes.

  17. Anoxybacillus vitaminiphilus sp. nov., a strictly aerobic and moderately thermophilic bacterium isolated from a hot spring.

    PubMed

    Zhang, Xin-Qi; Zhang, Zhen-Li; Wu, Nan; Zhu, Xu-Fen; Wu, Min

    2013-11-01

    A strictly aerobic, Gram-stain-positive, motile and spore-forming bacterium, strain 3nP4(T), was isolated from the Puge hot spring located in the south-western geothermal area of China. Strain 3nP4(T) grew at 38-66 °C (optimum 57-60 °C), at pH 6.0-9.3 (optimum 7.0-7.5) and with 0-4 % (w/v) NaCl (optimum 0-0.5 %). Phylogenetic analysis of 16S rRNA gene sequences, as well as DNA-DNA relatedness values, indicated that the isolate represents a novel species of the genus Anoxybacillus, related most closely to Anoxybacillus voinovskiensis DSM 12111(T). Strain 3nP4(T) had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid as major polar lipids and iso-C15 : 0 and iso-C17 : 0 as major fatty acids, which are both typical chemotaxonomic characteristics of the genus Anoxybacillus. The mean DNA G+C content of strain 3nP4(T) was 39.2±0.95 mol% (HPLC). A distinctive characteristic of the novel isolate was its extreme reliance on vitamin mixture or yeast extract for growth. Based on data from this taxonomic study using a polyphasic approach, strain 3nP4(T) is considered to represent a novel species of the genus Anoxybacillus, for which the name Anoxybacillus vitaminiphilus sp. nov. is proposed. The type strain is 3nP4(T) ( = CGMCC 1.8979(T) = JCM 16594(T)).

  18. Performance optimization and validation of ADM1 simulations under anaerobic thermophilic conditions.

    PubMed

    Atallah, Nabil M; El-Fadel, Mutasem; Ghanimeh, Sophia; Saikaly, Pascal; Abou-Najm, Majdi

    2014-12-01

    In this study, two experimental sets of data each involving two thermophilic anaerobic digesters treating food waste, were simulated using the Anaerobic Digestion Model No. 1 (ADM1). A sensitivity analysis was conducted, using both data sets of one digester, for parameter optimization based on five measured performance indicators: methane generation, pH, acetate, total COD, ammonia, and an equally weighted combination of the five indicators. The simulation results revealed that while optimization with respect to methane alone, a commonly adopted approach, succeeded in simulating methane experimental results, it predicted other intermediary outputs less accurately. On the other hand, the multi-objective optimization has the advantage of providing better results than methane optimization despite not capturing the intermediary output. The results from the parameter optimization were validated upon their independent application on the data sets of the second digester. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Electricity production and microbial characterization of thermophilic microbial fuel cells.

    PubMed

    Dai, Kun; Wen, Jun-Li; Zhang, Fang; Ma, Xi-Wen; Cui, Xiang-Yu; Zhang, Qi; Zhao, Ting-Jia; Zeng, Raymond J

    2017-11-01

    Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m 2 , and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion.

    PubMed

    Siles, J A; Brekelmans, J; Martín, M A; Chica, A F; Martín, A

    2010-12-01

    The effect of increasing concentrations of ammonia and sulphate on thermophilic anaerobic digestion (52 degrees C) was studied at laboratory-scale. The substrate consisted of a synthetic solution supplemented with ammonia and sodium sulphate. In terms of biogas production, the results showed that the C/N and C/SO(4)(2-) thresholds were 4.40 and 1.60, respectively, corresponding to 620 mg FA (free ammonia)/L and 1400 mg SO(4)(2-)/L. No reduction in biogas production was observed until reaching the above concentration of sulphate in the sulphate toxicity test. However, when the concentration of ammonia was increased to 620 mg FA/L in the ammonia toxicity test, a gradual decrease of 21% was observed for the biogas. In order to characterise each set of experiments kinetically, a biogas production first-order kinetic model was used to fit the experimental data. The proposed model accurately predicted the behaviour of the microorganisms affecting the thermophilic anaerobic digestion, allowing its evolution to be predicted. 2010 Elsevier Ltd. All rights reserved.

  2. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification.

    PubMed

    Chen, Xingxing; Wu, Xiaoli; Gan, Min; Xu, Feng; He, Lihua; Yang, Dong; Xu, Hengyi; Shah, Nagendra P; Wei, Hua

    2015-03-01

    Staphylococcus aureus is one of the main pathogens in dairy and meat products; therefore, developing a highly sensitive and rapid method for its detection is necessary. In this study, a quantitative detection method for Staph. aureus was developed using silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. First, genomic DNA was extracted from lysed bacteria using silica-coated magnetic nanoparticles and amplified using thermophilic helicase-dependent isothermal amplification. After adding the nucleic-acid dye SYBR Green I to the amplicons, the fluorescence intensity was observed using a UV lamp or recorded using a fluorescence spectrophotometer. This detection system had a detection limit of 5×10(0) cfu/mL in pure culture and milk-powder samples and 5×10(1) cfu/mL in pork samples using a UV light in less than 2h. In addition, a good linear relationship was obtained between fluorescence intensity and bacterial concentrations ranging from 10(2) to 10(4) cfu/mL under optimal conditions. Furthermore, the results from contaminated milk powder and pork samples suggested that the detection system could be used for the quantitative analysis of Staph. aureus and applied potentially to the food industry for the detection of this pathogen. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Detter, John C; Bruce, David C

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNAmore » than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.« less

  4. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Detter, Chris; Bruce, David

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNAmore » than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.« less

  5. Structure of the thermophilic l-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability.

    PubMed

    Choi, Jin Myung; Lee, Yong-Jik; Cao, Thinh-Phat; Shin, Sun-Mi; Park, Min-Kyu; Lee, Han-Seung; di Luccio, Eric; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo

    2016-04-15

    Thermophilic l-arabinose isomerase (AI), which catalyzes the interconversion of l-arabinose and l-ribulose, can be used to produce d-tagatose, a sugar substitute, from d-galactose. Unlike mesophilic AIs, thermophilic AIs are highly dependent on divalent metal ions for their catalytic activity and thermostability at elevated temperatures. However, the molecular basis underlying the substrate preferences and metal requirements of multimeric AIs remains unclear. Here we report the first crystal structure of the apo and holo forms of thermophilic Geobacillus kaustophilus AI (GKAI) in hexamer form. The structures, including those of GKAI in complex with l-arabitol, and biochemical analyses revealed not only how the substrate-binding site of GKAI is formed through displacement of residues at the intersubunit interface when it is bound to Mn(2+), but also revealed the water-mediated H-bonding networks that contribute to the structural integrity of GKAI during catalysis. These observations suggest metal-mediated isomerization reactions brought about by intersubunit interactions at elevated temperatures are responsible for the distinct active site features that promote the substrate specificity and thermostability of thermophilic AIs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Biohydrogen production from space crew's waste simulants using thermophilic consolidated bioprocessing.

    PubMed

    Wang, Jia; Bibra, Mohit; Venkateswaran, Kasthuri; Salem, David R; Rathinam, Navanietha Krishnaraj; Gadhamshetty, Venkataraman; Sani, Rajesh K

    2018-05-01

    Human waste simulants were for the first time converted into biohydrogen by a newly developed anaerobic microbial consortium via thermophilic consolidated bioprocessing. Four different BioH 2 -producing consortia (denoted as C1, C2, C3 and C4) were isolated, and developed using human waste simulants as substrate. The thermophilic consortium C3, which contained Thermoanaerobacterium, Caloribacterium, and Caldanaerobius species as the main constituents, showed the highest BioH 2 production (3.999 mmol/g) from human waste simulants under optimized conditions (pH 7.0 and 60 °C). The consortium C3 also produced significant amounts of BioH 2 (5.732 mmol/g and 2.186 mmol/g) using wastewater and activated sludge, respectively. The developed consortium in this study is a promising candidate for H 2 production in space applications as in situ resource utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Enzymatic Production of c-di-GMP Using a Thermophilic Diguanylate Cyclase.

    PubMed

    Venkataramani, Prabhadevi; Liang, Zhao-Xun

    2017-01-01

    C-di-GMP has emerged as a prevalent bacterial messenger that controls a multitude of bacterial behaviors. Having access to milligram or gram quantities of c-di-GMP is essential for the biochemical and structural characterization of enzymes and effectors involved in c-di-GMP signaling. Although c-di-GMP can be synthesized using chemical methods, diguanylate cyclases (DGC)-based enzymatic synthesis is the most efficient method of preparing c-di-GMP today. Many DGCs are not suitable for c-di-GMP production because of poor protein stability and the presence of a c-di-GMP-binding inhibitory site (I-site) in most DGCs. We have identified and engineered a thermophilic DGC for efficient production of c-di-GMP for characterizing c-di-GMP signaling proteins and riboswitches. Importantly, residue replacement in the inhibitory I-site of the thermophilic DGC drastically relieved product inhibition to enable the production of hundreds of milligrams of c-di-GMP using 5-10 mg of this robust biocatalyst.

  8. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions.

    PubMed

    McClendon, Shara D; Batth, Tanveer; Petzold, Christopher J; Adams, Paul D; Simmons, Blake A; Singer, Steven W

    2012-07-28

    Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum) revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for biomass deconstruction, without strain development or

  9. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions

    PubMed Central

    2012-01-01

    Background Thermophilic fungi have attracted increased interest for their ability to secrete enzymes that deconstruct biomass at high temperatures. However, development of thermophilic fungi as enzyme producers for biomass deconstruction has not been thoroughly investigated. Comparing the enzymatic activities of thermophilic fungal strains that grow on targeted biomass feedstocks has the potential to identify promising candidates for strain development. Thielavia terrestris and Thermoascus aurantiacus were chosen for characterization based on literature precedents. Results Thermoascus aurantiacus and Thielavia terrestris were cultivated on various biomass substrates and culture supernatants assayed for glycoside hydrolase activities. Supernatants from both cultures possessed comparable glycoside hydrolase activities when incubated with artificial biomass substrates. In contrast, saccharifications of ionic liquid pretreated switchgrass (Panicum virgatum) revealed that T. aurantiacus enzymes released more glucose than T. terrestris enzymes over a range of protein mass loadings and temperatures. Temperature-dependent saccharifications demonstrated that the T. aurantiacus proteins retained higher levels of activity compared to a commercial enzyme mixture sold by Novozymes, Cellic CTec2, at elevated temperatures. Enzymes secreted by T. aurantiacus released glucose at similar protein loadings to CTec2 on dilute acid, ammonia fiber expansion, or ionic liquid pretreated switchgrass. Proteomic analysis of the T. aurantiacus culture supernatant revealed dominant glycoside hydrolases from families 5, 7, 10, and 61, proteins that are key enzymes in commercial cocktails. Conclusions T. aurantiacus produces a complement of secreted proteins capable of higher levels of saccharification of pretreated switchgrass than T. terrestris enzymes. The T. aurantiacus enzymatic cocktail performs at the same level as commercially available enzymatic cocktail for biomass deconstruction

  10. Diagnosis and microecological characteristics of aerobic vaginitis in outpatients based on preformed enzymes.

    PubMed

    Wang, Zhi-Liang; Fu, Lan-Yong; Xiong, Zheng-Ai; Qin, Qin; Yu, Teng-Hua; Wu, Yu-Tong; Hua, Yuan-Yuan; Zhang, Yong-Hong

    2016-02-01

    Aerobic vaginitis (AV) is a recently proposed term for genital tract infection in women. The diagnosis of AV is mainly based on descriptive diagnostic criteria proposed by Donders and co-workers. The objective of this study is to report AV prevalence in southwest China using an objective assay kit based on preformed enzymes and also to determine its characteristics. A total of 1948 outpatients were enrolled and tested by a commercial diagnostic kit to investigate the AV prevalence and characteristics in southwestern China. The study mainly examined the vaginal ecosystem, age distribution, Lactobacillus amount, and changes in pH. Differences within groups were analyzed by Wilcoxon two-sample test. The AV detection rate is 15.40%. The AV patients were usually seen in the sexually active age group of 20-30 years, followed by those in the age group of 30-40 years. The vaginal ecosystems of all the patients studied were absolutely abnormal, and diagnosed to have a combined infection [aerobic vaginitis (AV) + bacterial vaginitis (BV) 61.33%; 184/300]. Aerobic bacteria, especially Staphylococcus aureus and Escherichia coli, were predominantly found in the vaginal samples of these women. AV is a common type of genital infection in southwestern China and is characterized by sexually active age and combined infection predominated by the AV and BV type. Copyright © 2016. Published by Elsevier B.V.

  11. In-vitro activity of ciprofloxacin combined with flomoxef against Bacteroides fragilis, compared with that of ciprofloxacin combined with clindamycin.

    PubMed

    Kato, Komei; Iwai, Shigetomi; Sato, Takeshi; Harada, Tomohide; Nakagawa, Yoshiteru; Iwanaga, Hitomi; Ito, Yumiko; Takayama, Tadatoshi

    2002-06-01

    Using checkerboard and time-kill assays, the in-vitro activity of ciprofloxacin alone and in combination with flomoxef against clinical Bacteroides fragilis strains was evaluated. In addition, the microbiological efficacy of this combination was compared with that of ciprofloxacin plus clindamycin. In 88% of the 25 strains tested, the combination of ciprofloxacin plus flomoxef exhibited a synergistic or an additive effect, whereas only 56% of the 25 strains ( P< 0.01, chi(2) test) tested with the combination of ciprofloxacin plus clindamycin exhibited similar effects. In a time-kill study using 7 clinical strains, a synergistic or additive effect of the combination of ciprofloxacin plus flomoxef was observed in all 7 strains. In conclusion, the combination of ciprofloxacin plus flomoxef is very active against B. fragilis, suggesting that this combination may be very useful in the treatment of aerobic and B. fragilis mixed infections, because ciprofloxacin has an expanded spectrum against aerobes.

  12. Acute effects of aerobic exercise promote learning

    PubMed Central

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  13. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  14. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basen, M; Schut, GJ; Nguyen, DM

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. Bymore » heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.« less

  15. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar tomore » the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.« less

  16. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cooperative role of electrical stimulation on microbial metabolism and selection of thermophilic communities for p-fluoronitrobenzene treatment.

    PubMed

    Zhang, Xueqin; Shen, Dongsheng; Feng, Huajun; Wang, Yanfeng; Li, Na; Han, Jingyi; Long, Yuyang

    2015-01-01

    A novel thermophilic bioelectrochemical system (TBES) based on electrical stimulation was established for the enhanced treatment of p-fluoronitrobenzene (p-FNB) wastewater. p-FNB removal rate constant in the TBES was 78.6% higher than that of the mesophilic BES (MBES), the elevation of which owing to high-temperature overtook the rate improvement of 50.8% in the electrocatalytic system (ECS). Additionally, an overwhelming mineralization efficiency of 91.96% ± 5.70% was obtained in the TBES. The superiority of TBES was attributed to the integrated role of electrical stimulation and high-temperature. Electrical stimulation provided an alternative for the microbial growth independent energy requirements, compensating insufficient energy support from p-FNB metabolism under the high-temperature stress. Besides, electrical stimulation facilitated microbial community evolution to form specific thermophilic biocatalysis. The uniquely selected thermophilic microorganisms including Coprothermobacter sp. and other ones cooperated to enhance p-FNB mineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  19. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  20. Entrapment of anaerobic thermophilic and hyperthermophilic marine micro-organisms in a gellan/xanthan matrix.

    PubMed

    Landreau, M; Duthoit, F; Claeys-Bruno, M; Vandenabeele-Trambouze, O; Aubry, T; Godfroy, A; Le Blay, G

    2016-06-01

    The aims of this study were (i) to develop a protocol for the entrapment of anaerobic (hyper)thermophilic marine micro-organisms; (ii) to test the use of the chosen polymers in a range of physical and chemical conditions and (iii) to validate the method with batch cultures. The best conditions for immobilization were obtained at 80°C with gellan and xanthan gums. After 5-week incubation, beads showed a good resistance to all tested conditions except those simultaneously including high temperature (100°C), low NaCl (<0∙5 mol l(-1) ) and extreme pH (4/8). To confirm the method efficiency, batch cultures with immobilized Thermosipho sp. strain AT1272 and Thermococcus kodakarensis strain KOD1 showed an absence of detrimental effect on cell viability and a good growth within and outside the beads. This suggests that entrapment in a gellan-xanthan matrix could be employed for the culture of anaerobic (hyper)thermophilic marine micro-organisms. (Hyper)thermophilic marine micro-organisms possess a high biotechnological potential. Generally microbial cells are grown as free-cell cultures. The use of immobilized cells may offer several advantages such as protection against phage attack, high cell biomass and better production rate of desired metabolites. © 2016 The Society for Applied Microbiology.

  1. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand.

    PubMed

    Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B

    2005-08-01

    Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.

  2. Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum.

    PubMed

    Fdéz-Güelfo, L A; Alvarez-Gallego, C; Sales Márquez, D; Romero García, L I

    2010-12-01

    The work presented here concerns the start-up and stabilization stages of a Continuous Stirred Tank Reactor (CSTR) semicontinuously fed for the treatment of the Organic Fraction of Municipal Solid Waste (OFMSW) through anaerobic digestion at thermophilic temperature range (55 degrees C) and dry conditions (30% Total Solids). The procedure reported involves two novel aspects with respect to other start-up and stabilization protocols reported in the literature. The novel aspects concern the adaptation of the inoculum to both the operating conditions (thermophilic and dry) and to the type of waste by employing a modified SEBAC (Sequential Batch Anaerobic Composting) system and, secondly, the direct start-up of the process in a thermophilic temperature regime and feeding of the system from the first day of operation. In this way a significant reduction in the start-up time and stabilization is achieved i.e. 110 days in comparison to 250 days for the processes reported by other authors for the same type of waste and digester. The system presents suitable operational conditions to stabilize the reactor at SRT of 35 days, with a maximum biogas production of 1.944 LR/L.d with a CH(4) and CO(2) percentage of 25.27% and 68.15%, respectively. 2010 Elsevier Ltd. All rights reserved.

  3. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic andmore » mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.« less

  4. Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion.

    PubMed

    Chang, Chia-Jung; Tyagi, Vinay Kumar; Lo, Shang-Lien

    2011-09-01

    Individual and combined effects of microwave (MW) and alkali pretreatments on sludge disintegration and subsequent aerobic digestion of waste activated sludge (WAS) were studied. Pretreatments with MW (600W-85°C-2 min), conventional heating (520 W-80°C-12 min) and alkali (1.5 g NaOH/L - pH 12-30 min) achieved 8.5%, 7% and 18% COD solubilization, respectively. However, combined MW-alkali pretreatment synergistically enhanced sludge solubilization and achieved 46% COD solubilization, 20% greater than the additive value of MW alone and alkali alone (8.5+18%=26.5%). Moreover, the results of the batch aerobic digestion study on MW-alkali pretreated sludge showed 93% and 63% reductions in SCOD and VSS concentrations, respectively, at 16 days of SRT. The VSS reduction was 20% higher than that of WAS without pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Updating the Skating Multistage Aerobic Test and Correction for V[Combining Dot Above]O2max Prediction Using a New Skating Economy Index in Elite Youth Ice Hockey Players.

    PubMed

    Allisse, Maxime; Bui, Hung Tien; Léger, Luc; Comtois, Alain-Steve; Leone, Mario

    2018-05-07

    Allisse, M, Bui, HT, Léger, L, Comtois, A-S, and Leone, M. Updating the skating multistage aerobic test and correction for V[Combining Dot Above]O2max prediction using a new skating economy index in elite youth ice hockey players. J Strength Cond Res XX(X): 000-000, 2018-A number of field tests, including the skating multistage aerobic test (SMAT), have been developed to predict V[Combining Dot Above]O2max in ice hockey players. The SMAT, like most field tests, assumes that participants who reach a given stage have the same oxygen uptake, which is not usually true. Thus, the objectives of this research are to update the V[Combining Dot Above]O2 values during the SMAT using a portable breath-by-breath metabolic analyzer and to propose a simple index of skating economy to improve the prediction of oxygen uptake. Twenty-six elite hockey players (age 15.8 ± 1.3 years) participated in this study. The oxygen uptake was assessed using a portable metabolic analyzer (K4b) during an on-ice maximal shuttle skate test. To develop an index of skating economy called the skating stride index (SSI), the number of skating strides was compiled for each stage of the test. The SMAT enabled the prediction of the V[Combining Dot Above]O2max (ml·kg·min) from the maximal velocity (m·s) and the SSI (skating strides·kg) using the following regression equation: V[Combining Dot Above]O2max = (14.94 × maximal velocity) + (3.68 × SSI) - 24.98 (r = 0.95, SEE = 1.92). This research allowed for the update of the oxygen uptake values of the SMAT and proposed a simple measure of skating efficiency for a more accurate evaluation of V[Combining Dot Above]O2max in elite youth hockey players. By comparing the highest and lowest observed SSI scores in our sample, it was noted that the V[Combining Dot Above]O2 values can vary by up to 5 ml·kg·min. Our results suggest that skating economy should be included in the prediction of V[Combining Dot Above]O2max to improve prediction accuracy.

  6. Aerobic fitness, muscular strength and obesity in relation to risk of heart failure.

    PubMed

    Crump, Casey; Sundquist, Jan; Winkleby, Marilyn A; Sundquist, Kristina

    2017-11-01

    Low physical fitness and obesity have been associated with higher risk of developing heart failure (HF), but their interactive effects are unknown. Elucidation of interactions among these common modifiable factors may help facilitate more effective primary prevention. We conducted a national cohort study to examine the interactive effects of aerobic fitness, muscular strength and body mass index (BMI) among 1 330 610 military conscripts in Sweden during 1969-1997 (97%-98% of all 18-year-old men) on risk of HF identified from inpatient and outpatient diagnoses through 2012 (maximum age 62 years). There were 11 711 men diagnosed with HF in 37.8 million person-years of follow-up. Low aerobic fitness, low muscular strength and obesity were independently associated with higher risk of HF, after adjusting for each other, socioeconomic factors, other chronic diseases and family history of HF. The combination of low aerobic fitness and low muscular strength (lowest vs highest tertiles) was associated with a 1.7-fold risk of HF (95% CI 1.6 to 1.9; p<0.001; incidence rates per 100 000 person-years, 43.2 vs 10.8). These factors had positive additive and multiplicative interactions (p<0.001) and were associated with increased risk of HF even among men with normal BMI. Low aerobic fitness, low muscular strength and obesity at the age of 18 years were independently associated with higher risk of HF in adulthood, with interactive effects between aerobic fitness and muscular strength. These findings suggest that early-life interventions may help reduce the long-term risk of HF and should include both aerobic fitness and muscular strength, even among persons with normal BMI. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Biocatalytic Synthesis of Poly(δ-Valerolactone) Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst

    PubMed Central

    Cao, Hong; Han, Haobo; Li, Guangquan; Yang, Jiebing; Zhang, Lingfei; Yang, Yan; Fang, Xuedong; Li, Quanshun

    2012-01-01

    The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone) was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 °C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(δ-valerolactone), and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization. PMID:23202895

  8. Recombinant HAP Phytase of the Thermophilic Mold Sporotrichum thermophile: Expression of the Codon-Optimized Phytase Gene in Pichia pastoris and Applications.

    PubMed

    Ranjan, Bibhuti; Satyanarayana, T

    2016-02-01

    The codon-optimized phytase gene of the thermophilic mold Sporotrichum thermophile (St-Phy) was expressed in Pichia pastoris. The recombinant P. pastoris harboring the phytase gene (rSt-Phy) yielded a high titer of extracellular phytase (480 ± 23 U/mL) on induction with methanol. The recombinant phytase production was ~40-fold higher than that of the native fungal strain. The purified recombinant phytase (rSt-Phy) has the molecular mass of 70 kDa on SDS-PAGE, with K m and V max (calcium phytate), k cat and k cat/K m values of 0.147 mM and 183 nmol/mg s, 1.3 × 10(3)/s and 8.84 × 10(6)/M s, respectively. Mg(2+) and Ba(2+) display a slight stimulatory effect, while other cations tested exert inhibitory action on phytase. The enzyme is inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward's reagent K and 2,3-bunatedione, but resistant to both pepsin and trypsin. The rSt-Phy is useful in the dephytinization of broiler feeds efficiently in simulated gut conditions of chick leading to the liberation of soluble inorganic phosphate with concomitant mitigation in antinutrient effects of phytates. The addition of vanadate makes it a potential candidate for generating haloperoxidase, which has several applications.

  9. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    PubMed Central

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  10. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes.

    PubMed

    Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao

    2010-08-02

    Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Similar hypotensive effects of combined aerobic and resistance exercise with 1 set versus 3 sets in women with metabolic syndrome.

    PubMed

    Tibana, Ramires A; Nascimento, Dahan da C; de Sousa, Nuno M F; de Almeida, Jeeser A; Moraes, Milton R; Durigan, João Luiz Quagliotti; Collier, Scott R; Prestes, Jonato

    2015-11-01

    The aim of the present study was to compare the response of systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP) following combined training with 1 set or with 3 sets of resistance exercise (RE). Sixteen women with metabolic syndrome (MetS) were randomly assigned to perform two combined exercise protocols and a control session (CON): 1-set, 30 min of aerobic exercise (AE) at 65-70% of reserve heart rate and 1 set of 8-12 repetitions at 80% of 10-RM in six resistance exercises; 3-sets, same protocol but with 3 sets; and CON, 30 min of seated rest. The SBP, MBP and DBP were measured before and every 15 min during 90 min following the experimental sessions. The SBP displayed a decrease (P ≤ 0.05) during the 90 min following the RE session with 1-set and 3-set, while MBP was decreased (P ≤ 0.05) up to 75 min after 1-set and up to 30 min after the 3-set exercise session compared with pre-intervention values. There was a decrease in DBP only for the greatest individual decrease following 1-set (-6.1 mmHg) and 3-set (-4.9 mmHg) combined exercise sessions, without differences between them. The rate-pressure product and heart rate remained significantly higher (P ≤ 0.05) 75 min and 90 min after the combined exercise session with 1- and 3-sets compared with the CON, respectively. In conclusion, a low-volume RE combined with AE resulted in similar decrease of SBP when compared with RE with 3-sets in women with MetS, which could be beneficial in situations of limited time. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. The Ottawa panel clinical practice guidelines for the management of knee osteoarthritis. Part three: aerobic exercise programs.

    PubMed

    Brosseau, Lucie; Taki, Jade; Desjardins, Brigit; Thevenot, Odette; Fransen, Marlene; Wells, George A; Mizusaki Imoto, Aline; Toupin-April, Karine; Westby, Marie; Álvarez Gallardo, Inmaculada C; Gifford, Wendy; Laferrière, Lucie; Rahman, Prinon; Loew, Laurianne; De Angelis, Gino; Cavallo, Sabrina; Shallwani, Shirin Mehdi; Aburub, Ala'; Bennell, Kim L; Van der Esch, Martin; Simic, Milena; McConnell, Sara; Harmer, Alison; Kenny, Glen P; Paterson, Gail; Regnaux, Jean-Philippe; Lefevre-Colau, Marie-Martine; McLean, Linda

    2017-05-01

    To identify effective aerobic exercise programs and provide clinicians and patients with updated, high-quality recommendations concerning traditional land-based exercises for knee osteoarthritis. A systematic search and adapted selection criteria included comparative controlled trials with strengthening exercise programs for patients with knee osteoarthritis. A panel of experts reached consensus on the recommendations using a Delphi survey. A hierarchical alphabetical grading system (A, B, C+, C, D, D+, or D-) was used, based on statistical significance ( P < 0.5) and clinical importance (⩾15% improvement). The five high-quality studies included demonstrated that various aerobic training exercises are generally effective for improving knee osteoarthritis within a 12-week period. An aerobic exercise program demonstrated significant improvement for pain relief (Grade B), physical function (Grade B) and quality of life (Grade C+). Aerobic exercise in combination with strengthening exercises showed significant improvement for pain relief (3 Grade A) and physical function (2 Grade A, 2 Grade B). A short-term aerobic exercise program with/without muscle strengthening exercises is promising for reducing pain, improving physical function and quality of life for individuals with knee osteoarthritis.

  13. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  14. THERMICANUS AEGYPTIUS GEN. NOV., SP. NOV., ISOLATED FROM OXIC SOIL, A FERMENTATIVE MICROAEROPHILE THAT GROWS COMMENSALLY WITH THE THERMOPHILIC ACETOGEN MOORELLA THERMOACETICA

    EPA Science Inventory

    A thermophilic, fermentative microaerophile (ET-5b) and a thermophilic acetogen (ET-5a) were coisolated from oxic soil obtained from Egypt. The 16S rRNA gene sequence of ET-5a was 99.8% identical to that of the classic acetogen Moorella thermoacetica. Further analyses confirmed t...

  15. Patients' perspectives on aerobic exercise early after stroke.

    PubMed

    Prout, Erik C; Mansfield, Avril; McIlroy, William E; Brooks, Dina

    2017-04-01

    To describe patient perspectives of aerobic exercise during inpatient stroke rehabilitation, including their self-efficacy and beliefs towards exercise, as well as their perceptions of barriers. A survey was conducted at three Canadian rehabilitation centres to evaluate individuals' (N = 33) self-efficacy and outcome expectations for exercise. In addition, patient perceptions of other people recovering from stroke, social support, and aerobic exercise as part of rehabilitation were assessed. Thirty-two people completed the survey. Of these, 97% were willing to participate in aerobic exercise 5.9 ± 8.8 days after admission to inpatient rehabilitation. While outcome expectations for exercise were high, participants reported lower self-efficacy for exercise. Patients reported barriers related to the ability to perform exercise (other health problems (i.e., arthritis), not being able to follow instructions and physical impairments) more often than safety concerns (fear of falling). The lack of support from a spouse and family were commonly identified, as was a lack of information on how to perform aerobic exercise. Patients with stroke are willing to participate in aerobic exercise within a week after admission to inpatient rehabilitation. However, they perceive a lack of ability to perform aerobic exercise, social support from family and information as barriers. Implications for rehabilitation Aerobic exercise is recognized as part of comprehensive stroke rehabilitation. There is a need to better understand patient perspectives to develop and implement more effective interventions early after stroke. Patients lack confidence in their ability to overcome barriers early after stroke. Patients are concerned with their ability to perform exercise, fall risk, lack of support from a spouse and family, and limited information on aerobic exercise. There is a need to reinforce education with practical experience in structured aerobic exercise programs that show

  16. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  17. Characterization of a Thermophilic Bacteriophage for Bacillus stearothermophilus1

    PubMed Central

    Saunders, Grady F.; Campbell, L. Leon

    1966-01-01

    Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Characterization of a thermophilic bacteriophage for Bacillus stearothermophilus. J. Bacteriol. 91:340–348. 1965.—The biological and physical-chemical properties of the thermophilic bacteriophage TP-84 were investigated. TP-84 was shown to be lytic for 3 of 24 strains of Bacillus stearothermophilus tested over the temperature range of 43 to 76 C. The latent period of TP-84 on B. stearothermophilus strain 10 was 22 to 24 min. TP-84 has a hexagonal head, 53 mμ in diameter and 30 mμ on a side; its tail is 130 mμ long and 3 to 5 mμ wide. The phage has an S5020,w of 436, and bands at a density of 1.508 g/cc in CsCl (pH 8.5). The diffusion coefficient of TP-84 was calculated to be 6.19 × 10−8 cm2/sec. From the sedimentation and diffusion data, a particle molecular weight of 50 million daltons was calculated for TP-84. The phage DNA has a base composition of 42% guanine + cytosine, deduced from buoyant density and melting temperature measurements. Images PMID:5903101

  18. Effect of grape pomace on fermentation quality and aerobic stability of sweet sorghum silage.

    PubMed

    Li, Ping; Shen, Yixin; You, Minghong; Zhang, Yu; Yan, Jiajun; Li, Daxue; Bai, Shiqie

    2017-10-01

    The objective of this study was to evaluate the effect of grape pomace (GP) with different adding levels (0%, 5%, 10% and 15%, fresh matter basis), alone (GP-LAB) or in combine with an inoculant LAB (GP+LAB), on the fermentation quality and aerobic stability of sweet sorghum silage. After 90 days of ensiling in vacuumized mini-silos, silages were subject to a 7-day aerobic stability test, in which chemical, microbial and polyphenol composition were measured. In the GP-LAB group, adding GP decreased (P < 0.05) concentrations of water-soluble carbohydrate (WSC) and butyric acid in silage. In the GP+LAB group, adding GP increased (P < 0.05) concentrations of lactic acid, WSC and crude protein, decreased (P < 0.05) final pH value, NH 3 -N ratio and butyric acid concentration in silage. Polyphenol level was reduced (P < 0.05) after silage fermentation. During aerobic exposure, the fungi count, pH value and silage temperature increased (P < 0.05), the levels of lactic acid, acetic acid and polyphenols (quercetin 3-O-glucoside and quercetin 3-O-glucuronid) decreased (P < 0.05) in silage. GP+LAB treated silage had a lag phase for aerobic spoilage. When the fermentation products, microbial counts, chemical and polyphenol composition were considered, the use of 10% GP+LAB at ensiling could provide a valuable source for improved fermentation quality and aerobic stability of sweet sorghum silage. © 2017 Japanese Society of Animal Science.

  19. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of ethanol, molasses and Lactobacillus plantarum on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silages in the Tibetan plateau of China.

    PubMed

    Yuan, Xianjun; Wen, Aiyou; Wang, Jian; Guo, Gang; Desta, Seare T; Shao, Tao

    2016-05-01

    In Tibet, it is common practice to make and relocate total mixed ration (TMR) silages before feeding due to the uneven distribution of forages temporally and spatially. This study was conducted to investigate the effects of Lactobacillus plantarum (L), molasses (M) or ethanol (E) on the fermentation quality and aerobic stability of local adaptive TMR silage. After 45 days of ensiling, pH and ammonia nitrogen in inoculated TMR silages were significantly lower than control. During the first 6 days of the aerobic exposure test, a small fluctuation in lactic acid concentration for all TMR silages was observed, and then silages with ethanol continued this trend, while lactic acid in silage without ethanol sharply decreased until the end of the aerobic exposure period. Meanwhile, pH gradually increased along the aerobic exposure; silages treated with ethanol showed lower pH after 9 days of aerobic exposure. The population of yeast gradually increased during 6 days of aerobic exposure, after that an accelerated rise was observed in TMR silages without ethanol. The combinational beneficial effect of L. plantarum and ethanol was found in combined addition of ethanol and Lactobacillus plantarum silages (EL), indicated by intermediate fermentation quality and higher aerobic stability. © 2015 Japanese Society of Animal Science.

  2. Effectiveness of Aerobic Exercise as an Augmentation Therapy for Inpatients with Major Depressive Disorder: A Preliminary Randomized Controlled Trial.

    PubMed

    Shachar-Malach, Tal; Cooper Kazaz, Rena; Constantini, Naama; Lifschytz, Tzuri; Lerer, Bernard

    2015-01-01

    Physical exercise has been shown to reduce depressive symptoms when used in combination with antidepressant medication. We report a randomized controlled trial of aerobic exercise compared to stretching as an augmentation strategy for hospitalized patients with major depression. Male or female patients, 18-80 years, diagnosed with a Major Depressive Episode, were randomly assigned to three weeks of augmentation therapy with aerobic (n=6) or stretching exercise (n=6). Depression was rated, at several time points using the 21-item Hamilton Depression Scale (HAM-D), Beck Depression Inventory (BDI) and other scales. According to the HAM-D, there were four (out of six) responders in the aerobic group, two of whom achieved remission, and none in the stretching group. According to the BDI, there were two responders in the aerobic group who were also remitters and none in the stretching group. The results of this small study suggest that aerobic exercise significantly improves treatment outcome when added to antidepressant medication. However, due to the small sample size the results must be regarded as preliminary and further studies are needed to confirm the findings.

  3. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  4. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.

    PubMed

    Quezada, Maribel; Buitrón, Germán; Moreno-Andrade, Iván; Moreno, Gloria; López-Marín, Luz M

    2007-01-01

    The use of fatty acid methyl esters (FAME) as biomarkers to identify groups of microorganisms was studied. A database was constructed using previously published results that identify FAME biomarkers for aerobic, anaerobic and facultatively aerobic bacteria. FAME profiles obtained from pure cultures were utilized to confirm the predicted presence of biomarkers. Principal component analysis demonstrated that the FAME profiles can be used to determine the incidence of these bacterial groups. The presence of aerobic, anaerobic and facultatively aerobic bacteria in the communities, in four bioreactors being used to treat different wastewaters, was investigated by applying FAME biomarkers.

  5. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  6. Relationships Among Two Repeated Activity Tests and Aerobic Fitness of Volleyball Players.

    PubMed

    Meckel, Yoav; May-Rom, Moran; Ekshtien, Aya; Eisenstein, Tamir; Nemet, Dan; Eliakim, Alon

    2015-08-01

    The purpose of the study was to determine performance indices of a repeated sprint test (RST) and to examine their relationships with performance indices of a repeated jump test (RJT) and with aerobic fitness among trained volleyball players. Sixteen male volleyball players performed RST (6 × 30 m sprints), RJT (6 sets of 6 consecutive jumps), and an aerobic power test (20-m Shuttle Run Test). Performance indices for the RST and the RJT were (a) the ideal 30-m run time (IS), the total run time (TS) of the 6 sprints, and the performance decrement (PD) during the test and (b) the ideal jump height (IJ), the total jump height (TJ) of all the jumps, and the PD during the test, respectively. No significant correlations were found between performance indices of the RST and RJT. Significant correlations were found between PD, IS, and TS in the RST protocol and predicted peak V[Combining Dot Above]O2 (r = -0.60, -0.75, -0.77, respectively). No significant correlations were found between performance indices of the RJT (IJ, TJ, and PD) and peak V[Combining Dot Above]O2. The findings suggest that a selection of repeated activity test protocols should acknowledge the specific technique used in the sport, and that a distinct RJT, rather than the classic RST, is more appropriate for assessing the anaerobic capabilities of volleyball players. The findings also suggest that aerobic fitness plays only a minor role in performance maintenance throughout characteristic repeated jumping activity of a volleyball game.

  7. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives.

    PubMed

    Fenty-Stewart, Nicola; Park, Joon-Young; Roth, Stephen M; Hagberg, James M; Basu, Samar; Ferrell, Robert E; Brown, Michael D

    2009-01-01

    Abstract Angiotensin II (AngII), via the AngII type 1 receptor (AT(1)R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and -825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF(2alpha) significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the -825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF(2alpha) (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress.

  8. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives

    PubMed Central

    FENTY-STEWART, NICOLA; PARK, JOON-YOUNG; ROTH, STEPHEN M.; HAGBERG, JAMES M.; BASU, SAMAR; FERRELL, ROBERT E.; BROWN, MICHAEL D.

    2010-01-01

    Angiotensin II (AngII), via the AngII type 1 receptor (AT1R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and −825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF2α significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the −825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF2α (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress. PMID:19593696

  9. High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium.

    PubMed

    Zhao, Chao; Chu, Yanan; Li, Yanhong; Yang, Chengfeng; Chen, Yuqing; Wang, Xumin; Liu, Bin

    2017-01-01

    To analyze the microbial diversity and gene content of a thermophilic cellulose-degrading consortium from hot springs in Xiamen, China using 454 pyrosequencing for discovering cellulolytic enzyme resources. A thermophilic cellulose-degrading consortium, XM70 that was isolated from a hot spring, used sugarcane bagasse as sole carbon and energy source. DNA sequencing of the XM70 sample resulted in 349,978 reads with an average read length of 380 bases, accounting for 133,896,867 bases of sequence information. The characterization of sequencing reads and assembled contigs revealed that most microbes were derived from four phyla: Geobacillus (Firmicutes), Thermus, Bacillus, and Anoxybacillus. Twenty-eight homologous genes belonging to 15 glycoside hydrolase families were detected, including several cellulase genes. A novel hot spring metagenome-derived thermophilic cellulase was expressed and characterized. The application value of thermostable sugarcane bagasse-degrading enzymes is shown for production of cellulosic biofuel. The practical power of using a short-read-based metagenomic approach for harvesting novel microbial genes is also demonstrated.

  10. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  11. Comparison of aerobic capacity in annually certified and uncertified volunteer firefighters.

    PubMed

    Hammer, Rodney L; Heath, Edward M

    2013-05-01

    The leading cause of mortality among firefighters has been cardiac arrest precipitated by stress and overexertion with volunteer firefighters having double the death rate from this cause compared with career firefighters. In an attempt to reduce on-duty sudden cardiac deaths, annual fitness testing, and certification, has been widely instigated in wildland firefighters, who have half the cardiac arrest death rate of structural firefighters. The hypothesis was that annual fitness testing would serve as motivation to produce higher cardiorespiratory fitness. This study compared predicted aerobic capacity in annually certified and uncertified volunteer firefighters. Each firefighter performed a submaximal treadmill test to predict V[Combining Dot Above]O2max. Certified volunteer firefighters, who participated in annual fitness testing, had a predicted V[Combining Dot Above]O2max of 39.9 ± 8.4 ml·kg·min. Uncertified volunteer firefighters had a predicted V[Combining Dot Above]O2max of 37.8 ± 8.5 ml·kg·min. Annual fitness testing during the certification process did not contribute to statistically higher (F2,78 = 0.627, p = 0.431) V[Combining Dot Above]O2max levels in certified volunteer firefighters. Although there was no significant difference in predicted V[Combining Dot Above]O2max values for certified and uncertified volunteer firefighters, it was reported that 30% of volunteer firefighters had predicted aerobic capacities below the recommended minimum V[Combining Dot Above]O2max level of 33.5 ml·kg·min. Current annual fitness testing for volunteer firefighters does not seem to be effective. Thus, the study emphasizes the need of a higher priority for firefighter fitness programs to best ensure the safety of firefighters and the public.

  12. Growth dynamics of specific spoilage organisms and associated spoilage biomarkers in chicken breast stored aerobically

    USDA-ARS?s Scientific Manuscript database

    This study was performed to identify and quantify selected volatile spoilage biomarkers in a headspace over chicken breast using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry-flame ionization detectors (GC-MS/FID). The chicken breast samples were aerobically s...

  13. High Skin Temperature and Hypohydration Impair Aerobic Performance

    DTIC Science & Technology

    2012-01-01

    hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is...the aerobic performance impairment (-1.5% for each l°C skin temperature). We conclude that hot skin ( high skin blood flow requirements from narrow...associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic

  14. Effect of aerobic exercise on the atherogenic index of plasma in middle-aged Chinese men with various body weights.

    PubMed

    Shen, Shiwei; Lu, Yun; Dang, Yingjie; Qi, Huajin; Shen, Zhenhai; Wu, Liuxin; Li, Feng; Yang, Chengjian; Qiang, Dongchang; Yang, Yan; Shui, Kedong; Bao, Yanying

    2017-03-01

    The aim of this study was to examine the correlation between aerobic exercise and the atherogenic index of plasma (AIP) in middle-aged Chinese men stratified by body weight. A cross-sectional study, which recruited 26,701 middle-aged Chinese men undergoing health examinations in our hospital from 1st January 2014 to 30th June 2015 was performed, and the associations between body weight and AIP, and aerobic exercise and AIP were evaluated. The mean AIP levels were -0.016±0.305, 0.138±0.3171 and 0.211±0.3243 in normal weight, overweight and obese subjects, respectively, and appeared to rise with body weight. Significantly higher AIP levels were observed in subjects with a weekly aerobic exercise period ≥90min than in those with a weekly aerobic exercise period <90min, and the mean AIP levels were -0.038±0.3015, 0.117±0.3182 and 0.192±0.3209, and were 0.003±0.3067, 0.156±0.3149 and 0.225±0.3263 in normal weight, overweight and obese men with a weekly aerobic exercise period ≥90min and <90min, respectively. In addition, aerobic exercise significantly reduced AIP after adjustment for age, systolic blood pressure, diastolic blood pressure, body mass index (BMI), fasting blood glucose and uric acid. Lowering body weight and/or increasing aerobic exercise time may reduce AIP, and lowering body weight results in a greater reduction in AIP than aerobic exercise. Weight control combined with increased aerobic exercise time may cause a synergistic effect on the reduction of AIP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    PubMed

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  16. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    PubMed

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  17. Occurrence and molecular characterization of cultivable mesophilic and thermophilic obligate anaerobic bacteria isolated from paper mills.

    PubMed

    Suihko, Maija-Liisa; Partanen, Laila; Mattila-Sandholm, Tiina; Raaska, Laura

    2005-08-01

    The aim of this work was to characterize the cultivable obligate anaerobic bacterial population in paper mill environments. A total of 177 anaerobically grown bacterial isolates were screened for aerotolerance, from which 67 obligate anaerobes were characterized by automated ribotyping and 41 were further identified by partial 16S rDNA sequencing. The mesophilic isolates indicated 11 different taxa (species) within the genus Clostridium and the thermophilic isolates four taxa within the genus Thermoanaerobacterium and one within Thermoanaerobacter (both formerly Clostridium). The most widespread mesophilic bacterium was closely related to C. magnum and occurred in three of four mills. One mill was contaminated with a novel mesophilic bacterium most closely related to C. thiosulfatireducens. The most common thermophile was T. thermosaccharolyticum, occurring in all four mills. The genetic relationships of the mill isolates to described species indicated that most of them are potential members of new species. On the basis of identical ribotypes clay could be identified to be the contamination source of thermophilic bacteria. Automated ribotyping can be a useful tool for the identification of clostridia as soon as comprehensive identification libraries are available.

  18. Anaerobic digestion of whole stillage from dry-grind corn ethanol plant under mesophilic and thermophilic conditions.

    PubMed

    Eskicioglu, Cigdem; Kennedy, Kevin J; Marin, Juan; Strehler, Benjamin

    2011-01-01

    Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88±8 L (49±5 L CH4) and 96±19 L (65±14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD=254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Multiple approaches to characterize the microbial community in a thermophilic anaerobic digester running on swine manure: a case study.

    PubMed

    Tuan, Nguyen Ngoc; Chang, Yi-Chia; Yu, Chang-Ping; Huang, Shir-Ly

    2014-01-01

    In this study, the first survey of microbial community in thermophilic anaerobic digester using swine manure as sole feedstock was performed by multiple approaches including denaturing gradient gel electrophoresis (DGGE), clone library and pyrosequencing techniques. The integrated analysis of 21 DGGE bands, 126 clones and 8506 pyrosequencing read sequences revealed that Clostridia from the phylum Firmicutes account for the most dominant Bacteria. In addition, our analysis also identified additional taxa that were missed by the previous researches, including members of the bacterial phyla Synergistetes, Planctomycetes, Armatimonadetes, Chloroflexi and Nitrospira which might also play a role in thermophilic anaerobic digester. Most archaeal 16S rRNA sequences could be assigned to the order Methanobacteriales instead of Methanomicrobiales comparing to previous studies. In addition, this study reported that the member of Methanothermobacter genus was firstly found in thermophilic anaerobic digester. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. [Thermophilic endospores in the environment of a sugar mill in Jujuy].

    PubMed

    Carrillo, L

    2000-01-01

    Twenty six samples from green and scorched sugarcane stems and leaves, sugarmill air dust and raw sugar were analyzed. Thirty nine thermophilic bacilli strains were isolated. Physiological and morphological examinations were carried out according to Bergey's Manual. The strains were identified as B. licheniformis (66.7%), B. coagulans (17.9%), B. stearothermophilus (10.3%) y B. subtilis (5.1%).

  1. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae.

    PubMed

    Podosokorskaya, Olga A; Kadnikov, Vitaly V; Gavrilov, Sergey N; Mardanov, Andrey V; Merkel, Alexander Y; Karnachuk, Olga V; Ravin, Nikolay V; Bonch-Osmolovskaya, Elizaveta A; Kublanov, Ilya V

    2013-06-01

    A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal.

    PubMed

    Courtens, Emilie Np; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-09-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.

  3. Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread.

    PubMed

    Singh, B; Satyanarayana, T

    2008-12-01

    Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air-lift fermenters. Among surfactants tested, Tweens (Tween-20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X-100 inhibited the enzyme production. The mould produced phytase optimally at a(w) 0.95, and it declined sharply below this a(w) value. The enzyme production was comparable in air-lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca-alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. The phytase production by S. thermophile was enhanced in the presence of Tween-80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca-alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high-soluble phosphate. The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air-lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.

  4. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal

    PubMed Central

    Courtens, Emilie NP; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-01-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to ‘Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of 13C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g−1 VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology. PMID:26894446

  5. Thermophilization of adult and juvenile tree communities in the northern tropical Andes.

    PubMed

    Duque, Alvaro; Stevenson, Pablo R; Feeley, Kenneth J

    2015-08-25

    Climate change is expected to cause shifts in the composition of tropical montane forests towards increased relative abundances of species whose ranges were previously centered at lower, hotter elevations. To investigate this process of "thermophilization," we analyzed patterns of compositional change over the last decade using recensus data from a network of 16 adult and juvenile tree plots in the tropical forests of northern Andes Mountains and adjacent lowlands in northwestern Colombia. Analyses show evidence that tree species composition is strongly linked to temperature and that composition is changing directionally through time, potentially in response to climate change and increasing temperatures. Mean rates of thermophilization [thermal migration rate (TMR), °C ⋅ y(-1)] across all censuses were 0.011 °C ⋅ y(-1) (95% confidence interval = 0.002-0.022 °C ⋅ y(-1)) for adult trees and 0.027 °C ⋅ y(-1) (95% confidence interval = 0.009-0.050 °C ⋅ y(-1)) for juvenile trees. The fact that thermophilization is occurring in both the adult and juvenile trees and at rates consistent with concurrent warming supports the hypothesis that the observed compositional changes are part of a long-term process, such as global warming, and are not a response to any single episodic event. The observed changes in composition were driven primarily by patterns of tree mortality, indicating that the changes in composition are mostly via range retractions, rather than range shifts or expansions. These results all indicate that tropical forests are being strongly affected by climate change and suggest that many species will be at elevated risk for extinction as warming continues.

  6. Thermophilization of adult and juvenile tree communities in the northern tropical Andes

    PubMed Central

    Duque, Alvaro; Stevenson, Pablo R.; Feeley, Kenneth J.

    2015-01-01

    Climate change is expected to cause shifts in the composition of tropical montane forests towards increased relative abundances of species whose ranges were previously centered at lower, hotter elevations. To investigate this process of “thermophilization,” we analyzed patterns of compositional change over the last decade using recensus data from a network of 16 adult and juvenile tree plots in the tropical forests of northern Andes Mountains and adjacent lowlands in northwestern Colombia. Analyses show evidence that tree species composition is strongly linked to temperature and that composition is changing directionally through time, potentially in response to climate change and increasing temperatures. Mean rates of thermophilization [thermal migration rate (TMR), °C⋅y−1] across all censuses were 0.011 °C⋅y−1 (95% confidence interval = 0.002–0.022 °C⋅y−1) for adult trees and 0.027 °C⋅y−1 (95% confidence interval = 0.009–0.050 °C⋅y−1) for juvenile trees. The fact that thermophilization is occurring in both the adult and juvenile trees and at rates consistent with concurrent warming supports the hypothesis that the observed compositional changes are part of a long-term process, such as global warming, and are not a response to any single episodic event. The observed changes in composition were driven primarily by patterns of tree mortality, indicating that the changes in composition are mostly via range retractions, rather than range shifts or expansions. These results all indicate that tropical forests are being strongly affected by climate change and suggest that many species will be at elevated risk for extinction as warming continues. PMID:26261350

  7. The effect of composting on the persistence of four ionophores in dairy manure and poultry litter

    USDA-ARS?s Scientific Manuscript database

    Manure composting is a well-described approach for stabilization of nutrients and reduction of pathogens and odors. Although composting studies have shown that thermophilic temperatures and aerobic conditions can increase removal rates of selected antibiotics, comparable information is lacking for ...

  8. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  9. Facilitating aerobic exercise training in older adults with Alzheimer's disease.

    PubMed

    Yu, Fang; Kolanowski, Ann

    2009-01-01

    Emerging science suggests that aerobic exercise might modify the pathophysiology of Alzheimer's disease (AD) and improve cognition. However, there are no clinical practice guidelines for aerobic exercise prescription and training in older adults with AD. A few existing studies showed that older adults with AD can participate in aerobic exercise and improve dementia symptoms, but lack adequate descriptions of their aerobic exercise training programs and their clinical applicability. In this paper, we summarize current knowledge about the potential benefits of aerobic exercise in older adults with AD. We then describe the development of a moderate-intensity aerobic exercise program for this population and report results from its initial testing in a feasibility trial completed by two persons with AD. Two older adults with AD completed the aerobic exercise program. Barriers to the program's implementation are described, and methods to improve more wide-spread adoption of such programs and the design of future studies that test them are suggested.

  10. Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses.

    PubMed

    Cason, J A; Bailey, J S; Stern, N J; Whittemore, A D; Cox, N A

    1997-07-01

    Broiler carcasses were removed from commercial processing lines immediately after defeathering, before chilling, and after chilling to determine whether any relationship exists between aerobic bacteria and the human enteropathogens salmonellae and Campylobacter. In two experiments, a whole carcass rinse procedure was used to sample 30 carcasses after defeathering, 90 carcasses before chilling, and 90 carcasses after chilling, for a total of 210 different carcasses. Aerobic bacteria and Campylobacter spp. were enumerated and the incidence of salmonellae was determined. Salmonellae and Campylobacter incidences were 20 and 94%, respectively, for all carcasses sampled. After picking, neither salmonellae-positive nor Campylobacter-positive carcasses had mean aerobic most probable number (MPN) values that were different from carcasses negative for those organisms. Immediately before chilling, aerobic and Campylobacter counts were 7.12 and 5.33 log10 cfu per carcass, respectively. Immersion chilling reduced aerobic counts by approximately 1.8 log and Campylobacter by 1.5 log, with no change in salmonellae-positive carcasses. There was no difference in aerobic or Campylobacter counts between carcasses that were positive or negative for salmonellae at any of the sampling locations, nor was any correlation found between levels of aerobic organisms and Campylobacter. Carcasses with aerobic counts above the mean or more than one standard deviation above the mean also failed to show any correlation. Discriminant analysis indicated error rates as high as 50% when numbers of aerobic bacteria were used to predict incidence of salmonellae or Campylobacter on individual carcasses. Aerobic bacteria are not suitable as index organisms for salmonellae or Campylobacter on broiler carcasses.

  11. Effect of alkaline pretreatment on mesophilic and thermophilic anaerobic digestion of a submerged macrophyte: Inhibition and recovery against dissolved lignin during semi-continuous operation.

    PubMed

    Koyama, Mitsuhiko; Watanabe, Keiko; Kurosawa, Norio; Ishikawa, Kanako; Ban, Syuhei; Toda, Tatsuki

    2017-08-01

    The long-term effect of alkaline pretreatment on semi-continuous anaerobic digestion (AD) of the lignin-rich submerged macrophyte Potamogeton maackianus was investigated using mesophilic and thermophilic conditions. In pretreated reactors, dissolved lignin accumulated to high levels. CH 4 production under the pretreated condition was higher than that of the untreated condition, but decreased from Days 22 (mesophilic) and 42 (thermophilic). However, CH 4 production subsequently recovered, although dissolved lignin accumulated. Further, the change in the microbial community was observed between conditions. These results suggest that dissolved lignin temporarily inhibited AD, although acclimatization to dissolved lignin occurred during long-term operation. During the steady state period, mesophilic conditions achieved a 42% increase in the CH 4 yield using pretreatment, while thermophilic conditions yielded an 8% increment. Because volatile fatty acids accumulated even after acclimatization during the thermophilic pretreated condition and was discharged with the effluent, improvement of the methanogenic step would enable enhanced CH 4 recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  14. Response surface optimization of substrates for thermophilic anaerobic codigestion of sewage sludge and food waste.

    PubMed

    Kim, Hyun-Woo; Shin, Hang-Sik; Han, Sun-Kee; Oh, Sae-Eun

    2007-03-01

    This study investigated the effects of food waste constituents on thermophilic (55 degrees C) anaerobic codigestion of sewage sludge and food waste by using statistical techniques based on biochemical methane potential tests. Various combinations of grain, vegetable, and meat as cosubstrate were tested, and then the data of methane potential (MP), methane production rate (MPR), and first-order kinetic constant of hydrolysis (kH) were collected for further analyses. Response surface methodology by the Box-Behnken design can verify the effects and their interactions of three variables on responses efficiently. MP was mainly affected by grain, whereas MPR and kH were affected by both vegetable and meat. Estimated polynomial regression models can properly explain the variability of experimental data with a high-adjusted R2 of 0.727, 0.836, and 0.915, respectively. By applying a series of optimization techniques, it was possible to find the proper criteria of cosubstrate. The optimal cosubstrate region was suggested based on overlay contours of overall mean responses. With the desirability contour plots, it was found that optimal conditions of cosubstrate for the maximum MPR (56.6 mL of CH4/g of chemical oxygen demand [COD]/day) were 0.71 g of COD/L of grain, 0.18 g of COD/L of vegetable, and 0.38 g of COD/L of meat by the simultaneous consideration of MP, MPR, and kH. Within the range of each factor examined, the corresponding optimal ratio of sewage sludge to cosubstrate was 71:29 as the COD basis. Elaborate discussions could yield practical operational strategies for the enhanced thermophilic anaerobic codigestion of sewage sludge and food waste.

  15. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  16. Feasibility of thermophilic anaerobic processes for treating waste activated sludge under low HRT and intermittent mixing.

    PubMed

    Leite, Wanderli; Magnus, Bruna Scandolara; Guimarães, Lorena Bittencourt; Gottardo, Marco; Belli Filho, Paulo

    2017-10-01

    Thermophilic anaerobic digestion (AD) arises as an optimized solution for the waste activated sludge (WAS) management. However, there are few feasibility studies using low solids content typically found in the WAS, and that consider uncommon operational conditions such as intermittent mixing and low hydraulic retention time (HRT). In this investigation, a single-stage pilot reactor was used to treat WAS at low HRT (13, 9, 6 and 5 days) and intermittent mixing (withholding mixing 2 h prior feeding). Thermophilic anaerobic digestion (55 °C) was initiated from a mesophilic digester (35 °C) by the one-step startup strategy. Although instabilities on partial alkalinity (1245-3000 mgCaCO 3 /L), volatile fatty acids (1774-6421 mg/L acetic acid) and biogas production (0.21-0.09 m 3 /m 3 reactor .d) were observed, methanogenesis started to recover in 18 days. The thermophilic treatment of WAS at 13 and 9 days HRT efficiently converted VS into biogas (22 and 21%, respectively) and achieved high biogas yield (0.24 and 0.22 m 3 /kgVS fed , respectively). Intermittent mixing improved the retention of methanogens inside the reactor and reduced the washout effect even at low HRT (<9 days). The negative thermal balance found was influenced by the low solids content in the WAS (2.1% TS) and by the heat losses from the digester walls. The energy balance and economic analyses demonstrated the feasibility of thermophilic AD of WAS in a hypothetical full-scale system, when the heat energy could be recovered from methane in a scenario of higher solids concentration in the substrate (>5% TS). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity.

    PubMed

    Wang, Caihong; Luo, Huiying; Niu, Canfang; Shi, Pengjun; Huang, Huoqing; Meng, Kun; Bai, Yingguo; Wang, Kun; Hua, Huifang; Yao, Bin

    2015-02-01

    Thermophilic β-mannanases are of increasing importance for wide industrial applications. In the current study, gene cloning, functional expression in Pichia pastoris, and characterization of a thermophilic β-mannanase (Man5A) from thermophilic Talaromyces leycettanus JCM12802 are reported. Deduced Man5A exhibits the highest identity with a putative β-mannanase from Talaromyces stipitatus ATCC10500 (70.3 %) and is composed of an N-terminal signal peptide, a fungal-type carbohydrate-binding module (CBM) of family 1, and a catalytic domain of glycosyl hydrolase (GH) family 5 at the C-terminus. Two recombinant proteins with different glycosylation levels, termed Man5A1 (72 kDa) and Man5A2 (60 kDa), were identified after purification. Both enzymes were thermophilic, exhibiting optimal activity at 85-90 °C, and were highly stable at 70 °C. Man5A1 and Man5A2 had a pH optimum of 4.5 and 4.0, respectively, and were highly stable over the broad pH range of 3.0-10.0. Most metal ions and sodium dodecyl sulfate (SDS) had no effect on the enzymatic activities. Man5A1 and Man5A2 exhibited high specific activity (2,160 and 1,800 U/mg, respectively) when using locust bean gum as the substrate. The CBM1 and two key residues D191 and R286 were found to affect Man5A thermostability. Man5A displays a classical four-site-binding mode, hydrolyzing mannooligosaccharides into smaller units, galactomannan into mannose and mannobiose, and glucomanman into mannose, mannobiose, and mannopentaose, respectively. All these properties make Man5A a good candidate for extensive applications in the bioconversion, pulp bleaching, textile, food, and feed industries.

  18. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis.

    PubMed

    Tennessen, Jason M; Bertagnolli, Nicolas M; Evans, Janelle; Sieber, Matt H; Cox, James; Thummel, Carl S

    2014-03-12

    Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. Copyright © 2014 Tennessen et al.

  19. Aerobic capacity and its correlates in patients with ankylosing spondylitis.

    PubMed

    Hsieh, Lin-Fen; Wei, James Cheng-Chung; Lee, Hsin-Yi; Chuang, Chih-Cheng; Jiang, Jiunn-Song; Chang, Kae-Chwen

    2016-05-01

    To evaluate aerobic capacity in patients with ankylosing spondylitis (AS) and determine possible relationships between aerobic capacity, pulmonary function, and disease-related variables. Forty-two patients with AS and 42 healthy controls were recruited in the study. Descriptive data, disease-related variables (grip strength, lumbosacral mobility, occiput-to-wall distance, chest expansion, finger-to-floor distance, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and hemoglobin), and chest and thoracic spine x-rays were collected in each patient with AS. All subjects took standard pulmonary function and exercise tolerance tests, and forced vital capacity (FVC) and aerobic capacity were recorded. Both aerobic capacity and FVC in patients with AS were significantly lower than those in normal subjects (P < 0.05). AS patients with BASFI scores of < 3 or BASDI scores of < 4 had a higher aerobic capacity. There was significant correlation between aerobic capacity, vital capacity, chest expansion, Schober's test, cervical range of motion, and BASFI in patients with AS. Neither aerobic capacity nor vital capacity correlated with disease duration, ESR, CRP, and hemoglobin. Significantly reduced aerobic capacity and FVC were observed in patients with AS, and there was significant correlation between aerobic capacity, vital capacity, chest expansion, and BASFI. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  20. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    PubMed

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH 4 + -N L -1 ) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH 4 + -N L -1 ) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH 4 + -N L -1 ), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams. Copyright © 2016 Elsevier Ltd. All rights reserved.