Sample records for combining multiple features

  1. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    PubMed

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.

  2. Features in visual search combine linearly

    PubMed Central

    Pramod, R. T.; Arun, S. P.

    2014-01-01

    Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features (intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and co-activation models (based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features—in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search. PMID:24715328

  3. Site Features

    EPA Pesticide Factsheets

    This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and were combined into one region-wide layer.

  4. Computer Based Behavioral Biometric Authentication via Multi-Modal Fusion

    DTIC Science & Technology

    2013-03-01

    the decisions made by each individual modality. Fusion of features is the simple concatenation of feature vectors from multiple modalities to be...of Features BayesNet MDL 330 LibSVM PCA 80 J48 Wrapper Evaluator 11 3.5.3 Ensemble Based Decision Level Fusion. In ensemble learning multiple ...The high fusion percentages validate our hypothesis that by combining features from multiple modalities, classification accuracy can be improved. As

  5. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex

    PubMed Central

    Summerfield, Christopher; Egner, Tobias

    2016-01-01

    Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936

  6. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  7. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  8. Multiple Representations-Based Face Sketch-Photo Synthesis.

    PubMed

    Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie

    2016-11-01

    Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.

  9. Detecting bursts in the EEG of very and extremely premature infants using a multi-feature approach.

    PubMed

    O'Toole, John M; Boylan, Geraldine B; Lloyd, Rhodri O; Goulding, Robert M; Vanhatalo, Sampsa; Stevenson, Nathan J

    2017-07-01

    To develop a method that segments preterm EEG into bursts and inter-bursts by extracting and combining multiple EEG features. Two EEG experts annotated bursts in individual EEG channels for 36 preterm infants with gestational age < 30 weeks. The feature set included spectral, amplitude, and frequency-weighted energy features. Using a consensus annotation, feature selection removed redundant features and a support vector machine combined features. Area under the receiver operator characteristic (AUC) and Cohen's kappa (κ) evaluated performance within a cross-validation procedure. The proposed channel-independent method improves AUC by 4-5% over existing methods (p < 0.001, n=36), with median (95% confidence interval) AUC of 0.989 (0.973-0.997) and sensitivity-specificity of 95.8-94.4%. Agreement rates between the detector and experts' annotations, κ=0.72 (0.36-0.83) and κ=0.65 (0.32-0.81), are comparable to inter-rater agreement, κ=0.60 (0.21-0.74). Automating the visual identification of bursts in preterm EEG is achievable with a high level of accuracy. Multiple features, combined using a data-driven approach, improves on existing single-feature methods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-01-01

    The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.

  11. Exploring multiple feature combination strategies with a recurrent neural network architecture for off-line handwriting recognition

    NASA Astrophysics Data System (ADS)

    Mioulet, L.; Bideault, G.; Chatelain, C.; Paquet, T.; Brunessaux, S.

    2015-01-01

    The BLSTM-CTC is a novel recurrent neural network architecture that has outperformed previous state of the art algorithms in tasks such as speech recognition or handwriting recognition. It has the ability to process long term dependencies in temporal signals in order to label unsegmented data. This paper describes different ways of combining features using a BLSTM-CTC architecture. Not only do we explore the low level combination (feature space combination) but we also explore high level combination (decoding combination) and mid-level (internal system representation combination). The results are compared on the RIMES word database. Our results show that the low level combination works best, thanks to the powerful data modeling of the LSTM neurons.

  12. Feature extraction from multiple data sources using genetic programming

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Brumby, Steven P.; Pope, Paul A.; Eads, Damian R.; Esch-Mosher, Diana M.; Galassi, Mark C.; Harvey, Neal R.; McCulloch, Hersey D.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Bloch, Jeffrey J.; David, Nancy A.

    2002-08-01

    Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.

  13. Combining Statistical and Geometric Features for Colonic Polyp Detection in CTC Based on Multiple Kernel Learning

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Petrick, Nicholas; Summers, Ronald M.

    2010-01-01

    Colon cancer is the second leading cause of cancer-related deaths in the United States. Computed tomographic colonography (CTC) combined with a computer aided detection system provides a feasible approach for improving colonic polyps detection and increasing the use of CTC for colon cancer screening. To distinguish true polyps from false positives, various features extracted from polyp candidates have been proposed. Most of these traditional features try to capture the shape information of polyp candidates or neighborhood knowledge about the surrounding structures (fold, colon wall, etc.). In this paper, we propose a new set of shape descriptors for polyp candidates based on statistical curvature information. These features called histograms of curvature features are rotation, translation and scale invariant and can be treated as complementing existing feature set. Then in order to make full use of the traditional geometric features (defined as group A) and the new statistical features (group B) which are highly heterogeneous, we employed a multiple kernel learning method based on semi-definite programming to learn an optimized classification kernel from the two groups of features. We conducted leave-one-patient-out test on a CTC dataset which contained scans from 66 patients. Experimental results show that a support vector machine (SVM) based on the combined feature set and the semi-definite optimization kernel achieved higher FROC performance compared to SVMs using the two groups of features separately. At a false positive per scan rate of 5, the sensitivity of the SVM using the combined features improved from 0.77 (Group A) and 0.73 (Group B) to 0.83 (p ≤ 0.01). PMID:20953299

  14. Acoustic features of objects matched by an echolocating bottlenose dolphin.

    PubMed

    Delong, Caroline M; Au, Whitlow W L; Lemonds, David W; Harley, Heidi E; Roitblat, Herbert L

    2006-03-01

    The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.

  15. Salient object detection method based on multiple semantic features

    NASA Astrophysics Data System (ADS)

    Wang, Chunyang; Yu, Chunyan; Song, Meiping; Wang, Yulei

    2018-04-01

    The existing salient object detection model can only detect the approximate location of salient object, or highlight the background, to resolve the above problem, a salient object detection method was proposed based on image semantic features. First of all, three novel salient features were presented in this paper, including object edge density feature (EF), object semantic feature based on the convex hull (CF) and object lightness contrast feature (LF). Secondly, the multiple salient features were trained with random detection windows. Thirdly, Naive Bayesian model was used for combine these features for salient detection. The results on public datasets showed that our method performed well, the location of salient object can be fixed and the salient object can be accurately detected and marked by the specific window.

  16. SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.

    PubMed

    Xu, Wenxuan; Zhang, Li; Lu, Yaping

    2016-06-01

    The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. [A novel method of multi-channel feature extraction combining multivariate autoregression and multiple-linear principal component analysis].

    PubMed

    Wang, Jinjia; Zhang, Yanna

    2015-02-01

    Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.

  18. Ranking support vector machine for multiple kernels output combination in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Lin, Yuan; Wu, Jiajin; Tang, Nan; Lin, Hongfei; Li, Yanpeng

    2011-10-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. However, the volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database curators to detect and curate protein interaction information manually. We present a multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, and graph and combines their output with Ranking support vector machine (SVM). Experimental evaluations show that the features in individual kernels are complementary and the kernel combined with Ranking SVM achieves better performance than those of the individual kernels, equal weight combination and optimal weight combination. Our approach can achieve state-of-the-art performance with respect to the comparable evaluations, with 64.88% F-score and 88.02% AUC on the AImed corpus. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fast and Efficient Feature Engineering for Multi-Cohort Analysis of EHR Data.

    PubMed

    Ozery-Flato, Michal; Yanover, Chen; Gottlieb, Assaf; Weissbrod, Omer; Parush Shear-Yashuv, Naama; Goldschmidt, Yaara

    2017-01-01

    We present a framework for feature engineering, tailored for longitudinal structured data, such as electronic health records (EHRs). To fast-track feature engineering and extraction, the framework combines general-use plug-in extractors, a multi-cohort management mechanism, and modular memoization. Using this framework, we rapidly extracted thousands of features from diverse and large healthcare data sources in multiple projects.

  20. Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease

    PubMed Central

    Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156

  1. Prediction of Cognitive States During Flight Simulation Using Multimodal Psychophysiological Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Stephens, Chad L.; Milletich, Robert J.; Heinich, Christina M.; Last, Mary Carolyn; Napoli, Nicholas J.; Abraham, Nijo A.; Prinzel, Lawrence J.; Motter, Mark A.; Pope, Alan T.

    2017-01-01

    The Commercial Aviation Safety Team found the majority of recent international commercial aviation accidents attributable to loss of control inflight involved flight crew loss of airplane state awareness (ASA), and distraction was involved in all of them. Research on attention-related human performance limiting states (AHPLS) such as channelized attention, diverted attention, startle/surprise, and confirmation bias, has been recommended in a Safety Enhancement (SE) entitled "Training for Attention Management." To accomplish the detection of such cognitive and psychophysiological states, a broad suite of sensors was implemented to simultaneously measure their physiological markers during a high fidelity flight simulation human subject study. Twenty-four pilot participants were asked to wear the sensors while they performed benchmark tasks and motion-based flight scenarios designed to induce AHPLS. Pattern classification was employed to predict the occurrence of AHPLS during flight simulation also designed to induce those states. Classifier training data were collected during performance of the benchmark tasks. Multimodal classification was performed, using pre-processed electroencephalography, galvanic skin response, electrocardiogram, and respiration signals as input features. A combination of one, some or all modalities were used. Extreme gradient boosting, random forest and two support vector machine classifiers were implemented. The best accuracy for each modality-classifier combination is reported. Results using a select set of features and using the full set of available features are presented. Further, results are presented for training one classifier with the combined features and for training multiple classifiers with features from each modality separately. Using the select set of features and combined training, multistate prediction accuracy averaged 0.64 +/- 0.14 across thirteen participants and was significantly higher than that for the separate training case. These results support the goal of demonstrating simultaneous real-time classification of multiple states using multiple sensing modalities in high fidelity flight simulators. This detection is intended to support and inform training methods under development to mitigate the loss of ASA and thus reduce accidents and incidents.

  2. A Survey of Insider Attack Detection Research

    DTIC Science & Technology

    2008-08-25

    modeling of statistical features , such as the frequency of events, the duration of events, the co-occurrence of multiple events combined through...forms of attack that have been reported [Error! Reference source not found.]. For example: • Unauthorized extraction , duplication, or exfiltration...network level. Schultz pointed out that not one approach will work but solutions need to be based on multiple sensors to be able to find any combination

  3. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.

    PubMed

    Qin, Jiang-Bo; Liu, Zhenyu; Zhang, Hui; Shen, Chen; Wang, Xiao-Chun; Tan, Yan; Wang, Shuo; Wu, Xiao-Feng; Tian, Jie

    2017-05-07

    BACKGROUND Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences - T2-Weighted-Imaging-FLAIR (FLAIR), T1-Weighted-Imaging-Contrast-Enhanced (T1-CE), and Apparent Diffusion Coefficient (ADC) map - in glioma grading, and to improve the power of glioma grading by combining features. MATERIAL AND METHODS Sixty-six patients with histopathologically proven gliomas underwent T2-FLAIR and T1WI-CE sequence scanning with some patients (n=63) also undergoing DWI scanning. A total of 114 radiomic features were derived with radiomic methods by using in-house software. All radiomic features were compared between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Features with significant statistical differences were selected for receiver operating characteristic (ROC) curve analysis. The relationships between significantly different radiomic features and glial fibrillary acidic protein (GFAP) expression were evaluated. RESULTS A total of 8 radiomic features from 3 MRI sequences displayed significant differences between LGGs and HGGs. FLAIR GLCM Cluster Shade, T1-CE GLCM Entropy, and ADC GLCM Homogeneity were the best features to use in differentiating LGGs and HGGs in each MRI sequence. The combined feature was best able to differentiate LGGs and HGGs, which improved the accuracy of glioma grading compared to the above features in each MRI sequence. A significant correlation was found between GFAP and T1-CE GLCM Entropy, as well as between GFAP and ADC GLCM Homogeneity. CONCLUSIONS The combined radiomic feature had the highest efficacy in distinguishing LGGs from HGGs.

  4. A data fusion approach for track monitoring from multiple in-service trains

    NASA Astrophysics Data System (ADS)

    Lederman, George; Chen, Siheng; Garrett, James H.; Kovačević, Jelena; Noh, Hae Young; Bielak, Jacobo

    2017-10-01

    We present a data fusion approach for enabling data-driven rail-infrastructure monitoring from multiple in-service trains. A number of researchers have proposed using vibration data collected from in-service trains as a low-cost method to monitor track geometry. The majority of this work has focused on developing novel features to extract information about the tracks from data produced by individual sensors on individual trains. We extend this work by presenting a technique to combine extracted features from multiple passes over the tracks from multiple sensors aboard multiple vehicles. There are a number of challenges in combining multiple data sources, like different relative position coordinates depending on the location of the sensor within the train. Furthermore, as the number of sensors increases, the likelihood that some will malfunction also increases. We use a two-step approach that first minimizes position offset errors through data alignment, then fuses the data with a novel adaptive Kalman filter that weights data according to its estimated reliability. We show the efficacy of this approach both through simulations and on a data-set collected from two instrumented trains operating over a one-year period. Combining data from numerous in-service trains allows for more continuous and more reliable data-driven monitoring than analyzing data from any one train alone; as the number of instrumented trains increases, the proposed fusion approach could facilitate track monitoring of entire rail-networks.

  5. Multiple cutaneous hemangiomas in a patient with combined pituitary hormone deficiency.

    PubMed

    Aykut, Ayca; Ozen, Samim; Sımsek, Damla Gokşen; Onay, Huseyin; Cogulu, Ozgur; Darcan, Sukran; Ozkinay, Ferda

    2014-01-01

    Combined pituitary hormone deficiency (CPHD) refers to a rare heterogeneous group of conditions in which there is a deficiency in at least two anterior pituitary hormones. Patients with POU1F1 mutations show a combined pituitary deficiency with low or absent levels of growth hormone, prolactin, and thyroid-stimulating hormone. In this study, a 7-month-old girl with a CPHD is presented. She had facial dysmorphologic features, hypertrichosis, and hypotonia. Additionally, she also presented with multiple cutaneous hemangioma that until now has not been reported in association with this disorder.

  6. A novel visual saliency analysis model based on dynamic multiple feature combination strategy

    NASA Astrophysics Data System (ADS)

    Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao

    2017-06-01

    The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.

  7. Automatic feature-based grouping during multiple object tracking.

    PubMed

    Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J

    2013-12-01

    Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.

  8. Multiple beam interference confocal microscopy: a tool for morphological investigation of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio

    2000-05-01

    Multiple beam interference system is used in conjunction with a conventional scanning confocal microscope to examine the morphology and construction of 3D images of Histolytic Ameba and parasite Candida Albicans. The present combination permits to adjoin advantages of both systems, namely the vertical high contrast and optical sectioning. The interference pattern obtained from a multiple internal reflection of a simple, sandwiched between the glass plate and the cover plate, was focussed on an objective of a scanning confocal microscope. According to optical path differences, morphological details were revealed. The combined features, namely improved resolution in z axis, originated from the interference pattern and the optical sectioning of the confocal scanning system, enhance the resolution and contrast dramatically. These features permitted to obtain unprecedented images of Histolytic Ameba and parasite Candida Albicans. Because of the improved contrast, several details like double wall structure of candida, internal structure of ameba are clearly visible.

  9. EFS: an ensemble feature selection tool implemented as R-package and web-application.

    PubMed

    Neumann, Ursula; Genze, Nikita; Heider, Dominik

    2017-01-01

    Feature selection methods aim at identifying a subset of features that improve the prediction performance of subsequent classification models and thereby also simplify their interpretability. Preceding studies demonstrated that single feature selection methods can have specific biases, whereas an ensemble feature selection has the advantage to alleviate and compensate for these biases. The software EFS (Ensemble Feature Selection) makes use of multiple feature selection methods and combines their normalized outputs to a quantitative ensemble importance. Currently, eight different feature selection methods have been integrated in EFS, which can be used separately or combined in an ensemble. EFS identifies relevant features while compensating specific biases of single methods due to an ensemble approach. Thereby, EFS can improve the prediction accuracy and interpretability in subsequent binary classification models. EFS can be downloaded as an R-package from CRAN or used via a web application at http://EFS.heiderlab.de.

  10. Emotion recognition based on multiple order features using fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Liu, Deyin; Qi, Lin

    2017-07-01

    In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.

  11. Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.

    2009-02-01

    Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

  12. Combined rule extraction and feature elimination in supervised classification.

    PubMed

    Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E

    2012-09-01

    There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.

  13. Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.

    PubMed

    Liu, Shengyu; Tang, Buzhou; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming

    2015-01-01

    Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.

  14. Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery

    PubMed Central

    Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel

    2016-01-01

    Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134

  15. Palmprint authentication using multiple classifiers

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Zhang, David

    2004-08-01

    This paper investigates the performance improvement for palmprint authentication using multiple classifiers. The proposed methods on personal authentication using palmprints can be divided into three categories; appearance- , line -, and texture-based. A combination of these approaches can be used to achieve higher performance. We propose to simultaneously extract palmprint features from PCA, Line detectors and Gabor-filters and combine their corresponding matching scores. This paper also investigates the comparative performance of simple combination rules and the hybrid fusion strategy to achieve performance improvement. Our experimental results on the database of 100 users demonstrate the usefulness of such approach over those based on individual classifiers.

  16. Combining heterogeneous features for colonic polyp detection in CTC based on semi-definite programming

    NASA Astrophysics Data System (ADS)

    Wang, Shijun; Yao, Jianhua; Petrick, Nicholas A.; Summers, Ronald M.

    2009-02-01

    Colon cancer is the second leading cause of cancer-related deaths in the United States. Computed tomographic colonography (CTC) combined with a computer aided detection system provides a feasible combination for improving colonic polyps detection and increasing the use of CTC for colon cancer screening. To distinguish true polyps from false positives, various features extracted from polyp candidates have been proposed. Most of these features try to capture the shape information of polyp candidates or neighborhood knowledge about the surrounding structures (fold, colon wall, etc.). In this paper, we propose a new set of shape descriptors for polyp candidates based on statistical curvature information. These features, called histogram of curvature features, are rotation, translation and scale invariant and can be treated as complementing our existing feature set. Then in order to make full use of the traditional features (defined as group A) and the new features (group B) which are highly heterogeneous, we employed a multiple kernel learning method based on semi-definite programming to identify an optimized classification kernel based on the combined set of features. We did leave-one-patient-out test on a CTC dataset which contained scans from 50 patients (with 90 6-9mm polyp detections). Experimental results show that a support vector machine (SVM) based on the combined feature set and the semi-definite optimization kernel achieved higher FROC performance compared to SVMs using the two groups of features separately. At a false positive per patient rate of 7, the sensitivity on 6-9mm polyps using the combined features improved from 0.78 (Group A) and 0.73 (Group B) to 0.82 (p<=0.01).

  17. Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study.

    PubMed

    Lonini, Luca; Shawen, Nicholas; Scanlan, Kathleen; Rymer, William Z; Kording, Konrad P; Jayaraman, Arun

    2016-03-31

    Clinical scores for evaluating walking skills with lower limb exoskeletons are often based on a single variable, such as distance walked or speed, even in cases where a host of features are measured. We investigated how to combine multiple features such that the resulting score has high discriminatory power, in particular with few patients. A new score is introduced that allows quantifying the walking ability of patients with spinal cord injury when using a powered exoskeleton. Four spinal cord injury patients were trained to walk over ground with the ReWalk™ exoskeleton. Body accelerations during use of the device were recorded by a wearable accelerometer and 4 features to evaluate walking skills were computed. The new score is the Gaussian naïve Bayes surprise, which evaluates patients relative to the features' distribution measured in 7 expert users of the ReWalk™. We compared our score based on all the features with a standard outcome measure, which is based on number of steps only. All 4 patients improved over the course of training, as their scores trended towards the expert users' scores. The combined score (Gaussian naïve surprise) was considerably more discriminative than the one using only walked distance (steps). At the end of training, 3 out of 4 patients were significantly different from the experts, according to the combined score (p < .001, Wilcoxon Signed-Rank Test). In contrast, all but one patient were scored as experts when number of steps was the only feature. Integrating multiple features could provide a more robust metric to measure patients' skills while they learn to walk with a robotic exoskeleton. Testing this approach with other features and more subjects remains as future work.

  18. Face recognition system using multiple face model of hybrid Fourier feature under uncontrolled illumination variation.

    PubMed

    Hwang, Wonjun; Wang, Haitao; Kim, Hyunwoo; Kee, Seok-Cheol; Kim, Junmo

    2011-04-01

    The authors present a robust face recognition system for large-scale data sets taken under uncontrolled illumination variations. The proposed face recognition system consists of a novel illumination-insensitive preprocessing method, a hybrid Fourier-based facial feature extraction, and a score fusion scheme. First, in the preprocessing stage, a face image is transformed into an illumination-insensitive image, called an "integral normalized gradient image," by normalizing and integrating the smoothed gradients of a facial image. Then, for feature extraction of complementary classifiers, multiple face models based upon hybrid Fourier features are applied. The hybrid Fourier features are extracted from different Fourier domains in different frequency bandwidths, and then each feature is individually classified by linear discriminant analysis. In addition, multiple face models are generated by plural normalized face images that have different eye distances. Finally, to combine scores from multiple complementary classifiers, a log likelihood ratio-based score fusion scheme is applied. The proposed system using the face recognition grand challenge (FRGC) experimental protocols is evaluated; FRGC is a large available data set. Experimental results on the FRGC version 2.0 data sets have shown that the proposed method shows an average of 81.49% verification rate on 2-D face images under various environmental variations such as illumination changes, expression changes, and time elapses.

  19. Combining multiple features for color texture classification

    NASA Astrophysics Data System (ADS)

    Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo

    2016-11-01

    The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.

  20. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  1. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.

    PubMed

    Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu

    2012-12-01

    Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The software and datasets are available at: http://www.csbio.sjtu.edu.cn/bioinf/mpsp.

  2. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.

    PubMed

    Samuel, Oluwarotimi Williams; Geng, Yanjuan; Li, Xiangxin; Li, Guanglin

    2017-10-28

    To control multiple degrees of freedom (MDoF) upper limb prostheses, pattern recognition (PR) of electromyogram (EMG) signals has been successfully applied. This technique requires amputees to provide sufficient EMG signals to decode their limb movement intentions (LMIs). However, amputees with neuromuscular disorder/high level amputation often cannot provide sufficient EMG control signals, and thus the applicability of the EMG-PR technique is limited especially to this category of amputees. As an alternative approach, electroencephalograph (EEG) signals recorded non-invasively from the brain have been utilized to decode the LMIs of humans. However, most of the existing EEG based limb movement decoding methods primarily focus on identifying limited classes of upper limb movements. In addition, investigation on EEG feature extraction methods for the decoding of multiple classes of LMIs has rarely been considered. Therefore, 32 EEG feature extraction methods (including 12 spectral domain descriptors (SDDs) and 20 time domain descriptors (TDDs)) were used to decode multiple classes of motor imagery patterns associated with different upper limb movements based on 64-channel EEG recordings. From the obtained experimental results, the best individual TDD achieved an accuracy of 67.05 ± 3.12% as against 87.03 ± 2.26% for the best SDD. By applying a linear feature combination technique, an optimal set of combined TDDs recorded an average accuracy of 90.68% while that of the SDDs achieved an accuracy of 99.55% which were significantly higher than those of the individual TDD and SDD at p < 0.05. Our findings suggest that optimal feature set combination would yield a relatively high decoding accuracy that may improve the clinical robustness of MDoF neuroprosthesis. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.

  3. Combined mining: discovering informative knowledge in complex data.

    PubMed

    Cao, Longbing; Zhang, Huaifeng; Zhao, Yanchang; Luo, Dan; Zhang, Chengqi

    2011-06-01

    Enterprise data mining applications often involve complex data such as multiple large heterogeneous data sources, user preferences, and business impact. In such situations, a single method or one-step mining is often limited in discovering informative knowledge. It would also be very time and space consuming, if not impossible, to join relevant large data sources for mining patterns consisting of multiple aspects of information. It is crucial to develop effective approaches for mining patterns combining necessary information from multiple relevant business lines, catering for real business settings and decision-making actions rather than just providing a single line of patterns. The recent years have seen increasing efforts on mining more informative patterns, e.g., integrating frequent pattern mining with classifications to generate frequent pattern-based classifiers. Rather than presenting a specific algorithm, this paper builds on our existing works and proposes combined mining as a general approach to mining for informative patterns combining components from either multiple data sets or multiple features or by multiple methods on demand. We summarize general frameworks, paradigms, and basic processes for multifeature combined mining, multisource combined mining, and multimethod combined mining. Novel types of combined patterns, such as incremental cluster patterns, can result from such frameworks, which cannot be directly produced by the existing methods. A set of real-world case studies has been conducted to test the frameworks, with some of them briefed in this paper. They identify combined patterns for informing government debt prevention and improving government service objectives, which show the flexibility and instantiation capability of combined mining in discovering informative knowledge in complex data.

  4. Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.

    2018-06-01

    Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.

  5. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway.

    PubMed

    Tremblay-LeMay, Rosemarie; Rastgoo, Nasrin; Chang, Hong

    2018-03-27

    Even with recent advances in therapy regimen, multiple myeloma patients commonly develop drug resistance and relapse. The relevance of targeting the PD-1/PD-L1 axis has been demonstrated in pre-clinical models. Monotherapy with PD-1 inhibitors produced disappointing results, but combinations with other drugs used in the treatment of multiple myeloma seemed promising, and clinical trials are ongoing. However, there have recently been concerns about the safety of PD-1 and PD-L1 inhibitors combined with immunomodulators in the treatment of multiple myeloma, and several trials have been suspended. There is therefore a need for alternative combinations of drugs or different approaches to target this pathway. Protein expression of PD-L1 on cancer cells, including in multiple myeloma, has been associated with intrinsic aggressive features independent of immune evasion mechanisms, thereby providing a rationale for the adoption of new strategies directly targeting PD-L1 protein expression. Drugs modulating the transcriptional and post-transcriptional regulation of PD-L1 could represent new therapeutic strategies for the treatment of multiple myeloma, help potentiate the action of other drugs or be combined to PD-1/PD-L1 inhibitors in order to avoid the potentially problematic combination with immunomodulators. This review will focus on the pathophysiology of PD-L1 expression in multiple myeloma and drugs that have been shown to modulate this expression.

  6. Protein fold recognition using geometric kernel data fusion.

    PubMed

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-07-01

    Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.

  7. Novel and general approach to linear filter design for contrast-to-noise ratio enhancement of magnetic resonance images with multiple interfering features in the scene

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Windham, Joe P.

    1992-04-01

    Maximizing the minimum absolute contrast-to-noise ratios (CNRs) between a desired feature and multiple interfering processes, by linear combination of images in a magnetic resonance imaging (MRI) scene sequence, is attractive for MRI analysis and interpretation. A general formulation of the problem is presented, along with a novel solution utilizing the simple and numerically stable method of Gram-Schmidt orthogonalization. We derive explicit solutions for the case of two interfering features first, then for three interfering features, and, finally, using a typical example, for an arbitrary number of interfering feature. For the case of two interfering features, we also provide simplified analytical expressions for the signal-to-noise ratios (SNRs) and CNRs of the filtered images. The technique is demonstrated through its applications to simulated and acquired MRI scene sequences of a human brain with a cerebral infarction. For these applications, a 50 to 100% improvement for the smallest absolute CNR is obtained.

  8. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, David M.; Downing, Robert G.

    1997-01-01

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.

  9. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, D.M.; Downing, R.G.

    1997-02-18

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.

  10. Merging NLO multi-jet calculations with improved unitarization

    NASA Astrophysics Data System (ADS)

    Bellm, Johannes; Gieseke, Stefan; Plätzer, Simon

    2018-03-01

    We present an algorithm to combine multiple matrix elements at LO and NLO with a parton shower. We build on the unitarized merging paradigm. The inclusion of higher orders and multiplicities reduce the scale uncertainties for observables sensitive to hard emissions, while preserving the features of inclusive quantities. The combination allows further soft and collinear emissions to be predicted by the all-order parton-shower approximation. We inspect the impact of terms that are formally but not parametrically negligible. We present results for a number of collider observables where multiple jets are observed, either on their own or in the presence of additional uncoloured particles. The algorithm is implemented in the event generator Herwig.

  11. Method for preparing small volume reaction containers

    DOEpatents

    Retterer, Scott T.; Doktycz, Mitchel J.

    2017-04-25

    Engineered reaction containers that can be physically and chemically defined to control the flux of molecules of different sizes and charge are disclosed. Methods for constructing small volume reaction containers through a combination of etching and deposition are also disclosed. The methods allow for the fabrication of multiple devices that possess features on multiple length scales, specifically small volume containers with controlled porosity on the nanoscale.

  12. Combining heterogenous features for 3D hand-held object recognition

    NASA Astrophysics Data System (ADS)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  13. Classification of MR brain images by combination of multi-CNNs for AD diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Danni; Liu, Manhua; Fu, Jianliang; Wang, Yaping

    2017-07-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for development of future treatment. Magnetic resonance images (MRI) play important role to help understand the brain anatomical changes related to AD. Conventional methods extract the hand-crafted features such as gray matter volumes and cortical thickness and train a classifier to distinguish AD from other groups. Different from these methods, this paper proposes to construct multiple deep 3D convolutional neural networks (3D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. First, a number of local image patches are extracted from the whole brain image and a 3D-CNN is built upon each local patch to transform the local image into more compact high-level features. Then, the upper convolution and fully connected layers are fine-tuned to combine the multiple 3D-CNNs for image classification. The proposed method can automatically learn the generic features from imaging data for classification. Our method is evaluated using T1-weighted structural MR brain images on 428 subjects including 199 AD patients and 229 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 87.15% and an AUC (area under the ROC curve) of 92.26% for AD classification, demonstrating the promising classification performances.

  14. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database.

    PubMed

    Dimitriadis, S I; Liparas, Dimitris; Tsolaki, Magda N

    2018-05-15

    In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer's disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI. Based on preprocessed MRI images from the organizers of a neuroimaging challenge, 3 we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting. From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 CE were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme. In the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition. The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature. Hence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Application of machine learning on brain cancer multiclass classification

    NASA Astrophysics Data System (ADS)

    Panca, V.; Rustam, Z.

    2017-07-01

    Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.

  16. Discovering Synergistic Drug Combination from a Computational Perspective.

    PubMed

    Ding, Pingjian; Luo, Jiawei; Liang, Cheng; Xiao, Qiu; Cao, Buwen; Li, Guanghui

    2018-03-30

    Synergistic drug combinations play an important role in the treatment of complex diseases. The identification of effective drug combination is vital to further reduce the side effects and improve therapeutic efficiency. In previous years, in vitro method has been the main route to discover synergistic drug combinations. However, many limitations of time and resource consumption lie within the in vitro method. Therefore, with the rapid development of computational models and the explosive growth of large and phenotypic data, computational methods for discovering synergistic drug combinations are an efficient and promising tool and contribute to precision medicine. It is the key of computational methods how to construct the computational model. Different computational strategies generate different performance. In this review, the recent advancements in computational methods for predicting effective drug combination are concluded from multiple aspects. First, various datasets utilized to discover synergistic drug combinations are summarized. Second, we discussed feature-based approaches and partitioned these methods into two classes including feature-based methods in terms of similarity measure, and feature-based methods in terms of machine learning. Third, we discussed network-based approaches for uncovering synergistic drug combinations. Finally, we analyzed and prospected computational methods for predicting effective drug combinations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.

    PubMed

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-03-01

    In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.

  18. A computational study on convolutional feature combination strategies for grade classification in colon cancer using fluorescence microscopy data

    NASA Astrophysics Data System (ADS)

    Chowdhury, Aritra; Sevinsky, Christopher J.; Santamaria-Pang, Alberto; Yener, Bülent

    2017-03-01

    The cancer diagnostic workflow is typically performed by highly specialized and trained pathologists, for which analysis is expensive both in terms of time and money. This work focuses on grade classification in colon cancer. The analysis is performed over 3 protein markers; namely E-cadherin, beta actin and colagenIV. In addition, we also use a virtual Hematoxylin and Eosin (HE) stain. This study involves a comparison of various ways in which we can manipulate the information over the 4 different images of the tissue samples and come up with a coherent and unified response based on the data at our disposal. Pre- trained convolutional neural networks (CNNs) is the method of choice for feature extraction. The AlexNet architecture trained on the ImageNet database is used for this purpose. We extract a 4096 dimensional feature vector corresponding to the 6th layer in the network. Linear SVM is used to classify the data. The information from the 4 different images pertaining to a particular tissue sample; are combined using the following techniques: soft voting, hard voting, multiplication, addition, linear combination, concatenation and multi-channel feature extraction. We observe that we obtain better results in general than when we use a linear combination of the feature representations. We use 5-fold cross validation to perform the experiments. The best results are obtained when the various features are linearly combined together resulting in a mean accuracy of 91.27%.

  19. Breast cancer - one term, many entities?

    PubMed

    Bertos, Nicholas R; Park, Morag

    2011-10-01

    Breast cancer, rather than constituting a monolithic entity, comprises heterogeneous tumors with different clinical characteristics, disease courses, and responses to specific treatments. Tumor-intrinsic features, including classical histological and immunopathological classifications as well as more recently described molecular subtypes, separate breast tumors into multiple groups. Tumor-extrinsic features, including microenvironmental configuration, also have prognostic significance and further expand the list of tumor-defining variables. A better understanding of the features underlying heterogeneity, as well as of the mechanisms and consequences of their interactions, is essential to improve targeting of existing therapies and to develop novel agents addressing specific combinations of features.

  20. Authorship Attribution of Short Messages Using Multimodal Features

    DTIC Science & Technology

    2011-03-01

    demodulation algorithm, but does say that it has to be able to handle two multipath 27 signals of equal power received at up to 16 µs apart. This...possible with appropriate normalization of the data. The fields of biometrics, image analysis, and handwriting analysis also use diverse feature sets...Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition,” IEEE Transactions on Systems, Man, and Cybernetics

  1. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun

    2017-04-01

    In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.

  2. ICPL: Intelligent Cooperative Planning and Learning for Multi-agent Systems

    DTIC Science & Technology

    2012-02-29

    objective was to develop a new planning approach for teams!of multiple UAVs that tightly integrates learning and cooperative!control algorithms at... algorithms at multiple levels of the planning architecture. The research results enabled a team of mobile agents to learn to adapt and react to uncertainty in...expressive representation that incorporates feature conjunctions. Our algorithm is simple to implement, fast to execute, and can be combined with any

  3. Research on improving image recognition robustness by combining multiple features with associative memory

    NASA Astrophysics Data System (ADS)

    Guo, Dongwei; Wang, Zhe

    2018-05-01

    Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymanski, J. J.; Brumby, Steven P.; Pope, P. A.

    Feature extration from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. The tool used is the GENetic Imagery Exploitation (GENIE) software, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniquesmore » to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land-cover features including towns, grasslands, wild fire burn scars, and several types of forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.« less

  5. Insights into multimodal imaging classification of ADHD

    PubMed Central

    Colby, John B.; Rudie, Jeffrey D.; Brown, Jesse A.; Douglas, Pamela K.; Cohen, Mark S.; Shehzad, Zarrar

    2012-01-01

    Attention deficit hyperactivity disorder (ADHD) currently is diagnosed in children by clinicians via subjective ADHD-specific behavioral instruments and by reports from the parents and teachers. Considering its high prevalence and large economic and societal costs, a quantitative tool that aids in diagnosis by characterizing underlying neurobiology would be extremely valuable. This provided motivation for the ADHD-200 machine learning (ML) competition, a multisite collaborative effort to investigate imaging classifiers for ADHD. Here we present our ML approach, which used structural and functional magnetic resonance imaging data, combined with demographic information, to predict diagnostic status of individuals with ADHD from typically developing (TD) children across eight different research sites. Structural features included quantitative metrics from 113 cortical and non-cortical regions. Functional features included Pearson correlation functional connectivity matrices, nodal and global graph theoretical measures, nodal power spectra, voxelwise global connectivity, and voxelwise regional homogeneity. We performed feature ranking for each site and modality using the multiple support vector machine recursive feature elimination (SVM-RFE) algorithm, and feature subset selection by optimizing the expected generalization performance of a radial basis function kernel SVM (RBF-SVM) trained across a range of the top features. Site-specific RBF-SVMs using these optimal feature sets from each imaging modality were used to predict the class labels of an independent hold-out test set. A voting approach was used to combine these multiple predictions and assign final class labels. With this methodology we were able to predict diagnosis of ADHD with 55% accuracy (versus a 39% chance level in this sample), 33% sensitivity, and 80% specificity. This approach also allowed us to evaluate predictive structural and functional features giving insight into abnormal brain circuitry in ADHD. PMID:22912605

  6. Complex Functions with GeoGebra

    ERIC Educational Resources Information Center

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos

    2016-01-01

    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  7. Multimodal biometric method that combines veins, prints, and shape of a finger

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Kim, Jeong Nyeo

    2011-01-01

    Multimodal biometrics provides high recognition accuracy and population coverage by using various biometric features. A single finger contains finger veins, fingerprints, and finger geometry features; by using multimodal biometrics, information on these multiple features can be simultaneously obtained in a short time and their fusion can outperform the use of a single feature. This paper proposes a new finger recognition method based on the score-level fusion of finger veins, fingerprints, and finger geometry features. This research is novel in the following four ways. First, the performances of the finger-vein and fingerprint recognition are improved by using a method based on a local derivative pattern. Second, the accuracy of the finger geometry recognition is greatly increased by combining a Fourier descriptor with principal component analysis. Third, a fuzzy score normalization method is introduced; its performance is better than the conventional Z-score normalization method. Fourth, finger-vein, fingerprint, and finger geometry recognitions are combined by using three support vector machines and a weighted SUM rule. Experimental results showed that the equal error rate of the proposed method was 0.254%, which was lower than those of the other methods.

  8. More are better, but the details matter: combinations of multiple Fresnel zone plates for improved resolution and efficiency in X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Jacobsen, Chris

    Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less

  9. A wireless modular multi-modal multi-node patch platform for robust biosignal monitoring.

    PubMed

    Pantelopoulos, Alexandros; Saldivar, Enrique; Roham, Masoud

    2011-01-01

    In this paper a wireless modular, multi-modal, multi-node patch platform is described. The platform comprises low-cost semi-disposable patch design aiming at unobtrusive ambulatory monitoring of multiple physiological parameters. Owing to its modular design it can be interfaced with various low-power RF communication and data storage technologies, while the data fusion of multi-modal and multi-node features facilitates measurement of several biosignals from multiple on-body locations for robust feature extraction. Preliminary results of the patch platform are presented which illustrate the capability to extract respiration rate from three different independent metrics, which combined together can give a more robust estimate of the actual respiratory rate.

  10. Feature-based fusion of medical imaging data.

    PubMed

    Calhoun, Vince D; Adali, Tülay

    2009-09-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. There have been a number of approaches proposed for combining or fusing multitask or multimodal information. These can be roughly divided into those that attempt to study convergence of multimodal imaging, for example, how function and structure are related in the same region of the brain, and those that attempt to study the complementary nature of modalities, for example, utilizing temporal EEG information and spatial functional magnetic resonance imaging information. Within each of these categories, one can attempt data integration (the use of one imaging modality to improve the results of another) or true data fusion (in which multiple modalities are utilized to inform one another). We review both approaches and present a recent computational approach that first preprocesses the data to compute features of interest. The features are then analyzed in a multivariate manner using independent component analysis. We describe the approach in detail and provide examples of how it has been used for different fusion tasks. We also propose a method for selecting which combination of modalities provides the greatest value in discriminating groups. Finally, we summarize and describe future research topics.

  11. Chondrodysplasia with multiple dislocations: comprehensive study of a series of 30 cases.

    PubMed

    Ranza, E; Huber, C; Levin, N; Baujat, G; Bole-Feysot, C; Nitschke, P; Masson, C; Alanay, Y; Al-Gazali, L; Bitoun, P; Boute, O; Campeau, P; Coubes, C; McEntagart, M; Elcioglu, N; Faivre, L; Gezdirici, A; Johnson, D; Mihci, E; Nur, B G; Perrin, L; Quelin, C; Terhal, P; Tuysuz, B; Cormier-Daire, V

    2017-06-01

    The group of chondrodysplasia with multiple dislocations includes several entities, characterized by short stature, dislocation of large joints, hand and/or vertebral anomalies. Other features, such as epiphyseal or metaphyseal changes, cleft palate, intellectual disability are also often part of the phenotype. In addition, several conditions with overlapping features are related to this group and broaden the spectrum. The majority of these disorders have been linked to pathogenic variants in genes encoding proteins implicated in the synthesis or sulfation of proteoglycans (PG). In a series of 30 patients with multiple dislocations, we have performed exome sequencing and subsequent targeted analysis of 15 genes, implicated in chondrodysplasia with multiple dislocations, and related conditions. We have identified causative pathogenic variants in 60% of patients (18/30); when a clinical diagnosis was suspected, this was molecularly confirmed in 53% of cases. Forty percent of patients remain without molecular etiology. Pathogenic variants in genes implicated in PG synthesis are of major importance in chondrodysplasia with multiple dislocations and related conditions. The combination of hand features, growth failure severity, radiological aspects of long bones and of vertebrae allowed discrimination among the different conditions. We propose key diagnostic clues to the clinician. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Tuning Nb–Pt Interactions To Facilitate Fuel Cell Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoshal, Shraboni; Jia, Qingying; Bates, Michael K.

    High stability, availability of multiple oxidation states, and accessibility within a wide electrochemical window are the prime features of Nb that make it a favorable candidate for electrocatalysis, especially when it is combined with Pt. However, Nb has been used as a support in the form of oxides in all previously reported Pt–Nb electrocatalysts, and no Pt–Nb alloying phase has been demonstrated hitherto. Herein, we report a multifunctional Pt–Nb composite (PtNb/NbOx-C) where Nb exists both as an alloying component with Pt and as an oxide support and is synthesized by means of a simple wet chemical method. In this work,more » the Pt–Nb alloy phase has been firmly verified with the help of multiple spectroscopic methods. This allows for the experimental evidence of the theoretical prediction that Pt–Nb alloy interactions improve the oxygen reduction reaction (ORR) activity of Pt. In addition, such a combination of multiphase Nb brings up myriad features encompassing increased ORR durability, immunity to phosphate anion poisoning, enhanced hydrogen oxidation reaction (HOR) activity, and oxidative carbon monoxide (CO) stripping, making this electrocatalyst useful in multiple fuel cell systems.« less

  13. Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition

    PubMed Central

    Islam, Md. Rabiul

    2014-01-01

    The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al. PMID:25114676

  14. The neural circuit and synaptic dynamics underlying perceptual decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    2015-03-01

    Decision-making with several choice options is central to cognition. To elucidate the neural mechanisms of multiple-choice motion discrimination, we built a continuous recurrent network model to represent a local circuit in the lateral intraparietal area (LIP). The network is composed of pyramidal cells and interneurons, which are directionally tuned. All neurons are reciprocally connected, and the synaptic connectivity strength is heterogeneous. Specifically, we assume two types of inhibitory connectivity to pyramidal cells: opposite-feature and similar-feature inhibition. The model accounted for both physiological and behavioral data from monkey experiments. The network is endowed with slow excitatory reverberation, which subserves the buildup and maintenance of persistent neural activity, and predominant feedback inhibition, which underlies the winner-take-all competition and attractor dynamics. The opposite-feature and opposite-feature inhibition have different effects on decision-making, and only their combination allows for a categorical choice among 12 alternatives. Together, our work highlights the importance of structured synaptic inhibition in multiple-choice decision-making processes.

  15. Feature and score fusion based multiple classifier selection for iris recognition.

    PubMed

    Islam, Md Rabiul

    2014-01-01

    The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al.

  16. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS

    PubMed Central

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P.; Parsey, Ramin V.; Laine, Andrew F.

    2013-01-01

    Multimodality classification of Alzheimer’s disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%). PMID:24576927

  17. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS.

    PubMed

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P; Parsey, Ramin V; Laine, Andrew F

    2012-01-01

    Multimodality classification of Alzheimer's disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%).

  18. Feature construction can improve diagnostic criteria for high-dimensional metabolic data in newborn screening for medium-chain acyl-CoA dehydrogenase deficiency.

    PubMed

    Ho, Sirikit; Lukacs, Zoltan; Hoffmann, Georg F; Lindner, Martin; Wetter, Thomas

    2007-07-01

    In newborn screening with tandem mass spectrometry, multiple intermediary metabolites are quantified in a single analytical run for the diagnosis of fatty-acid oxidation disorders, organic acidurias, and aminoacidurias. Published diagnostic criteria for these disorders normally incorporate a primary metabolic marker combined with secondary markers, often analyte ratios, for which the markers have been chosen to reflect metabolic pathway deviations. We applied a procedure to extract new markers and diagnostic criteria for newborn screening to the data of newborns with confirmed medium-chain acyl-CoA dehydrogenase deficiency (MCADD) and a control group from the newborn screening program, Heidelberg, Germany. We validated the results with external data of the screening center in Hamburg, Germany. We extracted new markers by performing a systematic search for analyte combinations (features) with high discriminatory performance for MCADD. To select feature thresholds, we applied automated procedures to separate controls and cases on the basis of the feature values. Finally, we built classifiers from these new markers to serve as diagnostic criteria in screening for MCADD. On the basis of chi(2) scores, we identified approximately 800 of >628,000 new analyte combinations with superior discriminatory performance compared with the best published combinations. Classifiers built with the new features achieved diagnostic sensitivities and specificities approaching 100%. Feature construction methods provide ways to disclose information hidden in the set of measured analytes. Other diagnostic tasks based on high-dimensional metabolic data might also profit from this approach.

  19. Quantifying site-specific physical heterogeneity within an estuarine seascape

    USGS Publications Warehouse

    Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.

    2017-01-01

    Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.

  20. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning

    NASA Astrophysics Data System (ADS)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Nex, Francesco; Vosselman, George

    2018-06-01

    Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a potential source to detect severe building damages caused by destructive disaster events such as earthquakes. Therefore, they represent an important source of information for first responders or other stakeholders involved in the post-disaster response process. Several automated methods based on supervised learning have already been demonstrated for damage detection using oblique airborne images. However, they often do not generalize well when data from new unseen sites need to be processed, hampering their practical use. Reasons for this limitation include image and scene characteristics, though the most prominent one relates to the image features being used for training the classifier. Recently features based on deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more effective than conventional hand-crafted features, and have become the state-of-the-art in many domains, including remote sensing. Moreover, often oblique images are captured with high block overlap, facilitating the generation of dense 3D point clouds - an ideal source to derive geometric characteristics. We hypothesized that the use of CNN features, either independently or in combination with 3D point cloud features, would yield improved performance in damage detection. To this end we used CNN and 3D features, both independently and in combination, using images from manned and unmanned aerial platforms over several geographic locations that vary significantly in terms of image and scene characteristics. A multiple-kernel-learning framework, an effective way for integrating features from different modalities, was used for combining the two sets of features for classification. The results are encouraging: while CNN features produced an average classification accuracy of about 91%, the integration of 3D point cloud features led to an additional improvement of about 3% (i.e. an average classification accuracy of 94%). The significance of 3D point cloud features becomes more evident in the model transferability scenario (i.e., training and testing samples from different sites that vary slightly in the aforementioned characteristics), where the integration of CNN and 3D point cloud features significantly improved the model transferability accuracy up to a maximum of 7% compared with the accuracy achieved by CNN features alone. Overall, an average accuracy of 85% was achieved for the model transferability scenario across all experiments. Our main conclusion is that such an approach qualifies for practical use.

  1. Imaging mass spectrometry data reduction: automated feature identification and extraction.

    PubMed

    McDonnell, Liam A; van Remoortere, Alexandra; de Velde, Nico; van Zeijl, René J M; Deelder, André M

    2010-12-01

    Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools. However, its potential to provide an independent, complementary analysis of clinical tissues has been limited by the very large file sizes and large number of discrete variables associated with imaging MS experiments. Here we demonstrate data reduction tools, based on automated feature identification and extraction, for peptide, protein, and lipid imaging MS, using multiple imaging MS technologies, that reduce data loads and the number of variables by >100×, and that highlight highly-localized features that can be missed using standard data analysis strategies. It is then demonstrated how these capabilities enable multivariate analysis on large imaging MS datasets spanning multiple tissues. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  2. Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.

    PubMed

    Segovia, F; Górriz, J M; Ramírez, J; Phillips, C

    2016-01-01

    Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.

  3. Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Anbazhagan, Ashwin; Chen, Min; Reutens, David C.

    2017-12-01

    Objective. Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. The search for new treatments for seizures and epilepsy relies upon studies in animal models of epilepsy. To capture data on seizures, many applications require prolonged electroencephalography (EEG) with recordings that generate voluminous data. The desire for efficient evaluation of these recordings motivates the development of automated seizure detection algorithms. Approach. A new seizure detection method is proposed, based on multiple features and a simple thresholding technique. The features are derived from chaos theory, information theory and the power spectrum of EEG recordings and optimally exploit both linear and nonlinear characteristics of EEG data. Main result. The proposed method was tested with real EEG data from an experimental mouse model of epilepsy and distinguished seizures from other patterns with high sensitivity and specificity. Significance. The proposed approach introduces two new features: negative logarithm of adaptive correlation integral and power spectral coherence ratio. The combination of these new features with two previously described features, entropy and phase coherence, improved seizure detection accuracy significantly. Negative logarithm of adaptive correlation integral can also be used to compute the duration of automatically detected seizures.

  4. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    PubMed

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  5. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  6. [Medicinal laws and application examples of traditional Chinese medicine prescriptions for multiple aorto-arteritis].

    PubMed

    Zhang, Xin-Gen; Cai, Hai-Ying

    2016-05-01

    To collect the literature on traditional Chinese medicine treatment for multiple aorto-arteritis from China National Knowledge Infrastructure(CNKI), establish prescriptions database after screening and normalizing the prescriptions reported in these literature, and analyze their medicinal rules by using traditional Chinese medicine inheritance support system. A total of 126 prescriptions for multiple aorto-arteritis were screened, containing 212 kinds of Chinese herbs. 26 core herb combinations were obtained by analysis of the commonly used herbs and their use frequencies. The treatment for multiple aorto-arteritis was manly of tonifying qi to nourish blood, promoting blood circulation to remove blood stasis, warming yang to dredge collaterals, and four new prescriptions were obtained. On this basis, two clinical cases were taken as the examples by analyzing the medicinal rules and the features of multiple aorto-arteritis. The first case showed that the herb combination of this study conformed to the basic core drug application mode and the core pathogenesis of multiple aorto-arteritis. The second case reflected the characteristics of the new prescriptions' herb combinations based on entropy hierarchical clustering. The practical analysis of the two clinical cases further indicated the reliability of the results. This study has certain guiding significance and reference value on new medicine research and development as well as clinical traditional Chinese medicine treatment for multiple aorto-arteritis. Copyright© by the Chinese Pharmaceutical Association.

  7. Measuring the Interestingness of Articles in a Limited User Environment Prospectus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pon, Raymond K.

    2007-04-18

    Search engines, such as Google, assign scores to news articles based on their relevancy to a query. However, not all relevant articles for the query may be interesting to a user. For example, if the article is old or yields little new information, the article would be uninteresting. Relevancy scores do not take into account what makes an article interesting, which would vary from user to user. Although methods such as collaborative filtering have been shown to be effective in recommendation systems, in a limited user environment there are not enough users that would make collaborative filtering effective. I presentmore » a general framework for defining and measuring the ''interestingness'' of articles, called iScore, incorporating user-feedback including tracking multiple topics of interest as well as finding interesting entities or phrases in a complex relationship network. I propose and have shown the validity of the following: 1. Filtering based on only topic relevancy is insufficient for identifying interesting articles. 2. No single feature can characterize the interestingness of an article for a user. It is the combination of multiple features that yields higher quality results. For each user, these features have different degrees of usefulness for predicting interestingness. 3. Through user-feedback, a classifier can combine features to predict interestingness for the user. 4. Current evaluation corpora, such as TREC, do not capture all aspects of personalized news filtering systems necessary for system evaluation. 5. Focusing on only specific evolving user interests instead of all topics allows for more efficient resource utilization while yielding high quality recommendation results. 6. Multiple profile vectors yield significantly better results than traditional methods, such as the Rocchio algorithm, for identifying interesting articles. Additionally, the addition of tracking multiple topics as a new feature in iScore, can improve iScore's classification performance. 7. Multiple topic tracking yields better results than the best results from the last TREC adaptive filtering run. As future work, I will address the following hypothesis: Entities and the relationship among these entities using current information extraction technology can be utilized to identify entities of interest and relationships of interest, using a scheme such as PageRank. And I will address one of the following two hypotheses: 1. By addressing the multiple reading roles that a single user may have, classification results can be improved. 2. By tailoring the operating parameters of MTT, better classification results can be achieved.« less

  8. Fish Assemblage Patterns as a Tool to Aid Conservation in the Olifants River Catchment (East), South Africa

    EPA Science Inventory

    South Africa has committed to address freshwater conservation at the catchment scale, using a combination of landscape-level and species-level features as surrogates of freshwater biodiversity. Here we examined fishes in the Olifants catchment, where multiple anthropogenic pressu...

  9. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects.

    PubMed

    Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai

    2012-10-01

    Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.

  10. Distributed acoustic cues for caller identity in macaque vocalization.

    PubMed

    Fukushima, Makoto; Doyle, Alex M; Mullarkey, Matthew P; Mishkin, Mortimer; Averbeck, Bruno B

    2015-12-01

    Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.

  11. Distributed acoustic cues for caller identity in macaque vocalization

    PubMed Central

    Doyle, Alex M.; Mullarkey, Matthew P.; Mishkin, Mortimer; Averbeck, Bruno B.

    2015-01-01

    Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured ‘coo’ call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral–temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call’s fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized. PMID:27019727

  12. Robust object matching for persistent tracking with heterogeneous features.

    PubMed

    Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying

    2007-05-01

    This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.

  13. THE ROLE OF THE HIPPOCAMPUS IN OBJECT DISCRIMINATION BASED ON VISUAL FEATURES.

    PubMed

    Levcik, David; Nekovarova, Tereza; Antosova, Eliska; Stuchlik, Ales; Klement, Daniel

    2018-06-07

    The role of rodent hippocampus has been intensively studied in different cognitive tasks. However, its role in discrimination of objects remains controversial due to conflicting findings. We tested whether the number and type of features available for the identification of objects might affect the strategy (hippocampal-independent vs. hippocampal-dependent) that rats adopt to solve object discrimination tasks. We trained rats to discriminate 2D visual objects presented on a computer screen. The objects were defined either by their shape only or by multiple-features (a combination of filling pattern and brightness in addition to the shape). Our data showed that objects displayed as simple geometric shapes are not discriminated by trained rats after their hippocampi had been bilaterally inactivated by the GABA A -agonist muscimol. On the other hand, objects containing a specific combination of non-geometric features in addition to the shape are discriminated even without the hippocampus. Our results suggest that the involvement of the hippocampus in visual object discrimination depends on the abundance of object's features. Copyright © 2018. Published by Elsevier Inc.

  14. The nature of primary consciousness. A new synthesis.

    PubMed

    Feinberg, Todd E; Mallatt, Jon

    2016-07-01

    While the philosophical puzzles about "life" that once confounded biology have all been solved by science, much of the "mystery of consciousness" remains unsolved due to multiple "explanatory gaps" between the brain and conscious experience. One reason for this impasse is that diverse brain architectures both within and across species can create consciousness, thus making any single neurobiological feature insufficient to explain it. We propose instead that an array of general biological features that are found in all living things, combined with a suite of special neurobiological features unique to animals with consciousness, evolved to create subjective experience. Combining philosophical, neurobiological and evolutionary approaches to consciousness, we review our theory of neurobiological naturalism that we argue closes the "explanatory gaps" between the brain and subjective experience and naturalizes the "experiential gaps" between subjectivity and third-person observation of the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Building Facade Modeling Under Line Feature Constraint Based on Close-Range Images

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Sheng, Y. H.

    2018-04-01

    To solve existing problems in modeling facade of building merely with point feature based on close-range images , a new method for modeling building facade under line feature constraint is proposed in this paper. Firstly, Camera parameters and sparse spatial point clouds data were restored using the SFM , and 3D dense point clouds were generated with MVS; Secondly, the line features were detected based on the gradient direction , those detected line features were fit considering directions and lengths , then line features were matched under multiple types of constraints and extracted from multi-image sequence. At last, final facade mesh of a building was triangulated with point cloud and line features. The experiment shows that this method can effectively reconstruct the geometric facade of buildings using the advantages of combining point and line features of the close - range image sequence, especially in restoring the contour information of the facade of buildings.

  16. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis

    PubMed Central

    Sohaib, Muhammad; Kim, Cheol-Hong; Kim, Jong-Myon

    2017-01-01

    Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration signals collected from machine bearings exhibit nonstationary behavior due to variable working conditions and multiple fault severities. In the current work, a two-layered bearing fault diagnosis scheme is proposed for the identification of fault pattern and crack size for a given fault type. A hybrid feature pool is used in combination with sparse stacked autoencoder (SAE)-based deep neural networks (DNNs) to perform effective diagnosis of bearing faults of multiple severities. The hybrid feature pool can extract more discriminating information from the raw vibration signals, to overcome the nonstationary behavior of the signals caused by multiple crack sizes. More discriminating information helps the subsequent classifier to effectively classify data into the respective classes. The results indicate that the proposed scheme provides satisfactory performance in diagnosing bearing defects of multiple severities. Moreover, the results also demonstrate that the proposed model outperforms other state-of-the-art algorithms, i.e., support vector machines (SVMs) and backpropagation neural networks (BPNNs). PMID:29232908

  17. Combining landscape variables and species traits can improve the utility of climate change vulnerability assessments

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2016-01-01

    Conservation organizations worldwide are investing in climate change vulnerability assessments. Most vulnerability assessment methods focus on either landscape features or species traits that can affect a species vulnerability to climate change. However, landscape features and species traits likely interact to affect vulnerability. We compare a landscape-based assessment, a trait-based assessment, and an assessment that combines landscape variables and species traits for 113 species of birds, herpetofauna, and mammals in the northeastern United States. Our aim is to better understand which species traits and landscape variables have the largest influence on assessment results and which types of vulnerability assessments are most useful for different objectives. Species traits were most important for determining which species will be most vulnerable to climate change. The sensitivity of species to dispersal barriers and the species average natal dispersal distance were the most important traits. Landscape features were most important for determining where species will be most vulnerable because species were most vulnerable in areas where multiple landscape features combined to increase vulnerability, regardless of species traits. The interaction between landscape variables and species traits was important when determining how to reduce climate change vulnerability. For example, an assessment that combines information on landscape connectivity, climate change velocity, and natal dispersal distance suggests that increasing landscape connectivity may not reduce the vulnerability of many species. Assessments that include landscape features and species traits will likely be most useful in guiding conservation under climate change.

  18. Selecting forest residue treatment alternatives using goal programming.

    Treesearch

    Bruce B. Bare; Brian F. Anholt

    1976-01-01

    The use of goal programing for selecting forest residue treatment alternatives within a multiple goal framework is described. The basic features of goal programing are reviewed and illustrated with a hypothetical problem involving the selection of residue treatments for 10 cutting units. Twelve residue-regeneration treatment combinations are evaluated by using physical...

  19. Robustness of Ability Estimation to Multidimensionality in CAST with Implications to Test Assembly

    ERIC Educational Resources Information Center

    Zhang, Yanwei; Nandakumar, Ratna

    2006-01-01

    Computer Adaptive Sequential Testing (CAST) is a test delivery model that combines features of the traditional conventional paper-and-pencil testing and item-based computerized adaptive testing (CAT). The basic structure of CAST is a panel composed of multiple testlets adaptively administered to examinees at different stages. Current applications…

  20. Using classification models for the generation of disease-specific medications from biomedical literature and clinical data repository.

    PubMed

    Wang, Liqin; Haug, Peter J; Del Fiol, Guilherme

    2017-05-01

    Mining disease-specific associations from existing knowledge resources can be useful for building disease-specific ontologies and supporting knowledge-based applications. Many association mining techniques have been exploited. However, the challenge remains when those extracted associations contained much noise. It is unreliable to determine the relevance of the association by simply setting up arbitrary cut-off points on multiple scores of relevance; and it would be expensive to ask human experts to manually review a large number of associations. We propose that machine-learning-based classification can be used to separate the signal from the noise, and to provide a feasible approach to create and maintain disease-specific vocabularies. We initially focused on disease-medication associations for the purpose of simplicity. For a disease of interest, we extracted potentially treatment-related drug concepts from biomedical literature citations and from a local clinical data repository. Each concept was associated with multiple measures of relevance (i.e., features) such as frequency of occurrence. For the machine purpose of learning, we formed nine datasets for three diseases with each disease having two single-source datasets and one from the combination of previous two datasets. All the datasets were labeled using existing reference standards. Thereafter, we conducted two experiments: (1) to test if adding features from the clinical data repository would improve the performance of classification achieved using features from the biomedical literature only, and (2) to determine if classifier(s) trained with known medication-disease data sets would be generalizable to new disease(s). Simple logistic regression and LogitBoost were two classifiers identified as the preferred models separately for the biomedical-literature datasets and combined datasets. The performance of the classification using combined features provided significant improvement beyond that using biomedical-literature features alone (p-value<0.001). The performance of the classifier built from known diseases to predict associated concepts for new diseases showed no significant difference from the performance of the classifier built and tested using the new disease's dataset. It is feasible to use classification approaches to automatically predict the relevance of a concept to a disease of interest. It is useful to combine features from disparate sources for the task of classification. Classifiers built from known diseases were generalizable to new diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. No-Reference Image Quality Assessment by Wide-Perceptual-Domain Scorer Ensemble Method.

    PubMed

    Liu, Tsung-Jung; Liu, Kuan-Hsien

    2018-03-01

    A no-reference (NR) learning-based approach to assess image quality is presented in this paper. The devised features are extracted from wide perceptual domains, including brightness, contrast, color, distortion, and texture. These features are used to train a model (scorer) which can predict scores. The scorer selection algorithms are utilized to help simplify the proposed system. In the final stage, the ensemble method is used to combine the prediction results from selected scorers. Two multiple-scale versions of the proposed approach are also presented along with the single-scale one. They turn out to have better performances than the original single-scale method. Because of having features from five different domains at multiple image scales and using the outputs (scores) from selected score prediction models as features for multi-scale or cross-scale fusion (i.e., ensemble), the proposed NR image quality assessment models are robust with respect to more than 24 image distortion types. They also can be used on the evaluation of images with authentic distortions. The extensive experiments on three well-known and representative databases confirm the performance robustness of our proposed model.

  2. Duplication of (12)(pter-q13.3) combined with deletion of (22)(pter-q11.2) in a patient with features of both chromosome aberrations.

    PubMed

    Tyshchenko, Nataliya A; Riegel, Mariluce; Evseenkova, Elena G; Zerova, Tatjana E; Gorovenko, Nataliya G; Schinzel, Albert

    2007-01-01

    We report a patient with multiple dysmorphic signs and congenital malformations, representing a combination of clinical features of duplication (12p) and deletion (22)(q11.2) syndromes. The girl had overgrowth at birth, showed abnormal cranio-facial findings, cleft uvula, a complex conotruncal heart defect, a polycystic right kidney, and an umbilical hernia. She died at the age of 6 months of cardio-respiratory failure. Cytogenetic examination demonstrated a derivative chromosome 12 replacing one of the two chromosomes 22. The paternal karyotype was normal 46,XY while the mother's karyotype was 46,XX,rcp(12;22)(q13.2;q11.2). According to the published data, all patients with deletion 22q11.2 combined with other unbalanced chromosomal aberration have a more severe clinical expression than those with interstitial deletions.

  3. Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.

    PubMed

    Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana

    2017-07-01

    Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.

  4. Combining semiquantitative measures of fibrosis and qualitative features of parenchymal remodelling to identify fibrosis regression in hepatitis C: a multiple biopsy study.

    PubMed

    Pattullo, Venessa; Thein, Hla-Hla; Heathcote, Elizabeth Jenny; Guindi, Maha

    2012-09-01

    A fall in hepatic fibrosis stage may be observed in patients with chronic hepatitis C (CHC); however, parenchymal architectural changes may also signify hepatic remodelling associated with fibrosis regression. The aim of this study was to utilize semiquantitative and qualitative methods to report the prevalence and factors associated with fibrosis regression in CHC. Paired liver biopsies were scored for fibrosis (Ishak), and for the presence of eight qualitative features of parenchymal remodelling, to derive a qualitative regression score (QR score). Combined fibrosis regression was defined as ≥2-stage fall in Ishak stage (Reg-I) or <2-stage fall in Ishak stage with a rise in QR score (Reg-Qual). Among 159 patients (biopsy interval 5.4 ± 3.1 years), Reg-I was observed in 12 (7.5%) and Reg-Qual in 26 (16.4%) patients. The combined diagnostic criteria increased the diagnosis rate for fibrosis regression (38 patients, 23.9%) compared with use of Reg-I alone (P < 0.001). Combined fibrosis regression was observed in nine patients (50%) who achieved sustained virological response (SVR), and in 29 of 141 (21%) patients despite persistent viraemia. SVR was the only clinical factor associated independently with combined fibrosis regression (odds ratio 3.05). The combination of semiquantitative measures and qualitative features aids the identification of fibrosis regression in CHC. © 2012 Blackwell Publishing Ltd.

  5. Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features.

    PubMed

    Ion-Mărgineanu, Adrian; Kocevar, Gabriel; Stamile, Claudio; Sima, Diana M; Durand-Dubief, Françoise; Van Huffel, Sabine; Sappey-Marinier, Dominique

    2017-01-01

    Purpose: The purpose of this study is classifying multiple sclerosis (MS) patients in the four clinical forms as defined by the McDonald criteria using machine learning algorithms trained on clinical data combined with lesion loads and magnetic resonance metabolic features. Materials and Methods: Eighty-seven MS patients [12 Clinically Isolated Syndrome (CIS), 30 Relapse Remitting (RR), 17 Primary Progressive (PP), and 28 Secondary Progressive (SP)] and 18 healthy controls were included in this study. Longitudinal data available for each MS patient included clinical (e.g., age, disease duration, Expanded Disability Status Scale), conventional magnetic resonance imaging and spectroscopic imaging. We extract N -acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre) concentrations, and we compute three features for each spectroscopic grid by averaging metabolite ratios (NAA/Cho, NAA/Cre, Cho/Cre) over good quality voxels. We built linear mixed-effects models to test for statistically significant differences between MS forms. We test nine binary classification tasks on clinical data, lesion loads, and metabolic features, using a leave-one-patient-out cross-validation method based on 100 random patient-based bootstrap selections. We compute F1-scores and BAR values after tuning Linear Discriminant Analysis (LDA), Support Vector Machines with gaussian kernel (SVM-rbf), and Random Forests. Results: Statistically significant differences were found between the disease starting points of each MS form using four different response variables: Lesion Load, NAA/Cre, NAA/Cho, and Cho/Cre ratios. Training SVM-rbf on clinical and lesion loads yields F1-scores of 71-72% for CIS vs. RR and CIS vs. RR+SP, respectively. For RR vs. PP we obtained good classification results (maximum F1-score of 85%) after training LDA on clinical and metabolic features, while for RR vs. SP we obtained slightly higher classification results (maximum F1-score of 87%) after training LDA and SVM-rbf on clinical, lesion loads and metabolic features. Conclusions: Our results suggest that metabolic features are better at differentiating between relapsing-remitting and primary progressive forms, while lesion loads are better at differentiating between relapsing-remitting and secondary progressive forms. Therefore, combining clinical data with magnetic resonance lesion loads and metabolic features can improve the discrimination between relapsing-remitting and progressive forms.

  6. Multiple quantum coherence spectroscopy.

    PubMed

    Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C

    2009-08-20

    Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence.

  7. Assessing the performance of multiple spectral-spatial features of a hyperspectral image for classification of urban land cover classes using support vector machines and artificial neural network

    NASA Astrophysics Data System (ADS)

    Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram

    2017-04-01

    Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.

  8. Multiple café au lait spots in familial patients with MAP2K2 mutation.

    PubMed

    Takenouchi, Toshiki; Shimizu, Atsushi; Torii, Chiharu; Kosaki, Rika; Takahashi, Takao; Saya, Hideyuki; Kosaki, Kenjiro

    2014-02-01

    Recent advances in genetic diagnostic technologies have made the classic disease nosology highly complicated. This situation is exemplified by rasopathies, among which neurofibromatosis type 1 and Noonan syndrome represent prototypic entities. The former condition is characterized by multiple café au lait spots and neurofibromas, while the latter is characterized by distinct facial features, webbed neck, congenital heart disease, and a short stature. On rare occasions, the features of both neurofibromatosis and Noonan syndrome co-exist within an individual; such patients are diagnosed as having neurofibromatosis-Noonan syndrome. Here, we report familial patients with multiple café au lait spots and Noonan syndrome-like facial features. A mutation analysis unexpectedly revealed a mutation in MAP2K2 in both the propositus and his mother. The propositus fulfilled the diagnostic criteria for neurofibromatosis type 1, but his mother did not. Their phenotype was not consistent with that of cardio-facio-cutaneous syndrome, which is classically known to be associated with MAP2K2 mutations. The mother of the propositus had cervical cancer at the age of 23 years, consistent with the oncogenic tendency associated with rasopathies. The phenotypic combination of multiple café au lait spots and Noonan syndrome-like facial features suggested a diagnosis of neurofibromatosis-Noonan syndrome. Whether this condition represents a discrete disease entity or a variable expression of neurofibromatosis type 1 has long been debated. The present observation suggests that some perturbation in the RAS/MAPK signaling cascade results in multiple café au lait spots, a key diagnostic phenotype of rasopathies, although the exact mechanism remains to be elucidated. © 2013 Wiley Periodicals, Inc.

  9. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  10. Prediction of rat protein subcellular localization with pseudo amino acid composition based on multiple sequential features.

    PubMed

    Shi, Ruijia; Xu, Cunshuan

    2011-06-01

    The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.

  11. Feature Selection in Order to Extract Multiple Sclerosis Lesions Automatically in 3D Brain Magnetic Resonance Images Using Combination of Support Vector Machine and Genetic Algorithm.

    PubMed

    Khotanlou, Hassan; Afrasiabi, Mahlagha

    2012-10-01

    This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach.

  12. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.

    PubMed

    Chen, Liang-Chieh; Papandreou, George; Kokkinos, Iasonas; Murphy, Kevin; Yuille, Alan L

    2018-04-01

    In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.

  13. Soft Somatosensitive Actuators via Embedded 3D Printing.

    PubMed

    Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A

    2018-04-01

    Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Hu, Youmin; Wang, Yan; Wu, Bo; Fan, Jikai; Hu, Zhongxu

    2018-05-01

    The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.

  15. Wisdom tooth extraction causing lingual nerve and styloglossus muscle damage: a mimic of multiple cranial nerve palsies.

    PubMed

    Carr, Aisling S; Evans, Matthew; Shah, Sachit; Catania, Santi; Warren, Jason D; Gleeson, Michael J; Reilly, Mary M

    2017-06-01

    The combination of tongue hemianaesthesia, dysgeusia, dysarthria and dysphagia suggests the involvement of multiple cranial nerves. We present a case with sudden onset of these symptoms immediately following wisdom tooth extraction and highlight the clinical features that allowed localisation of the lesion to a focal, iatrogenic injury of the lingual nerve and adjacent styloglossus muscle. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope

    PubMed Central

    Fox, Jessica L.; Fairhall, Adrienne L.; Daniel, Thomas L.

    2010-01-01

    The halteres of dipteran insects are essential sensory organs for flight control. They are believed to detect Coriolis and other inertial forces associated with body rotation during flight. Flies use this information for rapid flight control. We show that the primary afferent neurons of the haltere’s mechanoreceptors respond selectively with high temporal precision to multiple stimulus features. Although we are able to identify many stimulus features contributing to the response using principal component analysis, predictive models using only two features, common across the cell population, capture most of the cells’ encoding activity. However, different sensitivity to these two features permits each cell to respond to sinusoidal stimuli with a different preferred phase. This feature similarity, combined with diverse phase encoding, allows the haltere to transmit information at a high rate about numerous inertial forces, including Coriolis forces. PMID:20133721

  17. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  18. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  19. Effect of number and location of distant metastases on renal cell carcinoma mortality in candidates for cytoreductive nephrectomy: implications for multimodal therapy.

    PubMed

    Capitanio, Umberto; Abdollah, Firas; Matloob, Rayan; Salonia, Andrea; Suardi, Nazareno; Briganti, Alberto; Carenzi, Cristina; Rigatti, Patrizio; Montorsi, Francesco; Bertini, Roberto

    2013-06-01

    To test whether the combination of number and location of distant metastases affects cancer-specific survival in patients with metastatic renal cell carcinoma. Overall, 242 metastatic renal cell carcinoma patients with synchronous metastases at diagnosis underwent cytoreductive nephrectomy at a single institution. Combinations of number and location of distant metastases were coded as: single metastasis and single organ affected, multiple metastases and single organ affected, single metastasis for each of the multiple organs affected, and multiple metastases for each of the multiple organs affected. Covariates included age, symptoms, performance status, American Society of Anesthesiologists score, hemoglobin, lactate dehydrogenase, tumor size, Fuhrman grade, T stage, lymph node status, necrosis, sarcomatoid features and metastasectomy at the time of nephrectomy. The median survival was 34.7 versus 32.3 versus 29.6 versus 8.5 months for single metastasis and single organ affected, multiple metastases and single organ affected single metastasis for each of the multiple organs affected, and multiple metastases for each of the multiple organs affected patients, respectively. At multivariable analyses, the combination of number and location of distant metastases resulted in one of the most informative and independent predictors of cancer-specific survival in metastatic renal cell carcinoma patients. The lung was the location with the highest rate of single organ affected (50.3% vs 35.1% in other sites; P < 0.001). Considering only patients with a single metastasis, no statistically significantly different cancer-specific survival rates were recorded (P > 0.3) among different metastatic organs. Among metastatic renal cell carcinoma patients undergoing cytoreductive nephrectomy, the combination of the number and location of distant metastases is a major independent predictor of cancer-specific survival. Patients with multiple organs affected by multifocal disease are more likely to have poorer survival. © 2012 The Japanese Urological Association.

  20. Multiple kernel learning in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Tang, Nan; Zhang, Xiao; Lin, Hongfei; Li, Yanpeng; Yang, Zhiwei

    2011-03-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and manually update protein interaction information. The objective of this work is to develop an effective approach to automatic extraction of PPI information from biomedical literature. We present a weighted multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, graph and part-of-speech (POS) path. In particular, we extend the shortest path-enclosed tree (SPT) and dependency path tree to capture richer contextual information. Our experimental results show that the combination of SPT and dependency path tree extensions contributes to the improvement of performance by almost 0.7 percentage units in F-score and 2 percentage units in area under the receiver operating characteristics curve (AUC). Combining two or more appropriately weighed individual will further improve the performance. Both on the individual corpus and cross-corpus evaluation our combined kernel can achieve state-of-the-art performance with respect to comparable evaluations, with 64.41% F-score and 88.46% AUC on the AImed corpus. As different kernels calculate the similarity between two sentences from different aspects. Our combined kernel can reduce the risk of missing important features. More specifically, we use a weighted linear combination of individual kernels instead of assigning the same weight to each individual kernel, thus allowing the introduction of each kernel to incrementally contribute to the performance improvement. In addition, SPT and dependency path tree extensions can improve the performance by including richer context information. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Unconscious analyses of visual scenes based on feature conjunctions.

    PubMed

    Tachibana, Ryosuke; Noguchi, Yasuki

    2015-06-01

    To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).

  2. Change descriptors for determining nodule malignancy in national lung screening trial CT screening images

    NASA Astrophysics Data System (ADS)

    Geiger, Benjamin; Hawkins, Samuel; Hall, Lawrence O.; Goldgof, Dmitry B.; Balagurunathan, Yoganand; Gatenby, Robert A.; Gillies, Robert J.

    2016-03-01

    Pulmonary nodules are effectively diagnosed in CT scans, but determining their malignancy has been a challenge. The rate of change of the volume of a pulmonary nodule is known to be a prognostic factor for cancer development. In this study, we propose that other changes in imaging characteristics are similarly informative. We examined the combination of image features across multiple CT scans, taken from the National Lung Screening Trial, with individual scans of the same patient separated by approximately one year. By subtracting the values of existing features in multiple scans for the same patient, we were able to improve the ability of existing classification algorithms to determine whether a nodule will become malignant. We trained each classifier on 83 nodules determined to be malignant by biopsy and 172 nodules determined to be benign by their clinical stability through two years of no change; classifiers were tested on 77 malignant and 144 benign nodules, using a set of features that in a test-retest experiment were shown to be stable. An accuracy of 83.71% and AUC of 0.814 were achieved with the Random Forests classifier on a subset of features determined to be stable via test-retest reproducibility analysis, further reduced with the Correlation-based Feature Selection algorithm.

  3. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  4. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  5. Southern Storms

    NASA Image and Video Library

    2017-05-25

    This image shows Jupiter's south pole, as seen by NASA's Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). The oval features are cyclones, up to 600 miles (1,000 kilometers) in diameter. Multiple images taken with the JunoCam instrument on three separate orbits were combined to show all areas in daylight, enhanced color, and stereographic projection. https://photojournal.jpl.nasa.gov/catalog/PIA21641

  6. Building "e-rater"® Scoring Models Using Machine Learning Methods. Research Report. ETS RR-16-04

    ERIC Educational Resources Information Center

    Chen, Jing; Fife, James H.; Bejar, Isaac I.; Rupp, André A.

    2016-01-01

    The "e-rater"® automated scoring engine used at Educational Testing Service (ETS) scores the writing quality of essays. In the current practice, e-rater scores are generated via a multiple linear regression (MLR) model as a linear combination of various features evaluated for each essay and human scores as the outcome variable. This…

  7. Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation

    PubMed Central

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228

  8. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    PubMed

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  9. True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe

    PubMed Central

    LaRocca, Francesco; Nankivil, Derek; Farsiu, Sina; Izatt, Joseph A.

    2014-01-01

    Scanning laser ophthalmoscopes (SLOs) are able to achieve superior contrast and axial sectioning capability compared to fundus photography. However, SLOs typically use monochromatic illumination and are thus unable to extract color information of the retina. Previous color SLO imaging techniques utilized multiple lasers or narrow band sources for illumination, which allowed for multiple color but not “true color” imaging as done in fundus photography. We describe the first “true color” SLO, handheld color SLO, and combined color SLO integrated with a spectral domain optical coherence tomography (OCT) system. To achieve accurate color imaging, the SLO was calibrated with a color test target and utilized an achromatizing lens when imaging the retina to correct for the eye’s longitudinal chromatic aberration. Color SLO and OCT images from volunteers were then acquired simultaneously with a combined power under the ANSI limit. Images from this system were then compared with those from commercially available SLOs featuring multiple narrow-band color imaging. PMID:25401032

  10. Feature extraction via KPCA for classification of gait patterns.

    PubMed

    Wu, Jianning; Wang, Jue; Liu, Li

    2007-06-01

    Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.

  11. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    PubMed

    Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong

    2017-11-01

    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.

  12. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  13. Sensor feature fusion for detecting buried objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less

  14. Modular Knowledge Representation and Reasoning in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Serafini, Luciano; Homola, Martin

    Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.

  15. Application of lifting wavelet and random forest in compound fault diagnosis of gearbox

    NASA Astrophysics Data System (ADS)

    Chen, Tang; Cui, Yulian; Feng, Fuzhou; Wu, Chunzhi

    2018-03-01

    Aiming at the weakness of compound fault characteristic signals of a gearbox of an armored vehicle and difficult to identify fault types, a fault diagnosis method based on lifting wavelet and random forest is proposed. First of all, this method uses the lifting wavelet transform to decompose the original vibration signal in multi-layers, reconstructs the multi-layer low-frequency and high-frequency components obtained by the decomposition to get multiple component signals. Then the time-domain feature parameters are obtained for each component signal to form multiple feature vectors, which is input into the random forest pattern recognition classifier to determine the compound fault type. Finally, a variety of compound fault data of the gearbox fault analog test platform are verified, the results show that the recognition accuracy of the fault diagnosis method combined with the lifting wavelet and the random forest is up to 99.99%.

  16. Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data.

    PubMed

    Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe

    2017-04-01

    Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.

  17. Multipass laser amplification with near-field far-field optical separation

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.

  18. A possible mechanism to detect super-earth formation in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Chiang, Eugene; Li, Hui; Li, Shengtai

    2017-06-01

    Using combined gas+dust global hydrodynamics and radiative transfer simulations, we calculate the distribution of gas and sub-mm-sized dust in protoplanetary disks with a super-Earth at tens of AU, and examine observational signatures of such systems in resolved observations. We confirm previous results that in a typical disk with a low viscosity ($\\alpha\\lesssim10^{-4}$), a super-Earth is able to open two gaps at $\\sim$scale-height away around its orbit in $\\sim$mm-sized dust (St$\\sim$0.01), due to differential dust drift in a perturbed gas background. Additional rings and gaps may also be produced under certain conditions. These features, particularly a signature ``double-gap'' feature, can be detected in a Taurus target by ALMA in dust continuum under an angular resolution of $\\sim0\\arcsec.025$ with two hours of integration. The features are robust --- it can survive in a variety of background disk profiles, withstand modest planetary radial migration ($|r/\\dot{r}|\\sim$ a few Myr), and last for thousands of orbits. Multiple ring/gap systems observed by ALMA were typically modeled using multiple (Saturn-to-Jupiter sized) planets. Here, we argue that a single super-Earth in a low viscosity disk could produce multiple rings and gaps as well. By examining the prevalence of such features in nearby disks, upcoming high angular resolution ALMA surveys may infer how common super-Earth formation events are at tens of au.

  19. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  20. Feature-based and object-based attention orientation during short-term memory maintenance.

    PubMed

    Ku, Yixuan

    2015-12-01

    Top-down attention biases the short-term memory (STM) processing at multiple stages. Orienting attention during the maintenance period of STM by a retrospective cue (retro-cue) strengthens the representation of the cued item and improves the subsequent STM performance. In a recent article, Backer et al. (Backer KC, Binns MA, Alain C. J Neurosci 35: 1307-1318, 2015) extended these findings from the visual to the auditory domain and combined electroencephalography to dissociate neural mechanisms underlying feature-based and object-based attention orientation. Both event-related potentials and neural oscillations explained the behavioral benefits of retro-cues and favored the theory that feature-based and object-based attention orientation were independent. Copyright © 2015 the American Physiological Society.

  1. Update on risk stratification and treatment of newly diagnosed multiple myeloma.

    PubMed

    Kapoor, Prashant; Rajkumar, S Vincent

    2011-10-01

    Multiple myeloma is the second most common hematologic malignancy. Chromosomal aberrations are important prognostic determinants that influence the clinical decision-making in newly-diagnosed multiple myeloma (NDMM). Patients are considered high-risk if any of the following features are detected: hypodiploidy, deletion 13 by cytogenetics, t(4;14), t(14;16), t(14;20) and/or 17 p deletion. In the absence of these features patients are considered standard risk. Outside of trials, risk-adapted therapy in the transplant-eligible high-risk patients advocates use of bortezomib-based induction therapy followed by autologous stem cell transplantation (ASCT) and bortezomib-based maintenance therapy. High-risk, transplant-ineligible patients should also utilize bortezomib as initial therapy since it is known to overcome the poor prognosis associated with some high-risk features. The goal of therapy in high-risk patients is to attain and maintain a state of complete remission as much as possible. In contrast, the standard-risk, transplant-eligible patients may be treated with either lenalidomide-dexamethasone or bortezomib-based therapy followed by ASCT. In such patients, ASCT can also be deferred until first relapse if the patients are tolerating initial therapy well. Lenalidomide maintenance therapy in the post-transplant setting in standard-risk patients is controversial and not recommended routinely. For transplant-ineligible standard-risk patients, multiple options exist, although in the absence direct comparisons, we prefer lenalidomide plus low-dose dexamethasone over melphalan-based combinations. This review outlines evidence-based management approaches in NDMM, with a focus on risk-adapted therapy.

  2. Gender classification under extended operating conditions

    NASA Astrophysics Data System (ADS)

    Rude, Howard N.; Rizki, Mateen

    2014-06-01

    Gender classification is a critical component of a robust image security system. Many techniques exist to perform gender classification using facial features. In contrast, this paper explores gender classification using body features extracted from clothed subjects. Several of the most effective types of features for gender classification identified in literature were implemented and applied to the newly developed Seasonal Weather And Gender (SWAG) dataset. SWAG contains video clips of approximately 2000 samples of human subjects captured over a period of several months. The subjects are wearing casual business attire and outer garments appropriate for the specific weather conditions observed in the Midwest. The results from a series of experiments are presented that compare the classification accuracy of systems that incorporate various types and combinations of features applied to multiple looks at subjects at different image resolutions to determine a baseline performance for gender classification.

  3. A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Mishchenko, Michael I.

    2015-01-01

    The equations for frequency-domain multiple scattering are derived for a scalar or electromagnetic plane wave incident on a collection of particles at known positions, and in the time-domain for a plane wave pulse incident on the same collection of particles. The calculation is carried out for five different combinations of wave types and particle types of increasing geometrical complexity. The results are used to illustrate and discuss a number of physical and mathematical characteristics of multiple scattering in the frequency- and time-domains. We argue that frequency-domain multiple scattering is a purely mathematical construct since there is no temporal sequencing information in the frequency-domain equations and since the multi-particle path information can be dispelled by writing the equations in another mathematical form. However, multiple scattering becomes a definite physical phenomenon in the time-domain when the collection of particles is illuminated by an appropriately short localized pulse.

  4. A PC-based telemetry system for acquiring and reducing data from multiple PCM streams

    NASA Astrophysics Data System (ADS)

    Simms, D. A.; Butterfield, C. P.

    1991-07-01

    The Solar Energy Research Institute's (SERI) Wind Research Program is using Pulse Code Modulation (PCM) Telemetry Data-Acquisition Systems to study horizontal-axis wind turbines. Many PCM systems are combined for use in test installations that require accurate measurements from a variety of different locations. SERI has found them ideal for data-acquisition from multiple wind turbines and meteorological towers in wind parks. A major problem has been in providing the capability to quickly combine and examine incoming data from multiple PCM sources in the field. To solve this problem, SERI has developed a low-cost PC-based PCM Telemetry Data-Reduction System (PC-PCM System) to facilitate quick, in-the-field multiple-channel data analysis. The PC-PCM System consists of two basic components. First, PC-compatible hardware boards are used to decode and combine multiple PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for use under DOS was developed to simplify data-acquisition control and management. The software, called the Quick-Look Data Management Program, provides a quick, easy-to-use interface between the PC and multiple PCM data streams. The Quick-Look Data Management Program is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. The paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data from multiple PCM streams. Also discussed are problems and techniques associated with PC-based telemetry data-acquisition, processing, and real-time display.

  5. Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.

    PubMed

    Ko, Li-Wei; Ranga, S S K; Komarov, Oleksii; Chen, Chung-Chiang

    2017-01-01

    Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based systems having an average classification accuracy of 85.6 ± 7.7% in a two-class task.

  6. Lessons Learned in Cyberspace Security

    DTIC Science & Technology

    2014-06-01

    software; something undesirable is packaged together with something desirable. A classic example was Elf Bowling attachment, which ran rampant through...the authors’ former school. It combined a fun program featuring elves as bowling pins, however it was packaged with SubSeven (Sub7) malware that...allowed remote access to the infected machine. IExpress, which is delivered in the Windows OS, is one of the legitimate tools for packaging multiple

  7. Design of the Chicago Health and Aging Project (CHAP).

    PubMed

    Bienias, Julia L; Beckett, Laurel A; Bennett, David A; Wilson, Robert S; Evans, Denis A

    2003-10-01

    The design of the Chicago Health and Aging Project (CHAP) is described. CHAP is a longitudinal population study of common chronic health problems of older persons, especially of risk factors for incident Alzheimer's disease, in a biracial neighborhood of the south side of Chicago. Special attention is given to three unusual design features of the study. One feature is that clinical evaluation for Alzheimer's disease is confined to a stratified random sample of all participants. This feature results in substantial cost savings and substantially less bias than screening approaches but has the disadvantages of adding analytic complexity and requiring the use of indirect means to identify a disease-free cohort for the development of incident Alzheimer's disease. The second unusual feature is efficiently combining in analyses the successive independent multiple samples that are drawn, one from each data collection cycle. The third unusual feature is entering successive age cohorts of community residents into the study as they attain 65 years of age. This has the advantages of enhancing direct investigation of the effect of age on the action of risk factors for Alzheimer's disease and direct examination of cohort effects. The interaction of these features is described, especially as they pertain to a study in which data are collected in successive waves. The results from these waves must be combined for effective analysis of the relation among risk factors and incident disease.

  8. High performance geospatial and climate data visualization using GeoJS

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Beezley, J. D.

    2015-12-01

    GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring data and analysis regarding 1) the human trafficking domain, 2) New York City taxi drop-offs and pick-ups, and 3) the Ebola outbreak. GeoJS supports advanced visualization features such as picking and selecting, as well as clustering. It also supports 2D contour plots, vector plots, heat maps, and geospatial graphs.

  9. Single season changes in resting state network power and the connectivity between regions distinguish head impact exposure level in high school and youth football players

    NASA Astrophysics Data System (ADS)

    Murugesan, Gowtham; Saghafi, Behrouz; Davenport, Elizabeth; Wagner, Ben; Urban, Jillian; Kelley, Mireille; Jones, Derek; Powers, Alex; Whitlow, Christopher; Stitzel, Joel; Maldjian, Joseph; Montillo, Albert

    2018-02-01

    The effect of repetitive sub-concussive head impact exposure in contact sports like American football on brain health is poorly understood, especially in the understudied populations of youth and high school players. These players, aged 9-18 years old may be particularly susceptible to impact exposure as their brains are undergoing rapid maturation. This study helps fill the void by quantifying the association between head impact exposure and functional connectivity, an important aspect of brain health measurable via resting-state fMRI (rs-fMRI). The contributions of this paper are three fold. First, the data from two separate studies (youth and high school) are combined to form a high-powered analysis with 60 players. These players experience head acceleration within overlapping impact exposure making their combination particularly appropriate. Second, multiple features are extracted from rs-fMRI and tested for their association with impact exposure. One type of feature is the power spectral density decomposition of intrinsic, spatially distributed networks extracted via independent components analysis (ICA). Another feature type is the functional connectivity between brain regions known often associated with mild traumatic brain injury (mTBI). Third, multiple supervised machine learning algorithms are evaluated for their stability and predictive accuracy in a low bias, nested cross-validation modeling framework. Each classifier predicts whether a player sustained low or high levels of head impact exposure. The nested cross validation reveals similarly high classification performance across the feature types, and the Support Vector, Extremely randomized trees, and Gradboost classifiers achieve F1-score up to 75%.

  10. Hierarchical ensemble of global and local classifiers for face recognition.

    PubMed

    Su, Yu; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2009-08-01

    In the literature of psychophysics and neurophysiology, many studies have shown that both global and local features are crucial for face representation and recognition. This paper proposes a novel face recognition method which exploits both global and local discriminative features. In this method, global features are extracted from the whole face images by keeping the low-frequency coefficients of Fourier transform, which we believe encodes the holistic facial information, such as facial contour. For local feature extraction, Gabor wavelets are exploited considering their biological relevance. After that, Fisher's linear discriminant (FLD) is separately applied to the global Fourier features and each local patch of Gabor features. Thus, multiple FLD classifiers are obtained, each embodying different facial evidences for face recognition. Finally, all these classifiers are combined to form a hierarchical ensemble classifier. We evaluate the proposed method using two large-scale face databases: FERET and FRGC version 2.0. Experiments show that the results of our method are impressively better than the best known results with the same evaluation protocol.

  11. Single-trial laser-evoked potentials feature extraction for prediction of pain perception.

    PubMed

    Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo

    2013-01-01

    Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.

  12. [Combining speech sample and feature bilateral selection algorithm for classification of Parkinson's disease].

    PubMed

    Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei

    2018-02-01

    Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.

  13. Combining qualitative and quantitative operational research methods to inform quality improvement in pathways that span multiple settings

    PubMed Central

    Crowe, Sonya; Brown, Katherine; Tregay, Jenifer; Wray, Jo; Knowles, Rachel; Ridout, Deborah A; Bull, Catherine; Utley, Martin

    2017-01-01

    Background Improving integration and continuity of care across sectors within resource constraints is a priority in many health systems. Qualitative operational research methods of problem structuring have been used to address quality improvement in services involving multiple sectors but not in combination with quantitative operational research methods that enable targeting of interventions according to patient risk. We aimed to combine these methods to augment and inform an improvement initiative concerning infants with congenital heart disease (CHD) whose complex care pathway spans multiple sectors. Methods Soft systems methodology was used to consider systematically changes to services from the perspectives of community, primary, secondary and tertiary care professionals and a patient group, incorporating relevant evidence. Classification and regression tree (CART) analysis of national audit datasets was conducted along with data visualisation designed to inform service improvement within the context of limited resources. Results A ‘Rich Picture’ was developed capturing the main features of services for infants with CHD pertinent to service improvement. This was used, along with a graphical summary of the CART analysis, to guide discussions about targeting interventions at specific patient risk groups. Agreement was reached across representatives of relevant health professions and patients on a coherent set of targeted recommendations for quality improvement. These fed into national decisions about service provision and commissioning. Conclusions When tackling complex problems in service provision across multiple settings, it is important to acknowledge and work with multiple perspectives systematically and to consider targeting service improvements in response to confined resources. Our research demonstrates that applying a combination of qualitative and quantitative operational research methods is one approach to doing so that warrants further consideration. PMID:28062603

  14. Visual Analytics for Heterogeneous Geoscience Data

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We demonstrate with use cases how scientists can combine the query and visualization interfaces to enable a customized workflow facilitating studies using heterogeneous geoscience datasets.

  15. Selective processing of multiple features in the human brain: effects of feature type and salience.

    PubMed

    McGinnis, E Menton; Keil, Andreas

    2011-02-09

    Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160-300 ms. Data from the subsequent P3 component (300-450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened.

  16. Multiple feature extraction and classification of electroencephalograph signal for Alzheimers' with spectrum and bispectrum

    NASA Astrophysics Data System (ADS)

    Wang, Ruofan; Wang, Jiang; Li, Shunan; Yu, Haitao; Deng, Bin; Wei, Xile

    2015-01-01

    In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.

  17. Multiple feature extraction and classification of electroencephalograph signal for Alzheimers' with spectrum and bispectrum.

    PubMed

    Wang, Ruofan; Wang, Jiang; Li, Shunan; Yu, Haitao; Deng, Bin; Wei, Xile

    2015-01-01

    In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.

  18. Computer-aided diagnosis of liver tumors on computed tomography images.

    PubMed

    Chang, Chin-Chen; Chen, Hong-Hao; Chang, Yeun-Chung; Yang, Ming-Yang; Lo, Chung-Ming; Ko, Wei-Chun; Lee, Yee-Fan; Liu, Kao-Lang; Chang, Ruey-Feng

    2017-07-01

    Liver cancer is the tenth most common cancer in the USA, and its incidence has been increasing for several decades. Early detection, diagnosis, and treatment of the disease are very important. Computed tomography (CT) is one of the most common and robust imaging techniques for the detection of liver cancer. CT scanners can provide multiple-phase sequential scans of the whole liver. In this study, we proposed a computer-aided diagnosis (CAD) system to diagnose liver cancer using the features of tumors obtained from multiphase CT images. A total of 71 histologically-proven liver tumors including 49 benign and 22 malignant lesions were evaluated with the proposed CAD system to evaluate its performance. Tumors were identified by the user and then segmented using a region growing algorithm. After tumor segmentation, three kinds of features were obtained for each tumor, including texture, shape, and kinetic curve. The texture was quantified using 3 dimensional (3-D) texture data of the tumor based on the grey level co-occurrence matrix (GLCM). Compactness, margin, and an elliptic model were used to describe the 3-D shape of the tumor. The kinetic curve was established from each phase of tumor and represented as variations in density between each phase. Backward elimination was used to select the best combination of features, and binary logistic regression analysis was used to classify the tumors with leave-one-out cross validation. The accuracy and sensitivity for the texture were 71.82% and 68.18%, respectively, which were better than for the shape and kinetic curve under closed specificity. Combining all of the features achieved the highest accuracy (58/71, 81.69%), sensitivity (18/22, 81.82%), and specificity (40/49, 81.63%). The Az value of combining all features was 0.8713. Combining texture, shape, and kinetic curve features may be able to differentiate benign from malignant tumors in the liver using our proposed CAD system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan

    2017-01-01

    Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789

  20. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  1. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model.

    PubMed

    Yin, Zhong; Zhao, Mengyuan; Wang, Yongxiong; Yang, Jingdong; Zhang, Jianhua

    2017-03-01

    Using deep-learning methodologies to analyze multimodal physiological signals becomes increasingly attractive for recognizing human emotions. However, the conventional deep emotion classifiers may suffer from the drawback of the lack of the expertise for determining model structure and the oversimplification of combining multimodal feature abstractions. In this study, a multiple-fusion-layer based ensemble classifier of stacked autoencoder (MESAE) is proposed for recognizing emotions, in which the deep structure is identified based on a physiological-data-driven approach. Each SAE consists of three hidden layers to filter the unwanted noise in the physiological features and derives the stable feature representations. An additional deep model is used to achieve the SAE ensembles. The physiological features are split into several subsets according to different feature extraction approaches with each subset separately encoded by a SAE. The derived SAE abstractions are combined according to the physiological modality to create six sets of encodings, which are then fed to a three-layer, adjacent-graph-based network for feature fusion. The fused features are used to recognize binary arousal or valence states. DEAP multimodal database was employed to validate the performance of the MESAE. By comparing with the best existing emotion classifier, the mean of classification rate and F-score improves by 5.26%. The superiority of the MESAE against the state-of-the-art shallow and deep emotion classifiers has been demonstrated under different sizes of the available physiological instances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Accuracy Estimation and Parameter Advising for Protein Multiple Sequence Alignment

    PubMed Central

    DeBlasio, Dan

    2013-01-01

    Abstract We develop a novel and general approach to estimating the accuracy of multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new task that we call parameter advising: the problem of choosing values for alignment scoring function parameters from a given set of choices to maximize the accuracy of a computed alignment. For protein alignments, we consider twelve independent features that contribute to a quality alignment. An accuracy estimator is learned that is a polynomial function of these features; its coefficients are determined by minimizing its error with respect to true accuracy using mathematical optimization. Compared to prior approaches for estimating accuracy, our new approach (a) introduces novel feature functions that measure nonlocal properties of an alignment yet are fast to evaluate, (b) considers more general classes of estimators beyond linear combinations of features, and (c) develops new regression formulations for learning an estimator from examples; in addition, for parameter advising, we (d) determine the optimal parameter set of a given cardinality, which specifies the best parameter values from which to choose. Our estimator, which we call Facet (for “feature-based accuracy estimator”), yields a parameter advisor that on the hardest benchmarks provides more than a 27% improvement in accuracy over the best default parameter choice, and for parameter advising significantly outperforms the best prior approaches to assessing alignment quality. PMID:23489379

  3. Automated simultaneous multiple feature classification of MTI data

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.

    2002-08-01

    Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.

  4. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.

    PubMed

    Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat

    2017-12-01

    EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.

  5. Cell classification using big data analytics plus time stretch imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jalali, Bahram; Chen, Claire L.; Mahjoubfar, Ata

    2016-09-01

    We show that blood cells can be classified with high accuracy and high throughput by combining machine learning with time stretch quantitative phase imaging. Our diagnostic system captures quantitative phase images in a flow microscope at millions of frames per second and extracts multiple biophysical features from individual cells including morphological characteristics, light absorption and scattering parameters, and protein concentration. These parameters form a hyperdimensional feature space in which supervised learning and cell classification is performed. We show binary classification of T-cells against colon cancer cells, as well classification of algae cell strains with high and low lipid content. The label-free screening averts the negative impact of staining reagents on cellular viability or cell signaling. The combination of time stretch machine vision and learning offers unprecedented cell analysis capabilities for cancer diagnostics, drug development and liquid biopsy for personalized genomics.

  6. MER-DIMES : a planetary landing application of computer vision

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew; Matthies, Larry

    2005-01-01

    During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.

  7. Learning Midlevel Auditory Codes from Natural Sound Statistics.

    PubMed

    Młynarski, Wiktor; McDermott, Josh H

    2018-03-01

    Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through cascades of neuronal processing stages in which neurons at each stage recode the output of preceding stages. Explanations of sensory coding may thus involve understanding how low-level patterns are combined into more complex structures. To gain insight into such midlevel representations for sound, we designed a hierarchical generative model of natural sounds that learns combinations of spectrotemporal features from natural stimulus statistics. In the first layer, the model forms a sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying magnitude of multiple first-layer coefficients. When trained on corpora of speech and environmental sounds, some second-layer units learned to group similar spectrotemporal features. Others instantiate opponency between distinct sets of features. Such groupings might be instantiated by neurons in the auditory cortex, providing a hypothesis for midlevel neuronal computation.

  8. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen-thawed fish muscle.

    PubMed

    Cheng, Jun-Hu; Sun, Da-Wen; Pu, Hongbin

    2016-04-15

    The potential use of feature wavelengths for predicting drip loss in grass carp fish, as affected by being frozen at -20°C for 24 h and thawed at 4°C for 1, 2, 4, and 6 days, was investigated. Hyperspectral images of frozen-thawed fish were obtained and their corresponding spectra were extracted. Least-squares support vector machine and multiple linear regression (MLR) models were established using five key wavelengths, selected by combining a genetic algorithm and successive projections algorithm, and this showed satisfactory performance in drip loss prediction. The MLR model with a determination coefficient of prediction (R(2)P) of 0.9258, and lower root mean square error estimated by a prediction (RMSEP) of 1.12%, was applied to transfer each pixel of the image and generate the distribution maps of exudation changes. The results confirmed that it is feasible to identify the feature wavelengths using variable selection methods and chemometric analysis for developing on-line multispectral imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. All eyes on relevance: strategic allocation of attention as a result of feature-based task demands in multiple object tracking.

    PubMed

    Brockhoff, Alisa; Huff, Markus

    2016-10-01

    Multiple object tracking (MOT) plays a fundamental role in processing and interpreting dynamic environments. Regarding the type of information utilized by the observer, recent studies reported evidence for the use of object features in an automatic, low- level manner. By introducing a novel paradigm that allowed us to combine tracking with a noninterfering top-down task, we tested whether a voluntary component can regulate the deployment of attention to task-relevant features in a selective manner. In four experiments we found conclusive evidence for a task-driven selection mechanism that guides attention during tracking: The observers were able to ignore or prioritize distinct objects. They marked the distinct (cued) object (target/distractor) more or less often than other objects of the same type (targets /distractors)-but only when they had received an identification task that required them to actively process object features (cues) during tracking. These effects are discussed with regard to existing theoretical approaches to attentive tracking, gaze-cue usability as well as attentional readiness, a term that originally stems from research on attention capture and visual search. Our findings indicate that existing theories of MOT need to be adjusted to allow for flexible top-down, voluntary processing during tracking.

  10. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1995-01-01

    Research was accomplished during the third year of the grant on: BETA architecture, an FFT array, a feature extractor, the Pentium array and workstation, and a radio astronomy spectrometer. The BETA (this SETI project) system architecture has been evolving generally in the direction of greater robustness against terrestrial interference. The new design adds a powerful state-memory feature, multiple simultaneous thresholds, and the ability to integrate multiple spectra in a flexible state-machine architecture. The FFT array is reported with regards to its hardware verification, array production, and control. The feature extractor is responsible for maintaining a moving baseline, recognizing large spectral peaks, following the progress of previously identified interesting spectral regions, and blocking signals from regions previously identified as containing interference. The Pentium array consists of 21 Pentium-based PC motherboards, each with 16 MByte of RAM and an Ethernet interface. Each motherboard receives and processes the data from a feature extractor/correlator board set, passing on the results of a first analysis to the central Unix workstation (through which each is also booted). The radio astronomy spectrometer is a technological spinoff from SETI work. It is proposed to be a combined spectrometer and power-accumulator, for use at Arecibo Observatory to search for neutral hydrogen emission from condensations of neutral hydrogen at high redshift (z = 5).

  11. Lateral offsets on surveyed cultural features resulting from the 1999 İzmit and Düzce earthquakes, Turkey

    USGS Publications Warehouse

    Rockwell, Thomas K.; Lindvall, Scott; Dawson, Tim; Langridge, Rob; Lettis, William; Klinger, Yann

    2002-01-01

    Surveys of multiple tree lines within groves of poplar trees, planted in straight lines across the fault prior to the earthquake, show surprisingly large lateral variations. In one grove, slip increases by nearly 1.8 m, or 35% of the maximum measured value, over a lateral distance of nearly 100 m. This and other observations along the 1999 ruptures suggest that the lateral variability of slip observed from displaced geomorphic features in many earthquakes of the past may represent a combination of (1) actual differences in slip at the surface and (2) the difficulty in recognizing distributed nonbrittle deformation.

  12. Correlative feature analysis of FFDM images

    NASA Astrophysics Data System (ADS)

    Yuan, Yading; Giger, Maryellen L.; Li, Hui; Sennett, Charlene

    2008-03-01

    Identifying the corresponding image pair of a lesion is an essential step for combining information from different views of the lesion to improve the diagnostic ability of both radiologists and CAD systems. Because of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In this study, we present a computerized framework that differentiates the corresponding images from different views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial radial gradient index(RGI) based segmentation and an active contour model, was initially applied to extract mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the performance of the individual features and the selected feature subset in the task of distinguishing between corresponding and non-corresponding pairs. By using a FFDM database with 124 corresponding image pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of 0.8 with leave-one-out evaluation by lesion, and the feature subset, which includes distance feature, lesion size and lesion contrast, yielded an AUC of 0.86. The improvement by using multiple features was statistically significant as compared to single feature performance. (p<0.001)

  13. Application of Multiple Categories of Unmanned Aircraft Systems (uas) in Different Airspaces for Bushfire Monitoring and Response

    NASA Astrophysics Data System (ADS)

    Homainejad, N.; Rizos, C.

    2015-08-01

    Demand and interest in Unmanned Aircraft Systems (UAS) for civilian applications, and advances in technology such as development of sense-and-avoid systems, will soon allow UAS to be flown alongside manned aircrafts in non-segregated airspace. An area that can benefit from the application of UAS is the bushfire services sector. Currently such services rely on watchtowers, fixed-wing manned aircrafts and satellite data for reliable information. UAS are a promising alternative to traditional methods of collecting bushfire data. There are several varieties of UAS and each category has certain limitations, hence a combination of multiple UAS with features appropriate for bushfire emergencies can be used simultaneously for collecting valuable data. This paper will describe the general UAS categories, some characteristics of Australian bushfires, and speculate on how a combination of several UAS operating in different airspaces can be of benefit for bushfire response personnel and firefighters.

  14. The role of optics in secure credentials

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Terri L.

    2006-02-01

    The global need for secure ID credentials has grown rapidly over the last few years. This is evident both in government and commercial sectors. Governmental programs include national ID card programs, permanent resident cards for noncitizens, biometric visas or border crossing cards, foreign worker ID programs and secure vehicle registration programs. The commercial need for secure credentials includes secure banking and financial services, security and access control systems and digital healthcare record cards. All of these programs necessitate the use of multiple tamper and counterfeit resistant features for credential authentication and cardholder verification. It is generally accepted that a secure credential should include a combination of overt, covert and forensic security features. The LaserCard optical memory card is a proven example of a secure credential that uses a variety of optical features to enhance its counterfeit resistance and reliability. This paper will review those features and how they interact to create a better credential.

  15. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  16. Realizing drug repositioning by adapting a recommendation system to handle the process.

    PubMed

    Ozsoy, Makbule Guclin; Özyer, Tansel; Polat, Faruk; Alhajj, Reda

    2018-04-12

    Drug repositioning is the process of identifying new targets for known drugs. It can be used to overcome problems associated with traditional drug discovery by adapting existing drugs to treat new discovered diseases. Thus, it may reduce associated risk, cost and time required to identify and verify new drugs. Nowadays, drug repositioning has received more attention from industry and academia. To tackle this problem, researchers have applied many different computational methods and have used various features of drugs and diseases. In this study, we contribute to the ongoing research efforts by combining multiple features, namely chemical structures, protein interactions and side-effects to predict new indications of target drugs. To achieve our target, we realize drug repositioning as a recommendation process and this leads to a new perspective in tackling the problem. The utilized recommendation method is based on Pareto dominance and collaborative filtering. It can also integrate multiple data-sources and multiple features. For the computation part, we applied several settings and we compared their performance. Evaluation results show that the proposed method can achieve more concentrated predictions with high precision, where nearly half of the predictions are true. Compared to other state of the art methods described in the literature, the proposed method is better at making right predictions by having higher precision. The reported results demonstrate the applicability and effectiveness of recommendation methods for drug repositioning.

  17. Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

    DTIC Science & Technology

    2007-05-30

    with large region of attraction about the true minimum. The physical optics models provide features for high confidence identification of stationary...the detection test are used to estimate 3D object scattering; multiple images can be noncoherently combined to reconstruct a more complete object...Proc. SPIE Algorithms for Synthetic Aper- ture Radar Imagery XIII, The International Society for Optical Engineering, April 2006. [40] K. Varshney, M. C

  18. Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Cruz-Roa, Angel; Basavanhally, Ajay; Gilmore, Hannah; Shih, Natalie; Feldman, Mike; Tomaszewski, John; Gonzalez, Fabio; Madabhushi, Anant

    2014-03-01

    Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is mitotic count, which involves quantifying the number of cells in the process of dividing (i.e. undergoing mitosis) at a specific point in time. Currently mitosis counting is done manually by a pathologist looking at multiple high power fields on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical or textural attributes of mitoses or features learned with convolutional neural networks (CNN). While handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely unsupervised feature generation methods, there is an appeal to attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. In this paper, we present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing performance by leveraging the disconnected feature sets. Evaluation on the public ICPR12 mitosis dataset that has 226 mitoses annotated on 35 High Power Fields (HPF, x400 magnification) by several pathologists and 15 testing HPFs yielded an F-measure of 0.7345. Apart from this being the second best performance ever recorded for this MITOS dataset, our approach is faster and requires fewer computing resources compared to extant methods, making this feasible for clinical use.

  19. Extramedullary plasmacytomas in the context of multiple myeloma.

    PubMed

    Aguado, Beatriz; Iñigo, Belen; Sastre, Jose L; Oriol, Albert

    2011-11-01

    Plasmacytoma is a frequent complication of multiple myeloma, either at diagnosis or within disease progression. The extramedullary disease confers a poorer prognosis and is biologically distinct with high-risk molecular and histological features, being resistant to conventional treatments. Radiation therapy remains the most effective treatment for extramedullary lesions to achieve local control. There are very limited data from randomized trials regarding the most appropriate systemic treatment. Case reports such as those presented here, as well as retrospective analysis of series, suggest that lenalidomide is an effective agent, in combination with dexamethasone, in this setting. Additional studies are needed to define the proper management of this condition.

  20. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets.

    PubMed

    Hoffmann, Nils; Keck, Matthias; Neuweger, Heiko; Wilhelm, Mathias; Högy, Petra; Niehaus, Karsten; Stoye, Jens

    2012-08-27

    Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW). We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum). We have shown that BIPACE achieves very high precision and recall and a very low number of false positive peak assignments on both evaluation datasets. CeMAPP-DTW finds a high number of true positives when executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://maltcms.sf.net. The evaluation scripts of the present study are available from the same source.

  1. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets

    PubMed Central

    2012-01-01

    Background Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. Results In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW). We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum). Conclusions We have shown that BIPACE achieves very high precision and recall and a very low number of false positive peak assignments on both evaluation datasets. CeMAPP-DTW finds a high number of true positives when executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://maltcms.sf.net. The evaluation scripts of the present study are available from the same source. PMID:22920415

  2. Individual Morphological Brain Network Construction Based on Multivariate Euclidean Distances Between Brain Regions.

    PubMed

    Yu, Kaixin; Wang, Xuetong; Li, Qiongling; Zhang, Xiaohui; Li, Xinwei; Li, Shuyu

    2018-01-01

    Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated that our method could effectively construct an individual morphological brain network based on multiple morphological features and could accurately discriminate MCI from NC and stable MCI from progressive MCI, and may provide a valuable tool for the investigation of individual morphological brain networks.

  3. Combination therapy for treatment or prevention of atherosclerosis: Focus on the lipid-RAAS interaction☆

    PubMed Central

    Koh, Kwang Kon; Han, Seung Hwan; Oh, Pyung Chun; Shin, Eak Kyun; Quon, Michael J.

    2010-01-01

    Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by ~30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin–angiotensin–aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance. PMID:19800624

  4. Analyzing multicomponent receptive fields from neural responses to natural stimuli

    PubMed Central

    Rowekamp, Ryan; Sharpee, Tatyana O

    2011-01-01

    The challenge of building increasingly better models of neural responses to natural stimuli is to accurately estimate the multiple stimulus features that may jointly affect the neural spike probability. The selectivity for combinations of features is thought to be crucial for achieving classical properties of neural responses such as contrast invariance. The joint search for these multiple stimulus features is difficult because estimating spike probability as a multidimensional function of stimulus projections onto candidate relevant dimensions is subject to the curse of dimensionality. An attractive alternative is to search for relevant dimensions sequentially, as in projection pursuit regression. Here we demonstrate using analytic arguments and simulations of model cells that different types of sequential search strategies exhibit systematic biases when used with natural stimuli. Simulations show that joint optimization is feasible for up to three dimensions with current algorithms. When applied to the responses of V1 neurons to natural scenes, models based on three jointly optimized dimensions had better predictive power in a majority of cases compared to dimensions optimized sequentially, with different sequential methods yielding comparable results. Thus, although the curse of dimensionality remains, at least several relevant dimensions can be estimated by joint information maximization. PMID:21780916

  5. Multiple-camera/motion stereoscopy for range estimation in helicopter flight

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.

    1993-01-01

    Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.

  6. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils

    PubMed Central

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Fei, Teng; Wang, Junjie; Wu, Guofeng

    2017-01-01

    This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF), artificial neural network (ANN), radial basis function- and linear function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs). The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value). The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies. PMID:28471412

  7. Collaborative Brain-Computer Interface for Aiding Decision-Making

    PubMed Central

    Poli, Riccardo; Valeriani, Davide; Cinel, Caterina

    2014-01-01

    We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making. PMID:25072739

  8. Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data

    PubMed Central

    Meng, Xing; Jiang, Rongtao; Lin, Dongdong; Bustillo, Juan; Jones, Thomas; Chen, Jiayu; Yu, Qingbao; Du, Yuhui; Zhang, Yu; Jiang, Tianzi; Sui, Jing; Calhoun, Vince D.

    2016-01-01

    Neuroimaging techniques have greatly enhanced the understanding of neurodiversity (human brain variation across individuals) in both health and disease. The ultimate goal of using brain imaging biomarkers is to perform individualized predictions. Here we proposed a generalized framework that can predict explicit values of the targeted measures by taking advantage of joint information from multiple modalities. This framework also enables whole brain voxel-wise searching by combining multivariate techniques such as ReliefF, clustering, correlation-based feature selection and multiple regression models, which is more flexible and can achieve better prediction performance than alternative atlas-based methods. For 50 healthy controls and 47 schizophrenia patients, three kinds of features derived from resting-state fMRI (fALFF), sMRI (gray matter) and DTI (fractional anisotropy) were extracted and fed into a regression model, achieving high prediction for both cognitive scores (MCCB composite r = 0.7033, MCCB social cognition r = 0.7084) and symptomatic scores (positive and negative syndrome scale [PANSS] positive r = 0.7785, PANSS negative r = 0.7804). Moreover, the brain areas likely responsible for cognitive deficits of schizophrenia, including middle temporal gyrus, dorsolateral prefrontal cortex, striatum, cuneus and cerebellum, were located with different weights, as well as regions predicting PANSS symptoms, including thalamus, striatum and inferior parietal lobule, pinpointing the potential neuromarkers. Finally, compared to a single modality, multimodal combination achieves higher prediction accuracy and enables individualized prediction on multiple clinical measures. There is more work to be done, but the current results highlight the potential utility of multimodal brain imaging biomarkers to eventually inform clinical decision-making. PMID:27177764

  9. Spatial attention improves the quality of population codes in human visual cortex.

    PubMed

    Saproo, Sameer; Serences, John T

    2010-08-01

    Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.

  10. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  11. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  13. Comparison of imaging characteristics of multiple-beam equalization and storage phosphor direct digitizer radiographic systems

    NASA Astrophysics Data System (ADS)

    Sankaran, A.; Chuang, Keh-Shih; Yonekawa, Hisashi; Huang, H. K.

    1992-06-01

    The imaging characteristics of two chest radiographic equipment, Advanced Multiple Beam Equalization Radiography (AMBER) and Konica Direct Digitizer [using a storage phosphor (SP) plate] systems have been compared. The variables affecting image quality and the computer display/reading systems used are detailed. Utilizing specially designed wedge, geometric, and anthropomorphic phantoms, studies were conducted on: exposure and energy response of detectors; nodule detectability; different exposure techniques; various look- up tables (LUTs), gray scale displays and laser printers. Methods for scatter estimation and reduction were investigated. It is concluded that AMBER with screen-film and equalization techniques provides better nodule detectability than SP plates. However, SP plates have other advantages such as flexibility in the selection of exposure techniques, image processing features, and excellent sensitivity when combined with optimum reader operating modes. The equalization feature of AMBER provides better nodule detectability under the denser regions of the chest. Results of diagnostic accuracy are demonstrated with nodule detectability plots and analysis of images obtained with phantoms.

  14. Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features

    PubMed Central

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-01-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159

  15. Instantaneous and Time Averaged Flow Fields of Multiple Vortices in the Tip Region of a Ducted Propulsor

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Steven, Ceccio

    2003-11-01

    PIV data of the flow field in the immediate vicinity of the trailing edge of a ducted propeller at the tip revealed the existence of multiple vorticity concentrations. The multiple vortices in each instantaneous PIV field were identified and individually characterized. The measurements of the multiple vortices were combined with a Gaussian vortex model to reconstruct the vorticity and velocity fields. The major features of the original experimental field were recovered, and the correlation between the two fields was good. The time averaged field and velocity fluctuations were also measured. We will discuss why the "typical" instantaneous tip vortex and the tip vortex from the time averaged field are substantially different. We attempt to explain the cause of these differences. Knowledge of the instantaneous flow field variability is used to understand the causes of the measured velocity fluctuations. The results from this study have an impact on the understanding of the roll-up of tip vortices, and the dynamics of multiple vortices.

  16. Weighted score-level feature fusion based on Dempster-Shafer evidence theory for action recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Guoliang; Jia, Songmin; Li, Xiuzhi; Zhang, Xiangyin

    2018-01-01

    The majority of human action recognition methods use multifeature fusion strategy to improve the classification performance, where the contribution of different features for specific action has not been paid enough attention. We present an extendible and universal weighted score-level feature fusion method using the Dempster-Shafer (DS) evidence theory based on the pipeline of bag-of-visual-words. First, the partially distinctive samples in the training set are selected to construct the validation set. Then, local spatiotemporal features and pose features are extracted from these samples to obtain evidence information. The DS evidence theory and the proposed rule of survival of the fittest are employed to achieve evidence combination and calculate optimal weight vectors of every feature type belonging to each action class. Finally, the recognition results are deduced via the weighted summation strategy. The performance of the established recognition framework is evaluated on Penn Action dataset and a subset of the joint-annotated human metabolome database (sub-JHMDB). The experiment results demonstrate that the proposed feature fusion method can adequately exploit the complementarity among multiple features and improve upon most of the state-of-the-art algorithms on Penn Action and sub-JHMDB datasets.

  17. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    NASA Technical Reports Server (NTRS)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  18. Multiclass cancer classification using a feature subset-based ensemble from microRNA expression profiles.

    PubMed

    Piao, Yongjun; Piao, Minghao; Ryu, Keun Ho

    2017-01-01

    Cancer classification has been a crucial topic of research in cancer treatment. In the last decade, messenger RNA (mRNA) expression profiles have been widely used to classify different types of cancers. With the discovery of a new class of small non-coding RNAs; known as microRNAs (miRNAs), various studies have shown that the expression patterns of miRNA can also accurately classify human cancers. Therefore, there is a great demand for the development of machine learning approaches to accurately classify various types of cancers using miRNA expression data. In this article, we propose a feature subset-based ensemble method in which each model is learned from a different projection of the original feature space to classify multiple cancers. In our method, the feature relevance and redundancy are considered to generate multiple feature subsets, the base classifiers are learned from each independent miRNA subset, and the average posterior probability is used to combine the base classifiers. To test the performance of our method, we used bead-based and sequence-based miRNA expression datasets and conducted 10-fold and leave-one-out cross validations. The experimental results show that the proposed method yields good results and has higher prediction accuracy than popular ensemble methods. The Java program and source code of the proposed method and the datasets in the experiments are freely available at https://sourceforge.net/projects/mirna-ensemble/. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.

    PubMed

    Brosch, Tom; Tang, Lisa Y W; Youngjin Yoo; Li, David K B; Traboulsee, Anthony; Tam, Roger

    2016-05-01

    We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.

  20. Multilevel depth and image fusion for human activity detection.

    PubMed

    Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng

    2013-10-01

    Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.

  1. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  2. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  3. Characterizing facial features in individuals with craniofacial microsomia: A systematic approach for clinical research.

    PubMed

    Heike, Carrie L; Wallace, Erin; Speltz, Matthew L; Siebold, Babette; Werler, Martha M; Hing, Anne V; Birgfeld, Craig B; Collett, Brent R; Leroux, Brian G; Luquetti, Daniela V

    2016-11-01

    Craniofacial microsomia (CFM) is a congenital condition with wide phenotypic variability, including hypoplasia of the mandible and external ear. We assembled a cohort of children with facial features within the CFM spectrum and children without known craniofacial anomalies. We sought to develop a standardized approach to assess and describe the facial characteristics of the study cohort, using multiple sources of information gathered over the course of this longitudinal study and to create case subgroups with shared phenotypic features. Participants were enrolled between 1996 and 2002. We classified the facial phenotype from photographs, ratings using a modified version of the Orbital, Ear, Mandible, Nerve, Soft tissue (OMENS) pictorial system, data from medical record abstraction, and health history questionnaires. The participant sample included 142 cases and 290 controls. The average age was 13.5 years (standard deviation, 1.3 years; range, 11.1-17.1 years). Sixty-one percent of cases were male, 74% were white non-Hispanic. Among cases, the most common features were microtia (66%) and mandibular hypoplasia (50%). Case subgroups with meaningful group definitions included: (1) microtia without other CFM-related features (n = 24), (2) microtia with mandibular hypoplasia (n = 46), (3) other combinations of CFM- related facial features (n = 51), and (4) atypical features (n = 21). We developed a standardized approach for integrating multiple data sources to phenotype individuals with CFM, and created subgroups based on clinically-meaningful, shared characteristics. We hope that this system can be used to explore associations between phenotype and clinical outcomes of children with CFM and to identify the etiology of CFM. Birth Defects Research (Part A) 106:915-926, 2016.© 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. A Preliminary Shape Model of 27 Euterpe

    NASA Astrophysics Data System (ADS)

    Stephens, R.; Warner, B. D.; Megna, R.; Coley, D.

    2011-10-01

    We obtained dense rotational lightcurves for the Main-Belt asteroid (27) Euterpe during three apparitions in 2000, 2009 and 2010 with planned observations in the summer of 2011. These were combined with sparse lightcurve data from the USNO to determine a preliminary spin vector and model shape (see Durech et al. [2] for a discussion regarding the differences between dense and sparse data sets). The analysis suggests that Euterpe has albedo features making the determination of an unambiguous spin vector and model shape difficult. So far, Euterpe's near spherical shape, low inclination, pole within 30 degrees of the plane of the solar system, and possible albedo features cause multiple pole and shape solutions to be present.

  5. Combining feature extraction and classification for fNIRS BCIs by regularized least squares optimization.

    PubMed

    Heger, Dominic; Herff, Christian; Schultz, Tanja

    2014-01-01

    In this paper, we show that multiple operations of the typical pattern recognition chain of an fNIRS-based BCI, including feature extraction and classification, can be unified by solving a convex optimization problem. We formulate a regularized least squares problem that learns a single affine transformation of raw HbO(2) and HbR signals. We show that this transformation can achieve competitive results in an fNIRS BCI classification task, as it significantly improves recognition of different levels of workload over previously published results on a publicly available n-back data set. Furthermore, we visualize the learned models and analyze their spatio-temporal characteristics.

  6. Perceptual representation and effectiveness of local figure–ground cues in natural contours

    PubMed Central

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure–ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure–ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure–ground perception with natural contours when the other cues coexist with equal probability including contradictory cases. PMID:26579057

  7. Perceptual representation and effectiveness of local figure-ground cues in natural contours.

    PubMed

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.

  8. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2012-10-01

    The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.

  9. Pathologic Progression, Possible Origin, and Management of Multiple Primary Intracranial Neuroendocrine Carcinomas.

    PubMed

    Cao, Jingwei; Xu, Wenzhe; Du, Zhenhui; Sun, Bin; Li, Feng; Liu, Yuguang

    2017-10-01

    Primary intracranial neuroendocrine carcinomas (NECs) are extremely rare malignant tumors with no previous reports of multiple ones in the literatures. The clinical presentation, preoperative and reexamined magnetic resonance imaging findings, as well as histopathologic studies of a 56-year-old female subject with multiple intracranial NECs mimicking multiple intracranial meningiomas, who underwent 3 operations with left parietal craniotomy, right occipital parietal craniotomy, and left frontal craniotomy, separately and chronologically, are presented in this article. Noteworthy, the first and second tumors were confirmed as NECs exhibiting histologic characteristics of typical anaplastic meningiomas with features of whorl formation, while the third tumor was a typical NEC with features of organoid cancer nests. In other words, the first 2 lesions were diagnosed as meningioma as opposed to NEC. It was only after the third surgery that the pathology for the first 2 cases was reviewed and had a revised diagnosis. After the third surgical resection, the patient further received whole brain radiotherapy and systemic chemotherapy (temozolomide combined with YH-16). At her 10-month follow-up, the patient achieved a good outcome. Multiple primary intracranial NECs are extremely rare. The tumor might be of arachnoidal or leptomeningeal origin, with histologic patterns that might lead to transformation and/or progression. Maximal surgical resection is warranted for symptomatic mass effect. Postoperative adjuvant treatments including radiotherapy and chemotherapy should be a recommended therapeutic modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multiview alignment hashing for efficient image search.

    PubMed

    Liu, Li; Yu, Mengyang; Shao, Ling

    2015-03-01

    Hashing is a popular and efficient method for nearest neighbor search in large-scale data spaces by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. For most hashing methods, the performance of retrieval heavily depends on the choice of the high-dimensional feature descriptor. Furthermore, a single type of feature cannot be descriptive enough for different images when it is used for hashing. Thus, how to combine multiple representations for learning effective hashing functions is an imminent task. In this paper, we present a novel unsupervised multiview alignment hashing approach based on regularized kernel nonnegative matrix factorization, which can find a compact representation uncovering the hidden semantics and simultaneously respecting the joint probability distribution of data. In particular, we aim to seek a matrix factorization to effectively fuse the multiple information sources meanwhile discarding the feature redundancy. Since the raised problem is regarded as nonconvex and discrete, our objective function is then optimized via an alternate way with relaxation and converges to a locally optimal solution. After finding the low-dimensional representation, the hashing functions are finally obtained through multivariable logistic regression. The proposed method is systematically evaluated on three data sets: 1) Caltech-256; 2) CIFAR-10; and 3) CIFAR-20, and the results show that our method significantly outperforms the state-of-the-art multiview hashing techniques.

  11. Lesion classification using clinical and visual data fusion by multiple kernel learning

    NASA Astrophysics Data System (ADS)

    Kisilev, Pavel; Hashoul, Sharbell; Walach, Eugene; Tzadok, Asaf

    2014-03-01

    To overcome operator dependency and to increase diagnosis accuracy in breast ultrasound (US), a lot of effort has been devoted to developing computer-aided diagnosis (CAD) systems for breast cancer detection and classification. Unfortunately, the efficacy of such CAD systems is limited since they rely on correct automatic lesions detection and localization, and on robustness of features computed based on the detected areas. In this paper we propose a new approach to boost the performance of a Machine Learning based CAD system, by combining visual and clinical data from patient files. We compute a set of visual features from breast ultrasound images, and construct the textual descriptor of patients by extracting relevant keywords from patients' clinical data files. We then use the Multiple Kernel Learning (MKL) framework to train SVM based classifier to discriminate between benign and malignant cases. We investigate different types of data fusion methods, namely, early, late, and intermediate (MKL-based) fusion. Our database consists of 408 patient cases, each containing US images, textual description of complaints and symptoms filled by physicians, and confirmed diagnoses. We show experimentally that the proposed MKL-based approach is superior to other classification methods. Even though the clinical data is very sparse and noisy, its MKL-based fusion with visual features yields significant improvement of the classification accuracy, as compared to the image features only based classifier.

  12. Decoding visual object categories from temporal correlations of ECoG signals.

    PubMed

    Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu

    2014-04-15

    How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.

    PubMed

    Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip

    2014-11-01

    This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.

  14. Programming 2D/3D shape-shifting with hobbyist 3D printers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7mh00269f

    PubMed Central

    van Manen, Teunis; Janbaz, Shahram

    2017-01-01

    Materials and devices with advanced functionalities often need to combine complex 3D shapes with functionality-inducing surface features. Precisely controlled bio-nanopatterns, printed electronic components, and sensors/actuators are all examples of such surface features. However, the vast majority of the refined technologies that are currently available for creating functional surface features work only on flat surfaces. Here we present initially flat constructs that upon triggering by high temperatures change their shape to a pre-programmed 3D shape, thereby enabling the combination of surface-related functionalities with complex 3D shapes. A number of shape-shifting materials have been proposed during the last few years based on various types of advanced technologies. The proposed techniques often require multiple fabrication steps and special materials, while being limited in terms of the 3D shapes they could achieve. The approach presented here is a single-step printing process that requires only a hobbyist 3D printer and inexpensive off-the-shelf materials. It also lends itself to a host of design strategies based on self-folding origami, instability-driven pop-up, and ‘sequential’ shape-shifting to unprecedentedly expand the space of achievable 3D shapes. This combination of simplicity and versatility is a key to widespread applications. PMID:29308207

  15. Confocal and dermoscopic features of basal cell carcinoma in Gorlin-Goltz syndrome: A case report.

    PubMed

    Casari, Alice; Argenziano, Giuseppe; Moscarella, Elvira; Lallas, Aimilios; Longo, Caterina

    2017-05-01

    Gorlin-Goltz (GS) syndrome is an autosomal dominant disease linked to a mutation in the PTCH gene. Major criteria include the onset of multiple basal cell carcinoma (BCC), keratocystic odontogenic tumours in the jaws and bifid ribs. Dermoscopy and reflectance confocal microscopy represent imaging tools that are able to increase the diagnostic accuracy of skin cancer in a totally noninvasive manner, without performing punch biopsies. Here we present a case of a young woman in whom the combined approach of dermoscopy and RCM led to the identification of multiple small inconspicuous lesions as BCC and thus to the diagnosis of GS syndrome. © 2016 The Australasian College of Dermatologists.

  16. SWI enhances vein detection using gadolinium in multiple sclerosis

    PubMed Central

    Mazzoni, Lorenzo N; Moretti, Marco; Grammatico, Matteo; Chiti, Stefano; Massacesi, Luca

    2015-01-01

    Susceptibility weighted imaging (SWI) combined with the FLAIR sequence provides the ability to depict in vivo the perivenous location of inflammatory demyelinating lesions – one of the most specific pathologic features of multiple sclerosis (MS). In addition, in MS white matter (WM) lesions, gadolinium-based contrast media (CM) can increase vein signal loss on SWI. This report focuses on two cases of WM inflammatory lesions enhancing on SWI images after CM injection. In these lesions in fact the CM increased the contrast between the parenchyma and the central vein allowing as well, in one of the two cases, the detection of a vein not visible on the same SWI sequence acquired before CM injection. PMID:25815209

  17. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    PubMed Central

    Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou

    2012-01-01

    This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  18. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1991-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  19. Audio-Visual Speaker Diarization Based on Spatiotemporal Bayesian Fusion.

    PubMed

    Gebru, Israel D; Ba, Sileye; Li, Xiaofei; Horaud, Radu

    2018-05-01

    Speaker diarization consists of assigning speech signals to people engaged in a dialogue. An audio-visual spatiotemporal diarization model is proposed. The model is well suited for challenging scenarios that consist of several participants engaged in multi-party interaction while they move around and turn their heads towards the other participants rather than facing the cameras and the microphones. Multiple-person visual tracking is combined with multiple speech-source localization in order to tackle the speech-to-person association problem. The latter is solved within a novel audio-visual fusion method on the following grounds: binaural spectral features are first extracted from a microphone pair, then a supervised audio-visual alignment technique maps these features onto an image, and finally a semi-supervised clustering method assigns binaural spectral features to visible persons. The main advantage of this method over previous work is that it processes in a principled way speech signals uttered simultaneously by multiple persons. The diarization itself is cast into a latent-variable temporal graphical model that infers speaker identities and speech turns, based on the output of an audio-visual association process, executed at each time slice, and on the dynamics of the diarization variable itself. The proposed formulation yields an efficient exact inference procedure. A novel dataset, that contains audio-visual training data as well as a number of scenarios involving several participants engaged in formal and informal dialogue, is introduced. The proposed method is thoroughly tested and benchmarked with respect to several state-of-the art diarization algorithms.

  20. XML Encoding of Features Describing Rule-Based Modeling of Reaction Networks with Multi-Component Molecular Complexes

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2011-01-01

    Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833

  1. Stimulus competition mediates the joint effects of spatial and feature-based attention

    PubMed Central

    White, Alex L.; Rolfs, Martin; Carrasco, Marisa

    2015-01-01

    Distinct attentional mechanisms enhance the sensory processing of visual stimuli that appear at task-relevant locations and have task-relevant features. We used a combination of psychophysics and computational modeling to investigate how these two types of attention—spatial and feature based—interact to modulate sensitivity when combined in one task. Observers monitored overlapping groups of dots for a target change in color saturation, which they had to localize as being in the upper or lower visual hemifield. Pre-cues indicated the target's most likely location (left/right), color (red/green), or both location and color. We measured sensitivity (d′) for every combination of the location cue and the color cue, each of which could be valid, neutral, or invalid. When three competing saturation changes occurred simultaneously with the target change, there was a clear interaction: The spatial cueing effect was strongest for the cued color, and the color cueing effect was strongest at the cued location. In a second experiment, only the target dot group changed saturation, such that stimulus competition was low. The resulting cueing effects were statistically independent and additive: The color cueing effect was equally strong at attended and unattended locations. We account for these data with a computational model in which spatial and feature-based attention independently modulate the gain of sensory responses, consistent with measurements of cortical activity. Multiple responses then compete via divisive normalization. Sufficient competition creates interactions between the two cueing effects, although the attentional systems are themselves independent. This model helps reconcile seemingly disparate behavioral and physiological findings. PMID:26473316

  2. Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis

    PubMed Central

    2013-01-01

    Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539

  3. MACSIMS : multiple alignment of complete sequences information management system

    PubMed Central

    Thompson, Julie D; Muller, Arnaud; Waterhouse, Andrew; Procter, Jim; Barton, Geoffrey J; Plewniak, Frédéric; Poch, Olivier

    2006-01-01

    Background In the post-genomic era, systems-level studies are being performed that seek to explain complex biological systems by integrating diverse resources from fields such as genomics, proteomics or transcriptomics. New information management systems are now needed for the collection, validation and analysis of the vast amount of heterogeneous data available. Multiple alignments of complete sequences provide an ideal environment for the integration of this information in the context of the protein family. Results MACSIMS is a multiple alignment-based information management program that combines the advantages of both knowledge-based and ab initio sequence analysis methods. Structural and functional information is retrieved automatically from the public databases. In the multiple alignment, homologous regions are identified and the retrieved data is evaluated and propagated from known to unknown sequences with these reliable regions. In a large-scale evaluation, the specificity of the propagated sequence features is estimated to be >99%, i.e. very few false positive predictions are made. MACSIMS is then used to characterise mutations in a test set of 100 proteins that are known to be involved in human genetic diseases. The number of sequence features associated with these proteins was increased by 60%, compared to the features available in the public databases. An XML format output file allows automatic parsing of the MACSIM results, while a graphical display using the JalView program allows manual analysis. Conclusion MACSIMS is a new information management system that incorporates detailed analyses of protein families at the structural, functional and evolutionary levels. MACSIMS thus provides a unique environment that facilitates knowledge extraction and the presentation of the most pertinent information to the biologist. A web server and the source code are available at . PMID:16792820

  4. Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2008-08-01

    This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.

  5. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Combining qualitative and quantitative operational research methods to inform quality improvement in pathways that span multiple settings.

    PubMed

    Crowe, Sonya; Brown, Katherine; Tregay, Jenifer; Wray, Jo; Knowles, Rachel; Ridout, Deborah A; Bull, Catherine; Utley, Martin

    2017-08-01

    Improving integration and continuity of care across sectors within resource constraints is a priority in many health systems. Qualitative operational research methods of problem structuring have been used to address quality improvement in services involving multiple sectors but not in combination with quantitative operational research methods that enable targeting of interventions according to patient risk. We aimed to combine these methods to augment and inform an improvement initiative concerning infants with congenital heart disease (CHD) whose complex care pathway spans multiple sectors. Soft systems methodology was used to consider systematically changes to services from the perspectives of community, primary, secondary and tertiary care professionals and a patient group, incorporating relevant evidence. Classification and regression tree (CART) analysis of national audit datasets was conducted along with data visualisation designed to inform service improvement within the context of limited resources. A 'Rich Picture' was developed capturing the main features of services for infants with CHD pertinent to service improvement. This was used, along with a graphical summary of the CART analysis, to guide discussions about targeting interventions at specific patient risk groups. Agreement was reached across representatives of relevant health professions and patients on a coherent set of targeted recommendations for quality improvement. These fed into national decisions about service provision and commissioning. When tackling complex problems in service provision across multiple settings, it is important to acknowledge and work with multiple perspectives systematically and to consider targeting service improvements in response to confined resources. Our research demonstrates that applying a combination of qualitative and quantitative operational research methods is one approach to doing so that warrants further consideration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays.

    PubMed

    Hampf, Mathias; Gossen, Manfred

    2006-09-01

    We established a quantitative reporter gene protocol, the P/Rluc assay system, allowing the sequential measurement of Photinus and Renilla luciferase activities from the same extract. Other than comparable commercial reporter assay systems and their noncommercial counterparts, the P/Rluc assay system was formulated under the aspect of full compatibility with standard methods for protein assays. This feature greatly expands the range of applications for assay systems quantifying the expression of multiple luciferase reporters.

  8. Terra Cimmeria - False Color

    NASA Image and Video Library

    2016-10-11

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows dust devil tracks (dark blue linear feature) in Terra Cimmeria. Orbit Number: 43463 Latitude: -53.1551 Longitude: 125.069 Instrument: VIS Captured: 2011-10-01 23:55 http://photojournal.jpl.nasa.gov/catalog/PIA21009

  9. Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

    PubMed

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    PubMed

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  11. Binding of multiple features in memory by high-functioning adults with autism spectrum disorder.

    PubMed

    Bowler, Dermot M; Gaigg, Sebastian B; Gardiner, John M

    2014-09-01

    Diminished episodic memory and diminished use of semantic information to aid recall by individuals with autism spectrum disorder (ASD) are both thought to result from diminished relational binding of elements of complex stimuli. To test this hypothesis, we asked high-functioning adults with ASD and typical comparison participants to study grids in which some cells contained drawings of objects in non-canonical colours. Participants were told at study which features (colour, item, location) would be tested in a later memory test. In a second experiment, participants studied similar grids and were told that they would be tested on object-location or object-colour combinations. Recognition of combinations was significantly diminished in ASD, which survived covarying performance on the Color Trails Test (D'Elia et al. Color trails test. Professional manual. Psychological Assessment Resources, Lutz, 1996), a test of executive difficulties. The findings raise the possibility that medial temporal as well as frontal lobe processes are dysfunctional in ASD.

  12. Object-based detection of vehicles using combined optical and elevation data

    NASA Astrophysics Data System (ADS)

    Schilling, Hendrik; Bulatov, Dimitri; Middelmann, Wolfgang

    2018-02-01

    The detection of vehicles is an important and challenging topic that is relevant for many applications. In this work, we present a workflow that utilizes optical and elevation data to detect vehicles in remotely sensed urban data. This workflow consists of three consecutive stages: candidate identification, classification, and single vehicle extraction. Unlike in most previous approaches, fusion of both data sources is strongly pursued at all stages. While the first stage utilizes the fact that most man-made objects are rectangular in shape, the second and third stages employ machine learning techniques combined with specific features. The stages are designed to handle multiple sensor input, which results in a significant improvement. A detailed evaluation shows the benefits of our workflow, which includes hand-tailored features; even in comparison with classification approaches based on Convolutional Neural Networks, which are state of the art in computer vision, we could obtain a comparable or superior performance (F1 score of 0.96-0.94).

  13. Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.

    ERIC Educational Resources Information Center

    Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido

    1997-01-01

    Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…

  14. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    PubMed Central

    Tang, Yunwei; Jing, Linhai; Ding, Haifeng

    2017-01-01

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416

  15. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition].

    PubMed

    Wang, Jinjia; Liu, Yuan

    2015-04-01

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

  16. Wavelet Packet Feature Assessment for High-Density Myoelectric Pattern Recognition and Channel Selection toward Stroke Rehabilitation.

    PubMed

    Wang, Dongqing; Zhang, Xu; Gao, Xiaoping; Chen, Xiang; Zhou, Ping

    2016-01-01

    This study presents wavelet packet feature assessment of neural control information in paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking advantage of high-resolution time-frequency representations of surface electromyogram (EMG) signals. On this basis, a novel channel selection method was developed by combining the Fisher's class separability index and the sequential feedforward selection analyses, in order to determine a small number of appropriate EMG channels from original high-density EMG electrode array. The advantages of the wavelet packet features and the channel selection analyses were further illustrated by comparing with previous conventional approaches, in terms of classification performance when identifying 20 functional arm/hand movements implemented by 12 stroke survivors. This study offers a practical approach including paretic EMG feature extraction and channel selection that enables active myoelectric control of multiple degrees of freedom with paretic muscles. All these efforts will facilitate upper limb dexterity restoration and improved stroke rehabilitation.

  17. Mammal responses to the human footprint vary across species and stressors.

    PubMed

    Toews, Mary; Juanes, Francis; Burton, A Cole

    2018-07-01

    A rapidly expanding human footprint - comprised of anthropogenic land-use change and infrastructure - is profoundly affecting wildlife distributions worldwide. Cumulative effects management (CEM) is a regional approach that seeks to manage combined effects of the human footprint on biodiversity across large spatial scales. Challenges to implementing this approach include a lack of ecological data at large spatial scales, the high cost of monitoring multiple indicators, and the need to manage multiple footprints across industries. To inform development of effective CEM, we used large mammals as indicators to address the following questions: a) do species respond more strongly to individual footprint features or to cumulative effects (combined area of all footprint types, measured as total footprint), b) which features elicit the strongest responses across species, and c) are the direction of responses to footprint consistent? We used data from 12 years of snowtrack surveys (2001-2013) in the boreal forest of Alberta, coupled with regional footprint and landcover data, to develop generalized linear mixed-effects models relating the relative abundance of five boreal mammals [gray wolf (Canis lupus), Canada lynx (Lynx canadensis), coyote (Canis latrans), white-tailed deer (Odocoileus virginianus) and moose (Alces alces)] to individual and cumulative effects of the human footprint. We found that across species the strongest responses were to agriculture, roads, and young cutblocks (<10 years), suggesting these as potential priority stressors to address within CEM. Most species also responded to total footprint, indicating that in the absence of detailed information on individual features, this coarse measure can serve as an index of cumulative effects. There was high variability in direction and magnitude of responses across species, indicating that community-level responses are likely and should be considered within CEM planning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  19. Intelligent query by humming system based on score level fusion of multiple classifiers

    NASA Astrophysics Data System (ADS)

    Pyo Nam, Gi; Thu Trang Luong, Thi; Ha Nam, Hyun; Ryoung Park, Kang; Park, Sung-Joo

    2011-12-01

    Recently, the necessity for content-based music retrieval that can return results even if a user does not know information such as the title or singer has increased. Query-by-humming (QBH) systems have been introduced to address this need, as they allow the user to simply hum snatches of the tune to find the right song. Even though there have been many studies on QBH, few have combined multiple classifiers based on various fusion methods. Here we propose a new QBH system based on the score level fusion of multiple classifiers. This research is novel in the following three respects: three local classifiers [quantized binary (QB) code-based linear scaling (LS), pitch-based dynamic time warping (DTW), and LS] are employed; local maximum and minimum point-based LS and pitch distribution feature-based LS are used as global classifiers; and the combination of local and global classifiers based on the score level fusion by the PRODUCT rule is used to achieve enhanced matching accuracy. Experimental results with the 2006 MIREX QBSH and 2009 MIR-QBSH corpus databases show that the performance of the proposed method is better than that of single classifier and other fusion methods.

  20. Computational simulations of frictional losses in pipe networks confirmed in experimental apparatusses designed by honors students

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas A.; Hynes, Eric; Kutz, April

    2015-11-01

    Lectures in introductory fluid mechanics at NIU are a combination of students with standard enrollment and students seeking honors credit for an enriching experience. Most honors students dread the additional homework problems or an extra paper assigned by the instructor. During the past three years, honors students of my class have instead collaborated to design wet-lab experiments for their peers to predict variable volume flow rates of open reservoirs driven by gravity. Rather than learn extra, the honors students learn the Bernoulli head-loss equation earlier to design appropriate systems for an experimental wet lab. Prior designs incorporated minor loss features such as sudden contraction or multiple unions and valves. The honors students from Spring 2015 expanded the repertoire of available options by developing large scale set-ups with multiple pipe networks that could be combined together to test the flexibility of the student team's computational programs. The engagement of bridging the theory with practice was appreciated by all of the students such that multiple teams were able to predict performance within 4% accuracy. The challenges, schedules, and cost estimates of incorporating the experimental lab into an introductory fluid mechanics course will be reported.

  1. SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments.

    PubMed

    Ajawatanawong, Pravech; Atkinson, Gemma C; Watson-Haigh, Nathan S; Mackenzie, Bryony; Baldauf, Sandra L

    2012-07-01

    Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.

  2. Multiple site receptor modeling with a minimal spanning tree combined with a Kohonen neural network

    NASA Astrophysics Data System (ADS)

    Hopke, Philip K.

    1999-12-01

    A combination of two pattern recognition methods has been developed that allows the generation of geographical emission maps form multivariate environmental data. In such a projection into a visually interpretable subspace by a Kohonen Self-Organizing Feature Map, the topology of the higher dimensional variables space can be preserved, but parts of the information about the correct neighborhood among the sample vectors will be lost. This can partly be compensated for by an additional projection of Prim's Minimal Spanning Tree into the trained neural network. This new environmental receptor modeling technique has been adapted for multiple sampling sites. The behavior of the method has been studied using simulated data. Subsequently, the method has been applied to mapping data sets from the Southern California Air Quality Study. The projection of a 17 chemical variables measured at up to 8 sampling sites provided a 2D, visually interpretable, geometrically reasonable arrangement of air pollution source sin the South Coast Air Basin.

  3. Single-Pol Synthetic Aperture Radar Terrain Classification using Multiclass Confidence for One-Class Classifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Mark William; Steinbach, Ryan Matthew; Moya, Mary M

    2015-10-01

    Except in the most extreme conditions, Synthetic aperture radar (SAR) is a remote sensing technology that can operate day or night. A SAR can provide surveillance over a long time period by making multiple passes over a wide area. For object-based intelligence it is convenient to segment and classify the SAR images into objects that identify various terrains and man-made structures that we call “static features.” In this paper we introduce a novel SAR image product that captures how different regions decorrelate at different rates. Using superpixels and their first two moments we develop a series of one-class classification algorithmsmore » using a goodness-of-fit metric. P-value fusion is used to combine the results from different classes. We also show how to combine multiple one-class classifiers to get a confidence about a classification. This can be used by downstream algorithms such as a conditional random field to enforce spatial constraints.« less

  4. Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration.

    PubMed

    Jäckel, David; Bakkum, Douglas J; Russell, Thomas L; Müller, Jan; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas

    2017-04-20

    We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11'000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.

  5. Insights from Classifying Visual Concepts with Multiple Kernel Learning

    PubMed Central

    Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-01-01

    Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970

  6. Adaptive Local Spatiotemporal Features from RGB-D Data for One-Shot Learning Gesture Recognition

    PubMed Central

    Lin, Jia; Ruan, Xiaogang; Yu, Naigong; Yang, Yee-Hong

    2016-01-01

    Noise and constant empirical motion constraints affect the extraction of distinctive spatiotemporal features from one or a few samples per gesture class. To tackle these problems, an adaptive local spatiotemporal feature (ALSTF) using fused RGB-D data is proposed. First, motion regions of interest (MRoIs) are adaptively extracted using grayscale and depth velocity variance information to greatly reduce the impact of noise. Then, corners are used as keypoints if their depth, and velocities of grayscale and of depth meet several adaptive local constraints in each MRoI. With further filtering of noise, an accurate and sufficient number of keypoints is obtained within the desired moving body parts (MBPs). Finally, four kinds of multiple descriptors are calculated and combined in extended gradient and motion spaces to represent the appearance and motion features of gestures. The experimental results on the ChaLearn gesture, CAD-60 and MSRDailyActivity3D datasets demonstrate that the proposed feature achieves higher performance compared with published state-of-the-art approaches under the one-shot learning setting and comparable accuracy under the leave-one-out cross validation. PMID:27999337

  7. Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.

    PubMed

    Saiki, Jun; Miyatsuji, Hirofumi

    2009-03-23

    Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.

  8. A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion

    PubMed Central

    Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai

    2015-01-01

    To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615

  9. Adaptive Local Spatiotemporal Features from RGB-D Data for One-Shot Learning Gesture Recognition.

    PubMed

    Lin, Jia; Ruan, Xiaogang; Yu, Naigong; Yang, Yee-Hong

    2016-12-17

    Noise and constant empirical motion constraints affect the extraction of distinctive spatiotemporal features from one or a few samples per gesture class. To tackle these problems, an adaptive local spatiotemporal feature (ALSTF) using fused RGB-D data is proposed. First, motion regions of interest (MRoIs) are adaptively extracted using grayscale and depth velocity variance information to greatly reduce the impact of noise. Then, corners are used as keypoints if their depth, and velocities of grayscale and of depth meet several adaptive local constraints in each MRoI. With further filtering of noise, an accurate and sufficient number of keypoints is obtained within the desired moving body parts (MBPs). Finally, four kinds of multiple descriptors are calculated and combined in extended gradient and motion spaces to represent the appearance and motion features of gestures. The experimental results on the ChaLearn gesture, CAD-60 and MSRDailyActivity3D datasets demonstrate that the proposed feature achieves higher performance compared with published state-of-the-art approaches under the one-shot learning setting and comparable accuracy under the leave-one-out cross validation.

  10. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing

    PubMed Central

    Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi

    2018-01-01

    The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146

  11. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.

    PubMed

    Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi

    2018-01-29

    The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.

  12. A Neural Mechanism of Social Categorization.

    PubMed

    Stolier, Ryan M; Freeman, Jonathan B

    2017-06-07

    Humans readily sort one another into multiple social categories from mere facial features. However, the facial features used to do so are not always clear-cut because they can be associated with opponent categories (e.g., feminine male face). Recently, computational models and behavioral studies have provided indirect evidence that categorizing such faces is accomplished through dynamic competition between parallel, coactivated social categories that resolve into a stable categorical percept. Using a novel paradigm combining fMRI with real-time hand tracking, the present study examined how the brain translates diverse social cues into categorical percepts. Participants (male and female) categorized faces varying in gender and racial typicality. When categorizing atypical faces, participants' hand movements were simultaneously attracted toward the unselected category response, indexing the degree to which such faces activated the opposite category in parallel. Multivoxel pattern analyses (MVPAs) provided evidence that such social category coactivation manifested in neural patterns of the right fusiform cortex. The extent to which the hand was simultaneously attracted to the opposite gender or race category response option corresponded to increased neural pattern similarity with the average pattern associated with that category, which in turn associated with stronger engagement of the dorsal anterior cingulate cortex. The findings point to a model of social categorization in which occasionally conflicting facial features are resolved through competition between coactivated ventral-temporal cortical representations with the assistance of conflict-monitoring regions. More broadly, the results offer a promising multimodal paradigm to investigate the neural basis of "hidden", temporarily active representations in the service of a broad range of cognitive processes. SIGNIFICANCE STATEMENT Individuals readily sort one another into social categories (e.g., sex, race), which have important consequences for a variety of interpersonal behaviors. However, individuals routinely encounter faces that contain diverse features associated with multiple categories (e.g., feminine male face). Using a novel paradigm combining neuroimaging with hand tracking, the present research sought to address how the brain comes to arrive at stable social categorizations from multiple social cues. The results provide evidence that opponent social categories coactivate in face-processing regions, which compete and may resolve into an eventual stable categorization with the assistance of conflict-monitoring regions. Therefore, the findings provide a neural mechanism through which the brain may translate inherently diverse social cues into coherent categorizations of other people. Copyright © 2017 the authors 0270-6474/17/375711-11$15.00/0.

  13. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  14. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, J.L.

    1998-08-11

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications. 10 figs.

  15. Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images

    PubMed Central

    Pu, Shi; Vosselman, George

    2009-01-01

    Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539

  16. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, James L.

    1998-01-01

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications.

  17. Combination of minimum enclosing balls classifier with SVM in coal-rock recognition.

    PubMed

    Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan

    2017-01-01

    Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition.

  18. Combination of minimum enclosing balls classifier with SVM in coal-rock recognition

    PubMed Central

    Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan

    2017-01-01

    Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition. PMID:28937987

  19. Discriminant analysis of multiple cortical changes in mild cognitive impairment

    NASA Astrophysics Data System (ADS)

    Wu, Congling; Guo, Shengwen; Lai, Chunren; Wu, Yupeng; Zhao, Di; Jiang, Xingjun

    2017-02-01

    To reveal the differences in brain structures and morphological changes between the mild cognitive impairment (MCI) and the normal control (NC), analyze and predict the risk of MCI conversion. First, the baseline and 2-year longitudinal follow-up magnetic resonance (MR) images of 73 NC, 46 patients with stable MCI (sMCI) and 40 patients with converted MCI (cMCI) were selected. Second, the FreeSurfer was used to extract the cortical features, including the cortical thickness, surface area, gray matter volume and mean curvature. Third, the support vector machine-recursive feature elimination method (SVM-RFE) were adopted to determine salient features for effective discrimination. Finally, the distribution and importance of essential brain regions were described. The experimental results showed that the cortical thickness and gray matter volume exhibited prominent capability in discrimination, and surface area and mean curvature behaved relatively weak. Furthermore, the combination of different morphological features, especially the baseline combined with the longitudinal changes, can be used to evidently improve the performance of classification. In addition, brain regions with high weights predominately located in the temporal lobe and the frontal lobe, which were relative to emotional control and memory functions. It suggests that there were significant different patterns in the brain structure and changes between the compared group, which could not only be effectively applied for classification, but also be used to evaluate and predict the conversion of the patients with MCI.

  20. Spike detection, characterization, and discrimination using feature analysis software written in LabVIEW.

    PubMed

    Stewart, C M; Newlands, S D; Perachio, A A

    2004-12-01

    Rapid and accurate discrimination of single units from extracellular recordings is a fundamental process for the analysis and interpretation of electrophysiological recordings. We present an algorithm that performs detection, characterization, discrimination, and analysis of action potentials from extracellular recording sessions. The program was entirely written in LabVIEW (National Instruments), and requires no external hardware devices or a priori information about action potential shapes. Waveform events are detected by scanning the digital record for voltages that exceed a user-adjustable trigger. Detected events are characterized to determine nine different time and voltage levels for each event. Various algebraic combinations of these waveform features are used as axis choices for 2-D Cartesian plots of events. The user selects axis choices that generate distinct clusters. Multiple clusters may be defined as action potentials by manually generating boundaries of arbitrary shape. Events defined as action potentials are validated by visual inspection of overlain waveforms. Stimulus-response relationships may be identified by selecting any recorded channel for comparison to continuous and average cycle histograms of binned unit data. The algorithm includes novel aspects of feature analysis and acquisition, including higher acquisition rates for electrophysiological data compared to other channels. The program confirms that electrophysiological data may be discriminated with high-speed and efficiency using algebraic combinations of waveform features derived from high-speed digital records.

  1. Neural Computations in a Dynamical System with Multiple Time Scales.

    PubMed

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  2. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.

    PubMed

    Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant

    2010-10-21

    Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface.

  3. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors

    PubMed Central

    2010-01-01

    Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. Conclusions The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface. PMID:20964863

  4. Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.

    PubMed

    Hart, Corey B; Rose, William J

    2013-11-01

    Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.

  5. The importance of direct immunofluorescence in pemphigus herpetiformis diagnosis*

    PubMed Central

    de Faria, Paula Carolina Pessanha; Cruz, Camila Caberlon; Abulafia, Luna Azulay; Maceira, Juan Manuel Pineiro; Cassia, Flávia de Freire; Medeiros, Paula Mota

    2017-01-01

    Pemphigus herpetiformis is an autoimmune bullous disease, that combines clinical features of dermatitis herpetiformis and linear IgA bullous dermatosis and immunological characteristics of pemphigus, which makes this disease peculiar and this diagnosis rarely suspected in the first evaluation of the patient. The reported case is of a patient with clinically bullous disease similar to dermatitis herpetiformis, whose multiple biopsies were inconclusive, and only after direct immunofluorescence with a pemphigus pattern (intraepidermal intercellular pattern) the confirmation of the diagnosis was possible. PMID:29267475

  6. Nonclassical light revealed by the joint statistics of simultaneous measurements.

    PubMed

    Luis, Alfredo

    2016-04-15

    Nonclassicality cannot be a single-observable property, since the statistics of any quantum observable is compatible with classical physics. We develop a general procedure to reveal nonclassical behavior of light states from the joint statistics arising in the practical measurement of multiple observables. Beside embracing previous approaches, this protocol can disclose nonclassical features for standard examples of classical-like behavior, such as SU(2) and Glauber coherent states. When combined with other criteria, this would imply that every light state is nonclassical.

  7. Aptamer-conjugated nanoparticles for cancer cell detection.

    PubMed

    Medley, Colin D; Bamrungsap, Suwussa; Tan, Weihong; Smith, Joshua E

    2011-02-01

    Aptamer-conjugated nanoparticles (ACNPs) have been used for a variety of applications, particularly dual nanoparticles for magnetic extraction and fluorescent labeling. In this type of assay, silica-coated magnetic and fluorophore-doped silica nanoparticles are conjugated to highly selective aptamers to detect and extract targeted cells in a variety of matrixes. However, considerable improvements are required in order to increase the selectivity and sensitivity of this two-particle assay to be useful in a clinical setting. To accomplish this, several parameters were investigated, including nanoparticle size, conjugation chemistry, use of multiple aptamer sequences on the nanoparticles, and use of multiple nanoparticles with different aptamer sequences. After identifying the best-performing elements, the improvements made to this assay's conditional parameters were combined to illustrate the overall enhanced sensitivity and selectivity of the two-particle assay using an innovative multiple aptamer approach, signifying a critical feature in the advancement of this technique.

  8. Toward highly efficient electrocatalyst for Li–O 2 batteries using biphasic N-doping cobalt@graphene multiple-capsule heterostructures

    DOE PAGES

    Tan, Guoqiang; Chong, Lina; Amine, Rachid; ...

    2017-04-12

    To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less

  9. Toward Highly Efficient Electrocatalyst for Li–O 2 Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Guoqiang; Chong, Lina; Amine, Rachid

    For the promotion of lithium oxygen batteries available for :practical applications, the development of advanced cathode catalysts with low-high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@grapbene Multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium oxygen cells. 'The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore the colander-like porousmore » electrode facilitates the oxygen diffusion, catalytic reaction,and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less

  10. Toward highly efficient electrocatalyst for Li–O 2 batteries using biphasic N-doping cobalt@graphene multiple-capsule heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Guoqiang; Chong, Lina; Amine, Rachid

    To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less

  11. Toward Highly Efficient Electrocatalyst for Li-O2 Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures.

    PubMed

    Tan, Guoqiang; Chong, Lina; Amine, Rachid; Lu, Jun; Liu, Cong; Yuan, Yifei; Wen, Jianguo; He, Kun; Bi, Xuanxuan; Guo, Yuanyuan; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Al Hallaj, Said; Miller, Dean J; Liu, Dijia; Amine, Khalil

    2017-05-10

    For the promotion of lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.

  12. Data registration for automated non-destructive inspection with multiple data sets

    NASA Astrophysics Data System (ADS)

    Tippetts, T.; Brierley, N.; Cawley, P.

    2013-01-01

    In many NDE applications, multiple sources of data are available covering the same region of a part under inspection. These overlapping data can come from intersecting scan patterns, sensors in an array configuration, or repeated inspections at different times. In many cases these data sets are analysed independently, with separate assessments for each channel or data file. It should be possible to improve the overall reliability of the inspection by combining multiple sources of information, simultaneously increasing the Probability of Detection (POD) and decreasing the Probability of False Alarm (PFA). Data registration, i.e. mapping the data to matching coordinates in space, is both an essential prerequisite and a challenging obstacle to this type of data fusion. This paper describes optimization techniques for matching and aligning features in NDE data. Examples from automated ultrasound inspection of aircraft engine discs illustrate the approach.

  13. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  14. Achondroplasia with multiple-suture craniosynostosis: a report of a new case of this rare association.

    PubMed

    Bessenyei, Beáta; Nagy, Andrea; Balogh, Erzsébet; Novák, László; Bognár, László; Knegt, Alida C; Oláh, Eva

    2013-10-01

    We report on a female patient with an exceedingly rare combination of achondroplasia and multiple-suture craniosynostosis. Besides the specific features of achondroplasia, synostosis of the metopic, coronal, lambdoid, and squamosal sutures was found. Series of neurosurgical interventions were carried out, principally for acrocephaly and posterior plagiocephaly. The most common achondroplasia mutation, a p.Gly380Arg in the fibroblast growth factor receptor 3 (FGFR3) gene, was detected. Cytogenetic and array CGH analyses, as well as molecular genetic testing of FGFR1, 2, 3 and TWIST1 genes failed to identify any additional genetic alteration. It is suggested that this unusual phenotype is a result of variable expressivity of the common achondroplasia mutation. Copyright © 2013 Wiley Periodicals, Inc.

  15. Multiple Viral Infection Detected from Influenza-Like Illness Cases in Indonesia.

    PubMed

    Adam, Kindi; Pangesti, Krisna Nur Andriana; Setiawaty, Vivi

    2017-01-01

    Influenza is one of the common etiologies of the upper respiratory tract infection (URTI). However, influenza virus only contributes about 20 percent of influenza-like illness patients. The aim of the study is to investigate the other viral etiologies from ILI cases in Indonesia. Of the 334 samples, 266 samples (78%) were positive at least for one virus, including 107 (42%) cases of multiple infections. Influenza virus is the most detected virus. The most frequent combination of viruses identified was adenovirus and human rhinovirus. This recent study demonstrated high detection rate of several respiratory viruses from ILI cases in Indonesia. Further studies to determine the relationship between viruses and clinical features are needed to improve respiratory disease control program.

  16. Using support vector machines to identify literacy skills: Evidence from eye movements.

    PubMed

    Lou, Ya; Liu, Yanping; Kaakinen, Johanna K; Li, Xingshan

    2017-06-01

    Is inferring readers' literacy skills possible by analyzing their eye movements during text reading? This study used Support Vector Machines (SVM) to analyze eye movement data from 61 undergraduate students who read a multiple-paragraph, multiple-topic expository text. Forward fixation time, first-pass rereading time, second-pass fixation time, and regression path reading time on different regions of the text were provided as features. The SVM classification algorithm assisted in distinguishing high-literacy-skilled readers from low-literacy-skilled readers with 80.3 % accuracy. Results demonstrate the effectiveness of combining eye tracking and machine learning techniques to detect readers with low literacy skills, and suggest that such approaches can be potentially used in predicting other cognitive abilities.

  17. Activity recognition using dynamic multiple sensor fusion in body sensor networks.

    PubMed

    Gao, Lei; Bourke, Alan K; Nelson, John

    2012-01-01

    Multiple sensor fusion is a main research direction for activity recognition. However, there are two challenges in those systems: the energy consumption due to the wireless transmission and the classifier design because of the dynamic feature vector. This paper proposes a multi-sensor fusion framework, which consists of the sensor selection module and the hierarchical classifier. The sensor selection module adopts the convex optimization to select the sensor subset in real time. The hierarchical classifier combines the Decision Tree classifier with the Naïve Bayes classifier. The dataset collected from 8 subjects, who performed 8 scenario activities, was used to evaluate the proposed system. The results show that the proposed system can obviously reduce the energy consumption while guaranteeing the recognition accuracy.

  18. SU-D-207B-02: Early Grade Classification in Meningioma Patients Combining Radiomics and Semantics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coroller, T; Bi, W; Abedalthagafi, M

    Purpose: The clinical management of meningioma is guided by its grade and biologic behavior. Currently, diagnosis of tumor grade follows surgical resection and histopathologic review. Reliable techniques for pre-operative determination of tumor behavior are needed. We investigated the association between imaging features extracted from preoperative gadolinium-enhanced T1-weighted MRI and meningioma grade. Methods: We retrospectively examined the pre-operative MRI for 139 patients with de novo WHO grade I (63%) and grade II (37%) meningiomas. We investigated the predictive power of ten semantic radiologic features as determined by a neuroradiologist, fifteen radiomic features, and tumor location. Conventional (volume and diameter) imaging featuresmore » were added for comparison. AUC was computed for continuous and χ{sup 2} for discrete variables. Classification was done using random forest. Performance was evaluated using cross validation (1000 iterations, 75% training and 25% validation). All p-values were adjusted for multiple testing. Results: Significant association was observed between meningioma grade and tumor location (p<0.001) and two semantic features including intra-tumoral heterogeneity (p<0.001) and overt hemorrhage (p=0.01). Conventional (AUC 0.61–0.67) and eleven radiomic (AUC 0.60–0.70) features were significant from random (p<0.05, Noether test). Median AUC values for classification of tumor grade were 0.57, 0.71, 0.72 and 0.77 respectively for conventional, radiomic, location, and semantic features after using random forest. By combining all imaging data (semantic, radiomic, and location), the median AUC was 0.81, which offers superior predicting power to that of conventional imaging descriptors for meningioma as well as radiomic features alone (p<0.05, permutation test). Conclusion: We demonstrate a strong association between radiologic features and meningioma grade. Pre-operative prediction of tumor behavior based on imaging features offers promise for guiding personalized medicine and improving patient management.« less

  19. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    PubMed Central

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  20. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    PubMed

    Aumentado-Armstrong, Tristan; Metzen, Michael G; Sproule, Michael K J; Chacron, Maurice J

    2015-10-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  1. The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses

    NASA Astrophysics Data System (ADS)

    Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.

    2008-12-01

    The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.

  2. [Multiple sites extrapodal actinomycetoma: Favorable outcome to treatment with a combination of cotrimoxazole and NSAI].

    PubMed

    Diallo, B; Barro-Traoré, F; Bamba, S; Sanou-Lamien, A; Traoré, S S; Andonaba, J-B; Konaté, I; Niamba, P; Traoré, A; Guiguemdé, T R

    2015-12-01

    Mycetoma is a bacteriological or fungal infectious disease affecting the skin and/or soft tissues, which can be complicated by bone involvement. The most common feature is a tumor of the foot, but extrapodal localizations have been described. We report one case of a 47-year-old man who presented with tumefaction of a leg with multiple skin fistulae. Histopathological examination permitted to confirm the diagnosis of actinomycetoma and TDM showed the degree of bone and soft tissues involvement. Our case was characterized by the very inflammatory aspect of the tumor, its localization to the leg without foot involvement, the modest functional signs compared to the importance of radiological bone involvements, the deep destruction of the fibula while the tibia was apparently intact and the good response to treatment. In spite of its characteristic features, diagnosis of mycetoma is still late in our country, often with bone and/or articular spread. Priority may be given to measures for reduction of mycetoma diagnosis lateness. Copyright © 2015. Published by Elsevier Masson SAS.

  3. Combined virtual and real robotic test-bed for single operator control of multiple robots

    NASA Astrophysics Data System (ADS)

    Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash

    2010-04-01

    Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.

  4. Image analysis and machine learning in digital pathology: Challenges and opportunities.

    PubMed

    Madabhushi, Anant; Lee, George

    2016-10-01

    With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The decay of hot nuclei formed in La-induced reactions at E/A=45 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, Bruce

    1993-01-01

    The decay of hot nuclei formed in the reactions 139La + 27Al, 51V, natCu, and 139La were studied by the coincident detection of up to four complex fragments (Z > 3) emitted in these reactions. Fragments were characterized as to their atomic number, energy and in- and out-of-plane angles. The probability of the decay by an event of a given complex fragment multiplicity as a function of excitation energy per nucleon of the source is nearly independent of the system studied. Additionally, there is no large increase in the proportion of multiple fragment events as the excitation energy of themore » source increases past 5 MeV/nucleon. This is at odds with many prompt multifragmentation models of nuclear decay. The reactions 139La + 27Al, 51V, natCu were also studied by combining a dynamical model calculation that simulates the early stages of nuclear reactions with a statistical model calculation for the latter stages of the reactions. For the reaction 139La + 27Al, these calculations reproduced many of the experimental features, but other features were not reproduced. For the reaction 139La + 51V, the calculation failed to reproduce somewhat more of the experimental features. The calculation failed to reproduce any of the experimental features of the reaction 139La + natCu, with the exception of the source velocity distributions.« less

  6. The decay of hot nuclei formed in La-induced reactions at E/A=45 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B.

    1993-01-01

    The decay of hot nuclei formed in the reactions [sup 139]La + [sup 27]Al, [sup 51]V, [sup nat]Cu, and [sup 139]La were studied by the coincident detection of up to four complex fragments (Z > 3) emitted in these reactions. Fragments were characterized as to their atomic number, energy and in- and out-of-plane angles. The probability of the decay by an event of a given complex fragment multiplicity as a function of excitation energy per nucleon of the source is nearly independent of the system studied. Additionally, there is no large increase in the proportion of multiple fragment events asmore » the excitation energy of the source increases past 5 MeV/nucleon. This is at odds with many prompt multifragmentation models of nuclear decay. The reactions [sup 139]La + [sup 27]Al, [sup 51]V, [sup nat]Cu were also studied by combining a dynamical model calculation that simulates the early stages of nuclear reactions with a statistical model calculation for the latter stages of the reactions. For the reaction [sup 139]La + [sup 27]Al, these calculations reproduced many of the experimental features, but other features were not reproduced. For the reaction [sup 139]La + [sup 51]V, the calculation failed to reproduce somewhat more of the experimental features. The calculation failed to reproduce any of the experimental features of the reaction [sup 139]La + [sup nat]Cu, with the exception of the source velocity distributions.« less

  7. Utility of Intermediate-Delay Washout CT Images for Differentiation of Malignant and Benign Adrenal Lesions: A Multivariate Analysis.

    PubMed

    Ng, Chaan S; Altinmakas, Emre; Wei, Wei; Ghosh, Payel; Li, Xiao; Grubbs, Elizabeth G; Perrier, Nancy D; Lee, Jeffrey E; Prieto, Victor G; Hobbs, Brian P

    2018-06-27

    The objective of this study was to identify features that impact the diagnostic performance of intermediate-delay washout CT for distinguishing malignant from benign adrenal lesions. This retrospective study evaluated 127 pathologically proven adrenal lesions (82 malignant, 45 benign) in 126 patients who had undergone portal venous phase and intermediate-delay washout CT (1-3 minutes after portal venous phase) with or without unenhanced images. Unenhanced images were available for 103 lesions. Quantitatively, lesion CT attenuation on unenhanced (UA) and delayed (DL) images, absolute and relative percentage of enhancement washout (APEW and RPEW, respectively), descriptive CT features (lesion size, margin characteristics, heterogeneity or homogeneity, fat, calcification), patient demographics, and medical history were evaluated for association with lesion status using multiple logistic regression with stepwise model selection. Area under the ROC curve (A z ) was calculated from both univariate and multivariate analyses. The predictive diagnostic performance of multivariate evaluations was ascertained through cross-validation. A z for DL, APEW, RPEW, and UA was 0.751, 0.795, 0.829, and 0.839, respectively. Multivariate analyses yielded the following significant CT quantitative features and associated A z when combined: RPEW and DL (A z = 0.861) when unenhanced images were not available and APEW and UA (A z = 0.889) when unenhanced images were available. Patient demographics and presence of a prior malignancy were additional significant factors, increasing A z to 0.903 and 0.927, respectively. The combined predictive classifier, without and with UA available, yielded 85.7% and 87.3% accuracies with cross-validation, respectively. When appropriately combined with other CT features, washout derived from intermediate-delay CT with or without additional clinical data has potential utility in differentiating malignant from benign adrenal lesions.

  8. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31440a

  9. MultiDK: A Multiple Descriptor Multiple Kernel Approach for Molecular Discovery and Its Application to Organic Flow Battery Electrolytes.

    PubMed

    Kim, Sungjin; Jinich, Adrián; Aspuru-Guzik, Alán

    2017-04-24

    We propose a multiple descriptor multiple kernel (MultiDK) method for efficient molecular discovery using machine learning. We show that the MultiDK method improves both the speed and accuracy of molecular property prediction. We apply the method to the discovery of electrolyte molecules for aqueous redox flow batteries. Using multiple-type-as opposed to single-type-descriptors, we obtain more relevant features for machine learning. Following the principle of "wisdom of the crowds", the combination of multiple-type descriptors significantly boosts prediction performance. Moreover, by employing multiple kernels-more than one kernel function for a set of the input descriptors-MultiDK exploits nonlinear relations between molecular structure and properties better than a linear regression approach. The multiple kernels consist of a Tanimoto similarity kernel and a linear kernel for a set of binary descriptors and a set of nonbinary descriptors, respectively. Using MultiDK, we achieve an average performance of r 2 = 0.92 with a test set of molecules for solubility prediction. We also extend MultiDK to predict pH-dependent solubility and apply it to a set of quinone molecules with different ionizable functional groups to assess their performance as flow battery electrolytes.

  10. TANDEM: a two-stage approach to maximize interpretability of drug response models based on multiple molecular data types.

    PubMed

    Aben, Nanne; Vis, Daniel J; Michaut, Magali; Wessels, Lodewyk F A

    2016-09-01

    Clinical response to anti-cancer drugs varies between patients. A large portion of this variation can be explained by differences in molecular features, such as mutation status, copy number alterations, methylation and gene expression profiles. We show that the classic approach for combining these molecular features (Elastic Net regression on all molecular features simultaneously) results in models that are almost exclusively based on gene expression. The gene expression features selected by the classic approach are difficult to interpret as they often represent poorly studied combinations of genes, activated by aberrations in upstream signaling pathways. To utilize all data types in a more balanced way, we developed TANDEM, a two-stage approach in which the first stage explains response using upstream features (mutations, copy number, methylation and cancer type) and the second stage explains the remainder using downstream features (gene expression). Applying TANDEM to 934 cell lines profiled across 265 drugs (GDSC1000), we show that the resulting models are more interpretable, while retaining the same predictive performance as the classic approach. Using the more balanced contributions per data type as determined with TANDEM, we find that response to MAPK pathway inhibitors is largely predicted by mutation data, while predicting response to DNA damaging agents requires gene expression data, in particular SLFN11 expression. TANDEM is available as an R package on CRAN (for more information, see http://ccb.nki.nl/software/tandem). m.michaut@nki.nl or l.wessels@nki.nl Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Many Specialists for Suppressing Cortical Excitation

    PubMed Central

    Burkhalter, Andreas

    2008-01-01

    Cortical computations are critically dependent on GABA-releasing neurons for dynamically balancing excitation with inhibition that is proportional to the overall level of activity. Although it is widely accepted that there are multiple types of interneurons, defining their identities based on qualitative descriptions of morphological, molecular and physiological features has failed to produce a universally accepted ‘parts list’, which is needed to understand the roles that interneurons play in cortical processing. A list of features has been published by the Petilla Interneurons Nomenclature Group, which represents an important step toward an unbiased classification of interneurons. To this end some essential features have recently been studied quantitatively and their association was examined using multidimensional cluster analyses. These studies revealed at least 3 distinct electrophysiological, 6 morphological and 15 molecular phenotypes. This is a conservative estimate of the number of interneuron types, which almost certainly will be revised as more quantitative studies will be performed and similarities will be defined objectively. It is clear that interneurons are organized with physiological attributes representing the most general, molecular characteristics the most detailed and morphological features occupying the middle ground. By themselves, none of these features are sufficient to define classes of interneurons. The challenge will be to determine which features belong together and how cell type-specific feature combinations are genetically specified. PMID:19225588

  12. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.

    2018-04-01

    The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.

  13. Preprocessing Structured Clinical Data for Predictive Modeling and Decision Support

    PubMed Central

    Oliveira, Mónica Duarte; Janela, Filipe; Martins, Henrique M. G.

    2016-01-01

    Summary Background EHR systems have high potential to improve healthcare delivery and management. Although structured EHR data generates information in machine-readable formats, their use for decision support still poses technical challenges for researchers due to the need to preprocess and convert data into a matrix format. During our research, we observed that clinical informatics literature does not provide guidance for researchers on how to build this matrix while avoiding potential pitfalls. Objectives This article aims to provide researchers a roadmap of the main technical challenges of preprocessing structured EHR data and possible strategies to overcome them. Methods Along standard data processing stages – extracting database entries, defining features, processing data, assessing feature values and integrating data elements, within an EDPAI framework –, we identified the main challenges faced by researchers and reflect on how to address those challenges based on lessons learned from our research experience and on best practices from related literature. We highlight the main potential sources of error, present strategies to approach those challenges and discuss implications of these strategies. Results Following the EDPAI framework, researchers face five key challenges: (1) gathering and integrating data, (2) identifying and handling different feature types, (3) combining features to handle redundancy and granularity, (4) addressing data missingness, and (5) handling multiple feature values. Strategies to address these challenges include: cross-checking identifiers for robust data retrieval and integration; applying clinical knowledge in identifying feature types, in addressing redundancy and granularity, and in accommodating multiple feature values; and investigating missing patterns adequately. Conclusions This article contributes to literature by providing a roadmap to inform structured EHR data preprocessing. It may advise researchers on potential pitfalls and implications of methodological decisions in handling structured data, so as to avoid biases and help realize the benefits of the secondary use of EHR data. PMID:27924347

  14. A method of classification for multisource data in remote sensing based on interval-valued probabilities

    NASA Technical Reports Server (NTRS)

    Kim, Hakil; Swain, Philip H.

    1990-01-01

    An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method.

  15. Gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus) encode relevant problem features in a tool-using task.

    PubMed

    Mulcahy, Nicholas J; Call, Josep; Dunbar, Robin I M

    2005-02-01

    Two important elements in problem solving are the abilities to encode relevant task features and to combine multiple actions to achieve the goal. The authors investigated these 2 elements in a task in which gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus) had to use a tool to retrieve an out-of-reach reward. Subjects were able to select tools of an appropriate length to reach the reward even when the position of the reward and tools were not simultaneously visible. When presented with tools that were too short to retrieve the reward, subjects were more likely to refuse to use them than when tools were the appropriate length. Subjects were proficient at using tools in sequence to retrieve the reward.

  16. Inspection of baked carbon anodes using a combination of multi-spectral acousto-ultrasonic techniques and principal component analysis.

    PubMed

    Boubaker, Moez Ben; Picard, Donald; Duchesne, Carl; Tessier, Jayson; Alamdari, Houshang; Fafard, Mario

    2018-05-17

    This paper reports on the application of an acousto-ultrasonic (AU) scheme for the inspection of industrial-size carbon anode blocks used in the production of primary aluminium by the Hall-Héroult process. A frequency-modulated wave is used to excite the anode blocks at multiple points. The collected attenuated AU signals are decomposed using the Discrete Wavelet Transform (DTW) after which vectors of features are calculated. Principal Component Analysis (PCA) is utilized to cluster the AU responses of the anodes. The approach allows locating cracks in the blocks and the AU features were found sensitive to crack severity. The results are validated using images collected after cutting some anodes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. JOVIAL/Ada Microprocessor Study.

    DTIC Science & Technology

    1982-04-01

    Study Final Technical Report interesting feature of the nodes is that they provide multiple virtual terminals, so it is possible to monitor several...Terminal Interface Tasking Except ion Handling A more elaborate system could allow such features as spooling, background jobs or multiple users. To a large...Another editor feature is the buffer. Buffers may hold small amounts of text or entire text objects. They allow multiple files to be edited simultaneously

  18. GeneSilico protein structure prediction meta-server.

    PubMed

    Kurowski, Michal A; Bujnicki, Janusz M

    2003-07-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.

  19. GeneSilico protein structure prediction meta-server

    PubMed Central

    Kurowski, Michal A.; Bujnicki, Janusz M.

    2003-01-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313

  20. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  1. deepNF: Deep network fusion for protein function prediction.

    PubMed

    Gligorijevic, Vladimir; Barot, Meet; Bonneau, Richard

    2018-06-01

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly-nonlinear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks. We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting GO terms of varying type and specificity. deepNF is freely available at: https://github.com/VGligorijevic/deepNF. vgligorijevic@flatironinstitute.org, rb133@nyu.edu. Supplementary data are available at Bioinformatics online.

  2. Detecting natural occlusion boundaries using local cues

    PubMed Central

    DiMattina, Christopher; Fox, Sean A.; Lewicki, Michael S.

    2012-01-01

    Occlusion boundaries and junctions provide important cues for inferring three-dimensional scene organization from two-dimensional images. Although several investigators in machine vision have developed algorithms for detecting occlusions and other edges in natural images, relatively few psychophysics or neurophysiology studies have investigated what features are used by the visual system to detect natural occlusions. In this study, we addressed this question using a psychophysical experiment where subjects discriminated image patches containing occlusions from patches containing surfaces. Image patches were drawn from a novel occlusion database containing labeled occlusion boundaries and textured surfaces in a variety of natural scenes. Consistent with related previous work, we found that relatively large image patches were needed to attain reliable performance, suggesting that human subjects integrate complex information over a large spatial region to detect natural occlusions. By defining machine observers using a set of previously studied features measured from natural occlusions and surfaces, we demonstrate that simple features defined at the spatial scale of the image patch are insufficient to account for human performance in the task. To define machine observers using a more biologically plausible multiscale feature set, we trained standard linear and neural network classifiers on the rectified outputs of a Gabor filter bank applied to the image patches. We found that simple linear classifiers could not match human performance, while a neural network classifier combining filter information across location and spatial scale compared well. These results demonstrate the importance of combining a variety of cues defined at multiple spatial scales for detecting natural occlusions. PMID:23255731

  3. Learning to rank diversified results for biomedical information retrieval from multiple features.

    PubMed

    Wu, Jiajin; Huang, Jimmy; Ye, Zheng

    2014-01-01

    Different from traditional information retrieval (IR), promoting diversity in IR takes consideration of relationship between documents in order to promote novelty and reduce redundancy thus to provide diversified results to satisfy various user intents. Diversity IR in biomedical domain is especially important as biologists sometimes want diversified results pertinent to their query. A combined learning-to-rank (LTR) framework is learned through a general ranking model (gLTR) and a diversity-biased model. The former is learned from general ranking features by a conventional learning-to-rank approach; the latter is constructed with diversity-indicating features added, which are extracted based on the retrieved passages' topics detected using Wikipedia and ranking order produced by the general learning-to-rank model; final ranking results are given by combination of both models. Compared with baselines BM25 and DirKL on 2006 and 2007 collections, the gLTR has 0.2292 (+16.23% and +44.1% improvement over BM25 and DirKL respectively) and 0.1873 (+15.78% and +39.0% improvement over BM25 and DirKL respectively) in terms of aspect level of mean average precision (Aspect MAP). The LTR method outperforms gLTR on 2006 and 2007 collections with 4.7% and 2.4% improvement in terms of Aspect MAP. The learning-to-rank method is an efficient way for biomedical information retrieval and the diversity-biased features are beneficial for promoting diversity in ranking results.

  4. The impact of attentional, linguistic, and visual features during object naming

    PubMed Central

    Clarke, Alasdair D. F.; Coco, Moreno I.; Keller, Frank

    2013-01-01

    Object detection and identification are fundamental to human vision, and there is mounting evidence that objects guide the allocation of visual attention. However, the role of objects in tasks involving multiple modalities is less clear. To address this question, we investigate object naming, a task in which participants have to verbally identify objects they see in photorealistic scenes. We report an eye-tracking study that investigates which features (attentional, visual, and linguistic) influence object naming. We find that the amount of visual attention directed toward an object, its position and saliency, along with linguistic factors such as word frequency, animacy, and semantic proximity, significantly influence whether the object will be named or not. We then ask how features from different modalities are combined during naming, and find significant interactions between saliency and position, saliency and linguistic features, and attention and position. We conclude that when the cognitive system performs tasks such as object naming, it uses input from one modality to constraint or enhance the processing of other modalities, rather than processing each input modality independently. PMID:24379792

  5. Combining Multiple Rupture Models in Real-Time for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Wu, S.; Beck, J. L.; Heaton, T. H.

    2015-12-01

    The ShakeAlert earthquake early warning system for the west coast of the United States is designed to combine information from multiple independent earthquake analysis algorithms in order to provide the public with robust predictions of shaking intensity at each user's location before they are affected by strong shaking. The current contributing analyses come from algorithms that determine the origin time, epicenter, and magnitude of an earthquake (On-site, ElarmS, and Virtual Seismologist). A second generation of algorithms will provide seismic line source information (FinDer), as well as geodetically-constrained slip models (BEFORES, GPSlip, G-larmS, G-FAST). These new algorithms will provide more information about the spatial extent of the earthquake rupture and thus improve the quality of the resulting shaking forecasts.Each of the contributing algorithms exploits different features of the observed seismic and geodetic data, and thus each algorithm may perform differently for different data availability and earthquake source characteristics. Thus the ShakeAlert system requires a central mediator, called the Central Decision Module (CDM). The CDM acts to combine disparate earthquake source information into one unified shaking forecast. Here we will present a new design for the CDM that uses a Bayesian framework to combine earthquake reports from multiple analysis algorithms and compares them to observed shaking information in order to both assess the relative plausibility of each earthquake report and to create an improved unified shaking forecast complete with appropriate uncertainties. We will describe how these probabilistic shaking forecasts can be used to provide each user with a personalized decision-making tool that can help decide whether or not to take a protective action (such as opening fire house doors or stopping trains) based on that user's distance to the earthquake, vulnerability to shaking, false alarm tolerance, and time required to act.

  6. Sending and Receiving Text Messages with Sexual Content: Relations with Early Sexual Activity and Borderline Personality Features in Late Adolescence

    PubMed Central

    Brinkley, Dawn Y.; Ackerman, Robert A.; Ehrenreich, Samuel E.; Underwood, Marion K.

    2017-01-01

    This research examined adolescents’ written text messages with sexual content to investigate how sexting relates to sexual activity and borderline personality features. Participants (N = 181, 85 girls) completed a measure of borderline personality features prior to 10th grade and were subsequently given smartphones configured to capture the content of their text messages. Four days of text messaging were micro-coded for content related to sex. Following 12th grade, participants reported on their sexual activity and again completed a measure of borderline personality features. Results showed that engaging in sexting at age 16 was associated with reporting an early sexual debut, having sexual intercourse experience, having multiple sex partners, and engaging in drug use in combination with sexual activity two years later. Girls engaging in sex talk were more likely to have had sexual intercourse by age 18. Text messaging about hypothetical sex in grade 10 also predicted borderline personality features at age 18. These findings suggest that sending text messages with sexual content poses risks for adolescents. Programs to prevent risky sexual activity and to promote psychological health could be enhanced by teaching adolescents to use digital communication responsibly. PMID:28824224

  7. Sending and Receiving Text Messages with Sexual Content: Relations with Early Sexual Activity and Borderline Personality Features in Late Adolescence.

    PubMed

    Brinkley, Dawn Y; Ackerman, Robert A; Ehrenreich, Samuel E; Underwood, Marion K

    2017-05-01

    This research examined adolescents' written text messages with sexual content to investigate how sexting relates to sexual activity and borderline personality features. Participants (N = 181, 85 girls) completed a measure of borderline personality features prior to 10 th grade and were subsequently given smartphones configured to capture the content of their text messages. Four days of text messaging were micro-coded for content related to sex. Following 12 th grade, participants reported on their sexual activity and again completed a measure of borderline personality features. Results showed that engaging in sexting at age 16 was associated with reporting an early sexual debut, having sexual intercourse experience, having multiple sex partners, and engaging in drug use in combination with sexual activity two years later. Girls engaging in sex talk were more likely to have had sexual intercourse by age 18. Text messaging about hypothetical sex in grade 10 also predicted borderline personality features at age 18. These findings suggest that sending text messages with sexual content poses risks for adolescents. Programs to prevent risky sexual activity and to promote psychological health could be enhanced by teaching adolescents to use digital communication responsibly.

  8. Reaction schemes visualized in network form: the syntheses of strychnine as an example.

    PubMed

    Proudfoot, John R

    2013-05-24

    Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.

  9. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.

    PubMed

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-02-08

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

  10. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.

    PubMed

    Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G

    2017-09-01

    To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.

  11. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.

    PubMed

    Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik

    2017-07-24

    We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.

  12. Online coupled camera pose estimation and dense reconstruction from video

    DOEpatents

    Medioni, Gerard; Kang, Zhuoliang

    2016-11-01

    A product may receive each image in a stream of video image of a scene, and before processing the next image, generate information indicative of the position and orientation of an image capture device that captured the image at the time of capturing the image. The product may do so by identifying distinguishable image feature points in the image; determining a coordinate for each identified image feature point; and for each identified image feature point, attempting to identify one or more distinguishable model feature points in a three dimensional (3D) model of at least a portion of the scene that appears likely to correspond to the identified image feature point. Thereafter, the product may find each of the following that, in combination, produce a consistent projection transformation of the 3D model onto the image: a subset of the identified image feature points for which one or more corresponding model feature points were identified; and, for each image feature point that has multiple likely corresponding model feature points, one of the corresponding model feature points. The product may update a 3D model of at least a portion of the scene following the receipt of each video image and before processing the next video image base on the generated information indicative of the position and orientation of the image capture device at the time of capturing the received image. The product may display the updated 3D model after each update to the model.

  13. [Dandy-Walker complex: a clinicopathologic study of 9 cases].

    PubMed

    Zhang, Xiao-bo; Gu, Yi-qun; Sun, Xiao-fei; Wang, Ying-nan; Wang, Ai-chun

    2013-12-01

    To investigate the etiology, pathogenesis, clinicopathologic characteristics, clinical prognosis and treatment of Dandy-Walker syndrome. Nine cases of Dandy-Walker syndrome were included in the study. The autopsy findings and clinical history were evaluated along with review of the literature. The causes, pathogenetic mechanism, pathologic features and prognosis of Dandy-Walker syndrome were analyzed. Among 9 Dandy-Walker syndrome cases, six patients presented with variants of Dandy-Walker complex and 3 cases had classic Dandy-Walker malformation. In addition, 4 patients presented with combined lateral ventricle expansion and multiple malformations were seen in 7 cases. Combined umbilical cord abnormality was noted in 4 patients with variant of Dandy-Walker complex and combined placental abnormality was seen in one classic Dandy-Walker syndrome. Dandy-Walker syndrome is a rare disease. In addition to complex pathogenesis with possible genetic and environmental antigenic etiologies, placental and umbilical cord abnormality may be also related to its development.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yiying, E-mail: yiyingyan@sjtu.edu.cn; Lü, Zhiguo, E-mail: zglv@sjtu.edu.cn; Zheng, Hang, E-mail: hzheng@sjtu.edu.cn

    We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born–Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupledmore » to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.« less

  15. More than child's play: variable- and pattern-centered approaches for examining effects of sports participation on youth development.

    PubMed

    Zarrett, Nicole; Fay, Kristen; Li, Yibing; Carrano, Jennifer; Phelps, Erin; Lerner, Richard M

    2009-03-01

    The authors used data from Grades 5 through 7 of the longitudinal 4-H Study of Positive Youth Development to assess relations among sports participation, other out-of-school-time (OST) activities, and indicators of youth development. They used a mixture of variable- and pattern-centered analyses aimed at disentangling different features of participation (i.e., intensity, breadth). The benefits of sports participation were found to depend, in part, on specific combinations of multiple activities in which youths participated along with sports. In particular, participation in a combination of sports and youth development programs was related to positive youth development and youth contribution, even after controlling for the total time youths spent in OST activities and their sports participation duration. Adolescents' total time spent participating in OST activities, duration of participation in sports, and activity participation pattern each explained a unique part of the variance in some of the indicators of youth functioning. These findings suggest the need for future research to simultaneously assess multiple indices of OST activity participation.

  16. A Multiple-star Combined Solution Program - Application to the Population II Binary μ Cas

    NASA Astrophysics Data System (ADS)

    Gudehus, D. H.

    2001-05-01

    A multiple-star combined-solution computer program which can simultaneously fit astrometric, speckle, and spectroscopic data, and solve for the orbital parameters, parallax, proper motion, and masses has been written and is now publicly available. Some features of the program are the ability to scale the weights at run time, hold selected parameters constant, handle up to five spectroscopic subcomponents for the primary and the secondary each, account for the light travel time across the system, account for apsidal motion, plot the results, and write the residuals in position to a standard file for further analysis. The spectroscopic subcomponent data can be represented by reflex velocities and/or by independent measurements. A companion editing program which can manage the data files is included in the package. The program has been applied to the Population II binary μ Cas to derive improved masses and an estimate of the primordial helium abundance. The source code, executables, sample data files, and documentation for OpenVMS and Unix, including Linux, are available at http://www.chara.gsu.edu/\\rlap\\ \\ gudehus/binary.html.

  17. Characterizing patients with multiple chromosomal aberrations detected by FISH in chronic lymphocytic leukemia.

    PubMed

    González-Gascón Y Marín, Isabel; Hernández-Sanchez, María; Rodríguez-Vicente, Ana Eugenia; Puiggros, Anna; Collado, Rosa; Luño, Elisa; González, Teresa; Ruiz-Xivillé, Neus; Ortega, Margarita; Gimeno, Eva; Muñoz, Carolina; Infante, Maria Stefania; Delgado, Julio; Vargas, María Teresa; González, Marcos; Bosch, Francesc; Espinet, Blanca; Hernández-Rivas, Jesús María; Hernández, José Ángel

    2018-03-01

    We analyzed the features of chronic lymphocytic leukemia (CLL) with multiple abnormalities (MA) detected by FISH. A local database including 2095 CLL cases was used and 323 with MA (15.4%) were selected. MA was defined by the presence of two or more alterations (deletions of 13q14 (13q-), 11q22 (11q-), 17p13 (17p-) or trisomy 12 (+12)). The combination of 13q- with 11q- and 13q- with 17p-, accounted for 58.2% of the series, in contrast to 11q- with 17p- (3.7%). Patients carrying MA since diagnosis presented a short time to first therapy(TTFT) (27 months) and overall survival (OS) (76 months). The combinations including 17p- had a shorter OS (58 months) than the ones without 17p- (not reached, p = .002). Patients with a complex-FISH were the ones with worse OS (34 months). MA imply poor prognosis when they emerge at diagnosis, probably due to the high incidence of bad prognosis markers, which may be a reflection of a more complex karyotype.

  18. 4D CT sorting based on patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-08-01

    Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our 4D CT internal sorting method eliminates the need of externally recorded surrogates of respiratory motion. It is an automatic, accurate, robust, cost efficient and yet simple method and therefore can be readily implemented in clinical settings.

  19. Terminal-oriented computer-communication networks.

    NASA Technical Reports Server (NTRS)

    Schwartz, M.; Boorstyn, R. R.; Pickholtz, R. L.

    1972-01-01

    Four examples of currently operating computer-communication networks are described in this tutorial paper. They include the TYMNET network, the GE Information Services network, the NASDAQ over-the-counter stock-quotation system, and the Computer Sciences Infonet. These networks all use programmable concentrators for combining a multiplicity of terminals. Included in the discussion for each network is a description of the overall network structure, the handling and transmission of messages, communication requirements, routing and reliability consideration where applicable, operating data and design specifications where available, and unique design features in the area of computer communications.

  20. Functional helicoidal model of DNA molecule with elastic nonlinearity

    NASA Astrophysics Data System (ADS)

    Tseytlin, Y. M.

    2013-06-01

    We constructed a functional DNA molecule model on the basis of a flexible helicoidal sensor, specifically, a pretwisted hollow nano-strip. We study in this article the helicoidal nano- sensor model with a pretwisted strip axial extension corresponding to the overstretching transition of DNA from dsDNA to ssDNA. Our model and the DNA molecule have similar geometrical and nonlinear mechanical features unlike models based on an elastic rod, accordion bellows, or an imaginary combination of "multiple soft and hard linear springs", presented in some recent publications.

  1. Multiple wavelength silicon photonic 200 mm R+D platform for 25Gb/s and above applications

    NASA Astrophysics Data System (ADS)

    Szelag, B.; Blampey, B.; Ferrotti, T.; Reboud, V.; Hassan, K.; Malhouitre, S.; Grand, G.; Fowler, D.; Brision, S.; Bria, T.; Rabillé, G.; Brianceau, P.; Hartmann, J. M.; Hugues, V.; Myko, A.; Elleboode, F.; Gays, F.; Fédéli, J. M.; Kopp, C.

    2016-05-01

    A silicon photonics platform that uses a CMOS foundry line is described. Fabrication process is following a modular integration scheme which leads to a flexible platform, allowing different device combinations. A complete device library is demonstrated for 1310 nm applications with state of the art performances. A PDK which includes specific photonic features and which is compatible with commercial EDA tools has been developed allowing an MPW shuttle service. Finally platform evolutions such as device offer extension to 1550 nm or new process modules introduction are presented.

  2. Dual-wavelength quantum cascade laser for trace gas spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jágerská, J.; Tuzson, B.; Mangold, M.

    2014-10-20

    We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.

  3. A consensus embedding approach for segmentation of high resolution in vivo prostate magnetic resonance imagery

    NASA Astrophysics Data System (ADS)

    Viswanath, Satish; Rosen, Mark; Madabhushi, Anant

    2008-03-01

    Current techniques for localization of prostatic adenocarcinoma (CaP) via blinded trans-rectal ultrasound biopsy are associated with a high false negative detection rate. While high resolution endorectal in vivo Magnetic Resonance (MR) prostate imaging has been shown to have improved contrast and resolution for CaP detection over ultrasound, similarity in intensity characteristics between benign and cancerous regions on MR images contribute to a high false positive detection rate. In this paper, we present a novel unsupervised segmentation method that employs manifold learning via consensus schemes for detection of cancerous regions from high resolution 1.5 Tesla (T) endorectal in vivo prostate MRI. A significant contribution of this paper is a method to combine multiple weak, lower-dimensional representations of high dimensional feature data in a way analogous to classifier ensemble schemes, and hence create a stable and accurate reduced dimensional representation. After correcting for MR image intensity artifacts, such as bias field inhomogeneity and intensity non-standardness, our algorithm extracts over 350 3D texture features at every spatial location in the MR scene at multiple scales and orientations. Non-linear dimensionality reduction schemes such as Locally Linear Embedding (LLE) and Graph Embedding (GE) are employed to create multiple low dimensional data representations of this high dimensional texture feature space. Our novel consensus embedding method is used to average object adjacencies from within the multiple low dimensional projections so that class relationships are preserved. Unsupervised consensus clustering is then used to partition the objects in this consensus embedding space into distinct classes. Quantitative evaluation on 18 1.5 T prostate MR data against corresponding histology obtained from the multi-site ACRIN trials show a sensitivity of 92.65% and a specificity of 82.06%, which suggests that our method is successfully able to detect suspicious regions in the prostate.

  4. Placement-aware decomposition of a digital standard cells library for double patterning lithography

    NASA Astrophysics Data System (ADS)

    Wassal, Amr G.; Sharaf, Heba; Hammouda, Sherif

    2012-11-01

    To continue scaling the circuit features down, Double Patterning (DP) technology is needed in 22nm technologies and lower. DP requires decomposing the layout features into two masks for pitch relaxation, such that the spacing between any two features on each mask is greater than the minimum allowed mask spacing. The relaxed pitches of each mask are then processed on two separate exposure steps. In many cases, post-layout decomposition fails to decompose the layout into two masks due to the presence of conflicts. Post-layout decomposition of a standard cells block can result in native conflicts inside the cells (internal conflict), or native conflicts on the boundary between two cells (boundary conflict). Resolving native conflicts requires a redesign and/or multiple iterations for the placement and routing phases to get a clean decomposition. Therefore, DP compliance must be considered in earlier phases, before getting the final placed cell block. The main focus of this paper is generating a library of decomposed standard cells to be used in a DP-aware placer. This library should contain all possible decompositions for each standard cell, i.e., these decompositions consider all possible combinations of boundary conditions. However, the large number of combinations of boundary conditions for each standard cell will significantly increase the processing time and effort required to obtain all possible decompositions. Therefore, an efficient methodology is required to reduce this large number of combinations. In this paper, three different reduction methodologies are proposed to reduce the number of different combinations processed to get the decomposed library. Experimental results show a significant reduction in the number of combinations and decompositions needed for the library processing. To generate and verify the proposed flow and methodologies, a prototype for a placement-aware DP-ready cell-library is developed with an optimized number of cell views.

  5. Classifying Human Voices by Using Hybrid SFX Time-Series Preprocessing and Ensemble Feature Selection

    PubMed Central

    Wong, Raymond

    2013-01-01

    Voice biometrics is one kind of physiological characteristics whose voice is different for each individual person. Due to this uniqueness, voice classification has found useful applications in classifying speakers' gender, mother tongue or ethnicity (accent), emotion states, identity verification, verbal command control, and so forth. In this paper, we adopt a new preprocessing method named Statistical Feature Extraction (SFX) for extracting important features in training a classification model, based on piecewise transformation treating an audio waveform as a time-series. Using SFX we can faithfully remodel statistical characteristics of the time-series; together with spectral analysis, a substantial amount of features are extracted in combination. An ensemble is utilized in selecting only the influential features to be used in classification model induction. We focus on the comparison of effects of various popular data mining algorithms on multiple datasets. Our experiment consists of classification tests over four typical categories of human voice data, namely, Female and Male, Emotional Speech, Speaker Identification, and Language Recognition. The experiments yield encouraging results supporting the fact that heuristically choosing significant features from both time and frequency domains indeed produces better performance in voice classification than traditional signal processing techniques alone, like wavelets and LPC-to-CC. PMID:24288684

  6. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  7. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    NASA Astrophysics Data System (ADS)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-11-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  8. Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.

    2018-04-01

    A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.

  9. Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures

    PubMed Central

    Bryson, David M.; Ofria, Charles

    2013-01-01

    We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. PMID:24376669

  10. Cloud Detection by Fusing Multi-Scale Convolutional Features

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  11. The Use of Video-Tacheometric Technology for Documenting and Analysing Geometric Features of Objects

    NASA Astrophysics Data System (ADS)

    Woźniak, Marek; Świerczyńska, Ewa; Jastrzębski, Sławomir

    2015-12-01

    This paper analyzes selected aspects of the use of video-tacheometric technology for inventorying and documenting geometric features of objects. Data was collected with the use of the video-tacheometer Topcon Image Station IS-3 and the professional camera Canon EOS 5D Mark II. During the field work and the development of data the following experiments have been performed: multiple determination of the camera interior orientation parameters and distortion parameters of five lenses with different focal lengths, reflectorless measurements of profiles for the elevation and inventory of decorative surface wall of the building of Warsaw Ballet School. During the research the process of acquiring and integrating video-tacheometric data was analysed as well as the process of combining "point cloud" acquired by using video-tacheometer in the scanning process with independent photographs taken by a digital camera. On the basis of tests performed, utility of the use of video-tacheometric technology in geodetic surveys of geometrical features of buildings has been established.

  12. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.

    2016-06-01

    This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.

  13. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.

    PubMed

    He, Jianjun; Gu, Hong; Liu, Wenqi

    2012-01-01

    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches.

  14. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    PubMed

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The guidance of spatial attention during visual search for color combinations and color configurations.

    PubMed

    Berggren, Nick; Eimer, Martin

    2016-09-01

    Representations of target-defining features (attentional templates) guide the selection of target objects in visual search. We used behavioral and electrophysiological measures to investigate how such search templates control the allocation of attention in search tasks where targets are defined by the combination of 2 colors or by a specific spatial configuration of these colors. Target displays were preceded by spatially uninformative cue displays that contained items in 1 or both target-defining colors. Experiments 1 and 2 demonstrated that, during search for color combinations, attention is initially allocated independently and in parallel to all objects with target-matching colors, but is then rapidly withdrawn from objects that only have 1 of the 2 target colors. In Experiment 3, targets were defined by a particular spatial configuration of 2 colors, and could be accompanied by nontarget objects with a different configuration of the same colors. Attentional guidance processes were unable to distinguish between these 2 types of objects. Both attracted attention equally when they appeared in a cue display, and both received parallel focal-attentional processing and were encoded into working memory when they were presented in the same target display. Results demonstrate that attention can be guided simultaneously by multiple features from the same dimension, but that these guidance processes have no access to the spatial-configural properties of target objects. They suggest that attentional templates do not represent target objects in an integrated pictorial fashion, but contain separate representations of target-defining features. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Merging of long-term memories in an insect.

    PubMed

    Hunt, Kathryn L; Chittka, Lars

    2015-03-16

    Research on comparative cognition has largely focused on successes and failures of animals to solve certain cognitive tasks, but in humans, memory errors can be more complex than simple failures to retrieve information [1, 2]. The existence of various types of "false memories," in which individuals remember events that they have never actually encountered, are now well established in humans [3, 4]. We hypothesize that such systematic memory errors may be widespread in animals whose natural lifestyle involves the processing and recollection of memories for multiple stimuli [5]. We predict that memory traces for various stimuli may "merge," such that features acquired in distinct bouts of training are combined in an animal's mind, so that stimuli that have never been viewed before, but are a combination of the features presented in training, may be chosen during recall. We tested this using bumblebees, Bombus terrestris. When individuals were first trained to a solid single-colored stimulus followed by a black and white (b/w)-patterned stimulus, a subsequent preference for the last entrained stimulus was found in both short-term- and long-term-memory tests. However, when bees were first trained to b/w-patterned stimuli followed by solid single-colored stimuli and were tested in long-term-memory tests 1 or 3 days later, they only initially preferred the most recently rewarded stimulus, and then switched their preference to stimuli that combined features from the previous color and pattern stimuli. The observed merging of long-term memories is thus similar to the memory conjunction error found in humans [6]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Features of Coping with Disease in Iranian Multiple Sclerosis Patients: a Qualitative Study.

    PubMed

    Dehghani, Ali; Dehghan Nayeri, Nahid; Ebadi, Abbas

    2018-03-01

    Introduction: Coping with disease is of the main components improving the quality of life in multiple sclerosis patients. Identifying the characteristics of this concept is based on the experiences of patients. Using qualitative research is essential to improve the quality of life. This study was conducted to explore the features of coping with the disease in patients with multiple sclerosis. Method: In this conventional content analysis study, eleven multiple sclerosis patients from Iran MS Society in Tehran (Iran) participated. Purposive sampling was used to select participants. Data were gathered using semi structured interviews. To analyze data, a conventional content analysis approach was used to identify meaning units and to make codes and categories. Results: Results showed that features of coping with disease in multiple sclerosis patients consists of (a) accepting the current situation, (b) maintenance and development of human interactions, (c) self-regulation and (d) self-efficacy. Each of these categories is composed of sub-categories and codes that showed the perception and experience of patients about the coping with disease. Conclusion: Accordingly, a unique set of features regarding features of coping with the disease were identified among the patients with multiple sclerosis. Therefore, working to ensure the emergence of, and subsequent reinforcement of these features in MS patients can be an important step in improving the adjustment and quality of their lives.

  18. Automatic detection of wheezes by evaluation of multiple acoustic feature extraction methods and C-weighted SVM

    NASA Astrophysics Data System (ADS)

    Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.

    2015-01-01

    This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.

  19. Economic indicators selection for crime rates forecasting using cooperative feature selection

    NASA Astrophysics Data System (ADS)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina

    2013-04-01

    Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.

  20. Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals.

    PubMed

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.

  1. Multi-Task Linear Programming Discriminant Analysis for the Identification of Progressive MCI Individuals

    PubMed Central

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966

  2. Adaptive runtime for a multiprocessing API

    DOEpatents

    Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.

    2016-11-15

    A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.

  3. Adaptive runtime for a multiprocessing API

    DOEpatents

    Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.

    2016-10-11

    A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.

  4. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  5. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection.

    PubMed

    Hu, Z W; Thomas, B R; Chernov, A A

    2001-06-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  6. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    PubMed

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  7. Joint detection and localization of multiple anatomical landmarks through learning

    NASA Astrophysics Data System (ADS)

    Dikmen, Mert; Zhan, Yiqiang; Zhou, Xiang Sean

    2008-03-01

    Reliable landmark detection in medical images provides the essential groundwork for successful automation of various open problems such as localization, segmentation, and registration of anatomical structures. In this paper, we present a learning-based system to jointly detect (is it there?) and localize (where?) multiple anatomical landmarks in medical images. The contributions of this work exist in two aspects. First, this method takes the advantage from the learning scenario that is able to automatically extract the most distinctive features for multi-landmark detection. Therefore, it is easily adaptable to detect arbitrary landmarks in various kinds of imaging modalities, e.g., CT, MRI and PET. Second, the use of multi-class/cascaded classifier architecture in different phases of the detection stage combined with robust features that are highly efficient in terms of computation time enables a seemingly real time performance, with very high localization accuracy. This method is validated on CT scans of different body sections, e.g., whole body scans, chest scans and abdominal scans. Aside from improved robustness (due to the exploitation of spatial correlations), it gains a run time efficiency in landmark detection. It also shows good scalability performance under increasing number of landmarks.

  8. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.

    PubMed

    Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung

    2018-05-24

    Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  9. A multiple distributed representation method based on neural network for biomedical event extraction.

    PubMed

    Wang, Anran; Wang, Jian; Lin, Hongfei; Zhang, Jianhai; Yang, Zhihao; Xu, Kan

    2017-12-20

    Biomedical event extraction is one of the most frontier domains in biomedical research. The two main subtasks of biomedical event extraction are trigger identification and arguments detection which can both be considered as classification problems. However, traditional state-of-the-art methods are based on support vector machine (SVM) with massive manually designed one-hot represented features, which require enormous work but lack semantic relation among words. In this paper, we propose a multiple distributed representation method for biomedical event extraction. The method combines context consisting of dependency-based word embedding, and task-based features represented in a distributed way as the input of deep learning models to train deep learning models. Finally, we used softmax classifier to label the example candidates. The experimental results on Multi-Level Event Extraction (MLEE) corpus show higher F-scores of 77.97% in trigger identification and 58.31% in overall compared to the state-of-the-art SVM method. Our distributed representation method for biomedical event extraction avoids the problems of semantic gap and dimension disaster from traditional one-hot representation methods. The promising results demonstrate that our proposed method is effective for biomedical event extraction.

  10. Secure image retrieval with multiple keys

    NASA Astrophysics Data System (ADS)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  11. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination.

    PubMed

    Romo, Ranulfo; Hernández, Adrián; Zainos, Antonio; Salinas, Emilio

    2003-05-22

    During a sensory discrimination task, the responses of multiple sensory neurons must be combined to generate a choice. The optimal combination of responses is determined both by their dependence on the sensory stimulus and by their cofluctuations across trials-that is, the noise correlations. Positively correlated noise is considered deleterious, because it limits the coding accuracy of populations of similarly tuned neurons. However, positively correlated fluctuations between differently tuned neurons actually increase coding accuracy, because they allow the common noise to be subtracted without signal loss. This is demonstrated with data recorded from the secondary somatosensory cortex of monkeys performing a vibrotactile discrimination task. The results indicate that positive correlations are not always harmful and may be exploited by cortical networks to enhance the neural representation of features to be discriminated.

  12. Toppar: an interactive browser for viewing association study results.

    PubMed

    Juliusdottir, Thorhildur; Banasik, Karina; Robertson, Neil R; Mott, Richard; McCarthy, Mark I

    2018-06-01

    Data integration and visualization help geneticists make sense of large amounts of data. To help facilitate interpretation of genetic association data we developed Toppar, a customizable visualization tool that stores results from association studies and enables browsing over multiple results, by combining features from existing tools and linking to appropriate external databases. Detailed information on Toppar's features and functionality are on our website http://mccarthy.well.ox.ac.uk/toppar/docs along with instructions on how to download, install and run Toppar. Our online version of Toppar is accessible from the website and can be test-driven using Firefox, Safari or Chrome on sub-sets of publicly available genome-wide association study anthropometric waist and body mass index data (Locke et al., 2015; Shungin et al., 2015) from the Genetic Investigation of ANthropometric Traits consortium. totajuliusd@gmail.com.

  13. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  14. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  15. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  16. Onboard Image Registration from Invariant Features

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  17. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Feature-based pairwise retinal image registration by radial distortion correction

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2007-03-01

    Fundus camera imaging is widely used to document disorders such as diabetic retinopathy and macular degeneration. Multiple retinal images can be combined together through a procedure known as mosaicing to form an image with a larger field of view. Mosaicing typically requires multiple pairwise registrations of partially overlapped images. We describe a new method for pairwise retinal image registration. The proposed method is unique in that the radial distortion due to image acquisition is corrected prior to the geometric transformation. Vessel lines are detected using the Hessian operator and are used as input features to the registration. Since the overlapping region is typically small in a retinal image pair, only a few correspondences are available, thus limiting the applicable model to an afine transform at best. To recover the distortion due to curved-surface of retina and lens optics, a combined approach of an afine model with a radial distortion correction is proposed. The parameters of the image acquisition and radial distortion models are estimated during an optimization step that uses Powell's method driven by the vessel line distance. Experimental results using 20 pairs of green channel images acquired from three subjects with a fundus camera confirmed that the afine model with distortion correction could register retinal image pairs to within 1.88+/-0.35 pixels accuracy (mean +/- standard deviation) assessed by vessel line error, which is 17% better than the afine-only approach. Because the proposed method needs only two correspondences, it can be applied to obtain good registration accuracy even in the case of small overlap between retinal image pairs.

  19. The Generalization of Visuomotor Learning to Untrained Movements and Movement Sequences Based on Movement Vector and Goal Location Remapping

    PubMed Central

    Wu, Howard G.

    2013-01-01

    The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099

  20. [Epigenetic inheritance and its possible role in the evolution of plant species].

    PubMed

    Lavrov, S A; Mavrodiev, E V

    2003-01-01

    As it is clear now, the level of gene expression in eukariotes is determined mainly by chromatin composition. Chromatin structure of a particular gene (it is a complex item, which includes nucleosome positioning, histone modifications and non-histone chromatin proteins) can be modified externally and is able to be inherited mitotically and meiotically. Changes in chromatine structure are the basis of so called epigenetic inheritance that occurs without modification of DNA sequence. One of the most striking examples of epigenetic inheritance in plants is epimutations--stable for many generation's alleles of some genes that do not differ in primary DNA structure. Molecular basis of epimutations seems to be DNA metylation. Epimutations may be widely distributed in nature and affect some basis morphological features that have a systematic significance. Possibility of inheritance of acquired epigenetic modifications lead us to reconsider an idea of multipLe independent origins of some plant forms (or ecotypes) under action of similar external conditions. Different populations of the same species may in this case be unrelated and has no common ancestor. Species should be considered as invariant of multiple ways of origin. Wide distribution of polyploids amongst higher plants suggests effective mechanism of repression of multicopy genes. Each allopolyploidisation event is followed by repression of random set of parent genes via changes in its chromatin structure. As a result, in the limits of the same hybrid formula may arise different stable combinations of epigenetically controlled features of parent species. These combinations may be classified as different species of other taxa.

  1. Deep ensemble learning of sparse regression models for brain disease diagnosis

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2018-01-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. PMID:28167394

  2. Multi-object segmentation framework using deformable models for medical imaging analysis.

    PubMed

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.

  3. Semantic Feature Training in Combination with Transcranial Direct Current Stimulation (tDCS) for Progressive Anomia

    PubMed Central

    Hung, Jinyi; Bauer, Ashley; Grossman, Murray; Hamilton, Roy H.; Coslett, H. B.; Reilly, Jamie

    2017-01-01

    We examined the effectiveness of a 2-week regimen of a semantic feature training in combination with transcranial direct current stimulation (tDCS) for progressive naming impairment associated with primary progressive aphasia (N = 4) or early onset Alzheimer’s Disease (N = 1). Patients received a 2-week regimen (10 sessions) of anodal tDCS delivered over the left temporoparietal cortex while completing a language therapy that consisted of repeated naming and semantic feature generation. Therapy targets consisted of familiar people, household items, clothes, foods, places, hygiene implements, and activities. Untrained items from each semantic category provided item level controls. We analyzed naming accuracies at multiple timepoints (i.e., pre-, post-, 6-month follow-up) via a mixed effects logistic regression and individual differences in treatment responsiveness using a series of non-parametric McNemar tests. Patients showed advantages for naming trained over untrained items. These gains were evident immediately post tDCS. Trained items also showed a shallower rate of decline over 6-months relative to untrained items that showed continued progressive decline. Patients tolerated stimulation well, and sustained improvements in naming accuracy suggest that the current intervention approach is viable. Future implementation of a sham control condition will be crucial toward ascertaining whether neurostimulation and behavioral treatment act synergistically or alternatively whether treatment gains are exclusively attributable to either tDCS or the behavioral intervention. PMID:28559805

  4. Feature diagnosticity and task context shape activity in human scene-selective cortex.

    PubMed

    Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S

    2016-01-15

    Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Learning discriminative functional network features of schizophrenia

    NASA Astrophysics Data System (ADS)

    Gheiratmand, Mina; Rish, Irina; Cecchi, Guillermo; Brown, Matthew; Greiner, Russell; Bashivan, Pouya; Polosecki, Pablo; Dursun, Serdar

    2017-03-01

    Associating schizophrenia with disrupted functional connectivity is a central idea in schizophrenia research. However, identifying neuroimaging-based features that can serve as reliable "statistical biomarkers" of the disease remains a challenging open problem. We argue that generalization accuracy and stability of candidate features ("biomarkers") must be used as additional criteria on top of standard significance tests in order to discover more robust biomarkers. Generalization accuracy refers to the utility of biomarkers for making predictions about individuals, for example discriminating between patients and controls, in novel datasets. Feature stability refers to the reproducibility of the candidate features across different datasets. Here, we extracted functional connectivity network features from fMRI data at both high-resolution (voxel-level) and a spatially down-sampled lower-resolution ("supervoxel" level). At the supervoxel level, we used whole-brain network links, while at the voxel level, due to the intractably large number of features, we sampled a subset of them. We compared statistical significance, stability and discriminative utility of both feature types in a multi-site fMRI dataset, composed of schizophrenia patients and healthy controls. For both feature types, a considerable fraction of features showed significant differences between the two groups. Also, both feature types were similarly stable across multiple data subsets. However, the whole-brain supervoxel functional connectivity features showed a higher cross-validation classification accuracy of 78.7% vs. 72.4% for the voxel-level features. Cross-site variability and heterogeneity in the patient samples in the multi-site FBIRN dataset made the task more challenging compared to single-site studies. The use of the above methodology in combination with the fully data-driven approach using the whole brain information have the potential to shed light on "biomarker discovery" in schizophrenia.

  6. Predictive modeling of structured electronic health records for adverse drug event detection.

    PubMed

    Zhao, Jing; Henriksson, Aron; Asker, Lars; Boström, Henrik

    2015-01-01

    The digitization of healthcare data, resulting from the increasingly widespread adoption of electronic health records, has greatly facilitated its analysis by computational methods and thereby enabled large-scale secondary use thereof. This can be exploited to support public health activities such as pharmacovigilance, wherein the safety of drugs is monitored to inform regulatory decisions about sustained use. To that end, electronic health records have emerged as a potentially valuable data source, providing access to longitudinal observations of patient treatment and drug use. A nascent line of research concerns predictive modeling of healthcare data for the automatic detection of adverse drug events, which presents its own set of challenges: it is not yet clear how to represent the heterogeneous data types in a manner conducive to learning high-performing machine learning models. Datasets from an electronic health record database are used for learning predictive models with the purpose of detecting adverse drug events. The use and representation of two data types, as well as their combination, are studied: clinical codes, describing prescribed drugs and assigned diagnoses, and measurements. Feature selection is conducted on the various types of data to reduce dimensionality and sparsity, while allowing for an in-depth feature analysis of the usefulness of each data type and representation. Within each data type, combining multiple representations yields better predictive performance compared to using any single representation. The use of clinical codes for adverse drug event detection significantly outperforms the use of measurements; however, there is no significant difference over datasets between using only clinical codes and their combination with measurements. For certain adverse drug events, the combination does, however, outperform using only clinical codes. Feature selection leads to increased predictive performance for both data types, in isolation and combined. We have demonstrated how machine learning can be applied to electronic health records for the purpose of detecting adverse drug events and proposed solutions to some of the challenges this presents, including how to represent the various data types. Overall, clinical codes are more useful than measurements and, in specific cases, it is beneficial to combine the two.

  7. Predictive modeling of structured electronic health records for adverse drug event detection

    PubMed Central

    2015-01-01

    Background The digitization of healthcare data, resulting from the increasingly widespread adoption of electronic health records, has greatly facilitated its analysis by computational methods and thereby enabled large-scale secondary use thereof. This can be exploited to support public health activities such as pharmacovigilance, wherein the safety of drugs is monitored to inform regulatory decisions about sustained use. To that end, electronic health records have emerged as a potentially valuable data source, providing access to longitudinal observations of patient treatment and drug use. A nascent line of research concerns predictive modeling of healthcare data for the automatic detection of adverse drug events, which presents its own set of challenges: it is not yet clear how to represent the heterogeneous data types in a manner conducive to learning high-performing machine learning models. Methods Datasets from an electronic health record database are used for learning predictive models with the purpose of detecting adverse drug events. The use and representation of two data types, as well as their combination, are studied: clinical codes, describing prescribed drugs and assigned diagnoses, and measurements. Feature selection is conducted on the various types of data to reduce dimensionality and sparsity, while allowing for an in-depth feature analysis of the usefulness of each data type and representation. Results Within each data type, combining multiple representations yields better predictive performance compared to using any single representation. The use of clinical codes for adverse drug event detection significantly outperforms the use of measurements; however, there is no significant difference over datasets between using only clinical codes and their combination with measurements. For certain adverse drug events, the combination does, however, outperform using only clinical codes. Feature selection leads to increased predictive performance for both data types, in isolation and combined. Conclusions We have demonstrated how machine learning can be applied to electronic health records for the purpose of detecting adverse drug events and proposed solutions to some of the challenges this presents, including how to represent the various data types. Overall, clinical codes are more useful than measurements and, in specific cases, it is beneficial to combine the two. PMID:26606038

  8. The 30/20 Gigahertz transponder study. [wideband multichannel transponders for a communications satellite

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Design features and performance parameters are described for three types of wideband multiple channel satellite transponders for use in a 30/20 GHz communications satellite, which provides high data rate trunking service to ten ground station terminals. The three types of transponder are frequency division multiplex (FDM), time division multiplex (TDM), and a hybrid transponder using a combination of FDM and TDM techniques. The wideband multiple beam trunking concept, the traffic distribution between the trunking terminals, and system design constraints are discussed. The receiver front end design, the frequency conversion scheme, and the local oscillator design are described including the thermal interface between the transponders and the satellite. The three designs are compared with regard to performance, weight, power, cost and initial technology. Simplified block diagrams of the baseline transponder designs are included.

  9. JDet: interactive calculation and visualization of function-related conservation patterns in multiple sequence alignments and structures.

    PubMed

    Muth, Thilo; García-Martín, Juan A; Rausell, Antonio; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2012-02-15

    We have implemented in a single package all the features required for extracting, visualizing and manipulating fully conserved positions as well as those with a family-dependent conservation pattern in multiple sequence alignments. The program allows, among other things, to run different methods for extracting these positions, combine the results and visualize them in protein 3D structures and sequence spaces. JDet is a multiplatform application written in Java. It is freely available, including the source code, at http://csbg.cnb.csic.es/JDet. The package includes two of our recently developed programs for detecting functional positions in protein alignments (Xdet and S3Det), and support for other methods can be added as plug-ins. A help file and a guided tutorial for JDet are also available.

  10. GRB-081029: A Step Towards Understanding Multiple Afterglow Components

    NASA Technical Reports Server (NTRS)

    Holland Stephen T.

    2010-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst-081029 at a redshift of z = 3.8474. We combine X-ray and optical observations from (Swift) with optical and infrared data from REM to obtain a detailed data set extending from approx 10(exp 2)s to approx 10(exp 5)s after the BAT trigger, and from approx.10 keV to 16,000 AA. The X-ray afterglow showed a shallow initial decay followed by u rapid decay after about 18,000 s. The optical afterglow, however, shows an uncharecteristic rise at about 5000 s that has no corresponding feature in the X-ray light curve. The data are not consistent with a single-component jet. It is possible that there are multiple physical components contributing to the afterglow of GRB-081029.

  11. Airplane detection based on fusion framework by combining saliency model with Deep Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Dou, Hao; Sun, Xiao; Li, Bin; Deng, Qianqian; Yang, Xubo; Liu, Di; Tian, Jinwen

    2018-03-01

    Aircraft detection from very high resolution remote sensing images, has gained more increasing interest in recent years due to the successful civil and military applications. However, several problems still exist: 1) how to extract the high-level features of aircraft; 2) locating objects within such a large image is difficult and time consuming; 3) A common problem of multiple resolutions of satellite images still exists. In this paper, inspirited by biological visual mechanism, the fusion detection framework is proposed, which fusing the top-down visual mechanism (deep CNN model) and bottom-up visual mechanism (GBVS) to detect aircraft. Besides, we use multi-scale training method for deep CNN model to solve the problem of multiple resolutions. Experimental results demonstrate that our method can achieve a better detection result than the other methods.

  12. OPATs: Omnibus P-value association tests.

    PubMed

    Chen, Chia-Wei; Yang, Hsin-Chou

    2017-07-10

    Combining statistical significances (P-values) from a set of single-locus association tests in genome-wide association studies is a proof-of-principle method for identifying disease-associated genomic segments, functional genes and biological pathways. We review P-value combinations for genome-wide association studies and introduce an integrated analysis tool, Omnibus P-value Association Tests (OPATs), which provides popular analysis methods of P-value combinations. The software OPATs programmed in R and R graphical user interface features a user-friendly interface. In addition to analysis modules for data quality control and single-locus association tests, OPATs provides three types of set-based association test: window-, gene- and biopathway-based association tests. P-value combinations with or without threshold and rank truncation are provided. The significance of a set-based association test is evaluated by using resampling procedures. Performance of the set-based association tests in OPATs has been evaluated by simulation studies and real data analyses. These set-based association tests help boost the statistical power, alleviate the multiple-testing problem, reduce the impact of genetic heterogeneity, increase the replication efficiency of association tests and facilitate the interpretation of association signals by streamlining the testing procedures and integrating the genetic effects of multiple variants in genomic regions of biological relevance. In summary, P-value combinations facilitate the identification of marker sets associated with disease susceptibility and uncover missing heritability in association studies, thereby establishing a foundation for the genetic dissection of complex diseases and traits. OPATs provides an easy-to-use and statistically powerful analysis tool for P-value combinations. OPATs, examples, and user guide can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/genetics/association/OPATs.htm. © The Author 2017. Published by Oxford University Press.

  13. Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm.

    PubMed

    Kim, Eun Young; Lee, Min Young; Kim, Se Hyun; Ha, Kyooseob; Kim, Kwang Pyo; Ahn, Yong Min

    2017-06-02

    Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  15. An AdaBoost Based Approach to Automatic Classification and Detection of Buildings Footprints, Vegetation Areas and Roads from Satellite Images

    NASA Astrophysics Data System (ADS)

    Gonulalan, Cansu

    In recent years, there has been an increasing demand for applications to monitor the targets related to land-use, using remote sensing images. Advances in remote sensing satellites give rise to the research in this area. Many applications ranging from urban growth planning to homeland security have already used the algorithms for automated object recognition from remote sensing imagery. However, they have still problems such as low accuracy on detection of targets, specific algorithms for a specific area etc. In this thesis, we focus on an automatic approach to classify and detect building foot-prints, road networks and vegetation areas. The automatic interpretation of visual data is a comprehensive task in computer vision field. The machine learning approaches improve the capability of classification in an intelligent way. We propose a method, which has high accuracy on detection and classification. The multi class classification is developed for detecting multiple objects. We present an AdaBoost-based approach along with the supervised learning algorithm. The combi- nation of AdaBoost with "Attentional Cascade" is adopted from Viola and Jones [1]. This combination decreases the computation time and gives opportunity to real time applications. For the feature extraction step, our contribution is to combine Haar-like features that include corner, rectangle and Gabor. Among all features, AdaBoost selects only critical features and generates in extremely efficient cascade structured classifier. Finally, we present and evaluate our experimental results. The overall system is tested and high performance of detection is achieved. The precision rate of the final multi-class classifier is over 98%.

  16. PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.

    PubMed

    Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S

    2007-10-11

    By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.

  17. Multiple Kernel Learning with Random Effects for Predicting Longitudinal Outcomes and Data Integration

    PubMed Central

    Chen, Tianle; Zeng, Donglin

    2015-01-01

    Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419

  18. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  19. Automated complete slide digitization: a medium for simultaneous viewing by multiple pathologists.

    PubMed

    Leong, F J; McGee, J O

    2001-11-01

    Developments in telepathology robotic systems have evolved the concept of a 'virtual microscope' handling 'digital slides'. Slide digitization is a method of archiving salient histological features in numerical (digital) form. The value and potential of this have begun to be recognized by several international centres. Automated complete slide digitization has application at all levels of clinical practice and will benefit undergraduate, postgraduate, and continuing education. Unfortunately, as the volume of potential data on a histological slide represents a significant problem in terms of digitization, storage, and subsequent manipulation, the reality of virtual microscopy to date has comprised limited views at inadequate resolution. This paper outlines a system refined in the authors' laboratory, which employs a combination of enhanced hardware, image capture, and processing techniques designed for telepathology. The system is able to scan an entire slide at high magnification and create a library of such slides that may exist on an internet server or be distributed on removable media (such as CD-ROM or DVD). A digital slide allows image data manipulation at a level not possible with conventional light microscopy. Combinations of multiple users, multiple magnifications, annotations, and addition of ancillary textual and visual data are now possible. This demonstrates that with increased sophistication, the applications of telepathology technology need not be confined to second opinion, but can be extended on a wider front. Copyright 2001 John Wiley & Sons, Ltd.

  20. Effects of Self-Paced Encoding and Practice on Age-Related Deficits in Binding Three Features

    ERIC Educational Resources Information Center

    Kinjo, Hikari

    2010-01-01

    Although much literature suggests that the age-related decline in episodic memory could be due to difficulties in binding features of information, previous studies focused mainly on memory of paired associations rather than memory of multiple bound features. In reality, however, there are many situations that require binding multiple features…

  1. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.

    PubMed

    Liu, Min; Wang, Xueping; Zhang, Hongzhong

    2018-03-01

    In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Automatic orientation and 3D modelling from markerless rock art imagery

    NASA Astrophysics Data System (ADS)

    Lerma, J. L.; Navarro, S.; Cabrelles, M.; Seguí, A. E.; Hernández, D.

    2013-02-01

    This paper investigates the use of two detectors and descriptors on image pyramids for automatic image orientation and generation of 3D models. The detectors and descriptors replace manual measurements and are used to detect, extract and match features across multiple imagery. The Scale-Invariant Feature Transform (SIFT) and the Speeded Up Robust Features (SURF) will be assessed based on speed, number of features, matched features, and precision in image and object space depending on the adopted hierarchical matching scheme. The influence of applying in addition Area Based Matching (ABM) with normalised cross-correlation (NCC) and least squares matching (LSM) is also investigated. The pipeline makes use of photogrammetric and computer vision algorithms aiming minimum interaction and maximum accuracy from a calibrated camera. Both the exterior orientation parameters and the 3D coordinates in object space are sequentially estimated combining relative orientation, single space resection and bundle adjustment. The fully automatic image-based pipeline presented herein to automate the image orientation step of a sequence of terrestrial markerless imagery is compared with manual bundle block adjustment and terrestrial laser scanning (TLS) which serves as ground truth. The benefits of applying ABM after FBM will be assessed both in image and object space for the 3D modelling of a complex rock art shelter.

  3. An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.

    PubMed

    Magen, Hagit

    2017-03-01

    Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.

  4. A new unified framework for the early detection of the progression to diabetic retinopathy from fundus images.

    PubMed

    Leontidis, Georgios

    2017-11-01

    Human retina is a diverse and important tissue, vastly studied for various retinal and other diseases. Diabetic retinopathy (DR), a leading cause of blindness, is one of them. This work proposes a novel and complete framework for the accurate and robust extraction and analysis of a series of retinal vascular geometric features. It focuses on studying the registered bifurcations in successive years of progression from diabetes (no DR) to DR, in order to identify the vascular alterations. Retinal fundus images are utilised, and multiple experimental designs are employed. The framework includes various steps, such as image registration and segmentation, extraction of features, statistical analysis and classification models. Linear mixed models are utilised for making the statistical inferences, alongside the elastic-net logistic regression, boruta algorithm, and regularised random forests for the feature selection and classification phases, in order to evaluate the discriminative potential of the investigated features and also build classification models. A number of geometric features, such as the central retinal artery and vein equivalents, are found to differ significantly across the experiments and also have good discriminative potential. The classification systems yield promising results with the area under the curve values ranging from 0.821 to 0.968, across the four different investigated combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion

    PubMed Central

    Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang

    2016-01-01

    Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the  a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313

  6. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen

    2017-12-01

    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.

  7. Capability of geometric features to classify ships in SAR imagery

    NASA Astrophysics Data System (ADS)

    Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li

    2016-10-01

    Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.

  8. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Treesearch

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  9. Decomposition and extraction: a new framework for visual classification.

    PubMed

    Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng

    2014-08-01

    In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.

  10. Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas

    NASA Astrophysics Data System (ADS)

    Sun, X. F.; Lin, X. G.

    2017-09-01

    As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.

  11. Using Differential Evolution to Optimize Learning from Signals and Enhance Network Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmer, Paul K; Temple, Michael A; Buckner, Mark A

    2011-01-01

    Computer and communication network attacks are commonly orchestrated through Wireless Access Points (WAPs). This paper summarizes proof-of-concept research activity aimed at developing a physical layer Radio Frequency (RF) air monitoring capability to limit unauthorizedWAP access and mprove network security. This is done using Differential Evolution (DE) to optimize the performance of a Learning from Signals (LFS) classifier implemented with RF Distinct Native Attribute (RF-DNA) fingerprints. Performance of the resultant DE-optimized LFS classifier is demonstrated using 802.11a WiFi devices under the most challenging conditions of intra-manufacturer classification, i.e., using emissions of like-model devices that only differ in serial number. Using identicalmore » classifier input features, performance of the DE-optimized LFS classifier is assessed relative to a Multiple Discriminant Analysis / Maximum Likelihood (MDA/ML) classifier that has been used for previous demonstrations. The comparative assessment is made using both Time Domain (TD) and Spectral Domain (SD) fingerprint features. For all combinations of classifier type, feature type, and signal-to-noise ratio considered, results show that the DEoptimized LFS classifier with TD features is uperior and provides up to 20% improvement in classification accuracy with proper selection of DE parameters.« less

  12. Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features

    PubMed Central

    Morison, Gordon; Boreham, Philip

    2018-01-01

    Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features. The idea of the proposed method is to map multiple discharge source signals captured by EMI and labelled by experts, including PD, from the time domain to a feature space, which aids in the interpretation of subsequent fault information. Here, instead of using only one permutation entropy measure, a more robust measure, called Dispersion Entropy (DE), is added to the feature vector. Multi-Class Support Vector Machine (MCSVM) methods are utilized for classification of the different discharge sources. Results show an improved classification accuracy compared to previously proposed methods. This yields to a successful development of an expert’s knowledge-based intelligent system. Since this method is demonstrated to be successful with real field data, it brings the benefit of possible real-world application for EMI condition monitoring. PMID:29385030

  13. Extensions of algebraic image operators: An approach to model-based vision

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morelli, Michael V.

    1990-01-01

    Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.

  14. A VGI data integration framework based on linked data model

    NASA Astrophysics Data System (ADS)

    Wan, Lin; Ren, Rongrong

    2015-12-01

    This paper aims at the geographic data integration and sharing method for multiple online VGI data sets. We propose a semantic-enabled framework for online VGI sources cooperative application environment to solve a target class of geospatial problems. Based on linked data technologies - which is one of core components of semantic web, we can construct the relationship link among geographic features distributed in diverse VGI platform by using linked data modeling methods, then deploy these semantic-enabled entities on the web, and eventually form an interconnected geographic data network to support geospatial information cooperative application across multiple VGI data sources. The mapping and transformation from VGI sources to RDF linked data model is presented to guarantee the unique data represent model among different online social geographic data sources. We propose a mixed strategy which combined spatial distance similarity and feature name attribute similarity as the measure standard to compare and match different geographic features in various VGI data sets. And our work focuses on how to apply Markov logic networks to achieve interlinks of the same linked data in different VGI-based linked data sets. In our method, the automatic generating method of co-reference object identification model according to geographic linked data is discussed in more detail. It finally built a huge geographic linked data network across loosely-coupled VGI web sites. The results of the experiment built on our framework and the evaluation of our method shows the framework is reasonable and practicable.

  15. Psychosocial Intervention for Young Children With Chronic Tics

    ClinicalTrials.gov

    2018-06-18

    Tourette's Syndrome; Tourette's Disorder; Tourette's Disease; Tourette Disorder; Tourette Disease; Tic Disorder, Combined Vocal and Multiple Motor; Multiple Motor and Vocal Tic Disorder, Combined; Gilles de La Tourette's Disease; Gilles de la Tourette Syndrome; Gilles De La Tourette's Syndrome; Combined Vocal and Multiple Motor Tic Disorder; Combined Multiple Motor and Vocal Tic Disorder; Chronic Motor and Vocal Tic Disorder

  16. Fusion of Remote Sensing Methods, UAV Photogrammetry and LiDAR Scanning products for monitoring fluvial dynamics

    NASA Astrophysics Data System (ADS)

    Lendzioch, Theodora; Langhammer, Jakub; Hartvich, Filip

    2015-04-01

    Fusion of remote sensing data is a common and rapidly developing discipline, which combines data from multiple sources with different spatial and spectral resolution, from satellite sensors, aircraft and ground platforms. Fusion data contains more detailed information than each of the source and enhances the interpretation performance and accuracy of the source data and produces a high-quality visualisation of the final data. Especially, in fluvial geomorphology it is essential to get valuable images in sub-meter resolution to obtain high quality 2D and 3D information for a detailed identification, extraction and description of channel features of different river regimes and to perform a rapid mapping of changes in river topography. In order to design, test and evaluate a new approach for detection of river morphology, we combine different research techniques from remote sensing products to drone-based photogrammetry and LiDAR products (aerial LiDAR Scanner and TLS). Topographic information (e.g. changes in river channel morphology, surface roughness, evaluation of floodplain inundation, mapping gravel bars and slope characteristics) will be extracted either from one single layer or from combined layers in accordance to detect fluvial topographic changes before and after flood events. Besides statistical approaches for predictive geomorphological mapping and the determination of errors and uncertainties of the data, we will also provide 3D modelling of small fluvial features.

  17. On the source of cross-grain lineations in the central Pacific gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, David C.; Sandwell, David T.

    1989-01-01

    The source of cross-grain lineations in marine gravity field observed in central Pacific was investigated by comparing multiple collinear gravity profiles from Geosat data with coincident bathymetry profiles, in the Fourier transform domain. Bathymetric data were collected by multibeam sonar systems operating from two research vessels, one in June-August 1985, the other in February and March 1987. The results of this analysis indicate that the lineations are superficial features that appear to result from a combination of subsurface and surface loads supported by a thin (2 km to 5 km) lithosphere.

  18. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  19. Demonstration and field trial of a resilient hybrid NG-PON test-bed

    NASA Astrophysics Data System (ADS)

    Prat, Josep; Polo, Victor; Schrenk, Bernhard; Lazaro, Jose A.; Bonada, Francesc; Lopez, Eduardo T.; Omella, Mireia; Saliou, Fabienne; Le, Quang T.; Chanclou, Philippe; Leino, Dmitri; Soila, Risto; Spirou, Spiros; Costa, Liliana; Teixeira, Antonio; Tosi-Beleffi, Giorgio M.; Klonidis, Dimitrios; Tomkos, Ioannis

    2014-10-01

    A multi-layer next generation PON prototype has been built and tested, to show the feasibility of extended hybrid DWDM/TDM-XGPON FTTH networks with resilient optically-integrated ring-trees architecture, supporting broadband multimedia services. It constitutes a transparent common platform for the coexistence of multiple operators sharing the optical infrastructure of the central metro ring, passively combining the access and the metropolitan network sections. It features 32 wavelength connections at 10 Gbps, up to 1000 users distributed in 16 independent resilient sub-PONs over 100 km. This paper summarizes the network operation, demonstration and field trial results.

  20. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    PubMed

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  1. Handwritten Word Recognition Using Multi-view Analysis

    NASA Astrophysics Data System (ADS)

    de Oliveira, J. J.; de A. Freitas, C. O.; de Carvalho, J. M.; Sabourin, R.

    This paper brings a contribution to the problem of efficiently recognizing handwritten words from a limited size lexicon. For that, a multiple classifier system has been developed that analyzes the words from three different approximation levels, in order to get a computational approach inspired on the human reading process. For each approximation level a three-module architecture composed of a zoning mechanism (pseudo-segmenter), a feature extractor and a classifier is defined. The proposed application is the recognition of the Portuguese handwritten names of the months, for which a best recognition rate of 97.7% was obtained, using classifier combination.

  2. Multiple resource evaluation of region 2 US forest service lands utilizing LANDSAT MSS data. [San Juan Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Krebs, P. V.; Hoffer, R. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. LANDSAT MSS imagery provided an excellent overview which put a geomorphic study into a regional perspective, using scale 1:250,000 or smaller. It was used for deriving a data base for land use planning for southern San Juan Mountains. Stereo pairing of adjacent images was the best method for all geomorphic mapping. Combining this with snow enhancement, seasonal enhancement, and reversal aided in interpretation of geomorphic features. Drainage patterns were mapped in much greater detail from LANDSAT than from a two deg quadrangle base.

  3. Engineered biomimicry: polymeric replication of surface features found on insects

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  4. PROTAX-Sound: A probabilistic framework for automated animal sound identification

    PubMed Central

    Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities. PMID:28863178

  5. PROTAX-Sound: A probabilistic framework for automated animal sound identification.

    PubMed

    de Camargo, Ulisses Moliterno; Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities.

  6. One Shot Detection with Laplacian Object and Fast Matrix Cosine Similarity.

    PubMed

    Biswas, Sujoy Kumar; Milanfar, Peyman

    2016-03-01

    One shot, generic object detection involves searching for a single query object in a larger target image. Relevant approaches have benefited from features that typically model the local similarity patterns. In this paper, we combine local similarity (encoded by local descriptors) with a global context (i.e., a graph structure) of pairwise affinities among the local descriptors, embedding the query descriptors into a low dimensional but discriminatory subspace. Unlike principal components that preserve global structure of feature space, we actually seek a linear approximation to the Laplacian eigenmap that permits us a locality preserving embedding of high dimensional region descriptors. Our second contribution is an accelerated but exact computation of matrix cosine similarity as the decision rule for detection, obviating the computationally expensive sliding window search. We leverage the power of Fourier transform combined with integral image to achieve superior runtime efficiency that allows us to test multiple hypotheses (for pose estimation) within a reasonably short time. Our approach to one shot detection is training-free, and experiments on the standard data sets confirm the efficacy of our model. Besides, low computation cost of the proposed (codebook-free) object detector facilitates rather straightforward query detection in large data sets including movie videos.

  7. Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT.

    PubMed

    Mazaheri, Samaneh; Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah

    2015-01-01

    Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.

  8. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes.

    PubMed

    Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui

    2018-04-18

    One of the current challenges in nanozyme-based nanotechnology is the utilization of multifunctionalities in one material. In this regard, Au@Pt nanoparticles (NPs) with excellent enzyme-mimicking activities due to the Pt shell and unique surface plasmon resonance features from the Au core have attracted enormous research interest. However, the unique surface plasmon resonance features from the Au core have not been widely utilized. The practical problem of the optical-damping nature of Pt hinders the research into the combination of Au@Pt NPs' enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities. Herein, we rationally tuned the Pt amount to achieve Au@Pt NPs with simultaneous plasmonic and enzyme-mimicking activities. The results showed that Au@Pt NPs with 2.5% Pt produced the highest Raman signal in 2 min, which benefited from the remarkably accelerated catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with the decorated Pt and strong electric field retained from the Au core for SERS. This study not only demonstrates the great promise of combining bimetallic nanomaterials' multiple functionalities but also provides rational guidelines to design high-performance nanozymes for potential biomedical applications.

  9. Essential protein discovery based on a combination of modularity and conservatism.

    PubMed

    Zhao, Bihai; Wang, Jianxin; Li, Xueyong; Wu, Fang-Xiang

    2016-11-01

    Essential proteins are indispensable for the survival of a living organism and play important roles in the emerging field of synthetic biology. Many computational methods have been proposed to identify essential proteins by using the topological features of interactome networks. However, most of these methods ignored intrinsic biological meaning of proteins. Researches show that essentiality is tied not only to the protein or gene itself, but also to the molecular modules to which that protein belongs. The results of this study reveal the modularity of essential proteins. On the other hand, essential proteins are more evolutionarily conserved than nonessential proteins and frequently bind each other. That is to say, conservatism is another important feature of essential proteins. Multiple networks are constructed by integrating protein-protein interaction (PPI) networks, time course gene expression data and protein domain information. Based on these networks, a new essential protein identification method is proposed based on a combination of modularity and conservatism of proteins. Experimental results show that the proposed method outperforms other essential protein identification methods in terms of a number essential protein out of top ranked candidates. Copyright © 2016. Published by Elsevier Inc.

  10. Cognitive object recognition system (CORS)

    NASA Astrophysics Data System (ADS)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  11. Support Vector Machine-Based Prediction of Local Tumor Control After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klement, Rainer J., E-mail: rainer_klement@gmx.de; Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Schweinfurt; Allgäuer, Michael

    2014-03-01

    Background: Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. Methods and Materials: We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performancemore » by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Results: Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED{sub ISO}) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED{sub ISO} and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED{sub ISO}, age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. Conclusions: These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning.« less

  12. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer.

    PubMed

    Klement, Rainer J; Allgäuer, Michael; Appold, Steffen; Dieckmann, Karin; Ernst, Iris; Ganswindt, Ute; Holy, Richard; Nestle, Ursula; Nevinny-Stickel, Meinhard; Semrau, Sabine; Sterzing, Florian; Wittig, Andrea; Andratschke, Nicolaus; Guckenberger, Matthias

    2014-03-01

    Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performance by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED(ISO)) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED(ISO) and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED(ISO), age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists.

    PubMed

    Bonet, Isis; Franco-Montero, Pedro; Rivero, Virginia; Teijeira, Marta; Borges, Fernanda; Uriarte, Eugenio; Morales Helguera, Aliuska

    2013-12-23

    A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.

  14. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

    PubMed

    Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping

    2018-03-23

    Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.

  15. X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening.

    PubMed

    Harding, G; Fleckenstein, H; Kosciesza, D; Olesinski, S; Strecker, H; Theedt, T; Zienert, G

    2012-07-01

    The steadily increasing number of explosive threat classes, including home-made explosives (HMEs), liquids, amorphous and gels (LAGs), is forcing up the false-alarm rates of security screening equipment. This development can best be countered by increasing the number of features available for classification. X-ray diffraction intrinsically offers multiple features for both solid and LAGs explosive detection, and is thus becoming increasingly important for false-alarm and cost reduction in both carry-on and checked baggage security screening. Following a brief introduction to X-ray diffraction imaging (XDI), which synthesizes in a single modality the image-forming and material-analysis capabilities of X-rays, the Multiple Inverse Fan Beam (MIFB) XDI topology is described. Physical relationships obtaining in such MIFB XDI components as the radiation source, collimators and room-temperature detectors are presented with experimental performances that have been achieved. Representative X-ray diffraction profiles of threat substances measured with a laboratory MIFB XDI system are displayed. The performance of Next-Generation (MIFB) XDI relative to that of the 2nd Generation XRD 3500TM screener (Morpho Detection Germany GmbH) is assessed. The potential of MIFB XDI, both for reducing the exorbitant cost of false alarms in hold baggage screening (HBS), as well as for combining "in situ" liquid and solid explosive detection in carry-on luggage screening is outlined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Severe developmental delay and multiple strawberry naevi: a new syndrome?

    PubMed Central

    Upton, C J; Young, I D

    1993-01-01

    An 18 month old girl with dysmorphic features, severe developmental delay, multiple strawberry naevi, and capillary naevi is described. No previous report of a similar association of features has been identified. Images PMID:8230170

  17. On application of kernel PCA for generating stimulus features for fMRI during continuous music listening.

    PubMed

    Tsatsishvili, Valeri; Burunat, Iballa; Cong, Fengyu; Toiviainen, Petri; Alluri, Vinoo; Ristaniemi, Tapani

    2018-06-01

    There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Characteristic CT and MR imaging findings of cerebral paragonimiasis.

    PubMed

    Xia, Yong; Chen, Jing; Ju, Yan; You, Chao

    2016-06-01

    The early diagnosis of cerebral paragonimiasis (CP) is essential for a good prognosis. We seek to provide references for early diagnosis by analyzing the imaging characteristics of cerebral paragonimiasis. Images of 27 patients with CP (22 males and 5 females; median age 20.3 years; range: 4 to 47 years) were retrospectively evaluated. All patients underwent head computed tomography (CT) scans; 22 patients underwent conventional magnetic resonance imaging (MRI) sequences, including contrast-enhanced MRI for 20 patients and diffusion-weighted-imaging (DWI) for 1 patient. The diagnosis was confirmed based on a positive antibody test using enzyme-linked immunosorbent assay (ELISA) for paragonimiasis in the serum. The most common imaging findings of CP were isodense or hypodense lesions combined with extensive hypodense areas of perilesional edema on CT scans and a large mass composed of multiple ring-shaped lesions with surrounding edema on MRI images. The conglomeration of multiple ring-shaped lesions (n=11 patients), "tunnel signs" (n=12 patients) and worm-eaten signs (n=5 patients) were characteristic of most CP images. In 14 patients, contrast-enhanced MRI showed varying degrees of contrast enhancement combined with adjacent meningeal enhancement (n=10). A large mass comprising multiple ring-shaped lesions of different sizes, "tunnel signs" and worm-eaten signs with surrounding edema are the most characteristic features of CP. Extensive invasions of the adjacent meninges and ventricular wall (19 patients), multiple intracerebral lesions, bilateral hemispheric involvement, and lesion migration are other noteworthy imaging characteristics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Multiple biomarkers in molecular oncology. I. Molecular diagnostics applications in cervical cancer detection.

    PubMed

    Malinowski, Douglas P

    2007-03-01

    The screening for cervical carcinoma and its malignant precursors (cervical neoplasia) currently employs morphology-based detection methods (Papanicolaou [Pap] smear) in addition to the detection of high-risk human papillomavirus. The combination of the Pap smear with human papillomavirus testing has achieved significant improvements in sensitivity for the detection of cervical disease. Diagnosis of cervical neoplasia is dependent upon histology assessment of cervical biopsy specimens. Attempts to improve the specificity of cervical disease screening have focused on the investigation of molecular biomarkers for adjunctive use in combination with the Pap smear. Active research into the genomic and proteomic alterations that occur during human papillomavirus-induced neoplastic transformation have begun to characterize some of the basic mechanisms inherent to the disease process of cervical cancer development. This research continues to demonstrate the complexity of multiple genomic and proteomic alterations that accumulate during the tumorigenesis process. Despite this diversity, basic patterns of uncontrolled signal transduction, cell cycle deregulation, activation of DNA replication and altered extracellular matrix interactions are beginning to emerge as common features inherent to cervical cancer development. Some of these gene or protein expression alterations have been investigated as potential biomarkers for screening and diagnostics applications. The contribution of multiple gene alterations in the development of cervical cancer suggests that the application of multiple biomarker panels has the potential to develop clinically useful molecular diagnostics. In this review, the application of biomarkers for the improvement of sensitivity and specificity of the detection of cervical neoplasia within cytology specimens will be discussed.

  20. A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei

    2015-03-01

    A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.

  1. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  2. Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications

    PubMed Central

    2013-01-01

    Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109

  3. Comparison of the Physical Education and Sports School Students' Multiple Intelligence Areas According to Demographic Features

    ERIC Educational Resources Information Center

    Aslan, Cem Sinan

    2016-01-01

    The aim of this study is to compare the multiple intelligence areas of a group of physical education and sports students according to their demographic features. In the study, "Multiple Intelligence Scale", consisting of 27 items, whose Turkish validity and reliability study have been done by Babacan (2012) and which is originally owned…

  4. Layered clustering multi-fault diagnosis for hydraulic piston pump

    NASA Astrophysics Data System (ADS)

    Du, Jun; Wang, Shaoping; Zhang, Haiyan

    2013-04-01

    Efficient diagnosis is very important for improving reliability and performance of aircraft hydraulic piston pump, and it is one of the key technologies in prognostic and health management system. In practice, due to harsh working environment and heavy working loads, multiple faults of an aircraft hydraulic pump may occur simultaneously after long time operations. However, most existing diagnosis methods can only distinguish pump faults that occur individually. Therefore, new method needs to be developed to realize effective diagnosis of simultaneous multiple faults on aircraft hydraulic pump. In this paper, a new method based on the layered clustering algorithm is proposed to diagnose multiple faults of an aircraft hydraulic pump that occur simultaneously. The intensive failure mechanism analyses of the five main types of faults are carried out, and based on these analyses the optimal combination and layout of diagnostic sensors is attained. The three layered diagnosis reasoning engine is designed according to the faults' risk priority number and the characteristics of different fault feature extraction methods. The most serious failures are first distinguished with the individual signal processing. To the desultory faults, i.e., swash plate eccentricity and incremental clearance increases between piston and slipper, the clustering diagnosis algorithm based on the statistical average relative power difference (ARPD) is proposed. By effectively enhancing the fault features of these two faults, the ARPDs calculated from vibration signals are employed to complete the hypothesis testing. The ARPDs of the different faults follow different probability distributions. Compared with the classical fast Fourier transform-based spectrum diagnosis method, the experimental results demonstrate that the proposed algorithm can diagnose the multiple faults, which occur synchronously, with higher precision and reliability.

  5. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    PubMed

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  6. ICPD-a new peak detection algorithm for LC/MS.

    PubMed

    Zhang, Jianqiu; Haskins, William

    2010-12-01

    The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.

  7. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics

    PubMed Central

    Jacob, Donna L.; Hanson, Mark A.; Herwig, Brian R.; Bowe, Shane E.; Otte, Marinus L.

    2015-01-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds. PMID:26074657

  8. Finding lesion correspondences in different views of automated 3D breast ultrasound

    NASA Astrophysics Data System (ADS)

    Tan, Tao; Platel, Bram; Hicks, Michael; Mann, Ritse M.; Karssemeijer, Nico

    2013-02-01

    Screening with automated 3D breast ultrasound (ABUS) is gaining popularity. However, the acquisition of multiple views required to cover an entire breast makes radiologic reading time-consuming. Linking lesions across views can facilitate the reading process. In this paper, we propose a method to automatically predict the position of a lesion in the target ABUS views, given the location of the lesion in a source ABUS view. We combine features describing the lesion location with respect to the nipple, the transducer and the chestwall, with features describing lesion properties such as intensity, spiculation, blobness, contrast and lesion likelihood. By using a grid search strategy, the location of the lesion was predicted in the target view. Our method achieved an error of 15.64 mm+/-16.13 mm. The error is small enough to help locate the lesion with minor additional interaction.

  9. [Features of cranio-cerebral trauma in victims of road accidents].

    PubMed

    Ogleznev, K Ia; Stankevich, P V

    2001-01-01

    The paper deals with the specific features of brain injury (BI) in victims of road traffic accidents (RTA). RTA victims are most commonly pedestrians (62.6%) and less commonly drivers (17.5%). In over half the cases (62.6%), BI due to RTA is associated with extracranial lesions, leading to diagnostic problems. The pattern and site of lesions are related to the type of a transport vehicle and to the role of a victim as a traffic participant. Multiple extracranial lesions are mostly frequently encountered in victim pedestrians (30.3%), BI concurrent with chest damage is common in drivers (12.8%), BI concurrent with "whip" injury of the cervical spine is found in drivers and passengers though such combinations may also seen in pedestrians (1.5%--5 cases). The most severe form of brain compression is multifactorial compression (27.6%) and its most common form is compression with subdural hematoma (35.3%).

  10. From the primordial soup to self-driving cars: standards and their role in natural and technological innovation

    PubMed Central

    Wagner, Andreas; Ortman, Scott; Maxfield, Robert

    2016-01-01

    Standards are specifications to which the elements of a technology must conform. Here, we apply this notion to the biochemical ‘technologies' of nature, where objects like DNA and proteins, as well as processes like the regulation of gene activity are highly standardized. We introduce the concept of standards with multiple examples, ranging from the ancient genetic material RNA, to Palaeolithic stone axes, and digital electronics, and we discuss common ways in which standards emerge in nature and technology. We then focus on the question of how standards can facilitate technological and biological innovation. Innovation-enhancing standards include those of proteins and digital electronics. They share common features, such as that few standardized building blocks can be combined through standard interfaces to create myriad useful objects or processes. We argue that such features will also characterize the most innovation-enhancing standards of future technologies. PMID:26864893

  11. Central auditory neurons have composite receptive fields.

    PubMed

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  12. Free energy landscape of activation in a signaling protein at atomic resolution

    PubMed Central

    Pontiggia, F.; Pachov, D.V.; Clarkson, M.W.; Villali, J.; Hagan, M.F.; Pande, V.S.; Kern, D.

    2015-01-01

    The interconversion between inactive and active protein states, traditionally described by two static structures, is at the heart of signaling. However, how folded states interconvert is largely unknown due to the inability to experimentally observe transition pathways. Here we explore the free energy landscape of the bacterial response regulator NtrC by combining computation and NMR, and discover unexpected features underlying efficient signaling. We find that functional states are defined purely in kinetic and not structural terms. The need of a well-defined conformer, crucial to the active state, is absent in the inactive state, which comprises a heterogeneous collection of conformers. The transition between active and inactive states occurs through multiple pathways, facilitated by a number of nonnative transient hydrogen bonds, thus lowering the transition barrier through both entropic and enthalpic contributions. These findings may represent general features for functional conformational transitions within the folded state. PMID:26073309

  13. Advanced image fusion algorithms for Gamma Knife treatment planning. Evaluation and proposal for clinical use.

    PubMed

    Apostolou, N; Papazoglou, Th; Koutsouris, D

    2006-01-01

    Image fusion is a process of combining information from multiple sensors. It is a useful tool implemented in the treatment planning programme of Gamma Knife Radiosurgery. In this paper we evaluate advanced image fusion algorithms for Matlab platform and head images. We develop nine level grayscale image fusion methods: average, principal component analysis (PCA), discrete wavelet transform (DWT) and Laplacian, filter - subtract - decimate (FSD), contrast, gradient, morphological pyramid and a shift invariant discrete wavelet transform (SIDWT) method in Matlab platform. We test these methods qualitatively and quantitatively. The quantitative criteria we use are the Root Mean Square Error (RMSE), the Mutual Information (MI), the Standard Deviation (STD), the Entropy (H), the Difference Entropy (DH) and the Cross Entropy (CEN). The qualitative are: natural appearance, brilliance contrast, presence of complementary features and enhancement of common features. Finally we make clinically useful suggestions.

  14. Large-area, near-infrared (IR) photonic crystals with colloidal gold nanoparticles embedding.

    PubMed

    Shukla, Shobha; Baev, Alexander; Jee, Hongsub; Hu, Rui; Burzynski, Ryszard; Yoon, Yong-Kyu; Prasad, Paras N

    2010-04-01

    A polymeric composite material composed of colloidal gold nanoparticles (<10 nm) and SU8 has been utilized for the fabrication of large-area, high-definition photonic crystal. We have successfully fabricated near-infrared photonic crystal slabs from composite materials using a combination of multiple beam interference lithography and reactive ion etching processes. Doping of colloidal gold nanoparticles into the SU8 photopolymer results in a better definition of structural features and hence in the enhancement of the optical properties of the fabricated photonic crystals. A 2D air hole array of triangular symmetry with a hole-to-hole pitch of approximately 500 nm has been successfully fabricated in a large circular area of 1 cm diameter. Resonant features observed in reflectance spectra of our slabs are found to depend on the exposure time, and can be tuned over a range of near-infrared frequencies.

  15. From the primordial soup to self-driving cars: standards and their role in natural and technological innovation.

    PubMed

    Wagner, Andreas; Ortman, Scott; Maxfield, Robert

    2016-02-01

    Standards are specifications to which the elements of a technology must conform. Here, we apply this notion to the biochemical 'technologies' of nature, where objects like DNA and proteins, as well as processes like the regulation of gene activity are highly standardized. We introduce the concept of standards with multiple examples, ranging from the ancient genetic material RNA, to Palaeolithic stone axes, and digital electronics, and we discuss common ways in which standards emerge in nature and technology. We then focus on the question of how standards can facilitate technological and biological innovation. Innovation-enhancing standards include those of proteins and digital electronics. They share common features, such as that few standardized building blocks can be combined through standard interfaces to create myriad useful objects or processes. We argue that such features will also characterize the most innovation-enhancing standards of future technologies. © 2016 The Author(s).

  16. Global-constrained hidden Markov model applied on wireless capsule endoscopy video segmentation

    NASA Astrophysics Data System (ADS)

    Wan, Yiwen; Duraisamy, Prakash; Alam, Mohammad S.; Buckles, Bill

    2012-06-01

    Accurate analysis of wireless capsule endoscopy (WCE) videos is vital but tedious. Automatic image analysis can expedite this task. Video segmentation of WCE into the four parts of the gastrointestinal tract is one way to assist a physician. The segmentation approach described in this paper integrates pattern recognition with statiscal analysis. Iniatially, a support vector machine is applied to classify video frames into four classes using a combination of multiple color and texture features as the feature vector. A Poisson cumulative distribution, for which the parameter depends on the length of segments, models a prior knowledge. A priori knowledge together with inter-frame difference serves as the global constraints driven by the underlying observation of each WCE video, which is fitted by Gaussian distribution to constrain the transition probability of hidden Markov model.Experimental results demonstrated effectiveness of the approach.

  17. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  18. Effects of multiple congruent cues on concurrent sound segregation during passive and active listening: an event-related potential (ERP) study.

    PubMed

    Kocsis, Zsuzsanna; Winkler, István; Szalárdy, Orsolya; Bendixen, Alexandra

    2014-07-01

    In two experiments, we assessed the effects of combining different cues of concurrent sound segregation on the object-related negativity (ORN) and the P400 event-related potential components. Participants were presented with sequences of complex tones, half of which contained some manipulation: one or two harmonic partials were mistuned, delayed, or presented from a different location than the rest. In separate conditions, one, two, or three of these manipulations were combined. Participants watched a silent movie (passive listening) or reported after each tone whether they perceived one or two concurrent sounds (active listening). ORN was found in almost all conditions except for location difference alone during passive listening. Combining several cues or manipulating more than one partial consistently led to sub-additive effects on the ORN amplitude. These results support the view that ORN reflects a combined, feature-unspecific assessment of the auditory system regarding the contribution of two sources to the incoming sound. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Geological and Structural Patterns on Titan Enhanced Through Cassini's SAR PCA and High-Resolution Radiometry

    NASA Astrophysics Data System (ADS)

    Paganelli, F.; Schubert, G.; Lopes, R. M. C.; Malaska, M.; Le Gall, A. A.; Kirk, R. L.

    2016-12-01

    The current SAR data coverage on Titan encompasses several areas in which multiple radar passes are present and overlapping, providing additional information to aid the interpretation of geological and structural features. We exploit the different combinations of look direction and variable incidence angle to examine Cassini Synthetic Aperture RADAR (SAR) data using the Principal Component Analysis (PCA) technique and high-resolution radiometry, as a tool to aid in the interpretation of geological and structural features. Look direction and variable incidence angle is of particular importance in the analysis of variance in the images, which aid in the perception and identification of geological and structural features, as extensively demonstrated in Earth and planetary examples. The PCA enhancement technique uses projected non-ortho-rectified SAR imagery in order to maintain the inherent differences in scattering and geometric properties due to the different look directions, while enhancing the geometry of surface features. The PC2 component provides a stereo view of the areas in which complex surface features and structural patterns can be enhanced and outlined. We focus on several areas of interest, in older and recently acquired flybys, in which evidence of geological and structural features can be enhanced and outlined in the PC1 and PC2 components. Results of this technique provide enhanced geometry and insights into the interpretation of the observed geological and structural features, thus allowing a better understanding towards the geology and tectonics on Titan.

  20. Molecular brain imaging in the multimodality era

    PubMed Central

    Price, Julie C

    2012-01-01

    Multimodality molecular brain imaging encompasses in vivo visualization, evaluation, and measurement of cellular/molecular processes. Instrumentation and software developments over the past 30 years have fueled advancements in multimodality imaging platforms that enable acquisition of multiple complementary imaging outcomes by either combined sequential or simultaneous acquisition. This article provides a general overview of multimodality neuroimaging in the context of positron emission tomography as a molecular imaging tool and magnetic resonance imaging as a structural and functional imaging tool. Several image examples are provided and general challenges are discussed to exemplify complementary features of the modalities, as well as important strengths and weaknesses of combined assessments. Alzheimer's disease is highlighted, as this clinical area has been strongly impacted by multimodality neuroimaging findings that have improved understanding of the natural history of disease progression, early disease detection, and informed therapy evaluation. PMID:22434068

  1. Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Zhang, Daoqiang; Wang, Yaping; Zhou, Luping; Yuan, Hong; Shen, Dinggang

    2011-01-01

    Effective and accurate diagnosis of Alzheimer’s disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attentions recently. So far, multiple biomarkers have been shown sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers. PMID:21236349

  2. A statistical approach to combining multisource information in one-class classifiers

    DOE PAGES

    Simonson, Katherine M.; Derek West, R.; Hansen, Ross L.; ...

    2017-06-08

    A new method is introduced in this paper for combining information from multiple sources to support one-class classification. The contributing sources may represent measurements taken by different sensors of the same physical entity, repeated measurements by a single sensor, or numerous features computed from a single measured image or signal. The approach utilizes the theory of statistical hypothesis testing, and applies Fisher's technique for combining p-values, modified to handle nonindependent sources. Classifier outputs take the form of fused p-values, which may be used to gauge the consistency of unknown entities with one or more class hypotheses. The approach enables rigorousmore » assessment of classification uncertainties, and allows for traceability of classifier decisions back to the constituent sources, both of which are important for high-consequence decision support. Application of the technique is illustrated in two challenge problems, one for skin segmentation and the other for terrain labeling. Finally, the method is seen to be particularly effective for relatively small training samples.« less

  3. A statistical approach to combining multisource information in one-class classifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonson, Katherine M.; Derek West, R.; Hansen, Ross L.

    A new method is introduced in this paper for combining information from multiple sources to support one-class classification. The contributing sources may represent measurements taken by different sensors of the same physical entity, repeated measurements by a single sensor, or numerous features computed from a single measured image or signal. The approach utilizes the theory of statistical hypothesis testing, and applies Fisher's technique for combining p-values, modified to handle nonindependent sources. Classifier outputs take the form of fused p-values, which may be used to gauge the consistency of unknown entities with one or more class hypotheses. The approach enables rigorousmore » assessment of classification uncertainties, and allows for traceability of classifier decisions back to the constituent sources, both of which are important for high-consequence decision support. Application of the technique is illustrated in two challenge problems, one for skin segmentation and the other for terrain labeling. Finally, the method is seen to be particularly effective for relatively small training samples.« less

  4. Boost OCR accuracy using iVector based system combination approach

    NASA Astrophysics Data System (ADS)

    Peng, Xujun; Cao, Huaigu; Natarajan, Prem

    2015-01-01

    Optical character recognition (OCR) is a challenging task because most existing preprocessing approaches are sensitive to writing style, writing material, noises and image resolution. Thus, a single recognition system cannot address all factors of real document images. In this paper, we describe an approach to combine diverse recognition systems by using iVector based features, which is a newly developed method in the field of speaker verification. Prior to system combination, document images are preprocessed and text line images are extracted with different approaches for each system, where iVector is transformed from a high-dimensional supervector of each text line and is used to predict the accuracy of OCR. We merge hypotheses from multiple recognition systems according to the overlap ratio and the predicted OCR score of text line images. We present evaluation results on an Arabic document database where the proposed method is compared against the single best OCR system using word error rate (WER) metric.

  5. The Simultaneous Combination of Phase Contrast Imaging with In Situ X-ray diffraction from Shock Compressed Matter

    NASA Astrophysics Data System (ADS)

    McBride, Emma Elizabeth; Seiboth, Frank; Cooper, Leora; Frost, Mungo; Goede, Sebastian; Harmand, Marion; Levitan, Abe; McGonegle, David; Miyanishi, Kohei; Ozaki, Norimasa; Roedel, Melanie; Sun, Peihao; Wark, Justin; Hastings, Jerry; Glenzer, Siegfried; Fletcher, Luke

    2017-10-01

    Here, we present the simultaneous combination of phase contrast imaging (PCI) techniques with in situ X-ray diffraction to investigate multiple-wave features in laser-driven shock-compressed germanium. Experiments were conducted at the Matter at Extreme Conditions end station at the LCLS, and measurements were made perpendicular to the shock propagation direction. PCI allows one to take femtosecond snapshots of magnified real-space images of shock waves as they progress though matter. X-ray diffraction perpendicular to the shock propagation direction provides the opportunity to isolate and identify different waves and determine the crystal structure unambiguously. Here, we combine these two powerful techniques simultaneously, by using the same Be lens setup to focus the fundamental beam at 8.2 keV to a size of 1.5 mm on target for PCI and the 3rd harmonic at 24.6 keV to a spot size of 2 um on target for diffraction.

  6. Fixed-Base Comb with Window-Non-Adjacent Form (NAF) Method for Scalar Multiplication

    PubMed Central

    Seo, Hwajeong; Kim, Hyunjin; Park, Taehwan; Lee, Yeoncheol; Liu, Zhe; Kim, Howon

    2013-01-01

    Elliptic curve cryptography (ECC) is one of the most promising public-key techniques in terms of short key size and various crypto protocols. For this reason, many studies on the implementation of ECC on resource-constrained devices within a practical execution time have been conducted. To this end, we must focus on scalar multiplication, which is the most expensive operation in ECC. A number of studies have proposed pre-computation and advanced scalar multiplication using a non-adjacent form (NAF) representation, and more sophisticated approaches have employed a width-w NAF representation and a modified pre-computation table. In this paper, we propose a new pre-computation method in which zero occurrences are much more frequent than in previous methods. This method can be applied to ordinary group scalar multiplication, but it requires large pre-computation table, so we combined the previous method with ours for practical purposes. This novel structure establishes a new feature that adjusts speed performance and table size finely, so we can customize the pre-computation table for our own purposes. Finally, we can establish a customized look-up table for embedded microprocessors. PMID:23881143

  7. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification.

    PubMed

    Zhou, Tao; Li, Zhaofu; Pan, Jianjun

    2018-01-27

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.

  8. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.

    PubMed

    Sarker, Abeed; Gonzalez, Graciela

    2015-02-01

    Automatic detection of adverse drug reaction (ADR) mentions from text has recently received significant interest in pharmacovigilance research. Current research focuses on various sources of text-based information, including social media-where enormous amounts of user posted data is available, which have the potential for use in pharmacovigilance if collected and filtered accurately. The aims of this study are: (i) to explore natural language processing (NLP) approaches for generating useful features from text, and utilizing them in optimized machine learning algorithms for automatic classification of ADR assertive text segments; (ii) to present two data sets that we prepared for the task of ADR detection from user posted internet data; and (iii) to investigate if combining training data from distinct corpora can improve automatic classification accuracies. One of our three data sets contains annotated sentences from clinical reports, and the two other data sets, built in-house, consist of annotated posts from social media. Our text classification approach relies on generating a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets. Importantly, using our expanded feature sets, we combine training data from different corpora in attempts to boost classification accuracies. Our feature-rich classification approach performs significantly better than previously published approaches with ADR class F-scores of 0.812 (previously reported best: 0.770), 0.538 and 0.678 for the three data sets. Combining training data from multiple compatible corpora further improves the ADR F-scores for the in-house data sets to 0.597 (improvement of 5.9 units) and 0.704 (improvement of 2.6 units) respectively. Our research results indicate that using advanced NLP techniques for generating information rich features from text can significantly improve classification accuracies over existing benchmarks. Our experiments illustrate the benefits of incorporating various semantic features such as topics, concepts, sentiments, and polarities. Finally, we show that integration of information from compatible corpora can significantly improve classification performance. This form of multi-corpus training may be particularly useful in cases where data sets are heavily imbalanced (e.g., social media data), and may reduce the time and costs associated with the annotation of data in the future. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Portable Automatic Text Classification for Adverse Drug Reaction Detection via Multi-corpus Training

    PubMed Central

    Gonzalez, Graciela

    2014-01-01

    Objective Automatic detection of Adverse Drug Reaction (ADR) mentions from text has recently received significant interest in pharmacovigilance research. Current research focuses on various sources of text-based information, including social media — where enormous amounts of user posted data is available, which have the potential for use in pharmacovigilance if collected and filtered accurately. The aims of this study are: (i) to explore natural language processing approaches for generating useful features from text, and utilizing them in optimized machine learning algorithms for automatic classification of ADR assertive text segments; (ii) to present two data sets that we prepared for the task of ADR detection from user posted internet data; and (iii) to investigate if combining training data from distinct corpora can improve automatic classification accuracies. Methods One of our three data sets contains annotated sentences from clinical reports, and the two other data sets, built in-house, consist of annotated posts from social media. Our text classification approach relies on generating a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets. Importantly, using our expanded feature sets, we combine training data from different corpora in attempts to boost classification accuracies. Results Our feature-rich classification approach performs significantly better than previously published approaches with ADR class F-scores of 0.812 (previously reported best: 0.770), 0.538 and 0.678 for the three data sets. Combining training data from multiple compatible corpora further improves the ADR F-scores for the in-house data sets to 0.597 (improvement of 5.9 units) and 0.704 (improvement of 2.6 units) respectively. Conclusions Our research results indicate that using advanced NLP techniques for generating information rich features from text can significantly improve classification accuracies over existing benchmarks. Our experiments illustrate the benefits of incorporating various semantic features such as topics, concepts, sentiments, and polarities. Finally, we show that integration of information from compatible corpora can significantly improve classification performance. This form of multi-corpus training may be particularly useful in cases where data sets are heavily imbalanced (e.g., social media data), and may reduce the time and costs associated with the annotation of data in the future. PMID:25451103

  10. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.

    PubMed

    Gao, Lei; Bourke, A K; Nelson, John

    2014-06-01

    Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach

    NASA Astrophysics Data System (ADS)

    Asr, Mahsa Yazdanian; Ettefagh, Mir Mohammad; Hassannejad, Reza; Razavi, Seyed Naser

    2017-02-01

    When combined faults happen in different parts of the rotating machines, their features are profoundly dependent. Experts are completely familiar with individuals faults characteristics and enough data are available from single faults but the problem arises, when the faults combined and the separation of characteristics becomes complex. Therefore, the experts cannot declare exact information about the symptoms of combined fault and its quality. In this paper to overcome this drawback, a novel method is proposed. The core idea of the method is about declaring combined fault without using combined fault features as training data set and just individual fault features are applied in training step. For this purpose, after data acquisition and resampling the obtained vibration signals, Empirical Mode Decomposition (EMD) is utilized to decompose multi component signals to Intrinsic Mode Functions (IMFs). With the use of correlation coefficient, proper IMFs for feature extraction are selected. In feature extraction step, Shannon energy entropy of IMFs was extracted as well as statistical features. It is obvious that most of extracted features are strongly dependent. To consider this matter, Non-Naive Bayesian Classifier (NNBC) is appointed, which release the fundamental assumption of Naive Bayesian, i.e., the independence among features. To demonstrate the superiority of NNBC, other counterpart methods, include Normal Naive Bayesian classifier, Kernel Naive Bayesian classifier and Back Propagation Neural Networks were applied and the classification results are compared. An experimental vibration signals, collected from automobile gearbox, were used to verify the effectiveness of the proposed method. During the classification process, only the features, related individually to healthy state, bearing failure and gear failures, were assigned for training the classifier. But, combined fault features (combined gear and bearing failures) were examined as test data. The achieved probabilities for the test data show that the combined fault can be identified with high success rate.

  13. Style-based classification of Chinese ink and wash paintings

    NASA Astrophysics Data System (ADS)

    Sheng, Jiachuan; Jiang, Jianmin

    2013-09-01

    Following the fact that a large collection of ink and wash paintings (IWP) is being digitized and made available on the Internet, their automated content description, analysis, and management are attracting attention across research communities. While existing research in relevant areas is primarily focused on image processing approaches, a style-based algorithm is proposed to classify IWPs automatically by their authors. As IWPs do not have colors or even tones, the proposed algorithm applies edge detection to locate the local region and detect painting strokes to enable histogram-based feature extraction and capture of important cues to reflect the styles of different artists. Such features are then applied to drive a number of neural networks in parallel to complete the classification, and an information entropy balanced fusion is proposed to make an integrated decision for the multiple neural network classification results in which the entropy is used as a pointer to combine the global and local features. Evaluations via experiments support that the proposed algorithm achieves good performances, providing excellent potential for computerized analysis and management of IWPs.

  14. Expanding the phenotype of alopecia-contractures-dwarfism mental retardation syndrome (ACD syndrome): description of an additional case and review of the literature.

    PubMed

    Schell-Apacik, Chayim; Hardt, Michael; Ertl-Wagner, Birgit; Klopocki, Eva; Möhrenschlager, Matthias; Heinrich, Uwe; von Voss, Hubertus

    2008-09-01

    Alopecia-contractures-dwarfism mental retardation syndrome (ACD syndrome; OMIM 203550) is a very rare genetic disorder with distinct features. To our knowledge, there have been four cases documented to date. In addition, another three patients, previously described as having IFAP syndrome (OMIM %308205), may also have ACD syndrome. We report on one patient with short stature, total alopecia, ichthyosis, photophobia, seizures, ectrodactyly, vertebral anomalies, scoliosis, multiple contractures, mental retardation, and striking facial and other features (e.g. microdolichocephaly, missing eyebrows and eyelashes, long nose, large ears) consistent with ACD syndrome. Results of laboratory testing in the literature case reports were normal, although in none of them, array-CGH (microarray-based comparative genomic hybridization) analysis was performed. In conclusion, the combination of specific features, including total alopecia, ichthyosis, mental retardation, and skeletal anomalies are suggestive of ACD syndrome. We propose that children with this syndrome undergo a certain social pediatric protocol including EEG diagnostics, ophthalmological investigation, psychological testing, management of dermatologic and orthopedic problems, and genetic counseling.

  15. Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification.

    PubMed

    Yi, Chucai; Tian, Yingli

    2012-09-01

    In this paper, we propose a novel framework to extract text regions from scene images with complex backgrounds and multiple text appearances. This framework consists of three main steps: boundary clustering (BC), stroke segmentation, and string fragment classification. In BC, we propose a new bigram-color-uniformity-based method to model both text and attachment surface, and cluster edge pixels based on color pairs and spatial positions into boundary layers. Then, stroke segmentation is performed at each boundary layer by color assignment to extract character candidates. We propose two algorithms to combine the structural analysis of text stroke with color assignment and filter out background interferences. Further, we design a robust string fragment classification based on Gabor-based text features. The features are obtained from feature maps of gradient, stroke distribution, and stroke width. The proposed framework of text localization is evaluated on scene images, born-digital images, broadcast video images, and images of handheld objects captured by blind persons. Experimental results on respective datasets demonstrate that the framework outperforms state-of-the-art localization algorithms.

  16. Integration of co-localized glandular morphometry and protein biomarker expression in immunofluorescent images for prostate cancer prognosis

    NASA Astrophysics Data System (ADS)

    Scott, Richard; Khan, Faisal M.; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo

    2015-03-01

    Immunofluorescent (IF) image analysis of tissue pathology has proven to be extremely valuable and robust in developing prognostic assessments of disease, particularly in prostate cancer. There have been significant advances in the literature in quantitative biomarker expression as well as characterization of glandular architectures in discrete gland rings. However, while biomarker and glandular morphometric features have been combined as separate predictors in multivariate models, there is a lack of integrative features for biomarkers co-localized within specific morphological sub-types; for example the evaluation of androgen receptor (AR) expression within Gleason 3 glands only. In this work we propose a novel framework employing multiple techniques to generate integrated metrics of morphology and biomarker expression. We demonstrate the utility of the approaches in predicting clinical disease progression in images from 326 prostate biopsies and 373 prostatectomies. Our proposed integrative approaches yield significant improvements over existing IF image feature metrics. This work presents some of the first algorithms for generating innovative characteristics in tissue diagnostics that integrate co-localized morphometry and protein biomarker expression.

  17. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification

    PubMed Central

    Yang, Xinyi

    2016-01-01

    In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM), which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods. PMID:27610128

  18. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification.

    PubMed

    Pang, Shan; Yang, Xinyi

    2016-01-01

    In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM), which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods.

  19. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  20. Multiple feature extraction by using simultaneous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio

    2003-07-01

    We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.

  1. Ethnographic model of acoustic use of space in the southern Andes for an archaeo-musicological investigation

    NASA Astrophysics Data System (ADS)

    Perez de Arce, Jose

    2002-11-01

    Studies of ritual celebrations in central Chile conducted in the past 15 years show that the spatial component of sound is a crucial component of the whole. The sonic compositions of these rituals generate complex musical structures that the author has termed ''multi-orchestral polyphonies.'' Their origins have been documented from archaeological remains in a vast region of southern Andes (southern Peru, Bolivia, northern Argentina, north-central Chile). It consists of a combination of dance, space walk-through, spatial extension, multiple movements between listener and orchestra, and multiple relations between ritual and ambient sounds. The characteristics of these observables reveal a complex schematic relation between space and sound. This schema can be used as a valid hypothesis for the study of pre-Hispanic uses of acoustic ritual space. The acoustic features observed in this study are common in Andean ritual and, to some extent are seen in Mesoamerica as well.

  2. Scalable Lunar Surface Networks and Adaptive Orbit Access

    NASA Technical Reports Server (NTRS)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  3. Method to assess the temporal persistence of potential biometric features: Application to oculomotor, gait, face and brain structure databases

    PubMed Central

    Nixon, Mark S.; Komogortsev, Oleg V.

    2017-01-01

    We introduce the intraclass correlation coefficient (ICC) to the biometric community as an index of the temporal persistence, or stability, of a single biometric feature. It requires, as input, a feature on an interval or ratio scale, and which is reasonably normally distributed, and it can only be calculated if each subject is tested on 2 or more occasions. For a biometric system, with multiple features available for selection, the ICC can be used to measure the relative stability of each feature. We show, for 14 distinct data sets (1 synthetic, 8 eye-movement-related, 2 gait-related, and 2 face-recognition-related, and one brain-structure-related), that selecting the most stable features, based on the ICC, resulted in the best biometric performance generally. Analyses based on using only the most stable features produced superior Rank-1-Identification Rate (Rank-1-IR) performance in 12 of 14 databases (p = 0.0065, one-tailed), when compared to other sets of features, including the set of all features. For Equal Error Rate (EER), using a subset of only high-ICC features also produced superior performance in 12 of 14 databases (p = 0. 0065, one-tailed). In general, then, for our databases, prescreening potential biometric features, and choosing only highly reliable features yields better performance than choosing lower ICC features or than choosing all features combined. We also determined that, as the ICC of a group of features increases, the median of the genuine similarity score distribution increases and the spread of this distribution decreases. There was no statistically significant similar relationships for the impostor distributions. We believe that the ICC will find many uses in biometric research. In case of the eye movement-driven biometrics, the use of reliable features, as measured by ICC, allowed to us achieve the authentication performance with EER = 2.01%, which was not possible before. PMID:28575030

  4. Method to assess the temporal persistence of potential biometric features: Application to oculomotor, gait, face and brain structure databases.

    PubMed

    Friedman, Lee; Nixon, Mark S; Komogortsev, Oleg V

    2017-01-01

    We introduce the intraclass correlation coefficient (ICC) to the biometric community as an index of the temporal persistence, or stability, of a single biometric feature. It requires, as input, a feature on an interval or ratio scale, and which is reasonably normally distributed, and it can only be calculated if each subject is tested on 2 or more occasions. For a biometric system, with multiple features available for selection, the ICC can be used to measure the relative stability of each feature. We show, for 14 distinct data sets (1 synthetic, 8 eye-movement-related, 2 gait-related, and 2 face-recognition-related, and one brain-structure-related), that selecting the most stable features, based on the ICC, resulted in the best biometric performance generally. Analyses based on using only the most stable features produced superior Rank-1-Identification Rate (Rank-1-IR) performance in 12 of 14 databases (p = 0.0065, one-tailed), when compared to other sets of features, including the set of all features. For Equal Error Rate (EER), using a subset of only high-ICC features also produced superior performance in 12 of 14 databases (p = 0. 0065, one-tailed). In general, then, for our databases, prescreening potential biometric features, and choosing only highly reliable features yields better performance than choosing lower ICC features or than choosing all features combined. We also determined that, as the ICC of a group of features increases, the median of the genuine similarity score distribution increases and the spread of this distribution decreases. There was no statistically significant similar relationships for the impostor distributions. We believe that the ICC will find many uses in biometric research. In case of the eye movement-driven biometrics, the use of reliable features, as measured by ICC, allowed to us achieve the authentication performance with EER = 2.01%, which was not possible before.

  5. Identification of type 2 diabetes-associated combination of SNPs using support vector machine.

    PubMed

    Ban, Hyo-Jeong; Heo, Jee Yeon; Oh, Kyung-Soo; Park, Keun-Joon

    2010-04-23

    Type 2 diabetes mellitus (T2D), a metabolic disorder characterized by insulin resistance and relative insulin deficiency, is a complex disease of major public health importance. Its incidence is rapidly increasing in the developed countries. Complex diseases are caused by interactions between multiple genes and environmental factors. Most association studies aim to identify individual susceptibility single markers using a simple disease model. Recent studies are trying to estimate the effects of multiple genes and multi-locus in genome-wide association. However, estimating the effects of association is very difficult. We aim to assess the rules for classifying diseased and normal subjects by evaluating potential gene-gene interactions in the same or distinct biological pathways. We analyzed the importance of gene-gene interactions in T2D susceptibility by investigating 408 single nucleotide polymorphisms (SNPs) in 87 genes involved in major T2D-related pathways in 462 T2D patients and 456 healthy controls from the Korean cohort studies. We evaluated the support vector machine (SVM) method to differentiate between cases and controls using SNP information in a 10-fold cross-validation test. We achieved a 65.3% prediction rate with a combination of 14 SNPs in 12 genes by using the radial basis function (RBF)-kernel SVM. Similarly, we investigated subpopulation data sets of men and women and identified different SNP combinations with the prediction rates of 70.9% and 70.6%, respectively. As the high-throughput technology for genome-wide SNPs improves, it is likely that a much higher prediction rate with biologically more interesting combination of SNPs can be acquired by using this method. Support Vector Machine based feature selection method in this research found novel association between combinations of SNPs and T2D in a Korean population.

  6. DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity

    PubMed Central

    Anchang, Benedict; Davis, Kara L.; Fienberg, Harris G.; Bendall, Sean C.; Karacosta, Loukia G.; Tibshirani, Robert; Nolan, Garry P.; Plevritis, Sylvia K.

    2018-01-01

    An individual malignant tumor is composed of a heterogeneous collection of single cells with distinct molecular and phenotypic features, a phenomenon termed intratumoral heterogeneity. Intratumoral heterogeneity poses challenges for cancer treatment, motivating the need for combination therapies. Single-cell technologies are now available to guide effective drug combinations by accounting for intratumoral heterogeneity through the analysis of the signaling perturbations of an individual tumor sample screened by a drug panel. In particular, Mass Cytometry Time-of-Flight (CyTOF) is a high-throughput single-cell technology that enables the simultaneous measurements of multiple (>40) intracellular and surface markers at the level of single cells for hundreds of thousands of cells in a sample. We developed a computational framework, entitled Drug Nested Effects Models (DRUG-NEM), to analyze CyTOF single-drug perturbation data for the purpose of individualizing drug combinations. DRUG-NEM optimizes drug combinations by choosing the minimum number of drugs that produce the maximal desired intracellular effects based on nested effects modeling. We demonstrate the performance of DRUG-NEM using single-cell drug perturbation data from tumor cell lines and primary leukemia samples. PMID:29654148

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from bothmore » tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.« less

  8. Population differences in dysmorphic features among children with fetal alcohol spectrum disorders.

    PubMed

    May, Philip A; Gossage, J Phillip; Smith, Matthew; Tabachnick, Barbara G; Robinson, Luther K; Manning, Melanie; Cecanti, Mauro; Jones, Kenneth Lyons; Khaole, Nathaniel; Buckley, David; Kalberg, Wendy O; Trujillo, Phyllis M; Hoyme, H Eugene

    2010-05-01

    To examine the variation in significant dysmorphic features in children from 3 different populations with the most dysmorphic forms of fetal alcohol spectrum disorders, fetal alcohol syndrome (FAS), and partial fetal alcohol syndrome (PFAS). Advanced multiple regression techniques are used to determine the discriminating physical features in the diagnosis of FAS and PFAS among children from Northern Plains Indian communities, South Africa, and Italy. Within the range of physical features used to identify children with fetal alcohol spectrum disorders, specifically FAS and PFAS, there is some significant variation in salient diagnostic features from one population to the next. Intraclass correlations in diagnostic features between these 3 populations is 0.20, indicating that about 20% of the variability in dysmorphology core features is associated with location and, therefore, specific racial/ethnic population. The highly significant diagnostic indicators present in each population are identified for the full samples of FAS, PFAS, and normals and also among children with FAS only. A multilevel model for these populations combined indicates that these variables predict dysmorphology unambiguously: small palpebral fissures, narrow vermillion, smooth philtrum, flat nasal bridge, and fifth finger clinodactyly. Long philtrum varies substantially as a predictor in the 3 populations. Predictors not significantly related to fetal alcohol spectrum disorders dysmorphology across the 3 populations are centile of height (except in Italy) strabismus, interpupilary distance, intercanthal distance, and heart murmurs. The dysmorphology associated with FAS and PFAS vary across populations, yet a particular array of common features occurs in each population, which permits a consistent diagnosis across populations.

  9. The control of attentional target selection in a colour/colour conjunction task.

    PubMed

    Berggren, Nick; Eimer, Martin

    2016-11-01

    To investigate the time course of attentional object selection processes in visual search tasks where targets are defined by a combination of features from the same dimension, we measured the N2pc component as an electrophysiological marker of attentional object selection during colour/colour conjunction search. In Experiment 1, participants searched for targets defined by a combination of two colours, while ignoring distractor objects that matched only one of these colours. Reliable N2pc components were triggered by targets and also by partially matching distractors, even when these distractors were accompanied by a target in the same display. The target N2pc was initially equal in size to the sum of the two N2pc components to the two different types of partially matching distractors and became superadditive from approximately 250 ms after search display onset. Experiment 2 demonstrated that the superadditivity of the target N2pc was not due to a selective disengagement of attention from task-irrelevant partially matching distractors. These results indicate that attention was initially deployed separately and in parallel to all target-matching colours, before attentional allocation processes became sensitive to the presence of both matching colours within the same object. They suggest that attention can be controlled simultaneously and independently by multiple features from the same dimension and that feature-guided attentional selection processes operate in parallel for different target-matching objects in the visual field.

  10. The Characterization of GSDMB Splicing and Backsplicing Profiles Identifies Novel Isoforms and a Circular RNA That Are Dysregulated in Multiple Sclerosis.

    PubMed

    Cardamone, Giulia; Paraboschi, Elvezia Maria; Rimoldi, Valeria; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna

    2017-03-07

    Abnormalities in alternative splicing (AS) are emerging as recurrent features in autoimmune diseases (AIDs). In particular, a growing body of evidence suggests the existence of a pathogenic association between a generalized defect in splicing regulatory genes and multiple sclerosis (MS). Moreover, several studies have documented an unbalance in alternatively-spliced isoforms in MS patients possibly contributing to the disease etiology. In this work, using a combination of PCR-based techniques (reverse-transcription (RT)-PCR, fluorescent-competitive, real-time, and digital RT-PCR assays), we investigated the alternatively-spliced gene encoding Gasdermin B, GSDMB , which was repeatedly associated with susceptibility to asthma and AIDs. The in-depth characterization of GSDMB AS and backsplicing profiles led us to the identification of an exonic circular RNA (ecircRNA) as well as of novel GSDMB in-frame and out-of-frame isoforms. The non-productive splicing variants were shown to be downregulated by the nonsense-mediated mRNA decay (NMD) in human cell lines, suggesting that GSDMB levels are significantly modulated by NMD. Importantly, both AS isoforms and the identified ecircRNA were significantly dysregulated in peripheral blood mononuclear cells of relapsing-remitting MS patients compared to controls, further supporting the notion that aberrant RNA metabolism is a characteristic feature of the disease.

  11. B-CAN: a resource sharing platform to improve the operation, visualization and integrated analysis of TCGA breast cancer data.

    PubMed

    Wen, Can-Hong; Ou, Shao-Min; Guo, Xiao-Bo; Liu, Chen-Feng; Shen, Yan-Bo; You, Na; Cai, Wei-Hong; Shen, Wen-Jun; Wang, Xue-Qin; Tan, Hai-Zhu

    2017-12-12

    Breast cancer is a high-risk heterogeneous disease with myriad subtypes and complicated biological features. The Cancer Genome Atlas (TCGA) breast cancer database provides researchers with the large-scale genome and clinical data via web portals and FTP services. Researchers are able to gain new insights into their related fields, and evaluate experimental discoveries with TCGA. However, it is difficult for researchers who have little experience with database and bioinformatics to access and operate on because of TCGA's complex data format and diverse files. For ease of use, we build the breast cancer (B-CAN) platform, which enables data customization, data visualization, and private data center. The B-CAN platform runs on Apache server and interacts with the backstage of MySQL database by PHP. Users can customize data based on their needs by combining tables from original TCGA database and selecting variables from each table. The private data center is applicable for private data and two types of customized data. A key feature of the B-CAN is that it provides single table display and multiple table display. Customized data with one barcode corresponding to many records and processed customized data are allowed in Multiple Tables Display. The B-CAN is an intuitive and high-efficient data-sharing platform.

  12. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    NASA Astrophysics Data System (ADS)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  13. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

    PubMed Central

    Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  14. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology[OPEN

    PubMed Central

    Waese, Jamie; Fan, Jim; Yu, Hans; Fucile, Geoffrey; Shi, Ruian; Cumming, Matthew; Town, Chris; Stuerzlinger, Wolfgang

    2017-01-01

    A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an “app” on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research. PMID:28808136

  15. PACOM: A Versatile Tool for Integrating, Filtering, Visualizing, and Comparing Multiple Large Mass Spectrometry Proteomics Data Sets.

    PubMed

    Martínez-Bartolomé, Salvador; Medina-Aunon, J Alberto; López-García, Miguel Ángel; González-Tejedo, Carmen; Prieto, Gorka; Navajas, Rosana; Salazar-Donate, Emilio; Fernández-Costa, Carolina; Yates, John R; Albar, Juan Pablo

    2018-04-06

    Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .

  16. Multiple Group Membership and Well-Being: Is There Always Strength in Numbers?

    PubMed Central

    Sønderlund, Anders L.; Morton, Thomas A.; Ryan, Michelle K.

    2017-01-01

    A growing body of research points to the value of multiple group memberships for individual well-being. However, much of this work considers group memberships very broadly and in terms of number alone. We conducted two correlational studies exploring how the relationship between multiple group membership and well-being is shaped by (a) the complexity of those groups within the overall self-concept (i.e., social identity complexity: SIC), and (b) the perceived value and visibility of individual group memberships to others (i.e., stigma). Study 1 (N = 112) found a positive relationship between multiple group membership and well-being, but only for individuals high in SIC. This effect was mediated by perceived identity expression and access to social support. Study 2 (N = 104) also found that multiple group memberships indirectly contributed to well-being via perceived identity expression and social support, as well as identity compatibility and perceived social inclusion. But, in this study the relationship between multiple group memberships and well-being outcomes was moderated by the perceived value and visibility of group memberships to others. Specifically, possessing multiple, devalued and visible group memberships compromised well-being relative to multiple valued group memberships, or devalued group memberships that were invisible. Together, these studies suggest that the benefits of multiple group membership depend on factors beyond their number. Specifically, the features of group memberships, individually and in combination, and the way in which these guide self-expression and social action, determine whether these are a benefit or burden for individual well-being. PMID:28680414

  17. Simultaneous antegrade/retrograde upper urinary tract access: Bart's modified lateral position for complex upper tract endourologic pathologic features.

    PubMed

    Moraitis, Konstantinos; Philippou, Prodromos; El-Husseiny, Tamer; Wazait, Hassan; Masood, Junaid; Buchholz, Noor

    2012-02-01

    To determine whether the Bart's modified lateral position is safe and effective for achieving simultaneous anterograde and retrograde access in complex upper urinary tract pathologic features. From November 2006 to September 2010, 45 procedures were performed, with the patients in the modified lateral position. The indication for these procedures was the presence of complex unilateral upper urinary tract pathologic features. The patients with muscular and/or skeletal abnormalities were excluded. All procedures were performed using simultaneous anterograde and retrograde access with the patient under general anesthesia. The preoperative investigation protocol included assessment of the stone burden and location using enhanced abdominal computed tomography. The patients were routinely examined 6 weeks after the procedure with a combination of plain abdominal radiography and renal ultrasonography. For patients treated for conditions causing upper urinary tract obstruction (pelviureteral junction obstruction and/or ureteral strictures), a mercaptoacetyltriglycine renography was performed at 4, 12, and 24 months postoperatively. The mean patient age was 51.2 years (range 17-79). Stone clearance was achieved by a single combined procedure in 36 patients (80%). Successful recanalization was achieved in all patients with pelviureteral junction obstruction and ureteral strictures. In 4 patients (8.8%), persistent hematuria was noted, and 2 patients (4.4%) developed postoperative urinary sepsis and were treated conservatively. Modification to the lateral position compares equally with contemporary percutaneous nephrolithotomy series. It provides wide exposure of the flank, allowing the choice of multiple access sites, enhanced control, and a wide angle for handling of the antegrade instruments. Two surgeons can work simultaneously, addressing complex endourologic pathologic features in high-risk patients. Copyright © 2012. Published by Elsevier Inc.

  18. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  19. Detection of anomalies in radio tomography of asteroids: Source count and forward errors

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Kaasalainen, M.

    2014-09-01

    The purpose of this study was to advance numerical methods for radio tomography in which asteroid's internal electric permittivity distribution is to be recovered from radio frequency data gathered by an orbiter. The focus was on signal generation via multiple sources (transponders) providing one potential, or even essential, scenario to be implemented in a challenging in situ measurement environment and within tight payload limits. As a novel feature, the effects of forward errors including noise and a priori uncertainty of the forward (data) simulation were examined through a combination of the iterative alternating sequential (IAS) inverse algorithm and finite-difference time-domain (FDTD) simulation of time evolution data. Single and multiple source scenarios were compared in two-dimensional localization of permittivity anomalies. Three different anomaly strengths and four levels of total noise were tested. Results suggest, among other things, that multiple sources can be necessary to obtain appropriate results, for example, to distinguish three separate anomalies with permittivity less or equal than half of the background value, relevant in recovery of internal cavities.

  20. Testing Product Generation in Software Product Lines Using Pairwise for Features Coverage

    NASA Astrophysics Data System (ADS)

    Pérez Lamancha, Beatriz; Polo Usaola, Macario

    A Software Product Lines (SPL) is "a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way". Variability is a central concept that permits the generation of different products of the family by reusing core assets. It is captured through features which, for a SPL, define its scope. Features are represented in a feature model, which is later used to generate the products from the line. From the testing point of view, testing all the possible combinations in feature models is not practical because: (1) the number of possible combinations (i.e., combinations of features for composing products) may be untreatable, and (2) some combinations may contain incompatible features. Thus, this paper resolves the problem by the implementation of combinatorial testing techniques adapted to the SPL context.

  1. Feature level fusion of hand and face biometrics

    NASA Astrophysics Data System (ADS)

    Ross, Arun A.; Govindarajan, Rohin

    2005-03-01

    Multibiometric systems utilize the evidence presented by multiple biometric sources (e.g., face and fingerprint, multiple fingers of a user, multiple matchers, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in several distinct levels, including the feature extraction level, match score level and decision level. While fusion at the match score and decision levels have been extensively studied in the literature, fusion at the feature level is a relatively understudied problem. In this paper we discuss fusion at the feature level in 3 different scenarios: (i) fusion of PCA and LDA coefficients of face; (ii) fusion of LDA coefficients corresponding to the R,G,B channels of a face image; (iii) fusion of face and hand modalities. Preliminary results are encouraging and help in highlighting the pros and cons of performing fusion at this level. The primary motivation of this work is to demonstrate the viability of such a fusion and to underscore the importance of pursuing further research in this direction.

  2. Multiple squamous hyperplastic-fibrous inflammatory polyps of the oesophagus: a new feature of eosinophilic oesophagitis?

    PubMed

    Mulder, D J; Gander, S; Hurlbut, D J; Soboleski, D A; Smith, R G; Justinich, C J

    2009-09-01

    This report describes the unusual case of a 12-year-old boy with multiple polyps in the oesophagus and concurrent eosinophilic oesophagitis (EoE). Polyps were of a fibrous-inflammatory composition featuring eosinophils, mast cells, hyperplastic epithelium and fibrosis, which are all features described with EoE. EoE is an increasingly recognised clinicopathological disorder characterised by large numbers of eosinophils infiltrating the oesophageal mucosa. Polyps in the oesophagus are rare, have not previously been associated with EoE, and may represent a new feature of the disease.

  3. Fast linear feature detection using multiple directional non-maximum suppression.

    PubMed

    Sun, C; Vallotton, P

    2009-05-01

    The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.

  4. Integrating neuroinformatics tools in TheVirtualBrain.

    PubMed

    Woodman, M Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2014-01-01

    TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting.

  5. Integrating neuroinformatics tools in TheVirtualBrain

    PubMed Central

    Woodman, M. Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A.; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2014-01-01

    TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting. PMID:24795617

  6. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  7. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.

  8. Dynamic adaptive learning for decision-making supporting systems

    NASA Astrophysics Data System (ADS)

    He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.

    2008-03-01

    This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.

  9. "Radio-oncomics" : The potential of radiomics in radiation oncology.

    PubMed

    Peeken, Jan Caspar; Nüsslin, Fridtjof; Combs, Stephanie E

    2017-10-01

    Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow. After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created. Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information ("radiogenomics") and could be used for tumor characterization. Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches. This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.

  10. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    NASA Astrophysics Data System (ADS)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  11. Histological Spectrum of Idiopathic Noncirrhotic Portal Hypertension in Liver Biopsies From Dialysis Patients.

    PubMed

    Lee, Hwajeong; Ainechi, Sanaz; Singh, Mandeep; Ells, Peter F; Sheehan, Christine E; Lin, Jingmei

    2015-09-01

    Liver biopsy is performed for various indications in dialysis patients. Being a less-common subset, the hepatic pathology in renal dialysis is not well documented. Idiopathic noncirrhotic portal hypertension (INCPH) is a clinical entity associated with unexplained portal hypertension and/or a spectrum of histopathological vascular changes in the liver. After encountering INCPH and vascular changes of INCPH in 2 renal dialysis patients, we sought to further investigate this noteworthy association. A random search for patients on hemodialysis or peritoneal dialysis with liver biopsy was performed. Hematoxylin and eosin, reticulin, trichrome, and CK7 stains were performed on formalin-fixed, paraffin-embedded tissue sections. Histopathological features were reviewed, and the results were correlated with clinical findings. In all, 13 liver biopsies were retrieved. The mean cumulative duration of dialysis was 50 months (range = 17 months to 11 years). All patients had multiple comorbidities. Indications for biopsy were a combination of abnormal liver function tests (6), portal hypertension (4), ascites (3), and possible cirrhosis (3). Two patients with portal hypertension underwent multiple liver biopsies for diagnostic purposes. All (100%) biopsies showed some histological features of INCPH, including narrowed portal venous lumen (9), increased portal vascular channels (8), shunt vessels (3), dilated sinusoids (9), regenerative nodule (5), and features of venous outflow obstruction (3). No cirrhosis was identified. Liver biopsies from patients on dialysis demonstrate histopathological vascular changes of INCPH. Some (31%) patients present with portal hypertension without cirrhosis. The histological changes may be reflective of underlying risk factors for INCPH in this group. © The Author(s) 2015.

  12. Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples.

    PubMed

    Kherfi, Mohammed Lamine; Ziou, Djemel

    2006-04-01

    In content-based image retrieval, understanding the user's needs is a challenging task that requires integrating him in the process of retrieval. Relevance feedback (RF) has proven to be an effective tool for taking the user's judgement into account. In this paper, we present a new RF framework based on a feature selection algorithm that nicely combines the advantages of a probabilistic formulation with those of using both the positive example (PE) and the negative example (NE). Through interaction with the user, our algorithm learns the importance he assigns to image features, and then applies the results obtained to define similarity measures that correspond better to his judgement. The use of the NE allows images undesired by the user to be discarded, thereby improving retrieval accuracy. As for the probabilistic formulation of the problem, it presents a multitude of advantages and opens the door to more modeling possibilities that achieve a good feature selection. It makes it possible to cluster the query data into classes, choose the probability law that best models each class, model missing data, and support queries with multiple PE and/or NE classes. The basic principle of our algorithm is to assign more importance to features with a high likelihood and those which distinguish well between PE classes and NE classes. The proposed algorithm was validated separately and in image retrieval context, and the experiments show that it performs a good feature selection and contributes to improving retrieval effectiveness.

  13. COMOC: Three dimensional boundary region variant, programmer's manual

    NASA Technical Reports Server (NTRS)

    Orzechowski, J. A.; Baker, A. J.

    1974-01-01

    The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

  14. Acoustic Guided Wave Testing of Pipes of Small Diameters

    NASA Astrophysics Data System (ADS)

    Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.

    2017-10-01

    Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.

  15. Serial multiplier arrays for parallel computation

    NASA Technical Reports Server (NTRS)

    Winters, Kel

    1990-01-01

    Arrays of systolic serial-parallel multiplier elements are proposed as an alternative to conventional SIMD mesh serial adder arrays for applications that are multiplication intensive and require few stored operands. The design and operation of a number of multiplier and array configurations featuring locality of connection, modularity, and regularity of structure are discussed. A design methodology combining top-down and bottom-up techniques is described to facilitate development of custom high-performance CMOS multiplier element arrays as well as rapid synthesis of simulation models and semicustom prototype CMOS components. Finally, a differential version of NORA dynamic circuits requiring a single-phase uncomplemented clock signal introduced for this application.

  16. Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser

    NASA Astrophysics Data System (ADS)

    Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.

    2017-12-01

    A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.

  17. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification

    PubMed Central

    Pan, Jianjun

    2018-01-01

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073

  18. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates.

    PubMed

    Schwämmle, Veit; León, Ileana Rodríguez; Jensen, Ole Nørregaard

    2013-09-06

    Large-scale quantitative analyses of biological systems are often performed with few replicate experiments, leading to multiple nonidentical data sets due to missing values. For example, mass spectrometry driven proteomics experiments are frequently performed with few biological or technical replicates due to sample-scarcity or due to duty-cycle or sensitivity constraints, or limited capacity of the available instrumentation, leading to incomplete results where detection of significant feature changes becomes a challenge. This problem is further exacerbated for the detection of significant changes on the peptide level, for example, in phospho-proteomics experiments. In order to assess the extent of this problem and the implications for large-scale proteome analysis, we investigated and optimized the performance of three statistical approaches by using simulated and experimental data sets with varying numbers of missing values. We applied three tools, including standard t test, moderated t test, also known as limma, and rank products for the detection of significantly changing features in simulated and experimental proteomics data sets with missing values. The rank product method was improved to work with data sets containing missing values. Extensive analysis of simulated and experimental data sets revealed that the performance of the statistical analysis tools depended on simple properties of the data sets. High-confidence results were obtained by using the limma and rank products methods for analyses of triplicate data sets that exhibited more than 1000 features and more than 50% missing values. The maximum number of differentially represented features was identified by using limma and rank products methods in a complementary manner. We therefore recommend combined usage of these methods as a novel and optimal way to detect significantly changing features in these data sets. This approach is suitable for large quantitative data sets from stable isotope labeling and mass spectrometry experiments and should be applicable to large data sets of any type. An R script that implements the improved rank products algorithm and the combined analysis is available.

  19. Biomedical named entity extraction: some issues of corpus compatibilities.

    PubMed

    Ekbal, Asif; Saha, Sriparna; Sikdar, Utpal Kumar

    2013-01-01

    Named Entity (NE) extraction is one of the most fundamental and important tasks in biomedical information extraction. It involves identification of certain entities from text and their classification into some predefined categories. In the biomedical community, there is yet no general consensus regarding named entity (NE) annotation; thus, it is very difficult to compare the existing systems due to corpus incompatibilities. Due to this problem we can not also exploit the advantages of using different corpora together. In our present work we address the issues of corpus compatibilities, and use a single objective optimization (SOO) based classifier ensemble technique that uses the search capability of genetic algorithm (GA) for NE extraction in biomedicine. We hypothesize that the reliability of predictions of each classifier differs among the various output classes. We use Conditional Random Field (CRF) and Support Vector Machine (SVM) frameworks to build a number of models depending upon the various representations of the set of features and/or feature templates. It is to be noted that we tried to extract the features without using any deep domain knowledge and/or resources. In order to assess the challenges of corpus compatibilities, we experiment with the different benchmark datasets and their various combinations. Comparison results with the existing approaches prove the efficacy of the used technique. GA based ensemble achieves around 2% performance improvements over the individual classifiers. Degradation in performance on the integrated corpus clearly shows the difficulties of the task. In summary, our used ensemble based approach attains the state-of-the-art performance levels for entity extraction in three different kinds of biomedical datasets. The possible reasons behind the better performance in our used approach are the (i). use of variety and rich features as described in Subsection "Features for named entity extraction"; (ii) use of GA based classifier ensemble technique to combine the outputs of multiple classifiers.

  20. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations

    PubMed Central

    Páll, Szilárd; Fechner, Martin; Esztermann, Ansgar; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26238484

Top