Cuijpers, Vincent M J I; Walboomers, X Frank; Jansen, John A
2010-02-01
For adequate histological processing of implanted biomaterials or tissue-engineered constructs, it is sometimes essential to obtain insight into the localization of structures inside the tissue samples. Observation of three-dimensional (3D) surface reconstruction, including basic photorealistic texture characteristics as surface pattern and color combined with X-ray computed tomography 3D reconstruction at different levels, is a useful approach to localize anatomical or implanted structures within experimental tissue samples. Because of the possible observation of structures of interest in a 3D environment, fusion of these techniques can greatly facilitate histological processing.
NASA Astrophysics Data System (ADS)
Barrientos, B.; Cerca, M.; García-Márquez, J.; Hernández-Bernal, C.
2008-10-01
3D displacement fields on a diffuse surface are measured by a combination of two optical methods, fringe projection and speckle photography. The use of a single camera for recording information from the two methods implies that no calibration procedures are necessary, as is the case in stereoscopy-based techniques. Out-of-plane displacements are measured by fringe projection whereas speckle photography yields the 2D in-plane component. By using this technique, we analyze in detail the morphological spatial-temporal evolution of an analogue model of the Earth's crust while subjected to compression forces. We discuss the experimental results and their relevance to the micromechanics of a surface of dry, non-cohesive and dilatant granular media. The results show that the combination of fringe projection and speckle photography is well suited for this type of study and allows the characterization of strain at the grain scale.
PLOT3D- DRAWING THREE DIMENSIONAL SURFACES
NASA Technical Reports Server (NTRS)
Canright, R. B.
1994-01-01
PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.
Weinberg, SM; Naidoo, SD; Bardi, KM; Brandon, CA; Neiswanger, K; Resick, JM; Martin, RA; Marazita, ML
2009-01-01
Objective Various lines of evidence suggest that face shape may be a predisposing factor for nonsyndromic cleft lip with or without cleft palate (CL/P). In the present study, 3D surface imaging and statistical shape analysis were used to evaluate face shape differences between the unaffected (non-cleft) parents of individuals with CL/P and unrelated controls. Methods Sixteen facial landmarks were collected from 3D captures of 80 unaffected parents and 80 matched controls. Prior to analysis, each unaffected parent was assigned to a subgroup on the basis of prior family history (positive or negative). A geometric morphometric approach was utilized to scale and superimpose the landmark coordinate data (Procrustes analysis), test for omnibus group differences in face shape, and uncover specific modes of shape variation capable of discriminating unaffected parents from controls. Results Significant disparity in face shape was observed between unaffected parents and controls (p < 0.01). Notably, these changes were specific to parents with a positive family history of CL/P. Shape changes associated with CL/P predisposition included marked flattening of the facial profile (midface retrusion), reduced upper facial height, increased lower facial height and excess interorbital width. Additionally, a sex-specific pattern of parent-control difference was evident in the transverse dimensions of the nasolabial complex. Conclusions The faces of unaffected parents from multiplex cleft families display meaningful shape differences compared with the general population. Quantitative assessment of the facial phenotype in cleft families may enhance efforts to discover the root causes of CL/P. PMID:19840279
Jung, H.-S.; Lu, Zhiming; Won, J.-S.; Poland, Michael P.; Miklius, Asta
2011-01-01
Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.
Surfaces in Three-Dimensional Digital Images.
1980-09-01
pipi -l n n the desired subsets.EJ Proposition 3. Let =Pl’""" ’Pn be any path of orientable surface points. There exist connected subsets B’ and C’ of...a B’ , B! isi l-±Pi ’ Pi-i Pi-i PiPi -I i a connected subset of Sn[I U N1 (pj)] if B! is a connected Si- subset of S5[i U N (pj)], and similarly for
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures.
Three-dimensional object surface identification
NASA Astrophysics Data System (ADS)
Celenk, Mehmet
1995-03-01
This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).
Temporal focusing microscopy combined with three-dimensional structured illumination
NASA Astrophysics Data System (ADS)
Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2017-05-01
Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.
Three-Dimensional Interactive Design Using Bezier Curves and Surfaces.
ERIC Educational Resources Information Center
Khonsari, M. M.; Horn, D.
1987-01-01
Offers a method for interactive design of objects on a computer. Outlines a method which allows the designer to interact with orthogonal views to construct a three dimensional model of an arbitrary shape. Presents an algorithm based on the Bezier curves to efficiently create smooth curves and surfaces. (CW)
Detection of surface strain by three-dimensional digital holography
NASA Astrophysics Data System (ADS)
de La Torre-Ibarra, Manuel; Mendoza-Santoyo, Fernando; Pérez-López, Carlos; Saucedo-A., Tonatiuh
2005-01-01
Three-dimensional digital holography with three object-illuminating beams has been successfully used for the detection of surface strain in metallic objects. The optical setup that uses illuminating beams to irradiate the object from three directions means that all three object surface displacement components, x, y, and z, can be independently calculated and used to find the strain gradients on the surface. The results show the conversion of the complete surface displacement field into a surface strain field. The method is capable of measuring microstrains for out-of-plane surface displacements of less than 10 μm.
Three-dimensional surface reconstruction from multistatic SAR images.
Rigling, Brian D; Moses, Randolph L
2005-08-01
This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.
Three-dimensional potential energy surface of Ar-CO.
Sumiyoshi, Yoshihiro; Endo, Yasuki
2015-01-14
A three-dimensional intermolecular potential energy surface of the Ar-CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.
Three-dimensional potential energy surface of Ar–CO
Sumiyoshi, Yoshihiro; Endo, Yasuki
2015-01-14
A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
NASA Astrophysics Data System (ADS)
Jiang, Wenjun; Salvador, Michael; Dunham, Scott T.
2013-10-01
We investigate silver nanoparticle enhanced organic solar cells by coupling three-dimensional electromagnetic and electronic device simulations. For active layer thicknesses of less than 50 nm, an array of optimized silver nanoprisms with 10 nm edge length, 15 nm thickness, and 17 nm period length can enhance the power conversion efficiency (PCE) by more than 25% when embedded in a bulk heterojunction polymer blend. For thicker layers, optical losses associated with the particles outweigh the increased absorption and reduce the PCE. Additionally, we find that the nanoparticle's work function determines the current-voltage behavior of plasmonic devices.
Algebraic surface grid generation in three-dimensional space
NASA Technical Reports Server (NTRS)
Warsi, Saif
1992-01-01
An interactive program for algebraic generation of structured surface grids in three dimensional space was developed on the IRIS4D series workstations. Interactive tools are available to ease construction of edge curves and surfaces in 3-D space. Addition, removal, or redistribution of points at arbitrary locations on a general 3-D surface or curve is possible. Also, redistribution of surface grid points may be accomplished through use of conventional surface splines or a method called 'surface constrained transfinite interpolation'. This method allows the user to redistribute the grid points on the edges of a surface patch; the effect of the redistribution is then propagated to the remainder of the surface through a transfinite interpolation procedure where the grid points will be constrained to lie on the surface. The program was written to be highly functional and easy to use. A host of utilities are available to ease the grid generation process. Generality of the program allows the creation of single and multizonal surface grids according to the user requirements. The program communicates with the user through popup menus, windows, and the mouse.
The perception of three-dimensionality across continuous surfaces
NASA Technical Reports Server (NTRS)
Stevens, Kent A.
1989-01-01
The apparent three-dimensionality of a viewed surface presumably corresponds to several internal preceptual quantities, such as surface curvature, local surface orientation, and depth. These quantities are mathematically related for points within the silhouette bounds of a smooth, continuous surface. For instance, surface curvature is related to the rate of change of local surface orientation, and surface orientation is related to the local gradient of distance. It is not clear to what extent these 3D quantities are determined directly from image information rather than indirectly from mathematically related forms, by differentiation or by integration within boundary constraints. An open empirical question, for example, is to what extent surface curvature is perceived directly, and to what extent it is quantitative rather than qualitative. In addition to surface orientation and curvature, one derives an impression of depth, i.e., variations in apparent egocentric distance. A static orthographic image is essentially devoid of depth information, and any quantitative depth impression must be inferred from surface orientation and other sources. Such conversion of orientation to depth does appear to occur, and even to prevail over stereoscopic depth information under some circumstances.
Three-dimensional surface imaging system for assessing human obesity
NASA Astrophysics Data System (ADS)
Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.
2009-10-01
The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.
Three-dimensional surface imaging system for assessing human obesity
Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.
2009-01-01
The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment. PMID:19966948
Optimized Fourier representations for three-dimensional magnetic surfaces
Hirshman, S.P.; Meier, H.K.
1984-11-01
The selection of an optimal parametric angle theta describing a closed magnetic flux surface is considered with regard to accelerating the convergence rate of the Fourier series for the Cartesian coordinates x(theta,phi) identical with R - R/sub 0/ and y(theta,phi) identical with Z - Z/sub 0/. Geometric criteria are developed based on the Hamiltonian invariants of Keplerian orbits. These criteria relate the rate of curve traversal (tangential speed) to the curvature (normal acceleration) so as to provide increased angular resolution in regions of largest curvature. They are, however, limited to either convex or starlike domains and do not provide rapid convergence for complex domains with alternating convex and concave regions. A generally applicable constraint criterion, based directly on minimizing the width of the x and y Fourier spectra, is also derived. A variational principle is given for implementing these constraints numerically. Application to the representation of three-dimensional magnetic flux surfaces is discussed.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
Chen, Chen; Kang, Yijin; Huo, Ziyang; Zhu, Zhongwei; Huang, Wenyu; Xin, Huolin L.; Snyder, Joshua D.; Li, Dongguo; Herron, Jeffrey A.; Mavrikakis, Manos; Chi, Miaofang; More, Karren L.; Li, Yadong; Markovic, Nenad M.; Somorjai, Gabor A.; Yang, Peidong; Stamenkovic, Vojislav R.
2014-02-27
Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi_{3} polyhedra, transforms in solution by interior erosion into Pt_{3}Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi_{3} polyhedra are maintained in the final Pt_{3}Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt_{3}Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.
Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
Chen, Chen; Kang, Yijin; Huo, Ziyang; Zhu, Zhongwei; Huang, Wenyu; Xin, Huolin; Snyder, Joshua; Li, Dongguo; Herron, Jeffrey A.; Mavrikakis, Manos; Chi, Miaofang; More, Karren L.; Li, Yadong; Markovic, Nenad M.; Somorjai, Gabor A.; Yang, Peidong; Stamenkovic, Vojislav R.
2014-03-21
Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi_{3} polyhedra, transforms in solution by interior erosion into Pt_{3}Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi_{3} polyhedra are maintained in the final Pt_{3}Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt_{3}Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.
Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
Chen, Chen; Kang, Yijin; Huo, Ziyang; ...
2014-02-27
Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi3 polyhedra are maintained in the final Pt3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhancedmore » oxygen reduction reaction (ORR) activity. The Pt3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less
Three-dimensional reconstruction of surface nanoarchitecture from two-dimensional datasets
2014-01-01
The design of biomaterial surfaces relies heavily on the ability to accurately measure and visualize the three-dimensional surface nanoarchitecture of substrata. Here, we present a technique for producing three-dimensional surface models using displacement maps that are based on the data obtained from two-dimensional analyses. This technique is particularly useful when applied to scanning electron micrographs that have been calibrated using atomic force microscopy (AFM) roughness data. The evaluation of four different surface types, including thin titanium films, silicon wafers, polystyrene cell culture dishes and dragonfly wings confirmed that this technique is particularly effective for the visualization of conductive surfaces such as metallic titanium. The technique is particularly useful for visualizing surfaces that cannot be easily analyzed using AFM. The speed and ease with which electron micrographs can be recorded, combined with a relatively simple process for generating displacement maps, make this technique useful for the assessment of the surface topography of biomaterials. PMID:24410821
Three-dimensional surface anthropometry: Applications to the human body
NASA Astrophysics Data System (ADS)
Jones, Peter R. M.; Rioux, Marc
1997-09-01
Anthropometry is the study of the measurement of the human body. By tradition this has been carried out taking the measurements from body surface landmarks, such as circumferences and breadths, using simple instruments like tape measures and calipers. Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. It includes the acquisition, indexing, transmission, archiving, retrieval, interrogation and analysis of body size, shape, and surface together with their variability throughout growth and development to adulthood. While 3D surface anthropometry surveying is relatively new, anthropometric surveying using traditional tools, such as calipers and tape measures, is not. Recorded studies of the human form date back to ancient times. Since at least the 17th century 1 investigators have made attempts to measure the human body for physical properties such as weight, size, and centre of mass. Martin documented 'standard' body measurement methods in a handbook in 1928. 2 This paper reviews the past and current literature devoted to the applications of 3D anthropometry because true 3D scanning of the complete human body is fast becoming a reality. We attempt to take readers through different forms of technology which deal with simple forms of projected light to the more complex advanced forms of laser and video technology giving low and/or high resolution 3D data. Information is also given about image capture of size and shape of the whole as well as most component parts of the human body. In particular, the review describes with explanations a multitude of applications, for example, medical, product design, human engineering, anthropometry and ergonomics etc.
NASA Astrophysics Data System (ADS)
Leong-Hoï, A.; Serio, B.; Twardowski, P.; Montgomery, P.
2014-05-01
Based on a miniature digital light projector (pico-DLP), a prototype of a Structured Illumination Microscope (SIM) has been developed. The pico-DLP is used to project fringes onto a sample and applying the three-step phase shifting algorithm together with the absolute phase retrieval method, the 3D shape of the object surface is extracted. By using a specific optical system instead of a conventional microscope objective, the device allows 3D reconstructions of surfaces with both a 10× magnification and a high depth of field obtained thanks to a small numerical aperture of 0.06 offering an acceptable lateral resolution of 6.2 μm. An image processing algorithm has been developed to reduce the noise in the acquired images before applying the reconstruction algorithm and so optimize the reconstruction method. Compared with interference microscopy and confocal microscopy that have a shallower depth of field per XY image, the microscope developed achieves a depth of field about 700 μm and requires no vertical scanning, which greatly reduces the acquisition time. Although the system at this stage does not have the same resolution performance as interference microscopy, it is nonetheless faster and cheaper. One possible application of this SIM technique would be to first reconstruct in real-time parts of an object before performing higher resolution 3D measurements with interference microscopy. As with all classical optical instruments, the lateral resolution is limited by diffraction. Work is being carried out with the prototype SIM system to be able to exceed the lateral resolution limits and thus achieve super resolution.
Combined Labelled and Label-free SERS Probes for Triplex Three-dimensional Cellular Imaging
NASA Astrophysics Data System (ADS)
Chen, Yong; Bai, Xiangru; Su, Le; Du, Zhanwei; Shen, Aiguo; Materny, Arnulf; Hu, Jiming
2016-01-01
Cells are complex chemical systems, where the molecular composition at different cellular locations and specific intracellular chemical interactions determine the biological function. An in-situ nondestructive characterization of the complicated chemical processes (like e.g. apoptosis) is the goal of our study. Here, we present the results of simultaneous and three-dimensional imaging of double organelles (nucleus and membrane) in single HeLa cells by means of either labelled or label-free surface-enhanced Raman spectroscopy (SERS). This combination of imaging with and without labels is not possible when using fluorescence microscopy. The SERS technique is used for a stereoscopic description of the intrinsic chemical nature of nuclei and the precise localization of folate (FA) and luteinizing hormone-releasing hormone (LHRH) on the membrane under highly confocal conditions. We also report on the time-dependent changes of cell nuclei as well as membrane receptor proteins during apoptosis analyzed by statistical multivariate methods. The multiplex three-dimensional SERS imaging technique allows for both temporal (real time) and spatial (multiple organelles and molecules in three-dimensional space) live-cell imaging and therefore provides a new and attractive 2D/3D tracing method in biomedicine on subcellular level.
Three-dimensional ovarian cancer models: imaging and therapeutic combinations
NASA Astrophysics Data System (ADS)
Celli, Jonathan P.; Rizvi, Imran; Evans, Conor L.; Abu-Yousif, Adnan; Hasan, Tayyaba
2010-02-01
We introduce a new platform to study treatment response in adherent micrometastatic ovarian cancer, combining an in vitro 3D model, with custom quantitative analysis routines to report growth and cytotoxic response in large sets of image data. OVCAR-5 human ovarian cancer cells were grown on a bed of Growth Factor Reduced MatrigelTM (GFR MatrigelTM). Using batch analysis routines to analyze longitudinal image data we show that in vitro tumor growth leads to a reproducible log-normal size distribution with two well-defined peaks. These distinct growth modes correspond to a population with approximately constant diameter of 20μm over the time probed, while the other peak corresponds to a more rapidly assembling sub-distribution of micronodules which shifts towards larger peak center positions with mean equivalent diameters of 92μm, 120μm and 150μm at days 7, 10 and 17 following plating. At day 10, 3D and monolayer cultures were treated with a regimen of either carboplatin or photodynamic therapy. Using a quantitative fluorescence imaging approach we report dose response curves and demonstrate that 3D nodules are significantly less sensitive to treatment than the same cells grown in monolayer. 3D cultures subject to 5J/cm2 PDT (250nM BPD-MA) exhibited a mean viability of 80% (95% CI = 73% to 82%) relative to no treatment control. 3D cultures subject to carboplatin treatment at 100μM concentration exhibited a mean viability of 92% (95% CI =86% to 97%). A combination treatment of 5J/cm2 PDT followed by 100μM carboplatin yielded an enhanced cytotoxic effect with mean viability of 46%, 95% confidence interval (CI) = (35 % to 46%).
An improved evaluation of surface finish with a three dimensional tester
NASA Technical Reports Server (NTRS)
GRANDADAM; PREBET; RIOUT
1980-01-01
The design and programming of an automated three dimensional surface finish tester is described. The device produces a three dimensional image of the microscopic texture of the examined surface. The surface finish tester presents the following advantages over conventional profilometry: (1) more complete exploration of surface texture by successive probe sweeps; (2) automation of measuring and calculating; (3) more accurate representation of the derived parameters; (4) analysis of the degree of homogeneity of the surface; (5) three dimensional graphic representation accurately depicting the state of the surface; (6) detection of local imperfections; and (7) detection of scoring that occurred during machining.
Three-dimensional modeling of resonant charge transfer between ion beams and metallic surfaces
NASA Astrophysics Data System (ADS)
Gainullin, I. K.
2017-05-01
This study addresses the numerical modeling of resonant charge transfer (RCT) during ion-surface interactions. In our approach we use the original ab initio three-dimensional (3D) time-dependent Schrödinger equation solver in combination with 3D pseudopotentials, which describe the metal structure on the atomic level. Full 3D modeling enables us to reveal such fundamental RCT aspects as anisotropy of electron propagation in the target and electron delay during grazing scattering. We have also refined the theoretical basis for RCT experiments calculations and achieved quantitative correspondence to a large variety of experimental data.
Fitting manifold surfaces to three-dimensional point clouds.
Grimm, Cindy M; Crisco, Joseph J; Laidlaw, David H
2002-02-01
We present a technique for fitting a smooth, locally parameterized surface model (called the manifold surface model) to unevenly scattered data describing an anatomical structure. These data are acquired from medical imaging modalities such as CT scans or MRI. The manifold surface is useful for problems which require analyzable or parametric surfaces fitted to data acquired from surfaces of arbitrary topology (e.g., entire bones). This surface modeling work is part of a larger project to model and analyze skeletal joints, in particular the complex of small bones within the wrist and hand. To demonstrate the suitability of this model we fit to several different bones in the hand, and to the same bone from multiple people.
Numerical procedures for three-dimensional computational surface thermochemistry
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Rasky, Daniel J.
1992-01-01
Models and equations for surface thermochemistry and near-surface thermophysics of aerodynamically-heated thermal protection materials are reviewed, with particular emphasis on computational boundary conditions for surface mass and energy transfer. The surface energy and mass balances, coupled with an appropriate ablation or surface catalysis model, provide complete thermochemical boundary conditions for a true multidisciplinary solution of the fully coupled fluid-dynamics/solid mechanics problem. Practical approximate solutions can be obtained by using a detailed model with full thermophysics for either the solid or fluid phase amd a semianalytic method for the other half of the problem. A significant increase in the state-of-the-art in aerothermal computational fluid dynamics is possible by uniting CFD methodology with surface thermochemistry boundary conditions and the heat-balance-integral method.
Interacting Surface States of Three-Dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Neupert, Titus; Rachel, Stephan; Thomale, Ronny; Greiter, Martin
2015-07-01
We numerically investigate the surface states of a strong topological insulator in the presence of strong electron-electron interactions. We choose a spherical topological insulator geometry to make the surface amenable to a finite size analysis. The single-particle problem maps to that of Landau orbitals on the sphere with a magnetic monopole at the center that has unit strength and opposite sign for electrons with opposite spin. Assuming density-density contact interactions, we find superconducting and anomalous (quantum) Hall phases for attractive and repulsive interactions, respectively, as well as chiral fermion and chiral Majorana fermion boundary modes between different phases. Our setup is preeminently adapted to the search for topologically ordered surface terminations that could be microscopically stabilized by tailored surface interaction profiles.
Surface grid generation for complex three-dimensional geometries
NASA Astrophysics Data System (ADS)
Luh, Raymond Ching-Chung
1988-10-01
An outline is presented for the creation of surface grids from primitive geometry data such as obtained from CAD/CAM systems. The general procedure is applicable to any geometry including full aircraft with wing, nacelle, and empennage. When developed in an interactive graphics environment, a code based on this procedure is expected to substantially improve the turn around time for generating surface grids on complex geometries. Results are shown for a general hypersonic airplane geometry.
Surface grid generation for complex three-dimensional geometries
NASA Technical Reports Server (NTRS)
Luh, Raymond Ching-Chung
1988-01-01
An outline is presented for the creation of surface grids from primitive geometry data such as obtained from CAD/CAM systems. The general procedure is applicable to any geometry including full aircraft with wing, nacelle, and empennage. When developed in an interactive graphics environment, a code base on this procedure is expected to substantially improve the turn around time for generating surface grids on complex geometries. Results are shown for a general hypersonic airplane geometry.
Surface grid generation for complex three-dimensional geometries
NASA Technical Reports Server (NTRS)
Luh, Raymond Ching-Chung
1988-01-01
An outline is presented for the creation of surface grids from primitive geometry data such as obtained from CAD/CAM systems. The general procedure is applicable to any geometry including full aircraft with wing, nacelle, and empennage. When developed in an interactive graphics environment, a code based on this procedure is expected to substantially improve the turn around time for generating surface grids on complex geometries. Results are shown for a general hypersonic airplane geometry.
Three-Dimensional Potential-Field Source-Surface Modeling of the Evolution of Coronal Structures
NASA Astrophysics Data System (ADS)
Wallace, Rosa; Dikpati, Mausumi; de Toma, Giuliana; Burkepile, Joan
2017-01-01
White-light images of the solar corona indicate that, during each solar cycle, the global structure of the corona evolves as a function of cycle phase. Building a three-dimensional potential-field source-surface model of the corona, we investigate how the longitude-dependence of coronal structure varies during solar minimum. Using white-light images of the corona from the Mauna Loa Solar Observatory (MLSO) as guidance, we derive the global three-dimensional corona from our model-output as a function of Carrington rotation, focusing on the most recent three solar minima in 1986, 1996, and 2008. Longitude-dependent coronal structures seen in white-light images are reproduced by a linear combination of spherical harmonics combined with a radial boundary condition at the source-surface, taken at 2.5 solar radii. The coefficients of spherical harmonics up to the fifth degree, as well as their phase, are deduced by comparing model-output with MLSO observations. We find that (i) during typical solar minima (such as 1986, 1996), although the axial dipole dominates, small, time-varying multipole contributions are present when analyzed over a few rotations. In addition, we find that (ii) the unusual minimum in 2008 is multipole-dominated in contrast to the solar minimum corona in 1986 and 1996. (iii) The signature of a quadrupole contribution in the 1996 corona and the further increase of multipole components in the 2008 corona indicate that the departure from dipole at minimum originated during 1996. Further analysis of the present corona will likely indicate that the next solar minimum will be non-dipolar in nature. Our estimates of the variation of multipole contributions as a function of time can be used to constrain models of the three-dimensional solar dynamo.
Visual attention to surfaces in three-dimensional space.
He, Z J; Nakayama, K
1995-01-01
Although attention plays a significant role in vision, its spatial deployment and spread in the third dimension is not well understood. In visual search experiments we show that we cannot easily focus attention across isodepth loci unless they are part of a well-formed surface with locally coplanar elements. Yet we can easily spread our attention selectively across well-formed surfaces that span an extreme range of stereoscopic depths. In cueing experiments, we show that this spread of attention is, in part, obligatory. Attentional selectivity is reduced when targets and distractors are coplanar with or rest on a common receding stereoscopic plane. We conclude that attention cannot be efficiently allocated to arbitrary depths and extents in space but is linked to and spreads automatically across perceived surfaces. Images Fig. 2 Fig. 3 PMID:7479956
Working toward a three-dimensional fatigue closure model for surface cracks
NASA Technical Reports Server (NTRS)
Joseph, Paul F.
1995-01-01
similar to that of 'strip synthesis' first introduced by Fujimoto was used. Briefly, the crack opening displacements of 'slices' of the surface crack in a direction parallel to the plate surface are considered in addition to the standard LSM approach that makes use of springs obtained from slices perpendicular to the plate surface. This enhancement is necessary so that an accurate three-dimensional representation of quantities such as contact zone size, plastic zone size, stress intensity factors, T-stress, and crack opening displacement can be determined. By combining results of previous investigations with the LSM, the problem of three-dimensional crack closure will be addressed. In addition to a closure model, the enhanced LSM can be used for many other problems including interacting surface cracks and fatigue crack growth of a through crack with a curved crack front.
Three-dimensional modeling of chloroprene rubber surface topography upon composition
NASA Astrophysics Data System (ADS)
Žukienė, Kristina; Jankauskaitė, Virginija; Petraitienė, Stase
2014-02-01
In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.
Evidence of Topological Surface State in Three-Dimensional Dirac Semimetal Cd3As2
Yi, Hemian; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Feng, Ya; Liang, Aiji; Xie, Zhuojin; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Nakatake, M.; Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Xu, Zuyan; Chen, Chuangtian; Dai, Xi; Fang, Zhong; Zhou, X. J.
2014-01-01
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by “topologically protected” surface state with Fermi arcs on their surface. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more investigations are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide experimental indications on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2. PMID:25139455
Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2.
Yi, Hemian; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Feng, Ya; Liang, Aiji; Xie, Zhuojin; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Nakatake, M; Arita, M; Shimada, K; Namatame, H; Taniguchi, M; Xu, Zuyan; Chen, Chuangtian; Dai, Xi; Fang, Zhong; Zhou, X J
2014-08-20
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by "topologically protected" surface state with Fermi arcs on their surface. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more investigations are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide experimental indications on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.
Structured light optical microscopy for three-dimensional reconstruction of technical surfaces
NASA Astrophysics Data System (ADS)
Kettel, Johannes; Reinecke, Holger; Müller, Claas
2016-04-01
In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1975-01-01
A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.
Hydrodynamic theory of surface excitations of three-dimensional topological insulators
NASA Astrophysics Data System (ADS)
Vildanov, N. M.
2011-03-01
Edge excitations of a fractional quantum Hall system can be derived as surface excitations of an incompressible quantum droplet using one-dimensional chiral bosonization. Here we show that an analogous approach can be developed to characterize surface states of three-dimensional time-reversal invariant topological insulators. The key ingredient of our theory is the Luther’s multidimensional bosonization construction.
NASA Astrophysics Data System (ADS)
Jensen, Pablo; Larralde, Hernán; Meunier, Muriel; Pimpinelli, Alberto
1998-09-01
We perform a comprehensive study of the formation of three-dimensional (pyramidal) structures in a large range of conditions, including the possible evaporation of adatoms from the surface and the presence of surface defects. We compare our computer simulations with theoretical calculations of the growth and find good agreement between them. This work clarifies previous studies of three-dimensional growth and predicts the island size distributions obtained in the different regimes. Finally, we show how our analysis can be used to interpret experimental data.
Three-dimensional surface capture for body measurement using projected sinusoidal patterns
NASA Astrophysics Data System (ADS)
Demers, Michelle H.; Hurley, Jeffery D.; Wulpern, Richard C.; Grindon, John R.
1997-03-01
A non-contact body measurement system (BMS) is under development for use in making made-to-measure apparel, and for other applications related to body measurement. The BMS design which consists of six stationary structured-light projectors and six CCD cameras is presented. The system acquires two-dimensional images of sinusoidal projected patterns utilizing a phase-shifting technique similar to phase measurement profilometry. Given calibrated projector and camera geometrical parameters, the solution for calculating three-dimensional surface points of a human body from the camera images is developed. A statistical error analysis is presented for the phase measurement and the three-dimensional point solution in terms of system measurement errors. An operating developmental implementation of the BMS is described and pictured. Contour plots of test subjects taken with this system, showing digitized three-dimensional surface segments, are presented and discussed.
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.
NASA Astrophysics Data System (ADS)
Kettel, Johannes; Müller, Claas; Reinecke, Holger
2014-11-01
In computer assisted quality control the three-dimensional reconstruction of technical surfaces is playing an ever more important role. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution for the three-dimensional measurement of technical surfaces with high vertical and lateral resolution. However, the three-dimensional reconstruction of specular reflecting technical surfaces with very low surface-roughness and local slopes still remains a challenge to optical measurement principles. Furthermore the high data acquisition rates of current optical measurement systems depend on highly complex and expensive scanning-techniques making them impractical for inline quality control. In this paper we present a novel measurement principle based on a multi-pinhole structured light solution without moving parts which enables the threedimensional reconstruction of specular and diffuse reflecting technical surfaces. This measurement principle is based on multiple and parallel processed point-measurements. These point measurements are realized by spatially locating and analyzing the resulting Point Spread Function (PSF) in parallel for each point measurement. Analysis of the PSF is realized by pattern recognition and model-fitting algorithms accelerated by current Graphics-Processing-Unit (GPU) hardware to reach suitable measurement rates. Using the example of optical surfaces with very low surface-roughness we demonstrate the three-dimensional reconstruction of these surfaces by applying our measurement principle. Thereby we show that the resulting high measurement accuracy enables cost-efficient three-dimensional surface reconstruction suitable for inline quality control.
Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.
2006-01-01
It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.
A three dimensional Dirichlet-to-Neumann map for surface waves over topography
NASA Astrophysics Data System (ADS)
Nachbin, Andre; Andrade, David
2016-11-01
We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.
Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses.
Li, Y; Itoh, K; Watanabe, W; Yamada, K; Kuroda, D; Nishii, J; Jiang, Y
2001-12-01
By moving silica glass in a preprogrammed structure, we directly produced three-dimensional holes with femtosecond laser pulses in single step. When distilled water was introduced into a hole drilled from the rear surface of the glass, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. Straight holes of 4-mu;m diameter were more than 200 microm deep. Three-dimensional channels can be micromachined inside transparent materials by use of this method, as we have demonstrated by drilling a square-wave-shaped hole inside silica glass.
NASA Astrophysics Data System (ADS)
Deng, Fuqin; Ding, Yi; Peng, Kai; Xi, Jiangtao; Yin, Yongkai; Zhu, Ziqi
2016-11-01
With the increasing integration level of components in modern electronic devices, three-dimensional automated optical inspection has been widely used in the manufacturing process of electronic and communication industries to improve the product quality. In this paper, we develop a three-dimensional inspection and metrology system for semiconductor components with fringe projection profilometry, which is composed of industry camera, telecentric lens and projection module. This system is used to measure the height, flatness, volume, shape, coplanarity for quality checking. To detect the discontinuous parts in the internal surface of semiconductor components, we employ the fringes with multiple spatial frequencies to avoid the measurement ambiguity. The complete three-dimensional information of semiconductor component is obtained by fusing the absolute phase maps from different views. The practical inspection results show that the depth resolution of our system reaches 10 μm . This system can be further embedded for the online inspection of various electronic and communication products.
Surface waves in three-dimensional electromagnetic composites and their effect on homogenization.
Xiong, Xiaoyan Y Z; Jiang, Li Jun; Markel, Vadim A; Tsukerman, Igor
2013-05-06
Reflection and transmission of electromagnetic waves at the boundaries of periodic composites (electromagnetic/optical metamaterials) depends in general on both bulk and surface waves. We investigate the interplay of these two contributions using three-dimensional full-wave numerical simulations and a recently developed non-asymptotic homogenization theory.
Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko
2016-03-08
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
Hong, Lingfei; Pan, Tingrui
2010-12-07
As an emerging alternative to the conventional counterpart, surface microfluidics incorporates both intrinsic resistive solid-liquid and elastic frictionless gas-liquid interfaces, leading to unique flow-pressure characteristics. Furthermore, the open-surface microfluidic platforms can be fabricated on a monolithic substrate with high wettability contrast by the previously reported one-step lithographic process of a photosensitive superhydrophobic nanocomposite material, which permits flexible fluidic operations and direct surface modifications. In the paper, we first present three-dimensional microfluidic manipulations utilizing the unconventional gas-liquid interfaces of surface microfluidics, outlined by the micropatterned wetting boundaries (also known as the triple lines). In contrast to the primary linear (resistive) nature of the conventional closed-channel microfluidics, the distinct elastic interface of surface microfluidics enables remarkable three-dimensional (deformable) and time-dependent (capacitive) operations of the flow. Specifically, spatiotemporal dependence of microflow patterns on the planar fluidic surfaces has been theoretically analyzed and experimentally characterized. Utilizing the unconventional interface-enabled flow-pressure relationship, novel surface fluidic operations, including microflow regulation and flow-controlled switching, have been demonstrated and fully investigated. Furthermore, three-dimensional surface microfluidic networks together with analog-to-digital stereo-flow activations have been established, in which miniature capillary bridges form fluidic connections between two independent surface microfluidic circuits.
Fast three-dimensional measurements for dynamic scenes with shiny surfaces
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Asundi, Anand
2017-01-01
This paper presents a novel fringe projection technique for fast three-dimensional (3-D) shape measurements of moving highly reflective objects. By combining the standard three-step phase-shifting fringe patterns with a digital speckle image, dynamic 3-D reconstructions of shiny surfaces can be efficiently achieved with only four projected patterns. The phase measurement is performed by three-step phase-shifting algorithm as it uses the theoretical minimum number of fringe patterns for phase-shifting profilometry. To avoid the camera saturation, a dual-camera fringe projection system is built to measure shiny objects from two different directions. The erroneous phase obtained from a saturated pixel is corrected by the phase of its corresponding pixel in the other view which is free from the saturation problem. To achieve high measurement accuracy, the corresponding high light intensity areas in cameras are found by sub-pixel matches of the speckle pattern in either view. Benefited from the trifocal tensor constraint, the corresponding points in the two wrapped phase maps can be directly established, and thus, the difficulties in determining the correct fringe order for the discontinuous or isolated surfaces can be effectively bypassed. Experimental results indicate that the proposed method is able to successfully measure highly reflective surfaces for both stationary and dynamic scenes.
Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces
Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46 ± 0.37 mm, 1.29 ± 0.29 mm and 1.82 ± 0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86–103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3 mm radius that can be detected using clinical ultrasound imaging systems. PMID:25455165
Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces.
Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46±0.37 mm, 1.29±0.29 mm and 1.82±0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86-103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3mm radius that can be detected using clinical ultrasound imaging systems.
Characterizing coral condition using estimates of three-dimensional colony surface area.
Fisher, William S; Davis, William P; Quarles, Robert L; Patrick, James; Campbell, Jed G; Harris, Peggy S; Hemmer, Becky L; Parsons, Mel
2007-02-01
Coral reefs provide shoreline protection, biological diversity, fishery harvests, and tourism, all values that stem from the physically-complex coral infrastructure. Stony corals (scleractinians) construct and maintain the reef through deposition of calcium carbonate. Therefore, assessment of coral reefs requires at least some measurement endpoints that reflect the biological and physical condition of stony corals. Most monitoring programs portray coral quantity as live coral cover, which is the two-dimensional proportion of coral surface to sea floor viewed from above (planar view). The absence of the third dimension, however, limits our ability to characterize coral reef value, physiology, health and sustainability. A three-dimensional (3D) approach more realistically characterizes coral structure available as community habitat and, when combined with estimates of live coral tissue, quantifies the amount of living coral available for photosynthesis, growth and reproduction. A rapid coral survey procedure that coupled 3D coral quantification with more traditional survey measurements was developed and tested in the field. The survey procedure relied on only three underwater observations--species identification, colony size, and proportion of live tissue--made on each colony in the transect. These observations generated a variety of metrics, including several based on 3D colony surface area, that are relevant to reef management.
Three dimensional surface slip partitioning of the Sichuan earthquake from Synthetic Aperture Radar
NASA Astrophysics Data System (ADS)
de Michele, M.; Raucoules, D.; de Sigoyer, J.; Pubellier, M.; Lasserre, C.; Pathier, E.; Klinger, Y.; van der Woerd, J.
2009-12-01
The Sichuan earthquake, Mw 7.9, struck the Longmen Shan range front, in the western Sichuan province, China, on 12 May 2008. It severely affected an area where little historical seismicity and little or no significant active shortening were reported before the earthquake (e.g. Gu et al., 1989; Chen et al., 1994; Gan et al., 2007). The Longmen Shan thrust system bounds the eastern margin of the Tibetan plateau and is considered as a transpressive zone since Triassic time that was reactivated during the India-Asia collision (e.g., Tapponnier and Molnar, 1977, Chen and Wilson 1996; Arne et al., 1997, Godard et al., 2009). However, contrasting geological evidences of sparse thrusting and marked dextral strike-slip faulting during the Quaternary along with high topography (Burchfiel et al., 1995; Densmore et al., 2007) have led to models of dynamically driven and sustained topography (Royden et al., 1997) limiting the role of earthquakes in relief building and leaving the mechanism of long term strain distribution in this area as an open question. Here we combine C and L band Synthetic Aperture Radar (SAR) offsets data from ascending and descending paths to retrieve the three dimensional surface slips distribution all along the earthquake ruptures of the Sichuan earthquake. We show a quantitative assessment of the amount of co-seismic slip and its partitioning at the surface.
Resolving three-dimensional surface displacements from InSAR measurements: A review
NASA Astrophysics Data System (ADS)
Hu, J.; Li, Z. W.; Ding, X. L.; Zhu, J. J.; Zhang, L.; Sun, Q.
2014-06-01
One-dimensional measurement along the Line-Of-Sight (LOS) direction has greatly limited the capability of InSAR technique in the investigation of surface displacements and their dynamics. In recent years, great efforts have been made to resolve complete three-dimensional (3-D) displacements from InSAR measurements. This contribution is intended to provide a systematic review of the progress achieved in this field. Based on an analysis of the InSAR LOS measurements, we first cover two commonly used techniques, i.e., Offset-Tracking and multi-aperture InSAR (MAI), with which the surface displacement in the azimuth direction can be measured together with the LOS displacement. Several methods for mapping 3-D displacements using InSAR measurements are subsequently presented and categorized into three groups: (i) combination of multi-pass LOS and azimuth measurements; (ii) integration of InSAR and GPS data; and (iii) prior information assisted approaches. The strengths and weaknesses of each method are analyzed to show the applicability of each method to specific 3-D displacement mapping cases, in hope to provide a useful guidance in choosing a suitable approach accordingly. Finally, suggestions for resolving the challenging issues and outlook of future research are given.
Three-dimensional surface grid generation for calculation of thermal radiation shape factors
NASA Technical Reports Server (NTRS)
Aly, Hany M.
1992-01-01
A technique is described to generate three dimensional surface grids suitable for calculating shape factors for thermal radiative heat transfer. The surface under consideration is approximated by finite triangular elements generated in a special manner. The grid is generated by dividing the surface into a two dimensional array of nodes. Each node is defined by its coordinates. Each set of four adjacent nodes is used to construct two triangular elements. Each triangular element is characterized by the vector representation of its vertices. Vector algebra is used to calculate all desired geometric properties of grid elements. The properties are used to determine the shape factor between the element and an area element in space. The grid generation can be graphically displayed using any software with three dimensional features. DISSPLA was used to view the grids.
A three dimensional scaffold with precise micro-architecture and surface micro-textures
Mata, Alvaro; Kim, Eun Jung; Boehm, Cynthia A.; Fleischman, Aaron J.; Muschler, George F.; Roy, Shuvo
2013-01-01
A three-dimensional (3D) structure comprising precisely defined microarchitecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 μm-diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds. PMID:19524292
NASA Technical Reports Server (NTRS)
Gibson, A. F.
1983-01-01
A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.
Three-dimensional reconstruction of specular surface for a gas tungsten arc weld pool
NASA Astrophysics Data System (ADS)
Song, Hong Sheng; Zhang, Yu Ming
2007-12-01
Observing the weld pool and measuring its geometrical parameters are key issues for developing the next generation intelligent welding machine and modeling the complex welding process. In the past few years, different techniques have been applied, but the dynamic specular weld pool surface and the strong weld arc complicate these approaches and make observation difficult. To resolve the problem, a new three-dimensional sensing system using structured light is proposed for a gas tungsten arc welding (GTAW) process. In the system, a dot-matrix laser pattern is projected on the specular weld pool surface, which can reflect light onto an imaging plane. The reflected images are captured by a high-speed camera and can successfully be processed by image processing algorithms developed. With the acquired information, a three-dimensional reconstruction scheme is proposed and discussed in this paper. A surface reconstruction method with several slope-based algorithms is first developed to rebuild the region of weld pool surface which reflects the laser pattern. Then a two-dimensional piecewise model is provided to calculate weld pool boundary by utilizing the edge condition. Finally the optimal estimate of the three-dimensional weld pool surface is synthesized. The acceptable accuracy of the results verified the effectiveness of the reconstruction scheme.
Kang, Da-Young; Choi, Sung-Hwan; Cha, Jung-Yul; Hwang, Chung-Ju
2013-07-01
To investigate the three-dimensional structural features of three types of mechanically retentive ceramic bracket bases. One type of stainless steel (MicroArch, Tomy, Tokyo, Japan) and three types of ceramic maxillary right central incisor brackets-Crystaline MB (Tomy), INVU (TP Orthodontics, La Porte, Ind), and Inspire Ice (Ormco, Glendora, Calif)-were tested to compare and quantitatively analyze differences in the surface features of each ceramic bracket base using scanning electron microscopy (SEM), a three-dimensional (3D) optical surface profiler, and microcomputed tomography (micro-CT). One-way analysis of variance was used to find differences in bracket base surface roughness values and surface areas between groups according to base designs. Tukey's honestly significant differences tests were used for post hoc comparisons. SEM revealed that each bracket exhibited a unique surface texture (MicroArch, double mesh; Crystaline MB, irregular; INVU, single mesh; Inspire Ice, bead ball). With a 3D optical surface profiler, the stainless steel bracket showed significantly higher surface roughness values. Crystaline MB had significantly higher surface roughness values than Inspire Ice. Micro-CT demonstrated that stainless steel brackets showed significantly higher whole and unit bracket base surface areas. Among ceramic brackets, INVU showed significantly higher whole bracket base surface area, and Crystaline MB showed a significantly higher unit bracket base surface area than Inspire Ice. Irregular bracket surface features showed the highest surface roughness values and unit bracket base surface area among ceramic brackets, which contributes to increased mechanically retentive bracket bonding strength.
Influence of surface topography on three-dimensional fractal model of sliding friction
NASA Astrophysics Data System (ADS)
Pan, Wujiu; Li, Xiaopeng; Wang, Linlin; Mu, Jiaxin; Yang, Zemin
2017-09-01
The purpose of this paper is to establish a three-dimensional model of sliding friction and to study the influence of surface topography fractal parameters on the model. Firstly, the analysis of the contact between two asperities is completed, for according to the classical molecular-mechanical friction theory, the sliding friction among rough surfaces should be the sum of mechanical force and molecular adhesion. Then based on the fractal theory, the three-dimensional fractal model of sliding friction is deduced. Finally, the influence of the maximum contact area of asperity al, the fractal roughness G and the fractal dimension D on the sliding friction is analyzed by a simulation example, and the analysis results show that the sliding friction F has positive correlation with al and G, and there is an optimal fractal dimension D which minimizes F. The study of the paper can be used to explain the existing experimental results and the friction theory reasonably.
An Iterative Method for Improving the Quality of Reconstruction of a Three-Dimensional Surface
Vishnyakov, G.N.; Levin, G.G.; Sukhorukov, K.A.
2005-12-15
A complex image with constraints imposed on the amplitude and phase image components is processed using the Gerchberg iterative algorithm for the first time. The use of the Gerchberg iterative algorithm makes it possible to improve the quality of a three-dimensional surface profile reconstructed by the previously proposed method that is based on the multiangle projection of fringes and the joint processing of the obtained images by Fourier synthesis.
Reattachment of a Three-Dimensional, Incompressible Jet to an Adjacent Axisymmetric Inclined Surface
1983-03-31
on, Repeft) IS. SUPPLEMENTARY NOTES I9. KEY WORDS (Continue on tavateo aide If necessary and identity by block number)THRUST EVERSER COANDA EFFECT...mechanics of a thrust reverser jet reattaohing to an aircraft nozzle afterbody. The problem basically involves the Coanda effect flow of a three... Coanda effect flow of a three-dimensional, incompressible jet to an adjacent axisymmetric, inclined surface. The equationsO -en derived in integral
Devil's staircase in three-dimensional coherent waves localized on Lissajous parametric surfaces.
Chen, Y F; Lu, T H; Su, K W; Huang, K F
2006-06-02
We experimentally demonstrate the significance of the longitudinal-transverse coupling in the mesoscopic regime by using a high-Q laser resonator as an analog experiment. The longitudinal-transverse coupling is found to lead to the three-dimensional (3D) coherent waves that are localized on the parametric surfaces with Lissajous transverse patterns. More strikingly, experimental results reveal that the mode locking of the 3D coherent states forms a nearly complete Devil's staircase with the hierarchical ordering.
NASA Astrophysics Data System (ADS)
Xu, Li; Zhang, Ping; Zhang, Zhifei
2013-06-01
Motivated by Beale (Commun Pure Appl Math 34:359-392, 1981; Arch Ration Mech Anal 84:307-352, 1983/1984), we investigate the global well-posedness of a free boundary problem of a three-dimensional incompressible viscoelastic fluid system in an infinite strip and with surface tension on the upper free boundary, provided that the initial data is sufficiently close to the equilibrium state.
NASA Astrophysics Data System (ADS)
Feng, Tao; Li, Yude; Liu, Xiankui; Yan, Tingguang; Gao, Shan
2009-06-01
It has been experimentally demonstrated that a three-dimensional axisymmetric-folded combination carbon dioxide laser with five discharge tubes can offer a desired output power and good-quality light beam. The output laser has five sub-beams that start from a mutual point on the inside surface of the output plane lens. The collimation and convergence of the five sub-beams are obtained. In our results, the measured output laser power from a folded resonator was 37 W, and the total output of the laser was 76 W with 10% efficiency.
Three-dimensional surface topography of graphene by divergent beam electron diffraction
Latychevskaia, Tatiana; Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Hwang, Ing-Shouh
2017-01-01
There are only a handful of scanning techniques that can provide surface topography at nanometre resolution. At the same time, there are no methods that are capable of non-invasive imaging of the three-dimensional surface topography of a thin free-standing crystalline material. Here we propose a new technique—the divergent beam electron diffraction (DBED) and show that it can directly image the inhomogeneity in the atomic positions in a crystal. Such inhomogeneities are directly transformed into the intensity contrast in the first-order diffraction spots of DBED patterns and the intensity contrast linearly depends on the wavelength of the employed probing electrons. Three-dimensional displacement of atoms as small as 1 angstrom can be detected when imaged with low-energy electrons (50–250 eV). The main advantage of DBED is that it allows visualization of the three-dimensional surface topography and strain distribution at the nanometre scale in non-scanning mode, from a single shot diffraction experiment. PMID:28195123
Microreplication of laser-fabricated surface and three-dimensional structures
NASA Astrophysics Data System (ADS)
Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.
2010-12-01
The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.
Three-dimensional surface topography of graphene by divergent beam electron diffraction
NASA Astrophysics Data System (ADS)
Latychevskaia, Tatiana; Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Hwang, Ing-Shouh
2017-02-01
There are only a handful of scanning techniques that can provide surface topography at nanometre resolution. At the same time, there are no methods that are capable of non-invasive imaging of the three-dimensional surface topography of a thin free-standing crystalline material. Here we propose a new technique--the divergent beam electron diffraction (DBED) and show that it can directly image the inhomogeneity in the atomic positions in a crystal. Such inhomogeneities are directly transformed into the intensity contrast in the first-order diffraction spots of DBED patterns and the intensity contrast linearly depends on the wavelength of the employed probing electrons. Three-dimensional displacement of atoms as small as 1 angstrom can be detected when imaged with low-energy electrons (50-250 eV). The main advantage of DBED is that it allows visualization of the three-dimensional surface topography and strain distribution at the nanometre scale in non-scanning mode, from a single shot diffraction experiment.
Walton, Richard D.; Smith, Rebecca M.; Mitrea, Bogdan G.; White, Edward; Bernus, Olivier; Pertsov, Arkady M.
2012-01-01
Optical mapping has become an indispensible tool for studying cardiac electrical activity. However, due to the three-dimensional nature of the optical signal, the optical upstroke is significantly longer than the electrical upstroke. This raises the issue of how to accurately determine the activation time on the epicardial surface. The purpose of this study was to establish a link between the optical upstroke and exact surface activation time using computer simulations, with subsequent validation by a combination of microelectrode recordings and optical mapping experiments. To simulate wave propagation and associated optical signals, we used a hybrid electro-optical model. We found that the time of the surface electrical activation (tE) within the accuracy of our simulations coincided with the maximal slope of the optical upstroke (tF∗) for a broad range of optical attenuation lengths. This was not the case when the activation time was determined at 50% amplitude (tF50) of the optical upstroke. The validation experiments were conducted in isolated Langendorff-perfused rat hearts and coronary-perfused pig left ventricles stained with either di-4-ANEPPS or the near-infrared dye di-4-ANBDQBS. We found that tF∗ was a more accurate measure of tE than was tF50 in all experimental settings tested (P = 0.0002). Using tF∗ instead of tF50 produced the most significant improvement in measurements of the conduction anisotropy and the transmural conduction time in pig ventricles. PMID:22225795
A new three-dimensional terrain-following tidal model of free-surface flows
NASA Astrophysics Data System (ADS)
Lu, Fuqiang; Zhang, Zhuo; Song, Zhiyao; Yue, Songshan; Wen, Yongning
2015-12-01
A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlines near estuaries, continental shelves, and harbors. To solve the governing equations more efficiently, we improve the alternating direction implicit method, which is extensively used in the numerical modeling of horizontal two-dimensional shallow water equations, and extend it to a three-dimensional tidal model with relatively little computational effort. Through several test cases and realistic applications, as presented in the paper, it can be demonstrated that the model is capable of simulating the periodic to-and-fro currents, wind-driven flow, Ekman spirals, and tidal currents in the near-shore region.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
Faceted Visualization of Three Dimensional Neuroanatomy By Combining Ontology with Faceted Search
Veeraraghavan, Harini; Miller, James V.
2013-01-01
In this work, we present a faceted-search based approach for visualization of anatomy by combining a three dimensional digital atlas with an anatomy ontology. Specifically, our approach provides a drill-down search interface that exposes the relevant pieces of information (obtained by searching the ontology) for a user query. Hence, the user can produce visualizations starting with minimally specified queries. Furthermore, by automatically translating the user queries into the controlled terminology our approach eliminates the need for the user to use controlled terminology. We demonstrate the scalability of our approach using an abdominal atlas and the same ontology. We implemented our visualization tool on the opensource 3D Slicer software. We present results of our visualization approach by combining a modified Foundational Model of Anatomy (FMA) ontology with the Surgical Planning Laboratory (SPL) Brain 3D digital atlas, and geometric models specific to patients computed using the SPL brain tumor dataset. PMID:24006207
Computer-generated holograms for three-dimensional surface objects with shade and texture.
Matsushima, Kyoji
2005-08-01
Digitally synthetic holograms of surface model objects are investigated for reconstructing three-dimensional objects with shade and texture. The objects in the proposed techniques are composed of planar surfaces, and a property function defined for each surface provides shape and texture. The field emitted from each surface is independently calculated by a method based on rotational transformation of the property function by use of a fast Fourier transform (FFT) and totaled on the hologram. This technique has led to a reduction in computational cost: FFT operation is required only once for calculating a surface. In addition, another technique based on a theoretical model of the brightness of the reconstructed surfaces enables us to shade the surface of a reconstructed object as designed. Optical reconstructions of holograms synthesized by the proposed techniques are demonstrated.
NASA Astrophysics Data System (ADS)
Fan, Zhiqiang; Chang, Chao; Sun, Jun; Cao, Yibing; Song, Zhimin; Li, Yongdong
2017-09-01
A proof-of-principle experiment is presented demonstrating the suppression of multipactor breakdown in a coaxial multipactor device with three-dimensional periodic wavy surfaces. By changing the power and pulse width of the microwave source, threshold behavior near breakdown was obtained for this wavy-surface structure and a smooth-surface structure used for comparison. With a wide pulse width at a suitable power, the coefficient of reflection for the smooth-surface structure was found to increase, whereas the coefficient of transmission decreased. For the wavy-surface structure, a similar behavior appeared, only when the microwave pulse had a width of order of a few seconds. Accompanied by changes in transmission power characteristics, distinct increases in the second and third harmonic components were evident for the smooth-surface structure. These experimental results demonstrate that the wavy-surface structure effectively suppresses multipactor breakdown with the suppression increasing with the pulse width.
A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials.
Tatone, Bryan S A; Grasselli, Giovanni
2009-12-01
Conventionally, the evaluation of fracture surface roughness in brittle geomaterials, such as concrete and rock, has been based on the measurement and analysis of two-dimensional profiles rather than three-dimensional (3D) surfaces. The primary reason for doing so was the lack of tools capable of making 3D measurements. However, in recent years, several optical and mechanical measurement tools have become available, which are capable of quickly and accurately producing high resolution point clouds defining 3D surfaces. This paper provides a methodology for evaluating the surface roughness and roughness anisotropy using these 3D surface measurements. The methodology is presented step-by-step to allow others to easily adopt and implement the process to analyze their own surface measurement data. The methodology is demonstrated by digitizing a series of concrete fracture surfaces and comparing the estimated 3D roughness parameters with qualitative observations and estimates of the well-known roughness coefficient, R(s).
Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš
2015-05-01
Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches
Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces
NASA Technical Reports Server (NTRS)
Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.
2006-01-01
A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.
Zhang, Hongwei; Ji, Lishuan; Liu, Shugui; Li, Shaohui; Han, Shujian; Zhang, Xiaojie
2012-11-01
This paper proposes a mathematical measurement model of a highly reflected, specular surface with structured light method. In the measurement, an auxiliary fringe pattern named amplitude perturbation is adopted to be projected onto the measured surface. The amplitude perturbation can ease the procedure of searching the corresponding points between the phase map of the measured surface and that of the reference plane by locking up the most reliable point as the starting unwrapping point whose true phase can be calculated accurately. The proposed method is also suitable for measuring the step surfaces such as gauge blocks with different heights. Furthermore, the image segmentation technology is introduced in the phase unwrapping procedure to increase the speed. Based on the unwrapped phase map, zonal wave-front reconstruction algorithm is implemented to realize three-dimensional, highly reflected, specular surface reconstruction. Experimental studies show that the developed methodology displays accuracy and high stability for highly reflected, specular surface measurement.
Surface element-mapping of three dimensional structures by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Beresko, Christian; Kohns, Peter; Ankerhold, Georg
2014-09-01
During lateral mapping with laser-induced breakdown spectroscopy (LIBS) the focal position of the plasma-generating laser needs to be kept stable on the sample surface area to be probed. Therefore, three-dimensional structures like edged surfaces require a permanent re-focusing. We describe a new auto-focusing technique to perform surface elemental mapping with LIBS by correcting the focusing lens-to-sample distance using a direct monitoring of the LIBS signal intensity. This method allows the scanning of surfaces with strong height fluctuations of several millimeters without the need of any additional devices. The auto-focusing method is valuable for LIBS applications made on complex-shaped samples or simply to improve the measurement reproducibility. Applications are LIBS analyses of samples exhibiting drill holes or steep edges. Our procedure does not need a constant focal plane and follows the topographic profile of the sample surface. Impurities and material inclusions are well detected. From the topographic information additionally obtained, a three-dimensional image of the sample can be deduced. Depth resolution is limited by the Rayleigh range of the LIBS laser light. The method is best suited for low energy laser pulses with high repetition rate and infrared emission.
NASA Astrophysics Data System (ADS)
Mitic, S.; Klumov, B. A.; Khrapak, S. A.; Morfill, G. E.
2013-04-01
We report on the first detailed analysis of large three dimensional (3D) complex plasma structures in experiments performed in pure rf and combined rf+dc discharge modes. Inductively coupled plasma is generated by an rf coil wrapped around the vertically positioned cylindrical glass tube at a pressure of 0.3 mbar. In addition, dc plasma can be generated by applying voltage to the electrodes at the ends of the tube far from the rf coil. The injected monodisperse particles are levitated in the plasma below the coil. A scanning laser sheet and a high resolution camera are used to determine the 3D positions of about 105 particles. The observed bowl-shaped particle clouds reveal coexistence of various structures, including well-distinguished solid-like, less ordered liquid-like, and pronounced string-like phases. New criteria to identify string-like structures are proposed.
Coma aberrations in combined two- and three-dimensional STED nanoscopy
Antonello, Jacopo; Kromann, Emil B.; Burke, Daniel; Bewersdorf, Joerg; Booth, Martin J.
2016-01-01
Stimulated emission depletion (STED) microscopes, like all super-resolution methods, are sensitive to aberrations. Of particular importance are aberrations that affect the quality of the depletion focus, which requires a point of near-zero intensity surrounded by strong illumination. We present analysis, modeling, and experimental measurements that show the effects of coma aberrations on depletion patterns of two-dimensional (2D) and three-dimensional (3D) STED configurations. Specifically, we find that identical coma aberrations create focal shifts in opposite directions in 2D and 3D STED. This phenomenon could affect the precision of microscopic measurements and has ramifications for the efficacy of combined 2D/3D STED systems. PMID:27472636
Three-dimensional unsteady lifting surface theory in the subsonic range
NASA Technical Reports Server (NTRS)
Kuessner, H. G.
1985-01-01
The methods of the unsteady lifting surface theory are surveyed. Linearized Euler's equations are simplified by means of a Galileo-Lorentz transformation and a Laplace transformation so that the time and the compressibility of the fluid are limited to two constants. The solutions to this simplified problem are represented as integrals with a differential nucleus; these results in tolerance conditions, for which any exact solution must suffice. It is shown that none of the existing three-dimensional lifting surface theories in subsonic range satisfy these conditions. An oscillating elliptic lifting surface which satisfies the tolerance conditions is calculated through the use of Lame's functions. Numerical examples are calculated for the borderline cases of infinitely stretched elliptic lifting surfaces and of circular lifting surfaces. Out of the harmonic solutions any such temporal changes of the down current are calculated through the use of an inverse Laplace transformation.
Fragile surface zero-energy flat bands in three-dimensional chiral superconductors
NASA Astrophysics Data System (ADS)
Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2015-12-01
We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.
Huang, Y Q; Song, Y X; Wang, S M; Buyanova, I A; Chen, W M
2017-05-22
A three-dimensional (3D) topological insulator (TI) is a unique quantum phase of matter with exotic physical properties and promising spintronic applications. However, surface spin current in a common 3D TI remains difficult to control and the out-of-plane spin texture is largely unexplored. Here, by means of surface spin photocurrent in Bi2Te3 TI devices driven by circular polarized light, we identify the subtle effect of the spin texture of the topological surface state including the hexagonal warping term on the surface current. By exploring the out-of-plane spin texture, we demonstrate spin injection from GaAs to TI and its significant contribution to the surface current, which can be manipulated by an external magnetic field. These discoveries pave the way to not only intriguing new physics but also enriched spin functionalities by integrating TI with conventional semiconductors, such that spin-enabled optoelectronic devices may be fabricated in such hybrid structures.
NASA Astrophysics Data System (ADS)
Huang, Y. Q.; Song, Y. X.; Wang, S. M.; Buyanova, I. A.; Chen, W. M.
2017-05-01
A three-dimensional (3D) topological insulator (TI) is a unique quantum phase of matter with exotic physical properties and promising spintronic applications. However, surface spin current in a common 3D TI remains difficult to control and the out-of-plane spin texture is largely unexplored. Here, by means of surface spin photocurrent in Bi2Te3 TI devices driven by circular polarized light, we identify the subtle effect of the spin texture of the topological surface state including the hexagonal warping term on the surface current. By exploring the out-of-plane spin texture, we demonstrate spin injection from GaAs to TI and its significant contribution to the surface current, which can be manipulated by an external magnetic field. These discoveries pave the way to not only intriguing new physics but also enriched spin functionalities by integrating TI with conventional semiconductors, such that spin-enabled optoelectronic devices may be fabricated in such hybrid structures.
Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi₆Te₁₀.
Papagno, Marco; Eremeev, Sergey V; Fujii, Jun; Aliev, Ziya S; Babanly, Mahammad B; Mahatha, Sanjoy Kr; Vobornik, Ivana; Mamedov, Nazim T; Pacilé, Daniela; Chulkov, Evgueni V
2016-03-22
By means of angle-resolved photoemission spectroscopy (ARPES) measurements, we unveil the electronic band structure of three-dimensional PbBi6Te10 topological insulator. ARPES investigations evidence multiple coexisting Dirac surface states at the zone-center of the reciprocal space, displaying distinct electronic band dispersion, different constant energy contours, and Dirac point energies. We also provide evidence of Rashba-like split states close to the Fermi level, and deeper M- and V-shaped bands coexisting with the topological surface states. The experimental findings are in agreement with scanning tunneling microscopy measurements revealing different surface terminations according to the crystal structure of PbBi6Te10. Our experimental results are supported by density functional theory calculations predicting multiple topological surface states according to different surface cleavage planes.
Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model
NASA Astrophysics Data System (ADS)
Head, D. A.
2013-09-01
The sessile microbial communities known as biofilms exhibit varying architectures as environmental factors are varied, which for immersed biofilms includes the shear rate of the surrounding flow. Here we modify an established agent-based biofilm model to include affine flow and employ it to analyze the growth of surface roughness of single-species, three-dimensional biofilms. We find linear growth laws for surface geometry in both horizontal and vertical directions and measure the thickness of the active surface layer, which is shown to anticorrelate with roughness. Flow is shown to monotonically reduce surface roughness without affecting the thickness of the active layer. We argue that the rapid roughening is due to nonlocal surface interactions mediated by the nutrient field, which are curtailed when advection competes with diffusion. We further argue the need for simplified models to elucidate the underlying mechanisms coupling flow to growth.
Zennaro, Cristina; Rastaldi, Maria Pia; Bakeine, Gerald James; Delfino, Riccarda; Tonon, Federica; Farra, Rossella; Grassi, Gabriele; Artero, Mary; Tormen, Massimo; Carraro, Michele
2016-01-01
Although it is well recognized that cell–matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes – the gatekeepers of glomerular filtration – which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment. PMID:27757030
Mei, Rongwu; Li, Renjie; Lin, Hongjun; Shen, Zheping; Zhang, Meijia; Chen, Jianrong; He, Yiming
2016-11-01
In this paper, a novel approach to construct three-dimensional (3D) surface morphology of sludge flocs in a membrane bioreactor (MBR) was proposed. The new approach combined the static light scattering method for fractal dimension (Df) determination with the modified two-variable Weierstrass-Mandelbrot (WM) function based on fractal geometry and coordinate transformation for spherical surface construction. It was found that the sludge flocs in the MBR showed apparent fractal characteristics. Results showed that the constructed 3D morphology of sludge flocs was very sensitive to Df, and higher Df induced a more compact and smoother surface morphology. With a set of proper parameter data, the constructed 3D surface morphology of sludge flocs could be quite similar to the real floc surface morphology, showing the feasibility of the proposed approach. The proposed solution to floc surface construction could be potentially used in interfacial interaction assessment, giving important implications for membrane fouling research.
Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Masad, Jamal A.
1996-01-01
The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.
NASA Technical Reports Server (NTRS)
Perucchio, R.; Ingraffea, A. R.
1984-01-01
The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.
NASA Technical Reports Server (NTRS)
Perucchio, R.; Ingraffea, A. R.
1984-01-01
The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.
Three-dimensional immobilization of beta-galactosidase on a silicon surface.
Betancor, Lorena; Luckarift, Heather R; Seo, Jae H; Brand, Oliver; Spain, Jim C
2008-02-01
Many alternative strategies to immobilize and stabilize enzymes have been investigated in recent years for applications in biosensors. The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity and enhanced mechanical stability. Here we report a strategy for chemically associating silica nanospheres containing entrapped enzyme to a silicon support. beta-galactosidase from E. coli was used as a model enzyme due to its versatility as a biosensor for lactose. The immobilization strategy resulted in a three-dimensional network of silica attached directly at the silicon surface, providing a significant increase in surface area and a corresponding 3.5-fold increase in enzyme loading compared to enzyme attached directly at the surface. The maximum activity recovered for a silicon square sample of 0.5 x 0.5 cm was 0.045 IU using the direct attachment of the enzyme through glutaraldehyde and 0.16 IU when using silica nanospheres. The immobilized beta-galactosidase prepared by silica deposition was stable and retained more than 80% of its initial activity after 10 days at 24 degrees C. The ability to generate three-dimensional structures with enhanced loading capacity for biosensing molecules offers the potential to substantially amplify biosensor sensitivity.
Three-dimensional assessment of dental casts' occlusal surfaces using two impression materials.
Tarawneh, F M; Panos, P G; Athanasiou, A E
2008-11-01
The aim of this study was to assess by means of a three-dimensional computed tomography scanning system the occlusal surface characteristics of dental casts made using two different impression materials. Alginate and polyvinyl siloxane impressions were taken of 20 dental students resulting in 40 dental casts. The casts were paired for each student separately so that each pair consisted of an alginate poured cast and a polyvinyl siloxane poured out cast. The casts were scanned using FlashCT scanner and for each cast, a three-dimensional digital image was obtained. The digitized casts were processed using the three-dimensional imaging software Geomagic Studio 9. A total of 464 paired teeth were digitally separated and superimposed. For each tooth, two measurements were obtained corresponding to the two different impression materials used. The two sets of volumes for all digitally separated teeth were compared and analysed using the Wilcoxon signed test. Larger volume measurements were obtained for teeth separated from alginate poured out casts than from their corresponding ones from polyvinyl siloxane casts (P = 0.005). When the teeth were divided into the groups of incisors, canines and premolars/molars, only the last one exhibited significant difference (P = 0.00). The mean difference between the volumes measured for all 464 teeth separated was 0.041 mm(3) (+/-0.33). The occlusal surfaces of teeth appear differently in dental casts depending on the impression materials used. Impressions of dental casts should be utilized with caution in relation to their research application and in reference with dental wear studies.
Three-dimensional analysis of facial shape and symmetry in twins using laser surface scanning.
Djordjevic, J; Jadallah, M; Zhurov, A I; Toma, A M; Richmond, S
2013-08-01
Three-dimensional analysis of facial shape and symmetry in twins. Faces of 37 twin pairs [19 monozygotic (MZ) and 18 dizygotic (DZ)] were laser scanned at the age of 15 during a follow-up of the Avon Longitudinal Study of Parents and Children (ALSPAC), South West of England. Facial shape was analysed using two methods: 1) Procrustes analysis of landmark configurations (63 x, y and z coordinates of 21 facial landmarks) and 2) three-dimensional comparisons of facial surfaces within each twin pair. Monozygotic and DZ twins were compared using ellipsoids representing 95% of the variation in landmark configurations and surface-based average faces. Facial symmetry was analysed by superimposing the original and mirror facial images. Both analyses showed greater similarity of facial shape in MZ twins, with lower third being the least similar. Procrustes analysis did not reveal any significant difference in facial landmark configurations of MZ and DZ twins. The average faces of MZ and DZ males were coincident in the forehead, supraorbital and infraorbital ridges, the bridge of the nose and lower lip. In MZ and DZ females, the eyes, supraorbital and infraorbital ridges, philtrum and lower part of the cheeks were coincident. Zygosity did not seem to influence the amount of facial symmetry. Lower facial third was the most asymmetrical. Three-dimensional analyses revealed differences in facial shapes of MZ and DZ twins. The relative contribution of genetic and environmental factors is different for the upper, middle and lower facial thirds. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Barthwal, Sumit; Kim, Young Su; Lim, Si-Hyung
2013-06-15
Superamphiphobic functional Ti foils were fabricated using anodization techniques. By varying the supply voltage and anodization time, a two-step anodization method was used to maximize the contact angle of water and various oils. The morphology of the TiO2 nanotube surface is important to achieve superamphiphobicitiy. The anodized surface maintained good superamphiphobic stability with long-term storage. Furthermore, the wettability properties toward both water and various oils can be easily and reversibly switched from hydrophobic and oleophobic to hydrophilic and oleophilic, respectively, and vice versa via air-plasma treatment and fluorination. The developed simple technique can be applied to any large-area three-dimensional surfaces to fabricate amphiphobic Ti surfaces.
Son, JoonGon; Kim, GeunHyung
2009-01-01
Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.
Taylor, Helena O; Morrison, Clinton S; Linden, Olivia; Phillips, Benjamin; Chang, Johnny; Byrne, Margaret E; Sullivan, Stephen R; Forrest, Christopher R
2014-01-01
Although symmetry is hailed as a fundamental goal of aesthetic and reconstructive surgery, our tools for measuring this outcome have been limited and subjective. With the advent of three-dimensional photogrammetry, surface geometry can be captured, manipulated, and measured quantitatively. Until now, few normative data existed with regard to facial surface symmetry. Here, we present a method for reproducibly calculating overall facial symmetry and present normative data on 100 subjects. We enrolled 100 volunteers who underwent three-dimensional photogrammetry of their faces in repose. We collected demographic data on age, sex, and race and subjectively scored facial symmetry. We calculated the root mean square deviation (RMSD) between the native and reflected faces, reflecting about a plane of maximum symmetry. We analyzed the interobserver reliability of the subjective assessment of facial asymmetry and the quantitative measurements and compared the subjective and objective values. We also classified areas of greatest asymmetry as localized to the upper, middle, or lower facial thirds. This cluster of normative data was compared with a group of patients with subtle but increasing amounts of facial asymmetry. We imaged 100 subjects by three-dimensional photogrammetry. There was a poor interobserver correlation between subjective assessments of asymmetry (r = 0.56). There was a high interobserver reliability for quantitative measurements of facial symmetry RMSD calculations (r = 0.91-0.95). The mean RMSD for this normative population was found to be 0.80 ± 0.24 mm. Areas of greatest asymmetry were distributed as follows: 10% upper facial third, 49% central facial third, and 41% lower facial third. Precise measurement permitted discrimination of subtle facial asymmetry within this normative group and distinguished norms from patients with subtle facial asymmetry, with placement of RMSDs along an asymmetry ruler. Facial surface symmetry, which is poorly assessed
NASA Astrophysics Data System (ADS)
Harvazinski, Matthew Evan
Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is
Laforce, Brecht; Masschaele, Bert; Boone, Matthieu N; Schaubroeck, David; Dierick, Manuel; Vekemans, Bart; Walgraeve, Christophe; Janssen, Colin; Cnudde, Veerle; Van Hoorebeke, Luc; Vincze, Laszlo
2017-10-03
A novel 3D elemental and morphological analysis approach is presented combining X-ray computed tomography (μCT), X-ray fluorescence (XRF) tomography, and confocal XRF analysis in a single laboratory instrument (Herakles). Each end station of Herakles (μCT, XRF-CT, and confocal XRF) represents the state-of-the-art of currently available laboratory techniques. The integration of these techniques enables linking the (quantitative) spatial distribution of chemical elements within the investigated materials to their three-dimensional (3D) internal morphology/structure down to 1-10 μm resolution level, which has not been achieved so-far using laboratory X-ray techniques. The concept of Herakles relies strongly on its high precision (around 100 nm) air-bearing motor system that connects the different end-stations, allowing combined measurements based on the above X-ray techniques while retaining the coordinate system. In-house developed control and analysis software further ensures a smooth integration of the techniques. Case studies on a Cu test pattern, a Daphnia magna model organism and a perlite biocatalyst support material demonstrate the attainable resolution, elemental sensitivity of the instrument, and the strength of combining these three complementary methodologies.
Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects
Lu, Shin-Yee
1998-01-01
A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.
Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects
Lu, S.Y.
1998-12-22
A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.
NASA Astrophysics Data System (ADS)
Hu, Xiaotang; Xu, Zongwei; Li, Kang; Fang, Fengzhou; Wang, Liyang
2015-11-01
Methods for fabricating three-dimensional nanofeature arrays for surface-enhanced Raman spectroscopy (SERS) substrates were explored by combining the self-assembly of nanoscale polystyrene (PS) spheres with subsequent Au film ion sputter coating modulation. The substrate's nanoscale hot-spot features were controlled using the Au coating film thickness regulation and focused ion beam (FIB) nano-patterning regulation methods. Scanning electron microscopy and Raman spectroscopy were employed to analyze the substrate morphology and the enhancement mechanism of the three-dimensional SERS substrate. PS microspheres with diameters of 151 nm and 360 nm were coated with Au layers of different thicknesses ranging from 10 nm to 270 nm. The configuration of the Au-PS spheres can be regulated to hexagonal close packing with nanoscale V-shaped slits with a 10-20 nm gap pattern. Nanoscale Au particles and clusters with a clear outline covered the surface of the PS spheres, in which the multiple-scale structures increase the specific surface area of the SERS-active substrate. Nanoscale cracks formed on the smaller Au-PS spheres with a diameter of 151 nm, which also exhibited strong SERS activity. The substrate surface temperature regularly increased after Au coating, and the thermal expansion coefficient difference and PS glass transition properties were studied to explain the Au-PS spheres nanofeature configuration development. The fabricated Au-PS spheres SERS feature is a type of three-dimensional and highly ordered array, which can show Raman scattering characteristics by providing a SERS enhancement factor of greater than 107.
Subduction-induced delamination and its surface expressions - three-dimensional numerical modelling
NASA Astrophysics Data System (ADS)
Ueda, Kosuke; Gerya, Taras; Willett, Sean
2015-04-01
Delamination during the long-term evolution of convergent plate boundaries has been interpreted as root cause for lithospheric mantle heterogeneities, and has been linked to surface observations in different stages of subduction-collision-lithospheric thinning systems. Amongst others, it has been invoked for the Apeninnes, Rhodope, and Pontides, for thinned or removed lithosphere in the Aegean and western Mediterranean, and for extensive topographic anomalies such as the Colorado or Hikurangi plateaus. With the onset of collision, in order to balance mass and to achieve either further plate convergence, subduction, or foundering of subcontinental lithospheric mantle, there is an increasing need for a mechanism to separate relatively buoyant and less buoyant material. In independent geodynamic modelling studies carried out in 2D, delamination (sensu strictu) along a horizon of minimal rheological strength has been demonstrated to satisfy this requirement. Recent work has also shown that delamination marks a gradual transition of mobile topography from tectonically dominated to mantle dominated topography over long time scales. While first order features of major observables, such as topography, and imaged lithospheric mantle thickness, can generally be reproduced in a variety of models, there is an unsatisfactory lack of uniqueness in pin-pointing the underlying mode of lithospheric mantle removal occurring at depth. In addition, strong curvatures in many orogenic systems (e.g., Western Alps, Apennines, or Carpathians) indicate that their crustal and sub-crustal evolution are intrinsically three-dimensional. To test how spatially confined delamination contributes to three-dimensional evolution, the complex arcuate curvature of resulting orogenic systems, and to the developing topography pattern, new three-dimensional models are presented. Based on recent methodological developments, and findings in 2-D delamination modelling and 3-D modelling of subduction
Three-dimensional assessment of condylar surface changes and remodeling after orthognathic surgery
Lee, Jung-Hye; Lee, Woo-Jin; Shin, Jae-Myung; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun
2016-01-01
Purpose This study was performed to evaluate condylar surface changes and remodeling after orthognathic surgery using three-dimensional computed tomography (3D CT) imaging, including comparisons between the right and left sides and between the sexes. Materials and Methods Forty patients (20 males and 20 females) who underwent multi-detector CT examinations before and after surgery were selected. Three-dimensional images comprising thousands of points on the condylar surface were obtained before and after surgery. For the quantitative assessment of condylar surface changes, point-to-point (preoperative-to-postoperative) distances were calculated using D processing software. These point-to-point distances were converted to a color map. In order to evaluate the types of condylar remodeling, the condylar head was divided into six areas (anteromedial, anteromiddle, anterolateral, posteromedial, posteromiddle, and posterolateral areas) and each area was classified into three types of condylar remodeling (bone formation, no change, and bone resorption) based on the color map. Additionally, comparative analyses were performed between the right and left sides and according to sex. Results The mean of the average point-to-point distances on condylar surface was 0.11±0.03 mm. Bone resorption occurred more frequently than other types of condylar remodeling, especially in the lateral areas. However, bone formation in the anteromedial area was particularly prominent. No significant difference was found between the right and left condyles, but condylar surface changes in males were significantly larger than in females. Conclusion This study revealed that condylar remodeling exhibited a tendency towards bone resorption, especially in the lateral areas. Condylar surface changes occurred, but were small. PMID:27051636
Lew, Matthew D; Lee, Steven F; Ptacin, Jerod L; Lee, Marissa K; Twieg, Robert J; Shapiro, Lucy; Moerner, W E
2011-11-15
Recently, single-molecule imaging and photocontrol have enabled superresolution optical microscopy of cellular structures beyond Abbe's diffraction limit, extending the frontier of noninvasive imaging of structures within living cells. However, live-cell superresolution imaging has been challenged by the need to image three-dimensional (3D) structures relative to their biological context, such as the cellular membrane. We have developed a technique, termed superresolution by power-dependent active intermittency and points accumulation for imaging in nanoscale topography (SPRAIPAINT) that combines imaging of intracellular enhanced YFP (eYFP) fusions (SPRAI) with stochastic localization of the cell surface (PAINT) to image two different fluorophores sequentially with only one laser. Simple light-induced blinking of eYFP and collisional flux onto the cell surface by Nile red are used to achieve single-molecule localizations, without any antibody labeling, cell membrane permeabilization, or thiol-oxygen scavenger systems required. Here we demonstrate live-cell 3D superresolution imaging of Crescentin-eYFP, a cytoskeletal fluorescent protein fusion, colocalized with the surface of the bacterium Caulobacter crescentus using a double-helix point spread function microscope. Three-dimensional colocalization of intracellular protein structures and the cell surface with superresolution optical microscopy opens the door for the analysis of protein interactions in living cells with excellent precision (20-40 nm in 3D) over a large field of view (12 12 μm).
Combining physical and semantical navigation in three-dimensional information visualization
NASA Astrophysics Data System (ADS)
Russo Dos Santos, Cristina; Gros, Pascal; Abel, Pierre
2002-03-01
The field of information visualization is in permanent expansion and new and innovative ways of visualizing large volumes of abstract data are being developed. The use of virtual metaphoric worlds is one of them, but these visualizations per se are only truly useful if the user is provided a means of exploring the information. A common way of data exploration is navigation. In the case of three-dimensional (3D) information visualization, navigation as a means of information exploration attains even more importance due to the extra exploitable dimension. Nonetheless, navigation in large virtual worlds is still a difficult task and not only for naive users; there is anecdotal evidence that electronic navigation is considered difficult even by the virtual worlds builders. Wayfinding, knowing where to go, is sometimes perceived as the hardest part; other times, it is the locomotion, getting there, that is found difficult. This paper presents a navigation strategy that attempts to solve these problems by combining physical/metaphoric navigation with semantic navigation. We present a framework for navigating large virtual worlds that relies heavily on the use of visual metaphors. The combination of physical and semantic navigation embedded in the metaphor components allows for a powerful data exploration and electronic navigation mechanism.
Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo
2016-07-15
Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01-1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica.
NASA Astrophysics Data System (ADS)
Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo
2016-07-01
Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01-1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica.
Three-dimensional structure of the surface protein of Desulfurococcus mobilis.
Wildhaber, I; Santarius, U; Baumeister, W
1987-01-01
The spherical cells of the thermophilic, sulfur-dependent archaebacterium Desulfurococcus mobilis are completely covered with a relatively poorly ordered, tetragonally arrayed surface protein. The structure of this surface protein was examined by using three-dimensional electron microscopy. The protein lattice forms an open meshwork composed of cross-shaped morphological units, which are released when glycerol is added. These subunits make contact at the distal ends of their four arms. The p4 symmetry requires that each of these morphological subunits represents a tetramer. The strong interaction of the monomers within the crosses and the relatively weak interaction of the intersecting arms of the crosses within the lattice structure suggest that the tetramers are assembled before their incorporation into the lattice. Images PMID:3119566
A hierarchical family of three-dimensional potential energy surfaces for He-CO
Peterson, K A; McBane, George C
2005-08-22
A hierarchical family of five three-dimensional potential energy surfaces has been developed for the benchmark He-CO system. Four surfaces were obtained at the coupled cluster singles and doubles level of theory with a perturbational estimate of triple excitations, CCSD*T*, and range in quality from the doubly augmented double-zeta basis set to the complete basis set *CBS* limit. The fifth corresponds to an approximate CCSDT/CBS surface *CCSD with iterative triples/CBS, denoted CBS+corr*. The CBS limit results were obtained by pointwise basis set extrapolations of the individual counterpoise-corrected interaction energies. For each surface, over 1000 interaction energies were accurately interpolated using a reproducing kernel Hilbert space approach with an R-6+R-7 asymptotic form. In each case, both three-dimensional and effective two-dimensional surfaces were developed. In standard Jacobi coordinates, the final CBS+corr surface has a global minimum at rCO=2.1322a0 ,R=6.418a0, and * =70.84° with a well depth of -22.34 cm-1. The other four surfaces have well depths ranging from -14.83 cm-1 *CCSD*T*/d-aug-cc-pVDZ* to -22.02 cm-1 *CCSD*T*/CBS*. For each of these surfaces the infrared spectrum has been accurately calculated and compared to experiment, as well as to previous theoretical and empirical surfaces. The final CBS+corr surface exhibits root-mean-square and maximum errors compared to experiment *4He* of just 0.03 and 0.04 cm-1, respectively, for all 42 transitions and is the most accurate ab initio surface to date for this system. Other quantities investigated include the interaction second virial coefficient, the integral cross sections, and thermal rate coefficients for rotational relaxation of CO by He, and rate coefficients for CO vibrational relaxation by He. All the observable quantities showed a smooth convergence with respect to the quality of the underlying interaction surface. © 2005 American Institute of Physics. *DOI: 10.1063/1.1947194*
Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems
BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.
1999-10-14
Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.
Li, Bo; Dong, Li; Chen, Bin; Ji, Shuangxi; Cai, Wenchao; Wang, Ye; Zhang, Jue; Zhang, Zhaoqi; Wang, Xiaoying; Fang, Jing
2013-11-01
In this study, we sought to investigate the feasibility of turbo fast three-dimensional (3D) black-blood imaging by combining a 3D motion-sensitizing driven equilibrium rapid gradient echo sequence with compressed sensing. A pseudo-centric phase encoding order was developed for compressed sensing-3D motion-sensitizing driven equilibrium rapid gradient echo to suppress flow signal in undersampled 3D k-space. Nine healthy volunteers were recruited for this study. Signal-to-tissue ratio, contrast-to-tissue ratio (CTR) and CTR efficiency (CTReff ) between fully sampled and undersampled images were calculated and compared in seven subjects. Moreover, isotropic high resolution images using different compressed sensing acceleration factors were evaluated in two other subjects. Wall-lumen signal-to-tissue ratio or CTR were comparable between the undersampled and the fully sampled images, while significant improvement of CTReff was achieved in the undersampled images. At an isotropic high spatial resolution of 0.7 × 0.7 × 0.7 mm(3) , all undersampled images exhibited similar level of the flow suppression efficiency and the capability of delineating outer vessel wall boundary and lumen-wall interface, when compared with the fully sampled images. The proposed turbo fast compressed sensing 3D black-blood imaging technique improves scan efficiency without sacrificing flow suppression efficiency and vessel wall image quality. It could be a valuable tool for rapid 3D vessel wall imaging. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Scherbaum, Frank
1990-08-01
The estimation of Q values and/or source corner frequencies fc from single-station narrow-band recordings of microearthquake spectra is a strongly nonunique problem. This is due to the fact that the spectra can be equally well fitted with low-Q/high-fc or a high-Q/low-fc spectral models. Here, a method is proposed to constrain this ambiguity by inverting a set of microearthquake spectra for a three-dimensional Q model structure and model source parameters seismic moment (Mo ) and corner frequency (fc ) simultaneously. The inversion of whole path Q can be stated as a linear problem in the attenuation operator t* and solved using a tomographic reconstruction of the three-dimensional Q structure. This Q structure is then used as a "geometrical constraint" for a nonlinear Marquardt-Levenberg inversion of Mo and fc and a new Q value. The first step of the method consists of interactively fitting the observed microearthquake spectra by spectral models consisting of a source spectrum with an assumed high-frequency decay, a single-layer resonance filter to account for local site effects, and additional "whole path attenuation" along the ray path. From the obtained Q values, a three-dimensional Q model is calculated using a tomographic reconstruction technique (SIRT). The individual Q values along each ray path are then used as Q starting values for a nonlinear iterative Marquardt-Levenberg inversion of Mo and fc and a "new" Q value. Subsequently, the "new" Q values are used to reconstruct the next Q model which again provides starting values for the "next" nonlinear inversion of Mo, fc, and Q. This process is repeated until the "goodness of fit measure" indicates no further improvement of the results. The method has been tested on a set of approximately 2800 P wave spectra (0.9 < M < 2.0) from the recordings of 635 microearth-quakes from the Kaoiki seismic zone in Hawaii (Big Island) which were recorded at up to six stations. The hypocenters are distributed within a volume
Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo
2017-01-31
In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.
NASA Astrophysics Data System (ADS)
Cai, De; Li, Zhongfei; Li, Yao; Guo, Zhendong; Chen, Sung-Liang
2017-03-01
Acoustic-resolution photoacoustic microscopy (ARPAM) is a promising tool for deep imaging of biological tissues. Synthetic aperture focusing technique (SAFT) can improve the degraded lateral resolution in the out-of-focus region of ARPAM when using a high numerical aperture acoustic transducer. We previously reported a three-dimensional (3D) deconvolution technique to improve both lateral and axial resolutions in the focus region of ARPAM. In this work, we extended resolution enhancement of ARPAM to the out-of-focus region based on two dimensional SAFT combined with the 3D deconvolution (SAFT+Deconv). In both the focus and out-of-focus regions, depth-independent lateral and axial resolution after SAFT ensures a depth-independent point spread function for 3D deconvolution algorithm. In an extended depth of focus (DOF) of 2 mm, SAFT+Deconv ARPAM improves the -6 dB lateral resolutions from 65-700 μm to 20-29 μm, and the -6 dB axial resolutions from 35-42 μm to 12-19 μm. The signal-to-noise ratio is also increased by 6-30 dB. The enhanced resolution in extended DOF by SAFT+Deconv ARPAM may enable important applications in biomedical photoacoustic imaging.
Shin, Dong Sun; Chung, Min Suk; Park, Jin Seo; Park, Hyung Seon; Lee, Seung-Bock; Lee, Sang-Ho; Choi, Ho-Nam; Riemer, Martin; Handels, Heinz; Lee, Jong Eun; Jung, Wonsug
2011-02-20
Unlike volume models, surface models representing hollow, three-dimensional images have a small file size; allowing them to be displayed, rotated, and modified in real time. Therefore, surface models of lumbosacral structures can be effectively used for interactive simulation of, e.g., virtual lumbar puncture, virtual surgery of herniated lumbar discs, and virtual epidural anesthesia. In this paper, we present surface models of extensive lumbosacral structures which can be used in medical simulation systems. One-hundred and thirty-eight chosen structures included the spinal cord, lumbar and sacral nerves, vertebrae, intervertebral discs, ligaments, muscles, arteries, and skin. The structures were outlined in the sectioned images from the Visible Korean. From these outlined images, serial outlines of each structure were stacked. Adopting commercial software (3D-DOCTOR, Maya), an advanced surface reconstruction technique was applied to create a surface model of the structure. In the surface models, we observed the anatomical relationships of the lumbosacral structures (e.g., cauda equina and ligaments) in detail. Additionally, the portions of some spinal nerves that could not be outlined were drawn and added to the surface models. These constructed models will hopefully facilitate development of high quality medical simulation of the lumbosacral region. Copyright Â© 2010 Elsevier GmbH. All rights reserved.
Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces.
Janssen, P; Vogels, R; Liu, Y; Orban, G A
2001-12-01
The lower bank of the superior temporal sulcus (TEs), part of the inferior temporal cortex, contains neurons selective for disparity-defined three-dimensional (3-D) shape. The large majority of these TEs neurons respond to the spatial variation of disparity, i.e., are higher-order disparity selective. To determine whether curved boundaries or curved surfaces by themselves are sufficient to elicit 3-D shape selectivity, we recorded the responses of single higher-order disparity-selective TEs neurons to concave and convex 3-D shapes in which the disparity varied either along the boundary of the shape, or only along its surface. For a majority of neurons, a 3-D boundary was sufficient for 3-D shape selectivity. At least as many neurons responded selectively to 3-D surfaces, and a number of neurons exhibited both surface and boundary selectivity. The second aim of this study was to determine whether TEs neurons can represent differences in second-order disparities along the horizontal axis. The results revealed that TEs neurons can also be selective for horizontal 3-D shapes and can code the direction of curvature (vertical or horizontal). Thus, TEs neurons represent both boundaries and surfaces curved in depth and can signal the direction of curvature along a surface. These results show that TEs neurons use not only boundary but also surface information to encode 3-D shape properties.
Numerical study of three-dimensional sound reflection from corrugated surface waves.
Choo, Youngmin; Song, H C; Seong, Woojae
2016-10-01
When a sound wave propagates in a water medium bounded by a smooth surface wave, reflection from a wave crest can lead to focusing and result in rapid variation of the received waveform as the surface wave moves [Tindle, Deane, and Preisig, J. Acoust. Soc. Am. 125, 66-72 (2009)]. In prior work, propagation paths have been constrained to be in a plane parallel to the direction of corrugated surface waves, i.e., a two-dimensional (2-D) propagation problem. In this paper, the azimuthal dependence of sound propagation as a three-dimensional (3-D) problem is investigated using an efficient, time-domain Helmholtz-Kirchhoff integral formulation. When the source and receiver are in the plane orthogonal to the surface wave direction, the surface wave curvature vanishes in conventional 2-D treatments and the flat surface simply moves up and down, resulting in minimal temporal variation of the reflected signal intensity. On the other hand, the 3-D propagation analysis reveals that a focusing phenomenon occurs in the reflected signal due to the surface wave curvature formed along the orthogonal plane, i.e., out-of-plane scattering.
Three-dimensional tracking of motile bacteria near a solid planar surface
Frymier, P.D.; Ford, R.M.; Berg, H.C. |
1995-06-20
Knowing how motile bacteria move near and along a solid surface is crucial to understanding such diverse phenomena as the migration of infectious bacteria along a catheter, biofilm growth, and the movement of bacteria through the pore spaces of saturated soil, a critical step in the in situ bioremediation of contaminated aquifers. In this study, a tracking microscope is used to record the three-dimensional motion of Escherichia coli near a planar glass surface. Data from the tracking microscope are analyzed to quantify the effects of bacteria-surface interactions on the swimming behavior of bacteria. The speed of cells approaching the surface is found to decrease in agreement with the mathematical model of Ramia et al, which represents the bacteria as spheres with a single polar flagellum rotating at a constant rate. The tendency of cells to swim adjacent to the surface is shown in computer-generated reproductions of cell traces. The attractive interaction potential between the cells and the solid surface is offered as one of several possible explanations for this tendency. 22 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Hung, Chih-Yi; Yeh, Yun-Peng; Sung, Cheng-Kuo; Liao, Wei-Chien; Chuang, Tzu-Han; Fu, Chien-Chung
2017-06-01
The aim of the present work is to fabricate three-dimensional-printed (3D-printed) atomic force microscopy (AFM) tips for the measurement of the adhesion force on micropatterned surfaces. The shape of the microstructure strongly affects the peeling-off process in the fabrication of flexible electronic devices, and we demonstrate the fabrication of a micropatterned structure for the peeling-off process from soft materials. Furthermore, the 3D-printed AFM tips not only have an optimized design but also increase the sensitivity of adhesion force measurement. We have demonstrated the conical 3D-printed AFM tips with the radii of the spherical end from 2 to 10 µm with various sensitivities of adhesive force measurement.
NASA Astrophysics Data System (ADS)
Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.
2016-10-01
A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.
Mining three-dimensional anthropometric body surface scanning data for hypertension detection.
Chiu, Chaochang; Hsu, Kuang-Hung; Hsu, Pei-Lun; Hsu, Chi-I; Lee, Po-Chi; Chiou, Wen-Ko; Liu, Thu-Hua; Chuang, Yi-Chou; Hwang, Chorng-Jer
2007-05-01
Hypertension is a major disease, being one of the top ten causes of death in Taiwan. The exploration of three-dimensional (3-D) anthropometry scanning data along with other existing subject medical profiles using data mining techniques becomes an important research issue for medical decision support. This research attempts to construct a prediction model for hypertension using anthropometric body surface scanning data. This research adopts classification trees to reveal the relationship between a subject's 3-D scanning data and hypertension disease using the hybrid of the association rule algorithm (ARA) and genetic algorithms (GAs) approach. The ARA is adopted to obtain useful clues based on which the GA is able to proceed its searching tasks in a more efficient way. The proposed approach was experimented and compared with a regular genetic algorithm in predicting a subject's hypertension disease. Better computational efficiency and more accurate prediction results from the proposed approach are demonstrated.
Unconventional bulk three-dimensional Fermi surface in Kondo insulating SmB6
NASA Astrophysics Data System (ADS)
Tan, Beng
We report the observation of a paradoxical insulator with a bulk state which is electrically insulating and simultaneously yields quantum oscillations typical of good metals. We present high field measurements of conductivity and magnetic torque in high purity single crystals of the Kondo insulator SmB6 which reveal an activated behavior characteristics of an insulator with an energy gap at the Fermi energy in the former and quantum oscillation of frequencies characteristics of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6 in the latter. The quantum oscillations observed in the magnetic torque measurements are characteristic of an unconventional Fermi liquid - the amplitude strongly increases at low temperatures in a stark contrast to the saturating Lifshitz-Kosevich behavior in conventional metallic states.
Li, Yuanyuan; Pan, Jian; Zhan, Peng; Zhu, Shining; Ming, Naiben; Wang, Zhenlin; Han, Wenda; Jiang, Xunya; Zi, Jian
2010-02-15
An enhanced dielectric environment response is observed in a kind of metallic nanohole arrays which are prepared by metal deposition on a sacrificial two dimensional colloidal crystal template. The periodic metallic structures are composed of interlinked metallic half-shells supported on a planar dielectric substrate. When putting in dielectric matrix of different refractive index, the measured sensitivity of the quasi-three-dimensional metallic nanohole array can reach a value of 1192 nm per refractive index unit which shows a five-fold increase as compared with the metallic structures supported on the template. The observed boost in sensitivity is found to originate from a substantially reduced substrate effect, resulting in a pronounced surface plasmon coupling of which its strength is independent of the dielectric environment, a characteristics absent in conventional planar metallic subwavelength hole arrays. These findings are analyzed theoretically and confirmed by numerical simulations.
O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E
2015-08-01
Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.
Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming
2015-08-01
The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation.
Enhanced three-dimensional stochastic adjustment for combined volcano geodetic networks
NASA Astrophysics Data System (ADS)
Del Potro, R.; Muller, C.
2009-12-01
Volcano geodesy is unquestionably a necessary technique in studies of physical volcanology and for eruption early warning systems. However, as every volcano geodesist knows, obtaining measurements of the required resolution using traditional campaigns and techniques is time consuming and requires a large manpower. Moreover, most volcano geodetic networks worldwide use a combination of data from traditional techniques; levelling, electronic distance measurements (EDM), triangulation and Global Navigation Satellite Systems (GNSS) but, in most cases, these data are surveyed, analysed and adjusted independently. This then leaves it to the authors’ criteria to decide which technique renders the most realistic results in each case. Herein we present a way of solving the problem of inter-methodology data integration in a cost-effective manner following a methodology were all the geodetic data of a redundant, combined network (e.g. surveyed by GNSS, levelling, distance, angular data, INSAR, extensometers, etc.) is adjusted stochastically within a single three-dimensional referential frame. The adjustment methodology is based on the least mean square method and links the data with its geometrical component providing combined, precise, three-dimensional, displacement vectors, relative to external reference points as well as stochastically-quantified, benchmark-specific, uncertainty ellipsoids. Three steps in the adjustment allow identifying, and hence dismissing, flagrant measurement errors (antenna height, atmospheric effects, etc.), checking the consistency of external reference points and a final adjustment of the data. Moreover, since the statistical indicators can be obtained from expected uncertainties in the measurements of the different geodetic techniques used (i.e. independent of the measured data), it is possible to run a priori simulations of a geodetic network in order to constrain its resolution, and reduce logistics, before the network is even built. In this
Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.
Moreno, César; Stetsovych, Oleksandr; Shimizu, Tomoko K; Custance, Oscar
2015-04-08
Submolecular imaging by atomic force microscopy (AFM) has recently been established as a stunning technique to reveal the chemical structure of unknown molecules, to characterize intramolecular charge distributions and bond ordering, as well as to study chemical transformations and intermolecular interactions. So far, most of these feats were achieved on planar molecular systems because high-resolution imaging of three-dimensional (3D) surface structures with AFM remains challenging. Here we present a method for high-resolution imaging of nonplanar molecules and 3D surface systems using AFM with silicon cantilevers as force sensors. We demonstrate this method by resolving the step-edges of the (101) anatase surface at the atomic scale by simultaneously visualizing the structure of a pentacene molecule together with the atomic positions of the substrate and by resolving the contour and probe-surface force field on a C60 molecule with intramolecular resolution. The method reported here holds substantial promise for the study of 3D surface systems such as nanotubes, clusters, nanoparticles, polymers, and biomolecules using AFM with high resolution.
Dey, Damini; Gobbi, David G; Slomka, Piotr J; Surry, Kathleen J M; Peters, Terence M
2002-01-01
A major limitation of the use of endoscopes in minimally invasive surgery is the lack of relative context between the endoscope and its surroundings. The purpose of this work was to fuse images obtained from a tracked endoscope to surfaces derived from three-dimensional (3-D) preoperative magnetic resonance or computed tomography (CT) data, for assistance in surgical planning, training and guidance. We extracted polygonal surfaces from preoperative CT images of a standard brain phantom and digitized endoscopic video images from a tracked neuro-endoscope. The optical properties of the endoscope were characterized using a simple calibration procedure. Registration of the phantom (physical space) and CT images (preoperative image space) was accomplished using fiducial markers that could be identified both on the phantom and within the images. The endoscopic images were corrected for radial lens distortion and then mapped onto the extracted surfaces via a two-dimensional 2-D to 3-D mapping algorithm. The optical tracker has an accuracy of about 0.3 mm at its centroid, which allows the endoscope tip to be localized to within 1.0 mm. The mapping operation allows multiple endoscopic images to be "painted" onto the 3-D brain surfaces, as they are acquired, in the correct anatomical position. This allows panoramic and stereoscopic visualization, as well as navigation of the 3-D surface, painted with multiple endoscopic views, from arbitrary perspectives.
Huang, Y. Q.; Song, Y. X.; Wang, S. M.; Buyanova, I. A.; Chen, W. M.
2017-01-01
A three-dimensional (3D) topological insulator (TI) is a unique quantum phase of matter with exotic physical properties and promising spintronic applications. However, surface spin current in a common 3D TI remains difficult to control and the out-of-plane spin texture is largely unexplored. Here, by means of surface spin photocurrent in Bi2Te3 TI devices driven by circular polarized light, we identify the subtle effect of the spin texture of the topological surface state including the hexagonal warping term on the surface current. By exploring the out-of-plane spin texture, we demonstrate spin injection from GaAs to TI and its significant contribution to the surface current, which can be manipulated by an external magnetic field. These discoveries pave the way to not only intriguing new physics but also enriched spin functionalities by integrating TI with conventional semiconductors, such that spin-enabled optoelectronic devices may be fabricated in such hybrid structures. PMID:28530227
Three-dimensional evaluation of surface roughness of resin composites after finishing and polishing
Nair, Veena S; Sainudeen, Shan; Padmanabhan, Prabeesh; Vijayashankar, L V; Sujathan, Unu; Pillai, Rajesh
2016-01-01
Aim: This study aims to investigate the effects of finishing and polishing procedures on four novel resin composites using three-dimensional optical profilometer. Materials and Methods: Four composites classified according to their filler size, were selected: Filtek™ Z350 XT/Nanofill (3M™ ESPE™), Esthet-X HD/Hybrid (Dentsply Caulk), Te Econom/Microfill (Ivoclar Vivadent®), Tetric EvoCeram® /Nanohybrid (Ivoclar Vivadent®). Composite specimens were made in Plexiglass mold and polished with Soflex (3M ESPE), Enhance + Pogo (Dentsply Caulk). Both the systems were used according to the manufacturers’ instructions, and the polished surfaces were assessed with an optical profilometer. Statistical Analysis Used: Kruskal-Wallis test and further pairwise comparison were performed by Mann-Whitney test. Results: The smoothest surfaces for all the resin composites tested were obtained from the Mylar strip; statistically significant differences were observed among them (P = 0.001). The order of composites was ranked from the lowest to highest surface roughness; Filtek Z350 XT < Te Econom < Tetric EvoCeram < Esthet XHD. Pairwise multiple comparison with Mann-Whitney test showed Filtek Z350 to have the smoothest surface and the least with Teric EvoCeram. Among the polishing systems, Soflex showed the smoothest surface and was significantly different from Pogo (P = 0.046). Conclusions: The effectiveness of the polishing systems seems to be dependent on the material used, treatment modality and also on the filler particle size. PMID:26957802
Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.
Jadamec, Margarete A; Billen, Magali I
2010-05-20
The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.
In vitro three dimensional morphometry of the lateral atlantoaxial articular surfaces.
Cattrysse, Erik; Provyn, Steven; Gagey, Olivier; Kool, Patrick; Clarys, Jan Pieter; Van Roy, Peter
2008-06-15
The present study verifies the 3-dimensional anatomic features of the lateral atlantoaxial joints with reference to a local reference frame using a direct in vitro approach. To study the concordance between the axial and atlantal articular surfaces. Detailed information of joint-configurations is imperative for understanding the complex kinematics of the upper cervical joint. Data on the quantitative morphology of the human spinal facet joints has been published, but did not include the atlanto-occipital and atlantoaxial joints. In 20 fresh spine specimens, metal markers were implanted on the cranium, the atlas, and the axis. After registration of the intact specimens, the bony segments were separated and markers and anatomic landmarks were digitized. The size, shape, and orientation relative to the local reference frame of the axis were derived from the relative position data of the joint surface landmarks. The diameters and surface areas of the inferior articular surfaces of the atlas are slightly smaller than the corresponding surfaces on the superior aspects of the axis (17.7 mm and 235 mm vs. 17.0 and 212 mm). In this sample of older-aged specimens, the curvature of the articulating surfaces is nearly flat. The absolute angle between the left and right surface areas is about 130 degrees and corresponds well between axis and atlas. The orientation of the joint surfaces of axis and atlas with respect to the sagittal plane of the axis indicates a good congruency. There seems to be a strong relationship between the anatomic features of the lateral articulating surfaces of atlas and axis. Differences in the orientation of joint surfaces to the frontal plane may be related to deviations from the neutral position. This issue raises the problem of the definition of three-dimensional-neutral joint positions.
A spectral formalism for computing three-dimensional deformations due to surface loads. 1: Theory
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1994-01-01
We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean
A spectral formalism for computing three-dimensional deformations due to surface loads. 1: Theory
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1994-01-01
We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean
Towards three-dimensional Weyl-surface semimetals in graphene networks
NASA Astrophysics Data System (ADS)
Zhong, Chengyong; Chen, Yuanping; Xie, Yuee; Yang, Shengyuan A.; Cohen, Marvin L.; Zhang, S. B.
2016-03-01
Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks are cut, the resulting slabs and nanowires remain semimetallic with Weyl lines and points at the Fermi surfaces, respectively. Between the Weyl lines, flat surface bands emerge with possible strong magnetism. The robustness of these structures can be traced back to a bulk topological invariant, ensured by the sublattice symmetry, and to the one-dimensional Weyl semimetal behavior of the zigzag carbon chain.Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks
Manipulation of photons at the surface of three-dimensional photonic crystals.
Ishizaki, Kenji; Noda, Susumu
2009-07-16
In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.
Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning
Toma, Arshed M.; Zhurov, Alexei I.; Richmond, Stephen
2014-01-01
Laser scanning is a non-invasive method for three-dimensional assessment of facial morphology and symmetry. The aim of this study was to quantify facial symmetry in healthy adolescents and explore if there is any gender difference. Facial scans of 270 subjects, 123 males and 147 females (aged 15.3 ± 0.1 years, range 14.6–15.6), were randomly selected from the Avon Longitudinal Study of Parents and Children. Facial scans were processed and analysed using in-house developed subroutines for commercial software. The surface matching between the original face and its mirror image was measured for the whole face, upper, middle, and lower facial thirds. In addition, 3 angular and 14 linear parameters were measured. The percentage of symmetry of the whole face was significantly lower in males (53.49 ± 10.73 per cent) than in females (58.50 ± 10.27 per cent; P < 0.01). There was no statistically significant difference in the amount of symmetry among facial thirds within each gender (P > 0.05). Average values of linear parameters were less than 1 mm and did not differ significantly between genders (P > 0.05). One angular parameter showed slight lip line asymmetry in both genders. Faces of male 15-year-old adolescents were less symmetric than those of females, but the difference in the amount of symmetry, albeit statistically significant, may not be clinically relevant. Upper, middle, and lower thirds of the face did not differ in the amount of three-dimensional symmetry. Angular and linear parameters of facial symmetry did not show any gender difference. PMID:21795753
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-05-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.
Temporal speckle method for measuring three-dimensional surface of large-sized rough glass
NASA Astrophysics Data System (ADS)
Li, Chao; Zhou, Changhe; Wang, Shaoqing; Fan, Xin; Yang, Boquan; Lu, Yancong; Li, Hao; Liu, Zhao
2016-10-01
To provide accurate three-dimensional (3-D) data for production and processing, 3-D surface measurement is always an essential step to the production of glass. Profilometry and Interferometry are traditional measurement apparatus, referring to different procedures. Although more precise, Interferometry cannot be used in milling procedure, owing to the scattering property of rough glass. While as a widely used Profilometry, Coordinate Measuring Machine (CMM) employs a probe for measuring by contacting surface directly. It should be noted that such a time-consuming machine is not practical for measuring large-sized rough glass, so a novel designed method called temporal speckle is introduced to a non-contact binocular 3-D measurement system for measuring. Specifically, N band-limited binary patterns are sequentially projected to rough glass from a pattern generation device, such patterns have been proved to depress scattering properties of rough surface. The whole binocular 3-D measurement system can finish a single measurement in one second with a standard deviation less than 73.44um. This system performs fast and accurate 3-D surface measurement for large-sized rough glass block.
NASA Astrophysics Data System (ADS)
Parra Escamilla, Geliztle A.; Kobayashi, Fumio; Otani, Yukitoshi
2017-05-01
We present a three-dimensional surface measurement system using imaging fiber endoscope and the measurement is based on the focus technique in uniaxial configuration. The surface height variation of the sample is retrieved by taking into account the contrast modulation change obtained from a projected fringe pattern on the sample. The technique takes into account the defocus change of the fringe pattern due to the height variation of the sample and by a Gaussian fitting process the height reconstruction can be retrieved. A baseline signal procedure was implemented to remove back reflection light coming from the two fiber-surfaces (inlet and outlet) and also a Fourier transform filter was used to remove the pixelated appearance of the images. The depth range of the system is 1.1 mm and a lateral range of 2 mm by 2 mm. The novelties of the implementation are that the system uses the same imaging fiber as illumination and measurement and offers the advantage of the transportability to the measurement to a confined space having potential application on medical or industrial endoscopes systems. We demonstrate the technique by showing the surface profile of a measured object.
Structure and coarsening at the surface of a dry three-dimensional aqueous foam.
Roth, A E; Chen, B G; Durian, D J
2013-12-01
We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.
Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3
Braun, Lukas; Mussler, Gregor; Hruban, Andrzej; Konczykowski, Marcin; Schumann, Thomas; Wolf, Martin; Münzenberg, Markus; Perfetti, Luca; Kampfrath, Tobias
2016-01-01
Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics need to be resolved on the timescale of elementary scattering events (∼10 fs). Here, we excite and measure photocurrents in the model topological insulator Bi2Se3 with a time resolution of 20 fs by sampling the concomitantly emitted broadband terahertz (THz) electromagnetic field from 0.3 to 40 THz. Strikingly, the surface current response is dominated by an ultrafast charge transfer along the Se–Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to be orders of magnitude smaller than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are of direct relevance for broadband optoelectronic devices based on topological-insulator surface currents. PMID:27796297
Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3
NASA Astrophysics Data System (ADS)
Braun, Lukas; Mussler, Gregor; Hruban, Andrzej; Konczykowski, Marcin; Schumann, Thomas; Wolf, Martin; Münzenberg, Markus; Perfetti, Luca; Kampfrath, Tobias
2016-10-01
Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics need to be resolved on the timescale of elementary scattering events (~10 fs). Here, we excite and measure photocurrents in the model topological insulator Bi2Se3 with a time resolution of 20 fs by sampling the concomitantly emitted broadband terahertz (THz) electromagnetic field from 0.3 to 40 THz. Strikingly, the surface current response is dominated by an ultrafast charge transfer along the Se-Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to be orders of magnitude smaller than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are of direct relevance for broadband optoelectronic devices based on topological-insulator surface currents.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-01-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143
Structure and coarsening at the surface of a dry three-dimensional aqueous foam
NASA Astrophysics Data System (ADS)
Roth, A. E.; Chen, B. G.; Durian, D. J.
2013-12-01
We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.
Surface Description and Motion Control for Animated Three Dimensional Computer Generated Characters.
ERIC Educational Resources Information Center
Hutchinson, Thomas Lloyd
This study of the relationship of computer technology to character animation focuses on the advantages and constraints of developing three-dimensional characters for computer animation. Three different levels of the complexity involved in animating characters are examined: (1) a three-dimensional computer environment and simple motion within this…
Surface Description and Motion Control for Animated Three Dimensional Computer Generated Characters.
ERIC Educational Resources Information Center
Hutchinson, Thomas Lloyd
This study of the relationship of computer technology to character animation focuses on the advantages and constraints of developing three-dimensional characters for computer animation. Three different levels of the complexity involved in animating characters are examined: (1) a three-dimensional computer environment and simple motion within this…
Analytical real-time measurement of a three-dimensional weld pool surface
NASA Astrophysics Data System (ADS)
Zhang, WeiJie; Wang, XueWu; Zhang, YuMing
2013-11-01
The ability to observe and measure weld pool surfaces in real-time is the core of the foundation for next generation intelligent welding that can partially imitate skilled welders who observe the weld pool to acquire information on the welding process. This study aims at the real-time measurement of the specular three-dimensional (3D) weld pool surface under a strong arc in gas tungsten arc welding (GTAW). An innovative vision system is utilized in this study to project a dot-matrix laser pattern on the specular weld pool surface. Its reflection from the surface is intercepted at a distance from the arc by a diffuse plane. The intercepted laser dots illuminate this plane producing an image showing the reflection pattern. The deformation of this reflection pattern from the projected pattern (e.g. the dot matrix) is used to derive the 3D shape of the reflection surface, i.e., the weld pool surface. Based on careful analysis, the underlying reconstruction problem is formulated mathematically. An analytic solution is proposed to solve this formulated problem resulting in the weld pool surface being reconstructed on average in 3.04 ms during welding experiments. A vision-based monitoring system is thus established to measure the weld pool surface in GTAW in real-time. In order to verify the effectiveness of the proposed reconstruction algorithm, first numerical simulation is conducted. The proposed algorithm is then tested on a spherical convex mirror with a priori knowledge of its geometry. The detailed analysis of the measurement error validates the accuracy of the proposed algorithm. Results from the real-time experiments verify the robustness of the proposed reconstruction algorithm.
Toda, T; Watanabe, T; Matsumura, K; Sunada, Y; Yamada, H; Nakano, I; Mannen, T; Kanazawa, I; Shimizu, T
1995-05-01
Fukuyama-type congenital muscular dystrophy (FCMD), the second most common childhood muscular dystrophy in Japan, is characterized by the association with severe brain anomalies such as pachygyria and focal interhemispheric fusion. Conventional imaging techniques such as X-ray CT scan and MRI are ineffective for visualization of these brain surface anomalies. Here we investigated the efficacy of three-dimensional (3-D) reconstruction of brain surface MR images for the detection of brain anomalies in FCMD patients. 3-D brain surface MR images clearly visualized anomalies of cerebral gyrus such as pachygyria, as well as focal interhemispheric fusion. In addition, reconstructed horizontal images visualized structural derangement such as abnormal protrusion of white matter into gray matter. MR image abnormalities were confirmed by autopsy in 1 patient. These abnormalities were never observed in Duchenne muscular dystrophy (DMD) patients. Our results indicate the efficacy of the present method for the differential diagnosis between FCMD and DMD with severe mental retardation, which is essential for the genetic study to identify the causative gene of FCMD.
Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems
BAER,THOMAS A.; SUBIA,SAMUEL R.; SACKINGER,PHILIP A.
2000-01-18
We describe parallel simulations of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact lines. The Galerlin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of problem unknowns. Issues concerning the proper constraints along the solid-fluid dynamic contact line in three dimensions are discussed. Parallel computations are carried out for an example taken from the coating flow industry, flow in the vicinity of a slot coater edge. This is a three-dimensional free-surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another part of the flow domain. Discussion focuses on parallel speedups for fixed problem size, a class of problems of immediate practical importance.
Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Peng, Xingyue
As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.
Beaumont, Caroline A A; Knoops, Paul G M; Borghi, Alessandro; Jeelani, N U Owase; Koudstaal, Maarten J; Schievano, Silvia; Dunaway, David J; Rodriguez-Florez, Naiara
2017-06-01
Three-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed tomography. The purpose of this study was to compare standard anthropometric cranial measurements with measurements taken from images acquired with 3D surface scanners. Two 3D scanners of different cost were used to acquire head shape data from thirteen adult volunteers: M4D scan and Structure Sensor. Head circumference and cephalic index were measured directly on the patients as well as on 3D scans acquired with the two scanners. To compare head volume measurements with a gold standard, magnetic resonance imaging scans were used. Repeatability and accuracy of both devices were evaluated. Intra-rater repeatability for both scanners was excellent (intraclass correlation coefficients > 0.99, p < 0.001). Direct and digital measures of head circumference, cephalic index and head volume were strongly correlated (0.85 < r < 0.91, p < 0.001). Compared to direct measurements, accuracy was highest for M4D scan. Both 3D scanners provide reproducible data of head circumference, cephalic index and head volume and show a strong correlation with traditional measurements. However, care must be taken when using absolute values. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Half-filled Landau level, topological insulator surfaces, and three-dimensional quantum spin liquids
NASA Astrophysics Data System (ADS)
Wang, Chong; Senthil, T.
2016-02-01
We synthesize and partly review recent developments relating the physics of the half-filled Landau level in two dimensions to correlated surface states of topological insulators in three dimensions. The latter are in turn related to the physics of certain three-dimensional quantum spin liquid states. The resulting insights provide an interesting answer to the old question of how particle-hole symmetry is realized in composite fermion liquids. Specifically the metallic state at filling ν =1/2 —described originally in pioneering work by Halperin, Lee, and Read as a liquid of composite fermions—was proposed recently by Son to be described by a particle-hole symmetric effective field theory distinct from that in the prior literature. We show how the relation to topological insulator surface states leads to a physical understanding of the correctness of this proposal. We develop a simple picture of the particle-hole symmetric composite fermion through a modification of older pictures as electrically neutral "dipolar" particles. We revisit the phenomenology of composite fermi liquids (with or without particle-hole symmetry), and show that their heat/electrical transport dramatically violates the conventional Wiedemann-Franz law but satisfies a modified one. We also discuss the implications of these insights for finding physical realizations of correlated topological insulator surfaces.
NASA Astrophysics Data System (ADS)
Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr
2016-12-01
Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov–de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.
Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr
2016-01-01
Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov–de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model. PMID:27934949
Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr
2016-12-09
Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov-de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.
Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons.
Nguyenkim, Jerry D; DeAngelis, Gregory C
2003-08-06
Gradients of binocular disparity across the visual field provide a potent cue to the three-dimensional (3-D) orientation of surfaces in a scene. Neurons selective for 3-D surface orientation defined by disparity gradients have recently been described in parietal cortex, but little is known about where and how this selectivity arises within the visual pathways. Because the middle temporal area (MT) has previously been implicated in depth perception, we tested whether MT neurons could signal the 3-D orientation (as parameterized by tilt and slant) of planar surfaces that were depicted by random-dot stereograms containing a linear gradient of horizontal disparities. We find that many MT neurons are tuned for 3-D surface orientation, and that tilt and slant generally have independent effects on MT responses. This separable coding of tilt and slant is reminiscent of the joint coding of variables in other areas (e.g., orientation and spatial frequency in V1). We show that tilt tuning remains unchanged when all coherent motion is removed from the visual stimuli, indicating that tilt selectivity is not a byproduct of 3-D velocity coding. Moreover, tilt tuning is typically insensitive to changes in the mean disparity (depth) of gradient stimuli, indicating that tilt tuning cannot be explained by conventional tuning for frontoparallel disparities. Finally, we explore the receptive field mechanisms underlying selectivity for 3-D surface orientation, and we show that tilt tuning arises through heterogeneous disparity tuning within the receptive fields of MT neurons. Our findings show that MT neurons carry high-level signals about 3-D surface structure, in addition to coding retinal image velocities.
NASA Astrophysics Data System (ADS)
Metlitski, Max A.; Kane, C. L.; Fisher, Matthew P. A.
2015-09-01
A three-dimensional electron topological insulator (ETI) is a phase of matter protected by particle-number conservation and time-reversal symmetry. It was previously believed that the surface of an ETI must be gapless unless one of these symmetries is broken. A well-known symmetry-preserving, gapless surface termination of an ETI supports an odd number of Dirac cones. In this paper, we deduce a symmetry-respecting, gapped surface termination of an ETI, which carries an intrinsic two-dimensional (2d) topological order, Moore-Read×U (1) -2 . The Moore-Read sector supports non-Abelian charge 1 /4 anyons, while the Abelian, U (1) -2 , (antisemion) sector is electrically neutral. Time-reversal symmetry is implemented in this surface phase in a highly nontrivial way. Moreover, it is impossible to realize this phase strictly in 2d, simultaneously preserving its implementation of both the particle-number and time-reversal symmetries. A one-dimensional (1d) edge on the ETI surface between the topologically ordered phase and the topologically trivial time-reversal-broken phase with a Hall conductivity σx y=1 /2 carries a right-moving neutral Majorana mode, a right-moving bosonic charge mode, and a left-moving bosonic neutral mode. The topologically ordered phase is separated from the surface superconductor by a direct second-order phase transition in the X Y* universality class, which is driven by the condensation of a charge 1 /2 boson, when approached from the topologically ordered side, and proliferation of a flux 4 π (2 h c /e ) vortex, when approached from the superconducting side. In addition, we prove that time-reversal invariant (interacting) electron insulators with no intrinsic topological order and electromagnetic response characterized by a θ angle, θ =π , do not exist if the electrons transform as Kramers singlets under time reversal.
Three dimensional strained semiconductors
Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui
2016-11-08
In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.
Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface
NASA Astrophysics Data System (ADS)
Gou, J.; Zhou, W.; Wu, L.
2016-10-01
Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.
Development of a three-dimensional surface imaging system for melanocytic skin lesion evaluation
NASA Astrophysics Data System (ADS)
Tosca, Androniki; Kokolakis, Athanasios; Lasithiotakis, Konstantinos; Zacharopoulos, Athanasios; Zabulis, Xenophon; Marnelakis, Ioannis; Ripoll, Jorge; Stephanidis, Constantine
2013-01-01
Even though surface morphology is always taken into account when assessing clinically pigmented skin lesions, it is not captured by most modern imaging systems using digital imaging. Our aim is to develop a novel three-dimensional (3D) imaging technique to record detailed information of the surface anatomy of melanocytic lesions that will enable improved classification through digital imaging. The apparatus consists of three high-resolution cameras, a light source, and accompanying software. Volume measurements of specific phantoms using volumetric tubes render slightly lower values than those obtained by our 3D imaging system (mean%±SD, 3.8%±0.98, P<0.05). To examine the reproducibility of the method, sequential imaging of melanocytic lesions is carried out. The mean%±SD differences of area, major axis length, volume, and maximum height are 2.1%±1.1, 0.9%±0.8, 3.8%±2.9, and 2.5%±3.5, respectively. Thirty melanocytic lesions are assessed, including common and dysplastic nevi and melanomas. There is a significant difference between nevi and melanomas in terms of variance in height and boundary asymmetry (P<0.001). Moreover, dysplastic nevi have significantly higher variances in pigment density values than common nevi (P<0.001). Preliminary data suggest that our instrument has great potential in the evaluation of the melanocytic lesions. However, these findings should be confirmed in larger-scale studies.
Lekakis, Garyfalia; Claes, Peter; Hamilton, Grant S; Hellings, P W
2016-02-01
During the preoperative assessment in rhinoplasty, the surgeon takes a thorough history, performs a complete examination by assessing functional and aesthetic aspects of the nose, obtains a clear understanding of the patient's wishes, conducts facial analysis based on standardized photography, and communicates to the patient the goals and pitfalls of surgery. Computer imaging or morphing of the preoperative pictures of the nose has drawn a lot of interest in the last decade, and it is a sign of evolution of the preoperative consultation. Technological advances, also in the context of rhinoplasty, have led to the development of three-dimensional (3D) imaging techniques, and have completely revolutionized the way that surgeons manage their patients preoperatively and evaluate postoperative results today. The accurate 3D surface imaging aids the surgeon to communicate with the patient adequately before surgery, to set an appropriate surgical plan, and to measure the shape and volume changes of the patient's nose that result from the intervention. The present review provides an analysis on the current knowledge of 3D surface imaging in rhinoplasty derived from the literature, and highlights future directions of preoperative and postoperative assessment in the field. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Bersvendsen, Jørn; Orderud, Fredrik; Lie, Øyvind; Massey, Richard John; Fosså, Kristian; Estépar, Raúl San José; Urheim, Stig; Samset, Eigil
2017-04-01
With the advancement of three-dimensional (3-D) real-time echocardiography in recent years, automatic creation of patient specific geometric models is becoming feasible and important in clinical decision making. However, the vast majority of echocardiographic segmentation methods presented in the literature focus on the left ventricle (LV) endocardial border, leaving segmentation of the right ventricle (RV) a largely unexplored problem, despite the increasing recognition of the RV's role in cardiovascular disease. We present a method for coupled segmentation of the endo- and epicardial borders of both the LV and RV in 3-D ultrasound images. To solve the segmentation problem, we propose an extension of a successful state-estimation segmentation framework with a geometrical representation of coupled surfaces, as well as the introduction of myocardial incompressibility to regularize the segmentation. The method was validated against manual measurements and segmentations in images of 16 patients. Mean absolute distances of [Formula: see text], [Formula: see text], and [Formula: see text] between the proposed and reference segmentations were observed for the LV endocardium, RV endocardium, and LV epicardium surfaces, respectively. The method was computationally efficient, with a computation time of [Formula: see text].
Cinematic three-dimensional surface display of cardiac blood pool tomography
Honda, N.; Machida, K.; Takishima, T.; Mamiya, T.; Takahashi, T.; Kamano, T.; Tamaki, S.; Ban, R. )
1991-02-01
A method of three-dimensional cinematic display (3D cine) of cardiac blood pool tomography is described. ECG-gated transaxial blood pool imaging was obtained from a set of projection images that were collected from 32 images with 10 ECG-gated images per projection during a 180 degrees arc of a rotating gamma camera. A surface contour of the blood pool was determined by a set of isocount lines (40-55% of the maximum pixel counts) of the transaxial images. 3D cine was made by a depth-shading method, in which brightness of a given point on the contour was set proportional to the distance between the viewing plane and the point and to the incident angle formed by the viewing line and the surface of the point. In 15 patients, 3D cine showed hypokinesia, akinesia, dyskinesia, ventricular aneurysm, and opposite motions of the atria and ventricles. Diagnoses of left ventricular motion by 3D cine agreed well with those by echocardiography and contrast left ventriculography.
Three-dimensional surface reconstruction via a robust binary shape-coded structured light method
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Jiang, Hualie; Nie, Lei
2017-01-01
A binary shape-coded structured light method for single-shot three-dimensional reconstruction is presented. The projected structured pattern is composed with eight geometrical shapes with a coding window size of 2×2. The pattern element is designed as rhombic with embedded geometrical shapes. The pattern feature point is defined as the intersection of two adjacent rhombic shapes, and a multitemplate-based feature detector is presented for its robust detection and precise localization. Based on the extracted grid-points, a topological structure is constructed to separate the pattern elements from the obtained image. In the decoding stage, a training dataset is first established from training samples that are collected from a variety of target surfaces. Then, the deep neural network technique is applied for the classification of pattern elements. Finally, an error correction algorithm is introduced based on the epipolar and neighboring constraints to refine the decoding results. The experimental results show that the proposed method not only owns high measurement precision but also has strong robustness to surface color and texture.
Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo
2016-01-01
Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01–1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica. PMID:27416784
Gapless helical superconductivity on the surface of a three-dimensional topological insulator
NASA Astrophysics Data System (ADS)
Ozfidan, Isil; Han, Jinsen; Maciejko, Joseph
2016-12-01
Recent angle-resolved photoemission experiments have observed a proximity-induced superconducting gap in the helical surface states of a thin film of the three-dimensional topological insulator Bi2Se3 grown on a superconducting NbSe2 substrate. The superconducting coherence peaks in the electronic density of states are strongly suppressed when the topological insulator is doped with magnetic Mn impurities, which was interpreted as the complete destruction of helical superconductivity in the topological surface states. Motivated by these experiments, we explore a different possibility: gapless helical superconductivity, where a gapless electronic density of states coexists with a nonzero helical superconducting order parameter. We study a model of superconducting Dirac fermions coupled to random magnetic impurities within the Abrikosov-Gor'kov framework, and find finite regions of gapless helical superconductivity in the phase diagram of the system for both proximity-induced and intrinsic superconductivity. For the latter, we derive universal rates of suppression of the superconducting transition temperature due to magnetic scattering and, for a Fermi level at the Dirac point, a universal rate of increase of the quantum critical attraction strength.
NASA Astrophysics Data System (ADS)
Tamura, Shun; Kobayashi, Shingo; Bo, Lu; Tanaka, Yukio
2017-03-01
We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-dimensional (3D) chiral superconductors by changing their surface (interface) misorientation angles. We obtain an analytical formula for the SABS energy dispersion of a general pair potential, for which an original 4 ×4 BdG Hamiltonian can be reduced to two 2 ×2 blocks. The resulting SABS for 3D chiral superconductors with a pair potential given by kz(kx+i ky) ν (ν =1 ,2 ) has a complicated energy dispersion owing to the coexistence of both point and line nodes. We focus on the tunneling spectroscopy of this pairing in the presence of an applied magnetic field, which induces a Doppler shift in the quasiparticle spectra. In contrast to the previously known Doppler effect in unconventional superconductors, a zero-bias conductance dip can change into a zero-bias conductance peak owing to an external magnetic field. We also study SABSs and tunneling spectroscopy for possible pairing symmetries of UPt3. For this purpose, we extend a standard formula for the tunneling conductance of unconventional superconductor junctions to treat spin-triplet nonunitary pairings. Magnetotunneling spectroscopy, i.e., tunneling spectroscopy in the presence of a magnetic field, can serve as a guide to determine the pairing symmetry of this material.
Three-dimensional shape variation of talar surface morphology in hominoid primates.
Parr, W C H; Soligo, C; Smaers, J; Chatterjee, H J; Ruto, A; Cornish, L; Wroe, S
2014-07-01
The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long-distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction-abduction, plantar-dorsal flexion and inversion-eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three-dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orangutans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore provide a
Krbecek, R; Gebhardt, C; Gruler, H; Sackmann, E
1979-06-13
A method of three-dimensional reconstruction of the surface profile of artificial and natural membranes from freeze quenched electron micrographs is presented. The method is based on the analysis of the variation in thickness of platinum layers, deposited under an oblique angle. In essence, it is reminiscent of the method of Eratosthenes to measure the earth's radius. The thickness of etch-like protrusions of membranes could be determined to an accuracy of about 3 A. True distances on curved surfaces rather than projections of distances are obtained. The method has been applied to both model membranes and biological membranes. The essential results are: 1. Detailed information on the symmetry and the molecular structure of the crystalline phases of dimyristoyl phosphatidylcholine was obtained. The microscopic surface profile of the ripple structure observed between the pretransition and the main transition was analysed. In accordance with a previous model we found that the ripple structure is caused by the spontaneous curvature of the monolayers. The surface profiles of the ripple structure and of the low temperature biaxial phase could be clearly distinguished. 2. The sizes and shapes of lipid domains formed by both thermically and charge-induced lateral phase separation were determined. This showed that the visual inspection of electron micrographs may lead to a considerable underestimation of the domain size. Conclusions may be drawn concerning the different phases formed upon lateral phase separation. 3. As a biological example, yeast cell membranes were studied. The method allows one to distinguish between different membrane-bound proteins by measuring the width-to-height ratio of the particles. The deformation of the lipid layer in the environment of the proteins may be determined. This deformation contains information about lipid-mediated long-range interactions between membrane proteins.
Three-dimensional shape variation of talar surface morphology in hominoid primates
Parr, W C H; Soligo, C; Smaers, J; Chatterjee, H J; Ruto, A; Cornish, L; Wroe, S
2014-01-01
The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long-distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction–abduction, plantar–dorsal flexion and inversion–eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three-dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orang-utans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore
Three-dimensional structure of the wind-driven water surface flow
NASA Astrophysics Data System (ADS)
Caulliez, Guillemette
2014-05-01
The structure of the water boundary layer forced by wind underneath surface wind waves is investigated experimentally in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. An overview of the water surface flow patterns which develop at larger scales was provided by simultaneous flow visualizations. To that end, tiny hydrogen bubbles were generated by electrolysis along a 60 cm long thin wire set up crosswise to the wind direction at a short distance from the water surface. The bubble motions were recorded by a video camera looking vertically from below or above the water surface. Observations were made at low to moderate wind speeds for four fetches ranging from 2 to 26 m. This work reveals that under such steady wind conditions, the transition of the water surface boundary layer to turbulent flow is marked by the fast development of coherent longitudinal vortices downstream the surface wave generation area observed at short fetches. These structures are characterized by the occurrence of intense upwellings localized in narrow streaks in the crosswise direction. There, the upper wind-induced shear flow is confined in a very thin layer. In the wider areas between these streaks, the surface flow exhibits a much more turbulent behaviour over a deeper but slightly-sheared boundary layer. In accordance with this inhomogeneous flow pattern, the velocity field observed at a fixed location over one vertical profile is highly variable in time. These three-dimensional large-scale structures present strong similarities with the so-called Langmuir circulations. This work will focus on the description of the qualitative and quantitative properties of these longitudinal vortices, in particular the conditions of their occurence and the dependency of their characteristic scales on wind forcing and surface wave development. The main
NASA Astrophysics Data System (ADS)
Nazarinia, M.; Lo Jacono, D.; Thompson, M. C.; Sheridan, J.
2009-06-01
Previous two-dimensional numerical studies have shown that a circular cylinder undergoing both oscillatory rotational and translational motions can generate thrust so that it will actually self-propel through a stationary fluid. Although a cylinder undergoing a single oscillation has been thoroughly studied, the combination of the two oscillations has not received much attention until now. The current research reported here extends the numerical study of Blackburn et al. [Phys. Fluids 11, L4 (1999)] both experimentally and numerically, recording detailed vorticity fields in the wake and using these to elucidate the underlying physics, examining the three-dimensional wake development experimentally, and determining the three-dimensional stability of the wake through Floquet stability analysis. Experiments conducted in the laboratory are presented for a given parameter range, confirming the early results from Blackburn et al. [Phys. Fluids 11, L4 (1999)]. In particular, we confirm the thrust generation ability of a circular cylinder undergoing combined oscillatory motions. Importantly, we also find that the wake undergoes three-dimensional transition at low Reynolds numbers (Re≃100) to an instability mode with a wavelength of about two cylinder diameters. The stability analysis indicates that the base flow is also unstable to another mode at slightly higher Reynolds numbers, broadly analogous to the three-dimensional wake transition mode for a circular cylinder, despite the distinct differences in wake/mode topology. The stability of these flows was confirmed by experimental measurements.
Cytopede: A Three-Dimensional Tool for Modeling Cell Motility on a Flat Surface
Dembo, Micah
2010-01-01
Abstract When cultured on flat surfaces, fibroblasts and many other cells spread to form thin lamellar sheets. Motion then occurs by extension of the sheet at the leading edge and retraction at the trailing edge. Comprehensive quantitative models of these phenomena have so far been lacking and to address this need, we have designed a three-dimensional code called Cytopede specialized for the simulation of the mechanical and signaling behavior of plated cells. Under assumptions by which the cytosol and the cytoskeleton are treated from a continuum mechanical perspective, Cytopede uses the finite element method to solve mass and momentum equations for each phase, and thus determine the time evolution of cellular models. We present the physical concepts that underlie Cytopede together with the algorithms used for their implementation. We then validate the approach by a computation of the spread of a viscous sessile droplet. Finally, to exemplify how Cytopede enables the testing of ideas about cell mechanics, we simulate a simple fibroblast model. We show how Cytopede allows computation, not only of basic characteristics of shape and velocity, but also of maps of cell thickness, cytoskeletal density, cytoskeletal flow, and substratum tractions that are readily compared with experimental data. PMID:20958108
DNA-guided assembly of three-dimensional nanostructures for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Wu, Li-An; Lin, Yu-Ting; Chen, Yih-Fan
2015-03-01
Surface enhancement Raman spectroscopy (SERS) has drawn much attention in recent years because its ability to greatly enhance Raman signals to allow for the detection of molecules at low concentration. When using metallic nanoparticles as SERS substrates, many studies have shown that the size of the interparticle gap significantly affects the enhancement of the Raman signals. Given that the optimal interparticle gap is as small as a few nanometers, fabricating sensitive, uniform, and reproducible SERS substrates remains challenging. Here we report a three-dimensional SERS substrate created through the assembly of core-shell nanoparticles using DNA. By using DNA of appropriate sequence and length, DNA-functionalized nanoparticles were assembled into ordered and highly packed nanostructures. The interparticle distance was precisely controlled by adjusting the design of the DNA and the thickness of the silver shell coated on the gold nanoparticles. Compared with randomly aggregated nanoparticles, the interparticle distance in the synthesized nanostructures can be more uniform and better controlled. In addition, the DNA-guided assembly process allows us to create precise nanostructures without using complex and expensive fabrication methods. The study demonstrates that the synthesized nanostructures can be used as effective SERS substrates to successfully measure the Raman signals of malachite green, a toxic compound that is sometimes illegally used on fish, as well as Fluorescein isothiocyanate (FITC) at low concentrations.
An orthogonal coordinate grid following the three-dimensional viscous flow over a concave surface
NASA Technical Reports Server (NTRS)
Dagenhart, J. R; Saric, W. S.
1983-01-01
Swept wings designed for laminar flow control exhibit both centrifugal and crossflow instabilities which produce streamwise vortices that can lead to early transition from laminar to turbulent flow in the presence of Tollmien-Schlichting waves. This paper outlines an iterative algorithm for generation of an orthogonal, curvilinear, coordinate grid following the streamlines of the three-dimensional viscous flow over a swept, concave surface. The governing equations for the metric tensor are derived from the Riemann-Christoffel tensor for an Euclidian geometry. Unit vectors along streamline, normal and binormal directions are determined. The governing equations are not solved directly, but are employed only as compatibility equations. The scale factor for the streamline coordinate is obtained by an iterative integration scheme on a 200 x 100 x 5 grid, while the other two scale factors are determined from definitions. Sample results are obtained which indicate that the compatibility equation error decreases linearly with grid step size. Grids smaller than 200 x 100 x 5 are found to be inadequate to resolve the grid curvature.
An orthogonal coordinate grid following the three-dimensional viscous flow over a concave surface
NASA Technical Reports Server (NTRS)
Dagenhart, J. R; Saric, W. S.
1983-01-01
Swept wings designed for laminar flow control exhibit both centrifugal and crossflow instabilities which produce streamwise vortices that can lead to early transition from laminar to turbulent flow in the presence of Tollmien-Schlichting waves. This paper outlines an iterative algorithm for generation of an orthogonal, curvilinear, coordinate grid following the streamlines of the three-dimensional viscous flow over a swept, concave surface. The governing equations for the metric tensor are derived from the Riemann-Christoffel tensor for an Euclidian geometry. Unit vectors along streamline, normal and binormal directions are determined. The governing equations are not solved directly, but are employed only as compatibility equations. The scale factor for the streamline coordinate is obtained by an iterative integration scheme on a 200 x 100 x 5 grid, while the other two scale factors are determined from definitions. Sample results are obtained which indicate that the compatibility equation error decreases linearly with grid step size. Grids smaller than 200 x 100 x 5 are found to be inadequate to resolve the grid curvature.
NASA Astrophysics Data System (ADS)
Lu, Yuzhen; Lu, Renfu
2017-05-01
Three-dimensional (3-D) shape information is valuable for fruit quality evaluation. This study was aimed at developing phase analysis techniques for reconstruction of the 3-D surface of fruit from the pattern images acquired by a structuredillumination reflectance imaging (SIRI) system. Phase-shifted sinusoidal patterns, distorted by the fruit geometry, were acquired and processed through phase demodulation, phase unwrapping and other post-processing procedures to obtain phase difference maps relative to the phase of a reference plane. The phase maps were then transformed into height profiles and 3-D shapes in a world coordinate system based on phase-to-height and in-plane calibrations. A reference plane-based approach, coupled with the curve fitting technique using polynomials of order 3 or higher, was utilized for phase-to-height calibrations, which achieved superior accuracies with the root-mean-squared errors (RMSEs) of 0.027- 0.033 mm for a height measurement range of 0-91 mm. The 3rd-order polynomial curve fitting technique was further tested on two reference blocks with known heights, resulting in relative errors of 3.75% and 4.16%. In-plane calibrations were performed by solving a linear system formed by a number of control points in a calibration object, which yielded a RMSE of 0.311 mm. Tests of the calibrated system for reconstructing the surface of apple samples showed that surface concavities (i.e., stem/calyx regions) could be easily discriminated from bruises from the phase difference maps, reconstructed height profiles and the 3-D shape of apples. This study has laid a foundation for using SIRI for 3-D shape measurement, and thus expanded the capability of the technique for quality evaluation of horticultural products. Further research is needed to utilize the phase analysis techniques for stem/calyx detection of apples, and optimize the phase demodulation and unwrapping algorithms for faster and more reliable detection.
Newton, Braeden D; Wright, Katy; Winkler, Mandy D; Bovis, Francesca; Takahashi, Masaya; Dimitrov, Ivan E; Sormani, Maria Pia; Pinho, Marco C; Okuda, Darin T
2017-05-10
There remains a need to further refine the ability of clinicians to differentiate multiple sclerosis (MS) from other disease etiologies. Here, we illustrate the value of 3-dimensional (3D) geometric shape and surface lesion characteristics between disease states. Standardized 3-Tesla 3D brain magnetic resonance imaging studies were performed on enrolled MS and nonspecific white matter (NSWM) patients. Focal supratentorial lesions were identified, reconstructed using maximum intensity projection, manually segmented, and 3D printed. Printed 3D models were randomly evaluated by three blinded raters for selected shape and surface characteristics. Regression models adjusting for age, disease duration, and individual patient effects were applied to assess lesion characteristics between patient groups. Patient-level and latent class analyses between groups were performed. A total of 1,001 supratentorial lesions were analyzed (710 MS; 291 NSWM) from 30 patients (19 with confirmed MS [11 female; median age = 33.6 years, range: 26.9-54.5], median disease duration = 2.2 years [.4-19.4]), 11 with verified nonspecific white matter (NSWM) disease without MS (11 female; median age = 55.0 years, range: 27.9-66.2). Lesions originating from MS in comparison to NSWM patients demonstrated a higher percentage of asymmetry (75.9% vs. 43%; OR: 4.39 [2.37-8.12]; P < .001), complex surface morphologies (65.9% vs. 27.8%; OR: 2.3 [1.74-3.05]; P < .001), and were multilobular (11.0% vs. .3%, P < .001), and elongated (12.8% vs. 2.4%, P < .001) in shape. Spatially, these traits were of higher frequency within the juxtacortical, deep white matter, and periventricular regions. Three-dimensional lesion data may provide new biologic insights related to injury along with offering another approach for determining the origin of lesion types. Copyright © 2017 by the American Society of Neuroimaging.
Femoral curvature variability in modern humans using three-dimensional quadric surface fitting.
Chapman, Tara; Sholukha, Victor; Semal, Patrick; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge
2015-12-01
This study analysed femoral curvature in a population from Belgium in conjunction with other morphological characteristics by the use of three-dimensional (3D) quadric surfaces (QS) modelled from the bone surface. 3D models were created from computed tomography data of 75 femoral modern human bones. Anatomical landmarks (ALs) were palpated in specific bony areas of the femur (shaft, condyles, neck and head). QS were then created from the surface vertices which enclose these ALs. The diaphyseal shaft was divided into five QS shapes to analyse curvature in different parts of the shaft. Femoral bending differs in different parts of the diaphyseal shaft. The greatest degree of curvature was found in the distal shaft (mean 4.5° range 0.2°-10°) followed by the proximal (mean 4.4° range 1.5°-10.2°), proximal intermediate (mean 3.7° range 0.9°-7.9°) and distal intermediate (mean 1.8° range 0.2°-5.6°) shaft sections. The proximal and distal angles were significantly more bowed than the intermediate proximal and the intermediate distal angle. There was no significant difference between the proximal and distal angle. No significant correlations were found between morphological characteristics and femoral curvature. An extremely large variability of femoral curvature with several bones displaying very high or low degrees of femoral curvature was also found. 3D QS fitting enables the creation of accurate models which can discriminate between different patterns in similar curvatures and demonstrates there is a clear difference between curvature in different parts of the shaft.
Piantadosi, Steven
2017-01-01
This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.
2017-01-01
This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing. PMID:28166230
Realizing anomalous anyonic symmetries at the surfaces of three-dimensional gauge theories
NASA Astrophysics Data System (ADS)
Fidkowski, Lukasz; Vishwanath, Ashvin
2017-07-01
The hallmark of a two-dimensional (2d) topologically ordered phase is the existence of deconfined "anyon" excitations that have exotic braiding and exchange statistics, different from those of ordinary bosons or fermions. As opposed to conventional Landau-Ginzburg-Wilson phases, which are classified on the basis of the spontaneous breaking of an underlying symmetry, topologically ordered phases, such as those occurring in the fractional quantum Hall effect, are absolutely stable, not requiring any such symmetry. Recently, though, it has been realized that symmetries, which may still be present in such systems, can give rise to a host of new, distinct, many-body phases, all of which share the same underlying topological order. These "symmetry enriched" topological (SET) phases are distinguished not on the basis of anyon braiding statistics alone, but also by the symmetry properties of the anyons, such as their fractional charges, or the way that different anyons are permuted by the symmetry. Thus a useful approach to classifying SETs is to determine all possible such symmetry actions on the anyons that are algebraically consistent with the anyon statistics. Remarkably, however, there exist symmetry actions that, despite being algebraically consistent, cannot be realized in any physical system, and hence do not lead to valid 2d SETs. One class of such "anomalous" SETs, characterized by certain disallowed symmetry fractionalization patterns, finds a physical interpretation as an allowed surface state of certain three-dimensional (3d) short-range entangled phases, but another, characterized by some seemingly valid but anomalous permutation actions of the symmetry on the anyons and encoded in an H3(G ,A ) group cohomology class, has so far eluded a physical interpretation. In this work, we find a way to physically realize these anomalously permuting SETs at the surfaces of certain 3d long-range entangled phases, expanding our understanding of general anomalous SETs in
A combined direct/inverse three-dimensional transonic wing design method for vector computers
NASA Technical Reports Server (NTRS)
Weed, R. A.; Carlson, L. A.; Anderson, W. K.
1984-01-01
A three-dimensional transonic-wing design algorithm for vector computers is developed, and the results of sample computations are presented graphically. The method incorporates the direct/inverse scheme of Carlson (1975), a Cartesian grid system with boundary conditions applied at a mean plane, and a potential-flow solver based on the conservative form of the full potential equation and using the ZEBRA II vectorizable solution algorithm of South et al. (1980). The accuracy and consistency of the method with regard to direct and inverse analysis and trailing-edge closure are verified in the test computations.
A combined direct/inverse three-dimensional transonic wing design method for vector computers
NASA Technical Reports Server (NTRS)
Weed, R. A.; Carlson, L. A.; Anderson, W. K.
1984-01-01
A three-dimensional transonic-wing design algorithm for vector computers is developed, and the results of sample computations are presented graphically. The method incorporates the direct/inverse scheme of Carlson (1975), a Cartesian grid system with boundary conditions applied at a mean plane, and a potential-flow solver based on the conservative form of the full potential equation and using the ZEBRA II vectorizable solution algorithm of South et al. (1980). The accuracy and consistency of the method with regard to direct and inverse analysis and trailing-edge closure are verified in the test computations.
Human body surface area: measurement and prediction using three dimensional body scans.
Tikuisis, P; Meunier, P; Jubenville, C E
2001-08-01
The development of three dimensional laser scanning technology and sophisticated graphics editing software have allowed an alternative and potentially more accurate determination of body surface area (BSA). Raw whole-body scans of 641 adults (395 men and 246 women) were obtained from the anthropometric data base of the Civilian American and European Surface Anthropometry Resource project. Following surface restoration of the scans (i.e. patching and smoothing), BSA was calculated. A representative subset of the entire sample population involving 12 men and 12 women (G24) was selected for detailed measurements of hand surface area (SAhand) and ratios of surface area to volume (SA/VOL) of various body segments. Regression equations involving wrist circumference and arm length were used to predict SAhand of the remaining population. The overall [mean (SD)] of BSA were 2.03 (0.19) and 1.73 (0.19) m2 for men and women, respectively. Various prediction equations were tested and although most predicted the measured BSA reasonably closely, residual analysis revealed an overprediction with increasing body size in most cases. Separate non-linear regressions for each sex yielded the following best-fit equations (with root mean square errors of about 1.3%): BSA (cm2) = 128.1 x m0.44 x h0.60 for men and BSA = 147.4 x m0.47 x h0.55 for women, where m, body mass, is in kilograms and h, height, is in centimetres. The SA/VOL ratios of the various body segments were higher for the women compared to the men of G24, significantly for the head plus neck (by 7%), torso (19%), upper arms (15%), forearms (20%), hands (18%), and feet (11%). The SA/VOL for both sexes ranged from approximately 12.m-1 for the pelvic region to 104-123.m-1 for the hands, and shape differences were a factor for the torso and lower leg.
Surface refraction of sound waves affects calibration of three-dimensional ultrasound.
Ballhausen, Hendrik; Ballhausen, Bianca Désirée; Lachaine, Martin; Li, Minglun; Parodi, Katia; Belka, Claus; Reiner, Michael
2015-05-27
Three-dimensional ultrasound (3D-US) is used in planning and treatment during external beam radiotherapy. The accuracy of the technique depends not only on the achievable image quality in clinical routine, but also on technical limitations of achievable precision during calibration. Refraction of ultrasound waves is a known source for geometric distortion, but such an effect was not expected in homogenous calibration phantoms. However, in this paper we demonstrate that the discontinuity of the refraction index at the phantom surface may affect the calibration unless the ultrasound probe is perfectly perpendicular to the phantom. A calibration phantom was repeatedly scanned with a 3D-US system (Elekta Clarity) by three independent observers. The ultrasound probe was moved horizontally at a fixed angle in the sagittal plane. The resulting wedge shaped volume between probe and phantom was filled with water to couple in the ultrasound waves. Because the speed of sound in water was smaller than the speed of sound in Zerdine, the main component of the phantom, the angle of the ultrasound waves inside the phantom increased. This caused an apparent shift in the calibration features which was recorded as a function of the impeding angle. To confirm the magnitude and temperature dependence, the experiment was repeated by two of the observers with a mixture of ice and water at 0 °C and with thermalized tap water at 21 °C room temperature. During the first series of measurements, a linear dependency of the displacements dx of the calibration features on the angle α of the ultrasound probe was observed. The three observers recorded significantly nonzero (p < 0.0001) and very consistent slopes of dx/dα of 0.12, 0.12, and 0.13 mm/°, respectively.. At 0 °C water temperature, the slope increased to 0.18 ± 0.04 mm/°. This matched the prediction of Snell's law of 0.185 mm/° for a speed of sound of 1,402 m/s at the melting point of ice. At 21 °C, slopes of 0.11 and 0
Three-dimensional numerical simulation of near-surface flows over the Martian north polar cap
NASA Technical Reports Server (NTRS)
Parish, Thomas R.; Howard, A. D.
1993-01-01
Measurements made by Viking Lander VL-2 (48 N) have shown that the near-surface wind and temperature regime on Mars displays striking similarities to terrestrial counterparts. The diurnal radiative cycle is responsible for establishment of a well-defined thermal circulation in which downslope (Katabatic) flows prevail during the nighttime hours and weak upslope (anabatic) conditions prevail during the daytime. Previous work has indicated that the slope flows are much like those found on Earth, particularly the Katabatic winds, which show striking similarities to drainage flows observed over Antarctica. The low-level wind regime appears to be an important factor in the scouring of the martian landscape. The north polar cap shows evidence of eolian features such as dunes, frost streaks, and grooves from Viking imagery. The direction of the prevailing wind can in cases be inferred from the eolian features. We examine the thermally induced flows that result from the radiative heating and cooling of the martian north polar region using a comprehensive three-dimensional atmospheric mesoscale numerical model. The same model has been used previously for simulation of Antarctic Katabatic winds. The model equations are written in terrain-following coordinates to allow for irregular terrain; prognostic equations include the flux forms of the horizontal momentum equations, temperature, continuity. A surface energy budget equation is also incorporated in which the surface temperature is determined. Explicit parameterization of both terrestrial (longwave) and solar (shortwave) radiation is included. Turbulent transfer of heat and momentum in the martian atmosphere is assumed to follow the similarity expressions in the surface boundary layer on Earth. The terrain heights for the martian north polar region have been obtained from the U.S. Geological Survey map and digitized onto a 57x57 grid with a spacing of 75 km. The resulting terrain map is shown in Fig. 1. The vertical grid
Three-dimensional micro-roughness of a pseudotachylyte-bearing fault surface
NASA Astrophysics Data System (ADS)
Resor, P. G.; Griffith, W.; Di Toro, G.
2011-12-01
Dynamic friction experiments in granitoid or gabbroic rocks that achieve earthquake slip velocities reveal significant weakening by melt-lubrication of the sliding surfaces. Extrapolation of these experimental results to seismic source depths (> 7 km) suggests that the slip weakening distance (Dw) over which this transition occurs is < 10 cm. The physics of this lubrication in the presence of a fluid (melt) is controlled by surface micro-topography. In order to characterize fault surface micro-roughness and its evolution during dynamic slip events on natural faults, we have undertaken an analysis of three-dimensional (3D) fault surface microtopography and its causes on a pseudotachylyte-bearing fault. The solidification of frictional melt soon after seismic slip ceases "freezes in" earthquake source geometries, however it also precludes the development of extensive fault surface exposures that have enabled direct studies of fault surface roughness. We have overcome this difficulty by imaging the intact 3D geometry of the fault using high-resolution X-ray computed tomography (CT). Samples (2 cm diameter cores) from a wavy fault segment cutting tonalites of the Gole Larghe fault zone, Italy were scanned at the University of Texas High Resolution X-ray CT Facility, using an Xradia MicroCT scanner with a 70 kV X-ray source. Individual voxels (3D pixels) are ~32 μm across. Fault geometry is thus imaged over ~4 orders of magnitude from the micron scale up to Dw. The pseudotachylyte-bearing fault surface is imaged as a tabular body of intermediate X-ray attenuation crosscutting high attenuation biotite and low attenuation quartz and feldspar of the surrounding tonalite. We extract the fault surfaces (contact between the pseudotachylyte bearing fault zone and the wall rock) using integrated manual mapping, automated edge detection, and statistical evaluation. This approach results in a digital elevation model over > 90% of the fault surface for a sample from an
Zengy, Yi; Min, Li; Lai, Ou-jie; Shen, Bin; Yang, Jing; Zhou, Zong-ke; Kang, Peng-de; Pei, Fu-xing
2015-03-01
To simulate acetabular morphology and perform acetabular quantitative analysis in high dislocated developmental dysplasia of the hip (DDH) patients using three-dimensional (3D) surface reconstruction technique, in order to understand the acetabular anatomic features and develop operative strategies for acetabular reconstruction. 3D pelvic images were reconstructed by Mimics software from CT data of 13 patients (13 hips) with high developmental DDH and 13 normal persons (26 hips). True acetabular superior-inferior diameter, anterior-posterior diameter, acetabular depth, medial wall thickness, abduction angle and anteversion angle were measured and compared between the two groups of participants. Irregular acetabular shape was found in high dislocated group, showing a triangle with wide upper and narrow lower. The acetabular quantitative analysis revealed (38.29 +/- 2.71) mm superior-inferior diameter, (21.74 +/- 5.33) mm anterior-posterior diameter, (15.50 +/- 2.93) mm acetabular depth, (6.80 +/- 2.97) mm medial wall thickness, (49.29 +/- 7.40) degrees abduction angle and (23.82 +/- 11.21) degrees anteversion angle in high dislocated patients. The superior-inferior diameter, anterior-posterior diameter and acetabular depth of high dislocated patients were significantly smaller than those of the normal contirols (P<0.05). However, the medial wall thickness, abduction angle and anteversion angle of high dislocated patients were significantly bigger than those of the normal controls (P<0.05). 3D reconstruction technique can restore true acetabular morphology and perform quantitative analysis. Compared with normal controls, high dislocated DDH patients have acetabular features: irregular shape, lower opening, higher medial wall and bigger abduction and anteversion angles. Joint arthroplasty surgery in high dislocated DDH patients needs to look at these acetabular features.
Lee, Woo Yeon; Kim, Min Jung; Lew, Dae Hyun; Song, Seung Yong
2016-01-01
Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods. PMID:27689050
Chemical functionalization of surfaces for building three-dimensional engineered biosensors
NASA Astrophysics Data System (ADS)
Marques, Marco E.; Mansur, Alexandra A. P.; Mansur, Herman S.
2013-06-01
This study presents a new approach for developing biosensors based on enzymatic systems with designed three-dimensional structures. Silica glass slides were chemically functionalized at surfaces by reacting with organosilanes, 3-mercaptopropyltriethoxysilane (MPTES), and 3-aminopropyltriethoxysilane (APTES), using sol-gel process at room temperature. The functionalization of the supports was characterized by contact angle measurements and FTIR spectroscopy. The first enzyme layer was covalently immobilized to the support by a bi-functional linker (glutaraldehyde). The second enzyme layer was deposited using the protein conjugation method based on the high affinity "avidin-biotin" interactions. Each enzyme was biotinylated before being added to the nanostructured system and avidin was used as the binder between consecutive enzyme layers. The biochemical response was assayed at all stages to certify that the enzymatic bioactivity was retained throughout the entire layer-by-layer (LBL) process. The model of building 3D-enzymatic systems was evaluated using the enzymatic structure with glucose oxidase (GOx) and horseradish peroxidase (HRP). It was verified that the amino-modified support presented the highest bioactivity response compared to the other chemical functionalities. Moreover, the bienzyme nanostructure demonstrated relevant biochemical activity upon injecting the glucose substrate into the system. Finally, as a proof of concept, the bienzyme systems were assayed using real samples of regular and sugar-free soft drinks where they effectively behaved as structured biosensor for glucose with the built-in 3D hybrid architecture. Based on the results, it can be foreseen the development of promising new nanomaterials for several analytical applications such as monitoring the quality of food and beverages for nutrition purposes.
Böl, Markus; Leichsenring, Kay; Weichert, Christine; Sturmat, Maike; Schenk, Philipp; Blickhan, Reinhard; Siebert, Tobias
2013-11-01
There exists several numerical approaches to describe the active contractile behaviour of skeletal muscles. These models range from simple one-dimensional to more advanced three-dimensional ones; especially, three-dimensional models take up the cause of describing complex contraction modes in a realistic way. However, the validation of such concepts is challenging, as the combination of geometry, material and force characteristics is so far not available from the same muscle. To this end, we present in this study a comprehensive data set of the rabbit soleus muscle consisting of the muscles' characteristic force responses (active and passive), its three-dimensional shape during isometric, isotonic and isokinetic contraction experiments including the spatial arrangement of muscle tissue and aponeurosis-tendon complex, and the fascicle orientation throughout the whole muscle at its optimal length. In this way, an extensive data set is available giving insight into the three-dimensional geometry of the rabbit soleus muscle and, further, allowing to validate three-dimensional numerical models.
So, Hongyun; Senesky, Debbie G.
2016-01-04
In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area.
NASA Astrophysics Data System (ADS)
So, Hongyun; Senesky, Debbie G.
2016-01-01
In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area.
Three Dimensional Dirac Semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
Sohmer, Benjamin; Hudson, Christopher; Atherstone, Juliet; Lambert, A Stephane; Labrosse, Michel; Boodhwani, Munir
2013-01-01
As aortic valve (AV) repairs become more sophisticated, surgeons need increasingly detailed information about the structure and function of this valve. Unlike two-dimensional transesophageal echocardiography (2D-TEE), using three-dimensional (3D)-TEE makes it possible to image the entire AV. We hypothesized that measuring coaptation surface area (CoapSA) would be feasible and reproducible, and CoapSA would decrease in patients with aortic insufficiency. We developed a new technique to calculate the AV-CoapSA using 3D-TEE. We measured the coaptation surfaces between the right coronary cusp/left coronary cusp, right coronary cusp/non-coronary cusp, and left coronary cusp/non-coronary cusp in ten normal AVs and ten AVs with moderate-severe aortic insufficiency (AI). Since computer models have previously shown that CoapSA is trapezoidal, we used the formula: trapezoid area = length × (medial coaptation height + lateral coaptation height)/2. The total CoapSA was calculated by adding all three areas. To adjust for valve size, we indexed the value to the diameter of the ventricular aortic junction (VAJ). Measurements were performed by two observers. The intra-observer correlation was 0.84 for one observer (P < 0.0001) and 0.93 for the other (P < 0.0001). The inter-observer correlation was 0.87 (P < 0.0001). In normal valves, the CoapSA [mean total (standard deviation)] was significantly greater than in the insufficient valves [1.61 (0.31) cm(2) vs 1.03 (0.22) cm(2), respectively; P < 0.001]. After indexing for the VAJ diameter, the total CoapSA remained significantly greater in normal valves than in insufficient valves. In this proof of concept study, we present a new and innovative technique to measure AV-CoapSA using 3D-TEE. It is reproducible and shows decreased CoapSA in patients with AI. Coaptation surface area may provide insight into mechanisms of AI and may have predictive value following AV repair.
The combination of symbolic and numerical computation for three-dimensional modeling of RNA.
Major, F; Turcotte, M; Gautheret, D; Lapalme, G; Fillion, E; Cedergren, R
1991-09-13
Three-dimensional (3-D) structural models of RNA are essential for understanding of the cellular roles played by RNA. Such models have been obtained by a technique based on a constraint satisfaction algorithm that allows for the facile incorporation of secondary and other structural information. The program generates 3-D structures of RNA with atomic-level resolution that can be refined by numerical techniques such as energy minimization. The precision of this technique was evaluated by comparing predicted transfer RNA loop and RNA pseudoknot structures with known or consensus structures. The root-mean-square deviation (2.0 to 3.0 angstroms before minimization) between predicted and control structures reveal this system to be an effective method in modeling RNA.
Large-scale three-dimensional measurement via combining 3D scanner and laser rangefinder.
Shi, Jinlong; Sun, Zhengxing; Bai, Suqin
2015-04-01
This paper presents a three-dimensional (3D) measurement method of large-scale objects by integrating a 3D scanner and a laser rangefinder. The 3D scanner, used to perform partial section measurement, is fixed on a robotic arm which can slide on a guide rail. The laser rangefinder, used to compute poses of the 3D scanner, is rigidly connected to the 3D scanner. During large-scale measurement, after measuring a partial section, the 3D scanner is straightly moved forward along the guide rail to measure another section. Meanwhile, the poses of the 3D scanner are estimated according to its moved distance for different partial section alignments. The performance and effectiveness are evaluated by experiments.
NASA Astrophysics Data System (ADS)
Alsaedi, A.; Hayat, T.; Muhammad, T.; Shehzad, S. A.
2016-09-01
This study models the magnetohydrodynamic (MHD) three-dimensional boundary layer flow of viscoelastic fluid. The flow is due to the exponentially stretching surface. The heat transfer analysis is performed through prescribed surface temperature (PST) and prescribed surface heat flux (PHF). The thermal conductivity is taken temperature dependent. Series solutions of velocities and temperatures are constructed. Graphical results for PST and PHF cases are plotted and analyzed. Numerical values of skin-friction coefficients and Nusselt numbers are presented and discussed.
Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr
2015-01-01
Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling. PMID:26858826
Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J
2005-11-23
The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.
Berlincourt, Maud; Angel, Lauren P.; Arnould, John P. Y.
2015-01-01
Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1–70.0%) of time at sea resting on water and 18.2% (range: 2.3–49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8–237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey. PMID:26439491
Berlincourt, Maud; Angel, Lauren P; Arnould, John P Y
2015-01-01
Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1-70.0%) of time at sea resting on water and 18.2% (range: 2.3-49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8-237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey.
Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; Khaira, Gurdaman; Bowen, Alec; Ocola, Leonidas E; Divan, Ralu; Doxastakis, Manolis; Ferrier, Nicola J; de Pablo, Juan; Nealey, Paul F
2017-02-28
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. This research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.
Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; ...
2016-12-22
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and themore » interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. As a result, this research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.« less
Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; Khaira, Gurdaman; Bowen, Alec; Ocola, Leonidas E.; Divan, Ralu N. S.; Doxastakis, Manolis; Ferrier, Nicola J.; de Pablo, Juan; Nealey, Paul F.
2016-12-22
Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. As a result, this research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.
Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers
2016-01-01
In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted
Stern, Carrie S; Schreiber, Jillian E; Surek, Chris C; Garfein, Evan S; Jelks, Elizabeth B; Jelks, Glenn W; Tepper, Oren M
2016-05-01
Given the widespread use of facial fillers and recent identification of distinct facial fat compartments, a better understanding of three-dimensional surface changes in response to volume augmentation is needed. Advances in three-dimensional imaging technology now afford an opportunity to elucidate these morphologic changes for the first time. A cadaver study was undertaken in which volumization of the deep medial cheek compartment was performed at intervals up to 4 cc (n = 4). Three-dimensional photographs were taken after each injection to analyze the topographic surface changes, which the authors define as the "augmentation zone." Perimeter, diameter, and projection were studied. The arcus marginalis of the inferior orbit consistently represented a fixed boundary of the augmentation zone, and additional cadavers underwent similar volumization following surgical release of this portion of the arcus marginalis (n = 4). Repeated three-dimensional computer analysis was performed comparing the augmentation zone with and without arcus marginalis release. Volumization of the deep medial cheek led to unique topographic changes of the malar region defined by distinct boundaries. Interestingly, the cephalic border of the augmentation zone was consistently noted to be at the level of the arcus marginalis in all specimens. When surgical release of the arcus marginalis was performed, the cephalic border of the augmentation zone was no longer restricted. Using advances in three-dimensional photography and computer analysis, the authors demonstrate characteristic surface anatomy changes in response to volume augmentation of facial compartments. This novel concept of the augmentation zone can be applied to volumization of other distinct facial regions. Therapeutic, V.
NASA Technical Reports Server (NTRS)
Gibson, S. G.
1983-01-01
A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.
Fernandez-Gonzalez, Rodrigo; Jones, Arthur; Garcia-Rodriguez, Enrique; Yuan Chen, Ping; Idica, Adam; Lockett, Stephen J.; Barcellos-Hoff, Mary Helen; Ortiz-de-Solorzano, Carlos
2002-04-25
We present a new system for simultaneous morphological and molecular analysis of thick tissue samples. The system is composed of a computer assisted microscope and a JAVA-based image display, analysis and visualization program that allows acquisition, annotation, meaningful storage, three-dimensional reconstruction and analysis of structures of interest in thick sectioned tissue specimens. We describe the system in detail and illustrate its use by imaging, reconstructing and analyzing two complete tissue blocks which were differently processed and stained. One block was obtained from a ductal carcinoma in situ (DCIS) lumpectomy specimen and stained alternatively with Hematoxilyn and Eosin (H&E), and with a counterstain and fluorescence in situ hybridization (FISH) to the ERB-B2 gene. The second block contained a fully sectioned mammary gland of a mouse, stained for Histology with H&E. We show how the system greatly reduces the amount of interaction required for the acquisition and analysis and is therefore suitable for studies that require morphologically driven, wide scale (e.g., whole gland) analysis of complex tissue samples or cultures.
Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies
Ferrara, Maria Antonietta; De Tommasi, Edoardo; Coppola, Giuseppe; De Stefano, Luca; Rea, Ilaria; Dardano, Principia
2016-01-01
The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems. PMID:27690008
Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi
2014-10-20
Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.
Li, Chenhui; Hall, Gunnsteinn; Zeng, Xuefeng; Zhu, Difeng; Eliceiri, Kevin; Jiang, Hongrui
2011-04-25
We demonstrate three-dimensional (3D) surface profiling of the water-oil interface in a tunable liquid microlens using a Shack-Hartmann wave front sensor. The principles and the optical setup for achieving 3D surface measurements are presented and a hydrogel-actuated liquid lens was measured at different focal lengths. The 3D surface profiles are then used to study the optical properties of the liquid lens. Our method of 3D surface profiling could foster the improvement of liquid lens design and fabrication, including surface treatment and aberration reduction.
Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra
2013-07-02
The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA
NASA Astrophysics Data System (ADS)
Mallios, Christos; Bakas, Nikolaos A.
2017-02-01
Modal and nonmodal growth of three-dimensional perturbations in a shear flow with a free surface are examined for a wide range of Froude numbers. By approximating the mean flow with a piecewise linear profile, the modal instabilities are shown to arise from the interaction of three-dimensional edge waves supported at the interfaces of density discontinuity at the surface and mean vorticity discontinuity at the edges of the shear layer. The mechanism and properties of the instability are explained in terms of the dynamics of the edge-wave interactions. Previously reported modal stability analysis restricted to two-dimensional perturbations in the plane of the flow accurately predicts the fastest growing perturbations but underestimates the range of length scales for the unstable structures. Robust nonmodal transient growth of perturbations within a few advective time units is found. For low Froude numbers or low values of the shear, three-dimensional perturbations with small horizontal scales exhibit the largest growth through a synergy between the Orr and the lift-up mechanisms and produce large streamwise streaks in the shear flow without an effect on the free surface. For large Froude numbers or large values of the shear, planar perturbations with larger horizontal scales exhibit the largest energy growth by effectively instigating the modal instability and excite surface waves at large amplitude.
NASA Astrophysics Data System (ADS)
Wojtkowski, M.; Kałużny, B.; Szkulmowska, A.; Bajraszewski, T.; Szkulmowski, M.; Targowski, P.; Kowalczyk, A.
2007-02-01
Purpose: To show potential of Spectral Optical Coherence Tomography system for high resolution, cross-sectional and three-dimensional imaging of eye surface pathologies. Methods: High-speed spectral OCT prototype instrument with 4.5 μm axial resolution was designed and constructed for clinical use. Measurements of anterior segment of human eye have been performed in ophthalmology clinic on 86 patients suffering various eye surface disorders including corneal dystrophies, corneal scars, conjunctival folds, keratoconus, bullus keratopathy, filtration blebs and other post-operative changes. Additionally, examinations of contact lens fit on 97 healthy corneas have been performed up to date. Results: High quality, high resolution cross-sectional images and three-dimensional reconstructions of cornea, conjunctiva and sclera of pathologic eyes together with examples of numerical analysis including segmentation of fluid in filtration blebs, scars and deposits are shown. Quantitative analysis of contact lens fit is demonstrated.
NASA Astrophysics Data System (ADS)
Fang, Chen; Hsieh, Timothy; Fu, Liang
2015-03-01
We theoretically predict two new classes of 3D topological crystalline insulators (TCI) that have protected, robust surface states. In first class, the surface states are protected by a single glide mirror symmetry. On a symmetry-preserving surface, a single Dirac point can appear at any position along either one of the two mirror symmetric lines inside the surface Brillouin zone (SBZ). In the second class, the surface Dirac point is protected by a combination of twofold rotation and time-reversal symmetry, and appears on the crystal surface perpendicular to the rotation axis. Its position in the SBZ is completely free to move by symmetry-preserving perturbations. In each class, we prove the existence of a Z2 bulk invariant and find its explicit analytic expression. These new classes of TCI do not presume the presence or the absence of spin-orbital coupling. DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526 (LF) and the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319 (CF).
Hein, L R; Silva, F A; Nazar, A M; Ammann, J J
1999-01-01
This paper describes two solutions for systematic measurement of surface elevation that can be used for both profile and surface reconstructions for quantitative fractography case studies. The first one is developed under Khoros graphical interface environment. It consists of an adaption of the almost classical area matching algorithm, that is based on cross-correlation operations, to the well-known method of parallax measurements from stereo pairs. A normalization function was created to avoid false cross-correlation peaks, driving to the true window best matching solution at each region analyzed on both stereo projections. Some limitations to the use of scanning electron microscopy and the types of surface patterns are also discussed. The second algorithm is based on a spatial correlation function. This solution is implemented under the NIH Image macro programming, combining a good representation for low contrast regions and many improvements on overall user interface and performance. Its advantages and limitations are also presented.
Error reduction in three-dimensional metrology combining optical and touch probe data
NASA Astrophysics Data System (ADS)
Gerde, Janice R.; Christens-Barry, William A.
2010-08-01
Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.
Kernen, Florian; Benic, Goran I; Payer, Michael; Schär, Alex; Müller-Gerbl, Magdalena; Filippi, Andreas; Kühl, Sebastian
2016-08-01
Reference elements are necessary to transfer a virtual planning into reality for guided implant placement. New systems allow matching optical scans with three-dimensional radiographic images. To test whether digitally designed three-dimensional printed templates (D-temp) fabricated by matching surface scans and cone beam computed tomography (CBCT) images differ from the templates fabricated in-lab (L-temp) by using a physical transfer device for the positioning of the guiding sleeves. L-temp were fabricated for eight human lower cadaver-jaws applying a digital planning software program (smop, Swissmeda AG, Zürich, Switzerland) using a Lego® (Lego Group, KIRKBI A/S, Billund, Denmark) brick as reference element and the respective transfer device (X1-table). Additionally, digital templates (D-temp) using the identical planning data sets and software were virtually designed and three-dimensional printed, after matching a surface scan with CBCT data. The accuracy of both templates for each planning was evaluated determining the estimated coronal, apical, and angular deviation if templates were used for implant placement. Mean coronal deviations for L-temp were 0.31 mm (mesial/distal), 0.32 mm (lingual/buccal), and 0.16 mm and 0.23 mm for D-temp, respectively. The mean apical deviations for L-temp were 0.50 mm (mesial/distal), 0.50 mm (lingual/buccal). and 0.25 mm and 0.34 mm for the D-temp, respectively. Differences between both devices were statistically significant (p < .05). A higher accuracy of implant placement can be achieved by using three-dimensional printed templates produced by matching a surface scan and CBCT as compared with templates which use physical elements transferring the virtual planning into reality. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Izumi, Konami; Yoshida, Yasunori; Tokito, Shizuo
2017-05-01
In this paper, we report on a newly developed printing method called the “soft blanket gravure” (SBG) printing method, which is based on a conventional gravure offset printing method but unlike it, SBG printing uses a very soft and thick offset blanket. SBG printing onto various curved, nonplanar surfaces as well as on planar surfaces using silver ink was successfully demonstrated by optimizing printing conditions such as printing pressure and printing speed. Finely printed conductive silver lines with a 30 µm line width were formed on the curved surfaces. This printing method will have new applications in three-dimensional printed electronics.
THREE-DIMENSIONAL INNERVATION ZONE IMAGING FROM MULTI-CHANNEL SURFACE EMG RECORDINGS
LIU, YANG; NING, YONG; LI, SHENG; ZHOU, PING; RYMER, WILLIAM Z.; ZHANG, YINGCHUN
2017-01-01
There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3-dimensional IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their motor unit action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings. PMID:26160432
Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.
Liu, Yang; Ning, Yong; Li, Sheng; Zhou, Ping; Rymer, William Z; Zhang, Yingchun
2015-09-01
There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3D IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their MU action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings.
Dickson, M R; Downing, K H; Wu, W H; Glaeser, R M
1986-01-01
The three-dimensional structure of the protein which forms the S layer of Aquaspirillum serpens strain VHA has been determined by electron microscopy. Structures have been reconstructed to a resolution of about 1.6 nm for single-layered specimens and about 4 nm for two-layered specimens. The structure, which has hexagonal symmetry, consists of a core in the shape of a cup, with six projections arising from the rim of the cup to join adjacent subunits at the threefold symmetry axes. The model is consistent with edge views of the S layer which have been obtained in this and other work. It is now clear from this work and from three-dimensional reconstructions of other bacterial S layers that a wide diversity exists in the morphology of surface layers. Images PMID:3745114
Volume-preserving smoothing of three-dimensional surfaces: application to intravascular ultrasound.
Zeng, C; Sonka, M
1998-10-01
A volume-preserving three-dimensional smoothing approach is described that can be directly applied to 3D medical image data consisting of sets of 2D image slices, e.g., segmented intravascular ultrasound image sequences. Two local smoothing filters ℱ and 𝒢 were designed according to different smoothing goals and their performance was compared. Filtering with the ℱ filter of a relatively large frequency window keeps the important local characteristics of the object and results in little shrinkage while removing noise. Filtering with the Gaussian filter G that has an added volume compensation step results in no global shrinkage and may be used for multiscale filtering. The two filters can be easily extended to n-dimensional filtering. Copyright 1998 Academic Press.
Quadratic resonance in the three-dimensional oscillations of inviscid drops with surface tension
NASA Technical Reports Server (NTRS)
Natarajan, R.; Brown, R. A.
1986-01-01
The moderate-amplitude, three-dimensional oscillations of an inviscid drop are described in terms of spherical harmonics. Specific oscillation modes are resonantly coupled by quadratic nonlinearities caused by inertia, capillarity, and drop deformation. The equations describing the interactions of these modes are derived from the variational principle for the appropriate Lagrangian by expressing the modal amplitudes to be functions of a slow time scale and by preaveraging the Lagrangian over the time scale of the primary oscillations. Stochastic motions are predicted for nonaxisymmetric deformations starting from most initial conditions, even those arbitrarily close to the axisymmetric shapes. The stochasticity is characterized by a redistribution of the energy contained in the initial deformation over all the degrees of freedom of the interacting modes.
NASA Astrophysics Data System (ADS)
Xu, Xueyang; Zhang, Xiangchao; Xu, Min
2016-10-01
Deflectometry is a promising method for freeform surfaces due to its wide applications and ease of implementation, but it is not robust against environmental noise and vibrations. A new deflectometry method using the quaternary orthogonal grid fringes is proposed to retrieve the surface slopes. Combined with a classic N-step phase-shifting technique, only one image is required to extract the two perpendicular directional phases instead of two groups of phase shifted fringes. The color of each pixel can be encoded by red, green and blue components. In each color component, two perpendicular fringe patterns compose quaternary orthogonal grid fringes. In practice, the relative shift between different colors is set depending on the lateral resolution of the camera lens and the zoom relation of the object-image. The object-image relationship can be established by using only one distorted colorful orthogonal fringe pattern reflected via the surface. This process is fast and stable because the RGB codes of every block are significantly different to its neighbor in at least one color component. This method is suitable for dynamic measurement of specular objects, and the influence of varying environment and moving objects can then be eliminated.
Three-dimensional finite difference viscoelastic wave modelling including surface topography
NASA Astrophysics Data System (ADS)
Hestholm, Stig
1999-12-01
I have undertaken 3-D finite difference (FD) modelling of seismic scattering fromfree-surface topography. Exact free-surface boundary conditions for arbitrary 3-D topographies have been derived for the particle velocities. The boundary conditions are combined with a velocity-stress formulation of the full viscoelastic wave equations. A curved grid represents the physical medium and its upper boundary represents the free-surface topography. The wave equations are numerically discretized by an eighth-order FD method on a staggered grid in space, and a leap-frog technique and the Crank-Nicholson method in time. I simulate scattering from teleseismic P waves by using plane incident wave fronts and real topography from a 60 x 60 km area that includes the NORESS array of seismic receiver stations in southeastern Norway. Synthetic snapshots and seismograms of the wavefield show clear conversion from P to Rg (short-period fundamental-mode Rayleigh) waves in areas of rough topography, which is consistent with numerous observations. By parallelization on fast supercomputers, it is possible to model higher frequencies and/or larger areas than before.
Leek, E Charles; Reppa, Irene; Rodriguez, Elly; Arguin, Martin
2009-04-01
The decomposition of three-dimensional (3-D) objects into shape primitives consisting of geometric volumes is a key proposal of some theories of object recognition. It implicitly assumes that recognition involves volumetric completion--the derivation of a three-dimensional structure that comprises inferred shape properties, such as surfaces, that are not directly visible due to self-occlusion. The goal of this study was to test this claim. In Experiment 1 participants memorized novel objects and then discriminated these from previously unseen objects. Targets were preceded by primes containing a subset of object surfaces that either matched those visible in the whole objects or that could only be inferred through volumetric completion. The results showed performance benefits through priming from visible surfaces but not from inferred surfaces. In Experiment 2, we found equivalent priming for part-primes containing two visible surfaces from the same volumetric part and for primes containing one surface from each of two volumes. These results challenge the view that 3-D object recognition is mediated by shape primitives comprising geometric volumes. Instead, the results support an alternative model that proposes that 3-D shapes are represented as a non-volumetric surface-based structural description.
NASA Astrophysics Data System (ADS)
Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura
2017-02-01
Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.
Faber, Derrek M.; Weiland, Mark A.; Moursund, Robert; Carlson, Thomas J.; Adams, Noah; Rhondorf, D.
2001-05-01
This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000 using three-dimensional acoustic telemetry and computational fluid dynamics hydraulic modeling to observe the response of outmigrating juvenile steelhead and yearling chinook to a prototype surface collector installed at the Powerhouse. The study described in this report was one of several conducted for the U.S. Army Corps of Engineers to prepare a decision document on which of two bypass methods: surface flow bypass or extended-length submersible bar screens to use to help smolts pass around Bonneville dams without going through the turbines.
NASA Astrophysics Data System (ADS)
Martin, William; Cairns, Brian; Bal, Guillaume
2014-09-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth's atmosphere.
NASA Technical Reports Server (NTRS)
Komornicki, A.; Morokuma, K.; George, T. F.
1977-01-01
The role of electron transitions in collisions is studied for the F + H2 reaction by combining quasi-classical Monte Carlo trajectories with a semiclassical decoupling approximation for the electron transitions. Attention is directed at the reaction of excited state F atoms reacting to form ground state products; the reactants are initiated in either of two spin-orbit states of the atom with the diatom in the ground vibrational state and the lowest four rotational states, at relative translational energies of 0.1, 0.2 and 0.3 eV. Even if the reactants are initiated on the excited state surface, the reactive cross sections (which are classically forbidden) are significant. The major dynamical effects of the excited state reaction are the flow of reactant electronic energy into product internal energy.
NASA Technical Reports Server (NTRS)
Komornicki, A.; Morokuma, K.; George, T. F.
1977-01-01
The role of electron transitions in collisions is studied for the F + H2 reaction by combining quasi-classical Monte Carlo trajectories with a semiclassical decoupling approximation for the electron transitions. Attention is directed at the reaction of excited state F atoms reacting to form ground state products; the reactants are initiated in either of two spin-orbit states of the atom with the diatom in the ground vibrational state and the lowest four rotational states, at relative translational energies of 0.1, 0.2 and 0.3 eV. Even if the reactants are initiated on the excited state surface, the reactive cross sections (which are classically forbidden) are significant. The major dynamical effects of the excited state reaction are the flow of reactant electronic energy into product internal energy.
An interactive user-friendly approach to surface-fitting three-dimensional geometries
NASA Technical Reports Server (NTRS)
Cheatwood, F. Mcneil; Dejarnette, Fred R.
1988-01-01
A surface-fitting technique has been developed which addresses two problems with existing geometry packages: computer storage requirements and the time required of the user for the initial setup of the geometry model. Coordinates of cross sections are fit using segments of general conic sections. The next step is to blend the cross-sectional curve-fits in the longitudinal direction using general conics to fit specific meridional half-planes. Provisions are made to allow the fitting of fuselages and wings so that entire wing-body combinations may be modeled. This report includes the development of the technique along with a User's Guide for the various menus within the program. Results for the modeling of the Space Shuttle and a proposed Aeroassist Flight Experiment geometry are presented.
NASA Astrophysics Data System (ADS)
Shen, Shuwei; Zhao, Zuhua; Wang, Haili; Han, Yilin; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Ray, William; Hoehne, Brad; Xu, Ronald
2016-03-01
Appropriate surgical planning is important for improved clinical outcome and minimal complications in many surgical operations, such as a conjoined twin separation surgery. We combine 3D printing with casting and assembling to produce a solid phantom of high fidelity to help surgeons for better preparation of the conjoined twin separation surgery. 3D computer models of individual organs were reconstructed based on CT scanned data of the conjoined twins. The models were sliced, processed, and converted to an appropriate format for Fused Deposition Modeling (FDM). The skeletons of the phantom were printed directly by FDM using Acrylonitrile-Butadiene-Styrene (ABS) material, while internal soft organs were fabricated by casting silicon materials of different compositions in FDM printed molds. The skeleton and the internal organs were then assembled with appropriate fixtures to maintain their relative positional accuracies. The assembly was placed in a FMD printed shell mold of the patient body for further casting. For clear differentiation of different internal organs, CT contrast agents of different compositions were added in the silicon cast materials. The produced phantom was scanned by CT again and compared with that of the original computer models of the conjoined twins in order to verify the structural and positional fidelity. Our preliminary experiments showed that combining 3D printing with casting is an effective way to produce solid phantoms of high fidelity for the improved surgical planning in many clinical applications.
Rapid three-dimensional chromoscan system of body surface based on digital fringe projection
NASA Astrophysics Data System (ADS)
Wei, Bin; Liang, Jin; Li, Jie; Ren, Maodong
2015-09-01
This paper proposes a rapid body scanning system that uses optical digital fringe projection method. Twelve cameras and four digital projectors are placed around the human body from four different directions, so that the body surface threedimensional( 3D) point cloud data can be scanned in 5~8 seconds. It can overcome many difficulties in a traditional measurement method, such as laser scanning causes damage to human eye and low splicing accuracy using structured white light scanning system. First, an accurate calibration method based on close-range photogrammetry, is proposed and verified for calibrating the twelve cameras and the four digital projectors simultaneously, where a 1m×2m plate as calibration target with feature points pasted on its two-sides is used. An experiment indicates that the proposed calibration method, with a re-projection error less than 0.05pixels, has a considerable accuracy. The whole 3D body surface color point cloud data can be measured without splice different views of point cloud, because of the high accuracy calibration results. Then, in order to measure the whole body point cloud data with high accuracy, a combination of single and stereo camera measuring method, based on digital fringe projection, has presented to calculating 3D point cloud data. At last, a novel body chromoscan system is developed and a human body 3D digital model was scanned, by which a physical body model was manufactured using 3D printing technology.
Three-dimensional ab initio potential energy surface for H-CO(X̃(2)A').
Song, Lei; van der Avoird, Ad; Groenenboom, Gerrit C
2013-08-15
We present an ab initio potential for the H-CO(X̃(2)A') complex in which the CO bond length is varied and the long-range interactions between H and CO are accurately represented. It was computed using the spin-unrestricted open-shell single and double excitation coupled cluster method with perturbative triples [RHF-UCCSD(T)]. Three doubly augmented correlation-consistent basis sets were utilized to extrapolate the correlation energy to the complete basis set limit. More than 4400 data points were calculated and used for an analytic fit of the potential: long-range terms with inverse power dependence on the H-CO distance R were fit to the data points for large R, the reproducing kernel Hilbert space (RKHS) method was applied to the data at smaller distances. Our potential was compared with previous calculations and with some data extracted from spectroscopy. Furthermore, it was used in three-dimensional discrete variable representation (DVR) calculations of the vibrational frequencies and rotational constants of HCO, which agree very well with the most recently measured data. Also the dissociation energy D0 = 0.623 eV of HCO into H + CO obtained from these calculations agrees well with experimental values. Finally, we made preliminary two-dimensional (2D) calculations of the cross sections for rotationally inelastic H-CO collisions with the CO bond length fixed and obtained good agreement with recently published 2D results.
Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos
2016-11-01
The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 <= Re <= 325 (based on the diameter of the cylinder) where steady-state solutions have been obtained. Direct numerical simulations were computed using an in-house parallel finite element code. Results indicate that symmetry breaking occurs at Re = 1 , while the first prominent structure is a horseshoe vortex downstream from the cylinder. At Re = 150 , two foci are observed, indicating the formation of two tornadolike vortices downstream. Concurrently, another horseshoe vortex is formed upstream from the cylinder. For higher Reynolds numbers, the flow downstream is segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder
Diffusion-based three-dimensional reconstruction of complex surface using monocular vision.
Wei, Yangjie; Wu, Chengdong; Wang, Yi; Wang, Wenxue
2015-11-16
Three-dimensional (3D) reconstruction based on optical diffusion has certain significant advantages, such as its capacity for high-precision depth estimation with a small lens, distant-object depth estimation, a monocular vision basis, and no required camera or scene adjustment. However, few mathematical models to relate the depth information acquired using this technique to the basic principles of intensity distribution during optical diffusion have been proposed. In this paper, the heat diffusion equation of physics is applied in order to construct a mathematical model of the intensity distribution during optical diffusion. Hence, a high-precision 3D reconstruction method with optical diffusion based on the heat diffusion equation is proposed. First, the heat diffusion equation is analyzed and an optical diffusion model is introduced to explain the basic principles of the diffusion imaging process. Second, the novel 3D reconstruction method based on global heat diffusion is proposed, which incorporates the relationship between the depth information and the degree of diffusion. Finally, a simulation involving synthetic images and an experiment using five playing cards are conducted, with the results confirming the effectiveness and feasibility of the proposed method.
Cell volume control at a surface for three-dimensional grid generation packages
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, Kenneth J.
1992-01-01
An alternate method of calculating the cell size for orthogonality control in the solution of Poisson's 3D space equations is presented. The method provides the capability to enforce a better initial guess for the grid distribution required for boundary layer resolution. This grid point distribution is accomplished by enforcing grid spacing from a grid block boundary where orthogonality is required. The actual grid spacing or cell size for that boundary is determined by the two or four adjacent boundaries in the grid block definition, which are two dimensional grids. These two dimensional grids are in turn defined by the user using insight into the flow field and boundary layer characteristics. The adjoining boundaries are extended using a multifunctional blending scheme, with user control of the blending and interpolating functions to be used. This grid generation procedure results in an enhanced computational fluid dynamics calculation by allowing a quicker resolution of the configuration's boundary layer and flow field and by limiting the number of grid re-adaptations. The cell size specification calculation was applied to a variety of configurations ranging from axisymmetric to complex three-dimensional configurations. Representative grids are shown for the Space Shuttle and the Langley Lifting Body (HL-20).
NASA Astrophysics Data System (ADS)
Smoot, N. Christian; King, Robert E.
1993-01-01
Slump and debris slides form on seamounts as they grow, age, and are transported across the sea floor. Slump scars, evident as amphitheater headwalls, are a good morphological indicator where a landslide has occurred. Radical changes in the lower flank slope angles are also good indicators. Debris flows can be surmised by hummocky topography, with the larger blocks being nearer the main edifice. A cursory inspection of the Pacific plate from younger to older shows: (1) the Hawaiian-Emperor Ridge from Loihi to Suiko at 65 Ma, where the lower flank slopes increase with age, (2) Mammerickx seamount in the Mapmakers on 140 Ma crust, out of the fractured region, still showing moats and having no sign of landslides, (3) Castor and Pollux guyots of the Michelson Ridge on 150 Ma crust, where the debris field size is added to or overprinted by later volcanics, to (4) Hunk, Jennings, and Jaybee guyots in the Marcus-Wake seamounts on 160 Ma crust, where later fracture zone formation may have helped form landslides. None of the older seamounts have been dated. Three-dimensional views aid in the location and description of landslides.
Direct Observation of Three-dimensional Electroconvective Vortices on a Charge Selective Surface
NASA Astrophysics Data System (ADS)
Kwak, Rhokyun; Han, Jongyoon; Lee, Taikjin; Kwak, Ho-Young
2015-11-01
We present a visualization of three-dimensional electroconvective vortices (EC) by ion concentration polarization (ICP) on a cation selective membrane. The vortices are initiated between two transparent Nafion membranes under no-shear/shear conditions with various applied voltages and flow velocities. Fluorescent imaging and spatial Fourier transform allow us to capture vortex structures. In this 3-D system, EC shows three distinguished structures: i) polygonal shapes with no-shear and ii) transverse and/or iii) longitudinal vortex rolls with shear flow, which is reminiscent of 3-D Rayleigh-Benard instability. Under shear flow, as flow velocity (Reynolds number: Re) increases or voltage (electric Rayleigh number: Ra) decreases, pure longitudinal vortices are presented; in the inverse case, transverse vortices are also formed. It is noteworthy that if we confine EC in quasi 2-D system with high Ra (>10,000), we obtain pure transverse vortices; high Ra induces chaotic EC in this 3-D system, instead of 2-D stable transverse vortices. To the best of our knowledge, this is the first direct observation of 3-D EC, which will occur in realistic electrochemical devices, e.g. electrodialysis.
NASA Astrophysics Data System (ADS)
Amin, Abolfazl
2011-12-01
Frictional resistance reduction of liquid flow over surfaces has recently become a more important topic of research in the field of fluid dynamics. Scientific and technological progress and continued interest in nano and micro-technology have required new developments and approaches related to reducing frictional resistance, especially in liquid flow through nano and micro-channels. The application of superhydrophobic surfaces could be very effective in achieving the desired flow through such small channels. Superhydrophobic surfaces are created by intentionally creating roughnesses on the surface and applying a uniform hydrophobic coating to the entire surface. Liquid droplet tests have revealed that because of the trapped air within the cavities such surfaces could have contact angles as high as 179º. Such a property gives superhydrophobic surfaces liquid repelling characteristics making them very suitable for frictional resistance reduction in liquid flow through nano or micro-channels, provided wetting of the cavities could be avoided. This study presents 3-D numerical simulation results of liquid laminar flow over post patterned superhydrophobic surfaces. The research was performed in three phases, 1) pressure-driven flow with square micro-posts, 2) Couette flow with square micro-posts, and 3) pressure-driven flow with rectangular micro-posts at various aspect ratios. In phases (1) and (2) the influences of important parameters such as the cavity fraction, in the range of 0.0-0.9998, and the relative module width, from 0.01 to 1.5, on frictional resistance reduction in the creeping flow regime were explored. Phase (1) also addressed the effect of varying Reynolds number from 1 to 2500 on frictional resistance. Phase (3) was conducted for aspect ratios of 1/8, 1/4, 1/2, 2, 4, and 8 also in the creeping flow regime. The obtained results suggest that important parameters such as cavity fraction (relative area of the cavities), relative module width (combined
NASA Astrophysics Data System (ADS)
Zhou, Yan-Feng; Guo, Ai-Min; Sun, Qing-Feng
2016-08-01
We study the influence of a step defect on surface states in three-dimensional topological insulators subject to a perpendicular magnetic field. By calculating the energy spectrum of the surface states, we find that Landau levels (LLs) can form on flat regions of the surface and are distant from the step defect, and several subbands emerge at the side surface of the step defect. The subband which connects to the two zeroth LLs is spin polarized and chiral. In particular, when the electron transports along the side surface, the electron spin direction can be manipulated arbitrarily by gate voltage. Also, no reflection occurs even if the electron spin direction is changed. This provides a fascinating avenue to control the electron spin easily and coherently. In addition, regarding the subbands with a high LL index, there exist spin-momentum locking helical states and the quantum spin Hall effect can appear.
Masuda, Y; Oguri, M; Morinaga, T; Hirao, T
2014-08-01
Skin surface micro-topography (SSMT), consisting of pores, ridges and furrows, reflects the skin condition and is an important factor determining the aesthetics of the skin. Most previous studies evaluating SSMT have employed two-dimensional image analysis of magnified pictures captured by a video microscope. To improve the accuracy of SSMT analysis, we established a three-dimensional (3D) analysis method for SSMT and developed various parameters including the skin ridge number, and applied the method to study the age-dependent change in skin. Confocal laser scanning microscopy was used for 3D measurement of the surface morphology of silicon replicas taken from the cheek. We then used these data to calculate the parameters that reflect the nature of SSTM including the skin ridge number using originally developed software. Employing a superscription technique, we investigated the variation in SSMT with age for replicas taken from the cheeks of 103 Japanese females (5-85 years old). The skin surface area and roughness, the area of pores, the area, length, depth and width of skin furrows and the number of skin ridges were examined. The surface roughness, the area of pores and the depth of skin furrows increased with age. The area and length of skin furrows and the number of skin ridges decreased with age. The method proposed to analyse SSMT three dimensionally is an effective tool with which to characterize the condition of the skin. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
NASA Astrophysics Data System (ADS)
Hu, Yan; Chen, Qian; Tao, Tianyang; Li, Hui; Zuo, Chao
2017-04-01
Fringe projection profilometry has become a widely used method in 3D shape measurement and 3D data acquisition for the features of flexibility, noncontactness, and high accuracy. By combining fringe projection setup with microscopic optics, the fringe pattern can be projected and imaged within a small area, making it possible for measuring 3D surfaces of micro-components. In this paper, a Greenough-type stereomicroscope arrangement is firstly applied for this situation by using the two totally separated and coaxial optical paths of the stereomicroscope. The calibration framework of the stereomicroscope-based system is proposed, which enables high-accuracy calibration of the optical setup for quantitative measurement with the effect of lens distortion eliminated. In the process of 3D reconstruction, depth information is firstly retrieved through the phase-height relation calibrated by a nonlinear fitting algorithm, and the transverse position can be subsequently obtained by solving the equations derived from the calibrated model of the camera. Experiments of both calibration and measurements are conducted and the results reveal that our system is capable of conducting fully automated 3D measurements with a depth accuracy of approximately 4 μm in a volume of approximately 8(L) mm × 6(W) mm × 3(H) mm.
Luo, Honglin; Xiong, Guangyao; Zhang, Chen; Li, Deying; Zhu, Yong; Guo, Ruisong; Wan, Yizao
2015-04-01
Studies on the early calcium phosphate (Ca-P) formation on nanosized substrates may allow us to understand the biomineralization mechanisms at the molecular level. In this work, in situ formation of Ca-P minerals on bacterial cellulose (BC)-based nanofibers was investigated, for the first time, using the X-ray absorption near-edge structure (XANES) spectroscopy. In addition, the influence of the surface coating of nanofibers on the formation of Ca-P minerals was determined. Combined with XRD analysis, XANES results revealed that the nascent precursor was ACP (amorphous calcium phosphate) which was converted to TCP (β-tricalcium phosphate), then OCP (octacalcium phosphate), and finally to HAP (hydroxyapatite) when phosphorylated BC nanofibers were the templates. However, the formation of nascent precursor and its transformation process varied depending on the nature of the coating material on nanofibrous templates. These results provide new insights into basic mechanisms of mineralization and can lead to the development of novel bioinspired nanostructured materials. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Z.; Walsh, J. L.; Kong, M. G.
2009-01-01
This letter reports on electrical and optical characteristics of a ten-channel atmospheric pressure glow discharge jet array in parallel electric and gas flow fields. Challenged with complex three-dimensional substrates including surgical tissue forceps and sloped plastic plate of up to 15°, the jet array is shown to achieve excellent jet-to-jet uniformity both in time and in space. Its spatial uniformity is four times better than a comparable single jet when both are used to treat a 15° sloped substrate. These benefits are likely from an effective self-adjustment mechanism among individual jets facilitated by individualized ballast and spatial redistribution of surface charges.
NASA Astrophysics Data System (ADS)
Moon, S.; Perron, J. T.; Martel, S. J.; Holbrook, W. S.; St. Clair, J.
2017-04-01
Bedrock fractures influence the rates of surface processes that drive landscape evolution and are in turn influenced by landforms that perturb ambient tectonic and gravitational stress fields. In this modeling study, we examine how three-dimensional topography and tectonic stress regimes influence elastic stress fields and bedrock fracture patterns beneath Earth's surface. We illustrate general effects of landform orientation and of tectonic stress magnitude and anisotropy using boundary element models of stresses beneath synthetic elongated ridges with different aspect ratios. We then examine the more detailed effects of landform shape using natural landscapes in Colorado and South Carolina. We show that the stress field is most sensitive to topographic perturbations if the most compressive horizontal tectonic stress is oriented perpendicular to the long axis of elongated landforms such as ridges and valleys and that topographic stress perturbations are most pronounced beneath landforms with higher mean curvatures, such as channel junctions and ridge crests. The shape of a predicted fracture-rich zone in the subsurface depends mainly on the orientation of landforms relative to the most compressive horizontal tectonic stress direction and a dimensionless ratio that expresses the relative magnitudes of topographic stresses associated with horizontal tectonic compression and topographic relief. Variations in this dimensionless ratio can also change the predicted orientations of potential opening-mode fracture planes. We use these model results to illustrate how topographic perturbations of three-dimensional tectonic and gravitational stresses could influence landscape evolution by altering the rates and spatial heterogeneity of surface processes and groundwater flow.
Zhuo, Shuangmu E-mail: hanry-yu@nuhs.edu.sg; Yan, Jie; Kang, Yuzhan; Peng, Qiwen; and others
2014-07-14
Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.
Generating Three-Dimensional Surface Models of Solid Objects from Multiple Projections.
1982-10-01
x,y,z,w) i , on surface G this procedure finds the nearest intersection with .’, the surface-normal vector, and the normal surface curva - ture, both...in equation (A.1), such as the Coons, Ferguson, Bezier , Hermite, and B-spline methods -J [7,20,26,27]. The Ferguson method is useful for fitting a
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
Wang, Haiyan; Zhou, Yuexi; Yuan, Quan; Zhao, Hua; Dai, Xin
2014-01-01
The bacterial morphology and diversity in the reactors of a combined autotrophic nitritation and sulfur-carbon three-dimensional-electrode denitrification (CANSCTED) process operating under steady-state conditions were investigated by scanning electron microscopy and partial 16S rDNA cloning and sequencing. The CANSCTED process consisted of two parts, i.e., the nitritation membrane bioreactor (NMBR) and the sulfur-carbon three-dimensional-electrode denitrification reactor (SCTED). When the influent NH₄(+) concentration of NMBR ranged from 854 to 1086 mg N L(-1), with about 50% NH₄(+) removal efficiency and NO₂(-) accumulation rate, the spherical and spheroidal ammonia-oxidizing bacteria were predominant, with community successions of β-Proteobacteria (60.0%), Bacteroidetes (28.3%) and Chloroflexi (11.7%). The NMBR effluent with 429∼543 mg N L(-1) NH₄(+) and 519∼578 mg N L(-1) NO₂(-) was continuously supplied to SCTED for sulfur denitrification, bioelectrochemical hydrogen denitrification, and anaerobic ammonium oxidation. The predominant bacterial community successions were β-Proteobacteria (78.3%) and ϵ-Proteobacteria (21.7%). When the SCTED influent was supplied with only NO₂(-) (412-525 mg N L(-1)) as nitrogen substrate, the predominant bacteria in SCTED were short-bacilliform and spheroidal denitrification bacteria, β-Proteobacteria (82.0%), ϵ-Proteobacteria (16.4%) and γ-Proteobacteria (1.6%). Although the predominant bacterial communities were both β-Proteobacteria and ϵ-Proteobacteria in SCTED, the species and quantity of each community varied with the change of SCTED influent composition, which indicated that the composition influence the bacterial morphology and diversity in SCTED.
NASA Astrophysics Data System (ADS)
Kuo, Ping-Lin; Hsu, Chun-Han; Chiang, Huan-Te; Hsu, Jung-Mu
2013-12-01
A sample of nanosized LiFePO4/graphene/carbon (NLFP/GC) hybrid material was achieved by homogenously dispersing a lab-fabricated NLFP (<100 nm) preparation inside well-exfoliated graphene, followed by carbon coating on the NLFP to constitute a three-dimensional network. For comparison, the NLFP coated with sucrose (NLFP/C) and the NLFP solely dispersed in graphene (NLFP/G) were prepared and evaluated. For these as-prepared products, the purity of the LFP component was characterized by X-ray diffraction, while the morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanosized and homogeneously dispersed NLFP/C in composite insures high capacities, indicating that can significantly shorten the pathway for lithium ion diffusion. Under different charge/discharge rates, the capacities of NLFP/GC are all higher than those of NLFP, NLFP/C, and NLFP/G. Also, NLFP/GC exhibited the excellent rate performance of 101 mAh g-1 compared to NLFP/C (ca. 0 mAh g-1) and NLFP/G (58 mAh g-1) at 10C. It is clear that the three-dimensional graphene network of NLFP/GC, very efficiently promote the conductivity of the poorly conductive LiFePO4. Also, the graphene skeleton can serve as a solid scaffold to restrain the aggregation of NLFP. The outstanding electrochemical performance of NLFP/GC derives from the nanosized NLFP in combination with the graphene/carbon layer.
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468
NASA Astrophysics Data System (ADS)
Ailinger, K. G.; Simpson, R. L.
1990-04-01
Measurements of surface shear stress magnitude and direction are reported for a three-dimensional, pressure driven, turbulent boundary layer around a wing body junction. Measurements were made using a dual-beam oil film laser interferometer at 56 locations. An iterative procedure was developed which increased the precision of the data extracted from the data records. Skin friction directions computed using a least square error fit were compared to angles obtained from surface oil flows, hot wire anemometry, and LDV measurements. Also, the magnitude of the skin friction coefficients were compared to independently obtained skin friction coefficients. The data agreed to within experimental error outside the effects from the vortex legs present along the side of the wing-body. No accurate data was available for quantitative comparison under the effects of the vortex, but the magnitudes followed the qualitative trends expected. This method failed badly in the region of large three-dimensional effects and requires further study in this area of application.
NASA Astrophysics Data System (ADS)
Park, Changhoon; Jung, Howon; Hahn, Jae W.
2017-03-01
We present an analytical formula to predict the three-dimensional field distribution of a nanoscale bowtie aperture using quasi-spherical waves (QSWs) and surface plasmon polaritons, which are excited by the fundamental waveguide mode and local plasmons of the aperture, respectively. Assuming two separate bowtie apertures in a metal film, we analysed the decay characteristics of QSWs using a finite difference time-domain method. To verify the formula, we recorded the spot patterns of the bowtie aperture on a photoresist film using various exposure times, and fit the patterns to the analytical formula in terms of the width and depth of the patterns. In addition, it was found that the formula successfully represented the dipole characteristics of the spot patterns, which were in agreement with the surface geometry, with a root-mean-square error of 9.4%. We expect that our theoretical formula will extend the potential applications of nanoscale bowtie apertures to plasmonic device fabrication, three-dimensional plasmonic lithography, and other technologies.
Park, Changhoon; Jung, Howon; Hahn, Jae W
2017-03-30
We present an analytical formula to predict the three-dimensional field distribution of a nanoscale bowtie aperture using quasi-spherical waves (QSWs) and surface plasmon polaritons, which are excited by the fundamental waveguide mode and local plasmons of the aperture, respectively. Assuming two separate bowtie apertures in a metal film, we analysed the decay characteristics of QSWs using a finite difference time-domain method. To verify the formula, we recorded the spot patterns of the bowtie aperture on a photoresist film using various exposure times, and fit the patterns to the analytical formula in terms of the width and depth of the patterns. In addition, it was found that the formula successfully represented the dipole characteristics of the spot patterns, which were in agreement with the surface geometry, with a root-mean-square error of 9.4%. We expect that our theoretical formula will extend the potential applications of nanoscale bowtie apertures to plasmonic device fabrication, three-dimensional plasmonic lithography, and other technologies.
Park, Changhoon; Jung, Howon; Hahn, Jae W.
2017-01-01
We present an analytical formula to predict the three-dimensional field distribution of a nanoscale bowtie aperture using quasi-spherical waves (QSWs) and surface plasmon polaritons, which are excited by the fundamental waveguide mode and local plasmons of the aperture, respectively. Assuming two separate bowtie apertures in a metal film, we analysed the decay characteristics of QSWs using a finite difference time-domain method. To verify the formula, we recorded the spot patterns of the bowtie aperture on a photoresist film using various exposure times, and fit the patterns to the analytical formula in terms of the width and depth of the patterns. In addition, it was found that the formula successfully represented the dipole characteristics of the spot patterns, which were in agreement with the surface geometry, with a root-mean-square error of 9.4%. We expect that our theoretical formula will extend the potential applications of nanoscale bowtie apertures to plasmonic device fabrication, three-dimensional plasmonic lithography, and other technologies. PMID:28358013
NASA Astrophysics Data System (ADS)
Hong, Eun-Soo; Kwon, Tae-Hyuk; Song, Ki-Il; Cho, Gye-Chun
2016-01-01
The present study explores the degradation characteristics and scale of unevenness (small-scale roughness) on sheared rock joint surfaces at a low-stress regime. While the degradation characteristics of unevenness and the normal stress are mutually interrelated, an understanding of the degradation patterns of the three-dimensional roughness of rock joints is one of the important components needed to identify asperity failure characteristics and to quantify the role of damaged unevenness in establishing a shear strength model. A series of direct shear tests was performed on three-dimensional artificial rock joint surfaces at different normal stress levels. After shearing, the spatial distributions and statistical parameters of degraded roughness were analysed for the different normal stress levels. The length and area of the degraded zones showed bell-shaped distributions in a logarithmic scale, and the dominant scale (or the most frequently occurring scale) of the damaged asperities (i.e., unevenness) ranged from approximately, 0.5 to 5.0 mm in length and 0.1-10 mm2 in area. This scale of the damaged unevenness was consistent regardless of the level of normal stress. It was also found that the relative area of damaged unevenness on a given joint area, and thus the contribution of the mechanical asperity failure component to shear strength increased as normal stress increased.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.
2001-01-01
To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed
2017-09-01
The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.
Bashein, Gerard; Legget, Malcolm E; Detmer, Paul R
2004-03-01
Three-dimensional transesophageal echocardiography offers promise for improved understanding of mitral leaflet pathology, but it has not been validated quantitatively, nor has the minimum number of imaging planes for satisfactory reconstruction been determined with a rotational scanning geometry. This study assessed its accuracy in vitro by comparing, on a 1 x 1-mm grid, the surfaces of mitral leaflets derived from 5-degree rotational ultrasonic scans with those derived from laser scans of casts of the atrial side of the leaflets. Overall, the ultrasonically derived surface had a mean absolute deviation of 0.65 +/- 0.12 mm from the laser-derived surface. Using only alternate imaging planes (10-degree increments) made no significant difference in the overall distribution of deviations (P =.56), although the distributions on some individual specimens differed markedly. We conclude that 5-degree rotational scanning in vitro can reconstruct the mitral valve leaflets with sufficient accuracy and detail to render clinically important features.
Brandon; Wachs; Marmur
1997-07-01
A public domain software package is employed in the quasi-steady-state simulation of contact angle hysteresis. Three-dimensional sessile drops in equilibrium with a model chemically heterogeneous smooth solid surface are considered; evolving drop shapes, as a function of incremental changes in their volume, are investigated. Results are presented for a model system in which the intrinsic contact angle is assumed to vary along the surface in a periodic manner. Throughout the simulation, calculated contact angles show reasonable agreement with the local intrinsic contact angle values, and the computed drop shapes are found to be constant mean curvature surfaces. Significant hysteresis in the liquid-fluid interface curvature and average contact angle is found; a complete hysteresis loop is simulated. Advancing and receding contact angles exhibit the "stick-slip" behavior observed in experiments as well as in previous 2-D simulations.
NASA Astrophysics Data System (ADS)
Bai, Ze; Tan, Mao-Jin; Zhang, Fu-Lai
2016-09-01
Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low-resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.
An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime
NASA Astrophysics Data System (ADS)
Prähofer, M.; Spohn, H.
1996-09-01
We generalize the surface growth model of Gates and Westcott to arbitrary inclination. The exact steady growth velocity is of saddle type with principal curvatures of opposite sign. According to Wolf, this implies logarithmic height correlations, which we prove by mapping the steady state of the surface to world lines of free fermions with chiral boundary conditions.
An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime
NASA Astrophysics Data System (ADS)
Prähofer, M.; Spohn, H.
1997-09-01
We generalize the surface growth model of Gates and Westcott to arbitrary inclination. The exact steady growth velocity is of saddle type with principal curvatures of opposite sign. According to Wolf, this implies logarithmic height correlations, which we prove by mapping the steady state of the surface to world lines of free fermions with chiral boundary conditions.
Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; ...
2015-12-22
Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.
Constructions of spacelike Bézier Surfaces in the Three-dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Georgiev, Georgi H.
2009-11-01
Several applications of Minkowski 3-space in geometric modeling are known. These applications are connected with Minkowski Pythagorean hodograph curves and space-like Bézier curves. Another application of Minkowski 3-space is given in this paper. We study space-like polynomial surfaces which are tensor-product Bezier patches. Examples of such surfaces of low degree are considered.
Three-dimensional wavelet transform and multiresolution surface reconstruction from volume data
NASA Astrophysics Data System (ADS)
Wang, Yun; Sloan, Kenneth R., Jr.
1995-04-01
Multiresolution surface reconstruction from volume data is very useful in medical imaging, data compression and multiresolution modeling. This paper presents a hierarchical structure for extracting multiresolution surfaces from volume data by using a 3-D wavelet transform. The hierarchical scheme is used to visualize different levels of detail of the surface and allows a user to explore different features of the surface at different scales. We use 3-D surface curvature as a smoothness condition to control the hierarchical level and the distance error between the reconstructed surface and the original data as the stopping criteria. A 3-D wavelet transform provides an appropriate hierarchical structure to build the volume pyramid. It can be constructed by the tensor products of 1-D wavelet transforms in three subspaces. We choose the symmetric and smoothing filters such as Haar, linear, pseudoCoiflet, cubic B-spline and their corresponding orthogonal wavelets to build the volume pyramid. The surface is reconstructed at each level of volume data by using the cell interpolation method. Some experimental results are shown through the comparison of the different filters based on the distance errors of the surfaces.
CFD simulation of two- and three-dimensional free-surface flow
NASA Astrophysics Data System (ADS)
Apsley, David; Hu, Wei
2003-06-01
The paper describes the implementation of moving-mesh and free-surface capabilities within a 3-d finite-volume Reynolds-averaged-Navier-Stokes solver, using surface-conforming multi-block structured meshes. The free-surface kinematic condition can be applied in two ways: enforcing zero net mass flux or solving the kinematic equation by a finite-difference method. The free surface is best defined by intermediate control points rather than the mesh vertices. Application of the dynamic boundary condition to the piezometric pressure at these points provides a hydrostatic restoring force which helps to eliminate any unnatural free-surface undulations. The implementation of time-marching methods on moving grids are described in some detail and it is shown that a second-order scheme must be applied in both scalar-transport and free-surface equations if flows driven by free-surface height variations are to be computed without significant wave attenuation using a modest number of time steps. Computations of five flows of theoretical and practical interest - forced motion in a pump, linear waves in a tank, quasi-1d flow over a ramp, solitary wave interaction with a submerged obstacle and 3-d flow about a surface-penetrating cylinder - are described to illustrate the capabilities of our code and methods.
NASA Astrophysics Data System (ADS)
de Michele, Marcello; Raucoules, Daniel; de Sigoyer, Julia; Pubellier, Manuel; Lasserre, Cecile; Pathier, Erwan; Klinger, Yann; van der Woerd, Jerome; Chamot-Rooke, Nicolas
2010-05-01
The Sichuan earthquake, Mw 7.9, struck the Longmen Shan range front, in the western Sichuan province, China, on 12 May 2008. It severely affected an area where little historical seismicity and little or no significant active shortening were reported before the earthquake (e.g. Gu et al., 1989; Chen et al., 1994; Gan et al., 2007). The Longmen Shan thrust system bounds the eastern margin of the Tibetan plateau and is considered as a transpressive zone since Triassic time that was reactivated during the India-Asia collision (e.g., Tapponnier and Molnar, 1977, Chen and Wilson 1996; Arne et al., 1997, Godard et al., 2009). However, contrasting geological evidences of sparse thrusting and marked dextral strike-slip faulting during the Quaternary along with high topography (Burchfiel et al., 1995; Densmore et al., 2007) have led to models of dynamically driven and sustained topography (Royden et al., 1997) limiting the role of earthquakes in relief building and leaving the mechanism of long term strain distribution in this area as an open question. Here we combine C and L band Synthetic Aperture Radar (SAR) offsets data from ascending and descending paths to retrieve the three dimensional surface displacement distribution all along the earthquake ruptures of the Sichuan earthquake. For the first time on this earthquake we present near field 3D co-seismic surface displacement, which is an important datum for constraining modelled fault geometry at depth. Our results complement other Interferometric Synthetic Aperture Radar (InSAR) and field analyses in indicating that crustal shortening is one of the main drivers for topography building in the Longmen Shan (Liu-Zeng, 2009; Shen et al., 2009; Hubbard and Shaw, 2009). Moreover, our results put into evidence a small but significant amount of displacement in the range front that we interpret as due to slip at depth on a blind structure. We verify this hypothesis by inverting the data against a simple elastic dislocation model
Quantum and classical study of surface characterization by three-dimensional helium atom scattering.
Moix, Jeremy M; Pollak, Eli; Allison, William
2011-01-14
Exact time-dependent wavepacket calculations of helium atom scattering from model symmetric, chiral, and hexagonal surfaces are presented and compared with their classical counterparts. Analysis of the momentum distribution of the scattered wavepacket provides a convenient method to obtain the resulting energy and angle resolved scattering distributions. The classical distributions are characterized by standard rainbow scattering from corrugated surfaces. It is shown that the classical results are closely related to their quantum counterparts and capture the qualitative features appearing therein. Both the quantum and classical distributions are capable of distinguishing between the structures of the three surfaces.
You, Yu; Zhai, Peng-Wang; Kattawar, George W; Yang, Ping
2009-06-01
The hybrid matrix operator, Monte Carlo (HMOMC) method previously reported [Appl. Opt.47, 1063-1071 (2008)] is improved by neglecting higher-order terms in the coupling of the matrix operators and by introducing a dual grid scheme. The computational efficiency for solving the vector radiative transfer equation in a full 3D coupled atmosphere-surface-ocean system is substantially improved, and, thus, large-scale simulations of the radiance distribution become feasible. The improved method is applied to the computation of the polarized radiance field under realistic surface waves simulated by the power spectral density method. To the authors' best knowledge, this is the first time that the polarized radiance field under a dynamic ocean surface and the underwater image of an object above such an ocean surface have been reported.
A Monte Carlo reflectance model for soil surfaces with three-dimensional structure
NASA Technical Reports Server (NTRS)
Cooper, K. D.; Smith, J. A.
1985-01-01
A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.
Bulk and surface phase transitions in the three-dimensional O(4) spin model
NASA Astrophysics Data System (ADS)
Deng, Youjin
2006-05-01
We investigate the O(4) spin model on the simple-cubic lattice by means of the Wolff cluster algorithm. Using the toroidal boundary condition, we locate the bulk critical point at coupling Kc=0.935856(2) , and determine the bulk thermal magnetic renormalization exponents as yt=1.3375(15) and yh=2.4820(2) , respectively. The universal ratio Q=⟨m2⟩2/⟨m4⟩ is also determined as 0.9142(1). The precision of these estimates significantly improves over that of the existing results. Then, we simulate the critical O(4) model with two open surfaces on which the coupling strength K1 can be varied. At the ordinary transitions, the surface magnetic exponent is determined as yh1(o)=1.0202(12) . Further, we find a so-called special surface transition at κ=K1/K-1=1.258(20) . At this point, the surface thermal exponent yt1(s) is rather close to zero, and we cannot exclude that the corresponding surface transition is Kosterlitz-Thouless-like. The surface magnetic exponent is yh1(s)=1.816(2) .
Bulk and surface phase transitions in the three-dimensional O4 spin model.
Deng, Youjin
2006-05-01
We investigate the O(4) spin model on the simple-cubic lattice by means of the Wolff cluster algorithm. Using the toroidal boundary condition, we locate the bulk critical point at coupling K(c) = 0.935 856(2), and determine the bulk thermal magnetic renormalization exponents as y(t) = 1.337 5(15) and y(h) = 2.482 0(2), respectively. The universal ratio Q=m(2)(2)/m(4) is also determined as 0.9142(1). The precision of these estimates significantly improves over that of the existing results. Then, we simulate the critical O(4) model with two open surfaces on which the coupling strength K(1) can be varied. At the ordinary transitions, the surface magnetic exponent is determined as y((o))(h1) = 1.020 2(12). Further, we find a so-called special surface transition at (k) = K(1)/K-1 = 1.258(20). At this point, the surface thermal exponent y(s)(t1) is rather close to zero, and we cannot exclude that the corresponding surface transition is Kosterlitz-Thouless-like. The surface magnetic exponent is y((s))/h1 = 1.816(2).
NASA Astrophysics Data System (ADS)
Gnezdilov, N. V.; Diez, M.; Pacholski, M. J.; Beenakker, C. W. J.
2016-09-01
We compare the thermal conductance Gthermal (at temperature T ) and the electrical shot-noise power Pshot (at bias voltage V ≫kBT /e ) of Majorana fermions on the two-dimensional surface of a three-dimensional topological superconductor. We present analytical and numerical calculations to demonstrate that, for a local coupling between the superconductor and metal contacts, Gthermal/Pshot=L T /e V (with L the Lorenz number). This relation is ensured by the combination of electron-hole and time-reversal symmetries, irrespective of the microscopics of the surface Hamiltonian, and provides for a purely electrical way to detect the charge-neutral Majorana surface states. A surface of aspect ratio W /L ≫1 has the universal shot-noise power Pshot=(W /L ) ×(e2/h ) ×(e V /2 π ) .
A three-dimensional phase diagram of growth-induced surface instabilities
Wang, Qiming; Zhao, Xuanhe
2015-01-01
A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities. PMID:25748825
NASA Astrophysics Data System (ADS)
Clamond, Didier; Fructus, Dorian; Grue, John; Kristiansen, Øyvind
2005-05-01
Water wave generation procedures and efficient numerical beaches are crucial components of a fully non-linear numerical tank for water wave simulations. Linear formulae for pneumatic wave makers are optimized for efficient fully non-linear wave generation in three dimensions. Analytical integration of the (linear) applied free surface pressure provides formulae valid for all times of the simulation. The purely non-linear part of the wave making procedure becomes integrated in the fully non-linear formulation. Novel numerical beaches are introduced, damping the (scaled) tangential velocity at the free surface. More specifically, an additional term is introduced in the Bernoulli equation at the free surface, namely ∇-1·(γ∇ϕ˜), where γ is a non-zero (smooth) function in regions where damping is required and zero in the wave propagation domain, ∇ϕ˜ is the scaled tangential velocity at the free surface, and ∇ -1 the inverse horizontal gradient operator. The new term results in a modified dynamic free surface condition which is integrated in time in the fully non-linear formulation. Extensive numerical tests show that the energy of the outgoing waves is completely absorbed by the new damper. Neither wave reflection nor emission are observed. A steep solitary wave is completely absorbed at the numerical beach. Damping of waves due to advancing pressure distributions are efficient as well. The implementation of the absorber in any existing numerical tank is rather trivial.
Estimating the Illumination Direction From Three-Dimensional Texture of Brownian Surfaces
van Doorn, Andrea J.; Koenderink, Jan J.
2017-01-01
We studied whether human observers can estimate the illumination direction from 3D textures of random Brownian surfaces, containing undulations over a range of scales. The locally Lambertian surfaces were illuminated with a collimated beam from random directions. The surfaces had a uniform albedo and thus texture appeared only through shading and shadowing. The data confirm earlier results with Gaussian surfaces, containing undulations of a single scale. Observers were able to accurately estimate the source azimuth. If shading dominated the images, the observers committed 180° errors. If cast shadows were present, they resolved this convex-concave-ambiguity almost completely. Thus, observers relied on second-order statistics in the shading regime and used an unidentified first-order cue in the shadow regime. The source elevations could also be estimated, which can be explained by the observers’ exploitation of the statistical homogeneity of the stimulus set. The fraction of the surface that is in shadow and the median intensity are likely cues for these elevation estimates. PMID:28491273
A three-dimensional phase diagram of growth-induced surface instabilities
NASA Astrophysics Data System (ADS)
Wang, Qiming; Zhao, Xuanhe
2015-03-01
A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities.
A three-dimensional phase diagram of growth-induced surface instabilities.
Wang, Qiming; Zhao, Xuanhe
2015-03-09
A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities.
Estimating the Illumination Direction From Three-Dimensional Texture of Brownian Surfaces.
Pont, Sylvia C; van Doorn, Andrea J; Koenderink, Jan J
2017-01-01
We studied whether human observers can estimate the illumination direction from 3D textures of random Brownian surfaces, containing undulations over a range of scales. The locally Lambertian surfaces were illuminated with a collimated beam from random directions. The surfaces had a uniform albedo and thus texture appeared only through shading and shadowing. The data confirm earlier results with Gaussian surfaces, containing undulations of a single scale. Observers were able to accurately estimate the source azimuth. If shading dominated the images, the observers committed 180° errors. If cast shadows were present, they resolved this convex-concave-ambiguity almost completely. Thus, observers relied on second-order statistics in the shading regime and used an unidentified first-order cue in the shadow regime. The source elevations could also be estimated, which can be explained by the observers' exploitation of the statistical homogeneity of the stimulus set. The fraction of the surface that is in shadow and the median intensity are likely cues for these elevation estimates.
Bulk-Induced 1/f Noise at the Surface of Three-Dimensional Topological Insulators.
Bhattacharyya, Semonti; Banerjee, Mitali; Nhalil, Hariharan; Islam, Saurav; Dasgupta, Chandan; Elizabeth, Suja; Ghosh, Arindam
2015-12-22
Slow intrinsic fluctuations of resistance, also known as the flicker noise or 1/f-noise, in the surface transport of strong topological insulators (TIs) is a poorly understood phenomenon. Here, we have systematically explored the 1/f-noise in field-effect transistors (FET) of mechanically exfoliated Bi1.6Sb0.4Te2Se TI films when transport occurs predominantly via the surface states. We find that the slow kinetics of the charge disorder within the bulk of the TI induces mobility fluctuations at the surface, providing a new source of intrinsic 1/f-noise that is unique to bulk TI systems. At small channel thickness, the noise magnitude can be extremely small, corresponding to the phenomenological Hooge parameter γH as low as ≈10(-4), but it increases rapidly when channel thickness exceeds ∼1 μm. From the temperature (T)-dependence of noise, which displayed sharp peaks at characteristic values of T, we identified generation-recombination processes from interband transitions within the TI bulk as the dominant source of the mobility fluctuations in surface transport. Our experiment not only establishes an intrinsic microscopic origin of noise in TI surface channels, but also reveals a unique spectroscopic information on the impurity bands that can be useful in bulk TI systems in general.
NASA Astrophysics Data System (ADS)
Yi, Longtao; Sun, Tianxi; Wang, Kai; Qin, Min; Yang, Kui; Wang, Jinbang; Liu, Zhiguo
2016-08-01
Confocal three-dimensional micro X-ray fluorescence (3D MXRF) is an excellent surface analysis technology. For a confocal structure, only the X-rays from the confocal volume can be detected. Confocal 3D MXRF has been widely used for analysing elements, the distribution of elements and 3D image of some special samples. However, it has rarely been applied to analysing surface topography by surface scanning. In this paper, a confocal 3D MXRF technology based on polycapillary X-ray optics was proposed for determining surface topography. A corresponding surface adaptive algorithm based on a progressive approximation method was designed to obtain surface topography. The surface topography of the letter "R" on a coin of the People's Republic of China and a small pit on painted pottery were obtained. The surface topography of the "R" and the pit are clearly shown in the two figures. Compared with the method in our previous study, it exhibits a higher scanning efficiency. This approach could be used for two-dimensional (2D) elemental mapping or 3D elemental voxel mapping measurements as an auxiliary method. It also could be used for analysing elemental mapping while obtaining the surface topography of a sample in 2D elemental mapping measurement.
Skyrmion-induced bound states on the surface of three-dimensional topological insulators
Andrikopoulos, Dimitrios De Boeck, Jo; Sorée, Bart
2016-05-21
The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number N{sub Sk}. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.
Skyrmion-induced bound states on the surface of three-dimensional topological insulators
NASA Astrophysics Data System (ADS)
Andrikopoulos, Dimitrios; Sorée, Bart; De Boeck, Jo
2016-05-01
The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number NSk. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.
Delbridge, Brent G.; Burgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William
2016-01-01
In order to provide surface geodetic measurements with “landslide-wide” spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ∼2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.
NASA Astrophysics Data System (ADS)
Delbridge, Brent G.; Bürgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William H.
2016-05-01
In order to provide surface geodetic measurements with "landslide-wide" spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ˜2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.
NASA Astrophysics Data System (ADS)
Landis, Emily K.; Karnick, Pushpak
2006-02-01
This study uses new three-dimensional imaging techniques to compare the articular curvature of the proximal tibial articular surface of hominoids. It has been hypothesized that the curvature of the anteroposterior contour of the lateral condyle in particular can be used to differentiate humans and apes and reflect locomotor function. This study draws from a large comparative sample of extant hominoids to obtain quantitative curvature data. Three-dimensional models of the proximal tibiae of 26 human, 15 chimpanzee, 15 gorilla, 17 orangutan, 16 gibbon and four Australopithecus fossil casts (AL 129-1b, AL 288-1aq, AL 333x-26, KNM-KP 29285A) were acquired with a Cyberware Model 15 laser digitizer. Curvature analysis was accomplished using a software program developed at Arizona State University's Partnership for Research In Stereo Modeling (PRISM) lab, which enables the user to extract curvature profiles and compute the difference between analogous curves from different specimens. Results indicate that the curvature of chimpanzee, gorilla and orangutan tibiae is significantly different from the curvature of human tibiae, thus supporting the hypothesized dichotomy between humans and great apes. The non-significant difference between gibbons and all other taxa indicates that gibbons have an intermediate pattern of articular curvature. All four Australopithecus tibia were aligned with the great apes.
NASA Technical Reports Server (NTRS)
Barton, Richard J.; Ni, David; Ngo, Phong
2010-01-01
Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.
NASA Technical Reports Server (NTRS)
Barton, Richard J.; Ni, David; Ngo, Phong
2010-01-01
Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.
Three-dimensional low Reynolds number flows with a free surface
NASA Technical Reports Server (NTRS)
Degani, D.; Gutfinger, C.
1977-01-01
The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
Jung, H.-S.; Lu, Zhiming; Lee, C.-W.
2011-01-01
Interferometric synthetic aperture radar (InSAR) technique has been successfully used for mapping surface deformations [1-2], but it has been normally limited to a measurement along the radar line-of-sight (LOS) direction. For this reason, it is impossible to determine the north (N-S) component of surface deformation because of using data from near-polar orbiting satellites, and it is not sufficient to resolve the parameters of models for earthquakes and volcanic activities because there is a marked trade-off among model parameters [3]. ?? 2011 KIEES.
Three-dimensional low Reynolds number flows with a free surface
NASA Technical Reports Server (NTRS)
Degani, D.; Gutfinger, C.
1977-01-01
The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).
NASA Astrophysics Data System (ADS)
Wang, Yong-Long; Jiang, Hua; Zong, Hong-Shi
2017-08-01
In the spirit of the thin-layer quantization approach, we give the formula of the geometric influences of a particle confined to a curved surface embedded in three-dimensional Euclidean space. The geometric contributions can result from the reduced commutation relation between the acted function depending on normal variable and the normal derivative. According to the formula, we obtain the geometric potential, geometric momentum, geometric orbital angular momentum, geometric linear Rashba, and cubic Dresselhaus spin-orbit couplings. As an example, a truncated cone surface is considered. We find that the geometric orbital angular momentum can provide an azimuthal polarization for spin, and the sign of the geometric Dresselhaus spin-orbit coupling can be flipped through the inclination angle of generatrix.
NASA Technical Reports Server (NTRS)
Craig, Claire Harvey; Mckenzie, Dan
1987-01-01
The two-dimensional surface deformation, gravity field, and geoid are calculated from the temperature fields of a number of numerical models of constant-viscosity three-dimensional convective flows, heated from within and from below. The surface deformation and the geoid are insensitive to the short-wavelength features of the temperature variation; the gravity field is less smooth, although it still does not clearly indicate the narrowness of the upwelling and downwelling regions at large Rayleigh numbers. The results indicate that the convective upwelling beneath regions showing positive geoid and residual depth anomalies is more localized than the horizontal extent of these features would suggest. The results are relevant to attempts to understand the behavior of the earth mantle.
Feng, Yujie; Liu, Junfeng; Zhu, Limin; Wei, Jinzhi
2013-01-01
The clomazone herbicide wastewater was treated using a combined technology composed of electrochemical catalytic oxidation and biological contact degradation. A new type of electrochemical reactor was fabricated and a Ti/SnO2 electrode was chosen as the anode in electrochemical-oxidation reactor and stainless steel as the cathode. Ceramic rings loaded with SnO2 were used as three-dimensional electrodes forming a packed bed. The operation parameters that might influence the degradation of organic contaminants in the clomazone wastewater were optimized. When the cell voltage was set at 30 V and the volume of particle electrodes was designed as two-thirds of the volume of the total reactor bed, the chemical oxygen demand (COD) removal rate could reach 82% after 120 min electrolysis, and the ratio of biochemical oxygen demand (BOD)/COD of wastewater increased from 0.12 to 0.38. After 12 h degradation with biological contact oxidation, the total COD removal rate of the combined technology reached 95%, and effluent COD was below 120 mg/L. The results demonstrated that this electrocatalytic oxidation method can be used as a pretreatment for refractory organic wastewater before biological treatment.
Snyder, Jessica E; Hunger, Philipp M; Wang, Chengyang; Hamid, Qudus; Wegst, Ulrike G K; Sun, Wei
2014-03-01
An engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is produced using a two-stage manufacturing process which superimposes a printed porous alginate (Alg) network and a directionally frozen ceramic-polymer matrix. The combination of two processes, multi-nozzle deposition and freeze casting, provides engineering control of the microenvironment of the scaffolds over several length scales; including the addition of lateral porosity and the ratio of polymer to ceramic microstructures. The printed polymer scaffold is submerged in a ceramic-polymer slurry and subsequently, both structures are directionally frozen (freeze cast), superimposing and patterning both microenvironments into a single hierarchical architecture. An optional additional sintering step removes the organic material and densifies the ceramic phase to produce a well-defined network of open pores and a homogenous cell wall material composition. The techniques presented in this contribution address processing challenges, such as structure definition, reproducibility and fine adjustments of unique length scales, which one typically encounters when fabricating topological channels between longitudinal and transverse porous networks.
NASA Astrophysics Data System (ADS)
Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo
2011-07-01
Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.
Humans Use Predictive Kinematic Models to Calibrate Visual Cues to Three-Dimensional Surface Slant
Glennerster, Andrew
2014-01-01
When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball's bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants, and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world. PMID:25080598
Humans use predictive kinematic models to calibrate visual cues to three-dimensional surface slant.
Scarfe, Peter; Glennerster, Andrew
2014-07-30
When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball's bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants, and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world. Copyright © 2014 Scarfe and Glennerster.
Kim, Ki Woo; Cho, Do-Hyun; Kim, Pan-Gi
2011-06-01
Morphology of foliar trichomes was analyzed in Quercus variabilis by electron microscopy and three-dimensional surface profiling. Leaves from suppressed or dominant sprouts of the oak species were collected after a forest fire to unravel the effects of the disturbance factor on sprouting of the oak species. Scanning electron microscopy revealed two types of trichomes depending on the leaf surface. The trichomes on the adaxial surface were branched and constricted, and possessed a single row of thin-walled cells with a collapsed morphology (glandular branched uniseriate trichomes). Meanwhile, the trichomes on the abaxial surface were star-shaped, unfused with each other, and had 6 to 10 rays (nonglandular simple stellate trichomes). An apparent proliferation of trichomes was evident on the adaxial surface of the dominant sprouts. Uniseriate trichomes could be discernable as an elevation from the surface by white light scanning interferometry. By transmission electron microscopy, thin and convoluted cell wall, degenerated cytoplasm, and a single row of cells were characteristic of the trichomes on the adaxial surface. The thick cell walls of the mature trichomes on the abaxial surface represented the nonglandular nature. This is the first report on the morphological and ultrastructural characterization of foliar trichomes of the oak species.
NASA Astrophysics Data System (ADS)
Yi, Longtao; Qin, Min; Wang, Kai; Lin, Xue; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo
2016-09-01
Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces.
Loizu, J.; Hudson, S.; Bhattacharjee, A.; Helander, P.
2015-02-15
Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.
ELECTRICALLY CONDUCTIVE SURFACE MODIFICATIONS OF THREE-DIMENSIONAL POLYPROPYLENE FUMARATE SCAFFOLDS
Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Yaszemski, Michael J.
2014-01-01
Summary Polypropylene fumarate (PPF) scaffolds fabricated by rapid prototyping technique were surface modified by solution deposition of electrically conductive polypyrrole coatings with or without hydroxyapatite. Scaffolds were electrically conductive with resistivity as low as 2Ω. Scaffold characterization by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis shows both polypyrrole and hydroxyapatite are present. Cell viability, attachment, proliferation, and differentiation were analyzed using human fetal osteoblast cells. These studies show that surface modification using hydroxyapatite improved cell attachment and proliferation of osteoblasts onto the PPF scaffolds. Alkaline phosphatase activity as a marker for osteogenic differentiation of cell to mature osteoblasts was analyzed. Our data reveal that osteoblasts maintained their phenotype on PPF scaffolds with and without coatings. Thus, these scaffolds could be appropriate candidates for our future in vivo studies. PMID:22051167
Three-Dimensional Finite Difference Modeling of Surface Wave Propagation Across the Barents Shelf
1991-10-01
crust in the vicinity of Spitsbergen and Franz Josef Land. For propagation paths to Europe, Greenland, and North America the surface waves must... Franz Josef Land, to the southwest by the Kola and Kanin Peninsulas, and to the south by the Pechora Basin. Novaya Zemlya is considered an extension...reduced sedimentary cover. Similarly, the Svalbard platform and regions around Spitsbergen and Franz Josef Land to the north are continental crust (40 kin
An optical profilometer for spatial characterization of three-dimensional surfaces
NASA Technical Reports Server (NTRS)
Kelly, W. L., IV; Burcher, E. E.; Skolaut, M. W., Jr.
1977-01-01
The design concept and system operation of an optical profilometer are discussed, and a preliminary evaluation of a breadboard system is presented to demonstrate the feasibility of the optical profilometer technique. Measurement results are presented for several test surfaces; and to illustrate a typical application, results are shown for a cleft palate cast used by dental surgeons. Finally, recommendations are made for future development of the optical profilometer technique for specific engineering or scientific applications.
NASA Astrophysics Data System (ADS)
Vishwanath, Ashvin; Senthil, T.
2013-01-01
We discuss physical properties of “integer” topological phases of bosons in D=3+1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free-fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response θ, which, somewhat surprisingly, is an odd multiple of 2π. Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term. The second invokes vortices on the surface that transform under a projective representation of the symmetry group. We identify a bulk-field theory consistent with these properties, which is a multicomponent background-field theory supplemented, crucially, with a topological term. We also provide bulk sigma-model field theories of these phases and discuss a possible topological phase characterized by the thermal analog of the magnetoelectric effect.
Three-dimensional surface reconstruction for evaluation of the abrasion effects on textile fabrics
NASA Astrophysics Data System (ADS)
Mendes, A. O.; Fiadeiro, P. T.; Miguel, R. A. L.
2006-02-01
Abrasion is responsible for many surface changes that occur on garments. For this reason, the evaluation of its effects becomes very important for the textile industry. In particular, pilling formation is a phenomenon that results of the abrasion process and affects fabrics more significantly altering their surface severely. The present work presents a method based on optical triangulation that enables topographic reconstructions of textile fabric samples and consequently, makes possible the evaluation and the quantification of the pilling formation that results from their topographic changes. Specific algorithms, written in the MatLab programming language, were developed and implemented to control the image data acquisition, storage and processing procedures. Finally, with the available processed data was possible to reconstruct the surface of fabric samples in three-dimensions and also, a coefficient to express the pilling formation occurred on the analyzed fabrics was achieved. Several tests and experiences have been carried out and the obtained results shown that this method is robust and precise.
Baykara, Mehmet Z; Dagdeviren, Omur E; Schwendemann, Todd C; Mönig, Harry; Altman, Eric I; Schwarz, Udo D
2012-01-01
Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.
Accuracy enhancement of three-dimensional surface shape measurement using curvelet transform
NASA Astrophysics Data System (ADS)
Zhao, Biyu; Yue, Huimin; Wu, Yuxiang; Ou, Zhonghua; Liu, Yong
2014-09-01
Fringe projection profilometry (FPP) has been widely used for 3-D surface shape measurement with the features of high accuracy, non-contact and fast speed. In FPP, the phase distribution is extracted from the captured distorted fringe pattern, and the height information could subsequently be obtained by the phase-height relation. In actual measurement, the captured pattern usually contains noises, which will influence the precision of the reconstructed result. In order to increase the accuracy of measurement, noise reduction procedure to these fringe patterns is required. The existing noise reducing methods (such as Fourier transform, Wavelet transform) have certain effect. However, they will eliminate some high frequencies generated by a surface with sharp change and make the image blurring. In this paper, we use Curvelet transform to enhance the accuracy of measurement in FPP. The Curvelet transform has the ability of multiscale and multidirection analysis in image processing. It has better descriptions of edges and detailed information of images. Simulations and the experimental results show that the Curvelet transform has an excellent performance in image denoising and it has a wonderful effect on accuracy enhancement of complex surface shape measurement in FPP.
Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field
Gorshunov, N. M. Potanin, E. P.
2016-11-15
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.
Integration of remote sensing based surface information into a three-dimensional microclimate model
NASA Astrophysics Data System (ADS)
Heldens, Wieke; Heiden, Uta; Esch, Thomas; Mueller, Andreas; Dech, Stefan
2017-03-01
Climate change urges cities to consider the urban climate as part of sustainable planning. Urban microclimate models can provide knowledge on the climate at building block level. However, very detailed information on the area of interest is required. Most microclimate studies therefore make use of assumptions and generalizations to describe the model area. Remote sensing data with area wide coverage provides a means to derive many parameters at the detailed spatial and thematic scale required by urban climate models. This study shows how microclimate simulations for a series of real world urban areas can be supported by using remote sensing data. In an automated process, surface materials, albedo, LAI/LAD and object height have been derived and integrated into the urban microclimate model ENVI-met. Multiple microclimate simulations have been carried out both with the dynamic remote sensing based input data as well as with manual and static input data to analyze the impact of the RS-based surface information and the suitability of the applied data and techniques. A valuable support of the integration of the remote sensing based input data for ENVI-met is the use of an automated processing chain. This saves tedious manual editing and allows for fast and area wide generation of simulation areas. The analysis of the different modes shows the importance of high quality height data, detailed surface material information and albedo.
Three-dimensional analysis of surface crack-Hertzian stress field interaction
NASA Technical Reports Server (NTRS)
Ballarini, R.; Hsu, Y.
1989-01-01
The results are presented of a stress intensity factor analysis of semicircular surface cracks in the inner raceway of an engine bearing. The loading consists of a moving spherical Hertzian contact load and an axial stress due to rotation and shrink fit. A 3-D linear elastic Boundary Element Method code was developed to perform the stress analysis. The element library includes linear and quadratic isoparametric surface elements. Singular quarter point elements were employed to capture the square root displacement variation and the inverse square root stress singularity along the crack front. The program also possesses the capability to separate the whole domain into two subregions. This procedure enables one to solve nonsymmetric fracture mechanics problems without having to separate the crack surfaces a priori. A wide range of configuration parameters was investigated. The ratio of crack depth to bearing thickness was varied from one-sixtieth to one-fifth for several different locations of the Hertzian load. The stress intensity factors for several crack inclinations were also investigated. The results demonstrate the efficiency and accuracy of the Boundary Element Method. Moreover, the results can provide the basis for crack growth calculations and fatigue life prediction.
NASA Astrophysics Data System (ADS)
Aryeh, F.
1982-01-01
Three interactive software systems dealing with the computerized definition, storage and handling of aircraft geometric shapes and entities in a multidisciplinary design environment are presented. The systems are operated in an interactive fashion via use of low cost graphic display terminals driven by a remote computer in a time sharing mode. GEODEF is a system for interactive definition of complex aircraft surfaces, GEOBASE is a system for interrogation and manipulation of a computerized aircraft geometry data base, and DOG is a 3-D detailed structural and mechanical part definition system.
A Three-Dimensional View of Titan's Surface Features from Cassini RADAR Stereogrammetry
NASA Astrophysics Data System (ADS)
Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Hayes, A.; Lopes, R. M.; Lorenz, R. D.; Mitchell, K. L.; Radebaugh, J.; Paganelli, F.; Soderblom, L. A.; Stofan, E. R.; Wood, C. A.; Wall, S. D.; Cassini RADAR Team
2008-12-01
As of the end of its four-year Prime Mission, Cassini has obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys. The elongated image swaths overlap extensively, and ~2% of the surface has now been imaged two or more times. The majority of image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. As we have previously reported, the first step toward extracting quantitative topographic information was the development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically <1 km, can be removed by a least-squares adjustment of the spacecraft trajectories before mapping, which also ensures that the stereo digital topographic models (DTMs) are made consistent with altimetry and SAR topography profiles. The useful stereo coverage now available includes a much larger portion of Titan's north polar lake country than we previously presented, a continuous traverse of high resolution data from the lakes to mid-southern latitudes, and widely distributed smaller areas. A remaining challenge is that many pairs of images are illuminated from opposite sides or from near-perpendicular directions, which can make image matching more difficult. We find that the high-contrast polarizing display of the stereo workstation at USGS provides a much clearer view of these unfavorably illuminated pairs than (for example) anaglyphs, and lets
Nadeem, Danish; Smith, Carol-Anne; Dalby, Matthew J; Meek, R M Dominic; Lin, Sien; Li, Gang; Su, Bo
2015-01-06
Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration.
Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei
2014-02-07
Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.
To, John W. F.; Chen, Zheng; Yao, Hongbin; ...
2015-05-18
Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large poremore » volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.« less
Three-Dimensional Surface Profile Intensity Correction for Spatially-Modulated Imaging
Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.
2009-01-01
We describe a non-contact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (µa) and reduced scattering (µs’) coefficients, based on geometric correction of the sample’s Lambertian (diffuse) reflectance intensity. Since the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the 3-dimensional object could be acquired and used to extract the object’s optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from 2- to 10-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40°. These data lay the foundation for employing structured light for quantitative imaging during surgery. PMID:19566337
Three-dimensional manipulation of single cells using surface acoustic waves
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-01-01
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444
Three-dimensional manipulation of single cells using surface acoustic waves.
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-02-09
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.
2015-01-01
Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953
Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data
NASA Astrophysics Data System (ADS)
Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.
2013-12-01
After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the
Assoul, M; Zahidi, M; Corcuff, P; Mignot, J
1994-01-01
The fast measurement of furrows or wrinkles requires the use of a non-contact device. We have chosen a laser detector based on a triangulation principle, using position-sensitive detectors. This apparatus has a sensitivity of about 2-3 microns for a vertical range > 1 mm; this vertical range can reach 8 mm. There is no contact between the detector and the surface and this reduces the measurement time because, while data are being transmitted, there is no decrease in the scanning speed as with earlier methods. We describe the device and its technical characteristics. The limits of use are shown in the measurement of low-amplitude defects (> 3-4 microns) and of wide defects of < or = 8 mm. Examples of software possibilities and practical applications related to skin microrelief, wrinkles and pathological cases, are also described.
Mapping lava flow textures using three-dimensional measures of surface roughness
NASA Astrophysics Data System (ADS)
Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.
2016-12-01
Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on
Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices
Haston, WS; Shields, JM; Wilkinson, PC
1982-01-01
The adhesion and locomotion of mouse peripheral lymph node lymphocytes on 2-D protein- coated substrata and in 3-D matrices were compared. Lymphocytes did not adhere to, or migrate on, 2-D substrata suck as serum- or fibronectin-coated glass. They did attach to and migrate in hydrated 3-D collagen lattices. When the collagen was dehydrated to form a 2-D surface, lymphocyte attachment to it was reduced. We propose that lymphocytes, which are poorly adhesive, are able to attach to and migrate in 3-D matrices by a nonadhesive mechanism such as the extension and expansion of pseudopodia through gaps in the matrix, which could provide purchase for movement in the absence of discrete intermolecular adhesions. This was supported by studies using serum-coated micropore filters, since lymphocytes attached to and migrated into filters with pore sizes large enough (3 or 8 mum) to allow pseudopod penetration but did not attach to filters made of an identical material (cellulose esters) but of narrow pore size (0.22 or 0.45 mum). Cinematographic studies of lymphocyte locomotion in collagen gels were also consistent with the above hypothesis, since lymphocytes showed a more variable morphology than is typically seen on plane surfaces, with formation of many small pseudopodia expanded to give a marked constriction between the cell and the pseudopod. These extensions often remained fixed with respect to the environment as the lymphocyte moved away from or past them. This suggests that the pseudopodia were inserted into gaps in the gel matrix and acted as anchorage points for locomotion. PMID:7085756
Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo
2017-01-01
In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae. PMID:28139713
NASA Astrophysics Data System (ADS)
Han, Rui; Zhang, A.-Man; Li, Shuai
2014-03-01
The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated.
Azeem Khan, Waqar; Khan, Masood; Malik, Rabia
2014-01-01
This article addresses the steady three-dimensional flow of an Oldroyd-B nanofluid over a bidirectional stretching surface with heat generation/absorption effects. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are then solved analytically by using the homotpy analysis method (HAM). Graphically results are presented and discussed for various parameters, namely, Deborah numbers and , heat generation/absorption parameter Prandtl parameter , Brownian motion parameters, thermophoresis parameter and Lewis number . We have seen that the increasing values of the Brownian motion parameter and thermophoresis parameter leads to an increase in the temperature field and thermal boundary layer thickness while the opposite behavior is observed for concentration field and concentration boundary layer thickness. To see the validity of the present work, the numerical results are compared with the analytical solutions obtained by Homotopy analysis method and noted an excellent agreement for the limiting cases. PMID:25170945
NASA Astrophysics Data System (ADS)
Hao, Gangtao; Du, Xiaoping; Zhao, Jiguang; Chen, Hang; Song, Jianjun; Song, Yishuo
2015-07-01
A dense surface reconstruction approach based on the fusion of monocular vision and three-dimensional (3-D) flash light detection and ranging (LIDAR) is proposed. The texture and geometry information can be obtained simultaneously and quickly for stationary or moving targets with the proposed method. Primarily, our 2-D/3-D fusion imaging system including cameras calibration and an intensity-range image registration algorithm is designed. Subsequently, the adaptive block intensity-range Markov random field (MRF) with optimizing weights is presented to improve the sparse range data from 3-D flash LIDAR. Then the energy function is minimized quickly by conjugate gradient algorithm for each neighborhood system instead of the whole MRF. Finally, the experiments with standard depth datasets and real 2-D/3-D images demonstrate the validity and capability of the proposed scheme.
NASA Astrophysics Data System (ADS)
Sheng, Yingqiang; Jiang, Shouzhen; Yang, Cheng; Liu, Mei; Liu, Aihua; Zhang, Chao; Li, Zhen; Huo, Yanyan; Wang, Minghong; Man, Baoyuan
2017-08-01
The three-dimensional (3D) MoS2 decorated with Au nanoparticles (Au NPs) hybrids (3D MoS2-Au NPs) for surface-enhanced Raman scattering (SERS) sensing was demonstrated in this paper. SEM, Raman spectroscopy, TEM, SAED, EDX and XRD were performed to characterize 3D MoS2-Au NPs hybrids. Rhodamine 6G (R6G), fluorescein and gallic acid molecules were used as the probe for the SERS detection of the 3D MoS2-Au NPs hybrids. In addition, we modeled the enhancement of the electric field of MoS2-Au NPs hybrids using Finite-difference time-domain (FDTD) analysis, which can further give assistance to the mechanism understanding of the SERS activity.
Niida, Chisato; Nakajima, Masakazu; Sumiyoshi, Yoshihiro; Ohshima, Yasuhiro; Kohguchi, Hiroshi; Endo, Yasuki
2014-03-14
Pure rotational transitions of the Ar-CS van der Waals complex have been observed by Fourier Transform Microwave (FTMW) and FTMW-millimeter wave double resonance spectroscopy. Rotational transitions of v(s) = 0, 1, and 2 were able to be observed for normal CS, together with those of C(34)S in v(s) = 0, where vs stands for the quantum number of the CS stretching vibration. The observed transition frequencies were analyzed by a free rotor model Hamiltonian, where rovibrational energies were calculated as dynamical motions of the three nuclei on a three-dimensional potential energy surface, expressed by analytical functions with 57 parameters. Initial values for the potential parameters were obtained by high-level ab initio calculations. Fifteen parameters were adjusted among the 57 parameters to reproduce all the observed transition frequencies with the standard deviation of the fit to be 0.028 MHz.
Niida, Chisato; Nakajima, Masakazu; Endo, Yasuki; Sumiyoshi, Yoshihiro; Ohshima, Yasuhiro; Kohguchi, Hiroshi
2014-03-14
Pure rotational transitions of the Ar–CS van der Waals complex have been observed by Fourier Transform Microwave (FTMW) and FTMW-millimeter wave double resonance spectroscopy. Rotational transitions of v{sub s} = 0, 1, and 2 were able to be observed for normal CS, together with those of C{sup 34}S in v{sub s} = 0, where v{sub s} stands for the quantum number of the CS stretching vibration. The observed transition frequencies were analyzed by a free rotor model Hamiltonian, where rovibrational energies were calculated as dynamical motions of the three nuclei on a three-dimensional potential energy surface, expressed by analytical functions with 57 parameters. Initial values for the potential parameters were obtained by high-level ab initio calculations. Fifteen parameters were adjusted among the 57 parameters to reproduce all the observed transition frequencies with the standard deviation of the fit to be 0.028 MHz.
Biwasaka, Hitoshi; Sato, Kei; Aoki, Yasuhiro; Kato, Hideaki; Maeno, Yoshitaka; Tanijiri, Toyohisa; Fujita, Sachiko; Dewa, Koji
2013-09-01
Three dimensional pubic bone images were analyzed to quantify some age-dependent morphological changes of the symphyseal faces of contemporary Japanese residents. The images were synthesized from 145 bone specimens with 3D measuring device. Phases of Suchey-Brooks system were determined on the 3D pubic symphyseal images without discrepancy from those carried out on the real bones because of the high fidelity. Subsequently, mean curvatures of the pubic symphyseal faces to examine concavo-convex condition of the surfaces were analyzed on the 3D images. Average values of absolute mean curvatures of phase 1 and 2 groups were higher than those of phase 3-6 ones, whereas the values were approximately constant over phase 3 presumably reflecting the inactivation of pubic faces over phase 3. Ratio of the concave areas increased gradually with progressing phase or age classes, although convex areas were predominant in every phase.
Performance analysis of three-dimensional surface profilometry using a MEMS mirror
NASA Astrophysics Data System (ADS)
Cheng, Yuxin; Li, Sining; Shan, Guohang
2016-11-01
Accurate 3-D shape measurement has played an increasingly important role in various diverse industrial applications, such as manufacturing, robot vision etc. To achieve a low cost, compact 3D profiling system, a phase shifting scheme with a single MEMS scanner has been proposed and studied by some international colleagues. In this paper, we establish mathematical model for the 3D profiling system to reconstruct surface contour of the object. A data processing flow chart is designed, and the algorithm is developed correspondingly, in which some means to improve accuracy are also taken into consideration. Then, numerical simulation for the whole work process of the profiling system is performed according to the theoretical model. The simulation results are analyzed in detail to get the optimal parameters. In order to verify the feasibility of the scheme, we build an experimental setup and carry out a series of experiments. The results show that the RMSE is about 6% and the range resolution is about a few millimeters.
Three-dimensional imaging of objects focused on a selectogram surface
NASA Astrophysics Data System (ADS)
Denisyuk, Yuri N.; Ganzherli, Nina M.
1994-10-01
Selectogram characteristics are analyzed. The term selectogram stands for the structure obtained by recording the interference pattern of the radiation of an object and that of an extended reference source of light on an inclined photographic plate. Unlike a hologram, the selectogram reproduces 3-D images of objects by selecting definite components out of the radiation of an extended source whose phase distribution is not correlated with that of the reference source used at the recording stage. A case for which the image of the object being recorded is focused near the surface of the selectogram is described. It is shown that in this case, the angular size of an element determining the resolving power of the image reconstructed by the selectogram is equal to the double-angular width of a horizontal slit that filters the radiation of the object. The general structure of the radiation reconstructed by the selectogram is considered. It is shown that apart from the main image being observed through an output filtering slit, the selectogram reconstructs the multiplicity of distorted images of the object, which can be observed through horizontal stripes parallel to the filtering slit. It is pointed out that the total diffraction efficiency of all images reconstructed by the selectogram does not differ from that of a hologram. At the same time, the diffraction efficiency of the main image being observed through the output filtering slit is essentially decreased because of the presence of additional images. Ways to increase the diffraction efficiency of the selectogram are studied. Experimental data that prove these regularities are presented. Possible development of this method is discussed.
Three-dimensional measurement of periodontal surface area for quantifying inflammatory burden.
Park, Sa-Beom; An, So-Youn; Han, Won-Jeong; Park, Jong-Tae
2017-06-01
Measurement of the root surface area (RSA) is important in periodontal treatment and for the evaluation of periodontal disease as a risk factor for systemic disease. The aim of this study was to measure the RSA at 6 mm below the cementoenamel junction (CEJ) using the Mimics software (Materialise, Leuven, Belgium). We obtained cone-beam computed tomography (CBCT) data from 33 patients who had visited the Department of Oral and Maxillofacial Radiology of Dankook University Dental Hospital. The patients comprised 17 men and 16 women aged from 20 to 35 years, with a mean age of 24.4 years. Only morphologically intact teeth were included in our data. Because the third molars of the maxilla and mandible have a high deformation rate and were absent in some participants, they were not included in our research material. The CBCT data were reconstructed into 3-dimensional (3D) teeth models using the Mimics software, and the RSA at 6 mm below the CEJ was separated and measured using 3-Matic (Materialise). In total, 924 3D teeth models were created, and the area at 6 mm below the CEJ could be isolated in all the models. The area at 6 mm below the CEJ was measured in all teeth from the 33 patients and compared based on sex and position (maxilla vs. mandible). In this study, we demonstrated that it was feasible to generate 3D data and to evaluate RSA values using CBCT and the Mimics software. These results provide deeper insights into the relationship between periodontal inflammatory burden and systemic diseases.
Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.
2007-01-01
Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.
Boshkovikj, Veselin; Fluke, Christopher J.; Crawford, Russell J.; Ivanova, Elena P.
2014-01-01
There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya. Our approach comprises a semi-automated stage, where actual surface topographic parameters, obtained using an atomic force microscope, are imported into Maya via a custom Python script, followed by a ‘creative stage', where the bacterial cells and their interactions with the surfaces are visualized using available experimental data. The ‘Dynamics' and ‘nDynamics' capabilities of the Maya software allowed the construction and visualization of plausible interaction scenarios. This capability provides a practical aid to knowledge discovery, assists in the dissemination of research results, and provides an opportunity for an improved public understanding. We validated our approach by graphically depicting the interactions between the two bacteria being used for modeling purposes, Staphylococcus aureus and Pseudomonas aeruginosa, with different titanium substrate surfaces that are routinely used in the production of biomedical devices. PMID:24577105
NASA Astrophysics Data System (ADS)
Boshkovikj, Veselin; Fluke, Christopher J.; Crawford, Russell J.; Ivanova, Elena P.
2014-02-01
There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya. Our approach comprises a semi-automated stage, where actual surface topographic parameters, obtained using an atomic force microscope, are imported into Maya via a custom Python script, followed by a `creative stage', where the bacterial cells and their interactions with the surfaces are visualized using available experimental data. The `Dynamics' and `nDynamics' capabilities of the Maya software allowed the construction and visualization of plausible interaction scenarios. This capability provides a practical aid to knowledge discovery, assists in the dissemination of research results, and provides an opportunity for an improved public understanding. We validated our approach by graphically depicting the interactions between the two bacteria being used for modeling purposes, Staphylococcus aureus and Pseudomonas aeruginosa, with different titanium substrate surfaces that are routinely used in the production of biomedical devices.
Zhao, Jing; Sun, Mentao; Liu, Zhe; Quan, Baogang; Gu, Changzhi; Li, Junjie
2015-01-01
Three dimensional (3D) plasmonic nanostructure is perfect for the surface-enhanced Raman scattering (SERS) and also very suitable for surface catalytic reaction, but how to design and fabricate is still a robust task. Here, we show a 3D plasmonic nanohybrid of vertical graphene-nanosheet sandwiched by Ag-nanoparticles on the silicon nanocone array substrate for enhanced surface catalytic reaction. By SERS detection, we find that this hierarchical nanohybrid structure is highly efficient in the enhancement of catalytic reaction, even at a very low concentration of 10−11 M, which is far better than previous reports by four orders of magnitude. A strong electric field enhancement produced in the 3D framework nanohybrids of graphene nanosheet/Ag-nanoparticles is responsible for this great enhancement of catalytic reaction, due to larger electron collective oscillation in the composite system. Especially the oxygen adsorbed on the graphene and Ag nanoparticles can be excited to triplet excited states, and the electrons on the graphene and the nanoparticles can be effectively transferred to the oxygen, which plays very important role in molecular catalytic reactions. Our results demonstrate the contribution of graphene in plasmon-driven catalytic reactions, revealing a co-driven reaction process.This excellent SERS substrate can be used for future plasmon and graphene co-catalytic surface catalytic reactions, graphene-based surface plasmon sensors and so on. PMID:26522142
Boshkovikj, Veselin; Fluke, Christopher J; Crawford, Russell J; Ivanova, Elena P
2014-02-28
There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya. Our approach comprises a semi-automated stage, where actual surface topographic parameters, obtained using an atomic force microscope, are imported into Maya via a custom Python script, followed by a 'creative stage', where the bacterial cells and their interactions with the surfaces are visualized using available experimental data. The 'Dynamics' and 'nDynamics' capabilities of the Maya software allowed the construction and visualization of plausible interaction scenarios. This capability provides a practical aid to knowledge discovery, assists in the dissemination of research results, and provides an opportunity for an improved public understanding. We validated our approach by graphically depicting the interactions between the two bacteria being used for modeling purposes, Staphylococcus aureus and Pseudomonas aeruginosa, with different titanium substrate surfaces that are routinely used in the production of biomedical devices.
Smalls, Lola K; Lee, Caroline Y; Whitestone, Jennifer; Kitzmiller, W John; Wickett, R Randall; Visscher, Marty O
2005-01-01
Gynoid lipodystrophy (cellulite) is the irregular, dimpled skin surface of the thighs, abdomen, and buttocks in 85% of post-adolescent women. The distinctive surface morphology is believed to result when subcutaneous adipose tissue protrudes into the lower reticular dermis, thereby creating irregularities at the surface. The biomechanical properties of epidermal and dermal tissue may also influence severity. Cellulite-affected thigh sites were measured in 51 females with varying degrees of cellulite, in 11 non-cellulite controls, and in 10 male controls. A non-contact high-resolution three-dimensional laser surface scanner was used to quantify the skin surface morphology and determine specific roughness values. The scans were evaluated by experts and naive judges (n=62). Body composition was evaluated via dual-energy x-ray absorptiometry; dermal thickness and the dermal-subcutaneous junction were evaluated via high-resolution 3D ultrasound and surface photography under compression. Biomechanical properties were also measured. The roughness parameters Svm (mean depth of the lowest valleys) and Sdr (ratio between the roughness surface area and the area of the xy plane) were highly correlated to the expert image grades and, therefore, designated as the quantitative measures of cellulite severity. The strength of the correlations among naive grades, expert grades, and roughness values confirmed that the data quantitatively evaluate the human perception of cellulite. Cellulite severity was correlated to BMI, thigh circumference, percent thigh fat, architecture of the dermal-subcutaneous border (ultrasound surface area, red-band SD from compressed images), compliance, and stiffness (negative correlation). Cellulite severity was predicted by the percent fat and the area of the dermal-subcutaneous border. The biomechanical properties did not significantly contribute to the prediction. Comparison of the parameters for females and males further suggest that percent thigh fat
NASA Astrophysics Data System (ADS)
Grimm, T.; Wiora, G.; Witt, G.
2017-03-01
Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1994-01-01
Using a spherically symmetric, self-gravitating, linear viscoelastic Earth model, we predict present-day three-dimensional surface deformation rates and baseline evolutions arising as a consequence of the late Pleistocene glacial cycles. In general, we use realistic models for the space-time geometry of the final late Pleistocene deglaciation event and incorporate a gravitationally self-consistent ocean meltwater redistribution. The predictions of horizontal velocity presented differ significantly, in both their amplitude and their spatial variation, from those presented in earlier analysis of others which adopted simplified models of both the late Pleistocene ice history and the Earth rheology. An important characteristic of our predicted velocity fields is that the melting of the Laurentide ice sheet over Canada is capable of contributing appreciably to the adjustment in Europe. The sensitivity of the predictions to variations in mantle rheology is investigated by considering a number of different Earth models, and by computing appropriate Frechet kernels. These calculations suggest that the sensitivity of the deformations to the Earth's rheology is significant and strongly dependent on the location of the site relative to the ancient ice sheet. The effects on the predictions of three-dimensional deformation rates of altering the ice history or adopting approximate models for the ocean meltwater redistribution have also been considered and found to be important (the former especially so). Finally, for a suite of Earth models we provide predictions of the velocity of a number of baselines in North America and Europe. We find that, in general, both radial and tangential motions contribute significantly to baseline length changes, and that these contributions are a strong function of the Earth model. We have, furthermore, found a set of Earth models which, together with the ICE-3G deglaciation chronology, produce predictions of baseline length changes that are
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1994-01-01
Using a spherically symmetric, self-gravitating, linear viscoelastic Earth model, we predict present-day three-dimensional surface deformation rates and baseline evolutions arising as a consequence of the late Pleistocene glacial cycles. In general, we use realistic models for the space-time geometry of the final late Pleistocene deglaciation event and incorporate a gravitationally self-consistent ocean meltwater redistribution. The predictions of horizontal velocity presented differ significantly, in both their amplitude and their spatial variation, from those presented in earlier analysis of others which adopted simplified models of both the late Pleistocene ice history and the Earth rheology. An important characteristic of our predicted velocity fields is that the melting of the Laurentide ice sheet over Canada is capable of contributing appreciably to the adjustment in Europe. The sensitivity of the predictions to variations in mantle rheology is investigated by considering a number of different Earth models, and by computing appropriate Frechet kernels. These calculations suggest that the sensitivity of the deformations to the Earth's rheology is significant and strongly dependent on the location of the site relative to the ancient ice sheet. The effects on the predictions of three-dimensional deformation rates of altering the ice history or adopting approximate models for the ocean meltwater redistribution have also been considered and found to be important (the former especially so). Finally, for a suite of Earth models we provide predictions of the velocity of a number of baselines in North America and Europe. We find that, in general, both radial and tangential motions contribute significantly to baseline length changes, and that these contributions are a strong function of the Earth model. We have, furthermore, found a set of Earth models which, together with the ICE-3G deglaciation chronology, produce predictions of baseline length changes that are
Blevins, Erin L; Lauder, George V
2012-09-15
Rajiform locomotion in fishes is dominated by distinctive undulations of expanded pectoral fins. Unlike other fishes, which typically interact with the fluid environment via multiple fins, undulating rays modulate a single control surface, the pectoral disc, to perform pelagic locomotion, maneuvering and other behaviors. Complex deformations of the broad, flexible pectoral fins occur as the undulating wave varies in three dimensions; pectoral fin kinematics and changes in waveform with swimming speed cannot be fully quantified by two-dimensional analyses of the fin margin. We present the first three-dimensional analysis of undulatory rajiform locomotion in a batoid, the freshwater stingray Potamotrygon orbignyi. Using three cameras (250 frames s(-1)), we gathered three-dimensional excursion data from 31 points on the pectoral fin during swimming at 1.5 and 2.5 disc lengths s(-1), describing the propulsive wave and contrasting waveforms between swimming speeds. Only a relatively small region of the pectoral fin (~25%) undulates with significant amplitude (>0.5 cm). Stingrays can maintain extreme lateral curvature of the distal fin margin in opposition to induced hydrodynamic loads, 'cupping' the edge of the pectoral fin into the flow, with potential implications for drag reduction. Wave amplitude increases across both anteroposterior and mediolateral fin axes. Along the anteroposterior axis, amplitude increases until the wave reaches mid-disc and then remains constant, in contrast to angulliform patterns of continuous amplitude increase. Increases in swimming speed are driven by both wave frequency and wavespeed, though multivariate analyses reveal a secondary role for amplitude.
Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping
2011-01-01
Background After comprehensive study of various superhydrophobic phenomena in nature, it is no longer a puzzle for researchers to realize such fetching surfaces. However, the different types of artificial surfaces may get wetted and lose its water repellence if there exist defects or the liquid is under pressure. With respect to the industry applications, in which the resistance of wetting transition is critical important, new nanostructure satisfied a certain geometric criterion should be designed to hold a stable gas film at the base area to avoid the wet transition. Methodology A thermal deposition method was utilized to produce a thin ZnO seeds membrane on the aluminum foil. And then a chemical self-assemble technology was developed in present work to fabricate three-dimensional (3D) hierarchical dune-like ZnO architecture based on the prepared seeds membrane. Results Hierarchical ZnO with micro scale dune-like structure and core-sharing nanosheets was generated. The characterization results showed that there exist plenty of gaps and interfaces among the micro-dune and nanosheets, and thus the surface area was enlarged by such a unique morphology. Benefited from this unique 3D ZnO hierarchical nanostructure, the obtained surface exhibited stable water repellency after modification with Teflon, and furthermore, based on solid theory analysis, such 3D ZnO nanostructure would exhibit excellent sensing performance. PMID:22194987
Shin, Dong Sun; Jang, Hae Gwon; Hwang, Sung Bae; Har, Dong-Hwan; Moon, Young Lae; Chung, Min Suk
2013-01-01
In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five-step process was designed and implemented. First, 154 pelvic structures were outlined with additional surface reconstruction to prepare the image data. Second, the sectioned and outlined images (in a browsing software) as well as the surface models (in a PDF file) were placed on the Visible Korean homepage in a readily-accessible format. Third, all image data were visualized with interactive elements to stimulate creative learning. Fourth, two-dimensional (2D) images and three-dimensional (3D) models were superimposed on one another to provide context and spatial information for students viewing these data. Fifth, images were designed such that structure names would be shown when the mouse pointer hovered over the 2D images or the 3D models. The state-of-the-art sectioned images, outlined images, and surface models, arranged and systematized as described in this study, will aid students in understanding the anatomy of female pelvis. The graphic data accompanied by corresponding magnetic resonance images and computed tomographs are expected to promote the production of 3D simulators for clinical practice.
Wu, De-Hua; Liu, Li; Chen, Long-Hua
2004-01-01
AIM: To evaluate the therapeutic efficacy of three-dimensional conformal radiotherapy (3D-CRT) combined with transcatheter arterial chemoembolization (TACE) on the patients with hepatocellular carcinoma (HCC). METHODS: Between 1998 and 2001, 94 patients with HCC received 3D- CRT combined with TACE. A total 63 patients had a Okuda stage I lesion and 31 patients had stage II. The median tumor size was 10.7 cm (range 3.0-18 cm), and liver cirrhosis was present in all the patients. There were 43 cases of class A and 51 class B. TACE was performed using lipiodol, 5-fluorouracil, cisplatin, doxorubicin hydrochloride and mitomycin, followed by gelatin sponge cubes. Fifty- nine patients received TACE only one time, while the others 2 to 3 times. 3D-CRT was started 3-4 wk after TACE. All patients were irradiated with a stereotactic body frame and received 4-8 Gy single high-dose radiation for 8-12 times at the isocenter during a period of 17-26 d (median 22 d). RESULTS: The median follow-up was 37 mo (range 10-48 mo) after diagnosis. The response rate was 90.5%. The overall survival rate at 1-, 2-, and 3- year was 93.6%, 53.8% and 26.0% respectively, with the median survival of 25 mo. On univariate analysis, age (P = 0.026), Child-Pugh classification for cirrhosis of liver ( P = 0.010), Okuda stage (P = 0.026), tumor size (P = 0.000), tumor type (P = 0.029), albuminemia (P = 0.035), and radiation dose (P = 0.000) proved to be significant factors for survival. On multivariate analysis, age (P = 0.024), radiation dose (P = 0.001), and tumor size (P = 0.000) were the significant factors. CONCLUSION: 3D-CRT combined with TACE is an effective and feasible approach for HCC. Age, radiation dose and tumor size were found to be significant prognostic factors for survival of patients with HCC treated by 3D-CRT combined with TACE. Further study for HCC is needed to improve the treatment efficacy. PMID:15259062
NASA Astrophysics Data System (ADS)
Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L.; Amano, Ken-Ichi; Fukuma, Takeshi
2016-03-01
Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent
Sun, Xiaoming; Liu, Ye; Yu, Xiaoyang; Wu, Haibin; Zhang, Ning
2017-01-23
Due to the strong reflection property of materials with smooth surfaces like ceramic and metal, it will cause saturation and the highlight phenomenon in the image when taking pictures of those materials. In order to solve this problem, a new algorithm which is based on reflection component separation (RCS) and priority region filling theory is designed. Firstly, the specular pixels in the image are found by comparing the pixel parameters. Then, the reflection components are separated and processed. However, for ceramic, metal and other objects with strong specular highlight, RCS theory will change color information of highlight pixels due to larger specular reflection component. In this situation, priority region filling theory was used to restore the color information. Finally, we implement 3D experiments on objects with strong reflecting surfaces like ceramic plate, ceramic bottle, marble pot and yellow plate. Experimental results show that, with the proposed method, the highlight caused by the strong reflecting surface can be well suppressed. The highlight pixel number of ceramic plate, ceramic bottle, marble pot and yellow plate, is decreased by 43.8 times, 41.4 times, 33.0 times, and 10.1 times. Three-dimensional reconstruction results show that highlight areas were significantly reduced.
Gettler, Brian C; Zakhari, Joseph S; Gandhi, Piyani S; Williams, Stuart K
2017-09-01
The therapeutic infusion of adipose-derived stromal vascular fraction (SVF) cells for the treatment of multiple diseases, has progressed to numerous human clinical trials; however, the often poor retention of the cells following implantation remains a common drawback of direct cell injection. One solution to cellular retention at the injection site has been the use of biogels to encapsulate cells within a microenvironment before and upon implantation. The current study utilized three-dimensional bioprinting technology to evaluate the ability to form SVF cell-laden spheroids with collagen I as a gel-forming biomatrix. A superhydrophobic surface was created to maintain the bioprinted structures in a spheroid shape. A hydrophilic disc was printed onto the hydrophobic surface to immobilize the spheroids during the gelation process. Conditions for the automated rapid formation of SVF cell-laden spheroids were explored, including time/pressure relationships for spheroid extrusion during bioprinting. The formed spheroids maintain SVF viability in both static culture and dynamic spinner culture. Spheroids also undergo a time-dependent contraction with the retention of angiogenic sprout phenotype over the 14-day culture period. The use of a biphilic surface exhibiting both superhydrophobicity to maintain the spheroid shape and a hydrophilicity to immobilize the spheroid during gel formation produces SVF cell-laden spheroids that can be immediately transplanted for therapeutic applications.
Zhao, Yanfei; Liu, Haiwen; Zhang, Chenglong; ...
2015-09-16
Three-dimensional (3D) topological Dirac semimetals have a linear dispersion in the 3D momentum space and are viewed as the 3D analogues of graphene. Here, we report angle dependent magnetotransport on the newly revealed Cd3As2 single crystals and clearly show how the Fermi surface evolves with crystallographic orientations. Remarkably, when the magnetic field lies in [112] or [44more » $$\\bar{1}$$] axis, magnetoresistance oscillations with only single period are present. However, the oscillation shows double periods when the field is applied along [1$$\\bar{1}$$0] direction. Moreover, aligning the magnetic field at certain directions also gives rise to double period oscillations. We attribute the observed anomalous oscillation behavior to the sophisticated geometry of Fermi surface and illustrate a complete 3D Fermi surfaces with two nested anisotropic ellipsoids around the Dirac points. Additionally, a sub-millimeter mean free path at 6 K is found in Cd3As2 crystals, indicating ballistic transport in this material. By measuring the magnetoresistance up to 60 T, we reach the quantum limit (n = 1 Landau level) at about 43 T. Lastly, these results improve the knowledge of the Dirac semimetal material Cd3As2, and also pave the way for proposing new electronic applications based on 3D Dirac materials.« less
NASA Astrophysics Data System (ADS)
Bergeron, Charles; Labelle, Hubert; Ronsky, Janet; Zernicke, Ronald
2005-04-01
Spinal curvature progression in scoliosis patients is monitored from X-rays, and this serial exposure to harmful radiation increases the incidence of developing cancer. With the aim of reducing the invasiveness of follow-up, this study seeks to relate the three-dimensional external surface to the internal geometry, having assumed that that the physiological links between these are sufficiently regular across patients. A database was used of 194 quasi-simultaneous acquisitions of two X-rays and a 3D laser scan of the entire trunk. Data was processed to sets of datapoints representing the trunk surface and spinal curve. Functional data analyses were performed using generalized Fourier series using a Haar basis and functional minimum noise fractions. The resulting coefficients became inputs and outputs, respectively, to an array of support vector regression (SVR) machines. SVR parameters were set based on theoretical results, and cross-validation increased confidence in the system's performance. Predicted lateral and frontal views of the spinal curve from the back surface demonstrated average L2-errors of 6.13 and 4.38 millimetres, respectively, across the test set; these compared favourably with measurement error in data. This constitutes a first robust prediction of the 3D spinal curve from external data using learning techniques.
Kovacs, L; Zimmermann, A; Brockmann, G; Baurecht, H; Schwenzer-Zimmerer, K; Papadopulos, N A; Papadopoulos, M A; Sader, R; Biemer, E; Zeilhofer, H F
2006-06-01
Three-dimensional (3-D) recording of the surface of the human body or anatomical areas has gained importance in many medical specialties. Thus, it is important to determine scanner precision and accuracy in defined medical applications and to establish standards for the recording procedure. Here we evaluated the precision and accuracy of 3-D assessment of the facial area with the Minolta Vivid 910 3D Laser Scanner. We also investigated the influence of factors related to the recording procedure and the processing of scanner data on final results. These factors include lighting, alignment of scanner and object, the examiner, and the software used to convert measurements into virtual images. To assess scanner accuracy, we compared scanner data to those obtained by manual measurements on a dummy. Less than 7% of all results with the scanner method were outside a range of error of 2 mm when compared to corresponding reference measurements. Accuracy, thus, proved to be good enough to satisfy requirements for numerous clinical applications. Moreover, the experiments completed with the dummy yielded valuable information for optimizing recording parameters for best results. Thus, under defined conditions, precision and accuracy of surface models of the human face recorded with the Minolta Vivid 910 3D Scanner presumably can also be enhanced. Future studies will involve verification of our findings using test persons. The current findings indicate that the Minolta Vivid 910 3D Scanner might be used with benefit in medicine when recording the 3-D surface structures of the face.
Sun, Xiaoming; Liu, Ye; Yu, Xiaoyang; Wu, Haibin; Zhang, Ning
2017-01-01
Due to the strong reflection property of materials with smooth surfaces like ceramic and metal, it will cause saturation and the highlight phenomenon in the image when taking pictures of those materials. In order to solve this problem, a new algorithm which is based on reflection component separation (RCS) and priority region filling theory is designed. Firstly, the specular pixels in the image are found by comparing the pixel parameters. Then, the reflection components are separated and processed. However, for ceramic, metal and other objects with strong specular highlight, RCS theory will change color information of highlight pixels due to larger specular reflection component. In this situation, priority region filling theory was used to restore the color information. Finally, we implement 3D experiments on objects with strong reflecting surfaces like ceramic plate, ceramic bottle, marble pot and yellow plate. Experimental results show that, with the proposed method, the highlight caused by the strong reflecting surface can be well suppressed. The highlight pixel number of ceramic plate, ceramic bottle, marble pot and yellow plate, is decreased by 43.8 times, 41.4 times, 33.0 times, and 10.1 times. Three-dimensional reconstruction results show that highlight areas were significantly reduced. PMID:28124988
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Lin, Hui; Gao, Jian; Mei, Qing; Zhang, Guanjin; He, Yunbo; Chen, Xin
2017-04-01
Conventional methods based on analyses of the absolute gray levels of pixels in fringe pattern images are affected by the problems of image saturation, interreflection, and high sensitivity to noise when obtaining three-dimensional (3D) shape measurements of shiny surfaces. This study presents a robust, adaptive, and fast 3D shape measurement technique, which adaptively adjusts the pixel-wise intensity of the projected patterns, thus it avoids image saturation and has a high signal to noise ratio (SNR) during 3D shape measurement for shiny surfaces. Compared with previous time-consuming methods using multiple exposures and the projection of fringe patterns with multiple intensities, where a large number of fringe pattern images need to be captured, the proposed technique needs to capture far fewer pattern images for measurement. In addition, it can greatly reduce the time costs to obtain the optimal projection intensities by the fusion of uniform gray level patterns and coordinates mapping. Our experimental results demonstrate that the proposed technique can achieve highly accurate and efficient 3D shape measurement for shiny surfaces.
ERIC Educational Resources Information Center
Kooloos, Jan G. M.; Vorstenbosch, Marc A. T. M.
2013-01-01
A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two…
ERIC Educational Resources Information Center
Kooloos, Jan G. M.; Vorstenbosch, Marc A. T. M.
2013-01-01
A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two…
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351
Fang, Hui; Zhang, Chang Xing; Liu, Luo; Zhao, Yong Mei; Xu, Hai Jun
2015-02-15
Multifunctional Ag nanoparticle-decorated TiO2 nanorod arrays were prepared by two simple processes. TiO2 nanorod arrays were first fabricated by the hydrothermal route and then Ag nanoparticles were decorated on the nanorods by the chemical reduction impregnation method. Three-dimensional Ag/TiO2 arrays were used as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G (R6G) was as low as 10(-7)M and the Raman enhancement factor was as large as 10(5). After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. More importantly, the photocatalytic activity of TiO2 provides a self-cleaning capability to the SERS substrate, which can be recycled and used to degrade many Ag surface adsorbates such as R6G, methyl orange, Congo red, and methylene blue after exposure to visible light. The absorbed small molecules can all be rapidly and completely removed from the SERS substrate, which has been successfully reused four times without a decrease in accuracy or sensitivity. Our results reveal that the unique recyclable property not only paves a new way to solve the single-use problem of traditional SERS substrates but also provides more SERS platforms for multiple detections of other organic molecular species.
Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J
2009-06-01
Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.
Mahalingam, Rajasekaran; Peng, Hung-Pin; Yang, An-Suei
2014-02-21
Flavin mono-nucleotide (FMN) is a cofactor which is involved in many biological reactions. The insights on protein-FMN interactions aid the protein functional annotation and also facilitate in drug design. In this study, we have established a new method, making use of an encoding scheme of the three-dimensional probability density maps that describe the distributions of 40 non-covalent interacting atom types around protein surfaces, to predict FMN-binding sites on protein surfaces. One machine learning model was trained for each of the 30 protein atom types to predict tentative FMN-binding sites on protein structures. The method's capability was evaluated by five-fold cross-validation on a dataset containing 81 non-redundant FMN-binding protein structures and further tested on independent datasets of 30 and 15 non-redundant protein structures respectively. These predictions achieved an accuracy of 0.94, 0.94 and 0.96 with the Matthews correlation coefficient (MCC) of 0.53, 0.53 and 0.65 respectively for the three protein structure sets. The prediction capability is superior to the existing method. This is the first structure-based approach that does not rely on evolutionary information for predicting FMN-interacting residues. The webserver for the prediction is available at http://ismblab.genomics.sinica.edu.tw/.
Baumann, E; Giorgetta, F R; Deschênes, J-D; Swann, W C; Coddington, I; Newbury, N R
2014-10-20
Non-contact surface mapping at a distance is interesting in diverse applications including industrial metrology, manufacturing, forensics, and artifact documentation and preservation. Frequency modulated continuous wave (FMCW) laser detection and ranging (LADAR) is a promising approach since it offers shot-noise limited precision/accuracy, high resolution and high sensitivity. We demonstrate a scanning imaging system based on a frequency-comb calibrated FMCW LADAR and real-time digital signal processing. This system can obtain three-dimensional images of a diffusely scattering surface at stand-off distances up to 10.5 m with sub-micrometer accuracy and with a precision below 10 µm, limited by fundamental speckle noise. Because of its shot-noise limited sensitivity, this comb-calibrated FMCW LADAR has a large dynamic range, which enables precise mapping of scenes with vastly differing reflectivities such as metal, dirt or vegetation. The current system is implemented with fiber-optic components, but the basic system architecture is compatible with future optically integrated, on-chip systems.
NASA Astrophysics Data System (ADS)
Zheng, Mengjie; Zhu, Xupeng; Chen, Yiqin; Xiang, Quan; Duan, Huigao
2017-01-01
Seeking for the best possible substrates for surface-enhanced Raman spectroscopy (SERS) is of great interest for single-molecule-level detection applications. Lithographic plasmonic nanostructures are supposed to enable uniform enhancement and thus have attracted extensive interest in the past decade. In this work, we propose and demonstrate a lithographic three-dimensional (3D) donut-like gold nanoring array as a SERS substrate with an enhancement factor (EF) up to 3.84 × 107. This 3D nanoring array could be directly fabricated using electron-beam-lithography-defined templates without any additional lift-off process and thus promises ultraclean metallic surfaces. Meanwhile, the 3D configuration allows multiple hot spots for improving SERS performance compared to planar counterparts with comparable plasmon resonance position. Systematic experiments and simulations were conducted to gain understanding of the origin of the improved SERS performance. The results imply that the 3D donut-like gold nanorings with multiple hot spots can serve as a promising configuration for SERS applications.
Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun
2014-01-01
Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles. PMID:21709881
Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei
2012-01-01
Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with
NASA Astrophysics Data System (ADS)
Aumont, Olivier; Belviso, Sauveur; Monfray, Patrick
2002-04-01
A global model for surface dimethylsulfide (DMS) and particulate dimethylsulfoniopropionate (DMSP) (pDMS) distributions is presented. The main goals of this work were to be able to predict the regional distribution of the air-sea fluxes of DMS and to predict eventually their future evolution with climate change. Diagnostic relationships have been established from data sets obtained during the ALBATROSS and EUMELI cruises carried out in the Atlantic Ocean. These equations nonlinearly relate DMS and pDMSP concentrations to chlorophyll concentrations and to the trophic status of surface waters. This model has been embedded in the global ocean carbon cycle model Institut Pierre et Simon Laplace-Ocean Carbon Cycle Model version 2 (ISPL-OCCM2), a simple plankton model coupled to a global three-dimensional ocean general circulation model. Predicted global distributions and seasonal variations of surface chlorophyll are in good agreement with the observations, except in the equatorial Pacific Ocean and, to a lesser extent, in the Southern Ocean. In these regions, simulated surface chlorophyll concentrations are strongly overestimated, most likely because limitations of the biological production by nutrients like iron or silicate are not considered. The model predicts surface DMS and pDMSP concentrations, which compare reasonably well with the observations. However, in the high latitudes, seasonal variations are underestimated, especially in the Ross and Weddell Seas where observed very elevated concentrations of DMS due to spring and summer blooms of Phaeocystis cannot be reproduced by the model. The global annual flux of DMS predicted by lPSL-OCCM2 ranges from 17 to 26.7 Tg S yr-1 depending on the formulation for gas exchange coefficient. About one third of this flux is located in the subtropical/subpolar frontal zone of the Southern Ocean, which plays a critical role in the sulfur cycle. Furthermore, model results suggest that the Southern Ocean, south of the Polar Front
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
NASA Astrophysics Data System (ADS)
Fabre, D.; Mougel, J.
2014-12-01
The free surface flow in a cylindrical tank over a rotating bottom is known to support spectacular three-dimensional patterns, including deformation of the inner free surface into the shape of rotating polygons and sloshing behavior of the upper free surface (e.g. Iga et al 2014 Fluid Dyn. Res. 46 031409). Through a stability analysis of a simplified model of this flow, we show that such patterns can be explained as a resonance mechanism involving different families of waves. The approach extends a previous work (Tophøj et al 2013 Phys. Rev. Lett. 110 194502) which explained the rotating polygons as an interaction between gravity waves and centrifugal waves, under the assumption that the base flow can be modeled as a potential vortex. We show that this previous model is justified for strong rotation rates (Dry-Potential case), and that for weaker rotations it can be improved by introducing an inner vortex core in solid-body rotation, which either extends to the center of the plate (Wet case) or surrounds a dry central region (Dry-Composite case). The study of this improved model predicts two new kinds of instabilities. The first occurs at low rotations (Wet case) and results from an interaction between gravity waves and the Kelvin-Kirchhoff wave (namely, oscillation of the boundary of the vortex core). This instability is proposed to be at the origin of the sloshing phenomenon. The second new instability occurs, for moderate rotations, (Dry-Composite case) as an interaction between gravity waves and a ‘Kelvin-Centrifugal’ wave characterized by deformation of the inner surface and the vortex core boundary in opposite directions. This instability exists for all azimuthal wave numbers starting from m = 1, this case corresponding to a ‘monogon’ pattern.
Kudo, R; Okuda, K; Usuki, K; Nakano, M; Yamamura, K; Endo, K
2014-04-01
Processing technology using an extreme ultraviolet light source, e.g., next-generation lithography, requires next-generation high-accuracy mirrors. As it will be difficult to attain the degree of precision required by next-generation high-accuracy mirrors such as aspherical mirrors through conventional processing methods, rapid progress in nanomeasurement technologies will be needed to produce such mirrors. Because the measuring methods used for the surface figure measurement of next-generation mirrors will require high precision, we have developed a novel nanoprofiler that can measure the figures of high-accuracy mirrors without the use of a reference surface. Because the accuracy of the proposed method is not limited by the accuracy of a reference surface, the measurement of free-form mirrors is expected to be realized. By using an algorithm to process normal vectors and their coordinate values at the measurement point obtained by a nanoprofiler, our measurement method can reconstruct three-dimensional shapes. First, we measured the surface of a concave spherical mirror with a 1000-mm radius of curvature using the proposed method, and the measurement repeatability is evaluated as 0.6 nm. Sub-nanometer repeatability is realized, and an increase in the repeatability would be expected by improving the dynamic stiffness of the nanoprofiler. The uncertainty of the measurement using the present apparatus is estimated to be approximately 10 nm by numerical simulation. Further, the uncertainty of a Fizeau interferometer is also approximately 10 nm. The results obtained using the proposed method are compared with those obtained using a Fizeau interferometer. The resulting profiles are consistent within the range of each uncertainty over the middle portions of the mirror.
NASA Astrophysics Data System (ADS)
Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.
2016-12-01
A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.
NASA Astrophysics Data System (ADS)
Horbiński, Tymoteusz; Medyńska-Gulij, Beata
2017-06-01
In the following paper, geovisualisation will be applied to one spatial phenomenon and understood as a process of creating complementary visualisations: static two-dimensional, surface three-dimensional, and interactive. The central challenge that the researchers faced was to find a method of presenting the phenomenon in a multi-faceted way. The main objective of the four-stage study was to show the capacity of the contemporary software for presenting geographical space from various perspectives while maintaining the standards of cartographic presentation and making sure that the form remains attractive for the user. The correctness, effectiveness, and usefulness of the proposed approach was analysed on the basis of a geovisualisation of natural aggregate extraction in the Gniezno district in the years 2005-2015. For each of the three visualisations, the researchers planned a different range of information, different forms of graphic and cartographic presentation, different use and function, but as far as possible the same accessible databases and the same free technologies. On the basis of the final publication, the researchers pointed out the advantages of the proposed workflow and the correctness of the detailed flowchart.
Mahalingam, Rajasekaran; Peng, Hung-Pin; Yang, An-Suei
2014-08-01
Protein-fatty acid interaction is vital for many cellular processes and understanding this interaction is important for functional annotation as well as drug discovery. In this work, we present a method for predicting the fatty acid (FA)-binding residues by using three-dimensional probability density distributions of interacting atoms of FAs on protein surfaces which are derived from the known protein-FA complex structures. A machine learning algorithm was established to learn the characteristic patterns of the probability density maps specific to the FA-binding sites. The predictor was trained with five-fold cross validation on a non-redundant training set and then evaluated with an independent test set as well as on holo-apo pair's dataset. The results showed good accuracy in predicting the FA-binding residues. Further, the predictor developed in this study is implemented as an online server which is freely accessible at the following website, http://ismblab.genomics.sinica.edu.tw/.
NASA Astrophysics Data System (ADS)
Ajili, Y.; Abdallah, D. Ben; Al-Mogren, M. Mogren; Francisco, J. S.; Hochlaf, M.
2016-05-01
Three-dimensional potential energy surface (3D-PES) of the HNS-He interacting system in Jacobi coordinates is mapped using high-level ab initio theory. These computations are performed at the explicitly correlated coupled cluster method with single, double and perturbative triple excitations (CCSD(T)-F12) in conjunction with the augmented correlation-consistent aug-cc-pVTZ basis set. The 3D-PES is incorporated into quantum dynamical computations to treat the nuclear motions, where HNS is considered as a rigid rotator colliding with He. Cross-sections for transitions among the first twenty nine rotational levels of HNS (up to jKaKc = 92,8) are calculated using the quantum exact close-coupling method for total energies <1000 cm-1 and using the coupled state approximation for higher energies. Collisional rate constants for temperatures ranging from 5 to 200 K are deduced. A clear propensity rule in favour of Δj = -2 rotational transitions is observed. These rate coefficients are of great importance for the detection of HNS in interstellar medium.
Luo, Xisheng; Guan, Ben; Si, Ting; Zhai, Zhigang; Wang, Xiansheng
2016-01-01
The Richmyer-Meshkov instability of a three-dimensional (3D) SF_{6}-air single-mode interface with a minimum-surface feature is investigated experimentally. The interface produced by the soap film technique is subjected to a planar shock and the evolution of the shocked interface is captured by time-resolved schlieren photography. Different from the light-heavy single-mode case, a phase inversion occurs in the shock-interface interaction and a bubblelike structure is observed behind the shocked interface, which may be ascribed to the difference in pressure perturbation at different planes. The superimposition of spikelike forward-moving jets forms a complex structure, indicating a distinctly 3D effect. Quantitatively, it is also found that the instability at the symmetry plane grows much slower than the prediction of two-dimensional linear model, but matches the extended 3D linear and nonlinear models accounting for the curvature effects. Therefore, the opposite curvatures of the 3D interface are beneficial for suppressing the growth of the instability.
NASA Astrophysics Data System (ADS)
Luo, Xisheng; Guan, Ben; Si, Ting; Zhai, Zhigang; Wang, Xiansheng
2016-01-01
The Richmyer-Meshkov instability of a three-dimensional (3D) SF6-air single-mode interface with a minimum-surface feature is investigated experimentally. The interface produced by the soap film technique is subjected to a planar shock and the evolution of the shocked interface is captured by time-resolved schlieren photography. Different from the light-heavy single-mode case, a phase inversion occurs in the shock-interface interaction and a bubblelike structure is observed behind the shocked interface, which may be ascribed to the difference in pressure perturbation at different planes. The superimposition of spikelike forward-moving jets forms a complex structure, indicating a distinctly 3D effect. Quantitatively, it is also found that the instability at the symmetry plane grows much slower than the prediction of two-dimensional linear model, but matches the extended 3D linear and nonlinear models accounting for the curvature effects. Therefore, the opposite curvatures of the 3D interface are beneficial for suppressing the growth of the instability.
Markvart, Merete; Bjørndal, Lars; Darvann, Tron A; Larsen, Per; Dalstra, Michel; Kreiborg, Sven
2012-03-01
The purpose of this study was to investigate the scanning and segmentation precision of surface models of molars for the detection of small volumes, such as the reduced pulp cavity; formation of mineral deposits; detection of narrow root canals and to improve the clinical and morphological understanding of the number of root canals and their configuration. Eighteen human molars were scanned using X-ray micro-computed tomography. The reconstruction of the surface models had a precision of <1 voxel, using three-dimensional software and quantitative color mapping. In order to relate the measurements to changes over time the size of the pulp chambers was classified in two well-defined groups. The mineral deposits were more evenly distributed in small pulp chambers than in large, but complete root canal calcification was never observed. No difference was observed in the material with respect to the presence of intra-radicular connections. In upper molars, a second mesiobuccal canal (mb(2)) frequency of 91% was found. The difference in length between the first mesiobuccal canal (mb(1)) and mb(2) was <1 mm. The number of root canals could be related to the number of root cones. In summary, three-dimensional surface models were made with a high precision; an increased accumulation of mineral deposits was noted in molars with small pulp chambers and combined with the consistent pattern of intra-radicular connections, the potential endodontic treatment complexity is underlined in such cases. Finally, an improved understanding of root canal prevalence was reached, when merging well-defined definitions on root morphology and clinical classification systems.
Lee, Jun-Young; Pechook, Sasha; Jeon, Deok-Jin; Pokroy, Boaz; Yeo, Jong-Souk
2014-04-09
Novel hierarchical surfaces combining paraffin wax crystals and CuO nanowires are presented. We demonstrate a bioinspired hierarchical wax on nanowire (NW) structures having high water and ethylene glycol repellence. In general, vertically grown nanowire arrays can provide a superhydrophobic surface (SHS) due to extremely high surface roughness but cannot repel ethylene glycol. In this paper, C36H74 and C50H102 waxes are thermally evaporated on the surface of CuO NWs, forming highly ordered, three-dimensional (3D) hierarchical structures via self-assembly of wax crystals. These two and three level hierarchical structures provide perfect self-cleaning characteristics, with water contact angles (CAs) exceeding 170°. Furthermore, C36H74 and C50H102 wax crystals assembled perpendicularly to the longitudinal NW axis form a re-entrant (that is, a multivalued surface topography) curvature enabling high repellence to ethylene glycol (EG) with CAs exceeding 160°. We analyze the wettability dependence on wax crystal size and structure for the optimization of nonwettable hierarchical structured surfaces.
NASA Astrophysics Data System (ADS)
Liao, C.; Zhuang, Q.
2016-12-01
This study uses a three-dimensional groundwater flow numerical model to investigate the groundwater dynamics and groundwater-surface water interactions considering the effects of the permafrost distribution for the Tanana Flats basin in interior Alaska. The Parameter ESTimation (PEST) package is used to calibrate the model with stream discharge data. Results showed that: (1) permafrost impedes groundwater movement in all directions and through talik provides the major pathway connecting the groundwater systems and the surface water systems, and more than 78% of the vertical groundwater flow occurs within the permafrost-free zone; (2) permafrost holds a significant amount of water which cannot be easily released through groundwater movements. However, water above the permafrost table has much higher refresh rates than deep groundwater; (3) the average groundwater upwelling rate (8.0×102 m3d-1) under streams is much higher in permafrost-free zones than that (3.8×102 m3d-1) in permafrost zones; and (4) groundwater upwelling supports the base flow for the Tanana River and its tributaries, and feeds water to the wetland ecosystem at the Tanana Flats through unfrozen zone at a rate of 5.0×102 m3d-1. However, stream leakage beneath the Tanana River dominates the groundwater upwelling over 10 times in summer and is highly correlated with the discharge rate. These estimates are consistent with field measurements in this region. Our study suggests that hydrologic cycle studies should consider the effects of permafrost distribution under future warming conditions.
Minoshima, S.; Frey, K.A.; Koeppe, R.A.
1995-07-01
To improve the diagnostic performance of PET as an aid in evaluating patients suspected of having Alzheimer`s disease, the authors developed a fully automated method which generates comprehensive image presentations and objective diagnostic indices. Fluorine-18-fluorodeoxyglucose PET image sets were collected from 37 patients with probable Alzheimer`s disease (including questionable and mild dementia), 22 normal subjects and 5 patients with cerebrovascular disease. Following stereotactic anatomic standardization, metabolic activity on an individual`s PET image set was extracted to a set of predefined surface pixels (three-dimensional stereotactic surface projection, 3D-SSP), which was used in the subsequent analysis. A normal database was created by averaging extracted datasets of the normal subjects. Patients` datasets were compared individually with the normal database by calculating a Z-score on a pixel-by-pixel basis and were displayed in 3D-SSP views for visual inspections. Diagnostic indices were then generated based on averaged Z-scores for the association cortices. Patterns and severities of metabolic reduction in patients with probable Alzheimer`s disease were seen in the standard 3D-SSP views of extracted raw data and statistical Z-scores. When discriminating patients with probable Alzheimer`s disease from normal subjects, diagnostic indices of the parietal association cortex and unilaterally averaged parietal-temporal-frontal cortex showed sensitivities of 95% and 97%, respectively, with a specificity of 100%. Neither index yielded false-positive results for cerebrovascular disease. 3D-SSP enables quantitative data extraction and reliable localization of metabolic abnormalities by means of stereotactic coordinates. The proposed method is a promising approach for interpreting functional brain PET scans. 45 refs., 5 figs.
Calculation of Surface Waves and Body Waves from an Explosion in a Three-Dimensional Stress Field
NASA Astrophysics Data System (ADS)
Stevens, J. L.; Thompson, T. W.
2013-12-01
Although the effect of tectonic prestress on explosion-generated surface waves has been discussed since the 1960's, until recently it has not been possible to directly calculate the seismic waves from an explosion in a three-dimensional stress field. We developed a 3D nonlinear finite element code designed for calculation of explosions in 3D heterogeneous media and incorporated the capability to perform explosion calculations in a prestressed medium. During the calculations we save displacements and stresses on a monitoring surface in the elastic region outside the nonlinear region, and then use the representation theorem to propagate the solution to regional and teleseismic distances. We have run calculations with and without tectonic release so that we can compare them and isolate the effects of tectonic release. We model the explosion Shoal, a 12.5 kiloton explosion detonated at 390 meters depth near Fallon, Nevada. This event had strong heterogeneity in near-field waveforms and is in a region under primarily extensional tectonic stress. There were three near-field shot level recording stations located in three directions each at about 590 meters from the shot. Including prestress consistent with the regional stress field causes variations in the calculated near-field waveforms similar to those observed in the Shoal data. The calculation with tectonic release also generates Love waves and a Rayleigh wave radiation pattern similar to those observed. We calculate both far-field and regional body waves and find very little difference between the P-waves for the cases with and without tectonic release. The effect of tectonic release on the SV-waves from the explosion is also small. However the calculation with tectonic release does generate SH-waves not present in the calculation without tectonic release. An important conclusion from these calculations relevant to nuclear monitoring is that while tectonic release can be expected to substantially change surface wave
de Agustin, Jose Alberto; Viliani, Dafne; Vieira, Catarina; Islas, Fabian; Marcos-Alberca, Pedro; Gomez de Diego, Jose Juan; Nuñez-Gil, Ivan Javier; Almeria, Carlos; Rodrigo, Jose Luis; Luaces, Maria; Garcia-Fernandez, Miguel Angel; Macaya, Carlos; Perez de Isla, Leopoldo
2013-09-01
The two-dimensional (2D) proximal isovelocity surface area (PISA) method has known technical limitations, mainly the geometric assumptions of PISA shape required to calculate effective regurgitant orifice area (EROA). Recently developed single-beat real-time three-dimensional (3D) color Doppler imaging allows the direct measurement of PISA without geometric assumptions and has already been validated for mitral regurgitation assessment. The aim of this study was to apply this novel method in patients with chronic tricuspid regurgitation (TR). Ninety patients with chronic TR were enrolled. EROA and regurgitant volume (Rvol) were assessed using transthoracic 2D and 3D PISA methods. Quantitative Doppler and 3D transthoracic planimetry of EROA were used as reference methods. Both EROA and Rvol assessed using the 3D PISA method had better correlations with the reference methods than using conventional 2D PISA, particularly in the assessment of eccentric jets. On the basis of 3D planimetry-derived EROA, 35 patients had severe TR (EROA ≥ 0.4 cm(2)). Among these 35 patients, 25.7% (n = 9) were underestimated as having nonsevere TR (EROA ≤ 0.4 cm(2)) using the 2D PISA method. In contrast, the 3D PISA method had 94.3% agreement (33 of 35) with 3D planimetry in classifying severe TR. Good intraobserver and interobserver agreement for 3D PISA measurements was observed, with intraclass correlation coefficients of 0.92 and 0.88 respectively. TR quantification using PISA by single-beat real-time 3D color Doppler echocardiography is feasible in the clinical setting and more accurate than the conventional 2D PISA method. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Three dimensional interactive display
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2005-01-01
A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.
Wædegaard, Kristian J; Balling, Peter
2011-02-14
An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.
Wald, D.J.; Graves, R.W.
2001-01-01
Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.
Fukuda, Shinichi; Beheregaray, Simone; Hoshi, Sujin; Yamanari, Masahiro; Lim, Yiheng; Hiraoka, Takahiro; Yasuno, Yoshiaki; Oshika, Tetsuro
2013-12-01
To evaluate the ability of parameters measured by three-dimensional (3D) corneal and anterior segment optical coherence tomography (CAS-OCT) and a rotating Scheimpflug camera combined with a Placido topography system (Scheimpflug camera with topography) to discriminate between normal eyes and forme fruste keratoconus. Forty-eight eyes of 48 patients with keratoconus, 25 eyes of 25 patients with forme fruste keratoconus and 128 eyes of 128 normal subjects were evaluated. Anterior and posterior keratometric parameters (steep K, flat K, average K), elevation, topographic parameters, regular and irregular astigmatism (spherical, asymmetry, regular and higher-order astigmatism) and five pachymetric parameters (minimum, minimum-median, inferior-superior, inferotemporal-superonasal, vertical thinnest location of the cornea) were measured using 3D CAS-OCT and a Scheimpflug camera with topography. The area under the receiver operating curve (AUROC) was calculated to assess the discrimination ability. Compatibility and repeatability of both devices were evaluated. Posterior surface elevation showed higher AUROC values in discrimination analysis of forme fruste keratoconus using both devices. Both instruments showed significant linear correlations (p<0.05, Pearson's correlation coefficient) and good repeatability (ICCs: 0.885-0.999) for normal and forme fruste keratoconus. Posterior elevation was the best discrimination parameter for forme fruste keratoconus. Both instruments presented good correlation and repeatability for this condition.
NASA Astrophysics Data System (ADS)
Thieulot, C.; Braun, J.
2006-12-01
The Earth's lithosphere is a dynamic system where complex interplay between mechanical and thermal processes take place. With the advent of relatively cheap and efficient parallel computers, there has been a rise in the numerical approach to such a system. We have developed a new three-dimensional code 'DOUAR' which aims at expanding our understanding of the interplay between deep processes (convection, subduction, collision, ...) and surface processes (erosion, sedimentation, ...) that take place within the Earth's lithosphere. The Stokes and heat transport equations are discretised within the framework of the finite elements method, and solved for systems consisting of many layers of different materials with various physical properties. The adaptive grid is in our case a so-called octree: a space-filling set of cubes of different sizes which are in fact the elements on which calculations are performed. When an element is intersected by one or several interfaces, the respective volume of each material in the cube is assessed (divFEM technique) and used to perform the volume integration of the finite element equations. Once the set of coupled algebraic equations is obtained, we resort to a direct solver to obtain the solution. One of the most interesting features of our code resides in its ability to track and advect a free surface and/or interfaces. Furthermore, the total accumulated strain is computed by means of a dedicated cloud of Lagrangian points, and can be used, as well as temperature and pressure, in the implemented complex rheology models. These rheologies include linear and non-linear viscous behaviour, as well as von Mises and pressure- dependent plasticity (Mohr-Coulomb). The code has been developed to simulate tectonic events and predict a wide range of geological observations. It can thus be regarded as an integrator of field data and is used to test quantitatively tectonic scenarios suggested by the observations. Besides lithospheric problems, the
NASA Astrophysics Data System (ADS)
Collet, R.; Hayek, W.; Asplund, M.; Nordlund, Å.; Trampedach, R.; Gudiksen, B.
2011-04-01
Context. Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars are characterized by cooler upper photospheric layers than their one-dimensional counterparts. This property of 3D model atmospheres can dramatically affect the determination of elemental abundances from temperature-sensitive spectral features, with profound consequences on galactic chemical evolution studies. Aims: We investigate whether the cool surface temperatures predicted by 3D model atmospheres of metal-poor stars can be ascribed to approximations in the treatment of scattering during the modelling phase. Methods: We use the Bifrost code to construct 3D model atmospheres of metal-poor stars and test three different ways to handle scattering in the radiative transfer equation. As a first approach, we solve iteratively the radiative transfer equation for the general case of a source function with a coherent scattering term, treating scattering in a correct and consistent way. As a second approach, we solve the radiative transfer equation in local thermodynamic equilibrium approximation, neglecting altogether the contribution of continuum scattering to extinction in the optically thin layers; this has been the default mode in our previous 3D modelling as well as in present Stagger-Code models. As our third and final approach, we treat continuum scattering as pure absorption everywhere, which is the standard case in the 3D modelling by the CO5BOLD collaboration. Results: For all simulations, we find that the second approach produces temperature structures with cool upper photospheric layers very similar to the case in which scattering is treated correctly. In contrast, treating scattering as pure absorption leads instead to significantly hotter and shallower temperature stratifications. The main differences in temperature structure between our published models computed with the Stagger- and Bifrost codes and those generated with the CO5BOLD code can be traced
NASA Astrophysics Data System (ADS)
Müller, M.; Fink, D.
1995-07-01
The depth distributions of damage of 1.4 MeV nitrogen molecular ions (N+ 2) implanted into Si crystals at doses slightly below the value for amorphization have been measured by means of standard RBS/channeling for different directions of impact. These damage distributions were fed into our modified tomographic program “MOTOR” [1, 2], by which we could reconstruct the spatial distributions of nuclear energy transfer. These distributions are compared with the three-dimensional theoretical prediction of a modified TRIM code [3]. It turns out that there exists a pronounced deviation from the purely ballistic damage distribution insofar as the reconstructed damage distribution is twice as broad in the lateral direction than predicted. This is essentially explained by deviations in flight geometry of molecular ions in comparison with single-atomic ones.
Suresh, Niraj; Stephens, Sean A; Adams, Lexor; Beck, Anthon N; McKinney, Adriana L; Varga, Tamas
2016-04-26
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and crop management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving plants. X-ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. We aimed to develop a costless and efficient tool that approximates the surface and volume of the root regardless of its shape from three-dimensional (3D) tomography data. The root structure of a Prairie dropseed (Sporobolus heterolepis) specimen was imaged using XCT. The root was reconstructed, and the primary root structure was extracted from the data using a combination of licensed and open-source software. An isosurface polygonal mesh was then created for ease of analysis. We have developed the standalone application imeshJ, generated in MATLAB(1), to calculate root volume and surface area from the mesh. The outputs of imeshJ are surface area (in mm(2)) and the volume (in mm(3)). The process, utilizing a unique combination of tools from imaging to quantitative root analysis, is described. A combination of XCT and open-source software proved to be a powerful combination to noninvasively image plant root samples, segment root data, and extract quantitative information from the 3D data. This methodology of processing 3D data should be applicable to other material/sample systems where there is connectivity between components of similar X-ray attenuation and difficulties arise with segmentation.
Jin, Qianru; Li, Ming; Polat, Beril; Paidi, Santosh K; Dai, Aimee; Zhang, Amy; Pagaduan, Jayson V; Barman, Ishan; Gracias, David H
2017-03-27
Reported is a new shell-based spectroscopic platform, named mechanical trap surface-enhanced Raman spectroscopy (MTSERS), for simultaneous capture, profiling, and 3D microscopic mapping of the intrinsic molecular signatures on the membrane of single live cells. By leveraging the functionalization of the inner surfaces of the MTs with plasmonic gold nanostars, and conformal contact of the cell membrane, MTSERS permits excellent signal enhancement, reliably detects molecular signatures, and allows non-perturbative, multiplex 3D surface imaging of analytes, such as lipids and proteins on the surface of single cells. The demonstrated ability underscores the potential of MTSERS to perform 3D spectroscopic microimaging and to furnish biologically interpretable, quantitative, and dynamic molecular maps in live cell populations.
Hassani Gangaraj, S. Ali; Nemilentsau, Andrei; Hanson, George W.
2016-01-01
We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss. PMID:27444542
NASA Astrophysics Data System (ADS)
Frost, Robert J.; Smith, Ian W. M.
1987-11-01
A new method is described of using quasiclassical trajectories to study the dynamics of elementary reactions in three dimensions. Trajectories are initiated in the phase space of suitably chosen transition state and run forwards and backwards in time from the same starting point to simulate a complete collision. The transition state for a given vibrational level ν is determined by first finding pods (periodic orbiting dividing surfaces) on fixed-angle potential energy surfaces for which the action over one cycle of the pods motion is (ν + 1/2) h. The complete transition is then defined by joining these pods together. Methods are described for pseudo-randomly sampling the phase space of these transition states. Results for collisions of H + H 2(ν) with ν = 0-5 and 9 on the accurate Liu-Siegbahn-Truhlar-Horowitz surface are presented and compared with the results of conventional quasiclassical trajectory studies that have already been reported in the literature. Absolute values of rate constants are obtained using the adiabatic reactive sudden version of the transition state theory. Comparisons of our combined method with conventional techniques are encouraging and there is a considerable saving in computer time resulting from the elimination of trajectories which do not reach the strong interaction zone. Only slight differences are found when the energy of the transition state bending motion is set equal to its zero-point quantum value rather than selected from a classical Boltzmann distribution.
More About The Farley Three-Dimensional Braider
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1993-01-01
Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).
NASA Astrophysics Data System (ADS)
Reeh, Niels; Mohr, Johan Jacob; Nørvang Madsen, Søren; Oerter, Hans; Gundestrup, Niels S.
Non-steady-state vertical velocities of up to 5 m a-1 exceed the vertical surface-parallel flow (SPF) components over much of the ablation area of Storstrømmen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude results in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10m a-1 or more.This indicates that the SPFassumption may be problematic also for glaciers in steady state. Here we derive the three-dimensional surface velocity distribution of Storstrømmen by using the principle of mass conservation (MC) to combine InSAR measurements from ascending and descending satellite tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle are in better agreement with the GPS velocities than the previously calculated velocities derived with the SPFassumption.
Li, Guang; Ballangrud, Åse; Kuo, Li Cheng; Kang, Hyejoo; Kirov, Assen; Lovelock, Michael; Yamada, Yoshiya; Mechalakos, James; Amols, Howard
2011-07-01
To establish a new clinical procedure in frameless stereotactic radiosurgery (SRS) for patient setup verification at treatment couch angles as well as for head-motion monitoring during treatment using video-based optical surface imaging (OSI). A video-based three-dimensional (3D) OSI system with three ceiling-mounted camera pods was employed to verify setup at treatment couch angles as well as to monitor head motion during treatment. A noninvasive head immobilization device was utilized, which includes an alpha head mold and a dental mouthpiece with vacuum suction; both were locked to the treatment couch. Cone beam computed tomography (CBCT) was used as the standard for image-guided setup. Orthogonal 2D-kV imaging was applied for setup verification before treatment, between couch rotations, and after treatment at zero couch angle. At various treatment couch angles, OSI setup verification was performed, relative to initial OSI setup verification at zero couch angle after CBCT setup through a coordinate transformation. For motion monitoring, the setup uncertainty was decoupled by taking an on-site surface image as new reference to detect motion-induced misalignment in near real-time (1-2 frames per second). Initial thermal instability baseline of the real-time monitoring was corrected. An anthropomorphous head phantom and a 1D positioning platform were used to assess the OSI accuracy in motion detection in longitudinal and lateral directions. Two hypofractionated (9 Gy × 3 and 6 Gy × 5) frameless stereotactic radiotherapy (SRT) patients as well as two single-fraction (21 and 18 Gy) frameless SRS patients were treated using this frameless procedure. For comparison, 11 conventional frame-based SRS patients were monitored using the OSI to serve as clinical standards. Multiple noncoplanar conformal beams were used for planning both frameless and frame-based SRS with a micromultileaf collimator. The accuracy of the OSI in 1D motion detection was found to be 0
Nishikawa, Masataka; Myoui, Akira; Ohgushi, Hajime; Ikeuchi, Masako; Tamai, Noriyuki; Yoshikawa, Hideki
2004-01-01
We developed fully opened interconnected porous calcium hydroxyapatite ceramics having two different pore sizes. One has pores with an average size of 150 microm in diameter, an average 40-microm interconnecting pore diameter, and 75% porosity (HA150). The other has pores with an average size of 300 microm in diameter, an average 60-100-microm interconnecting pore diameter, and 75% porosity (HA300). Because of its smaller pore diameter, HA150 has greater mechanical strength than that of HA300. These ceramics were combined with rat marrow mesenchymal cells and cultured for 2 weeks in the presence of dexamethasone. The cultured ceramics were then implanted into subcutaneous sites in syngeneic rats and harvested 2-8 weeks after implantation. All the implants showed bone formation inside the pore areas as evidenced by decalcified histological sections and microcomputed tomography images, which enabled three-dimensional analysis of the newly formed bone and calculation of the bone volume in the implants. The bone volume increased over time. At 8 weeks after implantation, extensive bone volume was detected not only in the surface pore areas but also in the center pore areas of the implants. A high degree of alkaline phosphatase activity with a peak at 2 weeks and a high level of osteocalcin with a gradual increase over time were detected in the implants. The levels of these biochemical parameters were higher in HA150 than in HA300. The results indicate that a combination of HA150 and mesenchymal cells could be used as an excellent bone graft substitute because of its mechanical properties and capability of inducing bone formation.
NASA Astrophysics Data System (ADS)
Bourbon, Gilles; Minotti, Patrice; Langlet, Philippe; Masuzawa, Takahisa; Fujita, Hiroyuki
1998-09-01
This paper investigates 3D active microcatheters having millimeter size outer diameters. The proposed architectures combine mechanical cells which involve new direct-drive tubular electrostatic micromotors and conventional shape memory alloy actuators. The tubular electrostatic motors are actuated by silicon surface micromachined flexible stators. The polysilicon stators integrate up to several thousands of direct-drive electrostatic microactuators. However, they have been designed in order to provide a gap compensation at the rotor/motor frame interface. Multiple stator/rotor contact interactions involve a significant speed reduction that allow a large torque amplification, as a consequence of the torque/speed duality. These mechanical interactions allow the rotor to be moved with respect to the motor frame through direct-drive contact mechanisms, therefore allowing high torque/low speed characteristics to be performed. In such a way to get a 3D behavior, the microcatheter combines tubular electrostatic motors having flexible rotors. The rotors integrate Ti-Ni shape memory alloy wires which actuate a 2D bending motion on each mechanical cell. The 3D global behavior of the catheter is provided by the relative rotation of each cell, with respect to the other ones. The proposed architecture is particularly convenient with respect to the electric power supply which is, usually, the major problem in designing active microcatheters. A (Phi) 1 mm 3D active catheter is given as an example, but external diameters less than one millimeter can be easily expected, opening therefore numerous applications in the near future.
Dai, Jiewen; Hu, Guanghong; Wang, Xudong; Tang, Min; Dong, Yuefu; Yuan, Hao; Xin, Pengfei; Yang, Tong; Shen, Steve Guofang
2012-11-01
Anterior subapical segmental osteotomy is considered to be an important surgical technique to obtain functional occlusion and improve the facial profile for patients with maxillary and mandibular protrusion or retrusion, and some complications, such as ischemic necrosis of the distal segment, devitalization of the teeth adjacent to the osteotomy site, and inadequate movement space of segment for obtaining a good occlusion or facial profile, usually exist during surgery. Imprecise measurement of root length, interradicular distance, and intertooth distance based on traditional panoramic radiography that demonstrated existing horizontal distortion and vertical distortion may play an important role in resulting in these problems. In addition, the root is invisible for surgical simulation in traditional plaster models. The recently developed cone-beam computed tomography (CBCT) presents a higher spatial resolution with a lower radiation dose, simultaneously with excellent accuracy and without magnification of images. The presented technique was used to obtain a precise occlusal splint in virtual 3D subapical segmental osteotomy by combining CBCT with plaster models that could guarantee the measurement accuracy of root length, interradicular distance, and intertooth distance, followed by the result of fewer tooth root damage and more precise forecasting of available movement space of jaw segment. Combining with other advantages of virtual 3D surgery, such as precise teeth surface of plaster models, soft tissue simulation, genoplasty simulation, and zygoma plasty simulation, this presented technique may offer a preferable method to patients who need subapical segmental osteotomy.
Bormann, Therese; Schulz, Georg; Deyhle, Hans; Beckmann, Felix; de Wild, Michael; Küffer, Jürg; Münch, Christoph; Hoffmann, Waldemar; Müller, Bert
2014-02-01
Appropriate mechanical stimulation of bony tissue enhances osseointegration of load-bearing implants. Uniaxial compression of porous implants locally results in tensile and compressive strains. Their experimental determination is the objective of this study. Selective laser melting is applied to produce open-porous NiTi scaffolds of cubic units. To measure displacement and strain fields within the compressed scaffold, the authors took advantage of synchrotron radiation-based micro computed tomography during temperature increase and non-rigid three-dimensional data registration. Uniaxial scaffold compression of 6% led to local compressive and tensile strains of up to 15%. The experiments validate modeling by means of the finite element method. Increasing the temperature during the tomography experiment from 15 to 37°C at a rate of 4 K h(-1), one can locally identify the phase transition from martensite to austenite. It starts at ≈ 24°C on the scaffolds bottom, proceeds up towards the top and terminates at ≈ 34°C on the periphery of the scaffold. The results allow not only design optimization of the scaffold architecture, but also estimation of maximal displacements before cracks are initiated and of optimized mechanical stimuli around porous metallic load-bearing implants within the physiological temperature range.
Chandra, Shekhar S; Surowiec, Rachel; Ho, Charles; Xia, Ying; Engstrom, Craig; Crozier, Stuart; Fripp, Jurgen
2016-01-01
To validate a fully automated scheme to extract biochemical information from the hip joint cartilages using MR T2 mapping images incorporating segmentation of co-registered three-dimensional Fast-Spin-Echo (3D-SPACE) images. Manual analyses of unilateral hip (3 Tesla) MR images of 24 asymptomatic volunteers were used to validate a 3D deformable model method for automated cartilage segmentation of SPACE scans, partitioning of the individual femoral and acetabular cartilage plates into clinically defined sub-regions and propagating these results to T2 maps to calculate region-wise T2 value statistics. Analyses were completed on a desktop computer (∼ 10 min per case). The mean voxel overlap between automated A and manual M segmentations of the cartilage volumes in the (clinically based) SPACE images was 73% (100 × 2|A∩M|/[|A|+|M|]). The automated and manual analyses demonstrated a relative difference error <10% in the median "T2 average signal" for each cartilage plate. The automated and manual analyses showed consistent patterns between significant differences in T2 data across the hip cartilage sub-regions. The good agreement between the manual and automatic analyses of T2 values indicates the use of structural 3D-SPACE MR images with the proposed method provides a promising approach for automated quantitative T2 assessment of hip joint cartilages. © 2015 Wiley Periodicals, Inc.
Kooloos, Jan G M; Vorstenbosch, Marc A T M
2013-01-01
A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands-on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut-out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low-fidelity models.
Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis
NASA Technical Reports Server (NTRS)
Burgreen, Gregory W.
1995-01-01
An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.
Zhao, Leihong; Yang, Lining; Lin, Hongjun; Zhang, Meijia; Yu, Haiying; Liao, Bao-Qiang; Wang, Fangyuan; Zhou, Xiaoling; Li, Renjie
2016-12-01
While the adsorptive fouling in membrane bioreactors (MBRs) is highly dependent of the surface morphology, little progress has been made on modeling biocake layer surface morphology. In this study, a novel method, which combined static light scattering method for fractal dimension (Df) measurement with fractal method represented by the modified two-variable Weierstrass-Mandelbrot function, was proposed to model biocake layer surface in a MBR. Characterization by atomic force microscopy showed that the biocake surface was stochastic, disorder, self-similarity, and with non-integer dimension, illustrating obvious fractal features. Fractal dimension (Df) of sludge suspension experienced a significant change with operation of the MBR. The constructed biocake layer surface by the proposed method was quite close to the real surface, showing the feasibility of the proposed method. It was found that Df was the critical factor affecting surface morphology, while other factors exerted moderate or minor effects on the roughness of biocake layer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.
2004-04-20
Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.
NASA Technical Reports Server (NTRS)
Kandula, M.; Haddad, G. F.; Chen, R.-H.
2006-01-01
Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
NASA Astrophysics Data System (ADS)
Zegeye, Tilahun Awoke; Tsai, Meng-Che; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Chen, Hung-Ming; Rick, John; Su, Wei-Nien; Kuo, Chung-Feng Jeffrey; Hwang, Bing-Joe
2017-06-01
High capacity lithium-sulfur batteries with stable cycle performance and sulfur loadings greater than 70 wt% are regarded as promising candidates for energy storage devices. However, it has been challenged to achieving practical application of sulfur cathode because of low loading of active sulfur and poor cycle performance. Herein, we design novel nanocomposite cathode materials consist of sulfur (80 wt%) embedded within nitrogen doped three-dimensional reduced graphene oxide (N-3D-rGO) by controllable sulfur-impregnation method. Nitrogen doping helps increase the surface area by ten times from pristine graphene, and pore volume by seven times. These structural features allow the cathode to hold more sulfur. It also adsorbs polysulfides and prevents their detachment from the host materials; thereby achieving stable cycle performance. The solution drop sulfur-impregnation method provides uniform distribution of nano-sulfur in controlled manner. The material delivers a high initial discharge capacity of 1042 mAhg-1 and 916 mAhg-1 with excellent capacity retention of 94.8% and 81.9% at 0.2 C and 0.5 C respectively after 100 cycles. Thus, the combination of solution drop and nitrogen doping opens a new chapter for resolving capacity fading as well as long cycling problems and creates a new strategy to increase sulfur loading in controlled mechanism.
NASA Technical Reports Server (NTRS)
Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.
1989-01-01
The first successful application of the three-dimensional quantum body frame wave packet approach to reactive scattering is reported for the H + H2 exchange reaction on the LSTH potential surface. The method used is based on a procedure for calculating total reaction probabilities from wave packets. It is found that converged, vibrationally resolved reactive probabilities can be calculated with a grid that is not much larger than required for the pure inelastic calculation. Tabular results are presented for several energies.
NASA Astrophysics Data System (ADS)
Fink, D.; Müller, M.; Klett, R.; Vacik, J.; Hnatowicz, V.; Cervena, J.
1995-12-01
We have studied the three-dimensional distribution of 2.5 MeV Li implanted into pyrographite at room temperature by means of modified tomography in combination with neutron depth profiling. Our new findings essentially reconfirm earlier results (D. Fink et al., J. Appl. Phys. 58 (1985) 668 [1]; Radiat. Eff. and Def. in Solids 114 (1990) 21 [2]) which indicated the presence of some radiation-enhanced mobility of the implanted lithium. This diffusion is anisotropic. It preferentially proceeds into the radial direction.
Song, Lin; Liu, Peng; Han, Chao; Liu, Yang; Zou, Wei; Piao, Hua; Wang, Yachen; Liu, Jing
2013-04-01
Recent evidence suggests that cell replacement therapy holds great promise for the treatment of Parkinson's disease. Many efforts have been made to improve current methods for differentiating stem or somatic cells into functional dopaminergic (DA) neurons. Previous studies have demonstrated that lineage-specific factors, extrinsic signaling factors and the cellular microenvironment are important considerations for generating functional DA neurons. We hypothesize that a combination of genetic modification, neurotrophic or extrinsic signaling factors and the construction of dynamic neural networks within a three-dimensional perfusion microbioreactor will produce greater efficiency and effectiveness in DA neuron generation from stem-cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Three dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1980-01-01
The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.
NASA Technical Reports Server (NTRS)
Hefner, J. N.
1973-01-01
Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.
NASA Technical Reports Server (NTRS)
Landis, W. J.; Hodgens, K. J.; Song, M. J.; Arena, J.; Kiyonaga, S.; Marko, M.; Owen, C.; McEwen, B. F.
1996-01-01
The interaction between collagen and mineral crystals in the normally calcifying leg tendons from the domestic turkey, Meleagris gallopavo, has been investigated at an ultrastructural level with conventional and high-voltage electron microscopy, computed tomography, and three-dimensional image reconstruction methods. Specimens treated by either aqueous or anhydrous techniques and resin-embedded were appropriately sectioned and regions of early tendon mineralization were photographed. On the basis of individual photomicrographs, stereoscopic pairs of images, and tomographic three-dimensional image reconstructions, platelet-shaped crystals may be demonstrated for the first time in association with the surface of collagen fibrils. Mineral is also observed in closely parallel arrays within collagen hole and overlap zones. The mineral deposition at these spatially distinct locations in the tendon provides insight into possible means by which calcification is mediated by collagen as a fundamental event in skeletal and dental formation among vertebrates.
NASA Technical Reports Server (NTRS)
Landis, W. J.; Hodgens, K. J.; Song, M. J.; Arena, J.; Kiyonaga, S.; Marko, M.; Owen, C.; McEwen, B. F.
1996-01-01
The interaction between collagen and mineral crystals in the normally calcifying leg tendons from the domestic turkey, Meleagris gallopavo, has been investigated at an ultrastructural level with conventional and high-voltage electron microscopy, computed tomography, and three-dimensional image reconstruction methods. Specimens treated by either aqueous or anhydrous techniques and resin-embedded were appropriately sectioned and regions of early tendon mineralization were photographed. On the basis of individual photomicrographs, stereoscopic pairs of images, and tomographic three-dimensional image reconstructions, platelet-shaped crystals may be demonstrated for the first time in association with the surface of collagen fibrils. Mineral is also observed in closely parallel arrays within collagen hole and overlap zones. The mineral deposition at these spatially distinct locations in the tendon provides insight into possible means by which calcification is mediated by collagen as a fundamental event in skeletal and dental formation among vertebrates.
Li, Jinyu; Wang, Qin; Zhi, Wei; Wang, Jianxin; Feng, Bo; Qu, Shuxin; Mu, Yandong; Weng, Jie
2016-10-07
Porous hydroxyapatite (HA) scaffolds combined with a drug delivery system have attracted much attention for bone tissue engineering. In this study, an easy and highly efficient method was developed to immobilize salvianolic acid B (Sal B)-loaded chitosan (CS) microspheres three dimensionally and homogeneously on the surface of HA scaffolds pre-coated with alginate. Porous HA scaffolds were prepared via a template-leaching process and CS microspheres (used as drug carriers) were fabricated by an emulsion method. To improve adhesion between the microspheres and HA scaffolds, alginate was used to pre-coat the porous surface of the HA scaffolds. Various concentrations of alginate were used to optimize the adhesion of Sal B-loaded CS microspheres to the scaffold surface. During the adherence process, coated HA scaffolds were immersed in an aqueous solution containing Sal B-loaded CS microspheres, followed by standing or shaking at 37 °C for a certain time. The results showed that the microspheres were solidly and homogeneously distributed on the porous surface of the alginate pre-coated HA scaffolds via electrostatic interactions. Few microspheres detached from the porous surface, even after the HA scaffolds with microspheres were treated by shaking in distilled water for as long as 7 d. Compared with the static condition, the distribution of Sal B-loaded CS microspheres on the porous surface of pre-coated HA scaffolds in the shaken condition was more homogeneous and almost unaggregated. Additionally, the compressive strength of the scaffolds coated with alginate was obviously improved. The optimal alginate coating concentration was 1% (i.e. the microstructure of the porous surfaces of the HA scaffolds was almost unchanged). The release profile of Sal B over a 30 d immersion found an initial burst release followed by a sustained release. The result of cell culture in vitro was that 1% alginate-coated scaffolds with Sal B-loaded CS microspheres obviously promoted cell
Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George
2011-07-15
Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.
Xie, Lianghai Li, Lei; Wang, Jingdong; Zhang, Yiteng
2014-04-15
We present a three-dimensional, two-species (Ba{sup +} and H{sup +}) MHD model to study the early time behaviors of a barium release at about 1 R{sub E} like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions are constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H{sup +}, which creates density hole and bumps in the background H{sup +} when barium ions expanding along the magnetic field lines.
Lin, Chun-Hao; Chou, Wei-Jen; Lee, Jyh-Tsung
2012-01-01
The synthesis and electrochemical performance of three-dimensionally ordered macroporous (3DOM) nitroxide polymer brush electrodes for organic radical batteries are reported. The 3DOM electrodes are synthesized via polystyrene colloidal crystal templating with electropolymerization of polypyrrole, modification of surface initiator, and surface-initiated atom transfer radical polymerization. The discharge capacity of the 3DOM electrodes is proportional to the thickness of the inverse opal. The discharge capacity of the 3DOM electrode at a discharge rate of 5 C is 40 times higher than that of the planar electrode; its cycle-life performance exhibits 96.1% retention after 250 cycles.
NASA Astrophysics Data System (ADS)
Kalkal, Yashvir; Kumar, Vinit
2016-06-01
In Čerenkov and Smith-Purcell free-electron lasers (FELs), a resonant interaction between the electron beam and the copropagating surface mode can produce a copious amount of coherent terahertz radiation. We perform a three-dimensional (3D) analysis of the surface mode, taking the effect of attenuation into account, and set up 3D Maxwell-Lorentz equations for both these systems. Based on this analysis, we determine the requirements on the electron beam parameters, i.e., beam emittance, beam size and beam current for the successful operation of a Čerenkov FEL.
Mhatre, Amol C; Tandur, Arundhati P; Reddy, Sumitra S; Karunakara, B C; Baswaraj, H
2015-01-01
Background: The purpose of this thesis is to present a practical and efficient clinical method of returning enamel to as near its original condition as possible following removal of bonded orthodontic attachments. The main objective of this study is to evaluate and compare the iatrogenic enamel damage caused by use of two different remnant removal techniques – sandblasting technique and carbide bur technique. Materials and Methods: 40 extracted premolar teeth were selected as sample. Premolar brackets were bonded on these teeth with two different types of light cure adhesive composite resin. The remnants present on these samples after debonding the brackets were removed with two different types of remnant removal techniques namely – Carbide bur technique and sandblasting technique. Then these treated surfaces were studied under Scanning electron microscope and three-dimensional profilometer for the damage caused to the enamel. Statistical analysis used Student’s t-tests. Results: The enamel surface structure after remnant removal with intraoral sandblasting is better than that after removal with a low-speed handpiece using tungsten carbide bur. Conclusion: Sandblasting can be an acceptable alternative to rotatory handpieces to restore the enamel surface to its near-original state and prevent permanent damage to the tooth. PMID:26668478
NASA Technical Reports Server (NTRS)
Martin, William G.; Cairns, Brian; Bal, Guillaume
2014-01-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-19
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-01-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed. PMID:27430188
THREE-DIMENSIONAL KINETIC-MHD MODEL OF THE GLOBAL HELIOSPHERE WITH THE HELIOPAUSE-SURFACE FITTING
Izmodenov, V. V.; Alexashov, D. B.
2015-10-15
This paper provides a detailed description of the latest version of our model of the solar wind (SW) interaction with the local interstellar medium (LISM). This model has already been applied to the analysis of Lyα absorption spectra toward nearby stars and for analyses of Solar and Heliospheric Observatory/SWAN data. Katushkina et al. (this issue) used the model results to analyze IBEX-Lo data. At the same time, the details of this model have not yet been published. This is a three-dimensional (3D) kinetic-magnetohydrodynamical (MHD) model that takes into account SW and interstellar plasmas (including α particles in SW and helium ions in LISM), the solar and interstellar magnetic fields, and interstellar hydrogen atoms. The latitudinal dependence of SW and the actual flow direction of the interstellar gas with respect to the Sun are also taken into account in the model. It was very essential that our numerical code was developed in such a way that any numerical diffusion or reconnection across the heliopause were not allowed in the model. The heliospheric current sheet is a rotational discontinuity in the ideal MHD and can be treated kinematically. In the paper, we focus in particular on the effects of the heliospheric magnetic field and on the heliolatitudinal dependence of SW.
Plasson, Raphaël; Kondepudi, Dilip K; Asakura, Kouichi
2006-04-27
The spontaneous emergence of homochirality in an initially racemic system can be obtained in far-from-equilibrium states. Traditional models do not take into account the influence of inhomogeneities, while they may be of great importance. What would happen when one configuration emerges at one position, and the opposite one at another position? We present a discrete three-dimensional model of conglomerate crystallization, based on 1,1'-binaphthyl crystallization experiments, that takes into account the position and environment of every single elementary growth subunit. Stochastic simulations were performed to predict the evolution of the crystallization process. It is shown that the traditional view of the symmetry breaking can then be extended. Fluctuations of the fixed points related to inhomogeneities are observed, and complex behavior, such as local instabilities, transient structures, and chaotic behavior, can emerge. Our modeling indicates that such complex phenomena could cause large fluctuation of the final enantiomeric excess that is observed experimentally in binaphthyl crystallization. The results presented in this article show the importance of inhomogeneities in understanding enantiomeric excess generated in crystallization and the inadequacy of the models based on the assumption of homogeneity.
NASA Astrophysics Data System (ADS)
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Jung, Yunmin; Riven, Inbal; Feigelson, Sara W.; Kartvelishvily, Elena; Tohya, Kazuo; Miyasaka, Masayuki; Alon, Ronen; Haran, Gilad
2016-01-01
Leukocyte microvilli are flexible projections enriched with adhesion molecules. The role of these cellular projections in the ability of T cells to probe antigen-presenting cells has been elusive. In this study, we probe the spatial relation of microvilli and T-cell receptors (TCRs), the major molecules responsible for antigen recognition on the T-cell membrane. To this end, an effective and robust methodology for mapping membrane protein distribution in relation to the 3D surface structure of cells is introduced, based on two complementary superresolution microscopies. Strikingly, TCRs are found to be highly localized on microvilli, in both peripheral blood human T cells and differentiated effector T cells, and are barely found on the cell body. This is a decisive demonstration that different types of T cells universally localize their TCRs to microvilli, immediately pointing to these surface projections as effective sensors for antigenic moieties. This finding also suggests how previously reported membrane clusters might form, with microvilli serving as anchors for specific T-cell surface molecules. PMID:27647916
Ning, Zhi-Bin; Li, Qing-Run; Dai, Jie; Li, Rong-Xia; Shieh, Chia-Hui; Zeng, Rong
2008-10-01
The complexity and diversity of biological samples in proteomics require intensive fractionation ahead of mass spectrometry identification. This work developed a chromatographic method called virtual three-dimensional chromatography to fractionate complex protein mixtures. By alternate elution with different pHs and salt concentrations, we implemented pH and salt steps by turns on a single strong cation exchange column to fully exploit its chromatographic ability. Given standard proteins that were not resolved solely by pH or salt gradient elution could be successfully separated using this combined mode. With a reversed phase column tandem connected behind, we further fractionated as well as desalted proteins as the third dimension. This present strategy could readily be adapted with respect to special complexity of biological samples. Crude plasma without depleting high abundance proteins were fractionated by this three-dimensional mode and then analyzed by reversed phase liquid chromatography coupled with LTQ mass spectrometry. In total, 1933 protein groups with wide dynamic ranges were identified from a single experiment. Some characteristics that correlated to the behavior of proteins on strong cation exchange columns are also discussed.
Boehnen, Chris Bensing; Bogard, James S; Hayward, Jason P; Raffo-Caiado, Ana Claudia; Smith, Stephen E; Ziock, Klaus-Peter
2010-01-01
Being able to verify the operator's declaration in regards to technical design of nuclear facilities is an important aspect of every safeguards approach. In addition to visual observation, it is relevant to know if nuclear material is present or has been present in piping and ducts not declared. The possibility of combining different measurement techniques into one tool should optimize the inspection effort and increase safeguards effectiveness. Oak Ridge National Laboratory (ORNL) is engaged in a technical collaboration project involving two U.S. Department of Energy foreign partners to investigate combining measurements from a three-dimensional (3D) laser scanning system and gamma-ray imaging systems. ORNL conducted simultaneous measurements with a coded-aperture gamma-ray imager and the 3D laser scanner in an operational facility with complex configuration and different enrichment levels and quantities of uranium. This paper describes these measurements and their results.
Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.
2001-01-01
This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.
1996-01-01
This study provides a three-dimensional (3D) analysis of differences between the 3D morphology of active and inactive human X interphase chromosomes (Xa and Xi territories). Chromosome territories were painted in formaldehyde-fixed, three-dimensionally intact human diploid female amniotic fluid cell nuclei (46, XX) with X-specific whole chromosome compositive probes. The colocalization of a 4,6-diamidino-2- phenylindole dihydrochloride-stained Barr body with one of the two painted X territories allowed the unequivocal discrimination of the inactive X from its active counterpart. Light optical serial sections were obtained with a confocal laser scanning microscope. 3D- reconstructed Xa territories revealed a flatter shape and exhibited a larger and more irregular surface when compared to the apparently smoother surface and rounder shape of Xi territories. The relationship between territory surface and volume was quantified by the determination of a dimensionless roundness factor (RF). RF and surface area measurements showed a highly significant difference between Xa and Xi territories (P < 0.001) in contrast to volume differences (P > 0.1). For comparison with an autosome of similar DNA content, chromosome 7 territories were additionally painted. The 3D morphology of the chromosome 7 territories was similar to the Xa territory but differed strongly from the Xi territory with respect to RF and surface area (P < 0.001). PMID:8978813
NASA Astrophysics Data System (ADS)
Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang
2015-01-01
This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.
NASA Technical Reports Server (NTRS)
Johnston, S.
1984-01-01
Zachary Phys. Rev. A 29 (6), 3224 (1984) recently analyzed the instability of relativistic-electron helical trajectories in combined uniform axial and helical wiggler magnetic fields when the radial variation of the wiggler field is taken into account. It is shown here that the type 2 instability comprised of secular terms growing linearly in time, identified by Zachary and earlier by Diament Phys. Rev. A 23 (5), 2537 (1981), is an artifact of simple perturbation theory. A multiple-time-scale perturbation analysis reveals a nonsecular evolution on a slower time scale which accommodates an arbitrary initial perturbation. It is shown that, in the absence of exponential instability, the electron seeks a modified helical orbit more appropriate to its perturbed state and oscillates stably about it. Thus, the perturbed motion is oscillatory but nonsecular, and hence the helical orbits are stable.
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; McRae, D. Scott; Bond, Ryan B.; Steffan, Christopher (Technical Monitor)
2003-01-01
The GTX program at NASA Glenn Research Center is designed to develop a launch vehicle concept based on rocket-based combined-cycle (RBCC) propulsion. Experimental testing, cycle analysis, and computational fluid dynamics modeling have all demonstrated the viability of the GTX concept, yet significant technical issues and challenges still remain. Our research effort develops a unique capability for dynamic CFD simulation of complete high-speed propulsion devices and focuses this technology toward analysis of the GTX response during critical mode transition events. Our principal attention is focused on Mode 1/Mode 2 operation, in which initial rocket propulsion is transitioned into thermal-throat ramjet propulsion. A critical element of the GTX concept is the use of an Independent Ramjet Stream (IRS) cycle to provide propulsion at Mach numbers less than 3. In the IRS cycle, rocket thrust is initially used for primary power, and the hot rocket plume is used as a flame-holding mechanism for hydrogen fuel injected into the secondary air stream. A critical aspect is the establishment of a thermal throat in the secondary stream through the combination of area reduction effects and combustion-induced heat release. This is a necessity to enable the power-down of the rocket and the eventual shift to ramjet mode. Our focus in this first year of the grant has been in three areas, each progressing directly toward the key initial goal of simulating thermal throat formation during the IRS cycle: CFD algorithm development; simulation of Mode 1 experiments conducted at Glenn's Rig 1 facility; and IRS cycle simulations. The remainder of this report discusses each of these efforts in detail and presents a plan of work for the next year.
Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography
NASA Astrophysics Data System (ADS)
Bakırcı, Taciser; Yoshizawa, Kazunori; Özer, Mithat Fırat
2012-08-01
A 3-D upper-mantle structure beneath Turkey is investigated using phase speeds of fundamental-mode Rayleigh waves employing a conventional two-station method with high-density seismic networks in Turkey. We analyse 289 seismic events with moment magnitude 5.5 and greater, and with focal depth shallower than 100 km between 2006 and 2008. Waveform data are derived from 164 three-component broad-band seismic stations operated by two national seismic networks. At first, Rayleigh-wave phase speed maps are obtained from the inversion of two-station phase speeds using about 1000-3000 paths, depending on the period of Rayleigh waves. The three-dimensional S-wave model is then obtained in the depth range from 40 to 180 km using the phase speed maps in the period range from 25 to 120 s. Our model reveals the fast anomalies in the north of Cyprus associated with the subducted portion of the African oceanic lithosphere from the Cyprus trench. We identify a vertical discontinuity of the fast anomaly associated with the Cyprus slab starting at 60-80 km depth which may represent a minor tear of the Cyprus slab. We observed that the western part of the Cyprus slab is getting closer to the edge of the Hellenic slab beneath the Isparta Angle (IA) and Antalya Basin. Our model also indicates a slow wave speed anomaly beneath the IA and Antalya Basin probably due to hot materials of asthenosphere rising from a tear of the subducted African oceanic lithosphere; that is, a slab tear between the Cyprus and the Hellenic subductions. In the eastern part of Turkey, a widespread slow anomaly appears in the model that corresponds to the Eastern Anatolian Accretionary Complex (EAAC). Our model shows a fast anomaly beneath the EAAC that can be interpreted as the detached portion of the subducted Arabian lithosphere.
Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha; Parris, Kevin; Svenson, Kristine; Moran, Justin; Chu, Ling; Li, Sheng; Liu, Tong; Woods, Jr., Virgil L.; Jansen, Kathrin U.; Green, Bruce A.; Anderson, Annaliesa S.; Matsuka, Yury V.
2013-08-23
MntC is a metal-binding protein component of the Mn^{2 +}-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensional structure of the protein was solved by X-ray crystallography at 2.2 Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn^{2 +}-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn^{2 +}-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium–hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn^{2 +}.
Li, Dong; Zhang, Zhenhui; Zheng, Chengcheng; Zhao, Bin; Sun, Kai; Nian, Zhenghao; Zhang, Xizheng; Li, Ruixin; Li, Hui
2016-03-01
To study the preparation and cytocompatibility of bone tissue engineering scaffolds by combining low temperature three dimensional (3D) printing and vacuum freeze-drying techniques. Collagen (COL) and silk fibroin (SF) were manufactured from fresh bovine tendon and silkworm silk. SolidWorks2014 was adopted to design bone tissue engineering scaffold models with the size of 9 mm x 9 mm x 3 mm and pore diameter of 500 μm. According to the behavior of composite materials that low temperature 3D printing equipment required, COL, SF, and nano-hydroxyapatite (nHA) at a ratio of 9 : 3 : 2 and low temperature 3D printing in combination with vacuum freeze-drying techniques were accepted to build COL/SF/nHA composite scaffolds. Gross observation and scanning electron microscope (SEM) were applied to observe the morphology and surface structures of composite scaffolds. Meanwhile, compression displacement, compression stress, and elasticity modulus were measured by mechanics machine to analyze mechanical properties of composite scaffolds. The growth and proliferation of MC3T3-E1 cells were evaluated using SEM, inverted microscope, and MTT assay after cultured for 1, 7, 14, and 21 days on the composite scaffolds. The RT-PCR and Western blot techniques were adopted to detect the gene and protein expressions of COL I, alkaline phosphatase (ALP), and osteocalcin (OCN) in MC3T3-E1 cells after 21 days. COL/SF/nHA composite scaffolds were successfully prepared by low temperature 3D printing technology and vacuum freeze-drying techniques; the SEM results showed that the bionic bone scaffolds were 3D polyporous structures with macropores and micropores. The mechanical performance showed that the elasticity modulus was (344.783 07 ± 40.728 55) kPa; compression displacement was (0.958 41 ± 0.000 84) mm; and compression stress was (0.062 15 ± 0.007 15) MPa. The results of inverted microscope, SEM, and MTT method showed that a large number of cells adhered to the surface with full
Clore, G.M.; Sukumaran, D.K.; Nilges, M.; Gronenborn, A.M.
1987-03-24
The solution conformation of phoratoxin, a 46-residue plant protein, has been investigated by /sup 1/H nuclear magnetic resonance (NMR) spectroscopy. The spectrum is assigned in a sequential manner by a combination of two-dimensional NMR techniques to demonstrate through-bond and through-space (< 5 A) connectivities. A set of 331 approximate interproton distance restraints and six phi backbone torsion angle restraints is derived from the two-dimensional nuclear Overhauser enhancement and double quantum filtered homonuclear correlated spectra, respectively. These restraints are used as the basis of a structure determination with a metric matrix distance geometry algorithm. A total of eight structures are computed in this manner and subjected to refinement by restrained molecular dynamics in which the experimental restraints are incorporated into the total energy function of the system in the form of square well effective potentials. The overall shape of phoratoxin is that of the capital letter L, similar to that of crambin and ..cap alpha../sub 1/-purothionin, with the longer arm comprising two ..cap alpha..-helices at an angle of approx. 140/sup 0/ to each other and the shorter arm a mini-antiparallel ..beta..-sheet and a loop made up of two turns and a strand.
Baker, Paul R. S.; Armando, Aaron M.; Campbell, J. Larry; Quehenberger, Oswald; Dennis, Edward A.
2014-01-01
Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level. PMID:25225680
NASA Astrophysics Data System (ADS)
Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.
2011-07-01
Dynamic contrast enhanced magnetic resonance is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors than mammography. We focus on Near Infrared Spectroscopy (NIRS) imaging and Fluorescence Molecular Tomography (FMT), emerging imaging techniques that non-invasively quantify optical properties of total hemoglobin, oxygen saturation, water content, scattering, lipid concentration and endogenous Protoporphyrin IX (PpIX) emission. We present methods on combining the synergistic attributes of DCE-MR, NIRS, and FMT for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present example results from a breast cancer patient. Preliminary results show elevated hemoglobin values and water fraction. Fluorescence values in the tumor region, however, were not always elevated above the surrounding tissue as we had expected. The additional information gained from NIRS and FMT may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.
Baker, Paul R S; Armando, Aaron M; Campbell, J Larry; Quehenberger, Oswald; Dennis, Edward A
2014-11-01
Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
1990-12-01
NUMBERS Interactive EAGLE: An Interactive Surface Mesh and Three- Dimensional Grid Generation System PE6SB07F i 6 AUTHOR(S) Dietzo W. E. and Evans, S...Development Center/DO Air Force Systems Command Arnold AFB, TN 37389-5000 REPORT NUMBER AEDC-TR-90-2S 10 SPONSORING/MONITORING AGENCY REPORT NUMBER 11...CLASSIFICATION 19 SECURITY CLASSIFICATION OF REPORT I OF THIS PAGE OF ABSTRACT UNCLASSIFIED U N C L A S S I F I E D UNCLASSIFIED 15 NUMBER OF PAGES 171 16
Three-dimensional perspective visualization
NASA Technical Reports Server (NTRS)
Hussey, Kevin
1991-01-01
It was demonstrated that image processing computer graphic techniques can provide an effective means of physiographic analysis of remotely sensed regions through the use of three-dimensional perspective rendering. THe methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery and digital elevation models are explained. A brief historic look at JPL's efforts in this field and several examples of animations, illustrating the evolution of these techniques from 1985, are shown. JPL's current research in this area is discussed along with examples of technology transfer and potential commercial application. The software is part of the VICAR (Video Image Communication and Retrieval) image processing system which was developed at the Multimission Image Processing Laboratory of JPL.
NASA Astrophysics Data System (ADS)
Wang, Peng-yi; Wang, Zhong-jin
2016-12-01
Magnetorheological fluid (MR fluid), a kind of smart material, has been used as a new pressure-carrying medium in magnetorheological pressure forming (MRPF). The mechanical property of MR fluid under the pressure significantly affects the sheet formability. However, there is little knowledge on the deformation behavior of MR fluid under three-dimensional stress states. In this paper, a new procedure via a combination of extrusion test and FEM simulation has been proposed to determine the flow stress of MR fluids. The experimental device for extrusion test of MR fluids was designed. The flow stresses of a MR fluid (MRF-J01T) under four different magnetic fields were determined through the proposed procedure. In addition, the obtained flow stresses were used in the following FEM simulations to verify the accuracy by comparing with the experimental results. The simulation results were in good agreement with the experimental data, which supports the correctness and practicability of the proposed method.
Sumiyoshi, Yoshihiro; Endo, Yasuki
2005-08-01
All the pure rotational transitions reported in the previous studies [J. Chem. Phys. 113, 10121 (2000); J. Mol. Spectrosc. 222, 22 (2003)] and newly observed rotation-vibration transitions, P = 1/2 <-- 3/2, for Ar-SH and Ar-SD [J. Chem. Phys. (2005), the preceding paper] have been simultaneously analyzed to determine a new intermolecular potential-energy surface of Ar-SH in the ground state. A Schrodinger equation considering the three-dimensional freedom of motion for an atom-diatom complex in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational levels using the discrete variable representation method. A three-dimensional potential-energy surface is determined by a least-squares fitting with initial values of the parameters for the potential obtained by ab initio calculations at the RCCSD(T)/aug-cc-pVTZ level of theory. The potential well reproduces all the observed data in the microwave and millimeter wave regions with parity doublings and hyperfine splittings. Several low-lying rovibrational energies are calculated using the new potential-energy surface. The dependence of the interaction energy between Ar and SH(2pi(i)) on the bond length of the SH monomer is discussed.
NASA Astrophysics Data System (ADS)
Khayat, Roger E.; Genouvrier, Delphine
2001-05-01
An adaptive (Lagrangian) boundary element approach is proposed for the general three-dimensional simulation of confined free-surface Stokes flow. The method is stable as it includes remeshing capabilities of the deforming free surface and thus can handle large deformations. A simple algorithm is developed for mesh refinement of the deforming free-surface mesh. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several flow problems are presented to illustrate the utility of the approach, particularly as encountered in polymer processing and rheology. These problems illustrate the transient nature of the flow during the processes of extrusion and thermoforming, the elongation of a fluid sample in an extensional rheometer, and the coating of a sphere. Surface tension effects are also explored. Copyright
NASA Astrophysics Data System (ADS)
Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou
2016-07-01
The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x -k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ˜150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the
Proctor, Daniel J; Broadfield, Douglas; Proctor, Kristopher
2008-02-01
Multidimensional morphometrics is used to compare the proximal articular surface of the first metatarsal between Homo, Pan, Gorilla, Hylobates, and the hominin fossils A.L. 333-54 (A. afarensis), SKX 5017 (P. robustus), and OH 8 (H. habilis). Statistically significant differences in articular surface morphology exist between H. sapiens and the apes, and between ape groups. Ape groups are characterized by greater surface depth, an obliquely curved articular surface through the dorso-lateral and medio-plantar regions, and a wider medio-lateral surface relative to the dorso-plantar height. The OH 8 articular surface is indistinguishable from H. sapiens, while A.L. 333-54 and SKX 5017 more closely resemble the apes. P. robustus and A. afarensis exhibit ape-like oblique curvature of the articular surface.