Science.gov

Sample records for combining three-dimensional surface

  1. Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography

    NASA Astrophysics Data System (ADS)

    Barrientos, B.; Cerca, M.; García-Márquez, J.; Hernández-Bernal, C.

    2008-10-01

    3D displacement fields on a diffuse surface are measured by a combination of two optical methods, fringe projection and speckle photography. The use of a single camera for recording information from the two methods implies that no calibration procedures are necessary, as is the case in stereoscopy-based techniques. Out-of-plane displacements are measured by fringe projection whereas speckle photography yields the 2D in-plane component. By using this technique, we analyze in detail the morphological spatial-temporal evolution of an analogue model of the Earth's crust while subjected to compression forces. We discuss the experimental results and their relevance to the micromechanics of a surface of dry, non-cohesive and dilatant granular media. The results show that the combination of fringe projection and speckle photography is well suited for this type of study and allows the characterization of strain at the grain scale.

  2. PLOT3D- DRAWING THREE DIMENSIONAL SURFACES

    NASA Technical Reports Server (NTRS)

    Canright, R. B.

    1994-01-01

    PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.

  3. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Jung, H.-S.; Lu, Zhiming; Won, J.-S.; Poland, Michael P.; Miklius, Asta

    2011-01-01

    Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.

  4. Three-dimensional reconstructions of solid surfaces using conventional microscopes.

    PubMed

    Ficker, Tomáš; Martišek, Dalibor

    2016-01-01

    The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures.

  5. Surfaces in Three-Dimensional Digital Images.

    DTIC Science & Technology

    1980-09-01

    pipi -l n n the desired subsets.EJ Proposition 3. Let =Pl’""" ’Pn be any path of orientable surface points. There exist connected subsets B’ and C’ of...a B’ , B! isi l-±Pi ’ Pi-i Pi-i PiPi -I i a connected subset of Sn[I U N1 (pj)] if B! is a connected Si- subset of S5[i U N (pj)], and similarly for

  6. Three-dimensional object surface identification

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet

    1995-03-01

    This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).

  7. Three-Dimensional Interactive Design Using Bezier Curves and Surfaces.

    ERIC Educational Resources Information Center

    Khonsari, M. M.; Horn, D.

    1987-01-01

    Offers a method for interactive design of objects on a computer. Outlines a method which allows the designer to interact with orthogonal views to construct a three dimensional model of an arbitrary shape. Presents an algorithm based on the Bezier curves to efficiently create smooth curves and surfaces. (CW)

  8. Three-dimensional surface reconstruction from multistatic SAR images.

    PubMed

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  9. Detection of surface strain by three-dimensional digital holography

    NASA Astrophysics Data System (ADS)

    de La Torre-Ibarra, Manuel; Mendoza-Santoyo, Fernando; Pérez-López, Carlos; Saucedo-A., Tonatiuh

    2005-01-01

    Three-dimensional digital holography with three object-illuminating beams has been successfully used for the detection of surface strain in metallic objects. The optical setup that uses illuminating beams to irradiate the object from three directions means that all three object surface displacement components, x, y, and z, can be independently calculated and used to find the strain gradients on the surface. The results show the conversion of the complete surface displacement field into a surface strain field. The method is capable of measuring microstrains for out-of-plane surface displacements of less than 10 μm.

  10. Three-dimensional potential energy surface of Ar–CO

    SciTech Connect

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  11. Three-dimensional potential energy surface of Ar-CO.

    PubMed

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar-CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  12. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  13. Combined three-dimensional electromagnetic and device modeling of surface plasmon-enhanced organic solar cells incorporating low aspect ratio silver nanoprisms

    NASA Astrophysics Data System (ADS)

    Jiang, Wenjun; Salvador, Michael; Dunham, Scott T.

    2013-10-01

    We investigate silver nanoparticle enhanced organic solar cells by coupling three-dimensional electromagnetic and electronic device simulations. For active layer thicknesses of less than 50 nm, an array of optimized silver nanoprisms with 10 nm edge length, 15 nm thickness, and 17 nm period length can enhance the power conversion efficiency (PCE) by more than 25% when embedded in a bulk heterojunction polymer blend. For thicker layers, optical losses associated with the particles outweigh the increased absorption and reduce the PCE. Additionally, we find that the nanoparticle's work function determines the current-voltage behavior of plasmonic devices.

  14. The perception of three-dimensionality across continuous surfaces

    NASA Technical Reports Server (NTRS)

    Stevens, Kent A.

    1989-01-01

    The apparent three-dimensionality of a viewed surface presumably corresponds to several internal preceptual quantities, such as surface curvature, local surface orientation, and depth. These quantities are mathematically related for points within the silhouette bounds of a smooth, continuous surface. For instance, surface curvature is related to the rate of change of local surface orientation, and surface orientation is related to the local gradient of distance. It is not clear to what extent these 3D quantities are determined directly from image information rather than indirectly from mathematically related forms, by differentiation or by integration within boundary constraints. An open empirical question, for example, is to what extent surface curvature is perceived directly, and to what extent it is quantitative rather than qualitative. In addition to surface orientation and curvature, one derives an impression of depth, i.e., variations in apparent egocentric distance. A static orthographic image is essentially devoid of depth information, and any quantitative depth impression must be inferred from surface orientation and other sources. Such conversion of orientation to depth does appear to occur, and even to prevail over stereoscopic depth information under some circumstances.

  15. Algebraic surface grid generation in three-dimensional space

    NASA Technical Reports Server (NTRS)

    Warsi, Saif

    1992-01-01

    An interactive program for algebraic generation of structured surface grids in three dimensional space was developed on the IRIS4D series workstations. Interactive tools are available to ease construction of edge curves and surfaces in 3-D space. Addition, removal, or redistribution of points at arbitrary locations on a general 3-D surface or curve is possible. Also, redistribution of surface grid points may be accomplished through use of conventional surface splines or a method called 'surface constrained transfinite interpolation'. This method allows the user to redistribute the grid points on the edges of a surface patch; the effect of the redistribution is then propagated to the remainder of the surface through a transfinite interpolation procedure where the grid points will be constrained to lie on the surface. The program was written to be highly functional and easy to use. A host of utilities are available to ease the grid generation process. Generality of the program allows the creation of single and multizonal surface grids according to the user requirements. The program communicates with the user through popup menus, windows, and the mouse.

  16. Three-dimensional surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-10-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  17. Three-dimensional surface imaging system for assessing human obesity

    PubMed Central

    Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-01-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment. PMID:19966948

  18. Optimized Fourier representations for three-dimensional magnetic surfaces

    SciTech Connect

    Hirshman, S.P.; Meier, H.K.

    1984-11-01

    The selection of an optimal parametric angle theta describing a closed magnetic flux surface is considered with regard to accelerating the convergence rate of the Fourier series for the Cartesian coordinates x(theta,phi) identical with R - R/sub 0/ and y(theta,phi) identical with Z - Z/sub 0/. Geometric criteria are developed based on the Hamiltonian invariants of Keplerian orbits. These criteria relate the rate of curve traversal (tangential speed) to the curvature (normal acceleration) so as to provide increased angular resolution in regions of largest curvature. They are, however, limited to either convex or starlike domains and do not provide rapid convergence for complex domains with alternating convex and concave regions. A generally applicable constraint criterion, based directly on minimizing the width of the x and y Fourier spectra, is also derived. A variational principle is given for implementing these constraints numerically. Application to the representation of three-dimensional magnetic flux surfaces is discussed.

  19. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  20. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

    SciTech Connect

    Chen, Chen; Kang, Yijin; Huo, Ziyang; Zhu, Zhongwei; Huang, Wenyu; Xin, Huolin; Snyder, Joshua; Li, Dongguo; Herron, Jeffrey A.; Mavrikakis, Manos; Chi, Miaofang; More, Karren L.; Li, Yadong; Markovic, Nenad M.; Somorjai, Gabor A.; Yang, Peidong; Stamenkovic, Vojislav R.

    2014-03-21

    Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi3 polyhedra are maintained in the final Pt3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.

  1. Three-dimensional reconstruction of surface nanoarchitecture from two-dimensional datasets

    PubMed Central

    2014-01-01

    The design of biomaterial surfaces relies heavily on the ability to accurately measure and visualize the three-dimensional surface nanoarchitecture of substrata. Here, we present a technique for producing three-dimensional surface models using displacement maps that are based on the data obtained from two-dimensional analyses. This technique is particularly useful when applied to scanning electron micrographs that have been calibrated using atomic force microscopy (AFM) roughness data. The evaluation of four different surface types, including thin titanium films, silicon wafers, polystyrene cell culture dishes and dragonfly wings confirmed that this technique is particularly effective for the visualization of conductive surfaces such as metallic titanium. The technique is particularly useful for visualizing surfaces that cannot be easily analyzed using AFM. The speed and ease with which electron micrographs can be recorded, combined with a relatively simple process for generating displacement maps, make this technique useful for the assessment of the surface topography of biomaterials. PMID:24410821

  2. Three-dimensional surface anthropometry: Applications to the human body

    NASA Astrophysics Data System (ADS)

    Jones, Peter R. M.; Rioux, Marc

    1997-09-01

    Anthropometry is the study of the measurement of the human body. By tradition this has been carried out taking the measurements from body surface landmarks, such as circumferences and breadths, using simple instruments like tape measures and calipers. Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. It includes the acquisition, indexing, transmission, archiving, retrieval, interrogation and analysis of body size, shape, and surface together with their variability throughout growth and development to adulthood. While 3D surface anthropometry surveying is relatively new, anthropometric surveying using traditional tools, such as calipers and tape measures, is not. Recorded studies of the human form date back to ancient times. Since at least the 17th century 1 investigators have made attempts to measure the human body for physical properties such as weight, size, and centre of mass. Martin documented 'standard' body measurement methods in a handbook in 1928. 2 This paper reviews the past and current literature devoted to the applications of 3D anthropometry because true 3D scanning of the complete human body is fast becoming a reality. We attempt to take readers through different forms of technology which deal with simple forms of projected light to the more complex advanced forms of laser and video technology giving low and/or high resolution 3D data. Information is also given about image capture of size and shape of the whole as well as most component parts of the human body. In particular, the review describes with explanations a multitude of applications, for example, medical, product design, human engineering, anthropometry and ergonomics etc.

  3. Three-dimensional surface reconstruction by combining a pico-digital projector for structured light illumination and an imaging system with high magnification and high depth of field

    NASA Astrophysics Data System (ADS)

    Leong-Hoï, A.; Serio, B.; Twardowski, P.; Montgomery, P.

    2014-05-01

    Based on a miniature digital light projector (pico-DLP), a prototype of a Structured Illumination Microscope (SIM) has been developed. The pico-DLP is used to project fringes onto a sample and applying the three-step phase shifting algorithm together with the absolute phase retrieval method, the 3D shape of the object surface is extracted. By using a specific optical system instead of a conventional microscope objective, the device allows 3D reconstructions of surfaces with both a 10× magnification and a high depth of field obtained thanks to a small numerical aperture of 0.06 offering an acceptable lateral resolution of 6.2 μm. An image processing algorithm has been developed to reduce the noise in the acquired images before applying the reconstruction algorithm and so optimize the reconstruction method. Compared with interference microscopy and confocal microscopy that have a shallower depth of field per XY image, the microscope developed achieves a depth of field about 700 μm and requires no vertical scanning, which greatly reduces the acquisition time. Although the system at this stage does not have the same resolution performance as interference microscopy, it is nonetheless faster and cheaper. One possible application of this SIM technique would be to first reconstruct in real-time parts of an object before performing higher resolution 3D measurements with interference microscopy. As with all classical optical instruments, the lateral resolution is limited by diffraction. Work is being carried out with the prototype SIM system to be able to exceed the lateral resolution limits and thus achieve super resolution.

  4. Combined Labelled and Label-free SERS Probes for Triplex Three-dimensional Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Bai, Xiangru; Su, Le; Du, Zhanwei; Shen, Aiguo; Materny, Arnulf; Hu, Jiming

    2016-01-01

    Cells are complex chemical systems, where the molecular composition at different cellular locations and specific intracellular chemical interactions determine the biological function. An in-situ nondestructive characterization of the complicated chemical processes (like e.g. apoptosis) is the goal of our study. Here, we present the results of simultaneous and three-dimensional imaging of double organelles (nucleus and membrane) in single HeLa cells by means of either labelled or label-free surface-enhanced Raman spectroscopy (SERS). This combination of imaging with and without labels is not possible when using fluorescence microscopy. The SERS technique is used for a stereoscopic description of the intrinsic chemical nature of nuclei and the precise localization of folate (FA) and luteinizing hormone-releasing hormone (LHRH) on the membrane under highly confocal conditions. We also report on the time-dependent changes of cell nuclei as well as membrane receptor proteins during apoptosis analyzed by statistical multivariate methods. The multiplex three-dimensional SERS imaging technique allows for both temporal (real time) and spatial (multiple organelles and molecules in three-dimensional space) live-cell imaging and therefore provides a new and attractive 2D/3D tracing method in biomedicine on subcellular level.

  5. An improved evaluation of surface finish with a three dimensional tester

    NASA Technical Reports Server (NTRS)

    GRANDADAM; PREBET; RIOUT

    1980-01-01

    The design and programming of an automated three dimensional surface finish tester is described. The device produces a three dimensional image of the microscopic texture of the examined surface. The surface finish tester presents the following advantages over conventional profilometry: (1) more complete exploration of surface texture by successive probe sweeps; (2) automation of measuring and calculating; (3) more accurate representation of the derived parameters; (4) analysis of the degree of homogeneity of the surface; (5) three dimensional graphic representation accurately depicting the state of the surface; (6) detection of local imperfections; and (7) detection of scoring that occurred during machining.

  6. Numerical procedures for three-dimensional computational surface thermochemistry

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Rasky, Daniel J.

    1992-01-01

    Models and equations for surface thermochemistry and near-surface thermophysics of aerodynamically-heated thermal protection materials are reviewed, with particular emphasis on computational boundary conditions for surface mass and energy transfer. The surface energy and mass balances, coupled with an appropriate ablation or surface catalysis model, provide complete thermochemical boundary conditions for a true multidisciplinary solution of the fully coupled fluid-dynamics/solid mechanics problem. Practical approximate solutions can be obtained by using a detailed model with full thermophysics for either the solid or fluid phase amd a semianalytic method for the other half of the problem. A significant increase in the state-of-the-art in aerothermal computational fluid dynamics is possible by uniting CFD methodology with surface thermochemistry boundary conditions and the heat-balance-integral method.

  7. Fitting manifold surfaces to three-dimensional point clouds.

    PubMed

    Grimm, Cindy M; Crisco, Joseph J; Laidlaw, David H

    2002-02-01

    We present a technique for fitting a smooth, locally parameterized surface model (called the manifold surface model) to unevenly scattered data describing an anatomical structure. These data are acquired from medical imaging modalities such as CT scans or MRI. The manifold surface is useful for problems which require analyzable or parametric surfaces fitted to data acquired from surfaces of arbitrary topology (e.g., entire bones). This surface modeling work is part of a larger project to model and analyze skeletal joints, in particular the complex of small bones within the wrist and hand. To demonstrate the suitability of this model we fit to several different bones in the hand, and to the same bone from multiple people.

  8. Three-Dimensional Potential-Field Source-Surface Modeling of the Evolution of Coronal Structures

    NASA Astrophysics Data System (ADS)

    Wallace, Rosa; Dikpati, Mausumi; de Toma, Giuliana; Burkepile, Joan

    2017-01-01

    White-light images of the solar corona indicate that, during each solar cycle, the global structure of the corona evolves as a function of cycle phase. Building a three-dimensional potential-field source-surface model of the corona, we investigate how the longitude-dependence of coronal structure varies during solar minimum. Using white-light images of the corona from the Mauna Loa Solar Observatory (MLSO) as guidance, we derive the global three-dimensional corona from our model-output as a function of Carrington rotation, focusing on the most recent three solar minima in 1986, 1996, and 2008. Longitude-dependent coronal structures seen in white-light images are reproduced by a linear combination of spherical harmonics combined with a radial boundary condition at the source-surface, taken at 2.5 solar radii. The coefficients of spherical harmonics up to the fifth degree, as well as their phase, are deduced by comparing model-output with MLSO observations. We find that (i) during typical solar minima (such as 1986, 1996), although the axial dipole dominates, small, time-varying multipole contributions are present when analyzed over a few rotations. In addition, we find that (ii) the unusual minimum in 2008 is multipole-dominated in contrast to the solar minimum corona in 1986 and 1996. (iii) The signature of a quadrupole contribution in the 1996 corona and the further increase of multipole components in the 2008 corona indicate that the departure from dipole at minimum originated during 1996. Further analysis of the present corona will likely indicate that the next solar minimum will be non-dipolar in nature. Our estimates of the variation of multipole contributions as a function of time can be used to constrain models of the three-dimensional solar dynamo.

  9. Surface grid generation for complex three-dimensional geometries

    NASA Astrophysics Data System (ADS)

    Luh, Raymond Ching-Chung

    1988-10-01

    An outline is presented for the creation of surface grids from primitive geometry data such as obtained from CAD/CAM systems. The general procedure is applicable to any geometry including full aircraft with wing, nacelle, and empennage. When developed in an interactive graphics environment, a code based on this procedure is expected to substantially improve the turn around time for generating surface grids on complex geometries. Results are shown for a general hypersonic airplane geometry.

  10. Visual attention to surfaces in three-dimensional space.

    PubMed Central

    He, Z J; Nakayama, K

    1995-01-01

    Although attention plays a significant role in vision, its spatial deployment and spread in the third dimension is not well understood. In visual search experiments we show that we cannot easily focus attention across isodepth loci unless they are part of a well-formed surface with locally coplanar elements. Yet we can easily spread our attention selectively across well-formed surfaces that span an extreme range of stereoscopic depths. In cueing experiments, we show that this spread of attention is, in part, obligatory. Attentional selectivity is reduced when targets and distractors are coplanar with or rest on a common receding stereoscopic plane. We conclude that attention cannot be efficiently allocated to arbitrary depths and extents in space but is linked to and spreads automatically across perceived surfaces. Images Fig. 2 Fig. 3 PMID:7479956

  11. Three-dimensional modeling of chloroprene rubber surface topography upon composition

    NASA Astrophysics Data System (ADS)

    Žukienė, Kristina; Jankauskaitė, Virginija; Petraitienė, Stase

    2014-02-01

    In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.

  12. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2.

    PubMed

    Yi, Hemian; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Feng, Ya; Liang, Aiji; Xie, Zhuojin; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Nakatake, M; Arita, M; Shimada, K; Namatame, H; Taniguchi, M; Xu, Zuyan; Chen, Chuangtian; Dai, Xi; Fang, Zhong; Zhou, X J

    2014-08-20

    The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by "topologically protected" surface state with Fermi arcs on their surface. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more investigations are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide experimental indications on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.

  13. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  14. A computer program for fitting smooth surfaces to an aircraft configuration and other three dimensional geometries

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1975-01-01

    A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.

  15. Hydrodynamic theory of surface excitations of three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Vildanov, N. M.

    2011-03-01

    Edge excitations of a fractional quantum Hall system can be derived as surface excitations of an incompressible quantum droplet using one-dimensional chiral bosonization. Here we show that an analogous approach can be developed to characterize surface states of three-dimensional time-reversal invariant topological insulators. The key ingredient of our theory is the Luther’s multidimensional bosonization construction.

  16. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function

    PubMed Central

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012

  17. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    PubMed

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  18. Three-dimensional surface capture for body measurement using projected sinusoidal patterns

    NASA Astrophysics Data System (ADS)

    Demers, Michelle H.; Hurley, Jeffery D.; Wulpern, Richard C.; Grindon, John R.

    1997-03-01

    A non-contact body measurement system (BMS) is under development for use in making made-to-measure apparel, and for other applications related to body measurement. The BMS design which consists of six stationary structured-light projectors and six CCD cameras is presented. The system acquires two-dimensional images of sinusoidal projected patterns utilizing a phase-shifting technique similar to phase measurement profilometry. Given calibrated projector and camera geometrical parameters, the solution for calculating three-dimensional surface points of a human body from the camera images is developed. A statistical error analysis is presented for the phase measurement and the three-dimensional point solution in terms of system measurement errors. An operating developmental implementation of the BMS is described and pictured. Contour plots of test subjects taken with this system, showing digitized three-dimensional surface segments, are presented and discussed.

  19. Three-dimensional reconstruction of specular reflecting technical surfaces using structured light microscopy

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Müller, Claas; Reinecke, Holger

    2014-11-01

    In computer assisted quality control the three-dimensional reconstruction of technical surfaces is playing an ever more important role. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution for the three-dimensional measurement of technical surfaces with high vertical and lateral resolution. However, the three-dimensional reconstruction of specular reflecting technical surfaces with very low surface-roughness and local slopes still remains a challenge to optical measurement principles. Furthermore the high data acquisition rates of current optical measurement systems depend on highly complex and expensive scanning-techniques making them impractical for inline quality control. In this paper we present a novel measurement principle based on a multi-pinhole structured light solution without moving parts which enables the threedimensional reconstruction of specular and diffuse reflecting technical surfaces. This measurement principle is based on multiple and parallel processed point-measurements. These point measurements are realized by spatially locating and analyzing the resulting Point Spread Function (PSF) in parallel for each point measurement. Analysis of the PSF is realized by pattern recognition and model-fitting algorithms accelerated by current Graphics-Processing-Unit (GPU) hardware to reach suitable measurement rates. Using the example of optical surfaces with very low surface-roughness we demonstrate the three-dimensional reconstruction of these surfaces by applying our measurement principle. Thereby we show that the resulting high measurement accuracy enables cost-efficient three-dimensional surface reconstruction suitable for inline quality control.

  20. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  1. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses.

    PubMed

    Li, Y; Itoh, K; Watanabe, W; Yamada, K; Kuroda, D; Nishii, J; Jiang, Y

    2001-12-01

    By moving silica glass in a preprogrammed structure, we directly produced three-dimensional holes with femtosecond laser pulses in single step. When distilled water was introduced into a hole drilled from the rear surface of the glass, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. Straight holes of 4-mu;m diameter were more than 200 microm deep. Three-dimensional channels can be micromachined inside transparent materials by use of this method, as we have demonstrated by drilling a square-wave-shaped hole inside silica glass.

  2. A three dimensional Dirichlet-to-Neumann map for surface waves over topography

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Andrade, David

    2016-11-01

    We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.

  3. Three-dimensional surface inspection for semiconductor components with fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Deng, Fuqin; Ding, Yi; Peng, Kai; Xi, Jiangtao; Yin, Yongkai; Zhu, Ziqi

    2016-11-01

    With the increasing integration level of components in modern electronic devices, three-dimensional automated optical inspection has been widely used in the manufacturing process of electronic and communication industries to improve the product quality. In this paper, we develop a three-dimensional inspection and metrology system for semiconductor components with fringe projection profilometry, which is composed of industry camera, telecentric lens and projection module. This system is used to measure the height, flatness, volume, shape, coplanarity for quality checking. To detect the discontinuous parts in the internal surface of semiconductor components, we employ the fringes with multiple spatial frequencies to avoid the measurement ambiguity. The complete three-dimensional information of semiconductor component is obtained by fusing the absolute phase maps from different views. The practical inspection results show that the depth resolution of our system reaches 10 μm . This system can be further embedded for the online inspection of various electronic and communication products.

  4. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  5. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces.

    PubMed

    Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46±0.37 mm, 1.29±0.29 mm and 1.82±0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86-103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3mm radius that can be detected using clinical ultrasound imaging systems.

  6. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces

    PubMed Central

    Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46 ± 0.37 mm, 1.29 ± 0.29 mm and 1.82 ± 0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86–103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3 mm radius that can be detected using clinical ultrasound imaging systems. PMID:25455165

  7. Fast three-dimensional measurements for dynamic scenes with shiny surfaces

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Asundi, Anand

    2017-01-01

    This paper presents a novel fringe projection technique for fast three-dimensional (3-D) shape measurements of moving highly reflective objects. By combining the standard three-step phase-shifting fringe patterns with a digital speckle image, dynamic 3-D reconstructions of shiny surfaces can be efficiently achieved with only four projected patterns. The phase measurement is performed by three-step phase-shifting algorithm as it uses the theoretical minimum number of fringe patterns for phase-shifting profilometry. To avoid the camera saturation, a dual-camera fringe projection system is built to measure shiny objects from two different directions. The erroneous phase obtained from a saturated pixel is corrected by the phase of its corresponding pixel in the other view which is free from the saturation problem. To achieve high measurement accuracy, the corresponding high light intensity areas in cameras are found by sub-pixel matches of the speckle pattern in either view. Benefited from the trifocal tensor constraint, the corresponding points in the two wrapped phase maps can be directly established, and thus, the difficulties in determining the correct fringe order for the discontinuous or isolated surfaces can be effectively bypassed. Experimental results indicate that the proposed method is able to successfully measure highly reflective surfaces for both stationary and dynamic scenes.

  8. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.

    PubMed

    Hong, Lingfei; Pan, Tingrui

    2010-12-07

    As an emerging alternative to the conventional counterpart, surface microfluidics incorporates both intrinsic resistive solid-liquid and elastic frictionless gas-liquid interfaces, leading to unique flow-pressure characteristics. Furthermore, the open-surface microfluidic platforms can be fabricated on a monolithic substrate with high wettability contrast by the previously reported one-step lithographic process of a photosensitive superhydrophobic nanocomposite material, which permits flexible fluidic operations and direct surface modifications. In the paper, we first present three-dimensional microfluidic manipulations utilizing the unconventional gas-liquid interfaces of surface microfluidics, outlined by the micropatterned wetting boundaries (also known as the triple lines). In contrast to the primary linear (resistive) nature of the conventional closed-channel microfluidics, the distinct elastic interface of surface microfluidics enables remarkable three-dimensional (deformable) and time-dependent (capacitive) operations of the flow. Specifically, spatiotemporal dependence of microflow patterns on the planar fluidic surfaces has been theoretically analyzed and experimentally characterized. Utilizing the unconventional interface-enabled flow-pressure relationship, novel surface fluidic operations, including microflow regulation and flow-controlled switching, have been demonstrated and fully investigated. Furthermore, three-dimensional surface microfluidic networks together with analog-to-digital stereo-flow activations have been established, in which miniature capillary bridges form fluidic connections between two independent surface microfluidic circuits.

  9. Three dimensional surface slip partitioning of the Sichuan earthquake from Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    de Michele, M.; Raucoules, D.; de Sigoyer, J.; Pubellier, M.; Lasserre, C.; Pathier, E.; Klinger, Y.; van der Woerd, J.

    2009-12-01

    The Sichuan earthquake, Mw 7.9, struck the Longmen Shan range front, in the western Sichuan province, China, on 12 May 2008. It severely affected an area where little historical seismicity and little or no significant active shortening were reported before the earthquake (e.g. Gu et al., 1989; Chen et al., 1994; Gan et al., 2007). The Longmen Shan thrust system bounds the eastern margin of the Tibetan plateau and is considered as a transpressive zone since Triassic time that was reactivated during the India-Asia collision (e.g., Tapponnier and Molnar, 1977, Chen and Wilson 1996; Arne et al., 1997, Godard et al., 2009). However, contrasting geological evidences of sparse thrusting and marked dextral strike-slip faulting during the Quaternary along with high topography (Burchfiel et al., 1995; Densmore et al., 2007) have led to models of dynamically driven and sustained topography (Royden et al., 1997) limiting the role of earthquakes in relief building and leaving the mechanism of long term strain distribution in this area as an open question. Here we combine C and L band Synthetic Aperture Radar (SAR) offsets data from ascending and descending paths to retrieve the three dimensional surface slips distribution all along the earthquake ruptures of the Sichuan earthquake. We show a quantitative assessment of the amount of co-seismic slip and its partitioning at the surface.

  10. A three dimensional scaffold with precise micro-architecture and surface micro-textures

    PubMed Central

    Mata, Alvaro; Kim, Eun Jung; Boehm, Cynthia A.; Fleischman, Aaron J.; Muschler, George F.; Roy, Shuvo

    2013-01-01

    A three-dimensional (3D) structure comprising precisely defined microarchitecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 μm-diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds. PMID:19524292

  11. System maintenance manual for master modeling of aerodynamic surfaces by three-dimensional explicit representation

    NASA Technical Reports Server (NTRS)

    Gibson, A. F.

    1983-01-01

    A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.

  12. An Iterative Method for Improving the Quality of Reconstruction of a Three-Dimensional Surface

    SciTech Connect

    Vishnyakov, G.N.; Levin, G.G.; Sukhorukov, K.A.

    2005-12-15

    A complex image with constraints imposed on the amplitude and phase image components is processed using the Gerchberg iterative algorithm for the first time. The use of the Gerchberg iterative algorithm makes it possible to improve the quality of a three-dimensional surface profile reconstructed by the previously proposed method that is based on the multiangle projection of fringes and the joint processing of the obtained images by Fourier synthesis.

  13. Reattachment of a Three-Dimensional, Incompressible Jet to an Adjacent Axisymmetric Inclined Surface

    DTIC Science & Technology

    1983-03-31

    on, Repeft) IS. SUPPLEMENTARY NOTES I9. KEY WORDS (Continue on tavateo aide If necessary and identity by block number)THRUST EVERSER COANDA EFFECT ...mechanics of a thrust reverser jet reattaohing to an aircraft nozzle afterbody. The problem basically involves the Coanda effect flow of a three... Coanda effect flow of a three-dimensional, incompressible jet to an adjacent axisymmetric, inclined surface. The equationsO -en derived in integral

  14. Global Solvability of a Free Boundary Three-Dimensional Incompressible Viscoelastic Fluid System with Surface Tension

    NASA Astrophysics Data System (ADS)

    Xu, Li; Zhang, Ping; Zhang, Zhifei

    2013-06-01

    Motivated by Beale (Commun Pure Appl Math 34:359-392, 1981; Arch Ration Mech Anal 84:307-352, 1983/1984), we investigate the global well-posedness of a free boundary problem of a three-dimensional incompressible viscoelastic fluid system in an infinite strip and with surface tension on the upper free boundary, provided that the initial data is sufficiently close to the equilibrium state.

  15. Microreplication of laser-fabricated surface and three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.

    2010-12-01

    The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.

  16. Three-dimensional surface topography of graphene by divergent beam electron diffraction

    PubMed Central

    Latychevskaia, Tatiana; Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Hwang, Ing-Shouh

    2017-01-01

    There are only a handful of scanning techniques that can provide surface topography at nanometre resolution. At the same time, there are no methods that are capable of non-invasive imaging of the three-dimensional surface topography of a thin free-standing crystalline material. Here we propose a new technique—the divergent beam electron diffraction (DBED) and show that it can directly image the inhomogeneity in the atomic positions in a crystal. Such inhomogeneities are directly transformed into the intensity contrast in the first-order diffraction spots of DBED patterns and the intensity contrast linearly depends on the wavelength of the employed probing electrons. Three-dimensional displacement of atoms as small as 1 angstrom can be detected when imaged with low-energy electrons (50–250 eV). The main advantage of DBED is that it allows visualization of the three-dimensional surface topography and strain distribution at the nanometre scale in non-scanning mode, from a single shot diffraction experiment. PMID:28195123

  17. Three-dimensional surface topography of graphene by divergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Latychevskaia, Tatiana; Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Hwang, Ing-Shouh

    2017-02-01

    There are only a handful of scanning techniques that can provide surface topography at nanometre resolution. At the same time, there are no methods that are capable of non-invasive imaging of the three-dimensional surface topography of a thin free-standing crystalline material. Here we propose a new technique--the divergent beam electron diffraction (DBED) and show that it can directly image the inhomogeneity in the atomic positions in a crystal. Such inhomogeneities are directly transformed into the intensity contrast in the first-order diffraction spots of DBED patterns and the intensity contrast linearly depends on the wavelength of the employed probing electrons. Three-dimensional displacement of atoms as small as 1 angstrom can be detected when imaged with low-energy electrons (50-250 eV). The main advantage of DBED is that it allows visualization of the three-dimensional surface topography and strain distribution at the nanometre scale in non-scanning mode, from a single shot diffraction experiment.

  18. Extracting Surface Activation Time from the Optically Recorded Action Potential in Three-Dimensional Myocardium

    PubMed Central

    Walton, Richard D.; Smith, Rebecca M.; Mitrea, Bogdan G.; White, Edward; Bernus, Olivier; Pertsov, Arkady M.

    2012-01-01

    Optical mapping has become an indispensible tool for studying cardiac electrical activity. However, due to the three-dimensional nature of the optical signal, the optical upstroke is significantly longer than the electrical upstroke. This raises the issue of how to accurately determine the activation time on the epicardial surface. The purpose of this study was to establish a link between the optical upstroke and exact surface activation time using computer simulations, with subsequent validation by a combination of microelectrode recordings and optical mapping experiments. To simulate wave propagation and associated optical signals, we used a hybrid electro-optical model. We found that the time of the surface electrical activation (tE) within the accuracy of our simulations coincided with the maximal slope of the optical upstroke (tF∗) for a broad range of optical attenuation lengths. This was not the case when the activation time was determined at 50% amplitude (tF50) of the optical upstroke. The validation experiments were conducted in isolated Langendorff-perfused rat hearts and coronary-perfused pig left ventricles stained with either di-4-ANEPPS or the near-infrared dye di-4-ANBDQBS. We found that tF∗ was a more accurate measure of tE than was tF50 in all experimental settings tested (P = 0.0002). Using tF∗ instead of tF50 produced the most significant improvement in measurements of the conduction anisotropy and the transmural conduction time in pig ventricles. PMID:22225795

  19. A new three-dimensional terrain-following tidal model of free-surface flows

    NASA Astrophysics Data System (ADS)

    Lu, Fuqiang; Zhang, Zhuo; Song, Zhiyao; Yue, Songshan; Wen, Yongning

    2015-12-01

    A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlines near estuaries, continental shelves, and harbors. To solve the governing equations more efficiently, we improve the alternating direction implicit method, which is extensively used in the numerical modeling of horizontal two-dimensional shallow water equations, and extend it to a three-dimensional tidal model with relatively little computational effort. Through several test cases and realistic applications, as presented in the paper, it can be demonstrated that the model is capable of simulating the periodic to-and-fro currents, wind-driven flow, Ekman spirals, and tidal currents in the near-shore region.

  20. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials.

    PubMed

    Tatone, Bryan S A; Grasselli, Giovanni

    2009-12-01

    Conventionally, the evaluation of fracture surface roughness in brittle geomaterials, such as concrete and rock, has been based on the measurement and analysis of two-dimensional profiles rather than three-dimensional (3D) surfaces. The primary reason for doing so was the lack of tools capable of making 3D measurements. However, in recent years, several optical and mechanical measurement tools have become available, which are capable of quickly and accurately producing high resolution point clouds defining 3D surfaces. This paper provides a methodology for evaluating the surface roughness and roughness anisotropy using these 3D surface measurements. The methodology is presented step-by-step to allow others to easily adopt and implement the process to analyze their own surface measurement data. The methodology is demonstrated by digitizing a series of concrete fracture surfaces and comparing the estimated 3D roughness parameters with qualitative observations and estimates of the well-known roughness coefficient, R(s).

  1. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  2. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology.

    PubMed

    Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš

    2015-05-01

    Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches

  3. Three dimensional complex plasma structures in a combined radio frequency and direct current discharge

    NASA Astrophysics Data System (ADS)

    Mitic, S.; Klumov, B. A.; Khrapak, S. A.; Morfill, G. E.

    2013-04-01

    We report on the first detailed analysis of large three dimensional (3D) complex plasma structures in experiments performed in pure rf and combined rf+dc discharge modes. Inductively coupled plasma is generated by an rf coil wrapped around the vertically positioned cylindrical glass tube at a pressure of 0.3 mbar. In addition, dc plasma can be generated by applying voltage to the electrodes at the ends of the tube far from the rf coil. The injected monodisperse particles are levitated in the plasma below the coil. A scanning laser sheet and a high resolution camera are used to determine the 3D positions of about 105 particles. The observed bowl-shaped particle clouds reveal coexistence of various structures, including well-distinguished solid-like, less ordered liquid-like, and pronounced string-like phases. New criteria to identify string-like structures are proposed.

  4. Coma aberrations in combined two- and three-dimensional STED nanoscopy

    PubMed Central

    Antonello, Jacopo; Kromann, Emil B.; Burke, Daniel; Bewersdorf, Joerg; Booth, Martin J.

    2016-01-01

    Stimulated emission depletion (STED) microscopes, like all super-resolution methods, are sensitive to aberrations. Of particular importance are aberrations that affect the quality of the depletion focus, which requires a point of near-zero intensity surrounded by strong illumination. We present analysis, modeling, and experimental measurements that show the effects of coma aberrations on depletion patterns of two-dimensional (2D) and three-dimensional (3D) STED configurations. Specifically, we find that identical coma aberrations create focal shifts in opposite directions in 2D and 3D STED. This phenomenon could affect the precision of microscopic measurements and has ramifications for the efficacy of combined 2D/3D STED systems. PMID:27472636

  5. Surface element-mapping of three dimensional structures by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Beresko, Christian; Kohns, Peter; Ankerhold, Georg

    2014-09-01

    During lateral mapping with laser-induced breakdown spectroscopy (LIBS) the focal position of the plasma-generating laser needs to be kept stable on the sample surface area to be probed. Therefore, three-dimensional structures like edged surfaces require a permanent re-focusing. We describe a new auto-focusing technique to perform surface elemental mapping with LIBS by correcting the focusing lens-to-sample distance using a direct monitoring of the LIBS signal intensity. This method allows the scanning of surfaces with strong height fluctuations of several millimeters without the need of any additional devices. The auto-focusing method is valuable for LIBS applications made on complex-shaped samples or simply to improve the measurement reproducibility. Applications are LIBS analyses of samples exhibiting drill holes or steep edges. Our procedure does not need a constant focal plane and follows the topographic profile of the sample surface. Impurities and material inclusions are well detected. From the topographic information additionally obtained, a three-dimensional image of the sample can be deduced. Depth resolution is limited by the Rayleigh range of the LIBS laser light. The method is best suited for low energy laser pulses with high repetition rate and infrared emission.

  6. A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture

    PubMed Central

    Zennaro, Cristina; Rastaldi, Maria Pia; Bakeine, Gerald James; Delfino, Riccarda; Tonon, Federica; Farra, Rossella; Grassi, Gabriele; Artero, Mary; Tormen, Massimo; Carraro, Michele

    2016-01-01

    Although it is well recognized that cell–matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes – the gatekeepers of glomerular filtration – which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment. PMID:27757030

  7. Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi₆Te₁₀.

    PubMed

    Papagno, Marco; Eremeev, Sergey V; Fujii, Jun; Aliev, Ziya S; Babanly, Mahammad B; Mahatha, Sanjoy Kr; Vobornik, Ivana; Mamedov, Nazim T; Pacilé, Daniela; Chulkov, Evgueni V

    2016-03-22

    By means of angle-resolved photoemission spectroscopy (ARPES) measurements, we unveil the electronic band structure of three-dimensional PbBi6Te10 topological insulator. ARPES investigations evidence multiple coexisting Dirac surface states at the zone-center of the reciprocal space, displaying distinct electronic band dispersion, different constant energy contours, and Dirac point energies. We also provide evidence of Rashba-like split states close to the Fermi level, and deeper M- and V-shaped bands coexisting with the topological surface states. The experimental findings are in agreement with scanning tunneling microscopy measurements revealing different surface terminations according to the crystal structure of PbBi6Te10. Our experimental results are supported by density functional theory calculations predicting multiple topological surface states according to different surface cleavage planes.

  8. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  9. Three-dimensional unsteady lifting surface theory in the subsonic range

    NASA Technical Reports Server (NTRS)

    Kuessner, H. G.

    1985-01-01

    The methods of the unsteady lifting surface theory are surveyed. Linearized Euler's equations are simplified by means of a Galileo-Lorentz transformation and a Laplace transformation so that the time and the compressibility of the fluid are limited to two constants. The solutions to this simplified problem are represented as integrals with a differential nucleus; these results in tolerance conditions, for which any exact solution must suffice. It is shown that none of the existing three-dimensional lifting surface theories in subsonic range satisfy these conditions. An oscillating elliptic lifting surface which satisfies the tolerance conditions is calculated through the use of Lame's functions. Numerical examples are calculated for the borderline cases of infinitely stretched elliptic lifting surfaces and of circular lifting surfaces. Out of the harmonic solutions any such temporal changes of the down current are calculated through the use of an inverse Laplace transformation.

  10. Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model

    NASA Astrophysics Data System (ADS)

    Head, D. A.

    2013-09-01

    The sessile microbial communities known as biofilms exhibit varying architectures as environmental factors are varied, which for immersed biofilms includes the shear rate of the surrounding flow. Here we modify an established agent-based biofilm model to include affine flow and employ it to analyze the growth of surface roughness of single-species, three-dimensional biofilms. We find linear growth laws for surface geometry in both horizontal and vertical directions and measure the thickness of the active surface layer, which is shown to anticorrelate with roughness. Flow is shown to monotonically reduce surface roughness without affecting the thickness of the active layer. We argue that the rapid roughening is due to nonlocal surface interactions mediated by the nutrient field, which are curtailed when advection competes with diffusion. We further argue the need for simplified models to elucidate the underlying mechanisms coupling flow to growth.

  11. A new approach to construct three-dimensional surface morphology of sludge flocs in a membrane bioreactor.

    PubMed

    Mei, Rongwu; Li, Renjie; Lin, Hongjun; Shen, Zheping; Zhang, Meijia; Chen, Jianrong; He, Yiming

    2016-11-01

    In this paper, a novel approach to construct three-dimensional (3D) surface morphology of sludge flocs in a membrane bioreactor (MBR) was proposed. The new approach combined the static light scattering method for fractal dimension (Df) determination with the modified two-variable Weierstrass-Mandelbrot (WM) function based on fractal geometry and coordinate transformation for spherical surface construction. It was found that the sludge flocs in the MBR showed apparent fractal characteristics. Results showed that the constructed 3D morphology of sludge flocs was very sensitive to Df, and higher Df induced a more compact and smoother surface morphology. With a set of proper parameter data, the constructed 3D surface morphology of sludge flocs could be quite similar to the real floc surface morphology, showing the feasibility of the proposed approach. The proposed solution to floc surface construction could be potentially used in interfacial interaction assessment, giving important implications for membrane fouling research.

  12. Interactive computer graphic surface modeling of three-dimensional solid domains for boundary element analysis

    NASA Technical Reports Server (NTRS)

    Perucchio, R.; Ingraffea, A. R.

    1984-01-01

    The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.

  13. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  14. Three-dimensional immobilization of beta-galactosidase on a silicon surface.

    PubMed

    Betancor, Lorena; Luckarift, Heather R; Seo, Jae H; Brand, Oliver; Spain, Jim C

    2008-02-01

    Many alternative strategies to immobilize and stabilize enzymes have been investigated in recent years for applications in biosensors. The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity and enhanced mechanical stability. Here we report a strategy for chemically associating silica nanospheres containing entrapped enzyme to a silicon support. beta-galactosidase from E. coli was used as a model enzyme due to its versatility as a biosensor for lactose. The immobilization strategy resulted in a three-dimensional network of silica attached directly at the silicon surface, providing a significant increase in surface area and a corresponding 3.5-fold increase in enzyme loading compared to enzyme attached directly at the surface. The maximum activity recovered for a silicon square sample of 0.5 x 0.5 cm was 0.045 IU using the direct attachment of the enzyme through glutaraldehyde and 0.16 IU when using silica nanospheres. The immobilized beta-galactosidase prepared by silica deposition was stable and retained more than 80% of its initial activity after 10 days at 24 degrees C. The ability to generate three-dimensional structures with enhanced loading capacity for biosensing molecules offers the potential to substantially amplify biosensor sensitivity.

  15. Three-dimensional assessment of dental casts' occlusal surfaces using two impression materials.

    PubMed

    Tarawneh, F M; Panos, P G; Athanasiou, A E

    2008-11-01

    The aim of this study was to assess by means of a three-dimensional computed tomography scanning system the occlusal surface characteristics of dental casts made using two different impression materials. Alginate and polyvinyl siloxane impressions were taken of 20 dental students resulting in 40 dental casts. The casts were paired for each student separately so that each pair consisted of an alginate poured cast and a polyvinyl siloxane poured out cast. The casts were scanned using FlashCT scanner and for each cast, a three-dimensional digital image was obtained. The digitized casts were processed using the three-dimensional imaging software Geomagic Studio 9. A total of 464 paired teeth were digitally separated and superimposed. For each tooth, two measurements were obtained corresponding to the two different impression materials used. The two sets of volumes for all digitally separated teeth were compared and analysed using the Wilcoxon signed test. Larger volume measurements were obtained for teeth separated from alginate poured out casts than from their corresponding ones from polyvinyl siloxane casts (P = 0.005). When the teeth were divided into the groups of incisors, canines and premolars/molars, only the last one exhibited significant difference (P = 0.00). The mean difference between the volumes measured for all 464 teeth separated was 0.041 mm(3) (+/-0.33). The occlusal surfaces of teeth appear differently in dental casts depending on the impression materials used. Impressions of dental casts should be utilized with caution in relation to their research application and in reference with dental wear studies.

  16. Fabrication of amphiphobic surface by using titanium anodization for large-area three-dimensional substrates.

    PubMed

    Barthwal, Sumit; Kim, Young Su; Lim, Si-Hyung

    2013-06-15

    Superamphiphobic functional Ti foils were fabricated using anodization techniques. By varying the supply voltage and anodization time, a two-step anodization method was used to maximize the contact angle of water and various oils. The morphology of the TiO2 nanotube surface is important to achieve superamphiphobicitiy. The anodized surface maintained good superamphiphobic stability with long-term storage. Furthermore, the wettability properties toward both water and various oils can be easily and reversibly switched from hydrophobic and oleophobic to hydrophilic and oleophilic, respectively, and vice versa via air-plasma treatment and fluorination. The developed simple technique can be applied to any large-area three-dimensional surfaces to fabricate amphiphobic Ti surfaces.

  17. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.

    PubMed

    Son, JoonGon; Kim, GeunHyung

    2009-01-01

    Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.

  18. Modeling self-excited combustion instabilities using a combination of two- and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Harvazinski, Matthew Evan

    Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is

  19. Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects

    DOEpatents

    Lu, Shin-Yee

    1998-01-01

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.

  20. Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects

    DOEpatents

    Lu, S.Y.

    1998-12-22

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.

  1. Fabrication of a Au-polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaotang; Xu, Zongwei; Li, Kang; Fang, Fengzhou; Wang, Liyang

    2015-11-01

    Methods for fabricating three-dimensional nanofeature arrays for surface-enhanced Raman spectroscopy (SERS) substrates were explored by combining the self-assembly of nanoscale polystyrene (PS) spheres with subsequent Au film ion sputter coating modulation. The substrate's nanoscale hot-spot features were controlled using the Au coating film thickness regulation and focused ion beam (FIB) nano-patterning regulation methods. Scanning electron microscopy and Raman spectroscopy were employed to analyze the substrate morphology and the enhancement mechanism of the three-dimensional SERS substrate. PS microspheres with diameters of 151 nm and 360 nm were coated with Au layers of different thicknesses ranging from 10 nm to 270 nm. The configuration of the Au-PS spheres can be regulated to hexagonal close packing with nanoscale V-shaped slits with a 10-20 nm gap pattern. Nanoscale Au particles and clusters with a clear outline covered the surface of the PS spheres, in which the multiple-scale structures increase the specific surface area of the SERS-active substrate. Nanoscale cracks formed on the smaller Au-PS spheres with a diameter of 151 nm, which also exhibited strong SERS activity. The substrate surface temperature regularly increased after Au coating, and the thermal expansion coefficient difference and PS glass transition properties were studied to explain the Au-PS spheres nanofeature configuration development. The fabricated Au-PS spheres SERS feature is a type of three-dimensional and highly ordered array, which can show Raman scattering characteristics by providing a SERS enhancement factor of greater than 107.

  2. Subduction-induced delamination and its surface expressions - three-dimensional numerical modelling

    NASA Astrophysics Data System (ADS)

    Ueda, Kosuke; Gerya, Taras; Willett, Sean

    2015-04-01

    Delamination during the long-term evolution of convergent plate boundaries has been interpreted as root cause for lithospheric mantle heterogeneities, and has been linked to surface observations in different stages of subduction-collision-lithospheric thinning systems. Amongst others, it has been invoked for the Apeninnes, Rhodope, and Pontides, for thinned or removed lithosphere in the Aegean and western Mediterranean, and for extensive topographic anomalies such as the Colorado or Hikurangi plateaus. With the onset of collision, in order to balance mass and to achieve either further plate convergence, subduction, or foundering of subcontinental lithospheric mantle, there is an increasing need for a mechanism to separate relatively buoyant and less buoyant material. In independent geodynamic modelling studies carried out in 2D, delamination (sensu strictu) along a horizon of minimal rheological strength has been demonstrated to satisfy this requirement. Recent work has also shown that delamination marks a gradual transition of mobile topography from tectonically dominated to mantle dominated topography over long time scales. While first order features of major observables, such as topography, and imaged lithospheric mantle thickness, can generally be reproduced in a variety of models, there is an unsatisfactory lack of uniqueness in pin-pointing the underlying mode of lithospheric mantle removal occurring at depth. In addition, strong curvatures in many orogenic systems (e.g., Western Alps, Apennines, or Carpathians) indicate that their crustal and sub-crustal evolution are intrinsically three-dimensional. To test how spatially confined delamination contributes to three-dimensional evolution, the complex arcuate curvature of resulting orogenic systems, and to the developing topography pattern, new three-dimensional models are presented. Based on recent methodological developments, and findings in 2-D delamination modelling and 3-D modelling of subduction

  3. Three-dimensional assessment of condylar surface changes and remodeling after orthognathic surgery

    PubMed Central

    Lee, Jung-Hye; Lee, Woo-Jin; Shin, Jae-Myung; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun

    2016-01-01

    Purpose This study was performed to evaluate condylar surface changes and remodeling after orthognathic surgery using three-dimensional computed tomography (3D CT) imaging, including comparisons between the right and left sides and between the sexes. Materials and Methods Forty patients (20 males and 20 females) who underwent multi-detector CT examinations before and after surgery were selected. Three-dimensional images comprising thousands of points on the condylar surface were obtained before and after surgery. For the quantitative assessment of condylar surface changes, point-to-point (preoperative-to-postoperative) distances were calculated using D processing software. These point-to-point distances were converted to a color map. In order to evaluate the types of condylar remodeling, the condylar head was divided into six areas (anteromedial, anteromiddle, anterolateral, posteromedial, posteromiddle, and posterolateral areas) and each area was classified into three types of condylar remodeling (bone formation, no change, and bone resorption) based on the color map. Additionally, comparative analyses were performed between the right and left sides and according to sex. Results The mean of the average point-to-point distances on condylar surface was 0.11±0.03 mm. Bone resorption occurred more frequently than other types of condylar remodeling, especially in the lateral areas. However, bone formation in the anteromedial area was particularly prominent. No significant difference was found between the right and left condyles, but condylar surface changes in males were significantly larger than in females. Conclusion This study revealed that condylar remodeling exhibited a tendency towards bone resorption, especially in the lateral areas. Condylar surface changes occurred, but were small. PMID:27051636

  4. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface.

    PubMed

    Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo

    2016-07-15

    Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01-1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica.

  5. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface

    NASA Astrophysics Data System (ADS)

    Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo

    2016-07-01

    Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01-1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica.

  6. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    SciTech Connect

    BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.

    1999-10-14

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.

  7. A hierarchical family of three-dimensional potential energy surfaces for He-CO

    SciTech Connect

    Peterson, K A; McBane, George C

    2005-08-22

    A hierarchical family of five three-dimensional potential energy surfaces has been developed for the benchmark He-CO system. Four surfaces were obtained at the coupled cluster singles and doubles level of theory with a perturbational estimate of triple excitations, CCSD*T*, and range in quality from the doubly augmented double-zeta basis set to the complete basis set *CBS* limit. The fifth corresponds to an approximate CCSDT/CBS surface *CCSD with iterative triples/CBS, denoted CBS+corr*. The CBS limit results were obtained by pointwise basis set extrapolations of the individual counterpoise-corrected interaction energies. For each surface, over 1000 interaction energies were accurately interpolated using a reproducing kernel Hilbert space approach with an R-6+R-7 asymptotic form. In each case, both three-dimensional and effective two-dimensional surfaces were developed. In standard Jacobi coordinates, the final CBS+corr surface has a global minimum at rCO=2.1322a0 ,R=6.418a0, and * =70.84° with a well depth of -22.34 cm-1. The other four surfaces have well depths ranging from -14.83 cm-1 *CCSD*T*/d-aug-cc-pVDZ* to -22.02 cm-1 *CCSD*T*/CBS*. For each of these surfaces the infrared spectrum has been accurately calculated and compared to experiment, as well as to previous theoretical and empirical surfaces. The final CBS+corr surface exhibits root-mean-square and maximum errors compared to experiment *4He* of just 0.03 and 0.04 cm-1, respectively, for all 42 transitions and is the most accurate ab initio surface to date for this system. Other quantities investigated include the interaction second virial coefficient, the integral cross sections, and thermal rate coefficients for rotational relaxation of CO by He, and rate coefficients for CO vibrational relaxation by He. All the observable quantities showed a smooth convergence with respect to the quality of the underlying interaction surface. © 2005 American Institute of Physics. *DOI: 10.1063/1.1947194*

  8. Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra

    NASA Astrophysics Data System (ADS)

    Scherbaum, Frank

    1990-08-01

    The estimation of Q values and/or source corner frequencies fc from single-station narrow-band recordings of microearthquake spectra is a strongly nonunique problem. This is due to the fact that the spectra can be equally well fitted with low-Q/high-fc or a high-Q/low-fc spectral models. Here, a method is proposed to constrain this ambiguity by inverting a set of microearthquake spectra for a three-dimensional Q model structure and model source parameters seismic moment (Mo ) and corner frequency (fc ) simultaneously. The inversion of whole path Q can be stated as a linear problem in the attenuation operator t* and solved using a tomographic reconstruction of the three-dimensional Q structure. This Q structure is then used as a "geometrical constraint" for a nonlinear Marquardt-Levenberg inversion of Mo and fc and a new Q value. The first step of the method consists of interactively fitting the observed microearthquake spectra by spectral models consisting of a source spectrum with an assumed high-frequency decay, a single-layer resonance filter to account for local site effects, and additional "whole path attenuation" along the ray path. From the obtained Q values, a three-dimensional Q model is calculated using a tomographic reconstruction technique (SIRT). The individual Q values along each ray path are then used as Q starting values for a nonlinear iterative Marquardt-Levenberg inversion of Mo and fc and a "new" Q value. Subsequently, the "new" Q values are used to reconstruct the next Q model which again provides starting values for the "next" nonlinear inversion of Mo, fc, and Q. This process is repeated until the "goodness of fit measure" indicates no further improvement of the results. The method has been tested on a set of approximately 2800 P wave spectra (0.9 < M < 2.0) from the recordings of 635 microearth-quakes from the Kaoiki seismic zone in Hawaii (Big Island) which were recorded at up to six stations. The hypocenters are distributed within a volume

  9. Thicker three-dimensional tissue from a "symbiotic recycling system" combining mammalian cells and algae.

    PubMed

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-31

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.

  10. Three-dimensional combined pyrometric sizing and velocimetry of combusting coal particles. II: Pyrometry.

    PubMed

    Toth, Pal; Draper, Teri; Palotas, Arpad B; Ring, Terry A; Eddings, Eric G

    2015-05-20

    Knowledge of the in situ temperature, size, velocity, and number density of a population of burning coal particles yields insight into the chemical and aerodynamic behavior of a pulverized coal flame (e.g., through means of combustion model validation). Sophisticated and reasonably accurate methods are available for the simultaneous measurement of particle velocity and temperature; however, these methods typically produce single particle measurements in small analyzed volumes and require extensive instrumentation. We present a simple, inexpensive method for the simultaneous, in situ, three-dimensional (3D) measurement of particle velocity, number density, size, and temperature. The proposed method uses a combination of stereo imaging, 3D reconstruction, multicolor pyrometry, and digital image processing techniques. The details of theoretical and algorithmic backgrounds are presented, along with examples and validation experiments. Rigorous uncertainty quantification was performed using numerical simulations to estimate the accuracy of the method and explore how different parameters affect measurement uncertainty. This paper, Part II of two parts that discuss this method [Appl. Opt.54, 4049 (2015)], describes particle temperature and size measurement in overexposed emission images.

  11. Combining ZTEM and Magnetotelluric Data to Enhance Three-dimensional Conductivity Models of Porphyry Copper Deposits

    NASA Astrophysics Data System (ADS)

    Lee, B.; Huebert, J.; Abbassi, B.; Liu, L.; Unsworth, M. J.; Richards, J. P.; Cheng, L.; Oldenburg, D.

    2013-12-01

    The airborne Z-Axis Tipper Electromagnetic (ZTEM) method uses natural low frequency electromagnetic signals to determine subsurface electrical conductivity from the surface to a depth of 2 km. It measures the ratio of vertical magnetic field to the horizontal magnetic field with signals in the frequency range 30 -720 Hz. ZTEM is highly effective at determining lateral changes in subsurface conductivity, but does not give the same vertical resolution as the ground-based magnetotelluric (MT) method that measures the ratio of electric to magnetic fields. However, MT surveys require ground contact to measure electric fields and as a consequence are slower to deploy and provide a coarser sampling of conductive features. Since both methods derive the tipper from measured vertical and horizontal magnetic fields, these techniques can be used in a joint approach to create electrical conductivity models. Synthetic MT inversions show that the technique is sensitive to the vertical depth of conductors, complementing the lateral sensitivity of ZTEM. A key application of ZTEM is that metallic sulfide-bearing ore bodies can be resolved because of their high electrical conductivity relative to the host rock. Porphyry copper deposits contain a less distinct geophysical response though, and require additional geologic information. Here we present conductivity models from the Morrison porphyry copper deposit in British Columbia, Canada where the implementation of MT data provides background conductivity and vertical constraints for the three-dimensional ZTEM models.

  12. Numerical study of three-dimensional sound reflection from corrugated surface waves.

    PubMed

    Choo, Youngmin; Song, H C; Seong, Woojae

    2016-10-01

    When a sound wave propagates in a water medium bounded by a smooth surface wave, reflection from a wave crest can lead to focusing and result in rapid variation of the received waveform as the surface wave moves [Tindle, Deane, and Preisig, J. Acoust. Soc. Am. 125, 66-72 (2009)]. In prior work, propagation paths have been constrained to be in a plane parallel to the direction of corrugated surface waves, i.e., a two-dimensional (2-D) propagation problem. In this paper, the azimuthal dependence of sound propagation as a three-dimensional (3-D) problem is investigated using an efficient, time-domain Helmholtz-Kirchhoff integral formulation. When the source and receiver are in the plane orthogonal to the surface wave direction, the surface wave curvature vanishes in conventional 2-D treatments and the flat surface simply moves up and down, resulting in minimal temporal variation of the reflected signal intensity. On the other hand, the 3-D propagation analysis reveals that a focusing phenomenon occurs in the reflected signal due to the surface wave curvature formed along the orthogonal plane, i.e., out-of-plane scattering.

  13. Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces.

    PubMed

    Janssen, P; Vogels, R; Liu, Y; Orban, G A

    2001-12-01

    The lower bank of the superior temporal sulcus (TEs), part of the inferior temporal cortex, contains neurons selective for disparity-defined three-dimensional (3-D) shape. The large majority of these TEs neurons respond to the spatial variation of disparity, i.e., are higher-order disparity selective. To determine whether curved boundaries or curved surfaces by themselves are sufficient to elicit 3-D shape selectivity, we recorded the responses of single higher-order disparity-selective TEs neurons to concave and convex 3-D shapes in which the disparity varied either along the boundary of the shape, or only along its surface. For a majority of neurons, a 3-D boundary was sufficient for 3-D shape selectivity. At least as many neurons responded selectively to 3-D surfaces, and a number of neurons exhibited both surface and boundary selectivity. The second aim of this study was to determine whether TEs neurons can represent differences in second-order disparities along the horizontal axis. The results revealed that TEs neurons can also be selective for horizontal 3-D shapes and can code the direction of curvature (vertical or horizontal). Thus, TEs neurons represent both boundaries and surfaces curved in depth and can signal the direction of curvature along a surface. These results show that TEs neurons use not only boundary but also surface information to encode 3-D shape properties.

  14. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation.

  15. Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array.

    PubMed

    Li, Yuanyuan; Pan, Jian; Zhan, Peng; Zhu, Shining; Ming, Naiben; Wang, Zhenlin; Han, Wenda; Jiang, Xunya; Zi, Jian

    2010-02-15

    An enhanced dielectric environment response is observed in a kind of metallic nanohole arrays which are prepared by metal deposition on a sacrificial two dimensional colloidal crystal template. The periodic metallic structures are composed of interlinked metallic half-shells supported on a planar dielectric substrate. When putting in dielectric matrix of different refractive index, the measured sensitivity of the quasi-three-dimensional metallic nanohole array can reach a value of 1192 nm per refractive index unit which shows a five-fold increase as compared with the metallic structures supported on the template. The observed boost in sensitivity is found to originate from a substantially reduced substrate effect, resulting in a pronounced surface plasmon coupling of which its strength is independent of the dielectric environment, a characteristics absent in conventional planar metallic subwavelength hole arrays. These findings are analyzed theoretically and confirmed by numerical simulations.

  16. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    NASA Astrophysics Data System (ADS)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  17. Unconventional bulk three-dimensional Fermi surface in Kondo insulating SmB6

    NASA Astrophysics Data System (ADS)

    Tan, Beng

    We report the observation of a paradoxical insulator with a bulk state which is electrically insulating and simultaneously yields quantum oscillations typical of good metals. We present high field measurements of conductivity and magnetic torque in high purity single crystals of the Kondo insulator SmB6 which reveal an activated behavior characteristics of an insulator with an energy gap at the Fermi energy in the former and quantum oscillation of frequencies characteristics of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6 in the latter. The quantum oscillations observed in the magnetic torque measurements are characteristic of an unconventional Fermi liquid - the amplitude strongly increases at low temperatures in a stark contrast to the saturating Lifshitz-Kosevich behavior in conventional metallic states.

  18. Mining three-dimensional anthropometric body surface scanning data for hypertension detection.

    PubMed

    Chiu, Chaochang; Hsu, Kuang-Hung; Hsu, Pei-Lun; Hsu, Chi-I; Lee, Po-Chi; Chiou, Wen-Ko; Liu, Thu-Hua; Chuang, Yi-Chou; Hwang, Chorng-Jer

    2007-05-01

    Hypertension is a major disease, being one of the top ten causes of death in Taiwan. The exploration of three-dimensional (3-D) anthropometry scanning data along with other existing subject medical profiles using data mining techniques becomes an important research issue for medical decision support. This research attempts to construct a prediction model for hypertension using anthropometric body surface scanning data. This research adopts classification trees to reveal the relationship between a subject's 3-D scanning data and hypertension disease using the hybrid of the association rule algorithm (ARA) and genetic algorithms (GAs) approach. The ARA is adopted to obtain useful clues based on which the GA is able to proceed its searching tasks in a more efficient way. The proposed approach was experimented and compared with a regular genetic algorithm in predicting a subject's hypertension disease. Better computational efficiency and more accurate prediction results from the proposed approach are demonstrated.

  19. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    PubMed

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  20. Three-dimensional tracking of motile bacteria near a solid planar surface

    SciTech Connect

    Frymier, P.D.; Ford, R.M.; Berg, H.C. |

    1995-06-20

    Knowing how motile bacteria move near and along a solid surface is crucial to understanding such diverse phenomena as the migration of infectious bacteria along a catheter, biofilm growth, and the movement of bacteria through the pore spaces of saturated soil, a critical step in the in situ bioremediation of contaminated aquifers. In this study, a tracking microscope is used to record the three-dimensional motion of Escherichia coli near a planar glass surface. Data from the tracking microscope are analyzed to quantify the effects of bacteria-surface interactions on the swimming behavior of bacteria. The speed of cells approaching the surface is found to decrease in agreement with the mathematical model of Ramia et al, which represents the bacteria as spheres with a single polar flagellum rotating at a constant rate. The tendency of cells to swim adjacent to the surface is shown in computer-generated reproductions of cell traces. The attractive interaction potential between the cells and the solid surface is offered as one of several possible explanations for this tendency. 22 refs., 4 figs.

  1. Enhanced three-dimensional stochastic adjustment for combined volcano geodetic networks

    NASA Astrophysics Data System (ADS)

    Del Potro, R.; Muller, C.

    2009-12-01

    Volcano geodesy is unquestionably a necessary technique in studies of physical volcanology and for eruption early warning systems. However, as every volcano geodesist knows, obtaining measurements of the required resolution using traditional campaigns and techniques is time consuming and requires a large manpower. Moreover, most volcano geodetic networks worldwide use a combination of data from traditional techniques; levelling, electronic distance measurements (EDM), triangulation and Global Navigation Satellite Systems (GNSS) but, in most cases, these data are surveyed, analysed and adjusted independently. This then leaves it to the authors’ criteria to decide which technique renders the most realistic results in each case. Herein we present a way of solving the problem of inter-methodology data integration in a cost-effective manner following a methodology were all the geodetic data of a redundant, combined network (e.g. surveyed by GNSS, levelling, distance, angular data, INSAR, extensometers, etc.) is adjusted stochastically within a single three-dimensional referential frame. The adjustment methodology is based on the least mean square method and links the data with its geometrical component providing combined, precise, three-dimensional, displacement vectors, relative to external reference points as well as stochastically-quantified, benchmark-specific, uncertainty ellipsoids. Three steps in the adjustment allow identifying, and hence dismissing, flagrant measurement errors (antenna height, atmospheric effects, etc.), checking the consistency of external reference points and a final adjustment of the data. Moreover, since the statistical indicators can be obtained from expected uncertainties in the measurements of the different geodetic techniques used (i.e. independent of the measured data), it is possible to run a priori simulations of a geodetic network in order to constrain its resolution, and reduce logistics, before the network is even built. In this

  2. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.

    PubMed

    Moreno, César; Stetsovych, Oleksandr; Shimizu, Tomoko K; Custance, Oscar

    2015-04-08

    Submolecular imaging by atomic force microscopy (AFM) has recently been established as a stunning technique to reveal the chemical structure of unknown molecules, to characterize intramolecular charge distributions and bond ordering, as well as to study chemical transformations and intermolecular interactions. So far, most of these feats were achieved on planar molecular systems because high-resolution imaging of three-dimensional (3D) surface structures with AFM remains challenging. Here we present a method for high-resolution imaging of nonplanar molecules and 3D surface systems using AFM with silicon cantilevers as force sensors. We demonstrate this method by resolving the step-edges of the (101) anatase surface at the atomic scale by simultaneously visualizing the structure of a pentacene molecule together with the atomic positions of the substrate and by resolving the contour and probe-surface force field on a C60 molecule with intramolecular resolution. The method reported here holds substantial promise for the study of 3D surface systems such as nanotubes, clusters, nanoparticles, polymers, and biomolecules using AFM with high resolution.

  3. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.

    PubMed

    Jadamec, Margarete A; Billen, Magali I

    2010-05-20

    The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.

  4. Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: creating stereoscopic panoramas.

    PubMed

    Dey, Damini; Gobbi, David G; Slomka, Piotr J; Surry, Kathleen J M; Peters, Terence M

    2002-01-01

    A major limitation of the use of endoscopes in minimally invasive surgery is the lack of relative context between the endoscope and its surroundings. The purpose of this work was to fuse images obtained from a tracked endoscope to surfaces derived from three-dimensional (3-D) preoperative magnetic resonance or computed tomography (CT) data, for assistance in surgical planning, training and guidance. We extracted polygonal surfaces from preoperative CT images of a standard brain phantom and digitized endoscopic video images from a tracked neuro-endoscope. The optical properties of the endoscope were characterized using a simple calibration procedure. Registration of the phantom (physical space) and CT images (preoperative image space) was accomplished using fiducial markers that could be identified both on the phantom and within the images. The endoscopic images were corrected for radial lens distortion and then mapped onto the extracted surfaces via a two-dimensional 2-D to 3-D mapping algorithm. The optical tracker has an accuracy of about 0.3 mm at its centroid, which allows the endoscope tip to be localized to within 1.0 mm. The mapping operation allows multiple endoscopic images to be "painted" onto the 3-D brain surfaces, as they are acquired, in the correct anatomical position. This allows panoramic and stereoscopic visualization, as well as navigation of the 3-D surface, painted with multiple endoscopic views, from arbitrary perspectives.

  5. Three-dimensional evaluation of surface roughness of resin composites after finishing and polishing

    PubMed Central

    Nair, Veena S; Sainudeen, Shan; Padmanabhan, Prabeesh; Vijayashankar, L V; Sujathan, Unu; Pillai, Rajesh

    2016-01-01

    Aim: This study aims to investigate the effects of finishing and polishing procedures on four novel resin composites using three-dimensional optical profilometer. Materials and Methods: Four composites classified according to their filler size, were selected: Filtek™ Z350 XT/Nanofill (3M™ ESPE™), Esthet-X HD/Hybrid (Dentsply Caulk), Te Econom/Microfill (Ivoclar Vivadent®), Tetric EvoCeram® /Nanohybrid (Ivoclar Vivadent®). Composite specimens were made in Plexiglass mold and polished with Soflex (3M ESPE), Enhance + Pogo (Dentsply Caulk). Both the systems were used according to the manufacturers’ instructions, and the polished surfaces were assessed with an optical profilometer. Statistical Analysis Used: Kruskal-Wallis test and further pairwise comparison were performed by Mann-Whitney test. Results: The smoothest surfaces for all the resin composites tested were obtained from the Mylar strip; statistically significant differences were observed among them (P = 0.001). The order of composites was ranked from the lowest to highest surface roughness; Filtek Z350 XT < Te Econom < Tetric EvoCeram < Esthet XHD. Pairwise multiple comparison with Mann-Whitney test showed Filtek Z350 to have the smoothest surface and the least with Teric EvoCeram. Among the polishing systems, Soflex showed the smoothest surface and was significantly different from Pogo (P = 0.046). Conclusions: The effectiveness of the polishing systems seems to be dependent on the material used, treatment modality and also on the filler particle size. PMID:26957802

  6. A spectral formalism for computing three-dimensional deformations due to surface loads. 1: Theory

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1994-01-01

    We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean

  7. Towards three-dimensional Weyl-surface semimetals in graphene networks

    NASA Astrophysics Data System (ADS)

    Zhong, Chengyong; Chen, Yuanping; Xie, Yuee; Yang, Shengyuan A.; Cohen, Marvin L.; Zhang, S. B.

    2016-03-01

    Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks are cut, the resulting slabs and nanowires remain semimetallic with Weyl lines and points at the Fermi surfaces, respectively. Between the Weyl lines, flat surface bands emerge with possible strong magnetism. The robustness of these structures can be traced back to a bulk topological invariant, ensured by the sublattice symmetry, and to the one-dimensional Weyl semimetal behavior of the zigzag carbon chain.Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks

  8. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning

    PubMed Central

    Toma, Arshed M.; Zhurov, Alexei I.; Richmond, Stephen

    2014-01-01

    Laser scanning is a non-invasive method for three-dimensional assessment of facial morphology and symmetry. The aim of this study was to quantify facial symmetry in healthy adolescents and explore if there is any gender difference. Facial scans of 270 subjects, 123 males and 147 females (aged 15.3 ± 0.1 years, range 14.6–15.6), were randomly selected from the Avon Longitudinal Study of Parents and Children. Facial scans were processed and analysed using in-house developed subroutines for commercial software. The surface matching between the original face and its mirror image was measured for the whole face, upper, middle, and lower facial thirds. In addition, 3 angular and 14 linear parameters were measured. The percentage of symmetry of the whole face was significantly lower in males (53.49 ± 10.73 per cent) than in females (58.50 ± 10.27 per cent; P < 0.01). There was no statistically significant difference in the amount of symmetry among facial thirds within each gender (P > 0.05). Average values of linear parameters were less than 1 mm and did not differ significantly between genders (P > 0.05). One angular parameter showed slight lip line asymmetry in both genders. Faces of male 15-year-old adolescents were less symmetric than those of females, but the difference in the amount of symmetry, albeit statistically significant, may not be clinically relevant. Upper, middle, and lower thirds of the face did not differ in the amount of three-dimensional symmetry. Angular and linear parameters of facial symmetry did not show any gender difference. PMID:21795753

  9. Manipulation of photons at the surface of three-dimensional photonic crystals.

    PubMed

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  10. Surface Description and Motion Control for Animated Three Dimensional Computer Generated Characters.

    ERIC Educational Resources Information Center

    Hutchinson, Thomas Lloyd

    This study of the relationship of computer technology to character animation focuses on the advantages and constraints of developing three-dimensional characters for computer animation. Three different levels of the complexity involved in animating characters are examined: (1) a three-dimensional computer environment and simple motion within this…

  11. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Braun, Lukas; Mussler, Gregor; Hruban, Andrzej; Konczykowski, Marcin; Schumann, Thomas; Wolf, Martin; Münzenberg, Markus; Perfetti, Luca; Kampfrath, Tobias

    2016-10-01

    Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics need to be resolved on the timescale of elementary scattering events (~10 fs). Here, we excite and measure photocurrents in the model topological insulator Bi2Se3 with a time resolution of 20 fs by sampling the concomitantly emitted broadband terahertz (THz) electromagnetic field from 0.3 to 40 THz. Strikingly, the surface current response is dominated by an ultrafast charge transfer along the Se-Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to be orders of magnitude smaller than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are of direct relevance for broadband optoelectronic devices based on topological-insulator surface currents.

  12. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    PubMed

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  13. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3

    PubMed Central

    Braun, Lukas; Mussler, Gregor; Hruban, Andrzej; Konczykowski, Marcin; Schumann, Thomas; Wolf, Martin; Münzenberg, Markus; Perfetti, Luca; Kampfrath, Tobias

    2016-01-01

    Three-dimensional topological insulators are fascinating materials with insulating bulk yet metallic surfaces that host highly mobile charge carriers with locked spin and momentum. Remarkably, surface currents with tunable direction and magnitude can be launched with tailored light beams. To better understand the underlying mechanisms, the current dynamics need to be resolved on the timescale of elementary scattering events (∼10 fs). Here, we excite and measure photocurrents in the model topological insulator Bi2Se3 with a time resolution of 20 fs by sampling the concomitantly emitted broadband terahertz (THz) electromagnetic field from 0.3 to 40 THz. Strikingly, the surface current response is dominated by an ultrafast charge transfer along the Se–Bi bonds. In contrast, photon-helicity-dependent photocurrents are found to be orders of magnitude smaller than expected from generation scenarios based on asymmetric depopulation of the Dirac cone. Our findings are of direct relevance for broadband optoelectronic devices based on topological-insulator surface currents. PMID:27796297

  14. Temporal speckle method for measuring three-dimensional surface of large-sized rough glass

    NASA Astrophysics Data System (ADS)

    Li, Chao; Zhou, Changhe; Wang, Shaoqing; Fan, Xin; Yang, Boquan; Lu, Yancong; Li, Hao; Liu, Zhao

    2016-10-01

    To provide accurate three-dimensional (3-D) data for production and processing, 3-D surface measurement is always an essential step to the production of glass. Profilometry and Interferometry are traditional measurement apparatus, referring to different procedures. Although more precise, Interferometry cannot be used in milling procedure, owing to the scattering property of rough glass. While as a widely used Profilometry, Coordinate Measuring Machine (CMM) employs a probe for measuring by contacting surface directly. It should be noted that such a time-consuming machine is not practical for measuring large-sized rough glass, so a novel designed method called temporal speckle is introduced to a non-contact binocular 3-D measurement system for measuring. Specifically, N band-limited binary patterns are sequentially projected to rough glass from a pattern generation device, such patterns have been proved to depress scattering properties of rough surface. The whole binocular 3-D measurement system can finish a single measurement in one second with a standard deviation less than 73.44um. This system performs fast and accurate 3-D surface measurement for large-sized rough glass block.

  15. Structure and coarsening at the surface of a dry three-dimensional aqueous foam

    NASA Astrophysics Data System (ADS)

    Roth, A. E.; Chen, B. G.; Durian, D. J.

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  16. Half-filled Landau level, topological insulator surfaces, and three-dimensional quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Senthil, T.

    2016-02-01

    We synthesize and partly review recent developments relating the physics of the half-filled Landau level in two dimensions to correlated surface states of topological insulators in three dimensions. The latter are in turn related to the physics of certain three-dimensional quantum spin liquid states. The resulting insights provide an interesting answer to the old question of how particle-hole symmetry is realized in composite fermion liquids. Specifically the metallic state at filling ν =1/2 —described originally in pioneering work by Halperin, Lee, and Read as a liquid of composite fermions—was proposed recently by Son to be described by a particle-hole symmetric effective field theory distinct from that in the prior literature. We show how the relation to topological insulator surface states leads to a physical understanding of the correctness of this proposal. We develop a simple picture of the particle-hole symmetric composite fermion through a modification of older pictures as electrically neutral "dipolar" particles. We revisit the phenomenology of composite fermi liquids (with or without particle-hole symmetry), and show that their heat/electrical transport dramatically violates the conventional Wiedemann-Franz law but satisfies a modified one. We also discuss the implications of these insights for finding physical realizations of correlated topological insulator surfaces.

  17. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal.

    PubMed

    Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr

    2016-12-09

    Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov-de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.

  18. Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems

    SciTech Connect

    BAER,THOMAS A.; SUBIA,SAMUEL R.; SACKINGER,PHILIP A.

    2000-01-18

    We describe parallel simulations of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact lines. The Galerlin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of problem unknowns. Issues concerning the proper constraints along the solid-fluid dynamic contact line in three dimensions are discussed. Parallel computations are carried out for an example taken from the coating flow industry, flow in the vicinity of a slot coater edge. This is a three-dimensional free-surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another part of the flow domain. Discussion focuses on parallel speedups for fixed problem size, a class of problems of immediate practical importance.

  19. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal

    PubMed Central

    Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr

    2016-01-01

    Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov–de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model. PMID:27934949

  20. Three-dimensional MR imaging of brain surface anomalies in Fukuyama-type congenital muscular dystrophy.

    PubMed

    Toda, T; Watanabe, T; Matsumura, K; Sunada, Y; Yamada, H; Nakano, I; Mannen, T; Kanazawa, I; Shimizu, T

    1995-05-01

    Fukuyama-type congenital muscular dystrophy (FCMD), the second most common childhood muscular dystrophy in Japan, is characterized by the association with severe brain anomalies such as pachygyria and focal interhemispheric fusion. Conventional imaging techniques such as X-ray CT scan and MRI are ineffective for visualization of these brain surface anomalies. Here we investigated the efficacy of three-dimensional (3-D) reconstruction of brain surface MR images for the detection of brain anomalies in FCMD patients. 3-D brain surface MR images clearly visualized anomalies of cerebral gyrus such as pachygyria, as well as focal interhemispheric fusion. In addition, reconstructed horizontal images visualized structural derangement such as abnormal protrusion of white matter into gray matter. MR image abnormalities were confirmed by autopsy in 1 patient. These abnormalities were never observed in Duchenne muscular dystrophy (DMD) patients. Our results indicate the efficacy of the present method for the differential diagnosis between FCMD and DMD with severe mental retardation, which is essential for the genetic study to identify the causative gene of FCMD.

  1. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal

    NASA Astrophysics Data System (ADS)

    Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr

    2016-12-01

    Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov–de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.

  2. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  3. Symmetry-respecting topologically ordered surface phase of three-dimensional electron topological insulators

    NASA Astrophysics Data System (ADS)

    Metlitski, Max A.; Kane, C. L.; Fisher, Matthew P. A.

    2015-09-01

    A three-dimensional electron topological insulator (ETI) is a phase of matter protected by particle-number conservation and time-reversal symmetry. It was previously believed that the surface of an ETI must be gapless unless one of these symmetries is broken. A well-known symmetry-preserving, gapless surface termination of an ETI supports an odd number of Dirac cones. In this paper, we deduce a symmetry-respecting, gapped surface termination of an ETI, which carries an intrinsic two-dimensional (2d) topological order, Moore-Read×U (1) -2 . The Moore-Read sector supports non-Abelian charge 1 /4 anyons, while the Abelian, U (1) -2 , (antisemion) sector is electrically neutral. Time-reversal symmetry is implemented in this surface phase in a highly nontrivial way. Moreover, it is impossible to realize this phase strictly in 2d, simultaneously preserving its implementation of both the particle-number and time-reversal symmetries. A one-dimensional (1d) edge on the ETI surface between the topologically ordered phase and the topologically trivial time-reversal-broken phase with a Hall conductivity σx y=1 /2 carries a right-moving neutral Majorana mode, a right-moving bosonic charge mode, and a left-moving bosonic neutral mode. The topologically ordered phase is separated from the surface superconductor by a direct second-order phase transition in the X Y* universality class, which is driven by the condensation of a charge 1 /2 boson, when approached from the topologically ordered side, and proliferation of a flux 4 π (2 h c /e ) vortex, when approached from the superconducting side. In addition, we prove that time-reversal invariant (interacting) electron insulators with no intrinsic topological order and electromagnetic response characterized by a θ angle, θ =π , do not exist if the electrons transform as Kramers singlets under time reversal.

  4. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons.

    PubMed

    Nguyenkim, Jerry D; DeAngelis, Gregory C

    2003-08-06

    Gradients of binocular disparity across the visual field provide a potent cue to the three-dimensional (3-D) orientation of surfaces in a scene. Neurons selective for 3-D surface orientation defined by disparity gradients have recently been described in parietal cortex, but little is known about where and how this selectivity arises within the visual pathways. Because the middle temporal area (MT) has previously been implicated in depth perception, we tested whether MT neurons could signal the 3-D orientation (as parameterized by tilt and slant) of planar surfaces that were depicted by random-dot stereograms containing a linear gradient of horizontal disparities. We find that many MT neurons are tuned for 3-D surface orientation, and that tilt and slant generally have independent effects on MT responses. This separable coding of tilt and slant is reminiscent of the joint coding of variables in other areas (e.g., orientation and spatial frequency in V1). We show that tilt tuning remains unchanged when all coherent motion is removed from the visual stimuli, indicating that tilt selectivity is not a byproduct of 3-D velocity coding. Moreover, tilt tuning is typically insensitive to changes in the mean disparity (depth) of gradient stimuli, indicating that tilt tuning cannot be explained by conventional tuning for frontoparallel disparities. Finally, we explore the receptive field mechanisms underlying selectivity for 3-D surface orientation, and we show that tilt tuning arises through heterogeneous disparity tuning within the receptive fields of MT neurons. Our findings show that MT neurons carry high-level signals about 3-D surface structure, in addition to coding retinal image velocities.

  5. Gapless helical superconductivity on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Ozfidan, Isil; Han, Jinsen; Maciejko, Joseph

    2016-12-01

    Recent angle-resolved photoemission experiments have observed a proximity-induced superconducting gap in the helical surface states of a thin film of the three-dimensional topological insulator Bi2Se3 grown on a superconducting NbSe2 substrate. The superconducting coherence peaks in the electronic density of states are strongly suppressed when the topological insulator is doped with magnetic Mn impurities, which was interpreted as the complete destruction of helical superconductivity in the topological surface states. Motivated by these experiments, we explore a different possibility: gapless helical superconductivity, where a gapless electronic density of states coexists with a nonzero helical superconducting order parameter. We study a model of superconducting Dirac fermions coupled to random magnetic impurities within the Abrikosov-Gor'kov framework, and find finite regions of gapless helical superconductivity in the phase diagram of the system for both proximity-induced and intrinsic superconductivity. For the latter, we derive universal rates of suppression of the superconducting transition temperature due to magnetic scattering and, for a Fermi level at the Dirac point, a universal rate of increase of the quantum critical attraction strength.

  6. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface

    PubMed Central

    Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo

    2016-01-01

    Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01–1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica. PMID:27416784

  7. Theory of surface Andreev bound states and tunneling spectroscopy in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Tamura, Shun; Kobayashi, Shingo; Bo, Lu; Tanaka, Yukio

    2017-03-01

    We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-dimensional (3D) chiral superconductors by changing their surface (interface) misorientation angles. We obtain an analytical formula for the SABS energy dispersion of a general pair potential, for which an original 4 ×4 BdG Hamiltonian can be reduced to two 2 ×2 blocks. The resulting SABS for 3D chiral superconductors with a pair potential given by kz(kx+i ky) ν (ν =1 ,2 ) has a complicated energy dispersion owing to the coexistence of both point and line nodes. We focus on the tunneling spectroscopy of this pairing in the presence of an applied magnetic field, which induces a Doppler shift in the quasiparticle spectra. In contrast to the previously known Doppler effect in unconventional superconductors, a zero-bias conductance dip can change into a zero-bias conductance peak owing to an external magnetic field. We also study SABSs and tunneling spectroscopy for possible pairing symmetries of UPt3. For this purpose, we extend a standard formula for the tunneling conductance of unconventional superconductor junctions to treat spin-triplet nonunitary pairings. Magnetotunneling spectroscopy, i.e., tunneling spectroscopy in the presence of a magnetic field, can serve as a guide to determine the pairing symmetry of this material.

  8. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    NASA Astrophysics Data System (ADS)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  9. Cinematic three-dimensional surface display of cardiac blood pool tomography

    SciTech Connect

    Honda, N.; Machida, K.; Takishima, T.; Mamiya, T.; Takahashi, T.; Kamano, T.; Tamaki, S.; Ban, R. )

    1991-02-01

    A method of three-dimensional cinematic display (3D cine) of cardiac blood pool tomography is described. ECG-gated transaxial blood pool imaging was obtained from a set of projection images that were collected from 32 images with 10 ECG-gated images per projection during a 180 degrees arc of a rotating gamma camera. A surface contour of the blood pool was determined by a set of isocount lines (40-55% of the maximum pixel counts) of the transaxial images. 3D cine was made by a depth-shading method, in which brightness of a given point on the contour was set proportional to the distance between the viewing plane and the point and to the incident angle formed by the viewing line and the surface of the point. In 15 patients, 3D cine showed hypokinesia, akinesia, dyskinesia, ventricular aneurysm, and opposite motions of the atria and ventricles. Diagnoses of left ventricular motion by 3D cine agreed well with those by echocardiography and contrast left ventriculography.

  10. Three dimensional microscopic surface profiles of membranes reconstructed from freeze etching electrol micrographs.

    PubMed

    Krbecek, R; Gebhardt, C; Gruler, H; Sackmann, E

    1979-06-13

    A method of three-dimensional reconstruction of the surface profile of artificial and natural membranes from freeze quenched electron micrographs is presented. The method is based on the analysis of the variation in thickness of platinum layers, deposited under an oblique angle. In essence, it is reminiscent of the method of Eratosthenes to measure the earth's radius. The thickness of etch-like protrusions of membranes could be determined to an accuracy of about 3 A. True distances on curved surfaces rather than projections of distances are obtained. The method has been applied to both model membranes and biological membranes. The essential results are: 1. Detailed information on the symmetry and the molecular structure of the crystalline phases of dimyristoyl phosphatidylcholine was obtained. The microscopic surface profile of the ripple structure observed between the pretransition and the main transition was analysed. In accordance with a previous model we found that the ripple structure is caused by the spontaneous curvature of the monolayers. The surface profiles of the ripple structure and of the low temperature biaxial phase could be clearly distinguished. 2. The sizes and shapes of lipid domains formed by both thermically and charge-induced lateral phase separation were determined. This showed that the visual inspection of electron micrographs may lead to a considerable underestimation of the domain size. Conclusions may be drawn concerning the different phases formed upon lateral phase separation. 3. As a biological example, yeast cell membranes were studied. The method allows one to distinguish between different membrane-bound proteins by measuring the width-to-height ratio of the particles. The deformation of the lipid layer in the environment of the proteins may be determined. This deformation contains information about lipid-mediated long-range interactions between membrane proteins.

  11. Three-dimensional shape variation of talar surface morphology in hominoid primates

    PubMed Central

    Parr, W C H; Soligo, C; Smaers, J; Chatterjee, H J; Ruto, A; Cornish, L; Wroe, S

    2014-01-01

    The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long-distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction–abduction, plantar–dorsal flexion and inversion–eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three-dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orang-utans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore

  12. Three-dimensional shape variation of talar surface morphology in hominoid primates.

    PubMed

    Parr, W C H; Soligo, C; Smaers, J; Chatterjee, H J; Ruto, A; Cornish, L; Wroe, S

    2014-07-01

    The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long-distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction-abduction, plantar-dorsal flexion and inversion-eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three-dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orangutans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore provide a

  13. Three-dimensional structure of the wind-driven water surface flow

    NASA Astrophysics Data System (ADS)

    Caulliez, Guillemette

    2014-05-01

    The structure of the water boundary layer forced by wind underneath surface wind waves is investigated experimentally in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. An overview of the water surface flow patterns which develop at larger scales was provided by simultaneous flow visualizations. To that end, tiny hydrogen bubbles were generated by electrolysis along a 60 cm long thin wire set up crosswise to the wind direction at a short distance from the water surface. The bubble motions were recorded by a video camera looking vertically from below or above the water surface. Observations were made at low to moderate wind speeds for four fetches ranging from 2 to 26 m. This work reveals that under such steady wind conditions, the transition of the water surface boundary layer to turbulent flow is marked by the fast development of coherent longitudinal vortices downstream the surface wave generation area observed at short fetches. These structures are characterized by the occurrence of intense upwellings localized in narrow streaks in the crosswise direction. There, the upper wind-induced shear flow is confined in a very thin layer. In the wider areas between these streaks, the surface flow exhibits a much more turbulent behaviour over a deeper but slightly-sheared boundary layer. In accordance with this inhomogeneous flow pattern, the velocity field observed at a fixed location over one vertical profile is highly variable in time. These three-dimensional large-scale structures present strong similarities with the so-called Langmuir circulations. This work will focus on the description of the qualitative and quantitative properties of these longitudinal vortices, in particular the conditions of their occurence and the dependency of their characteristic scales on wind forcing and surface wave development. The main

  14. DNA-guided assembly of three-dimensional nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Li-An; Lin, Yu-Ting; Chen, Yih-Fan

    2015-03-01

    Surface enhancement Raman spectroscopy (SERS) has drawn much attention in recent years because its ability to greatly enhance Raman signals to allow for the detection of molecules at low concentration. When using metallic nanoparticles as SERS substrates, many studies have shown that the size of the interparticle gap significantly affects the enhancement of the Raman signals. Given that the optimal interparticle gap is as small as a few nanometers, fabricating sensitive, uniform, and reproducible SERS substrates remains challenging. Here we report a three-dimensional SERS substrate created through the assembly of core-shell nanoparticles using DNA. By using DNA of appropriate sequence and length, DNA-functionalized nanoparticles were assembled into ordered and highly packed nanostructures. The interparticle distance was precisely controlled by adjusting the design of the DNA and the thickness of the silver shell coated on the gold nanoparticles. Compared with randomly aggregated nanoparticles, the interparticle distance in the synthesized nanostructures can be more uniform and better controlled. In addition, the DNA-guided assembly process allows us to create precise nanostructures without using complex and expensive fabrication methods. The study demonstrates that the synthesized nanostructures can be used as effective SERS substrates to successfully measure the Raman signals of malachite green, a toxic compound that is sometimes illegally used on fish, as well as Fluorescein isothiocyanate (FITC) at low concentrations.

  15. Cytopede: A Three-Dimensional Tool for Modeling Cell Motility on a Flat Surface

    PubMed Central

    Dembo, Micah

    2010-01-01

    Abstract When cultured on flat surfaces, fibroblasts and many other cells spread to form thin lamellar sheets. Motion then occurs by extension of the sheet at the leading edge and retraction at the trailing edge. Comprehensive quantitative models of these phenomena have so far been lacking and to address this need, we have designed a three-dimensional code called Cytopede specialized for the simulation of the mechanical and signaling behavior of plated cells. Under assumptions by which the cytosol and the cytoskeleton are treated from a continuum mechanical perspective, Cytopede uses the finite element method to solve mass and momentum equations for each phase, and thus determine the time evolution of cellular models. We present the physical concepts that underlie Cytopede together with the algorithms used for their implementation. We then validate the approach by a computation of the spread of a viscous sessile droplet. Finally, to exemplify how Cytopede enables the testing of ideas about cell mechanics, we simulate a simple fibroblast model. We show how Cytopede allows computation, not only of basic characteristics of shape and velocity, but also of maps of cell thickness, cytoskeletal density, cytoskeletal flow, and substratum tractions that are readily compared with experimental data. PMID:20958108

  16. An orthogonal coordinate grid following the three-dimensional viscous flow over a concave surface

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. R; Saric, W. S.

    1983-01-01

    Swept wings designed for laminar flow control exhibit both centrifugal and crossflow instabilities which produce streamwise vortices that can lead to early transition from laminar to turbulent flow in the presence of Tollmien-Schlichting waves. This paper outlines an iterative algorithm for generation of an orthogonal, curvilinear, coordinate grid following the streamlines of the three-dimensional viscous flow over a swept, concave surface. The governing equations for the metric tensor are derived from the Riemann-Christoffel tensor for an Euclidian geometry. Unit vectors along streamline, normal and binormal directions are determined. The governing equations are not solved directly, but are employed only as compatibility equations. The scale factor for the streamline coordinate is obtained by an iterative integration scheme on a 200 x 100 x 5 grid, while the other two scale factors are determined from definitions. Sample results are obtained which indicate that the compatibility equation error decreases linearly with grid step size. Grids smaller than 200 x 100 x 5 are found to be inadequate to resolve the grid curvature.

  17. Three dimensional mathematical modeling of violin plate surfaces: An approach based on an ensemble of contour lines.

    PubMed

    Piantadosi, Steven

    2017-01-01

    This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.

  18. Three dimensional mathematical modeling of violin plate surfaces: An approach based on an ensemble of contour lines

    PubMed Central

    2017-01-01

    This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing. PMID:28166230

  19. A combined direct/inverse three-dimensional transonic wing design method for vector computers

    NASA Technical Reports Server (NTRS)

    Weed, R. A.; Carlson, L. A.; Anderson, W. K.

    1984-01-01

    A three-dimensional transonic-wing design algorithm for vector computers is developed, and the results of sample computations are presented graphically. The method incorporates the direct/inverse scheme of Carlson (1975), a Cartesian grid system with boundary conditions applied at a mean plane, and a potential-flow solver based on the conservative form of the full potential equation and using the ZEBRA II vectorizable solution algorithm of South et al. (1980). The accuracy and consistency of the method with regard to direct and inverse analysis and trailing-edge closure are verified in the test computations.

  20. Human body surface area: measurement and prediction using three dimensional body scans.

    PubMed

    Tikuisis, P; Meunier, P; Jubenville, C E

    2001-08-01

    The development of three dimensional laser scanning technology and sophisticated graphics editing software have allowed an alternative and potentially more accurate determination of body surface area (BSA). Raw whole-body scans of 641 adults (395 men and 246 women) were obtained from the anthropometric data base of the Civilian American and European Surface Anthropometry Resource project. Following surface restoration of the scans (i.e. patching and smoothing), BSA was calculated. A representative subset of the entire sample population involving 12 men and 12 women (G24) was selected for detailed measurements of hand surface area (SAhand) and ratios of surface area to volume (SA/VOL) of various body segments. Regression equations involving wrist circumference and arm length were used to predict SAhand of the remaining population. The overall [mean (SD)] of BSA were 2.03 (0.19) and 1.73 (0.19) m2 for men and women, respectively. Various prediction equations were tested and although most predicted the measured BSA reasonably closely, residual analysis revealed an overprediction with increasing body size in most cases. Separate non-linear regressions for each sex yielded the following best-fit equations (with root mean square errors of about 1.3%): BSA (cm2) = 128.1 x m0.44 x h0.60 for men and BSA = 147.4 x m0.47 x h0.55 for women, where m, body mass, is in kilograms and h, height, is in centimetres. The SA/VOL ratios of the various body segments were higher for the women compared to the men of G24, significantly for the head plus neck (by 7%), torso (19%), upper arms (15%), forearms (20%), hands (18%), and feet (11%). The SA/VOL for both sexes ranged from approximately 12.m-1 for the pelvic region to 104-123.m-1 for the hands, and shape differences were a factor for the torso and lower leg.

  1. Three-dimensional numerical simulation of near-surface flows over the Martian north polar cap

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Howard, A. D.

    1993-01-01

    Measurements made by Viking Lander VL-2 (48 N) have shown that the near-surface wind and temperature regime on Mars displays striking similarities to terrestrial counterparts. The diurnal radiative cycle is responsible for establishment of a well-defined thermal circulation in which downslope (Katabatic) flows prevail during the nighttime hours and weak upslope (anabatic) conditions prevail during the daytime. Previous work has indicated that the slope flows are much like those found on Earth, particularly the Katabatic winds, which show striking similarities to drainage flows observed over Antarctica. The low-level wind regime appears to be an important factor in the scouring of the martian landscape. The north polar cap shows evidence of eolian features such as dunes, frost streaks, and grooves from Viking imagery. The direction of the prevailing wind can in cases be inferred from the eolian features. We examine the thermally induced flows that result from the radiative heating and cooling of the martian north polar region using a comprehensive three-dimensional atmospheric mesoscale numerical model. The same model has been used previously for simulation of Antarctic Katabatic winds. The model equations are written in terrain-following coordinates to allow for irregular terrain; prognostic equations include the flux forms of the horizontal momentum equations, temperature, continuity. A surface energy budget equation is also incorporated in which the surface temperature is determined. Explicit parameterization of both terrestrial (longwave) and solar (shortwave) radiation is included. Turbulent transfer of heat and momentum in the martian atmosphere is assumed to follow the similarity expressions in the surface boundary layer on Earth. The terrain heights for the martian north polar region have been obtained from the U.S. Geological Survey map and digitized onto a 57x57 grid with a spacing of 75 km. The resulting terrain map is shown in Fig. 1. The vertical grid

  2. Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

    PubMed Central

    Lee, Woo Yeon; Kim, Min Jung; Lew, Dae Hyun; Song, Seung Yong

    2016-01-01

    Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods. PMID:27689050

  3. Chemical functionalization of surfaces for building three-dimensional engineered biosensors

    NASA Astrophysics Data System (ADS)

    Marques, Marco E.; Mansur, Alexandra A. P.; Mansur, Herman S.

    2013-06-01

    This study presents a new approach for developing biosensors based on enzymatic systems with designed three-dimensional structures. Silica glass slides were chemically functionalized at surfaces by reacting with organosilanes, 3-mercaptopropyltriethoxysilane (MPTES), and 3-aminopropyltriethoxysilane (APTES), using sol-gel process at room temperature. The functionalization of the supports was characterized by contact angle measurements and FTIR spectroscopy. The first enzyme layer was covalently immobilized to the support by a bi-functional linker (glutaraldehyde). The second enzyme layer was deposited using the protein conjugation method based on the high affinity "avidin-biotin" interactions. Each enzyme was biotinylated before being added to the nanostructured system and avidin was used as the binder between consecutive enzyme layers. The biochemical response was assayed at all stages to certify that the enzymatic bioactivity was retained throughout the entire layer-by-layer (LBL) process. The model of building 3D-enzymatic systems was evaluated using the enzymatic structure with glucose oxidase (GOx) and horseradish peroxidase (HRP). It was verified that the amino-modified support presented the highest bioactivity response compared to the other chemical functionalities. Moreover, the bienzyme nanostructure demonstrated relevant biochemical activity upon injecting the glucose substrate into the system. Finally, as a proof of concept, the bienzyme systems were assayed using real samples of regular and sugar-free soft drinks where they effectively behaved as structured biosensor for glucose with the built-in 3D hybrid architecture. Based on the results, it can be foreseen the development of promising new nanomaterials for several analytical applications such as monitoring the quality of food and beverages for nutrition purposes.

  4. Three-dimensional surface geometries of the rabbit soleus muscle during contraction: input for biomechanical modelling and its validation.

    PubMed

    Böl, Markus; Leichsenring, Kay; Weichert, Christine; Sturmat, Maike; Schenk, Philipp; Blickhan, Reinhard; Siebert, Tobias

    2013-11-01

    There exists several numerical approaches to describe the active contractile behaviour of skeletal muscles. These models range from simple one-dimensional to more advanced three-dimensional ones; especially, three-dimensional models take up the cause of describing complex contraction modes in a realistic way. However, the validation of such concepts is challenging, as the combination of geometry, material and force characteristics is so far not available from the same muscle. To this end, we present in this study a comprehensive data set of the rabbit soleus muscle consisting of the muscles' characteristic force responses (active and passive), its three-dimensional shape during isometric, isotonic and isokinetic contraction experiments including the spatial arrangement of muscle tissue and aponeurosis-tendon complex, and the fascicle orientation throughout the whole muscle at its optimal length. In this way, an extensive data set is available giving insight into the three-dimensional geometry of the rabbit soleus muscle and, further, allowing to validate three-dimensional numerical models.

  5. Three-dimensional micro-roughness of a pseudotachylyte-bearing fault surface

    NASA Astrophysics Data System (ADS)

    Resor, P. G.; Griffith, W.; Di Toro, G.

    2011-12-01

    Dynamic friction experiments in granitoid or gabbroic rocks that achieve earthquake slip velocities reveal significant weakening by melt-lubrication of the sliding surfaces. Extrapolation of these experimental results to seismic source depths (> 7 km) suggests that the slip weakening distance (Dw) over which this transition occurs is < 10 cm. The physics of this lubrication in the presence of a fluid (melt) is controlled by surface micro-topography. In order to characterize fault surface micro-roughness and its evolution during dynamic slip events on natural faults, we have undertaken an analysis of three-dimensional (3D) fault surface microtopography and its causes on a pseudotachylyte-bearing fault. The solidification of frictional melt soon after seismic slip ceases "freezes in" earthquake source geometries, however it also precludes the development of extensive fault surface exposures that have enabled direct studies of fault surface roughness. We have overcome this difficulty by imaging the intact 3D geometry of the fault using high-resolution X-ray computed tomography (CT). Samples (2 cm diameter cores) from a wavy fault segment cutting tonalites of the Gole Larghe fault zone, Italy were scanned at the University of Texas High Resolution X-ray CT Facility, using an Xradia MicroCT scanner with a 70 kV X-ray source. Individual voxels (3D pixels) are ~32 μm across. Fault geometry is thus imaged over ~4 orders of magnitude from the micron scale up to Dw. The pseudotachylyte-bearing fault surface is imaged as a tabular body of intermediate X-ray attenuation crosscutting high attenuation biotite and low attenuation quartz and feldspar of the surrounding tonalite. We extract the fault surfaces (contact between the pseudotachylyte bearing fault zone and the wall rock) using integrated manual mapping, automated edge detection, and statistical evaluation. This approach results in a digital elevation model over > 90% of the fault surface for a sample from an

  6. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  7. Low-resistance gateless high electron mobility transistors using three-dimensional inverted pyramidal AlGaN/GaN surfaces

    SciTech Connect

    So, Hongyun; Senesky, Debbie G.

    2016-01-04

    In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area.

  8. Low-resistance gateless high electron mobility transistors using three-dimensional inverted pyramidal AlGaN/GaN surfaces

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-01-01

    In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area.

  9. Large-scale three-dimensional measurement via combining 3D scanner and laser rangefinder.

    PubMed

    Shi, Jinlong; Sun, Zhengxing; Bai, Suqin

    2015-04-01

    This paper presents a three-dimensional (3D) measurement method of large-scale objects by integrating a 3D scanner and a laser rangefinder. The 3D scanner, used to perform partial section measurement, is fixed on a robotic arm which can slide on a guide rail. The laser rangefinder, used to compute poses of the 3D scanner, is rigidly connected to the 3D scanner. During large-scale measurement, after measuring a partial section, the 3D scanner is straightly moved forward along the guide rail to measure another section. Meanwhile, the poses of the 3D scanner are estimated according to its moved distance for different partial section alignments. The performance and effectiveness are evaluated by experiments.

  10. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation

    PubMed Central

    Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr

    2015-01-01

    Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling. PMID:26858826

  11. Combined Use of GPS and Accelerometry Reveals Fine Scale Three-Dimensional Foraging Behaviour in the Short-Tailed Shearwater

    PubMed Central

    Berlincourt, Maud; Angel, Lauren P.; Arnould, John P. Y.

    2015-01-01

    Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1–70.0%) of time at sea resting on water and 18.2% (range: 2.3–49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8–237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey. PMID:26439491

  12. Combined Use of GPS and Accelerometry Reveals Fine Scale Three-Dimensional Foraging Behaviour in the Short-Tailed Shearwater.

    PubMed

    Berlincourt, Maud; Angel, Lauren P; Arnould, John P Y

    2015-01-01

    Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1-70.0%) of time at sea resting on water and 18.2% (range: 2.3-49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8-237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey.

  13. Quantitative Three-Dimensional Characterization of Block Copolymer Directed Self-Assembly on Combined Chemical and Topographical Prepatterned Templates.

    PubMed

    Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; Khaira, Gurdaman; Bowen, Alec; Ocola, Leonidas E; Divan, Ralu; Doxastakis, Manolis; Ferrier, Nicola J; de Pablo, Juan; Nealey, Paul F

    2017-02-28

    Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. This research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates.

  14. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells

    PubMed Central

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted

  15. Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies

    PubMed Central

    Ferrara, Maria Antonietta; De Tommasi, Edoardo; Coppola, Giuseppe; De Stefano, Luca; Rea, Ilaria; Dardano, Principia

    2016-01-01

    The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems. PMID:27690008

  16. A system for combined three-dimensional morphological and molecular analysis of thick tissue specimens

    SciTech Connect

    Fernandez-Gonzalez, Rodrigo; Jones, Arthur; Garcia-Rodriguez, Enrique; Yuan Chen, Ping; Idica, Adam; Lockett, Stephen J.; Barcellos-Hoff, Mary Helen; Ortiz-de-Solorzano, Carlos

    2002-04-25

    We present a new system for simultaneous morphological and molecular analysis of thick tissue samples. The system is composed of a computer assisted microscope and a JAVA-based image display, analysis and visualization program that allows acquisition, annotation, meaningful storage, three-dimensional reconstruction and analysis of structures of interest in thick sectioned tissue specimens. We describe the system in detail and illustrate its use by imaging, reconstructing and analyzing two complete tissue blocks which were differently processed and stained. One block was obtained from a ductal carcinoma in situ (DCIS) lumpectomy specimen and stained alternatively with Hematoxilyn and Eosin (H&E), and with a counterstain and fluorescence in situ hybridization (FISH) to the ERB-B2 gene. The second block contained a fully sectioned mammary gland of a mouse, stained for Histology with H&E. We show how the system greatly reduces the amount of interaction required for the acquisition and analysis and is therefore suitable for studies that require morphologically driven, wide scale (e.g., whole gland) analysis of complex tissue samples or cultures.

  17. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  18. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  19. Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor.

    PubMed

    Li, Chenhui; Hall, Gunnsteinn; Zeng, Xuefeng; Zhu, Difeng; Eliceiri, Kevin; Jiang, Hongrui

    2011-04-25

    We demonstrate three-dimensional (3D) surface profiling of the water-oil interface in a tunable liquid microlens using a Shack-Hartmann wave front sensor. The principles and the optical setup for achieving 3D surface measurements are presented and a hydrogel-actuated liquid lens was measured at different focal lengths. The 3D surface profiles are then used to study the optical properties of the liquid lens. Our method of 3D surface profiling could foster the improvement of liquid lens design and fabrication, including surface treatment and aberration reduction.

  20. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.

    PubMed

    Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra

    2013-07-02

    The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA

  1. Generalized stability of a shear flow with a free surface with respect to three-dimensional perturbations

    NASA Astrophysics Data System (ADS)

    Mallios, Christos; Bakas, Nikolaos A.

    2017-02-01

    Modal and nonmodal growth of three-dimensional perturbations in a shear flow with a free surface are examined for a wide range of Froude numbers. By approximating the mean flow with a piecewise linear profile, the modal instabilities are shown to arise from the interaction of three-dimensional edge waves supported at the interfaces of density discontinuity at the surface and mean vorticity discontinuity at the edges of the shear layer. The mechanism and properties of the instability are explained in terms of the dynamics of the edge-wave interactions. Previously reported modal stability analysis restricted to two-dimensional perturbations in the plane of the flow accurately predicts the fastest growing perturbations but underestimates the range of length scales for the unstable structures. Robust nonmodal transient growth of perturbations within a few advective time units is found. For low Froude numbers or low values of the shear, three-dimensional perturbations with small horizontal scales exhibit the largest growth through a synergy between the Orr and the lift-up mechanisms and produce large streamwise streaks in the shear flow without an effect on the free surface. For large Froude numbers or large values of the shear, planar perturbations with larger horizontal scales exhibit the largest energy growth by effectively instigating the modal instability and excite surface waves at large amplitude.

  2. Three-dimensional imaging of eye surface pathologies and contact lens fit with high resolution spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wojtkowski, M.; Kałużny, B.; Szkulmowska, A.; Bajraszewski, T.; Szkulmowski, M.; Targowski, P.; Kowalczyk, A.

    2007-02-01

    Purpose: To show potential of Spectral Optical Coherence Tomography system for high resolution, cross-sectional and three-dimensional imaging of eye surface pathologies. Methods: High-speed spectral OCT prototype instrument with 4.5 μm axial resolution was designed and constructed for clinical use. Measurements of anterior segment of human eye have been performed in ophthalmology clinic on 86 patients suffering various eye surface disorders including corneal dystrophies, corneal scars, conjunctival folds, keratoconus, bullus keratopathy, filtration blebs and other post-operative changes. Additionally, examinations of contact lens fit on 97 healthy corneas have been performed up to date. Results: High quality, high resolution cross-sectional images and three-dimensional reconstructions of cornea, conjunctiva and sclera of pathologic eyes together with examples of numerical analysis including segmentation of fluid in filtration blebs, scars and deposits are shown. Quantitative analysis of contact lens fit is demonstrated.

  3. New classes of three-dimensional topological crystalline insulators with unpinned surface Dirac cones

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Hsieh, Timothy; Fu, Liang

    2015-03-01

    We theoretically predict two new classes of 3D topological crystalline insulators (TCI) that have protected, robust surface states. In first class, the surface states are protected by a single glide mirror symmetry. On a symmetry-preserving surface, a single Dirac point can appear at any position along either one of the two mirror symmetric lines inside the surface Brillouin zone (SBZ). In the second class, the surface Dirac point is protected by a combination of twofold rotation and time-reversal symmetry, and appears on the crystal surface perpendicular to the rotation axis. Its position in the SBZ is completely free to move by symmetry-preserving perturbations. In each class, we prove the existence of a Z2 bulk invariant and find its explicit analytic expression. These new classes of TCI do not presume the presence or the absence of spin-orbital coupling. DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526 (LF) and the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319 (CF).

  4. Three-dimensional reconstruction of fracture surfaces: area matching algorithms for automatic parallax measurements.

    PubMed

    Hein, L R; Silva, F A; Nazar, A M; Ammann, J J

    1999-01-01

    This paper describes two solutions for systematic measurement of surface elevation that can be used for both profile and surface reconstructions for quantitative fractography case studies. The first one is developed under Khoros graphical interface environment. It consists of an adaption of the almost classical area matching algorithm, that is based on cross-correlation operations, to the well-known method of parallax measurements from stereo pairs. A normalization function was created to avoid false cross-correlation peaks, driving to the true window best matching solution at each region analyzed on both stereo projections. Some limitations to the use of scanning electron microscopy and the types of surface patterns are also discussed. The second algorithm is based on a spatial correlation function. This solution is implemented under the NIH Image macro programming, combining a good representation for low contrast regions and many improvements on overall user interface and performance. Its advantages and limitations are also presented.

  5. Quadratic resonance in the three-dimensional oscillations of inviscid drops with surface tension

    NASA Technical Reports Server (NTRS)

    Natarajan, R.; Brown, R. A.

    1986-01-01

    The moderate-amplitude, three-dimensional oscillations of an inviscid drop are described in terms of spherical harmonics. Specific oscillation modes are resonantly coupled by quadratic nonlinearities caused by inertia, capillarity, and drop deformation. The equations describing the interactions of these modes are derived from the variational principle for the appropriate Lagrangian by expressing the modal amplitudes to be functions of a slow time scale and by preaveraging the Lagrangian over the time scale of the primary oscillations. Stochastic motions are predicted for nonaxisymmetric deformations starting from most initial conditions, even those arbitrarily close to the axisymmetric shapes. The stochasticity is characterized by a redistribution of the energy contained in the initial deformation over all the degrees of freedom of the interacting modes.

  6. Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.

    PubMed

    Liu, Yang; Ning, Yong; Li, Sheng; Zhou, Ping; Rymer, William Z; Zhang, Yingchun

    2015-09-01

    There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3D IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their MU action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings.

  7. Three-dimensional finite difference viscoelastic wave modelling including surface topography

    NASA Astrophysics Data System (ADS)

    Hestholm, Stig

    1999-12-01

    I have undertaken 3-D finite difference (FD) modelling of seismic scattering fromfree-surface topography. Exact free-surface boundary conditions for arbitrary 3-D topographies have been derived for the particle velocities. The boundary conditions are combined with a velocity-stress formulation of the full viscoelastic wave equations. A curved grid represents the physical medium and its upper boundary represents the free-surface topography. The wave equations are numerically discretized by an eighth-order FD method on a staggered grid in space, and a leap-frog technique and the Crank-Nicholson method in time. I simulate scattering from teleseismic P waves by using plane incident wave fronts and real topography from a 60 x 60 km area that includes the NORESS array of seismic receiver stations in southeastern Norway. Synthetic snapshots and seismograms of the wavefield show clear conversion from P to Rg (short-period fundamental-mode Rayleigh) waves in areas of rough topography, which is consistent with numerous observations. By parallelization on fast supercomputers, it is possible to model higher frequencies and/or larger areas than before.

  8. Dynamic three-dimensional shape measurement for specular freeform surfaces with the quaternary orthogonal grid fringes

    NASA Astrophysics Data System (ADS)

    Xu, Xueyang; Zhang, Xiangchao; Xu, Min

    2016-10-01

    Deflectometry is a promising method for freeform surfaces due to its wide applications and ease of implementation, but it is not robust against environmental noise and vibrations. A new deflectometry method using the quaternary orthogonal grid fringes is proposed to retrieve the surface slopes. Combined with a classic N-step phase-shifting technique, only one image is required to extract the two perpendicular directional phases instead of two groups of phase shifted fringes. The color of each pixel can be encoded by red, green and blue components. In each color component, two perpendicular fringe patterns compose quaternary orthogonal grid fringes. In practice, the relative shift between different colors is set depending on the lateral resolution of the camera lens and the zoom relation of the object-image. The object-image relationship can be established by using only one distorted colorful orthogonal fringe pattern reflected via the surface. This process is fast and stable because the RGB codes of every block are significantly different to its neighbor in at least one color component. This method is suitable for dynamic measurement of specular objects, and the influence of varying environment and moving objects can then be eliminated.

  9. Evaluation of the Fish Passage Effectiveness of the Bonneville I Prototype Surface Collector using Three-Dimensional Ultrasonic Fish Tracking

    SciTech Connect

    Faber, Derrek M.; Weiland, Mark A.; Moursund, Robert; Carlson, Thomas J.; Adams, Noah; Rhondorf, D.

    2001-05-01

    This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000 using three-dimensional acoustic telemetry and computational fluid dynamics hydraulic modeling to observe the response of outmigrating juvenile steelhead and yearling chinook to a prototype surface collector installed at the Powerhouse. The study described in this report was one of several conducted for the U.S. Army Corps of Engineers to prepare a decision document on which of two bypass methods: surface flow bypass or extended-length submersible bar screens to use to help smolts pass around Bonneville dams without going through the turbines.

  10. Adjoint methods for adjusting three-dimensional atmosphere and surface properties to fit multi-angle/multi-pixel polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Martin, William; Cairns, Brian; Bal, Guillaume

    2014-09-01

    This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth's atmosphere.

  11. Freeform fabrication of tissue-simulating phantoms by combining three-dimensional printing and casting

    NASA Astrophysics Data System (ADS)

    Shen, Shuwei; Zhao, Zuhua; Wang, Haili; Han, Yilin; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Ray, William; Hoehne, Brad; Xu, Ronald

    2016-03-01

    Appropriate surgical planning is important for improved clinical outcome and minimal complications in many surgical operations, such as a conjoined twin separation surgery. We combine 3D printing with casting and assembling to produce a solid phantom of high fidelity to help surgeons for better preparation of the conjoined twin separation surgery. 3D computer models of individual organs were reconstructed based on CT scanned data of the conjoined twins. The models were sliced, processed, and converted to an appropriate format for Fused Deposition Modeling (FDM). The skeletons of the phantom were printed directly by FDM using Acrylonitrile-Butadiene-Styrene (ABS) material, while internal soft organs were fabricated by casting silicon materials of different compositions in FDM printed molds. The skeleton and the internal organs were then assembled with appropriate fixtures to maintain their relative positional accuracies. The assembly was placed in a FMD printed shell mold of the patient body for further casting. For clear differentiation of different internal organs, CT contrast agents of different compositions were added in the silicon cast materials. The produced phantom was scanned by CT again and compared with that of the original computer models of the conjoined twins in order to verify the structural and positional fidelity. Our preliminary experiments showed that combining 3D printing with casting is an effective way to produce solid phantoms of high fidelity for the improved surgical planning in many clinical applications.

  12. Semiclassical dynamics on multiple electronic surfaces - Three-dimensional treatment of reactive F + H2

    NASA Technical Reports Server (NTRS)

    Komornicki, A.; Morokuma, K.; George, T. F.

    1977-01-01

    The role of electron transitions in collisions is studied for the F + H2 reaction by combining quasi-classical Monte Carlo trajectories with a semiclassical decoupling approximation for the electron transitions. Attention is directed at the reaction of excited state F atoms reacting to form ground state products; the reactants are initiated in either of two spin-orbit states of the atom with the diatom in the ground vibrational state and the lowest four rotational states, at relative translational energies of 0.1, 0.2 and 0.3 eV. Even if the reactants are initiated on the excited state surface, the reactive cross sections (which are classically forbidden) are significant. The major dynamical effects of the excited state reaction are the flow of reactant electronic energy into product internal energy.

  13. An interactive user-friendly approach to surface-fitting three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. Mcneil; Dejarnette, Fred R.

    1988-01-01

    A surface-fitting technique has been developed which addresses two problems with existing geometry packages: computer storage requirements and the time required of the user for the initial setup of the geometry model. Coordinates of cross sections are fit using segments of general conic sections. The next step is to blend the cross-sectional curve-fits in the longitudinal direction using general conics to fit specific meridional half-planes. Provisions are made to allow the fitting of fuselages and wings so that entire wing-body combinations may be modeled. This report includes the development of the technique along with a User's Guide for the various menus within the program. Results for the modeling of the Space Shuttle and a proposed Aeroassist Flight Experiment geometry are presented.

  14. Rapid three-dimensional chromoscan system of body surface based on digital fringe projection

    NASA Astrophysics Data System (ADS)

    Wei, Bin; Liang, Jin; Li, Jie; Ren, Maodong

    2015-09-01

    This paper proposes a rapid body scanning system that uses optical digital fringe projection method. Twelve cameras and four digital projectors are placed around the human body from four different directions, so that the body surface threedimensional( 3D) point cloud data can be scanned in 5~8 seconds. It can overcome many difficulties in a traditional measurement method, such as laser scanning causes damage to human eye and low splicing accuracy using structured white light scanning system. First, an accurate calibration method based on close-range photogrammetry, is proposed and verified for calibrating the twelve cameras and the four digital projectors simultaneously, where a 1m×2m plate as calibration target with feature points pasted on its two-sides is used. An experiment indicates that the proposed calibration method, with a re-projection error less than 0.05pixels, has a considerable accuracy. The whole 3D body surface color point cloud data can be measured without splice different views of point cloud, because of the high accuracy calibration results. Then, in order to measure the whole body point cloud data with high accuracy, a combination of single and stereo camera measuring method, based on digital fringe projection, has presented to calculating 3D point cloud data. At last, a novel body chromoscan system is developed and a human body 3D digital model was scanned, by which a physical body model was manufactured using 3D printing technology.

  15. Cell volume control at a surface for three-dimensional grid generation packages

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Weilmuenster, Kenneth J.

    1992-01-01

    An alternate method of calculating the cell size for orthogonality control in the solution of Poisson's 3D space equations is presented. The method provides the capability to enforce a better initial guess for the grid distribution required for boundary layer resolution. This grid point distribution is accomplished by enforcing grid spacing from a grid block boundary where orthogonality is required. The actual grid spacing or cell size for that boundary is determined by the two or four adjacent boundaries in the grid block definition, which are two dimensional grids. These two dimensional grids are in turn defined by the user using insight into the flow field and boundary layer characteristics. The adjoining boundaries are extended using a multifunctional blending scheme, with user control of the blending and interpolating functions to be used. This grid generation procedure results in an enhanced computational fluid dynamics calculation by allowing a quicker resolution of the configuration's boundary layer and flow field and by limiting the number of grid re-adaptations. The cell size specification calculation was applied to a variety of configurations ranging from axisymmetric to complex three-dimensional configurations. Representative grids are shown for the Space Shuttle and the Langley Lifting Body (HL-20).

  16. Three-dimensional ab initio potential energy surface for H-CO(X̃(2)A').

    PubMed

    Song, Lei; van der Avoird, Ad; Groenenboom, Gerrit C

    2013-08-15

    We present an ab initio potential for the H-CO(X̃(2)A') complex in which the CO bond length is varied and the long-range interactions between H and CO are accurately represented. It was computed using the spin-unrestricted open-shell single and double excitation coupled cluster method with perturbative triples [RHF-UCCSD(T)]. Three doubly augmented correlation-consistent basis sets were utilized to extrapolate the correlation energy to the complete basis set limit. More than 4400 data points were calculated and used for an analytic fit of the potential: long-range terms with inverse power dependence on the H-CO distance R were fit to the data points for large R, the reproducing kernel Hilbert space (RKHS) method was applied to the data at smaller distances. Our potential was compared with previous calculations and with some data extracted from spectroscopy. Furthermore, it was used in three-dimensional discrete variable representation (DVR) calculations of the vibrational frequencies and rotational constants of HCO, which agree very well with the most recently measured data. Also the dissociation energy D0 = 0.623 eV of HCO into H + CO obtained from these calculations agrees well with experimental values. Finally, we made preliminary two-dimensional (2D) calculations of the cross sections for rotationally inelastic H-CO collisions with the CO bond length fixed and obtained good agreement with recently published 2D results.

  17. Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos

    2016-11-01

    The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 <= Re <= 325 (based on the diameter of the cylinder) where steady-state solutions have been obtained. Direct numerical simulations were computed using an in-house parallel finite element code. Results indicate that symmetry breaking occurs at Re = 1 , while the first prominent structure is a horseshoe vortex downstream from the cylinder. At Re = 150 , two foci are observed, indicating the formation of two tornadolike vortices downstream. Concurrently, another horseshoe vortex is formed upstream from the cylinder. For higher Reynolds numbers, the flow downstream is segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder

  18. Three-dimensional secondary surface geomorphology of submarine landslides on northwest Pacific plate guyots

    NASA Astrophysics Data System (ADS)

    Smoot, N. Christian; King, Robert E.

    1993-01-01

    Slump and debris slides form on seamounts as they grow, age, and are transported across the sea floor. Slump scars, evident as amphitheater headwalls, are a good morphological indicator where a landslide has occurred. Radical changes in the lower flank slope angles are also good indicators. Debris flows can be surmised by hummocky topography, with the larger blocks being nearer the main edifice. A cursory inspection of the Pacific plate from younger to older shows: (1) the Hawaiian-Emperor Ridge from Loihi to Suiko at 65 Ma, where the lower flank slopes increase with age, (2) Mammerickx seamount in the Mapmakers on 140 Ma crust, out of the fractured region, still showing moats and having no sign of landslides, (3) Castor and Pollux guyots of the Michelson Ridge on 150 Ma crust, where the debris field size is added to or overprinted by later volcanics, to (4) Hunk, Jennings, and Jaybee guyots in the Marcus-Wake seamounts on 160 Ma crust, where later fracture zone formation may have helped form landslides. None of the older seamounts have been dated. Three-dimensional views aid in the location and description of landslides.

  19. Three-Dimensional Numerical Simulations of Liquid Laminar Flow over Superhydrophobic Surfaces with Post Geometries

    NASA Astrophysics Data System (ADS)

    Amin, Abolfazl

    2011-12-01

    Frictional resistance reduction of liquid flow over surfaces has recently become a more important topic of research in the field of fluid dynamics. Scientific and technological progress and continued interest in nano and micro-technology have required new developments and approaches related to reducing frictional resistance, especially in liquid flow through nano and micro-channels. The application of superhydrophobic surfaces could be very effective in achieving the desired flow through such small channels. Superhydrophobic surfaces are created by intentionally creating roughnesses on the surface and applying a uniform hydrophobic coating to the entire surface. Liquid droplet tests have revealed that because of the trapped air within the cavities such surfaces could have contact angles as high as 179º. Such a property gives superhydrophobic surfaces liquid repelling characteristics making them very suitable for frictional resistance reduction in liquid flow through nano or micro-channels, provided wetting of the cavities could be avoided. This study presents 3-D numerical simulation results of liquid laminar flow over post patterned superhydrophobic surfaces. The research was performed in three phases, 1) pressure-driven flow with square micro-posts, 2) Couette flow with square micro-posts, and 3) pressure-driven flow with rectangular micro-posts at various aspect ratios. In phases (1) and (2) the influences of important parameters such as the cavity fraction, in the range of 0.0-0.9998, and the relative module width, from 0.01 to 1.5, on frictional resistance reduction in the creeping flow regime were explored. Phase (1) also addressed the effect of varying Reynolds number from 1 to 2500 on frictional resistance. Phase (3) was conducted for aspect ratios of 1/8, 1/4, 1/2, 2, 4, and 8 also in the creeping flow regime. The obtained results suggest that important parameters such as cavity fraction (relative area of the cavities), relative module width (combined

  20. Surface-step defect in three-dimensional topological insulators: Electric manipulation of spin and quantum spin Hall effect

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Feng; Guo, Ai-Min; Sun, Qing-Feng

    2016-08-01

    We study the influence of a step defect on surface states in three-dimensional topological insulators subject to a perpendicular magnetic field. By calculating the energy spectrum of the surface states, we find that Landau levels (LLs) can form on flat regions of the surface and are distant from the step defect, and several subbands emerge at the side surface of the step defect. The subband which connects to the two zeroth LLs is spin polarized and chiral. In particular, when the electron transports along the side surface, the electron spin direction can be manipulated arbitrarily by gate voltage. Also, no reflection occurs even if the electron spin direction is changed. This provides a fascinating avenue to control the electron spin easily and coherently. In addition, regarding the subbands with a high LL index, there exist spin-momentum locking helical states and the quantum spin Hall effect can appear.

  1. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment

    NASA Astrophysics Data System (ADS)

    Cao, Z.; Walsh, J. L.; Kong, M. G.

    2009-01-01

    This letter reports on electrical and optical characteristics of a ten-channel atmospheric pressure glow discharge jet array in parallel electric and gas flow fields. Challenged with complex three-dimensional substrates including surgical tissue forceps and sloped plastic plate of up to 15°, the jet array is shown to achieve excellent jet-to-jet uniformity both in time and in space. Its spatial uniformity is four times better than a comparable single jet when both are used to treat a 15° sloped substrate. These benefits are likely from an effective self-adjustment mechanism among individual jets facilitated by individualized ballast and spatial redistribution of surface charges.

  2. Absolute three-dimensional micro surface profile measurement based on a Greenough-type stereomicroscope

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chen, Qian; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-04-01

    Fringe projection profilometry has become a widely used method in 3D shape measurement and 3D data acquisition for the features of flexibility, noncontactness, and high accuracy. By combining fringe projection setup with microscopic optics, the fringe pattern can be projected and imaged within a small area, making it possible for measuring 3D surfaces of micro-components. In this paper, a Greenough-type stereomicroscope arrangement is firstly applied for this situation by using the two totally separated and coaxial optical paths of the stereomicroscope. The calibration framework of the stereomicroscope-based system is proposed, which enables high-accuracy calibration of the optical setup for quantitative measurement with the effect of lens distortion eliminated. In the process of 3D reconstruction, depth information is firstly retrieved through the phase-height relation calibrated by a nonlinear fitting algorithm, and the transverse position can be subsequently obtained by solving the equations derived from the calibrated model of the camera. Experiments of both calibration and measurements are conducted and the results reveal that our system is capable of conducting fully automated 3D measurements with a depth accuracy of approximately 4 μm in a volume of approximately 8(L) mm  ×  6(W) mm  ×  3(H) mm.

  3. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    SciTech Connect

    Zhuo, Shuangmu E-mail: hanry-yu@nuhs.edu.sg; Yan, Jie; Kang, Yuzhan; Peng, Qiwen; and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  4. A three-dimensional He-CO potential energy surface with improved long-range behavior

    NASA Astrophysics Data System (ADS)

    McBane, George C.

    2016-12-01

    A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.

  5. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.

    PubMed

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.

  6. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel

    PubMed Central

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468

  7. Characterization of three-dimensional field distribution of bowtie aperture using quasi-spherical waves and surface plasmon polaritons

    PubMed Central

    Park, Changhoon; Jung, Howon; Hahn, Jae W.

    2017-01-01

    We present an analytical formula to predict the three-dimensional field distribution of a nanoscale bowtie aperture using quasi-spherical waves (QSWs) and surface plasmon polaritons, which are excited by the fundamental waveguide mode and local plasmons of the aperture, respectively. Assuming two separate bowtie apertures in a metal film, we analysed the decay characteristics of QSWs using a finite difference time-domain method. To verify the formula, we recorded the spot patterns of the bowtie aperture on a photoresist film using various exposure times, and fit the patterns to the analytical formula in terms of the width and depth of the patterns. In addition, it was found that the formula successfully represented the dipole characteristics of the spot patterns, which were in agreement with the surface geometry, with a root-mean-square error of 9.4%. We expect that our theoretical formula will extend the potential applications of nanoscale bowtie apertures to plasmonic device fabrication, three-dimensional plasmonic lithography, and other technologies. PMID:28358013

  8. Characterization of three-dimensional field distribution of bowtie aperture using quasi-spherical waves and surface plasmon polaritons.

    PubMed

    Park, Changhoon; Jung, Howon; Hahn, Jae W

    2017-03-30

    We present an analytical formula to predict the three-dimensional field distribution of a nanoscale bowtie aperture using quasi-spherical waves (QSWs) and surface plasmon polaritons, which are excited by the fundamental waveguide mode and local plasmons of the aperture, respectively. Assuming two separate bowtie apertures in a metal film, we analysed the decay characteristics of QSWs using a finite difference time-domain method. To verify the formula, we recorded the spot patterns of the bowtie aperture on a photoresist film using various exposure times, and fit the patterns to the analytical formula in terms of the width and depth of the patterns. In addition, it was found that the formula successfully represented the dipole characteristics of the spot patterns, which were in agreement with the surface geometry, with a root-mean-square error of 9.4%. We expect that our theoretical formula will extend the potential applications of nanoscale bowtie apertures to plasmonic device fabrication, three-dimensional plasmonic lithography, and other technologies.

  9. Measurements of surface shear stresses under a three-dimensional turbulent boundary layer using oil-film laser interferometry

    NASA Astrophysics Data System (ADS)

    Ailinger, K. G.; Simpson, R. L.

    1990-04-01

    Measurements of surface shear stress magnitude and direction are reported for a three-dimensional, pressure driven, turbulent boundary layer around a wing body junction. Measurements were made using a dual-beam oil film laser interferometer at 56 locations. An iterative procedure was developed which increased the precision of the data extracted from the data records. Skin friction directions computed using a least square error fit were compared to angles obtained from surface oil flows, hot wire anemometry, and LDV measurements. Also, the magnitude of the skin friction coefficients were compared to independently obtained skin friction coefficients. The data agreed to within experimental error outside the effects from the vortex legs present along the side of the wing-body. No accurate data was available for quantitative comparison under the effects of the vortex, but the magnitudes followed the qualitative trends expected. This method failed badly in the region of large three-dimensional effects and requires further study in this area of application.

  10. Observation of the Degradation Characteristics and Scale of Unevenness on Three-dimensional Artificial Rock Joint Surfaces Subjected to Shear

    NASA Astrophysics Data System (ADS)

    Hong, Eun-Soo; Kwon, Tae-Hyuk; Song, Ki-Il; Cho, Gye-Chun

    2016-01-01

    The present study explores the degradation characteristics and scale of unevenness (small-scale roughness) on sheared rock joint surfaces at a low-stress regime. While the degradation characteristics of unevenness and the normal stress are mutually interrelated, an understanding of the degradation patterns of the three-dimensional roughness of rock joints is one of the important components needed to identify asperity failure characteristics and to quantify the role of damaged unevenness in establishing a shear strength model. A series of direct shear tests was performed on three-dimensional artificial rock joint surfaces at different normal stress levels. After shearing, the spatial distributions and statistical parameters of degraded roughness were analysed for the different normal stress levels. The length and area of the degraded zones showed bell-shaped distributions in a logarithmic scale, and the dominant scale (or the most frequently occurring scale) of the damaged asperities (i.e., unevenness) ranged from approximately, 0.5 to 5.0 mm in length and 0.1-10 mm2 in area. This scale of the damaged unevenness was consistent regardless of the level of normal stress. It was also found that the relative area of damaged unevenness on a given joint area, and thus the contribution of the mechanical asperity failure component to shear strength increased as normal stress increased.

  11. Pointwise assessment of three-dimensional computer reconstruction of mitral leaflet surfaces from rotationally scanned echocardiograms in vitro.

    PubMed

    Bashein, Gerard; Legget, Malcolm E; Detmer, Paul R

    2004-03-01

    Three-dimensional transesophageal echocardiography offers promise for improved understanding of mitral leaflet pathology, but it has not been validated quantitatively, nor has the minimum number of imaging planes for satisfactory reconstruction been determined with a rotational scanning geometry. This study assessed its accuracy in vitro by comparing, on a 1 x 1-mm grid, the surfaces of mitral leaflets derived from 5-degree rotational ultrasonic scans with those derived from laser scans of casts of the atrial side of the leaflets. Overall, the ultrasonically derived surface had a mean absolute deviation of 0.65 +/- 0.12 mm from the laser-derived surface. Using only alternate imaging planes (10-degree increments) made no significant difference in the overall distribution of deviations (P =.56), although the distributions on some individual specimens differed markedly. We conclude that 5-degree rotational scanning in vitro can reconstruct the mitral valve leaflets with sufficient accuracy and detail to render clinically important features.

  12. Simulated Contact Angle Hysteresis of a Three-Dimensional Drop on a Chemically Heterogeneous Surface: A Numerical Example

    PubMed

    Brandon; Wachs; Marmur

    1997-07-01

    A public domain software package is employed in the quasi-steady-state simulation of contact angle hysteresis. Three-dimensional sessile drops in equilibrium with a model chemically heterogeneous smooth solid surface are considered; evolving drop shapes, as a function of incremental changes in their volume, are investigated. Results are presented for a model system in which the intrinsic contact angle is assumed to vary along the surface in a periodic manner. Throughout the simulation, calculated contact angles show reasonable agreement with the local intrinsic contact angle values, and the computed drop shapes are found to be constant mean curvature surfaces. Significant hysteresis in the liquid-fluid interface curvature and average contact angle is found; a complete hysteresis loop is simulated. Advancing and receding contact angles exhibit the "stick-slip" behavior observed in experiments as well as in previous 2-D simulations.

  13. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  14. Three dimensional surface displacement of the Sichuan earthquake (Mw 7.9, China) from Synthetic Aperture Radar.

    NASA Astrophysics Data System (ADS)

    de Michele, Marcello; Raucoules, Daniel; de Sigoyer, Julia; Pubellier, Manuel; Lasserre, Cecile; Pathier, Erwan; Klinger, Yann; van der Woerd, Jerome; Chamot-Rooke, Nicolas

    2010-05-01

    The Sichuan earthquake, Mw 7.9, struck the Longmen Shan range front, in the western Sichuan province, China, on 12 May 2008. It severely affected an area where little historical seismicity and little or no significant active shortening were reported before the earthquake (e.g. Gu et al., 1989; Chen et al., 1994; Gan et al., 2007). The Longmen Shan thrust system bounds the eastern margin of the Tibetan plateau and is considered as a transpressive zone since Triassic time that was reactivated during the India-Asia collision (e.g., Tapponnier and Molnar, 1977, Chen and Wilson 1996; Arne et al., 1997, Godard et al., 2009). However, contrasting geological evidences of sparse thrusting and marked dextral strike-slip faulting during the Quaternary along with high topography (Burchfiel et al., 1995; Densmore et al., 2007) have led to models of dynamically driven and sustained topography (Royden et al., 1997) limiting the role of earthquakes in relief building and leaving the mechanism of long term strain distribution in this area as an open question. Here we combine C and L band Synthetic Aperture Radar (SAR) offsets data from ascending and descending paths to retrieve the three dimensional surface displacement distribution all along the earthquake ruptures of the Sichuan earthquake. For the first time on this earthquake we present near field 3D co-seismic surface displacement, which is an important datum for constraining modelled fault geometry at depth. Our results complement other Interferometric Synthetic Aperture Radar (InSAR) and field analyses in indicating that crustal shortening is one of the main drivers for topography building in the Longmen Shan (Liu-Zeng, 2009; Shen et al., 2009; Hubbard and Shaw, 2009). Moreover, our results put into evidence a small but significant amount of displacement in the range front that we interpret as due to slip at depth on a blind structure. We verify this hypothesis by inverting the data against a simple elastic dislocation model

  15. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    SciTech Connect

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; Ryu, Won -Hee; Gittleson, Forrest S.; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; Bordeenithikasem, Punnathat; Kinser, Emily; Liu, Yanhui; Tong, Xiao; Osuji, Chinedum; Schroers, Jan; Mukherjee, Sundeep; Taylor, Andre D.

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  16. CFD simulation of two- and three-dimensional free-surface flow

    NASA Astrophysics Data System (ADS)

    Apsley, David; Hu, Wei

    2003-06-01

    The paper describes the implementation of moving-mesh and free-surface capabilities within a 3-d finite-volume Reynolds-averaged-Navier-Stokes solver, using surface-conforming multi-block structured meshes. The free-surface kinematic condition can be applied in two ways: enforcing zero net mass flux or solving the kinematic equation by a finite-difference method. The free surface is best defined by intermediate control points rather than the mesh vertices. Application of the dynamic boundary condition to the piezometric pressure at these points provides a hydrostatic restoring force which helps to eliminate any unnatural free-surface undulations. The implementation of time-marching methods on moving grids are described in some detail and it is shown that a second-order scheme must be applied in both scalar-transport and free-surface equations if flows driven by free-surface height variations are to be computed without significant wave attenuation using a modest number of time steps. Computations of five flows of theoretical and practical interest - forced motion in a pump, linear waves in a tank, quasi-1d flow over a ramp, solitary wave interaction with a submerged obstacle and 3-d flow about a surface-penetrating cylinder - are described to illustrate the capabilities of our code and methods.

  17. Three-dimensional wavelet transform and multiresolution surface reconstruction from volume data

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Sloan, Kenneth R., Jr.

    1995-04-01

    Multiresolution surface reconstruction from volume data is very useful in medical imaging, data compression and multiresolution modeling. This paper presents a hierarchical structure for extracting multiresolution surfaces from volume data by using a 3-D wavelet transform. The hierarchical scheme is used to visualize different levels of detail of the surface and allows a user to explore different features of the surface at different scales. We use 3-D surface curvature as a smoothness condition to control the hierarchical level and the distance error between the reconstructed surface and the original data as the stopping criteria. A 3-D wavelet transform provides an appropriate hierarchical structure to build the volume pyramid. It can be constructed by the tensor products of 1-D wavelet transforms in three subspaces. We choose the symmetric and smoothing filters such as Haar, linear, pseudoCoiflet, cubic B-spline and their corresponding orthogonal wavelets to build the volume pyramid. The surface is reconstructed at each level of volume data by using the cell interpolation method. Some experimental results are shown through the comparison of the different filters based on the distance errors of the surfaces.

  18. Quantum and classical study of surface characterization by three-dimensional helium atom scattering.

    PubMed

    Moix, Jeremy M; Pollak, Eli; Allison, William

    2011-01-14

    Exact time-dependent wavepacket calculations of helium atom scattering from model symmetric, chiral, and hexagonal surfaces are presented and compared with their classical counterparts. Analysis of the momentum distribution of the scattered wavepacket provides a convenient method to obtain the resulting energy and angle resolved scattering distributions. The classical distributions are characterized by standard rainbow scattering from corrugated surfaces. It is shown that the classical results are closely related to their quantum counterparts and capture the qualitative features appearing therein. Both the quantum and classical distributions are capable of distinguishing between the structures of the three surfaces.

  19. Wiedemann-Franz-type relation between shot noise and thermal conduction of Majorana surface states in a three-dimensional topological superconductor

    NASA Astrophysics Data System (ADS)

    Gnezdilov, N. V.; Diez, M.; Pacholski, M. J.; Beenakker, C. W. J.

    2016-09-01

    We compare the thermal conductance Gthermal (at temperature T ) and the electrical shot-noise power Pshot (at bias voltage V ≫kBT /e ) of Majorana fermions on the two-dimensional surface of a three-dimensional topological superconductor. We present analytical and numerical calculations to demonstrate that, for a local coupling between the superconductor and metal contacts, Gthermal/Pshot=L T /e V (with L the Lorenz number). This relation is ensured by the combination of electron-hole and time-reversal symmetries, irrespective of the microscopics of the surface Hamiltonian, and provides for a purely electrical way to detect the charge-neutral Majorana surface states. A surface of aspect ratio W /L ≫1 has the universal shot-noise power Pshot=(W /L ) ×(e2/h ) ×(e V /2 π ) .

  20. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    NASA Technical Reports Server (NTRS)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  1. Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing

    NASA Astrophysics Data System (ADS)

    Chen, Haiping Matthew; Pang, Lin; Kher, Aditya; Fainman, Yeshaiahu

    2009-02-01

    The authors simulated, fabricated, and characterized a mushroomlike composite metallodielectric nanostructure that shows improved characteristics for surface plasmon resonance sensing applications with an enhancement in the normal electric field compared to the conventional nanohole structure. A fabrication method is introduced to give controllable linewidth by an oblique metal deposition process. A sensor built with the composite nanostructure was then used to determine the hydrophilicity of its surface by monitoring the resonant wavelength shift and computing the corresponding adsorption thickness.

  2. Bulk and surface phase transitions in the three-dimensional O(4) spin model

    NASA Astrophysics Data System (ADS)

    Deng, Youjin

    2006-05-01

    We investigate the O(4) spin model on the simple-cubic lattice by means of the Wolff cluster algorithm. Using the toroidal boundary condition, we locate the bulk critical point at coupling Kc=0.935856(2) , and determine the bulk thermal magnetic renormalization exponents as yt=1.3375(15) and yh=2.4820(2) , respectively. The universal ratio Q=⟨m2⟩2/⟨m4⟩ is also determined as 0.9142(1). The precision of these estimates significantly improves over that of the existing results. Then, we simulate the critical O(4) model with two open surfaces on which the coupling strength K1 can be varied. At the ordinary transitions, the surface magnetic exponent is determined as yh1(o)=1.0202(12) . Further, we find a so-called special surface transition at κ=K1/K-1=1.258(20) . At this point, the surface thermal exponent yt1(s) is rather close to zero, and we cannot exclude that the corresponding surface transition is Kosterlitz-Thouless-like. The surface magnetic exponent is yh1(s)=1.816(2) .

  3. Bulk and surface phase transitions in the three-dimensional O4 spin model.

    PubMed

    Deng, Youjin

    2006-05-01

    We investigate the O(4) spin model on the simple-cubic lattice by means of the Wolff cluster algorithm. Using the toroidal boundary condition, we locate the bulk critical point at coupling K(c) = 0.935 856(2), and determine the bulk thermal magnetic renormalization exponents as y(t) = 1.337 5(15) and y(h) = 2.482 0(2), respectively. The universal ratio Q=m(2)(2)/m(4) is also determined as 0.9142(1). The precision of these estimates significantly improves over that of the existing results. Then, we simulate the critical O(4) model with two open surfaces on which the coupling strength K(1) can be varied. At the ordinary transitions, the surface magnetic exponent is determined as y((o))(h1) = 1.020 2(12). Further, we find a so-called special surface transition at (k) = K(1)/K-1 = 1.258(20). At this point, the surface thermal exponent y(s)(t1) is rather close to zero, and we cannot exclude that the corresponding surface transition is Kosterlitz-Thouless-like. The surface magnetic exponent is y((s))/h1 = 1.816(2).

  4. Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment.

    PubMed

    Snyder, Jessica E; Hunger, Philipp M; Wang, Chengyang; Hamid, Qudus; Wegst, Ulrike G K; Sun, Wei

    2014-03-01

    An engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is produced using a two-stage manufacturing process which superimposes a printed porous alginate (Alg) network and a directionally frozen ceramic-polymer matrix. The combination of two processes, multi-nozzle deposition and freeze casting, provides engineering control of the microenvironment of the scaffolds over several length scales; including the addition of lateral porosity and the ratio of polymer to ceramic microstructures. The printed polymer scaffold is submerged in a ceramic-polymer slurry and subsequently, both structures are directionally frozen (freeze cast), superimposing and patterning both microenvironments into a single hierarchical architecture. An optional additional sintering step removes the organic material and densifies the ceramic phase to produce a well-defined network of open pores and a homogenous cell wall material composition. The techniques presented in this contribution address processing challenges, such as structure definition, reproducibility and fine adjustments of unique length scales, which one typically encounters when fabricating topological channels between longitudinal and transverse porous networks.

  5. A three-dimensional phase diagram of growth-induced surface instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Zhao, Xuanhe

    2015-03-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities.

  6. A three-dimensional phase diagram of growth-induced surface instabilities.

    PubMed

    Wang, Qiming; Zhao, Xuanhe

    2015-03-09

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities.

  7. An efficient model for three-dimensional surface wave simulations. Part II: Generation and absorption

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Fructus, Dorian; Grue, John; Kristiansen, Øyvind

    2005-05-01

    Water wave generation procedures and efficient numerical beaches are crucial components of a fully non-linear numerical tank for water wave simulations. Linear formulae for pneumatic wave makers are optimized for efficient fully non-linear wave generation in three dimensions. Analytical integration of the (linear) applied free surface pressure provides formulae valid for all times of the simulation. The purely non-linear part of the wave making procedure becomes integrated in the fully non-linear formulation. Novel numerical beaches are introduced, damping the (scaled) tangential velocity at the free surface. More specifically, an additional term is introduced in the Bernoulli equation at the free surface, namely ∇-1·(γ∇ϕ˜), where γ is a non-zero (smooth) function in regions where damping is required and zero in the wave propagation domain, ∇ϕ˜ is the scaled tangential velocity at the free surface, and ∇ -1 the inverse horizontal gradient operator. The new term results in a modified dynamic free surface condition which is integrated in time in the fully non-linear formulation. Extensive numerical tests show that the energy of the outgoing waves is completely absorbed by the new damper. Neither wave reflection nor emission are observed. A steep solitary wave is completely absorbed at the numerical beach. Damping of waves due to advancing pressure distributions are efficient as well. The implementation of the absorber in any existing numerical tank is rather trivial.

  8. A three-dimensional phase diagram of growth-induced surface instabilities

    PubMed Central

    Wang, Qiming; Zhao, Xuanhe

    2015-01-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities. PMID:25748825

  9. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  10. A three-dimensional analysis of the geometry and curvature of the proximal tibial articular surface of hominoids

    NASA Astrophysics Data System (ADS)

    Landis, Emily K.; Karnick, Pushpak

    2006-02-01

    This study uses new three-dimensional imaging techniques to compare the articular curvature of the proximal tibial articular surface of hominoids. It has been hypothesized that the curvature of the anteroposterior contour of the lateral condyle in particular can be used to differentiate humans and apes and reflect locomotor function. This study draws from a large comparative sample of extant hominoids to obtain quantitative curvature data. Three-dimensional models of the proximal tibiae of 26 human, 15 chimpanzee, 15 gorilla, 17 orangutan, 16 gibbon and four Australopithecus fossil casts (AL 129-1b, AL 288-1aq, AL 333x-26, KNM-KP 29285A) were acquired with a Cyberware Model 15 laser digitizer. Curvature analysis was accomplished using a software program developed at Arizona State University's Partnership for Research In Stereo Modeling (PRISM) lab, which enables the user to extract curvature profiles and compute the difference between analogous curves from different specimens. Results indicate that the curvature of chimpanzee, gorilla and orangutan tibiae is significantly different from the curvature of human tibiae, thus supporting the hypothesized dichotomy between humans and great apes. The non-significant difference between gibbons and all other taxa indicates that gibbons have an intermediate pattern of articular curvature. All four Australopithecus tibia were aligned with the great apes.

  11. The surface morphology analysis based on progressive approximation method using confocal three-dimensional micro X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Sun, Tianxi; Wang, Kai; Qin, Min; Yang, Kui; Wang, Jinbang; Liu, Zhiguo

    2016-08-01

    Confocal three-dimensional micro X-ray fluorescence (3D MXRF) is an excellent surface analysis technology. For a confocal structure, only the X-rays from the confocal volume can be detected. Confocal 3D MXRF has been widely used for analysing elements, the distribution of elements and 3D image of some special samples. However, it has rarely been applied to analysing surface topography by surface scanning. In this paper, a confocal 3D MXRF technology based on polycapillary X-ray optics was proposed for determining surface topography. A corresponding surface adaptive algorithm based on a progressive approximation method was designed to obtain surface topography. The surface topography of the letter "R" on a coin of the People's Republic of China and a small pit on painted pottery were obtained. The surface topography of the "R" and the pit are clearly shown in the two figures. Compared with the method in our previous study, it exhibits a higher scanning efficiency. This approach could be used for two-dimensional (2D) elemental mapping or 3D elemental voxel mapping measurements as an auxiliary method. It also could be used for analysing elemental mapping while obtaining the surface topography of a sample in 2D elemental mapping measurement.

  12. Skyrmion-induced bound states on the surface of three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Andrikopoulos, Dimitrios; Sorée, Bart; De Boeck, Jo

    2016-05-01

    The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number NSk. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.

  13. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide

    NASA Astrophysics Data System (ADS)

    Delbridge, Brent G.; Bürgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William H.

    2016-05-01

    In order to provide surface geodetic measurements with "landslide-wide" spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ˜2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.

  14. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  15. Three-dimensional low Reynolds number flows with a free surface

    NASA Technical Reports Server (NTRS)

    Degani, D.; Gutfinger, C.

    1977-01-01

    The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).

  16. Three-dimensional surface deformation mapping by convensional interferometry and multiple aperture interferometry

    USGS Publications Warehouse

    Jung, H.-S.; Lu, Zhiming; Lee, C.-W.

    2011-01-01

    Interferometric synthetic aperture radar (InSAR) technique has been successfully used for mapping surface deformations [1-2], but it has been normally limited to a measurement along the radar line-of-sight (LOS) direction. For this reason, it is impossible to determine the north (N-S) component of surface deformation because of using data from near-polar orbiting satellites, and it is not sufficient to resolve the parameters of models for earthquakes and volcanic activities because there is a marked trade-off among model parameters [3]. ?? 2011 KIEES.

  17. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-07-01

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  18. Humans Use Predictive Kinematic Models to Calibrate Visual Cues to Three-Dimensional Surface Slant

    PubMed Central

    Glennerster, Andrew

    2014-01-01

    When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball's bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants, and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world. PMID:25080598

  19. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Qin, Min; Wang, Kai; Lin, Xue; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo

    2016-09-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces.

  20. Morphology of foliar trichomes of the Chinese cork oak Quercus variabilis by electron microscopy and three-dimensional surface profiling.

    PubMed

    Kim, Ki Woo; Cho, Do-Hyun; Kim, Pan-Gi

    2011-06-01

    Morphology of foliar trichomes was analyzed in Quercus variabilis by electron microscopy and three-dimensional surface profiling. Leaves from suppressed or dominant sprouts of the oak species were collected after a forest fire to unravel the effects of the disturbance factor on sprouting of the oak species. Scanning electron microscopy revealed two types of trichomes depending on the leaf surface. The trichomes on the adaxial surface were branched and constricted, and possessed a single row of thin-walled cells with a collapsed morphology (glandular branched uniseriate trichomes). Meanwhile, the trichomes on the abaxial surface were star-shaped, unfused with each other, and had 6 to 10 rays (nonglandular simple stellate trichomes). An apparent proliferation of trichomes was evident on the adaxial surface of the dominant sprouts. Uniseriate trichomes could be discernable as an elevation from the surface by white light scanning interferometry. By transmission electron microscopy, thin and convoluted cell wall, degenerated cytoplasm, and a single row of cells were characteristic of the trichomes on the adaxial surface. The thick cell walls of the mature trichomes on the abaxial surface represented the nonglandular nature. This is the first report on the morphological and ultrastructural characterization of foliar trichomes of the oak species.

  1. Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

    SciTech Connect

    Loizu, J.; Hudson, S.; Bhattacharjee, A.; Helander, P.

    2015-02-15

    Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.

  2. An optical profilometer for spatial characterization of three-dimensional surfaces

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Burcher, E. E.; Skolaut, M. W., Jr.

    1977-01-01

    The design concept and system operation of an optical profilometer are discussed, and a preliminary evaluation of a breadboard system is presented to demonstrate the feasibility of the optical profilometer technique. Measurement results are presented for several test surfaces; and to illustrate a typical application, results are shown for a cleft palate cast used by dental surgeons. Finally, recommendations are made for future development of the optical profilometer technique for specific engineering or scientific applications.

  3. Three-Dimensional Finite Difference Modeling of Surface Wave Propagation Across the Barents Shelf

    DTIC Science & Technology

    1991-10-01

    crust in the vicinity of Spitsbergen and Franz Josef Land. For propagation paths to Europe, Greenland, and North America the surface waves must... Franz Josef Land, to the southwest by the Kola and Kanin Peninsulas, and to the south by the Pechora Basin. Novaya Zemlya is considered an extension...reduced sedimentary cover. Similarly, the Svalbard platform and regions around Spitsbergen and Franz Josef Land to the north are continental crust (40 kin

  4. Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect

    NASA Astrophysics Data System (ADS)

    Vishwanath, Ashvin; Senthil, T.

    2013-01-01

    We discuss physical properties of “integer” topological phases of bosons in D=3+1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free-fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response θ, which, somewhat surprisingly, is an odd multiple of 2π. Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term. The second invokes vortices on the surface that transform under a projective representation of the symmetry group. We identify a bulk-field theory consistent with these properties, which is a multicomponent background-field theory supplemented, crucially, with a topological term. We also provide bulk sigma-model field theories of these phases and discuss a possible topological phase characterized by the thermal analog of the magnetoelectric effect.

  5. Three Dimensional Dynamics of Freshwater Lenses in the Oceans Near Surface Layer

    DTIC Science & Technology

    2016-09-14

    produce lenses of freshened water on the ocean surface. Due to significant density differences between the freshened and saltier seawater, strong... water mass exchange by horizontal advection and enhanced vertical mixing. As buoyancy- driven flows, they are a type of organized structure that...resembles a classical grav- ity current. The water flow in the lead- ing edge of the gravity current and trail- ing fluid contains a complex pattern of

  6. Integration of remote sensing based surface information into a three-dimensional microclimate model

    NASA Astrophysics Data System (ADS)

    Heldens, Wieke; Heiden, Uta; Esch, Thomas; Mueller, Andreas; Dech, Stefan

    2017-03-01

    Climate change urges cities to consider the urban climate as part of sustainable planning. Urban microclimate models can provide knowledge on the climate at building block level. However, very detailed information on the area of interest is required. Most microclimate studies therefore make use of assumptions and generalizations to describe the model area. Remote sensing data with area wide coverage provides a means to derive many parameters at the detailed spatial and thematic scale required by urban climate models. This study shows how microclimate simulations for a series of real world urban areas can be supported by using remote sensing data. In an automated process, surface materials, albedo, LAI/LAD and object height have been derived and integrated into the urban microclimate model ENVI-met. Multiple microclimate simulations have been carried out both with the dynamic remote sensing based input data as well as with manual and static input data to analyze the impact of the RS-based surface information and the suitability of the applied data and techniques. A valuable support of the integration of the remote sensing based input data for ENVI-met is the use of an automated processing chain. This saves tedious manual editing and allows for fast and area wide generation of simulation areas. The analysis of the different modes shows the importance of high quality height data, detailed surface material information and albedo.

  7. Three-dimensional surface reconstruction for evaluation of the abrasion effects on textile fabrics

    NASA Astrophysics Data System (ADS)

    Mendes, A. O.; Fiadeiro, P. T.; Miguel, R. A. L.

    2006-02-01

    Abrasion is responsible for many surface changes that occur on garments. For this reason, the evaluation of its effects becomes very important for the textile industry. In particular, pilling formation is a phenomenon that results of the abrasion process and affects fabrics more significantly altering their surface severely. The present work presents a method based on optical triangulation that enables topographic reconstructions of textile fabric samples and consequently, makes possible the evaluation and the quantification of the pilling formation that results from their topographic changes. Specific algorithms, written in the MatLab programming language, were developed and implemented to control the image data acquisition, storage and processing procedures. Finally, with the available processed data was possible to reconstruct the surface of fabric samples in three-dimensions and also, a coefficient to express the pilling formation occurred on the analyzed fabrics was achieved. Several tests and experiences have been carried out and the obtained results shown that this method is robust and precise.

  8. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction.

    PubMed

    Baykara, Mehmet Z; Dagdeviren, Omur E; Schwendemann, Todd C; Mönig, Harry; Altman, Eric I; Schwarz, Udo D

    2012-01-01

    Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

  9. Three-dimensional analysis of surface crack-Hertzian stress field interaction

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Hsu, Y.

    1989-01-01

    The results are presented of a stress intensity factor analysis of semicircular surface cracks in the inner raceway of an engine bearing. The loading consists of a moving spherical Hertzian contact load and an axial stress due to rotation and shrink fit. A 3-D linear elastic Boundary Element Method code was developed to perform the stress analysis. The element library includes linear and quadratic isoparametric surface elements. Singular quarter point elements were employed to capture the square root displacement variation and the inverse square root stress singularity along the crack front. The program also possesses the capability to separate the whole domain into two subregions. This procedure enables one to solve nonsymmetric fracture mechanics problems without having to separate the crack surfaces a priori. A wide range of configuration parameters was investigated. The ratio of crack depth to bearing thickness was varied from one-sixtieth to one-fifth for several different locations of the Hertzian load. The stress intensity factors for several crack inclinations were also investigated. The results demonstrate the efficiency and accuracy of the Boundary Element Method. Moreover, the results can provide the basis for crack growth calculations and fatigue life prediction.

  10. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  11. Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae

    PubMed Central

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-01

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae. PMID:28139713

  12. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    PubMed Central

    2015-01-01

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953

  13. Three-Dimensional Surface Profile Intensity Correction for Spatially-Modulated Imaging

    PubMed Central

    Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2009-01-01

    We describe a non-contact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (µa) and reduced scattering (µs’) coefficients, based on geometric correction of the sample’s Lambertian (diffuse) reflectance intensity. Since the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the 3-dimensional object could be acquired and used to extract the object’s optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from 2- to 10-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40°. These data lay the foundation for employing structured light for quantitative imaging during surgery. PMID:19566337

  14. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  15. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  16. Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.

    2013-12-01

    After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the

  17. Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer.

    PubMed

    Assoul, M; Zahidi, M; Corcuff, P; Mignot, J

    1994-01-01

    The fast measurement of furrows or wrinkles requires the use of a non-contact device. We have chosen a laser detector based on a triangulation principle, using position-sensitive detectors. This apparatus has a sensitivity of about 2-3 microns for a vertical range > 1 mm; this vertical range can reach 8 mm. There is no contact between the detector and the surface and this reduces the measurement time because, while data are being transmitted, there is no decrease in the scanning speed as with earlier methods. We describe the device and its technical characteristics. The limits of use are shown in the measurement of low-amplitude defects (> 3-4 microns) and of wide defects of < or = 8 mm. Examples of software possibilities and practical applications related to skin microrelief, wrinkles and pathological cases, are also described.

  18. Dense surface reconstruction based on the fusion of monocular vision and three-dimensional flash light detection and ranging

    NASA Astrophysics Data System (ADS)

    Hao, Gangtao; Du, Xiaoping; Zhao, Jiguang; Chen, Hang; Song, Jianjun; Song, Yishuo

    2015-07-01

    A dense surface reconstruction approach based on the fusion of monocular vision and three-dimensional (3-D) flash light detection and ranging (LIDAR) is proposed. The texture and geometry information can be obtained simultaneously and quickly for stationary or moving targets with the proposed method. Primarily, our 2-D/3-D fusion imaging system including cameras calibration and an intensity-range image registration algorithm is designed. Subsequently, the adaptive block intensity-range Markov random field (MRF) with optimizing weights is presented to improve the sparse range data from 3-D flash LIDAR. Then the energy function is minimized quickly by conjugate gradient algorithm for each neighborhood system instead of the whole MRF. Finally, the experiments with standard depth datasets and real 2-D/3-D images demonstrate the validity and capability of the proposed scheme.

  19. Three dimensional surface analyses of pubic symphyseal faces of contemporary Japanese reconstructed with 3D digitized scanner.

    PubMed

    Biwasaka, Hitoshi; Sato, Kei; Aoki, Yasuhiro; Kato, Hideaki; Maeno, Yoshitaka; Tanijiri, Toyohisa; Fujita, Sachiko; Dewa, Koji

    2013-09-01

    Three dimensional pubic bone images were analyzed to quantify some age-dependent morphological changes of the symphyseal faces of contemporary Japanese residents. The images were synthesized from 145 bone specimens with 3D measuring device. Phases of Suchey-Brooks system were determined on the 3D pubic symphyseal images without discrepancy from those carried out on the real bones because of the high fidelity. Subsequently, mean curvatures of the pubic symphyseal faces to examine concavo-convex condition of the surfaces were analyzed on the 3D images. Average values of absolute mean curvatures of phase 1 and 2 groups were higher than those of phase 3-6 ones, whereas the values were approximately constant over phase 3 presumably reflecting the inactivation of pubic faces over phase 3. Ratio of the concave areas increased gradually with progressing phase or age classes, although convex areas were predominant in every phase.

  20. Three-Dimensional Flow of an Oldroyd-B Nanofluid towards Stretching Surface with Heat Generation/Absorption

    PubMed Central

    Azeem Khan, Waqar; Khan, Masood; Malik, Rabia

    2014-01-01

    This article addresses the steady three-dimensional flow of an Oldroyd-B nanofluid over a bidirectional stretching surface with heat generation/absorption effects. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are then solved analytically by using the homotpy analysis method (HAM). Graphically results are presented and discussed for various parameters, namely, Deborah numbers and , heat generation/absorption parameter Prandtl parameter , Brownian motion parameters, thermophoresis parameter and Lewis number . We have seen that the increasing values of the Brownian motion parameter and thermophoresis parameter leads to an increase in the temperature field and thermal boundary layer thickness while the opposite behavior is observed for concentration field and concentration boundary layer thickness. To see the validity of the present work, the numerical results are compared with the analytical solutions obtained by Homotopy analysis method and noted an excellent agreement for the limiting cases. PMID:25170945

  1. Fourier-transform microwave spectroscopy and determination of the three dimensional potential energy surface for Ar-CS.

    PubMed

    Niida, Chisato; Nakajima, Masakazu; Sumiyoshi, Yoshihiro; Ohshima, Yasuhiro; Kohguchi, Hiroshi; Endo, Yasuki

    2014-03-14

    Pure rotational transitions of the Ar-CS van der Waals complex have been observed by Fourier Transform Microwave (FTMW) and FTMW-millimeter wave double resonance spectroscopy. Rotational transitions of v(s) = 0, 1, and 2 were able to be observed for normal CS, together with those of C(34)S in v(s) = 0, where vs stands for the quantum number of the CS stretching vibration. The observed transition frequencies were analyzed by a free rotor model Hamiltonian, where rovibrational energies were calculated as dynamical motions of the three nuclei on a three-dimensional potential energy surface, expressed by analytical functions with 57 parameters. Initial values for the potential parameters were obtained by high-level ab initio calculations. Fifteen parameters were adjusted among the 57 parameters to reproduce all the observed transition frequencies with the standard deviation of the fit to be 0.028 MHz.

  2. Fourier-transform microwave spectroscopy and determination of the three dimensional potential energy surface for Ar–CS

    SciTech Connect

    Niida, Chisato; Nakajima, Masakazu; Endo, Yasuki; Sumiyoshi, Yoshihiro; Ohshima, Yasuhiro; Kohguchi, Hiroshi

    2014-03-14

    Pure rotational transitions of the Ar–CS van der Waals complex have been observed by Fourier Transform Microwave (FTMW) and FTMW-millimeter wave double resonance spectroscopy. Rotational transitions of v{sub s} = 0, 1, and 2 were able to be observed for normal CS, together with those of C{sup 34}S in v{sub s} = 0, where v{sub s} stands for the quantum number of the CS stretching vibration. The observed transition frequencies were analyzed by a free rotor model Hamiltonian, where rovibrational energies were calculated as dynamical motions of the three nuclei on a three-dimensional potential energy surface, expressed by analytical functions with 57 parameters. Initial values for the potential parameters were obtained by high-level ab initio calculations. Fifteen parameters were adjusted among the 57 parameters to reproduce all the observed transition frequencies with the standard deviation of the fit to be 0.028 MHz.

  3. Three-dimensional numerical simulation of crown spike due to coupling effect between bubbles and free surface

    NASA Astrophysics Data System (ADS)

    Han, Rui; Zhang, A.-Man; Li, Shuai

    2014-03-01

    The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated.

  4. Performance analysis of three-dimensional surface profilometry using a MEMS mirror

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxin; Li, Sining; Shan, Guohang

    2016-11-01

    Accurate 3-D shape measurement has played an increasingly important role in various diverse industrial applications, such as manufacturing, robot vision etc. To achieve a low cost, compact 3D profiling system, a phase shifting scheme with a single MEMS scanner has been proposed and studied by some international colleagues. In this paper, we establish mathematical model for the 3D profiling system to reconstruct surface contour of the object. A data processing flow chart is designed, and the algorithm is developed correspondingly, in which some means to improve accuracy are also taken into consideration. Then, numerical simulation for the whole work process of the profiling system is performed according to the theoretical model. The simulation results are analyzed in detail to get the optimal parameters. In order to verify the feasibility of the scheme, we build an experimental setup and carry out a series of experiments. The results show that the RMSE is about 6% and the range resolution is about a few millimeters.

  5. Three-dimensional imaging of objects focused on a selectogram surface

    NASA Astrophysics Data System (ADS)

    Denisyuk, Yuri N.; Ganzherli, Nina M.

    1994-10-01

    Selectogram characteristics are analyzed. The term selectogram stands for the structure obtained by recording the interference pattern of the radiation of an object and that of an extended reference source of light on an inclined photographic plate. Unlike a hologram, the selectogram reproduces 3-D images of objects by selecting definite components out of the radiation of an extended source whose phase distribution is not correlated with that of the reference source used at the recording stage. A case for which the image of the object being recorded is focused near the surface of the selectogram is described. It is shown that in this case, the angular size of an element determining the resolving power of the image reconstructed by the selectogram is equal to the double-angular width of a horizontal slit that filters the radiation of the object. The general structure of the radiation reconstructed by the selectogram is considered. It is shown that apart from the main image being observed through an output filtering slit, the selectogram reconstructs the multiplicity of distorted images of the object, which can be observed through horizontal stripes parallel to the filtering slit. It is pointed out that the total diffraction efficiency of all images reconstructed by the selectogram does not differ from that of a hologram. At the same time, the diffraction efficiency of the main image being observed through the output filtering slit is essentially decreased because of the presence of additional images. Ways to increase the diffraction efficiency of the selectogram are studied. Experimental data that prove these regularities are presented. Possible development of this method is discussed.

  6. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  7. Three-dimensional visualization of nanostructured surfaces and bacterial attachment using Autodesk® Maya®

    PubMed Central

    Boshkovikj, Veselin; Fluke, Christopher J.; Crawford, Russell J.; Ivanova, Elena P.

    2014-01-01

    There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya. Our approach comprises a semi-automated stage, where actual surface topographic parameters, obtained using an atomic force microscope, are imported into Maya via a custom Python script, followed by a ‘creative stage', where the bacterial cells and their interactions with the surfaces are visualized using available experimental data. The ‘Dynamics' and ‘nDynamics' capabilities of the Maya software allowed the construction and visualization of plausible interaction scenarios. This capability provides a practical aid to knowledge discovery, assists in the dissemination of research results, and provides an opportunity for an improved public understanding. We validated our approach by graphically depicting the interactions between the two bacteria being used for modeling purposes, Staphylococcus aureus and Pseudomonas aeruginosa, with different titanium substrate surfaces that are routinely used in the production of biomedical devices. PMID:24577105

  8. Three-dimensional visualization of nanostructured surfaces and bacterial attachment using Autodesk® Maya®

    NASA Astrophysics Data System (ADS)

    Boshkovikj, Veselin; Fluke, Christopher J.; Crawford, Russell J.; Ivanova, Elena P.

    2014-02-01

    There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya. Our approach comprises a semi-automated stage, where actual surface topographic parameters, obtained using an atomic force microscope, are imported into Maya via a custom Python script, followed by a `creative stage', where the bacterial cells and their interactions with the surfaces are visualized using available experimental data. The `Dynamics' and `nDynamics' capabilities of the Maya software allowed the construction and visualization of plausible interaction scenarios. This capability provides a practical aid to knowledge discovery, assists in the dissemination of research results, and provides an opportunity for an improved public understanding. We validated our approach by graphically depicting the interactions between the two bacteria being used for modeling purposes, Staphylococcus aureus and Pseudomonas aeruginosa, with different titanium substrate surfaces that are routinely used in the production of biomedical devices.

  9. Three-dimensional visualization of nanostructured surfaces and bacterial attachment using Autodesk® Maya®.

    PubMed

    Boshkovikj, Veselin; Fluke, Christopher J; Crawford, Russell J; Ivanova, Elena P

    2014-02-28

    There has been a growing interest in understanding the ways in which bacteria interact with nano-structured surfaces. As a result, there is a need for innovative approaches to enable researchers to visualize the biological processes taking place, despite the fact that it is not possible to directly observe these processes. We present a novel approach for the three-dimensional visualization of bacterial interactions with nano-structured surfaces using the software package Autodesk Maya. Our approach comprises a semi-automated stage, where actual surface topographic parameters, obtained using an atomic force microscope, are imported into Maya via a custom Python script, followed by a 'creative stage', where the bacterial cells and their interactions with the surfaces are visualized using available experimental data. The 'Dynamics' and 'nDynamics' capabilities of the Maya software allowed the construction and visualization of plausible interaction scenarios. This capability provides a practical aid to knowledge discovery, assists in the dissemination of research results, and provides an opportunity for an improved public understanding. We validated our approach by graphically depicting the interactions between the two bacteria being used for modeling purposes, Staphylococcus aureus and Pseudomonas aeruginosa, with different titanium substrate surfaces that are routinely used in the production of biomedical devices.

  10. Quality Control of Laser-Beam-Melted Parts by a Correlation Between Their Mechanical Properties and a Three-Dimensional Surface Analysis

    NASA Astrophysics Data System (ADS)

    Grimm, T.; Wiora, G.; Witt, G.

    2017-03-01

    Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.

  11. A spectral formalism for computing three-dimensional deformations due to surface loads. 2: Present-day glacial isostatic adjustment

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1994-01-01

    Using a spherically symmetric, self-gravitating, linear viscoelastic Earth model, we predict present-day three-dimensional surface deformation rates and baseline evolutions arising as a consequence of the late Pleistocene glacial cycles. In general, we use realistic models for the space-time geometry of the final late Pleistocene deglaciation event and incorporate a gravitationally self-consistent ocean meltwater redistribution. The predictions of horizontal velocity presented differ significantly, in both their amplitude and their spatial variation, from those presented in earlier analysis of others which adopted simplified models of both the late Pleistocene ice history and the Earth rheology. An important characteristic of our predicted velocity fields is that the melting of the Laurentide ice sheet over Canada is capable of contributing appreciably to the adjustment in Europe. The sensitivity of the predictions to variations in mantle rheology is investigated by considering a number of different Earth models, and by computing appropriate Frechet kernels. These calculations suggest that the sensitivity of the deformations to the Earth's rheology is significant and strongly dependent on the location of the site relative to the ancient ice sheet. The effects on the predictions of three-dimensional deformation rates of altering the ice history or adopting approximate models for the ocean meltwater redistribution have also been considered and found to be important (the former especially so). Finally, for a suite of Earth models we provide predictions of the velocity of a number of baselines in North America and Europe. We find that, in general, both radial and tangential motions contribute significantly to baseline length changes, and that these contributions are a strong function of the Earth model. We have, furthermore, found a set of Earth models which, together with the ICE-3G deglaciation chronology, produce predictions of baseline length changes that are

  12. Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi.

    PubMed

    Blevins, Erin L; Lauder, George V

    2012-09-15

    Rajiform locomotion in fishes is dominated by distinctive undulations of expanded pectoral fins. Unlike other fishes, which typically interact with the fluid environment via multiple fins, undulating rays modulate a single control surface, the pectoral disc, to perform pelagic locomotion, maneuvering and other behaviors. Complex deformations of the broad, flexible pectoral fins occur as the undulating wave varies in three dimensions; pectoral fin kinematics and changes in waveform with swimming speed cannot be fully quantified by two-dimensional analyses of the fin margin. We present the first three-dimensional analysis of undulatory rajiform locomotion in a batoid, the freshwater stingray Potamotrygon orbignyi. Using three cameras (250 frames s(-1)), we gathered three-dimensional excursion data from 31 points on the pectoral fin during swimming at 1.5 and 2.5 disc lengths s(-1), describing the propulsive wave and contrasting waveforms between swimming speeds. Only a relatively small region of the pectoral fin (~25%) undulates with significant amplitude (>0.5 cm). Stingrays can maintain extreme lateral curvature of the distal fin margin in opposition to induced hydrodynamic loads, 'cupping' the edge of the pectoral fin into the flow, with potential implications for drag reduction. Wave amplitude increases across both anteroposterior and mediolateral fin axes. Along the anteroposterior axis, amplitude increases until the wave reaches mid-disc and then remains constant, in contrast to angulliform patterns of continuous amplitude increase. Increases in swimming speed are driven by both wave frequency and wavespeed, though multivariate analyses reveal a secondary role for amplitude.

  13. Two-dimensional sectioned images and three-dimensional surface models for learning the anatomy of the female pelvis.

    PubMed

    Shin, Dong Sun; Jang, Hae Gwon; Hwang, Sung Bae; Har, Dong-Hwan; Moon, Young Lae; Chung, Min Suk

    2013-01-01

    In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five-step process was designed and implemented. First, 154 pelvic structures were outlined with additional surface reconstruction to prepare the image data. Second, the sectioned and outlined images (in a browsing software) as well as the surface models (in a PDF file) were placed on the Visible Korean homepage in a readily-accessible format. Third, all image data were visualized with interactive elements to stimulate creative learning. Fourth, two-dimensional (2D) images and three-dimensional (3D) models were superimposed on one another to provide context and spatial information for students viewing these data. Fifth, images were designed such that structure names would be shown when the mouse pointer hovered over the 2D images or the 3D models. The state-of-the-art sectioned images, outlined images, and surface models, arranged and systematized as described in this study, will aid students in understanding the anatomy of female pelvis. The graphic data accompanied by corresponding magnetic resonance images and computed tomographs are expected to promote the production of 3D simulators for clinical practice.

  14. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L.; Amano, Ken-Ichi; Fukuma, Takeshi

    2016-03-01

    Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent

  15. Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner.

    PubMed

    Kovacs, L; Zimmermann, A; Brockmann, G; Baurecht, H; Schwenzer-Zimmerer, K; Papadopulos, N A; Papadopoulos, M A; Sader, R; Biemer, E; Zeilhofer, H F

    2006-06-01

    Three-dimensional (3-D) recording of the surface of the human body or anatomical areas has gained importance in many medical specialties. Thus, it is important to determine scanner precision and accuracy in defined medical applications and to establish standards for the recording procedure. Here we evaluated the precision and accuracy of 3-D assessment of the facial area with the Minolta Vivid 910 3D Laser Scanner. We also investigated the influence of factors related to the recording procedure and the processing of scanner data on final results. These factors include lighting, alignment of scanner and object, the examiner, and the software used to convert measurements into virtual images. To assess scanner accuracy, we compared scanner data to those obtained by manual measurements on a dummy. Less than 7% of all results with the scanner method were outside a range of error of 2 mm when compared to corresponding reference measurements. Accuracy, thus, proved to be good enough to satisfy requirements for numerous clinical applications. Moreover, the experiments completed with the dummy yielded valuable information for optimizing recording parameters for best results. Thus, under defined conditions, precision and accuracy of surface models of the human face recorded with the Minolta Vivid 910 3D Scanner presumably can also be enhanced. Future studies will involve verification of our findings using test persons. The current findings indicate that the Minolta Vivid 910 3D Scanner might be used with benefit in medicine when recording the 3-D surface structures of the face.

  16. Three-Dimensional Measurement for Specular Reflection Surface Based on Reflection Component Separation and Priority Region Filling Theory

    PubMed Central

    Sun, Xiaoming; Liu, Ye; Yu, Xiaoyang; Wu, Haibin; Zhang, Ning

    2017-01-01

    Due to the strong reflection property of materials with smooth surfaces like ceramic and metal, it will cause saturation and the highlight phenomenon in the image when taking pictures of those materials. In order to solve this problem, a new algorithm which is based on reflection component separation (RCS) and priority region filling theory is designed. Firstly, the specular pixels in the image are found by comparing the pixel parameters. Then, the reflection components are separated and processed. However, for ceramic, metal and other objects with strong specular highlight, RCS theory will change color information of highlight pixels due to larger specular reflection component. In this situation, priority region filling theory was used to restore the color information. Finally, we implement 3D experiments on objects with strong reflecting surfaces like ceramic plate, ceramic bottle, marble pot and yellow plate. Experimental results show that, with the proposed method, the highlight caused by the strong reflecting surface can be well suppressed. The highlight pixel number of ceramic plate, ceramic bottle, marble pot and yellow plate, is decreased by 43.8 times, 41.4 times, 33.0 times, and 10.1 times. Three-dimensional reconstruction results show that highlight areas were significantly reduced. PMID:28124988

  17. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Gao, Jian; Mei, Qing; Zhang, Guanjin; He, Yunbo; Chen, Xin

    2017-04-01

    Conventional methods based on analyses of the absolute gray levels of pixels in fringe pattern images are affected by the problems of image saturation, interreflection, and high sensitivity to noise when obtaining three-dimensional (3D) shape measurements of shiny surfaces. This study presents a robust, adaptive, and fast 3D shape measurement technique, which adaptively adjusts the pixel-wise intensity of the projected patterns, thus it avoids image saturation and has a high signal to noise ratio (SNR) during 3D shape measurement for shiny surfaces. Compared with previous time-consuming methods using multiple exposures and the projection of fringe patterns with multiple intensities, where a large number of fringe pattern images need to be captured, the proposed technique needs to capture far fewer pattern images for measurement. In addition, it can greatly reduce the time costs to obtain the optimal projection intensities by the fusion of uniform gray level patterns and coordinates mapping. Our experimental results demonstrate that the proposed technique can achieve highly accurate and efficient 3D shape measurement for shiny surfaces.

  18. Three-Dimensional Measurement for Specular Reflection Surface Based on Reflection Component Separation and Priority Region Filling Theory.

    PubMed

    Sun, Xiaoming; Liu, Ye; Yu, Xiaoyang; Wu, Haibin; Zhang, Ning

    2017-01-23

    Due to the strong reflection property of materials with smooth surfaces like ceramic and metal, it will cause saturation and the highlight phenomenon in the image when taking pictures of those materials. In order to solve this problem, a new algorithm which is based on reflection component separation (RCS) and priority region filling theory is designed. Firstly, the specular pixels in the image are found by comparing the pixel parameters. Then, the reflection components are separated and processed. However, for ceramic, metal and other objects with strong specular highlight, RCS theory will change color information of highlight pixels due to larger specular reflection component. In this situation, priority region filling theory was used to restore the color information. Finally, we implement 3D experiments on objects with strong reflecting surfaces like ceramic plate, ceramic bottle, marble pot and yellow plate. Experimental results show that, with the proposed method, the highlight caused by the strong reflecting surface can be well suppressed. The highlight pixel number of ceramic plate, ceramic bottle, marble pot and yellow plate, is decreased by 43.8 times, 41.4 times, 33.0 times, and 10.1 times. Three-dimensional reconstruction results show that highlight areas were significantly reduced.

  19. A Tool for Teaching Three-Dimensional Dermatomes Combined with Distribution of Cutaneous Nerves on the Limbs

    ERIC Educational Resources Information Center

    Kooloos, Jan G. M.; Vorstenbosch, Marc A. T. M.

    2013-01-01

    A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two…

  20. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  1. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    PubMed Central

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351

  2. Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces.

    PubMed

    Mahalingam, Rajasekaran; Peng, Hung-Pin; Yang, An-Suei

    2014-02-21

    Flavin mono-nucleotide (FMN) is a cofactor which is involved in many biological reactions. The insights on protein-FMN interactions aid the protein functional annotation and also facilitate in drug design. In this study, we have established a new method, making use of an encoding scheme of the three-dimensional probability density maps that describe the distributions of 40 non-covalent interacting atom types around protein surfaces, to predict FMN-binding sites on protein surfaces. One machine learning model was trained for each of the 30 protein atom types to predict tentative FMN-binding sites on protein structures. The method's capability was evaluated by five-fold cross-validation on a dataset containing 81 non-redundant FMN-binding protein structures and further tested on independent datasets of 30 and 15 non-redundant protein structures respectively. These predictions achieved an accuracy of 0.94, 0.94 and 0.96 with the Matthews correlation coefficient (MCC) of 0.53, 0.53 and 0.65 respectively for the three protein structure sets. The prediction capability is superior to the existing method. This is the first structure-based approach that does not rely on evolutionary information for predicting FMN-interacting residues. The webserver for the prediction is available at http://ismblab.genomics.sinica.edu.tw/.

  3. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance.

    PubMed

    Baumann, E; Giorgetta, F R; Deschênes, J-D; Swann, W C; Coddington, I; Newbury, N R

    2014-10-20

    Non-contact surface mapping at a distance is interesting in diverse applications including industrial metrology, manufacturing, forensics, and artifact documentation and preservation. Frequency modulated continuous wave (FMCW) laser detection and ranging (LADAR) is a promising approach since it offers shot-noise limited precision/accuracy, high resolution and high sensitivity. We demonstrate a scanning imaging system based on a frequency-comb calibrated FMCW LADAR and real-time digital signal processing. This system can obtain three-dimensional images of a diffusely scattering surface at stand-off distances up to 10.5 m with sub-micrometer accuracy and with a precision below 10 µm, limited by fundamental speckle noise. Because of its shot-noise limited sensitivity, this comb-calibrated FMCW LADAR has a large dynamic range, which enables precise mapping of scenes with vastly differing reflectivities such as metal, dirt or vegetation. The current system is implemented with fiber-optic components, but the basic system architecture is compatible with future optically integrated, on-chip systems.

  4. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Mengjie; Zhu, Xupeng; Chen, Yiqin; Xiang, Quan; Duan, Huigao

    2017-01-01

    Seeking for the best possible substrates for surface-enhanced Raman spectroscopy (SERS) is of great interest for single-molecule-level detection applications. Lithographic plasmonic nanostructures are supposed to enable uniform enhancement and thus have attracted extensive interest in the past decade. In this work, we propose and demonstrate a lithographic three-dimensional (3D) donut-like gold nanoring array as a SERS substrate with an enhancement factor (EF) up to 3.84 × 107. This 3D nanoring array could be directly fabricated using electron-beam-lithography-defined templates without any additional lift-off process and thus promises ultraclean metallic surfaces. Meanwhile, the 3D configuration allows multiple hot spots for improving SERS performance compared to planar counterparts with comparable plasmon resonance position. Systematic experiments and simulations were conducted to gain understanding of the origin of the improved SERS performance. The results imply that the 3D donut-like gold nanorings with multiple hot spots can serve as a promising configuration for SERS applications.

  5. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays.

    PubMed

    Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J

    2009-06-01

    Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.

  6. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.

    PubMed

    Fang, Hui; Zhang, Chang Xing; Liu, Luo; Zhao, Yong Mei; Xu, Hai Jun

    2015-02-15

    Multifunctional Ag nanoparticle-decorated TiO2 nanorod arrays were prepared by two simple processes. TiO2 nanorod arrays were first fabricated by the hydrothermal route and then Ag nanoparticles were decorated on the nanorods by the chemical reduction impregnation method. Three-dimensional Ag/TiO2 arrays were used as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G (R6G) was as low as 10(-7)M and the Raman enhancement factor was as large as 10(5). After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. More importantly, the photocatalytic activity of TiO2 provides a self-cleaning capability to the SERS substrate, which can be recycled and used to degrade many Ag surface adsorbates such as R6G, methyl orange, Congo red, and methylene blue after exposure to visible light. The absorbed small molecules can all be rapidly and completely removed from the SERS substrate, which has been successfully reused four times without a decrease in accuracy or sensitivity. Our results reveal that the unique recyclable property not only paves a new way to solve the single-use problem of traditional SERS substrates but also provides more SERS platforms for multiple detections of other organic molecular species.

  7. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  8. Three-dimensional surface figure measurement of high-accuracy spherical mirror with nanoprofiler using normal vector tracing method.

    PubMed

    Kudo, R; Okuda, K; Usuki, K; Nakano, M; Yamamura, K; Endo, K

    2014-04-01

    Processing technology using an extreme ultraviolet light source, e.g., next-generation lithography, requires next-generation high-accuracy mirrors. As it will be difficult to attain the degree of precision required by next-generation high-accuracy mirrors such as aspherical mirrors through conventional processing methods, rapid progress in nanomeasurement technologies will be needed to produce such mirrors. Because the measuring methods used for the surface figure measurement of next-generation mirrors will require high precision, we have developed a novel nanoprofiler that can measure the figures of high-accuracy mirrors without the use of a reference surface. Because the accuracy of the proposed method is not limited by the accuracy of a reference surface, the measurement of free-form mirrors is expected to be realized. By using an algorithm to process normal vectors and their coordinate values at the measurement point obtained by a nanoprofiler, our measurement method can reconstruct three-dimensional shapes. First, we measured the surface of a concave spherical mirror with a 1000-mm radius of curvature using the proposed method, and the measurement repeatability is evaluated as 0.6 nm. Sub-nanometer repeatability is realized, and an increase in the repeatability would be expected by improving the dynamic stiffness of the nanoprofiler. The uncertainty of the measurement using the present apparatus is estimated to be approximately 10 nm by numerical simulation. Further, the uncertainty of a Fizeau interferometer is also approximately 10 nm. The results obtained using the proposed method are compared with those obtained using a Fizeau interferometer. The resulting profiles are consistent within the range of each uncertainty over the middle portions of the mirror.

  9. Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms.

    PubMed

    Mahalingam, Rajasekaran; Peng, Hung-Pin; Yang, An-Suei

    2014-08-01

    Protein-fatty acid interaction is vital for many cellular processes and understanding this interaction is important for functional annotation as well as drug discovery. In this work, we present a method for predicting the fatty acid (FA)-binding residues by using three-dimensional probability density distributions of interacting atoms of FAs on protein surfaces which are derived from the known protein-FA complex structures. A machine learning algorithm was established to learn the characteristic patterns of the probability density maps specific to the FA-binding sites. The predictor was trained with five-fold cross validation on a non-redundant training set and then evaluated with an independent test set as well as on holo-apo pair's dataset. The results showed good accuracy in predicting the FA-binding residues. Further, the predictor developed in this study is implemented as an online server which is freely accessible at the following website, http://ismblab.genomics.sinica.edu.tw/.

  10. Richtmyer-Meshkov instability of a three-dimensional SF_{6}-air interface with a minimum-surface feature.

    PubMed

    Luo, Xisheng; Guan, Ben; Si, Ting; Zhai, Zhigang; Wang, Xiansheng

    2016-01-01

    The Richmyer-Meshkov instability of a three-dimensional (3D) SF_{6}-air single-mode interface with a minimum-surface feature is investigated experimentally. The interface produced by the soap film technique is subjected to a planar shock and the evolution of the shocked interface is captured by time-resolved schlieren photography. Different from the light-heavy single-mode case, a phase inversion occurs in the shock-interface interaction and a bubblelike structure is observed behind the shocked interface, which may be ascribed to the difference in pressure perturbation at different planes. The superimposition of spikelike forward-moving jets forms a complex structure, indicating a distinctly 3D effect. Quantitatively, it is also found that the instability at the symmetry plane grows much slower than the prediction of two-dimensional linear model, but matches the extended 3D linear and nonlinear models accounting for the curvature effects. Therefore, the opposite curvatures of the 3D interface are beneficial for suppressing the growth of the instability.

  11. Richtmyer-Meshkov instability of a three-dimensional SF6-air interface with a minimum-surface feature

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Guan, Ben; Si, Ting; Zhai, Zhigang; Wang, Xiansheng

    2016-01-01

    The Richmyer-Meshkov instability of a three-dimensional (3D) SF6-air single-mode interface with a minimum-surface feature is investigated experimentally. The interface produced by the soap film technique is subjected to a planar shock and the evolution of the shocked interface is captured by time-resolved schlieren photography. Different from the light-heavy single-mode case, a phase inversion occurs in the shock-interface interaction and a bubblelike structure is observed behind the shocked interface, which may be ascribed to the difference in pressure perturbation at different planes. The superimposition of spikelike forward-moving jets forms a complex structure, indicating a distinctly 3D effect. Quantitatively, it is also found that the instability at the symmetry plane grows much slower than the prediction of two-dimensional linear model, but matches the extended 3D linear and nonlinear models accounting for the curvature effects. Therefore, the opposite curvatures of the 3D interface are beneficial for suppressing the growth of the instability.

  12. A diagnostic approach in Alzheimer`s disease using three-dimensional stereotactic surface projections of Fluorine-18-FDG PET

    SciTech Connect

    Minoshima, S.; Frey, K.A.; Koeppe, R.A.

    1995-07-01

    To improve the diagnostic performance of PET as an aid in evaluating patients suspected of having Alzheimer`s disease, the authors developed a fully automated method which generates comprehensive image presentations and objective diagnostic indices. Fluorine-18-fluorodeoxyglucose PET image sets were collected from 37 patients with probable Alzheimer`s disease (including questionable and mild dementia), 22 normal subjects and 5 patients with cerebrovascular disease. Following stereotactic anatomic standardization, metabolic activity on an individual`s PET image set was extracted to a set of predefined surface pixels (three-dimensional stereotactic surface projection, 3D-SSP), which was used in the subsequent analysis. A normal database was created by averaging extracted datasets of the normal subjects. Patients` datasets were compared individually with the normal database by calculating a Z-score on a pixel-by-pixel basis and were displayed in 3D-SSP views for visual inspections. Diagnostic indices were then generated based on averaged Z-scores for the association cortices. Patterns and severities of metabolic reduction in patients with probable Alzheimer`s disease were seen in the standard 3D-SSP views of extracted raw data and statistical Z-scores. When discriminating patients with probable Alzheimer`s disease from normal subjects, diagnostic indices of the parietal association cortex and unilaterally averaged parietal-temporal-frontal cortex showed sensitivities of 95% and 97%, respectively, with a specificity of 100%. Neither index yielded false-positive results for cerebrovascular disease. 3D-SSP enables quantitative data extraction and reliable localization of metabolic abnormalities by means of stereotactic coordinates. The proposed method is a promising approach for interpreting functional brain PET scans. 45 refs., 5 figs.

  13. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  14. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 2. Combining seismic and geodetic data

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    2001-01-01

    Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.

  15. Three-dimensional surface convection simulations of metal-poor stars. The effect of scattering on the photospheric temperature stratification

    NASA Astrophysics Data System (ADS)

    Collet, R.; Hayek, W.; Asplund, M.; Nordlund, Å.; Trampedach, R.; Gudiksen, B.

    2011-04-01

    Context. Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars are characterized by cooler upper photospheric layers than their one-dimensional counterparts. This property of 3D model atmospheres can dramatically affect the determination of elemental abundances from temperature-sensitive spectral features, with profound consequences on galactic chemical evolution studies. Aims: We investigate whether the cool surface temperatures predicted by 3D model atmospheres of metal-poor stars can be ascribed to approximations in the treatment of scattering during the modelling phase. Methods: We use the Bifrost code to construct 3D model atmospheres of metal-poor stars and test three different ways to handle scattering in the radiative transfer equation. As a first approach, we solve iteratively the radiative transfer equation for the general case of a source function with a coherent scattering term, treating scattering in a correct and consistent way. As a second approach, we solve the radiative transfer equation in local thermodynamic equilibrium approximation, neglecting altogether the contribution of continuum scattering to extinction in the optically thin layers; this has been the default mode in our previous 3D modelling as well as in present Stagger-Code models. As our third and final approach, we treat continuum scattering as pure absorption everywhere, which is the standard case in the 3D modelling by the CO5BOLD collaboration. Results: For all simulations, we find that the second approach produces temperature structures with cool upper photospheric layers very similar to the case in which scattering is treated correctly. In contrast, treating scattering as pure absorption leads instead to significantly hotter and shallower temperature stratifications. The main differences in temperature structure between our published models computed with the Stagger- and Bifrost codes and those generated with the CO5BOLD code can be traced

  16. A new three-dimensional thermo-mechanical model to study the interactions between tectonics, mantle flow and surface processes

    NASA Astrophysics Data System (ADS)

    Thieulot, C.; Braun, J.

    2006-12-01

    The Earth's lithosphere is a dynamic system where complex interplay between mechanical and thermal processes take place. With the advent of relatively cheap and efficient parallel computers, there has been a rise in the numerical approach to such a system. We have developed a new three-dimensional code 'DOUAR' which aims at expanding our understanding of the interplay between deep processes (convection, subduction, collision, ...) and surface processes (erosion, sedimentation, ...) that take place within the Earth's lithosphere. The Stokes and heat transport equations are discretised within the framework of the finite elements method, and solved for systems consisting of many layers of different materials with various physical properties. The adaptive grid is in our case a so-called octree: a space-filling set of cubes of different sizes which are in fact the elements on which calculations are performed. When an element is intersected by one or several interfaces, the respective volume of each material in the cube is assessed (divFEM technique) and used to perform the volume integration of the finite element equations. Once the set of coupled algebraic equations is obtained, we resort to a direct solver to obtain the solution. One of the most interesting features of our code resides in its ability to track and advect a free surface and/or interfaces. Furthermore, the total accumulated strain is computed by means of a dedicated cloud of Lagrangian points, and can be used, as well as temperature and pressure, in the implemented complex rheology models. These rheologies include linear and non-linear viscous behaviour, as well as von Mises and pressure- dependent plasticity (Mohr-Coulomb). The code has been developed to simulate tectonic events and predict a wide range of geological observations. It can thus be regarded as an integrator of field data and is used to test quantitatively tectonic scenarios suggested by the observations. Besides lithospheric problems, the

  17. Modeling three-dimensional surface morphology of biocake layer in a membrane bioreactor based on fractal geometry.

    PubMed

    Zhao, Leihong; Yang, Lining; Lin, Hongjun; Zhang, Meijia; Yu, Haiying; Liao, Bao-Qiang; Wang, Fangyuan; Zhou, Xiaoling; Li, Renjie

    2016-12-01

    While the adsorptive fouling in membrane bioreactors (MBRs) is highly dependent of the surface morphology, little progress has been made on modeling biocake layer surface morphology. In this study, a novel method, which combined static light scattering method for fractal dimension (Df) measurement with fractal method represented by the modified two-variable Weierstrass-Mandelbrot function, was proposed to model biocake layer surface in a MBR. Characterization by atomic force microscopy showed that the biocake surface was stochastic, disorder, self-similarity, and with non-integer dimension, illustrating obvious fractal features. Fractal dimension (Df) of sludge suspension experienced a significant change with operation of the MBR. The constructed biocake layer surface by the proposed method was quite close to the real surface, showing the feasibility of the proposed method. It was found that Df was the critical factor affecting surface morphology, while other factors exerted moderate or minor effects on the roughness of biocake layer.

  18. Mechanical Trap Surface-Enhanced Raman Spectroscopy for Three-Dimensional Surface Molecular Imaging of Single Live Cells.

    PubMed

    Jin, Qianru; Li, Ming; Polat, Beril; Paidi, Santosh K; Dai, Aimee; Zhang, Amy; Pagaduan, Jayson V; Barman, Ishan; Gracias, David H

    2017-03-27

    Reported is a new shell-based spectroscopic platform, named mechanical trap surface-enhanced Raman spectroscopy (MTSERS), for simultaneous capture, profiling, and 3D microscopic mapping of the intrinsic molecular signatures on the membrane of single live cells. By leveraging the functionalization of the inner surfaces of the MTs with plasmonic gold nanostars, and conformal contact of the cell membrane, MTSERS permits excellent signal enhancement, reliably detects molecular signatures, and allows non-perturbative, multiplex 3D surface imaging of analytes, such as lipids and proteins on the surface of single cells. The demonstrated ability underscores the potential of MTSERS to perform 3D spectroscopic microimaging and to furnish biologically interpretable, quantitative, and dynamic molecular maps in live cell populations.

  19. More About The Farley Three-Dimensional Braider

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1993-01-01

    Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).

  20. Combining transition state theory with quasiclassical trajectory calculations. III. Applications to the three-dimensional H + H 2(ν) reaction

    NASA Astrophysics Data System (ADS)

    Frost, Robert J.; Smith, Ian W. M.

    1987-11-01

    A new method is described of using quasiclassical trajectories to study the dynamics of elementary reactions in three dimensions. Trajectories are initiated in the phase space of suitably chosen transition state and run forwards and backwards in time from the same starting point to simulate a complete collision. The transition state for a given vibrational level ν is determined by first finding pods (periodic orbiting dividing surfaces) on fixed-angle potential energy surfaces for which the action over one cycle of the pods motion is (ν + 1/2) h. The complete transition is then defined by joining these pods together. Methods are described for pseudo-randomly sampling the phase space of these transition states. Results for collisions of H + H 2(ν) with ν = 0-5 and 9 on the accurate Liu-Siegbahn-Truhlar-Horowitz surface are presented and compared with the results of conventional quasiclassical trajectory studies that have already been reported in the literature. Absolute values of rate constants are obtained using the adiabatic reactive sudden version of the transition state theory. Comparisons of our combined method with conventional techniques are encouraging and there is a considerable saving in computer time resulting from the elimination of trajectories which do not reach the strong interaction zone. Only slight differences are found when the energy of the transition state bending motion is set equal to its zero-point quantum value rather than selected from a classical Boltzmann distribution.

  1. The effects of three-dimensional defects on one-way surface plasmon propagation for photonic topological insulators comprised of continuum media

    PubMed Central

    Hassani Gangaraj, S. Ali; Nemilentsau, Andrei; Hanson, George W.

    2016-01-01

    We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss. PMID:27444542

  2. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    NASA Astrophysics Data System (ADS)

    Reeh, Niels; Mohr, Johan Jacob; Nørvang Madsen, Søren; Oerter, Hans; Gundestrup, Niels S.

    Non-steady-state vertical velocities of up to 5 m a-1 exceed the vertical surface-parallel flow (SPF) components over much of the ablation area of Storstrømmen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude results in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10m a-1 or more.This indicates that the SPFassumption may be problematic also for glaciers in steady state. Here we derive the three-dimensional surface velocity distribution of Storstrømmen by using the principle of mass conservation (MC) to combine InSAR measurements from ascending and descending satellite tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle are in better agreement with the GPS velocities than the previously calculated velocities derived with the SPFassumption.

  3. CBCT combining with plaster models: application in virtual three-dimensional subapical segmental osteotomy to obtain more precise occlusal splint.

    PubMed

    Dai, Jiewen; Hu, Guanghong; Wang, Xudong; Tang, Min; Dong, Yuefu; Yuan, Hao; Xin, Pengfei; Yang, Tong; Shen, Steve Guofang

    2012-11-01

    Anterior subapical segmental osteotomy is considered to be an important surgical technique to obtain functional occlusion and improve the facial profile for patients with maxillary and mandibular protrusion or retrusion, and some complications, such as ischemic necrosis of the distal segment, devitalization of the teeth adjacent to the osteotomy site, and inadequate movement space of segment for obtaining a good occlusion or facial profile, usually exist during surgery. Imprecise measurement of root length, interradicular distance, and intertooth distance based on traditional panoramic radiography that demonstrated existing horizontal distortion and vertical distortion may play an important role in resulting in these problems. In addition, the root is invisible for surgical simulation in traditional plaster models. The recently developed cone-beam computed tomography (CBCT) presents a higher spatial resolution with a lower radiation dose, simultaneously with excellent accuracy and without magnification of images. The presented technique was used to obtain a precise occlusal splint in virtual 3D subapical segmental osteotomy by combining CBCT with plaster models that could guarantee the measurement accuracy of root length, interradicular distance, and intertooth distance, followed by the result of fewer tooth root damage and more precise forecasting of available movement space of jaw segment. Combining with other advantages of virtual 3D surgery, such as precise teeth surface of plaster models, soft tissue simulation, genoplasty simulation, and zygoma plasty simulation, this presented technique may offer a preferable method to patients who need subapical segmental osteotomy.

  4. A tool for teaching three-dimensional dermatomes combined with distribution of cutaneous nerves on the limbs.

    PubMed

    Kooloos, Jan G M; Vorstenbosch, Marc A T M

    2013-01-01

    A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands-on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut-out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low-fidelity models.

  5. Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds.

    PubMed

    Bormann, Therese; Schulz, Georg; Deyhle, Hans; Beckmann, Felix; de Wild, Michael; Küffer, Jürg; Münch, Christoph; Hoffmann, Waldemar; Müller, Bert

    2014-02-01

    Appropriate mechanical stimulation of bony tissue enhances osseointegration of load-bearing implants. Uniaxial compression of porous implants locally results in tensile and compressive strains. Their experimental determination is the objective of this study. Selective laser melting is applied to produce open-porous NiTi scaffolds of cubic units. To measure displacement and strain fields within the compressed scaffold, the authors took advantage of synchrotron radiation-based micro computed tomography during temperature increase and non-rigid three-dimensional data registration. Uniaxial scaffold compression of 6% led to local compressive and tensile strains of up to 15%. The experiments validate modeling by means of the finite element method. Increasing the temperature during the tomography experiment from 15 to 37°C at a rate of 4 K h(-1), one can locally identify the phase transition from martensite to austenite. It starts at ≈ 24°C on the scaffolds bottom, proceeds up towards the top and terminates at ≈ 34°C on the periphery of the scaffold. The results allow not only design optimization of the scaffold architecture, but also estimation of maximal displacements before cracks are initiated and of optimized mechanical stimuli around porous metallic load-bearing implants within the physiological temperature range.

  6. Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Burgreen, Gregory W.

    1995-01-01

    An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.

  7. Reconstruction of mechanically recorded sound from an edison cylinder using three dimensional non-contact optical surface metrology

    SciTech Connect

    Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.

    2004-04-20

    Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.

  8. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  9. Three-dimensional implantation distribution of lithium implanted into pyrographite, as revealed by solid state tomography in combination with neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Fink, D.; Müller, M.; Klett, R.; Vacik, J.; Hnatowicz, V.; Cervena, J.

    1995-12-01

    We have studied the three-dimensional distribution of 2.5 MeV Li implanted into pyrographite at room temperature by means of modified tomography in combination with neutron depth profiling. Our new findings essentially reconfirm earlier results (D. Fink et al., J. Appl. Phys. 58 (1985) 668 [1]; Radiat. Eff. and Def. in Solids 114 (1990) 21 [2]) which indicated the presence of some radiation-enhanced mobility of the implanted lithium. This diffusion is anisotropic. It preferentially proceeds into the radial direction.

  10. Three dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

  11. Effect of geometry variations on lee-surface vortex-induced heating for flat-bottom three-dimensional bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.

    1973-01-01

    Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.

  12. Thermal Pollution Mathematical Model. Volume 6: Verification of Three-Dimensional Free-Surface Model at Anclote Anchorage. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1980-01-01

    The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.

  13. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Song, M. J.; Arena, J.; Kiyonaga, S.; Marko, M.; Owen, C.; McEwen, B. F.

    1996-01-01

    The interaction between collagen and mineral crystals in the normally calcifying leg tendons from the domestic turkey, Meleagris gallopavo, has been investigated at an ultrastructural level with conventional and high-voltage electron microscopy, computed tomography, and three-dimensional image reconstruction methods. Specimens treated by either aqueous or anhydrous techniques and resin-embedded were appropriately sectioned and regions of early tendon mineralization were photographed. On the basis of individual photomicrographs, stereoscopic pairs of images, and tomographic three-dimensional image reconstructions, platelet-shaped crystals may be demonstrated for the first time in association with the surface of collagen fibrils. Mineral is also observed in closely parallel arrays within collagen hole and overlap zones. The mineral deposition at these spatially distinct locations in the tendon provides insight into possible means by which calcification is mediated by collagen as a fundamental event in skeletal and dental formation among vertebrates.

  14. Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds.

    PubMed

    Li, Jinyu; Wang, Qin; Zhi, Wei; Wang, Jianxin; Feng, Bo; Qu, Shuxin; Mu, Yandong; Weng, Jie

    2016-10-07

    Porous hydroxyapatite (HA) scaffolds combined with a drug delivery system have attracted much attention for bone tissue engineering. In this study, an easy and highly efficient method was developed to immobilize salvianolic acid B (Sal B)-loaded chitosan (CS) microspheres three dimensionally and homogeneously on the surface of HA scaffolds pre-coated with alginate. Porous HA scaffolds were prepared via a template-leaching process and CS microspheres (used as drug carriers) were fabricated by an emulsion method. To improve adhesion between the microspheres and HA scaffolds, alginate was used to pre-coat the porous surface of the HA scaffolds. Various concentrations of alginate were used to optimize the adhesion of Sal B-loaded CS microspheres to the scaffold surface. During the adherence process, coated HA scaffolds were immersed in an aqueous solution containing Sal B-loaded CS microspheres, followed by standing or shaking at 37 °C for a certain time. The results showed that the microspheres were solidly and homogeneously distributed on the porous surface of the alginate pre-coated HA scaffolds via electrostatic interactions. Few microspheres detached from the porous surface, even after the HA scaffolds with microspheres were treated by shaking in distilled water for as long as 7 d. Compared with the static condition, the distribution of Sal B-loaded CS microspheres on the porous surface of pre-coated HA scaffolds in the shaken condition was more homogeneous and almost unaggregated. Additionally, the compressive strength of the scaffolds coated with alginate was obviously improved. The optimal alginate coating concentration was 1% (i.e. the microstructure of the porous surfaces of the HA scaffolds was almost unchanged). The release profile of Sal B over a 30 d immersion found an initial burst release followed by a sustained release. The result of cell culture in vitro was that 1% alginate-coated scaffolds with Sal B-loaded CS microspheres obviously promoted cell

  15. Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction

    NASA Astrophysics Data System (ADS)

    Braun, Stefan; Kluwick, Alfred

    2004-09-01

    Earlier investigations of steady two-dimensional marginally separated laminar boundary layers have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a single controlling parameter Gamma characterizing, for example, the angle of attack of a slender airfoil and has the important property that (real) solutions exist up to a critical value Gamma_c of Gamma only. Here we investigate three-dimensional unsteady perturbations of an incompressible steady two-dimensional marginally separated laminar boundary layer with special emphasis on the flow behaviour near Gamma_c. Specifically, it is shown that the integro differential equation which governs these disturbances if Gamma_c {-} Gamma {=} O(1) reduces to a nonlinear partial differential equation known as the Fisher equation as Gamma approaches the critical value Gamma_c. This in turn leads to a significant simplification of the problem allowing, among other things, a systematic study of devices used in boundary-layer control and an analytical investigation of the conditions leading to the formation of finite-time singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional flows in the vicinity of a line of symmetry. Also, it is found that it is possible to construct exact solutions which describe waves of constant form travelling in the spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence of these solutions strongly suggests that solutions of the Fisher equation which lead to finite-time blow-up may be extended beyond the blow-up time, thereby generating moving singularities which can be interpreted as vortical structures qualitatively similar to those emerging in direct numerical simulations of near critical (i.e. transitional) laminar separation

  16. A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy;External beam therapy; Radiopharmaceutical therapy; Three-dimensional dosimetry; Treatment planning

    SciTech Connect

    Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George

    2011-07-15

    Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

  17. Three-dimensional, two-species magnetohydrodynamic studies of the early time behaviors of the Combined Release and Radiation Effects Satellite G2 barium release

    SciTech Connect

    Xie, Lianghai Li, Lei; Wang, Jingdong; Zhang, Yiteng

    2014-04-15

    We present a three-dimensional, two-species (Ba{sup +} and H{sup +}) MHD model to study the early time behaviors of a barium release at about 1 R{sub E} like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions are constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H{sup +}, which creates density hole and bumps in the background H{sup +} when barium ions expanding along the magnetic field lines.

  18. Three-dimensional analysis of the surface mode supported in Čerenkov and Smith-Purcell free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2016-06-01

    In Čerenkov and Smith-Purcell free-electron lasers (FELs), a resonant interaction between the electron beam and the copropagating surface mode can produce a copious amount of coherent terahertz radiation. We perform a three-dimensional (3D) analysis of the surface mode, taking the effect of attenuation into account, and set up 3D Maxwell-Lorentz equations for both these systems. Based on this analysis, we determine the requirements on the electron beam parameters, i.e., beam emittance, beam size and beam current for the successful operation of a Čerenkov FEL.

  19. Three-dimensionally ordered macroporous nitroxide polymer brush electrodes prepared by surface-initiated atom transfer polymerization for organic radical batteries.

    PubMed

    Lin, Chun-Hao; Chou, Wei-Jen; Lee, Jyh-Tsung

    2012-01-01

    The synthesis and electrochemical performance of three-dimensionally ordered macroporous (3DOM) nitroxide polymer brush electrodes for organic radical batteries are reported. The 3DOM electrodes are synthesized via polystyrene colloidal crystal templating with electropolymerization of polypyrrole, modification of surface initiator, and surface-initiated atom transfer radical polymerization. The discharge capacity of the 3DOM electrodes is proportional to the thickness of the inverse opal. The discharge capacity of the 3DOM electrode at a discharge rate of 5 C is 40 times higher than that of the planar electrode; its cycle-life performance exhibits 96.1% retention after 250 cycles.

  20. Enamel Surface Evaluation after Removal of Orthodontic Composite Remnants by Intraoral Sandblasting Technique and Carbide Bur Technique: A Three-Dimensional Surface Profilometry and Scanning Electron Microscopic Study

    PubMed Central

    Mhatre, Amol C; Tandur, Arundhati P; Reddy, Sumitra S; Karunakara, B C; Baswaraj, H

    2015-01-01

    Background: The purpose of this thesis is to present a practical and efficient clinical method of returning enamel to as near its original condition as possible following removal of bonded orthodontic attachments. The main objective of this study is to evaluate and compare the iatrogenic enamel damage caused by use of two different remnant removal techniques – sandblasting technique and carbide bur technique. Materials and Methods: 40 extracted premolar teeth were selected as sample. Premolar brackets were bonded on these teeth with two different types of light cure adhesive composite resin. The remnants present on these samples after debonding the brackets were removed with two different types of remnant removal techniques namely – Carbide bur technique and sandblasting technique. Then these treated surfaces were studied under Scanning electron microscope and three-dimensional profilometer for the damage caused to the enamel. Statistical analysis used Student’s t-tests. Results: The enamel surface structure after remnant removal with intraoral sandblasting is better than that after removal with a low-speed handpiece using tungsten carbide bur. Conclusion: Sandblasting can be an acceptable alternative to rotatory handpieces to restore the enamel surface to its near-original state and prevent permanent damage to the tooth. PMID:26668478

  1. Adjoint Methods for Adjusting Three-Dimensional Atmosphere and Surface Properties to Fit Multi-Angle Multi-Pixel Polarimetric Measurements

    NASA Technical Reports Server (NTRS)

    Martin, William G.; Cairns, Brian; Bal, Guillaume

    2014-01-01

    This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.

  2. Fractionation of complex protein mixture by virtual three-dimensional liquid chromatography based on combined pH and salt steps.

    PubMed

    Ning, Zhi-Bin; Li, Qing-Run; Dai, Jie; Li, Rong-Xia; Shieh, Chia-Hui; Zeng, Rong

    2008-10-01

    The complexity and diversity of biological samples in proteomics require intensive fractionation ahead of mass spectrometry identification. This work developed a chromatographic method called virtual three-dimensional chromatography to fractionate complex protein mixtures. By alternate elution with different pHs and salt concentrations, we implemented pH and salt steps by turns on a single strong cation exchange column to fully exploit its chromatographic ability. Given standard proteins that were not resolved solely by pH or salt gradient elution could be successfully separated using this combined mode. With a reversed phase column tandem connected behind, we further fractionated as well as desalted proteins as the third dimension. This present strategy could readily be adapted with respect to special complexity of biological samples. Crude plasma without depleting high abundance proteins were fractionated by this three-dimensional mode and then analyzed by reversed phase liquid chromatography coupled with LTQ mass spectrometry. In total, 1933 protein groups with wide dynamic ranges were identified from a single experiment. Some characteristics that correlated to the behavior of proteins on strong cation exchange columns are also discussed.

  3. Combining Measurements with Three-Dimensional Laser Scanning System and Coded Aperture Gamma-Ray Imaging Systems for International Safeguards Applications

    SciTech Connect

    Boehnen, Chris Bensing; Bogard, James S; Hayward, Jason P; Raffo-Caiado, Ana Claudia; Smith, Stephen E; Ziock, Klaus-Peter

    2010-01-01

    Being able to verify the operator's declaration in regards to technical design of nuclear facilities is an important aspect of every safeguards approach. In addition to visual observation, it is relevant to know if nuclear material is present or has been present in piping and ducts not declared. The possibility of combining different measurement techniques into one tool should optimize the inspection effort and increase safeguards effectiveness. Oak Ridge National Laboratory (ORNL) is engaged in a technical collaboration project involving two U.S. Department of Energy foreign partners to investigate combining measurements from a three-dimensional (3D) laser scanning system and gamma-ray imaging systems. ORNL conducted simultaneous measurements with a coded-aperture gamma-ray imager and the 3D laser scanner in an operational facility with complex configuration and different enrichment levels and quantities of uranium. This paper describes these measurements and their results.

  4. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies

    PubMed Central

    Jung, Yunmin; Riven, Inbal; Feigelson, Sara W.; Kartvelishvily, Elena; Tohya, Kazuo; Miyasaka, Masayuki; Alon, Ronen; Haran, Gilad

    2016-01-01

    Leukocyte microvilli are flexible projections enriched with adhesion molecules. The role of these cellular projections in the ability of T cells to probe antigen-presenting cells has been elusive. In this study, we probe the spatial relation of microvilli and T-cell receptors (TCRs), the major molecules responsible for antigen recognition on the T-cell membrane. To this end, an effective and robust methodology for mapping membrane protein distribution in relation to the 3D surface structure of cells is introduced, based on two complementary superresolution microscopies. Strikingly, TCRs are found to be highly localized on microvilli, in both peripheral blood human T cells and differentiated effector T cells, and are barely found on the cell body. This is a decisive demonstration that different types of T cells universally localize their TCRs to microvilli, immediately pointing to these surface projections as effective sensors for antigenic moieties. This finding also suggests how previously reported membrane clusters might form, with microvilli serving as anchors for specific T-cell surface molecules. PMID:27647916

  5. Three-Dimensional Structure of a Simple Liquid at a Face-Centered-Cubic (001) Solid Surface Interface

    PubMed Central

    Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai

    2016-01-01

    A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed. PMID:27430188

  6. THREE-DIMENSIONAL KINETIC-MHD MODEL OF THE GLOBAL HELIOSPHERE WITH THE HELIOPAUSE-SURFACE FITTING

    SciTech Connect

    Izmodenov, V. V.; Alexashov, D. B.

    2015-10-15

    This paper provides a detailed description of the latest version of our model of the solar wind (SW) interaction with the local interstellar medium (LISM). This model has already been applied to the analysis of Lyα absorption spectra toward nearby stars and for analyses of Solar and Heliospheric Observatory/SWAN data. Katushkina et al. (this issue) used the model results to analyze IBEX-Lo data. At the same time, the details of this model have not yet been published. This is a three-dimensional (3D) kinetic-magnetohydrodynamical (MHD) model that takes into account SW and interstellar plasmas (including α particles in SW and helium ions in LISM), the solar and interstellar magnetic fields, and interstellar hydrogen atoms. The latitudinal dependence of SW and the actual flow direction of the interstellar gas with respect to the Sun are also taken into account in the model. It was very essential that our numerical code was developed in such a way that any numerical diffusion or reconnection across the heliopause were not allowed in the model. The heliospheric current sheet is a rotational discontinuity in the ideal MHD and can be treated kinematically. In the paper, we focus in particular on the effects of the heliospheric magnetic field and on the heliolatitudinal dependence of SW.

  7. Three-Dimensional Structure of a Simple Liquid at a Face-Centered-Cubic (001) Solid Surface Interface

    NASA Astrophysics Data System (ADS)

    Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai

    2016-07-01

    A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.

  8. Three-dimensional description of the spontaneous onset of homochirality on the surface of a conglomerate crystal phase.

    PubMed

    Plasson, Raphaël; Kondepudi, Dilip K; Asakura, Kouichi

    2006-04-27

    The spontaneous emergence of homochirality in an initially racemic system can be obtained in far-from-equilibrium states. Traditional models do not take into account the influence of inhomogeneities, while they may be of great importance. What would happen when one configuration emerges at one position, and the opposite one at another position? We present a discrete three-dimensional model of conglomerate crystallization, based on 1,1'-binaphthyl crystallization experiments, that takes into account the position and environment of every single elementary growth subunit. Stochastic simulations were performed to predict the evolution of the crystallization process. It is shown that the traditional view of the symmetry breaking can then be extended. Fluctuations of the fixed points related to inhomogeneities are observed, and complex behavior, such as local instabilities, transient structures, and chaotic behavior, can emerge. Our modeling indicates that such complex phenomena could cause large fluctuation of the final enantiomeric excess that is observed experimentally in binaphthyl crystallization. The results presented in this article show the importance of inhomogeneities in understanding enantiomeric excess generated in crystallization and the inadequacy of the models based on the assumption of homogeneity.

  9. Three-Dimensional Structure of a Simple Liquid at a Face-Centered-Cubic (001) Solid Surface Interface.

    PubMed

    Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai

    2016-07-19

    A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.

  10. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure

    PubMed Central

    1996-01-01

    This study provides a three-dimensional (3D) analysis of differences between the 3D morphology of active and inactive human X interphase chromosomes (Xa and Xi territories). Chromosome territories were painted in formaldehyde-fixed, three-dimensionally intact human diploid female amniotic fluid cell nuclei (46, XX) with X-specific whole chromosome compositive probes. The colocalization of a 4,6-diamidino-2- phenylindole dihydrochloride-stained Barr body with one of the two painted X territories allowed the unequivocal discrimination of the inactive X from its active counterpart. Light optical serial sections were obtained with a confocal laser scanning microscope. 3D- reconstructed Xa territories revealed a flatter shape and exhibited a larger and more irregular surface when compared to the apparently smoother surface and rounder shape of Xi territories. The relationship between territory surface and volume was quantified by the determination of a dimensionless roundness factor (RF). RF and surface area measurements showed a highly significant difference between Xa and Xi territories (P < 0.001) in contrast to volume differences (P > 0.1). For comparison with an autosome of similar DNA content, chromosome 7 territories were additionally painted. The 3D morphology of the chromosome 7 territories was similar to the Xa territory but differed strongly from the Xi territory with respect to RF and surface area (P < 0.001). PMID:8978813

  11. Evaluation of the fish passage effectiveness of the Bonneville I prototype surface collector using three-dimensional ultrasonic fish tracking - Final Report

    USGS Publications Warehouse

    Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.

    2001-01-01

    This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.

  12. Application of surface pressure measurements of O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II - A quasi-observational study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.

  13. Orbital stability in combined uniform axial and three-dimensional wiggler magnetic fields for free-electron lasers

    NASA Technical Reports Server (NTRS)

    Johnston, S.

    1984-01-01

    Zachary Phys. Rev. A 29 (6), 3224 (1984) recently analyzed the instability of relativistic-electron helical trajectories in combined uniform axial and helical wiggler magnetic fields when the radial variation of the wiggler field is taken into account. It is shown here that the type 2 instability comprised of secular terms growing linearly in time, identified by Zachary and earlier by Diament Phys. Rev. A 23 (5), 2537 (1981), is an artifact of simple perturbation theory. A multiple-time-scale perturbation analysis reveals a nonsecular evolution on a slower time scale which accommodates an arbitrary initial perturbation. It is shown that, in the absence of exponential instability, the electron seeks a modified helical orbit more appropriate to its perturbed state and oscillates stably about it. Thus, the perturbed motion is oscillatory but nonsecular, and hence the helical orbits are stable.

  14. Three Dimensional Numerical Simulation of Rocket-based Combined-cycle Engine Response During Mode Transition Events

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; McRae, D. Scott; Bond, Ryan B.; Steffan, Christopher (Technical Monitor)

    2003-01-01

    The GTX program at NASA Glenn Research Center is designed to develop a launch vehicle concept based on rocket-based combined-cycle (RBCC) propulsion. Experimental testing, cycle analysis, and computational fluid dynamics modeling have all demonstrated the viability of the GTX concept, yet significant technical issues and challenges still remain. Our research effort develops a unique capability for dynamic CFD simulation of complete high-speed propulsion devices and focuses this technology toward analysis of the GTX response during critical mode transition events. Our principal attention is focused on Mode 1/Mode 2 operation, in which initial rocket propulsion is transitioned into thermal-throat ramjet propulsion. A critical element of the GTX concept is the use of an Independent Ramjet Stream (IRS) cycle to provide propulsion at Mach numbers less than 3. In the IRS cycle, rocket thrust is initially used for primary power, and the hot rocket plume is used as a flame-holding mechanism for hydrogen fuel injected into the secondary air stream. A critical aspect is the establishment of a thermal throat in the secondary stream through the combination of area reduction effects and combustion-induced heat release. This is a necessity to enable the power-down of the rocket and the eventual shift to ramjet mode. Our focus in this first year of the grant has been in three areas, each progressing directly toward the key initial goal of simulating thermal throat formation during the IRS cycle: CFD algorithm development; simulation of Mode 1 experiments conducted at Glenn's Rig 1 facility; and IRS cycle simulations. The remainder of this report discusses each of these efforts in detail and presents a plan of work for the next year.

  15. Three-Dimensional Structure and Biophysical Characterization of Staphylococcus aureus Cell Surface Antigen-Manganese Transporter MntC

    SciTech Connect

    Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha; Parris, Kevin; Svenson, Kristine; Moran, Justin; Chu, Ling; Li, Sheng; Liu, Tong; Woods, Jr., Virgil L.; Jansen, Kathrin U.; Green, Bruce A.; Anderson, Annaliesa S.; Matsuka, Yury V.

    2013-08-23

    MntC is a metal-binding protein component of the Mn2 +-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensional structure of the protein was solved by X-ray crystallography at 2.2 Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn2 +-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn2 +-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium–hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn2 +.

  16. Combined three-dimensional magnetic resonance guided optical spectroscopy for functional and molecular imaging of human breast cancer

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2011-07-01

    Dynamic contrast enhanced magnetic resonance is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors than mammography. We focus on Near Infrared Spectroscopy (NIRS) imaging and Fluorescence Molecular Tomography (FMT), emerging imaging techniques that non-invasively quantify optical properties of total hemoglobin, oxygen saturation, water content, scattering, lipid concentration and endogenous Protoporphyrin IX (PpIX) emission. We present methods on combining the synergistic attributes of DCE-MR, NIRS, and FMT for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present example results from a breast cancer patient. Preliminary results show elevated hemoglobin values and water fraction. Fluorescence values in the tumor region, however, were not always elevated above the surrounding tissue as we had expected. The additional information gained from NIRS and FMT may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.

  17. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies1[S

    PubMed Central

    Baker, Paul R. S.; Armando, Aaron M.; Campbell, J. Larry; Quehenberger, Oswald; Dennis, Edward A.

    2014-01-01

    Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level. PMID:25225680

  18. Three-dimensional perspective visualization

    NASA Technical Reports Server (NTRS)

    Hussey, Kevin

    1991-01-01

    It was demonstrated that image processing computer graphic techniques can provide an effective means of physiographic analysis of remotely sensed regions through the use of three-dimensional perspective rendering. THe methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery and digital elevation models are explained. A brief historic look at JPL's efforts in this field and several examples of animations, illustrating the evolution of these techniques from 1985, are shown. JPL's current research in this area is discussed along with examples of technology transfer and potential commercial application. The software is part of the VICAR (Video Image Communication and Retrieval) image processing system which was developed at the Multimission Image Processing Laboratory of JPL.

  19. Interactive EAGLE: An Interactive Surface Mesh and Three-Dimensional Grid Generation System. Version 1.0 User’s Guide

    DTIC Science & Technology

    1990-12-01

    NUMBERS Interactive EAGLE: An Interactive Surface Mesh and Three- Dimensional Grid Generation System PE6SB07F i 6 AUTHOR(S) Dietzo W. E. and Evans, S...Development Center/DO Air Force Systems Command Arnold AFB, TN 37389-5000 REPORT NUMBER AEDC-TR-90-2S 10 SPONSORING/MONITORING AGENCY REPORT NUMBER 11...CLASSIFICATION 19 SECURITY CLASSIFICATION OF REPORT I OF THIS PAGE OF ABSTRACT UNCLASSIFIED U N C L A S S I F I E D UNCLASSIFIED 15 NUMBER OF PAGES 171 16

  20. Determination of the flow stress of a magnetorheological fluid under three-dimensional stress states by using a combination of extrusion test and FEM simulation

    NASA Astrophysics Data System (ADS)

    Wang, Peng-yi; Wang, Zhong-jin

    2016-12-01

    Magnetorheological fluid (MR fluid), a kind of smart material, has been used as a new pressure-carrying medium in magnetorheological pressure forming (MRPF). The mechanical property of MR fluid under the pressure significantly affects the sheet formability. However, there is little knowledge on the deformation behavior of MR fluid under three-dimensional stress states. In this paper, a new procedure via a combination of extrusion test and FEM simulation has been proposed to determine the flow stress of MR fluids. The experimental device for extrusion test of MR fluids was designed. The flow stresses of a MR fluid (MRF-J01T) under four different magnetic fields were determined through the proposed procedure. In addition, the obtained flow stresses were used in the following FEM simulations to verify the accuracy by comparing with the experimental results. The simulation results were in good agreement with the experimental data, which supports the correctness and practicability of the proposed method.

  1. Spectroscopy of Ar-SH and Ar-SD. II. Determination of the three-dimensional intermolecular potential-energy surface.

    PubMed

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2005-08-01

    All the pure rotational transitions reported in the previous studies [J. Chem. Phys. 113, 10121 (2000); J. Mol. Spectrosc. 222, 22 (2003)] and newly observed rotation-vibration transitions, P = 1/2 <-- 3/2, for Ar-SH and Ar-SD [J. Chem. Phys. (2005), the preceding paper] have been simultaneously analyzed to determine a new intermolecular potential-energy surface of Ar-SH in the ground state. A Schrodinger equation considering the three-dimensional freedom of motion for an atom-diatom complex in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational levels using the discrete variable representation method. A three-dimensional potential-energy surface is determined by a least-squares fitting with initial values of the parameters for the potential obtained by ab initio calculations at the RCCSD(T)/aug-cc-pVTZ level of theory. The potential well reproduces all the observed data in the microwave and millimeter wave regions with parity doublings and hyperfine splittings. Several low-lying rovibrational energies are calculated using the new potential-energy surface. The dependence of the interaction energy between Ar and SH(2pi(i)) on the bond length of the SH monomer is discussed.

  2. An adaptive Lagrangian boundary element approach for three-dimensional transient free-surface Stokes flow as applied to extrusion, thermoforming, and rheometry

    NASA Astrophysics Data System (ADS)

    Khayat, Roger E.; Genouvrier, Delphine

    2001-05-01

    An adaptive (Lagrangian) boundary element approach is proposed for the general three-dimensional simulation of confined free-surface Stokes flow. The method is stable as it includes remeshing capabilities of the deforming free surface and thus can handle large deformations. A simple algorithm is developed for mesh refinement of the deforming free-surface mesh. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several flow problems are presented to illustrate the utility of the approach, particularly as encountered in polymer processing and rheology. These problems illustrate the transient nature of the flow during the processes of extrusion and thermoforming, the elongation of a fluid sample in an extensional rheometer, and the coating of a sphere. Surface tension effects are also explored. Copyright

  3. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou

    2016-07-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x -k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ˜150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the

  4. The Optoelectronic Swept-Frequency Laser and Its Applications in Ranging, Three-Dimensional Imaging, and Coherent Beam Combining of Chirped-Seed Amplifiers

    NASA Astrophysics Data System (ADS)

    Vasilyev, Arseny

    This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 1016 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL. We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns. We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of

  5. Quantitative three-dimensional shape analysis of the proximal hallucial metatarsal articular surface in Homo, Pan, Gorilla, and Hylobates.

    PubMed

    Proctor, Daniel J; Broadfield, Douglas; Proctor, Kristopher

    2008-02-01

    Multidimensional morphometrics is used to compare the proximal articular surface of the first metatarsal between Homo, Pan, Gorilla, Hylobates, and the hominin fossils A.L. 333-54 (A. afarensis), SKX 5017 (P. robustus), and OH 8 (H. habilis). Statistically significant differences in articular surface morphology exist between H. sapiens and the apes, and between ape groups. Ape groups are characterized by greater surface depth, an obliquely curved articular surface through the dorso-lateral and medio-plantar regions, and a wider medio-lateral surface relative to the dorso-plantar height. The OH 8 articular surface is indistinguishable from H. sapiens, while A.L. 333-54 and SKX 5017 more closely resemble the apes. P. robustus and A. afarensis exhibit ape-like oblique curvature of the articular surface.

  6. Quasicrystalline three-dimensional foams

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.

    2017-03-01

    We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.

  7. Three-dimensional metamaterials

    SciTech Connect

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  8. Three dimensional quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Ferretti, G.; Rajeev, S. G.; Yang, Z.

    1992-02-01

    The subject of this talk is the study of the low energy behavior of three (2+1) dimensional Quantum Chromodynamics. We show the existence of a phase where parity is unbroken and the flavor group U(2n) is broken into a subgroup U(n)×U(n). We derive the low energy effective action for the theory and show that it has solitonic excitations with Fermi statistic, to be identified with the three dimensional ``baryon''. Finally, we study the current algebra for this effective action and we find a co-homologically nontrivial generalization of Kac-Moody algebras to three dimension.

  9. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    PubMed

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  10. Accuracy Assessment of Three-dimensional Surface Reconstructions of In vivo Teeth from Cone-beam Computed Tomography

    PubMed Central

    Sang, Yan-Hui; Hu, Hong-Cheng; Lu, Song-He; Wu, Yu-Wei; Li, Wei-Ran; Tang, Zhi-Hui

    2016-01-01

    Background: The accuracy of three-dimensional (3D) reconstructions from cone-beam computed tomography (CBCT) has been particularly important in dentistry, which will affect the effectiveness of diagnosis, treatment plan, and outcome in clinical practice. The aims of this study were to assess the linear, volumetric, and geometric accuracy of 3D reconstructions from CBCT and to investigate the influence of voxel size and CBCT system on the reconstructions results. Methods: Fifty teeth from 18 orthodontic patients were assigned to three groups as NewTom VG 0.15 mm group (NewTom VG; voxel size: 0.15 mm; n = 17), NewTom VG 0.30 mm group (NewTom VG; voxel size: 0.30 mm; n = 16), and VATECH DCTPRO 0.30 mm group (VATECH DCTPRO; voxel size: 0.30 mm; n = 17). The 3D reconstruction models of the teeth were segmented from CBCT data manually using Mimics 18.0 (Materialise Dental, Leuven, Belgium), and the extracted teeth were scanned by 3Shape optical scanner (3Shape A/S, Denmark). Linear and volumetric deviations were separately assessed by comparing the length and volume of the 3D reconstruction model with physical measurement by paired t-test. Geometric deviations were assessed by the root mean square value of the imposed 3D reconstruction and optical models by one-sample t-test. To assess the influence of voxel size and CBCT system on 3D reconstruction, analysis of variance (ANOVA) was used (α = 0.05). Results: The linear, volumetric, and geometric deviations were −0.03 ± 0.48 mm, −5.4 ± 2.8%, and 0.117 ± 0.018 mm for NewTom VG 0.15 mm group; −0.45 ± 0.42 mm, −4.5 ± 3.4%, and 0.116 ± 0.014 mm for NewTom VG 0.30 mm group; and −0.93 ± 0.40 mm, −4.8 ± 5.1%, and 0.194 ± 0.117 mm for VATECH DCTPRO 0.30 mm group, respectively. There were statistically significant differences between groups in terms of linear measurement (P < 0.001), but no significant difference in terms of volumetric measurement (P = 0.774). No statistically significant difference were

  11. Application of three-dimensionally area-selective atomic layer deposition for selectively coating the vertical surfaces of standing nanopillars.

    PubMed

    Dong, Wenjing; Zhang, Kenan; Zhang, Yun; Wei, Tiaoxing; Sun, Yan; Chen, Xin; Dai, Ning

    2014-03-25

    We describe a strategy for selectively coating the vertical surfaces of standing nanopillars using area-selective atomic layer deposition (ALD). Hydrophobic self-assembled monolayers (SAMs) are utilised to selectively inhibit the coating of oxides on the modified horizontal regions to ensure that only the vertical surfaces of vertical standing nanorods are coated using ALD processes. This method makes it possible to fabricate vertical nanodevices using a simple process of depositing oxide layer on a vertical surface, and can also be applied to the area-selective surface passivation of other standing structures.

  12. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.

    PubMed

    Guo, L-X; Li, J; Zeng, H

    2009-11-01

    We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.

  13. Magneto-Electric Effect in Three-Dimensional Topological Insulators from Surface Magnetic Disorder and Ferromagnetic Thin Film

    NASA Astrophysics Data System (ADS)

    Nomura, Kentaro

    2012-02-01

    Topologically nontrivial gapped phases can be characterized by the bulk topological indices and the surface gapless modes. The topological magneto-electric (ME) effect is a novel manifestation of the bulk-surface correspondence in which the bulk magnetization is generated by a circulating quantized Hall current flowing at the surface of topological insulators. To realize the topological ME effect, there are two difficulties: (a) one needs to attach an insulating ferromagnetic layer with the magnetization normal to the surface all pointing out or in. (b) The Fermi energy must be tuned accurately within the small gap of the surface Dirac spectrum opened by the exchange interaction. In this talk we discuss the anomalous quantized Hall current on the surface of a magnetically doped topological insulator, basing on the two-dimensional surface Dirac Hamiltonian with magnetic disorder. The scaling analysis indicates that, in sharp contrast to the time-reversal-invariant cases, the all surface states tend to be localized while the Hall conductivity is quantized no matter whether the Fermi level resides within or out of the surface gap. This resolves problem(b). Furthermore it is shown that this also resolves problem (a) with the simultaneous application of magnetic and electric fields parallel or antiparallel to each other. By this method, doped local spins can be controlled by the bulk energy which can overcome the magnetic anisotropy and Zeeman splitting at the surface. We also comment on the generalization of the topological responses to the case of topological superconductors and superfluids. This work was done in collaboration with Naoto Nagaosa, Shinsei Ryu, and Akira Furusaki. K. Nomura and N. Nagaosa, Phys. Rev. Lett. 106, 166802 (2011); K. Nomura, S. Ryu, A. Furusaki, N. Nagaosa, arXiv:1108.5054.

  14. Combining Measurements with Three-Dimensional Laser Scanning System and Coded Aperture Gamma-Ray Imaging System for International Safeguards Applications

    SciTech Connect

    Boehnen, Chris Bensing; Bogard, James S; Hayward, Jason P; Raffo-Caiado, Ana Claudia; Smith, Steven E; Ziock, Klaus-Peter

    2010-01-01

    Being able to verify the operator's declaration in regard to the technical design of nuclear facilities is an important aspect of every safeguards approach. In addition to visual observation, it is necessary to know if nuclear material is present or has been present in undeclared piping and ducts. The possibility of combining the results from different measurement techniques into one easily interpreted product should optimize the inspection effort and increase safeguards effectiveness. A collaborative effort to investigate the possibility of combining measurements from a three-dimensional (3D) laser scanning system and gamma-ray imaging systems is under way. The feasibility of the concept has been previously proven with different laboratory prototypes of gamma-ray imaging systems. Recently, simultaneous measurements were conducted with a new highly portable, mechanically cooled, High Purity Germanium (HPGe), coded-aperture gamma-ray imager and a 3D laser scanner in an operational facility with complex configuration and different enrichment levels and quantities of uranium. With specially designed software, data from both instruments were combined and a 3D model of the facility was generated that also identified locations of radioactive sources. This paper provides an overview of the technology, describes the measurements, discusses the various safeguards scenarios addressed, and presents results of experiments.

  15. Electromagnetic scattering analysis of a three-dimensional-cavity-backed aperture in an infinite ground plane using a combined finite element method/method of moments approach

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.

  16. Three-dimensional Crack Depth Profile Assessment using Near-Field Surface Acoustic Wave Signal Response (Postprint)

    DTIC Science & Technology

    2012-02-01

    aircraft systems [1]. Ultrasonic sensing represents a key NDE method for 2D and 3D crack characterization, where recent advances in sensing and...surfaces, surface-breaking cracks (SBCs) represent an excellent test case for understanding and advancing 2-D and 3-D crack characterization, where...James L. Blackshire Nondestructive Evaluation Branch Metals, Ceramics, and NDE Division FEBRUARY 2012 Approved for public

  17. River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Wilkinson, P. B.; Penn, S.; Meldrum, P. I.; Kuras, O.; Loke, M. H.; Gunn, D. A.

    2013-06-01

    We describe the application of 3D electrical resistivity tomography (ERT) to the characterisation and reserve estimation of an economic fluvial sand and gravel deposit. Due to the smoothness constraints used to regularise the inversion, it can be difficult to accurately determine the geometry of sharp interfaces. We have therefore considered two approaches to interface detection that we have applied to the 3D ERT results in an attempt to provide an accurate and objective assessment of the bedrock surface elevation. The first is a gradient-based approach, in which the steepest gradient of the vertical resistivity profile is assumed to correspond to the elevation of the mineral/bedrock interface. The second method uses an intrusive sample point to identify the interface resistivity at a location within the model, from which an iso-resistivity surface is identified that is assumed to define the interface. Validation of these methods has been achieved through direct comparison with observed bedrock surface elevations that were measured using real-time-kinematic GPS subsequent to the 3D ERT survey when quarrying exposed the bedrock surface. The gradient-based edge detector severely underestimated the depth to bedrock in this case, whereas the interface resistivity method produced bedrock surface elevations that were in close agreement with the GPS-derived surface. The failure of the gradient-based method is attributed to insufficient model sensitivity in the region of the bedrock surface, whereas the success of the interface resistivity method is a consequence of the homogeneity of the mineral and bedrock, resulting in a consistent interface resistivity. These results highlight the need for some intrusive data for model validation and for edge detection approaches to be chosen on the basis of local geological conditions.

  18. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Yao, Huajian; Zhang, Haijiang; Huang, Yu-Chih; van der Hilst, Robert D.

    2015-06-01

    We propose a method to invert surface wave dispersion data directly for 3-D variations of shear wave speed, that is, without the intermediate step of phase or group velocity maps, using frequency-dependent ray tracing and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. To simplify the problem we consider quasi-stratified media with smoothly varying seismic properties. We represent the 3-D shear wave speed model by means of 1-D profiles beneath grid points, which are determined from all dispersion data simultaneously using a wavelet-based sparsity-constrained tomographic method. The wavelet coefficients of the wave speed model are estimated with an iteratively reweighted least squares algorithm, and upon iteration the surface wave ray paths and the data sensitivity matrix are updated using the newly obtained wave speed model. To demonstrate its feasibility, we apply the method to determine the 3-D shallow crustal shear wave speed variations in the Taipei basin of Taiwan using short period interstation Rayleigh wave phase velocity dispersion measurements extracted from the ambient noise cross-correlation method. The results are consistent with previous studies and reveal strong shallow crustal heterogeneity that correlates with surface geology.

  19. Three-Dimensional Solution of the Free Vibration Problem for Metal-Ceramic Shells Using the Method of Sampling Surfaces

    NASA Astrophysics Data System (ADS)

    Kulikov, G. M.; Plotnikova, S. V.

    2017-03-01

    The possibility of using the method of sampling surfaces (SaS) for solving the free vibration problem of threedimensional elasticity for metal-ceramic shells is studied. According to this method, in the shell body, an arbitrary number of SaS parallel to its middle surface are selected in order to take displacements of these surfaces as unknowns. The SaS pass through the nodes of a Chebyshev polynomial, which improves the convergence of the SaS method significantly. As a result, the SaS method can be used to obtain analytical solutions of the vibration problem for metal-ceramic plates and cylindrical shells that asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.

  20. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    SciTech Connect

    Johnson, Timothy C.; Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-08-22

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides (1) superior spatial coverage in two or three dimensions, (2) potentially high-resolution information in time, and (3) information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever increasing size and complexity of long-term, three-dimensional time-series conductivity datasets. Here, we use three-dimensional (3D) surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater/surface-water interaction along a stretch of the Columbia River adjacent to the Hanford 300 Area, Hanford WA, USA. We reduce the resulting 3D conductivity time series using both correlation and time-frequency analysis to isolate a paleochannel causing enhanced groundwater/river-water interaction. Correlation analysis on the time-lapse imaging results concisely represents enhanced ground water/surface-water interaction within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) Transform provides additional information by 1) identifying the stage periodicities driving ground water/river-water interaction due to upstream dam operations, 2) identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  1. Two-Dimensional Sectioned Images and Three-Dimensional Surface Models for Learning the Anatomy of the Female Pelvis

    ERIC Educational Resources Information Center

    Shin, Dong Sun; Jang, Hae Gwon; Hwang, Sung Bae; Har, Dong-Hwan; Moon, Young Lae; Chung, Min Suk

    2013-01-01

    In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five-step process was designed and implemented. First, 154 pelvic…

  2. Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes.

    PubMed

    Kim, Kyuman; Byun, Seoungwoo; Cho, Inseong; Ryou, Myung-Hyun; Lee, Yong Min

    2016-09-14

    Using a surface and interfacial cutting analysis system (SAICAS) that can measure the adhesion strength of a composite electrode at a specific depth from the surface, we can subdivide the adhesion strength of a composite electrode into two classes: (1) the adhesion strength between the Al current collector and the cathode composite electrode (FAl-Ca) and (2) the adhesion strength measured at the mid-depth of the cathode composite electrode (Fmid). Both adhesion strengths, FAl-Ca and Fmid, increase with increasing electrode density and loading level. From the SAICAS measurement, we obtain a mathematical equation that governs the adhesion strength of the composite electrodes. This equation revealed a maximum accuracy of 97.2% and 96.1% for FAl-Ca and Fmid, respectively, for four randomly chosen composite electrodes varying in electrode density and loading level.

  3. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger.

    PubMed

    Lim, Seng Han; Ng, Jian Yao; Kang, Lifeng

    2017-01-10

    The hand function of patients who suffer from trigger finger can be impaired by the use of traditional splints. There is also a risk of systemic side effects with oral non-steroidal anti-inflammatory drugs (NSAIDs) used for pain relief. Microneedle-assisted transdermal drug delivery offers an attractive alternative for local delivery of NSAIDs. However, traditional microneedle arrays fabricated on flat surfaces are unable to deliver drugs effectively across the undulating skin surface of affected finger(s). In this study, using 3D printing, a dual-function microneedle array has been fabricated on personalized curved surfaces (microneedle splint) for drug delivery and splinting of the affected finger. The novel microneedle splint was assessed for its physical characteristics and the microneedles were shown to withstand up to twice the average thumb force without fracturing. An average skin penetration efficiency of 64% on dermatomed human cadaver skin was achieved and the final microneedle splint showed biocompatibility with human dermal cell lines. A significantly higher amount of diclofenac permeated through the skin by 0.5 h with the use of the microneedle splint as compared to intact skin. The fabricated microneedle splint can thus be a potential new approach to treat trigger finger via personalized splinting without affecting normal hand function.

  4. Three-Dimensional Surface Geophysical Exploration of the 200-Series Tanks at the 241-C Tank Farm

    SciTech Connect

    Crook, N.; McNeill, M.; Dunham, Ralph; Glaser, Danney R.

    2014-02-26

    A surface geophysical exploration (SGE) survey using direct current electrical resistivity was conducted within the C Tank Farm in the vicinity of the 200-Series tanks at the Hanford Site near Richland, Washington. This survey was the second successful SGE survey to utilize the Geotection(TM)-180 Resistivity Monitoring System which facilitated a much larger survey size and faster data acquisition rate. The primary objective of the C Tank Farm SGE survey was to provide geophysical data and subsurface imaging results to support the Phase 2 RCRA Facility Investigation, as outlined in the Phase 2 RCRA Facility Investigation / Corrective Measures work plan RPP-PLAN-39114.

  5. Quantification of facial movements by optical instruments: surface laser scanning and optoelectronic three-dimensional motion analyzer.

    PubMed

    Sidequersky, Fernanda Vincia; Verzé, Laura; Mapelli, Andrea; Ramieri, Guglielmo Amedeo; Sforza, Chiarella

    2014-01-01

    The objective of this study was to assess the accuracy of displacements of tracing landmarks in standardized facial movements. Forty healthy persons were evaluated in 2 different groups (20 men and 20 women, aged 18-30 years) with optoelectronic motion analyzer and surface laser scanning. The displacements of tracing landmarks in brow lift and smile were calculated, and the 2 methods (optoelectronic motion analyzer and surface laser scanning) were compared in healthy persons. Side-related differences were found in the tracing landmark (superciliare) during brow lift movements between both methods (the largest movements were found on the right side, P = 0.044), whereas in smile movements the tracing landmark cheilion did not show significant differences between the 2 sides. In both movements, the differences of the tracing landmark displacements between the 2 systems and sexes were on average less than 2 mm, without statistically significant differences (P > 0.05). In conclusion, normal young adult men and women had similar standardized facial movements. The 2 analyzed movements can be measured by both optical instruments with comparable results.

  6. Three-Dimensional Complex Variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1988-01-01

    Report presents new theory of analytic functions of three-dimensional complex variables. While three-dimensional system subject to more limitations and more difficult to use than the two-dimensional system, useful in analysis of three-dimensional fluid flows, electrostatic potentials, and other phenomena involving harmonic functions.

  7. Repeated-measure validation of craniofacial metrics from three-dimensional surface scans: application to medical genetics

    NASA Astrophysics Data System (ADS)

    Lauer, Eric A.; Corner, Brian D.; Li, Peng; Beecher, Robert M.; Deutsch, Curtis

    2002-03-01

    Traditionally, medical geneticists have employed visual inspection (anthroposcopy) to clinically evaluate dysmorphology. In the last 20 years, there has been an increasing trend towards quantitative assessment to render diagnosis of anomalies more objective and reliable. These methods have focused on direct anthropometry, using a combination of classical physical anthropology tools and new instruments tailor-made to describe craniofacial morphometry. These methods are painstaking and require that the patient remain still for extended periods of time. Most recently, semiautomated techniques (e.g., structured light scanning) have been developed to capture the geometry of the face in a matter of seconds. In this paper, we establish that direct anthropometry and structured light scanning yield reliable measurements, with remarkably high levels of inter-rater and intra-rater reliability, as well as validity (contrasting the two methods).

  8. Predicting aerodynamic characteristics of vortical flows on three-dimensional configurations using a surface-singularity panel method

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1983-01-01

    A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.

  9. Persistent Hall voltages across thin planar charged quantum rings on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Durganandini, P.

    2016-03-01

    We study theoretically, the electromagnetic response due to localized charge current distributions above a topological insulator (coated with a thin ferromagnetic layer) using the electromagnetic SL(2,Z) duality symmetry. We show that the localized current induces an electric field which depends on the current —this is a manifestation of the topological magnetoelectric (TME) effect. We also show that if the charge carriers have spin, then they acquire Aharanov-Casher phases which depend on the current. As an application, we consider thin planar charged quantum rings with persistent currents on the surface of a TI and show that the TME manifests itself as persistent Hall voltages across the charged ring. If the spin is also taken into account, then persistent spin Hall voltages develop across the ring.

  10. Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition.

    PubMed

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2015-01-01

    This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number.

  11. Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin-Film Lithium-Ion Batteries.

    PubMed

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2015-08-12

    Cu2ZnSnS4 (CZTS) is an important material in low-cost thin film solar cells and is also a promising candidate for lithium storage. In this work, a novel three-dimensional CZTS film coated with a lithium phosphorus oxynitride (LiPON) film is fabricated for the first time and is applied to thin-film lithium-ion batteries. The modified film exhibits an excellent performance of ∼900 mAh g(-1) (450 μAh cm(-2) μm(-1)), even after 75 cycles. Morphology integrity is still maintained after repeated lithiation/delithiation, and the main reaction mechanism is analyzed in detail. The significant findings from this study indicate the striking advantages of modifying both the surface and structure of alloy-based electrodes for energy storage.

  12. Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition

    PubMed Central

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2015-01-01

    This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number. PMID:26714259

  13. New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2000-01-01

    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.

  14. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method.

    PubMed

    Yang, Tong; Zhu, Jun; Wu, Xiaofei; Jin, Guofan

    2015-04-20

    In this paper, we proposed a general direct design method for three-dimensional freeform surfaces and freeform imaging systems based on a construction-iteration process. In the preliminary surfaces-construction process, the coordinates as well as the surface normals of the data points on the multiple freeform surfaces can be calculated directly considering the rays of multiple fields and different pupil coordinates. Then, an iterative process is employed to significantly improve the image quality or achieve a better mapping relationship of the light rays. Three iteration types which are normal iteration, negative feedback and successive approximation are given. The proposed construction-iteration method is applied in the design of an easy aligned, low F-number off-axis three-mirror system. The primary and tertiary mirrors can be fabricated on a single substrate and form a single element in the final system. The secondary mirror is simply a plane mirror. With this configuration, the alignment difficulty of a freeform system can be greatly reduced. After the preliminary surfaces-construction stage, the freeform surfaces in the optical system can be generated directly from an initial planar system. Then, with the iterative process, the average RMS spot diameter decreased by 75.4% compared with the system before iterations, and the maximum absolute distortion decreased by 94.2%. After further optimization with optical design software, good image quality which is closed to diffraction-limited is achieved.

  15. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.

    PubMed

    Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J

    2017-03-09

    As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.

  16. Silver dendrites decorated filter membrane as highly sensitive and reproducible three dimensional surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Lu, Ya; Zhang, Congyun; Fu, Yizheng; Moeendarbari, Sina; Shelke, Sandesh R.; Liu, Yaqing; Hao, Yaowu

    2016-11-01

    We report a novel and flexible surface enhanced Raman scattering (SERS) substrate based on filter membranes decorated with silver dendritic nanostructures. The SERS-active substrate was fabricated via electrodeposition, where hierarchical silver dendrites were uniformly and firmly deposited within and on the top of the porous filter membranes. The morphological evolution of silver dendrites was investigated at different deposition times, and the effect of the components of electrolyte was also studied. Finite difference time domain (FDTD) simulations were performed to reveal the distribution of electric filed when Ag dendrites were illuminated with 785 nm light. Such 3D SERS-active substrate exhibits extremely high sensitivity and excellent reproducibility. Raman signal sensitivity for rhodamine 6G was tested as high as 1 × 10-11 M with 12% average intensity variations at the major Raman peak. Additionally, the as-synthesized robust substrate displays high stability under an ambient condition for several months. This 3D eco-friendly filter membrane-based substrate provides not only high density of SERS hot spots, but also a very large area for capturing target analytes. It has potential applications for the detection of trace organic contaminants in the environment.

  17. Real-time flatness inspection of rolled products based on optical laser triangulation and three-dimensional surface reconstruction

    NASA Astrophysics Data System (ADS)

    Molleda, Julio; Usamentiaga, Rubén; García, Daniel F.; Bulnes, Francisco G.

    2010-07-01

    Flatness is a major geometrical feature of rolled products specified by both production and quality needs. Real-time inspection of flatness is the basis of automatic flatness control. Industrial facilities where rolled products are manufactured have adverse environments that affect artificial vision systems. We present a low-cost flatness inspection system based on optical triangulation by means of a laser stripe emitter and a CMOS matrix camera, designed to be part of an online flatness control system. An accurate and robust method to extract a laser stripe in adverse conditions over rough surfaces is proposed and designed to be applied in real time. Laser extraction relies on a local and a global search. The global search is based on an adjustment of curve segments based on a split-and-merge technique. A real-time recording method of the input data of the flatness inspection system is proposed. It stores information about manufacturing conditions for an offline tuning of the laser stripe extraction method using real data. Flatness measurements carried out over steel strips are evaluated quantitatively and qualitatively. Moreover, the real-time performance of the proposed system is analyzed.

  18. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Cedola, Alessia; Campi, Gaetano; Pelliccia, Daniele; Bukreeva, Inna; Fratini, Michela; Burghammer, Manfred; Rigon, Luigi; Arfelli, Fulvia; Chen, Rong Chang; Dreossi, Diego; Sodini, Nicola; Mohammadi, Sara; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2014-01-01

    Computed x-ray phase contrast micro-tomography is the most valuable tool for a three dimensional (3D) and non destructive analysis of the tissue engineered bone morphology. We used a Talbot interferometer installed at SYRMEP beamline of the ELETTRA synchrotron (Trieste, Italy) for a precise 3D reconstruction of both bone and soft connective tissue, regenerated in vivo within a porous scaffold. For the first time the x-ray tomographic reconstructions have been combined with x-ray scanning micro-diffraction measurement on the same sample, in order to give an exhaustive identification of the different tissues participating to the biomineralization process. As a result, we were able to investigate in detail the different densities in the tissues, distinguishing the 3D organization of the amorphous calcium phosphate from the collagen matrix. Our experimental approach allows for a deeper understanding of the role of collagen matrix in the organic-mineral transition, which is a crucial issue for the development of new bio-inspired composites.

  19. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting.

    PubMed

    Wüst, Silke; Godla, Marie E; Müller, Ralph; Hofmann, Sandra

    2014-02-01

    Three-dimensional (3-D) bioprinting is the layer-by-layer deposition of biological material with the aim of achieving stable 3-D constructs for application in tissue engineering. It is a powerful tool for the spatially directed placement of multiple materials and/or cells within the 3-D sample. Encapsulated cells are protected by the bioink during the printing process. Very few materials are available that fulfill requirements for bioprinting as well as provide adequate properties for cell encapsulation during and after the printing process. A hydrogel composite including alginate and gelatin precursors was tuned with different concentrations of hydroxyapatite (HA) and characterized in terms of rheology, swelling behavior and mechanical properties to assess the versatility of the system. Instantaneous as well as long-term structural integrity of the printed hydrogel was achieved with a two-step mechanism combining the thermosensitive properties of gelatin with chemical crosslinking of alginate. Novel syringe tip heaters were developed for improved temperature control of the bioink to avoid clogging. Human mesenchymal stem cells mixed into the hydrogel precursor survived the printing process and showed high cell viability of 85% living cells after 3 days of subsequent in vitro culture. HA enabled the visualization of the printed structures with micro-computed tomography. The inclusion of HA also favors the use of the bioink for bone tissue engineering applications. By adding factors other than HA, the composite could be used as a bioink for applications in drug delivery, microsphere deposition or soft tissue engineering.

  20. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography.

    PubMed

    Cedola, Alessia; Campi, Gaetano; Pelliccia, Daniele; Bukreeva, Inna; Fratini, Michela; Burghammer, Manfred; Rigon, Luigi; Arfelli, Fulvia; Chang Chen, Rong; Dreossi, Diego; Sodini, Nicola; Mohammadi, Sara; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2014-01-06

    Computed x-ray phase contrast micro-tomography is the most valuable tool for a three dimensional (3D) and non destructive analysis of the tissue engineered bone morphology. We used a Talbot interferometer installed at SYRMEP beamline of the ELETTRA synchrotron (Trieste, Italy) for a precise 3D reconstruction of both bone and soft connective tissue, regenerated in vivo within a porous scaffold. For the first time the x-ray tomographic reconstructions have been combined with x-ray scanning micro-diffraction measurement on the same sample, in order to give an exhaustive identification of the different tissues participating to the biomineralization process. As a result, we were able to investigate in detail the different densities in the tissues, distinguishing the 3D organization of the amorphous calcium phosphate from the collagen matrix. Our experimental approach allows for a deeper understanding of the role of collagen matrix in the organic-mineral transition, which is a crucial issue for the development of new bio-inspired composites.

  1. Comparison of three-dimensional proximal isovelocity surface area to cardiac magnetic resonance imaging for quantifying mitral regurgitation.

    PubMed

    Brugger, Nicolas; Wustmann, Kerstin; Hürzeler, Michael; Wahl, Andreas; de Marchi, Stefano F; Steck, Hélène; Zürcher, Fabian; Seiler, Christian

    2015-04-15

    The aim of our study was to evaluate 3-dimensional (3D) color Doppler proximal isovelocity surface area (PISA) as a tool for quantitative assessment of mitral regurgitation (MR) against in vitro and in vivo reference methods. A customized 3D PISA software was validated in vitro against a flowmeter MR phantom. Sixty consecutive patients, with ≥mild MR of any cause, were recruited and the regurgitant volume (RVol) was measured by 2D PISA, 3D peak PISA, and 3D integrated PISA, using transthoracic (TTE) and transesophageal echocardiography (TEE). Cardiac magnetic resonance imaging (CMR) was used as reference method. Flowmeter RVol was associated with 3D integrated PISA as follows: y = 0.64x + 4.7, r(2) = 0.97, p <0.0001 for TEE and y = 0.88x + 4.07, r(2) = 0.96, p <0.0001 for TTE. The bias and limit of agreement in the Bland-Altman analysis were 6.8 ml [-3.5 to 17.1] for TEE and -0.059 ml [-6.2 to 6.1] for TTE. In vivo, TEE-derived 3D integrated PISA was the most accurate method for MR quantification compared to CMR: r(2) = 0.76, y = 0.95x - 3.95, p <0.0001; 5.1 ml (-14.7 to 26.5). It was superior to TEE 3D peak PISA (r(2) = 0.67, y = 1.00x + 6.20, p <0.0001; -6.3 ml [-33.4 to 21.0]), TEE 2D PISA (r(2) = 0.54, y = 0.76x + 0.18, p <0.0001; 8.4 ml [-20.4 to 37.2]), and TTE-derived measurements. It was also most accurate by receiver operating characteristic analysis (area under the curve 0.99) for the detection of severe MR, RVol cutoff = 48 ml, sensibility 100%, and specificity 96%. RVol and the cutoff to define severe MR were underestimated using the most accurate method. In conclusion, quantitative 3D color Doppler echocardiography of the PISA permits a more accurate MR assessment than conventional techniques and, consequently, should enable an optimized management of patients suffering from MR.

  2. Three-dimensional records of surface displacement on the Superstition Hills fault zone associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.; Saxton, J.L.

    1989-01-01

    Seven quadrilaterals, constructed at broadly distributed points on surface breaks within the Superstition Hills fault zone, were repeatedly remeasured after the pair of 24 November 1987 earthquakes to monitor the growing surface displacement. Changes in the dimensions of the quadrilaterals are recalculated to right-lateral and extensional components at millimeter resolution, and vertical components of change are resolved at 0.2mm precision. The displacement component data for four of the seven quadrilaterals record the complete fault movement with respect to an October 1986 base. The three-dimensional motion vectors all describe nearly linear trajectories throughout the observation period, and they indicate smooth shearing on their respective fault surfaces. The inclination of the shear surfaces is generally nearly vertical, except near the south end of the Superstition Hills fault zone where two strands dip northeastward at about 70??. Surface displacement on these strands is right reverse. Another kind of deformation, superimposed on the fault displacements, has been recorded at all quadrilateral sites. It consists of a northwest-southeast contraction or component of contraction that ranged from 0 to 0.1% of the quadrilateral lengths between November 1987 and April 1988. -from Authors

  3. High-dose-rate Three-dimensional Conformal Radiotherapy Combined with Active Breathing Control for Stereotactic Body Radiotherapy of Early-stage Non-small-cell Lung Cancer.

    PubMed

    Wang, Ruozheng; Yin, Yong; Qin, Yonghui; Yu, Jinming

    2015-12-01

    The purpose of this study was to evaluate the feasibility and benefits of using high-dose-rate three-dimensional conformal radiotherapy (3D-CRT) combined with active breathing control (ABC) for stereotactic body radiotherapy (SBRT) of patients with early-stage non-small-cell lung cancer (NSCLC). Eight patients with early-stage NSCLC underwent CT scans under standard free-breathing (FB) and moderately deep inspiration breath-hold (mDIBH) with ABC. Two high-dose-rate 3D-CRT plans (1000 Mu/min) were designed based on the CT scans with FB and mDIBH. The maximal dose (D1%), minimal dose (D99%), conformity index (CI), and homogeneity index (HI) of the planning target volume (PTV), and dose-volume indices of the organs at risk between each plan were compared. The mean PTV volume decreased from 158.04 cm(3) with FB to 76.90 cm(3) with mDIBH (p < 0.05). When mDIBH was used, increases in the affected lung volume (by 47%), contralateral lung volume (by 55%), and total lung volume (by 50%) were observed compared to FB (p < 0.05). The V5-V40 of the affected lung (Vx represented the percentage volume of organs receiving at least the x Gy), V5-V40 and the mean dose for the total lung, V5-V40 and mean dose of the chest wall, and the maximum dose of the spinal cord were less for mDIBH than FB (p < 0.05). There were no significant differences in CI, HI, D1%, or D99% for the PTV between the plans. In conclusion, high-dose-rate 3D-CRT combined with ABC reduced the radiation dose to the lungs and chest wall without affecting the dose distribution in SBRT of early-stage NSCLC patients.

  4. Biomechanical aspects of segmented arch mechanics combined with power arm for controlled anterior tooth movement: A three-dimensional finite element study.

    PubMed

    Ozaki, Hiroya; Tominaga, Jun-Ya; Hamanaka, Ryo; Sumi, Mayumi; Chiang, Pao-Chang; Tanaka, Motohiro; Koga, Yoshiyuki; Yoshida, Noriaki

    2015-01-01

    The porpose of this study was to determine the optimal length of power arms for achieving controlled anterior tooth movement in segmented arch mechanics combined with power arm. A three-dimensional finite element method was applied for the simulation of en masse anterior tooth retraction in segmented power arm mechanics. The type of tooth movement, namely, the location of center of rotation of the maxillary central incisor in association with power arm length, was calculated after the retraction force was applied. When a 0.017 × 0.022-in archwire was inserted into the 0.018-in slot bracket, bodily movement was obtained at 9.1 mm length of power arm, namely, at the level of 1.8 mm above the center of resistance. In case a 0.018 × 0.025-in full-size archwire was used, bodily movement of the tooth was produced at the power arm length of 7.0 mm, namely, at the level of 0.3 mm below the center of resistance. Segmented arch mechanics required shorter length of power arms for achieving any type of controlled anterior tooth movement as compared to sliding mechanics. Therefore, this space closing mechanics could be widely applied even for the patients whose gingivobuccal fold is shallow. The segmented arch mechanics combined with power arm could provide higher amount of moment-to-force ratio sufficient for controlled anterior tooth movement without generating friction, and vertical forces when applying retraction force parallel to the occlusal plane. It is, therefore, considered that the segmented power arm mechanics has a simple appliance design and allows more efficient and controllable tooth movement.

  5. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography

    PubMed Central

    Couto Souza, Paulo; Jacobs, Reinhilde; de Azambuja Berti, Soraya; van der Stelt, Paul

    2009-01-01

    The study aim is to investigate the influence of scan field, mouth opening, voxel size, and segmentation threshold selections on the quality of the three-dimensional (3D) surface models of the dental arches from cone beam computed tomography (CBCT). 3D models of 25 patients scanned with one image intensifier CBCT system (NewTom 3G, QR SLR, Verona, Italy) using three field sizes in open- and closed-mouth positions were created at different voxel size resolutions. Two observers assessed the quality of the models independently on a five-point scale using specified criteria. The results indicate that large-field selection reduced the visibility of the teeth and the interproximal space. Also, large voxel size reduced the visibility of the occlusal surfaces and bone in the anterior region in both maxilla and mandible. Segmentation threshold was more variable in the maxilla than in the mandible. Closed-mouth scan complicated separating the jaws and reduced teeth surfaces visibility. The preliminary results from this image-intensifier system indicate that the use of medium or small scan fields in an open-mouth position with a small voxel is recommended to optimize quality of the 3D surface model reconstructions of the dental arches from CBCT. More research is needed to validate the results with other flat-panel detector-based CBCT systems. PMID:19506922

  6. The three-dimensional nonadiabatic dynamics calculation of DH2+ and HD2+ systems by using the trajectory surface hopping method based on the Zhu-Nakamura theory

    NASA Astrophysics Data System (ADS)

    Li, Bin; Han, Ke-Li

    2008-03-01

    A theoretical investigation on the nonadiabatic processes of the full three-dimensional D++H2 and H++D2 reaction systems has been performed by using trajectory surface hopping (TSH) method based on the Zhu-Nakamura (ZN) theory. This ZN-TSH method refers to not only classically allowed hops but also classically forbidden hops. The potential energy surface constructed by Kamisaka et al. is employed in the calculation. A new iterative method is proposed to yield the two-dimensional seam surface from the topography of the adiabatic potential surfaces, in which the inconvenience of directly solving the first-order partial differential equation is avoided. The cross sections of these two systems are calculated for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, for ground rovibrational state of H2 or D2. Also, this study provides reaction probabilities of these three processes for the total angular momentum J =0 and ground initial vibrational state of H2 or D2. The calculated results from ZN-TSH method are in good agreement with the exact quantum calculations and the experimental measurements.

  7. The three-dimensional nonadiabatic dynamics calculation of DH(2)(+) and HD(2)(+) systems by using the trajectory surface hopping method based on the Zhu-Nakamura theory.

    PubMed

    Li, Bin; Han, Ke-Li

    2008-03-21

    A theoretical investigation on the nonadiabatic processes of the full three-dimensional D(+)+H(2) and H(+)+D(2) reaction systems has been performed by using trajectory surface hopping (TSH) method based on the Zhu-Nakamura (ZN) theory. This ZN-TSH method refers to not only classically allowed hops but also classically forbidden hops. The potential energy surface constructed by Kamisaka et al. is employed in the calculation. A new iterative method is proposed to yield the two-dimensional seam surface from the topography of the adiabatic potential surfaces, in which the inconvenience of directly solving the first-order partial differential equation is avoided. The cross sections of these two systems are calculated for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, for ground rovibrational state of H(2) or D(2). Also, this study provides reaction probabilities of these three processes for the total angular momentum J=0 and ground initial vibrational state of H(2) or D(2). The calculated results from ZN-TSH method are in good agreement with the exact quantum calculations and the experimental measurements.

  8. Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2015-12-01

    A novel cell-centred control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations on unstructured grids in three-dimensions (3D). The grid is aligned with fractures and barriers which are then modelled as lower-dimensional surface interfaces located between the matrix cells in the physical domain. The three-dimensional pressure equation is solved in the matrix domain coupled with a two-dimensional (2D) surface pressure equation solved over fracture networks via a novel surface CVD-MPFA formulation. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures and define the transfer function, which is added to the lower-dimensional flow equation and couples the three-dimensional and surface systems. An additional transmission condition is used between matrix cells adjacent to low permeable fractures to couple the velocity and pressure jump across the fractures. Convergence and accuracy of the lower-dimensional fracture model is assessed for highly anisotropic fractures having a range of apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approximation for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretisation. Lower-dimensional fracture model results are compared with equi-dimensional model results. Fractures and barriers are efficiently modelled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Pressure continuity is built into the model across highly conductive fractures, leading to reduced local degrees of freedom in the CVD-MPFA approximation. The formulation is applied to geologically complex

  9. Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing

    NASA Astrophysics Data System (ADS)

    Zuo, Han-song; Li, He-jun; Qi, Le-hua; Luo, Jun; Zhong, Song-yi; Wu, Yao-feng

    2015-01-01

    Non-isothermal deposition of uniform molten droplets as basic building blocks has a great influence on the geometric profile and microstructure of metallic components fabricated by the drop-based three-dimensional (3D) printing technology. In this paper, the thermal and dynamic behaviors of molten aluminum droplets during non-isothermal deposition were studied numerically and experimentally. The result shows that local solidification and interfacial re-melting occur during the initial period of non-isothermal deposition. The re-melting in microseconds depends greatly on the impacting droplet temperature, the deposition surface temperature, and the thermal contact resistance. Further, the coupling action of subsequent solidification and oscillation behaviors of aluminum droplet fixed on the target surface was also investigated. It is interesting to find that the formation and distribution of the solidified surface morphology, such as the typical micron-sized ripples, are significantly affected by layer-by-layer solidification and underdamped oscillation in the remaining molten metal. Based on the above research, a semiquantitative relationship between external morphology and internal microstructure was proposed, which was further certified by investigating the piled vertical columns. The works should be helpful for the process optimization and non-destructive detection of drop-based 3D printing techniques.

  10. Intensity-Modulated Radiotherapy Causes Fewer Side Effects than Three-Dimensional Conformal Radiotherapy When Used in Combination With Brachytherapy for the Treatment of Prostate Cancer

    SciTech Connect

    Forsythe, Kevin; Blacksburg, Seth; Stone, Nelson; Stock, Richard G.

    2012-06-01

    Purpose: To measure the benefits of intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) when used in combination with brachytherapy for the treatment of prostate cancer. Methods and Materials: We conducted a retrospective review of all patients with localized prostate cancer who received external-beam radiotherapy (EBRT) in combination with brachytherapy with at least 1 year follow-up (n = 812). Combination therapy consisted of {sup 103}Pd or {sup 125}I implant, followed by a course of EBRT. From 1993 to March 2003 521 patients were treated with 3D-CRT, and from April 2003 to March 2009 291 patients were treated with IMRT. Urinary symptoms were prospectively measured with the International Prostate Symptom Score questionnaire with a single quality of life (QOL) question; rectal bleeding was assessed per the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The Pearson {chi}{sup 2} test was used to compare toxicities experienced by patients who were treated with either IMRT or 3D-CRT. Logistic regression analyses were also performed to rule out possible confounding factors. Results: Within the first 3 months after treatment, patients treated with 3D-CRT scored their urinary symptoms as follows: 19% mild, 44% moderate, and 37% severe; patients treated with IMRT scored their urinary symptoms as follows: 36% mild, 47% moderate, and 17% severe (p < 0.001). The 3D-CRT patients rated their QOL as follows: 35% positive, 20% neutral, and 45% negative; IMRT patients rated their QOL as follows: 51% positive, 18% neutral, and 31% negative (p < 0.001). After 1 year of follow-up there was no longer any difference in urinary morbidity between the two groups. Logistic regression confirmed the differences in International Prostate Symptom Score and QOL in the acute setting (p < 0.001 for both). Grade {>=}2 rectal bleeding was reported by 11% of 3D

  11. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  12. Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo; Gonzalez, Adonai

    2016-12-01

    In this work we review and combine two techniques that have been recently published for three-dimensional (3D) fringe projection profilometry and phase unwrapping, namely: co-phased profilometry and 2-steps temporal phase-unwrapping. By combining these two methods we get a more accurate, higher signal-to-noise 3D profilometer for discontinuous industrial objects. In single-camera single-projector (standard) profilometry, the camera and the projector must form an angle between them. The phase-sensitivity of the profilometer depends on this angle, so it cannot be avoided. This angle produces regions with self-occluding shadows and glare from the solid as viewed from the camera's perspective, making impossible the demodulation of the fringe-pattern there. In other words, the phase data is undefined at those shadow regions. As published recently, this limitation can be solved by using several co-phased fringe-projectors and a single camera. These co-phased projectors are positioned at different directions towards the object, and as a consequence most shadows are compensated. In addition to this, most industrial objects are highly discontinuous, which precludes the use of spatial phase-unwrappers. One way to avoid spatial unwrapping is to decrease the phase-sensitivity to a point where the demodulated phase is bounded to one lambda, so the need for phase-unwrapping disappears. By doing this, however, the recovered non-wrapped phase contains too much harmonic distortion and noise. Using our recently proposed two-step temporal phase-unwrapping technique, the high-sensitivity phase is unwrapped using the low-frequency one as initial gross estimation. This two-step unwrapping technique solves the 3D object discontinuities while keeping the accuracy of the high-frequency profilometry data. In scientific research, new art are derived as logical and consistent result of previous efforts in the same direction. Here we present a new 3D-profilometer combining these two recently

  13. Two- and Three-Dimensional Cloud-Resolving Model Simulations of the Mesoscale Enhancement of Surface Heat Fluxes by Precipitating Deep Convection.

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqing; Guimond, Stephen

    2006-01-01

    Two-dimensional (2D) and three-dimensional (3D) cloud-resolving model (CRM) simulations are conducted to quantify the enhancement of surface sensible and latent heat fluxes by tropical precipitating cloud systems for 20 days (10 30 December 1992) during the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The mesoscale enhancement appears to be analogous across both 2D and 3D CRMs, with the enhancement for the sensible heat flux accounting for 17% of the total flux for each model and the enhancement for the latent heat flux representing 18% and 16% of the total flux for 2D and 3D CRMs, respectively. The convection-induced gustiness is mainly responsible for the enhancement observed in each model simulation. The parameterization schemes of the mesoscale enhancement by the gustiness in terms of convective updraft, downdraft, and precipitation, respectively, are examined using each version of the CRM. The scheme utilizing the precipitation was found to yield the most desirable estimations of the mean fluxes with the smallest rms error. The results together with previous findings from other studies suggest that the mesoscale enhancement of surface heat fluxes by the precipitating deep convection is a subgrid process apparent across various CRMs and is imperative to incorporate into general circulation models (GCMs) for improved climate simulation.

  14. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface

    PubMed Central

    Ahn, Hee-Chul; Jurani, Nenad; Macura, Slobodan; Markley, John L.

    2008-01-01

    We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH···OC<) hydrogen bonds directly by the detection of h3JNC′ couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins. PMID:16569017

  15. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface.

    PubMed

    Ahn, Hee-Chul; Juranić, Nenad; Macura, Slobodan; Markley, John L

    2006-04-05

    We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) (variant of crambin containing Pro22 and Leu25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH...OC<) hydrogen bonds directly by the detection of (h3)J(NC)' couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC (dodecylphosphocholine) micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins.

  16. Three-dimensional interactive and stereotactic atlas of the cranial nerves and their nuclei correlated with surface neuroanatomy, vasculature and magnetic resonance imaging.

    PubMed

    Nowinski, Wieslaw L; Johnson, Aleksandra; Chua, Beng Choon; Nowinska, Natalia G

    2012-01-01

    Knowledge of the cranial nerves and their nuclei is critical in clinical practice, medical research and education. However to our best knowledge, a comprehensive source capturing full three-dimensional (3D) relationships of the cranial nerves along with surrounding neuroanatomy is not yet available. This work addresses the construction and validation of an atlas of the cranial nerves with their nuclei, correlated with surface neuroanatomy, vasculature, and magnetic resonance imaging. The atlas is interactive, stereotactic, 3D, detailed, fully parcellated, completely labeled, consistent in 3D, electronically dissectible, and scalable. A 3D geometrical model of the 12 pairs of cranial nerves with nuclei was created from an in vivo magnetic resonance scan exploiting in-house developed tools and methods, including tubular and iso-surface modeling, interactive editing, and mesh compression. This virtual model contains 439 objects with 121 different names, labeled based on Terminologia Anatomica. The model was integrated with a 3D atlas of structure, vasculature and tracts developed earlier, and correlated with sectional magnetic resonance anatomy. The whole model or its components can be interactively rotated, zoomed, panned, and add or removed with a simple few clicks. The studied material can be adaptively selected in an in-depth manner by using controls available in the user interface. This atlas is potentially useful for anatomy browsing, user self-testing, automatic student assessment, preparing materials, and localization in clinical neurology.

  17. Three-dimensional numerical simulations of lamellar structure via two-step surface-directed phase separation in polymer blend films.

    PubMed

    Yan, Li-Tang; Li, Jialin; Xie, Xu-Ming

    2008-06-14

    Lamellar structure via two-step surface-directed phase separation in polymer blend films is numerically investigated in three-dimensional (3D) space, which is more physically appropriate for the experimental situation than that in two-dimensional (2D) space [L.-T. Yan and X. M. Xie, J. Chem. Phys. 128, 034901 (2008)]. The 3D phase morphology and its evolution dynamics in both critical and off-critical conditions have been studied. The wetting layer formation mechanism during the second quench has been concerned. The effects of noise on the ordered phase structures have also been examined. The simulated results in 3D space give a more certain evidence that the lamellar structure can be induced by the surface or interface when the system is in the equilibration state with very shallow quench depth first and then imposed on a further quench depth in the unstable region of the phase diagram. It is found that the lamellar structure can also be induced in the polymer blends with off-critical condition. The simulated results demonstrate that the formation of the lamellar structure can present two basic processes and obey logarithmic growth law at the initial and metaphase stages. The results also show that a stronger thermal noise corresponds to a smaller region with the lamellar structure.

  18. Validation of a novel semi-automated method for three-dimensional surface rendering of condyles using cone beam computed tomography data.

    PubMed

    Xi, T; van Loon, B; Fudalej, P; Bergé, S; Swennen, G; Maal, T

    2013-08-01

    Morphological changes of the condyles are often observed following orthognathic surgery. In addition to clinical assessment, radiographic evaluation of the condyles is required to distinguish the physiological condylar remodelling from pathological condylar resorption. The low contrast resolution and distortion of greyscale values in cone beam computed tomography (CBCT) scans have impeded an accurate three-dimensional (3D) rendering of the condyles. The current study proposes a novel semi-automated method for 3D rendering of condyles using CBCT datasets, and provides a clinical validation of this method. Ten patients were scanned using a standard CBCT scanning protocol. After defining the volume of interest, a greyscale cut-off value was selected to allow an automatic reconstruction of the condylar outline. The condylar contour was further enhanced manually by two independent observers to correct for the under- and over-contoured voxels. Volumetric measurements and surface distance maps of the condyles were computed. The mean within-observer and between-observer differences in condylar volume were 8.62 mm(3) and 6.13 mm(3), respectively. The mean discrepancy between intra- and inter-observer distance maps of the condylar surface was 0.22 mm and 0.13 mm, respectively. This novel method provides a reproducible tool for the 3D rendering of condyles, allowing longitudinal follow-up and quantitative analysis of condylar changes following orthognathic surgery.

  19. A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study

    PubMed Central

    2013-01-01

    Background In most modern bony fishes (teleosts) hearing improvement is often correlated with a close morphological relationship between the swim bladder or other gas-filled cavities and the saccule or more rarely with the utricle. A connection of an accessory hearing structure to the third end organ, the lagena, has not yet been reported. A recent study in the Asian cichlid Etroplus maculatus provided the first evidence that a swim bladder may come close to the lagena. Our study was designed to uncover the swim bladder-inner ear relationship in this species. We used a new approach by applying a combination of two high-resolution techniques, namely microtomographic (microCT) imaging and histological serial semithin sectioning, providing the basis for subsequent three-dimensional reconstructions. Prior to the morphological study, we additionally measured auditory evoked potentials at four frequencies (0.5, 1, 2, 3 kHz) to test the hearing abilities of the fish. Results E. maculatus revealed a complex swim bladder-inner ear connection in which a bipartite swim bladder extension contacts the upper as well as the lower parts of each inner ear, a condition not observed in any other teleost species studied so far. The gas-filled part of the extension is connected to the lagena via a thin bony lamella and is firmly attached to this bony lamella with connective material. The second part of the extension, a pad-like structure, approaches the posterior and horizontal semicircular canals and a recessus located posterior to the utricle. Conclusions Our study is the first detailed report of a link between the swim bladder and the lagena in a teleost species. We suggest that the lagena has an auditory function in this species because the most intimate contact exists between the swim bladder and this end organ. The specialized attachment of the saccule to the cranial bone and the close proximity of the swim bladder extension to the recessus located posterior to the utricle

  20. Three-dimensional echocardiographic technology.

    PubMed

    Salgo, Ivan S

    2007-05-01

    This article addresses the current state of the art of technology in three-dimensional echocardiography as it applies to transducer design, beam forming, display, and quantification. Because three-dimensional echocardiography encompasses many technical and clinical areas, this article reviews its strengths and limitations and concludes with an analysis of what to use when.

  1. Coexistence of topological Dirac fermions on the surface and three-dimensional Dirac cone state in the bulk of ZrTe5 single crystal.

    PubMed

    Pariari, Arnab; Mandal, Prabhat

    2017-01-09

    Although, the long-standing debate on the resistivity anomaly in ZrTe5 somewhat comes to an end, the exact topological nature of the electronic band structure remains elusive till today. Theoretical calculations predicted that bulk ZrTe5 to be either a weak or a strong three-dimensional (3D) topological insulator. However, the angle resolved photoemission spectroscopy and transport measurements clearly demonstrate 3D Dirac cone state with a small mass gap between the valence band and conduction band in the bulk. From the magnetization and magneto-transport measurements on ZrTe5 single crystal, we have detected both the signature of helical spin texture from topological surface state and chiral anomaly associated with the 3D Dirac cone state in the bulk. This implies that ZrTe5 hosts a novel electronic phase of material, having massless Dirac fermionic excitation in its bulk gap state, unlike earlier reported 3D topological insulators. Apart from the band topology, it is also apparent from the resistivity and Hall measurements that the anomalous peak in the resistivity can be shifted to a much lower temperature (T < 2 K) by controlling impurity and defects.

  2. The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2015-04-01

    In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

  3. Coexistence of topological Dirac fermions on the surface and three-dimensional Dirac cone state in the bulk of ZrTe5 single crystal

    NASA Astrophysics Data System (ADS)

    Pariari, Arnab; Mandal, Prabhat

    2017-01-01

    Although, the long-standing debate on the resistivity anomaly in ZrTe5 somewhat comes to an end, the exact topological nature of the electronic band structure remains elusive till today. Theoretical calculations predicted that bulk ZrTe5 to be either a weak or a strong three-dimensional (3D) topological insulator. However, the angle resolved photoemission spectroscopy and transport measurements clearly demonstrate 3D Dirac cone state with a small mass gap between the valence band and conduction band in the bulk. From the magnetization and magneto-transport measurements on ZrTe5 single crystal, we have detected both the signature of helical spin texture from topological surface state and chiral anomaly associated with the 3D Dirac cone state in the bulk. This implies that ZrTe5 hosts a novel electronic phase of material, having massless Dirac fermionic excitation in its bulk gap state, unlike earlier reported 3D topological insulators. Apart from the band topology, it is also apparent from the resistivity and Hall measurements that the anomalous peak in the resistivity can be shifted to a much lower temperature (T < 2 K) by controlling impurity and defects.

  4. Three-Dimensional Hierarchical Plasmonic Nano-Architecture Enhanced Surface-Enhanced Raman Scattering Immuno-Sensor for Cancer Biomarker Detection in Blood Plasma

    PubMed Central

    Li, Ming; Cushing, Scott K.; Zhang, Jianming; Suri, Savan; Evans, Rebecca; Petros, William P.; Gibson, Laura F.; Ma, Dongling; Liu, Yuxin; Wu, Nianqiang

    2013-01-01

    A three-dimensional (3D) hierarchical plasmonic nano-architecture has been designed for a sensitive surface-enhanced Raman scattering (SERS) immuno-sensor for protein biomarker detection. The capture antibody molecules are immobilized on a plasmonic gold triangle nano-array pattern. On the other hand, the detection antibody molecules are linked to the gold nano-star@Raman-reporter@silica sandwich nanoparticles. When protein biomarkers are present, the sandwich nanoparticles are captured over the gold triangle nano-array, forming a confined 3D plasmonic field, leading to the enhanced electromagnetic field in intensity and in 3D space. As a result, the Raman reporter molecules are exposed to a high density of “hot spots”, which amplifies the Raman signal remarkably, improving the sensitivity of the SERS immuno-sensor. This SERS immuno-sensor exhibits a wide linear range (0.1 pg/mL to 10 ng/mL), and a low limit of detection (7 fg/mL) toward human immunoglobulin G (IgG) protein in the buffer solution. This biosensor has been successfully used for detection of the vascular endothelial growth factor (VEGF) in the human blood plasma from clinical breast cancer patient samples. PMID:23659430

  5. Coexistence of topological Dirac fermions on the surface and three-dimensional Dirac cone state in the bulk of ZrTe5 single crystal

    PubMed Central

    Pariari, Arnab; Mandal, Prabhat

    2017-01-01

    Although, the long-standing debate on the resistivity anomaly in ZrTe5 somewhat comes to an end, the exact topological nature of the electronic band structure remains elusive till today. Theoretical calculations predicted that bulk ZrTe5 to be either a weak or a strong three-dimensional (3D) topological insulator. However, the angle resolved photoemission spectroscopy and transport measurements clearly demonstrate 3D Dirac cone state with a small mass gap between the valence band and conduction band in the bulk. From the magnetization and magneto-transport measurements on ZrTe5 single crystal, we have detected both the signature of helical spin texture from topological surface state and chiral anomaly associated with the 3D Dirac cone state in the bulk. This implies that ZrTe5 hosts a novel electronic phase of material, having massless Dirac fermionic excitation in its bulk gap state, unlike earlier reported 3D topological insulators. Apart from the band topology, it is also apparent from the resistivity and Hall measurements that the anomalous peak in the resistivity can be shifted to a much lower temperature (T < 2 K) by controlling impurity and defects. PMID:28067306

  6. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    SciTech Connect

    Hayat, T.; Muhammad, Taseer; Shehzad, S. A.; Alsaedi, A.

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  7. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  8. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  9. Fabrication of three dimensional microstructure fiber

    NASA Astrophysics Data System (ADS)

    Luo, Ying; Ma, Jie; Chen, Zhe; Lu, Huihui; Zhong, Yongchun

    2015-05-01

    A method of fabricating three dimensional (3D) microstructured fiber is presented. Polystyrene (PS) microspheres were coated around the surface of a micro-fiber through isothermal heating evaporation induced self-assembly method. Scanning electron microscopy (SEM) image shows that the colloidal crystal has continuous, uniform, and well-ordered face-centered cubic (FCC) structure, with [111] crystallographic direction normal to the surface of micro-fiber. This micro-fiber with three-dimensional photonic crystals structure is very useful in the applications of micro-fiber sensors or filters.

  10. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position.

    PubMed

    Hassan, Bassam; van der Stelt, Paul; Sanderink, Gerard

    2009-04-01

    The aims of this study were to assess the accuracy of linear measurements on three-dimensional (3D) surface-rendered images generated from cone beam computed tomography (CBCT) in comparison with two-dimensional (2D) slices and 2D lateral and postero-anterior (PA) cephalometric projections, and to investigate the influence of patient head position in the scanner on measurement accuracy. Eight dry human skulls were scanned twice using NewTom 3G CBCT in an ideal and a rotated position and the resulting datasets were used to create 3D surface-rendered images, 2D tomographic slices, and 2D lateral and PA projections. Ten linear distances were defined for cephalometric measurements. The physical and radiographic measurements were repeated twice by three independent observers and were compared using repeated measures analysis of variance (P=0.05). The radiographic measurements were also compared between the ideal and the rotated scan positions. The radiographic measurements of the 3D images were closer to the physical measurements than the 2D slices and 2D projection images. No statistically significant difference was found between the ideal and the rotated scan measurements for the 3D images and the 2D tomographic slices. A statistically significant difference (P<0.001) was observed between the ideal and rotated scan positions for the 2D projection images. The findings indicate that measurements based on 3D CBCT surface images are accurate and that small variations in the patient's head position do not influence measurement accuracy.

  11. Slip on normal faults induced by surface processes after the cessation of regional extension-Insights from three-dimensional numerical modelling

    NASA Astrophysics Data System (ADS)

    Turpeinen, Heidi; Maniatis, Georgios; Hampel, Andrea

    2015-05-01

    In regions of active extension, normal faulting generates topography that is continuously modified by erosion, sediment transport and deposition. As shown by previous numerical models with full coupling between tectonics and surface processes, the redistribution of mass at the Earth's surface accelerates the rate of faulting by affecting the stress state of the crust. It remains unknown, however, how fault slip evolves as a result of ongoing surface processes if regional extension as the main driver of faulting ceases. Here we use three-dimensional finite-element modelling to show that surface processes acting on normal-fault bounded mountain ranges may sustain fault slip for millions of years even after regional extension has stopped. The models consist of two successive phases. During the first phase, the normal fault accumulates displacement owing to an extensional boundary condition, while erosion and sediment deposition are active on the model surface. At the beginning of the second phase, extension of the model is stopped while the surface processes remain active. The results show that in most models normal faulting continues during the second phase at rates of ~ 20 to ~ 70 m/Ma for more than 1 Ma. In some experiments, normal slip is maintained for ~ 3 Ma, whereas in other models, a short phase of normal faulting is followed by slow reverse slip. The maximum amount of normal slip in different experiments reaches up to 90 m during the second model phase. If erosion is intensified by increasing the diffusion constant by a factor of 5, the fault accumulates the additional normal slip at a faster rate, i.e. during a shorter time period. In contrast, a five-fold variation of the fluvial erosion constant does not significantly affect the fault slip evolution. Variations of the fault dip and length have a similar effect on the duration of the phase with additional normal slip as variations of the diffusion constant. The fault slip evolution is correlated with the

  12. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    SciTech Connect

    Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun

    2014-06-15

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstrate that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.

  13. Three-dimensional surface-enhanced Raman scattering hotspots in spherical colloidal superstructure for identification and detection of drugs in human urine.

    PubMed

    Han, Zhenzhen; Liu, Honglin; Wang, Bin; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2015-01-01

    Rapid component separation and robust surface-enhanced Raman scattering (SERS) identification of drugs in real human urine remain an attractive challenge because of the sample complexity, low molecular affinity for metal surface, and inefficient use of hotspots in one- or two-dimensional (2D) geometries. Here, we developed a 5 min strategy of cyclohexane (CYH) extraction for separating amphetamines from human urine. Simultaneously, an oil-in-water emulsion method is used to assemble monodisperse Ag nanoparticles in the CYH phase into spherical colloidal superstructures in the aqueous phase. These superstructures create three-dimensional (3D) SERS hotspots which exist between every two adjacent particles in 3D space, break the traditional 2D limitation, and extend the hotspots into the third dimension along the z-axis. In this platform, a conservative estimate of Raman enhancement factor is larger than 10(7), and the same CYH extraction processing results in a high acceptability and enrichment of drug molecules in 3D hotspots which demonstrates excellent stability and reproducibility and is suitable for the quantitative examination of amphetamines in both aqueous and organic phases. Parallel ultraperformance liquid chromatography (UPLC) examinations corroborate an excellent performance of our SERS platform for the quantitative analysis of methamphetamine (MA) in both aqueous solution and real human urine, of which the detection limits reach 1 and 10 ppb, respectively, with tolerable signal-to-noise ratios. Moreover, SERS examinations on different proportions of MA and 3,4-methylenedioxymethamphetamine (MDMA) in human urine demonstrate an excellent capability of multiplex quantification of ultratrace analytes. By virtue of a spectral classification algorithm, we realize the rapid and accurate recognition of weak Raman signals of amphetamines at trace levels and also clearly distinguish various proportions of multiplex components. Our platform for detecting drugs

  14. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  15. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks.

    PubMed

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra; Swaroop, Anand

    2015-12-01

    The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.

  16. Three-dimensional interactive and stereotactic atlas of head muscles and glands correlated with cranial nerves and surface and sectional neuroanatomy.

    PubMed

    Nowinski, Wieslaw L; Chua, Beng Choon; Johnson, Aleksandra; Qian, Guoyu; Poh, Lan Eng; Yi, Su Hnin Wut; Bivi, Aminah; Nowinska, Natalia G

    2013-04-30

    Three-dimensional (3D) relationships between head muscles and cranial nerves innervating them are complicated. Existing sources present these relationships in illustrations, radiologic scans, or autopsy photographs, which are limited for learning and use. Developed electronic atlases are limited in content, quality, functionality, and/or presentation. We create a truly 3D interactive, stereotactic and high quality atlas, which provides spatial relationships among head muscles, glands and cranial nerves, and correlates them to surface and sectional neuroanatomy. The head muscles and glands were created from a 3T scan by contouring them and generating 3D models. They were named and structured according to Terminologia anatomica. The muscles were divided into: extra-ocular, facial, masticatory and other muscles, and glands into mouth and other glands. The muscles, glands (and also head) were placed in a stereotactic coordinate system. This content was integrated with cranial nerves and neuroanatomy created earlier. To explore this complex content, a scalable user interface was designed with 12 modules including central nervous system (cerebrum, cerebellum, brainstem, spinal cord), cranial nerves, muscles, glands, arterial system, venous system, tracts, deep gray nuclei, ventricles, white matter, visual system, head. Anatomy exploration operations include compositing/decompositing, individual/group selection, 3D view-index mapping, 3D labeling, highlighting, distance measuring, 3D brain cutting, and axial/coronal/sagittal triplanar display. To our best knowledge, this is the first truly 3D, stereotactic, interactive, fairly complete atlas of head muscles, and the first attempt to create a 3D stereotactic atlas of glands. Its use ranges from education of students and patients to research to potential clinical applications.

  17. Relationship Between Designed Three-Dimensional YSZ Electrolyte Surface Area and Performance of Solution-Precursor Plasma-Sprayed La0.8Sr0.2MnO3- δ Cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Huang, Jiang-Yuan; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2016-12-01

    Active three-phase boundaries (TPBs) significantly influence cathode performance in solid oxide fuel cells, but obtaining long TPBs and understanding the mechanism underlying the improved cathode performance when the electrolyte is prepared with a smooth surface by a high-temperature sintering process remain essential challenges. In this work, we used flame spraying to deposit single-layer semimolten particles on a smooth electrolyte to build a three-dimensional surface with enlarged active surface area and thus increased TPBs. Meanwhile, La0.8Sr0.2MnO3- δ (LSM) cathodes with fine microstructure were deposited by solution-precursor plasma spraying (SPPS) on the designed electrolyte to establish a three-dimensional cathode-electrolyte interface. The deposition behavior of the semimolten particles on the smooth electrolyte and LSM cathodes on the three-dimensional electrolyte surface was studied. The effects of the area enlargement factor ( α area) on the polarization resistance of the SPPS LSM cathodes were investigated, using three-dimensional electrolytes with α area from 1.29 to 2.48. The results indicated that convex particles with different molten states bonded well with the electrolytes. SPPS LSM cathodes also showed good interfacial bonding with convex particles. Finally, the cathode polarization ( R p) decreased linearly with increase of α area. At 800 °C, R p decreased from 0.98 to 0.32 Ω cm2 when α area was increased from 1.29 to 2.48.

  18. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  19. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  20. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  1. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    USGS Publications Warehouse

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  2. Nondestructive Three-Dimensional Observation of the Electrolyte in a Dye-Sensitised Solar Cell Combined with the Local Photocurrent Dynamics

    NASA Astrophysics Data System (ADS)

    Kawata, Kentaro; Yoshizaki, Hiroki; Goto, Tomohisa; Kato, Kazuhiro; Renker, Sabine

    2012-10-01

    The three-dimensional (3D) visualisation of the photovoltaic active layer in a dye-sensitised solar cell (DSSC) was newly achieved by employing an optical interference measurement system. The technique was used to measure with high precision the active layer thickness of a complete cell to evaluate the diffusion resistance of the electrode layer made of titania and the electrolyte layer containing tetracyanoborate ionic liquid. Additionally, the visualised image was compared with the local photovoltaic characteristics in a region with diameter 100 µm studied using an AC impedance technique as well as by transient photocurrent and photovoltage decay measurements to elucidate the charge transport properties of the ionic-liquid-based electrolyte.

  3. Influence of surface symmetry breaking on the magnetism, collapsing, and three-dimensional dispersion of the Co pnictides A Co2As2 (A =Ba , Sr, Ca)

    NASA Astrophysics Data System (ADS)

    Mansart, Joseph; Le Fèvre, Patrick; Bertran, François; Forget, Anne; Colson, Dorothée; Brouet, Véronique

    2016-12-01

    We use angle-resolved photoemission (ARPES) to study the three-dimensional (3D) electronic structure of Co pnictides A Co2As2 with A =Ba , Sr, Ca or a mixture of Sr and Ca. These compounds are isostructural to Fe based superconductors but have one more electron in the Co 3 d orbitals. Going from Ba to Ca, they become more and more 3D, eventually forming a "collapsed" tetragonal phase, where the distance between CoAs layers is markedly reduced. We observe with ARPES the periodicity of the electronic structure as a function of kz (i.e., perpendicularly to CoAs layers) and find that it matches in each case that expected from the distance between the planes in the bulk. However, the electronic structure is better fitted by a calculation corresponding to a slab with two CoAs layers than to the bulk structure. We attribute this to subtle modifications of the 2D electronic structure induced by the truncation of the 3D dispersion at the surface in the ARPES measurement. We further study how this affects the electronic properties. We show that, despite this distortion, the electronic structure of CaCo2As2 is essentially that expected for a collapsed phase. Electronic correlations produce a renormalization of the electronic structure by a factor 1.4, which is not affected by the transition to the collapsed state. On the other hand, a small shift of the Fermi level reduces the density of states in the eg bands and suppresses the magnetic transition expected in CaCo2As2 . Our study evidences that observing the 3D bulk periodicity is not sufficient to ensure bulk sensitivity. It further gives direct information on the role of 3D interactions, mostly governed by Co-As hybridization, among eg and t2 g orbitals. It is also useful to better understand the electronic structure of Fe superconductors and the range of validity of ARPES measurements.

  4. Three-dimensional simulation study of ionospheric plasma clouds

    NASA Technical Reports Server (NTRS)

    Zalesak, S. T.; Drake, J. F.; Huba, J. D.

    1990-01-01

    The results of fully three-dimensional numerical simulations of ionospheric plasma cloud evolution are presented. The evolution of the plasma cloud considered by Drake and Huba (1987) in the limit of vanishingly small ion compressibility is discussed. Simulations support the results of the analytical theory: finite plasma temperature, combined with fully three-dimensional plasma dynamics, is a stabilizing influence on plasma cloud evolution. This stability is associated with sheared azimuthal ion flows in the vicinity of the cloud surface. Cloud evolution using realistic values of ion compressibility show that the cloud rapidly diffuses to a state in which the sheared azimuthal flow is substantially reduced; subsequently, the cloud becomes unstable and structures.

  5. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  6. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  7. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  8. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  9. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  10. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  11. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis

    SciTech Connect

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu; Gysin, Urs; Glatzel, Thilo; Meyer, Ernst; Wegmann, Urs; Maier, Urs; Odriozola, Aitziber Herrero; Uehli, Daniel

    2012-06-15

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  12. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis.

    PubMed

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu; Gysin, Urs; Glatzel, Thilo; Meyer, Ernst; Wegmann, Urs; Maier, Urs; Odriozola, Aitziber Herrero; Uehli, Daniel

    2012-06-01

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 μm in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program "SARINA," which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  13. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis

    NASA Astrophysics Data System (ADS)

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu; Gysin, Urs; Glatzel, Thilo; Meyer, Ernst; Wegmann, Urs; Maier, Urs; Odriozola, Aitziber Herrero; Uehli, Daniel

    2012-06-01

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 μm in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program "SARINA," which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  14. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    SciTech Connect

    Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Mackie, Thomas R.; Mehta, Minesh P.; Sugie, Chikao; Bentzen, Soren M.

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.

  15. Radiative transfer for a three-dimensional raining cloud

    NASA Technical Reports Server (NTRS)

    Haferman, J. L.; Krajewski, W. F.; Smith, T. F.; Sanchez, A.

    1993-01-01

    Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.

  16. Computer-Generated, Three-Dimensional Character Animation.

    ERIC Educational Resources Information Center

    Van Baerle, Susan Lynn

    This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…

  17. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  18. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images.

    PubMed

    Hapca, Simona; Baveye, Philippe C; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  19. Three-dimensional effects on airfoils

    NASA Technical Reports Server (NTRS)

    Chevallier, J. P.

    1983-01-01

    The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.

  20. Analysis of three-dimensional transonic compressors

    NASA Technical Reports Server (NTRS)

    Bourgeade, A.

    1984-01-01

    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  1. Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies

    NASA Astrophysics Data System (ADS)

    Lacombe, Jürgen; Sergeev, Oleg; Chakanga, Kambulakwao; von Maydell, Karsten; Agert, Carsten

    2011-07-01

    In this paper, modeling of light propagation in silicon thin film solar cells without using any fitting parameter is presented. The aim is to create a realistic view of the light trapping effects and of the resulting optical generation rate in the absorbing semiconductor layers. The focus is on real three dimensional systems. Our software Sentaurus tcad, developed by Synopsys, has the ability to import real topography measurements and to model the light propagation using the finite-difference time-domain method. To verify the simulation, we compared the measured and simulated angular distribution functions of a glass/SnO2:F transparent conducting oxide system for different wavelengths. The optical generation rate of charge carriers in amorphous silicon thin film solar cells including rough interfaces is calculated. The distribution of the optical generation rate is correlated with the shape of the interface, and the external quantum efficiencies are calculated and compared to experimental data.

  2. Three-Dimensional Imaging. Chapter 10

    NASA Technical Reports Server (NTRS)

    Kelso, R. M.; Delo, C.

    1999-01-01

    This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.

  3. Analysis of the effects of surface stiffness on the contact interaction between a finger and a cylindrical handle using a three-dimensional hybrid model.

    PubMed

    Wu, John Z; Dong, Ren G; Warren, Christopher M; Welcome, Daniel E; McDowell, Thomas W

    2014-07-01

    Contact interactions between the hand and handle, such as the contact surface softness and contact surface curvature, will affect both physical effort and musculoskeletal fatigue, thereby the comfort and safety of power tool operations. Previous models of hand gripping can be categorized into two groups: multi-body dynamic models and finite element (FE) models. The goal of the current study is to develop a hybrid FE hand gripping model, which combines the features of conventional FE models and multi-body dynamic models. The proposed model is applied to simulate hand-gripping on a cylindrical handle with covering materials of different softness levels. The model included three finger segments (distal, middle, and proximal phalanxes), three finger joints (the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joint), and major anatomical substructures. The model was driven by joint moments, which are the net effects of all passive and active muscular forces acting about the joints. The finger model was first calibrated by using experimental data of human subject tests, and then applied to investigate the effects of surface softness on contact interactions between a finger and a cylindrical handle. Our results show that the maximal compressive stress and strain in the soft tissues of the fingers can be effectively reduced by reducing the stiffness of the covering material.

  4. Three-dimensional stereo by photometric ratios

    SciTech Connect

    Wolff, L.B.; Angelopoulou, E.

    1994-11-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy.

  5. Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data

    SciTech Connect

    Suresh, Niraj; Stephens, Sean A.; Adams, Lexor; Beck, Anthon N.; McKinney, Adriana L.; Varga, Tamas

    2016-01-01

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and forest management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving the plant. X ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. Our group at the Environmental Molecular Sciences Laboratory (EMSL) has developed an XCT-based tool to image and quantitatively analyze plant root structures in their native soil environment. XCT data collected on a Prairie dropseed (Sporobolus heterolepis) specimen was used to visualize its root structure. A combination of open-source software RooTrak and DDV were employed to segment the root from the soil, and calculate its isosurface, respectively. Our own computer script named 3DRoot-SV was developed and used to calculate root volume and surface area from a triangular mesh. The process utilizing a unique combination of tools, from imaging to quantitative root analysis, including the 3DRoot-SV computer script, is described.

  6. Three-dimensional vortex methods

    SciTech Connect

    Greengard, C.A.

    1984-08-01

    Three-dimensional vortex methods for the computation of incompressible fluid flow are presented from a unified point of view. Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms; in both of them, the vorticity is evaluated by a discretization of the spatial derivative of the flow map. The fact that the filament method, the one which is most often used in practice, can be formulated as a version of the Beale and Majda algorithm in a curved coordinate system is used to give a convergence theorem for the filament method. The method of Anderson is also discussed, in which vorticity is evaluated by the exact differentiation of the approximate velocity field. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. This remains true even when time discretization is taken into account. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed. 36 references, 4 figures.

  7. Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Mabood, F.; Gireesha, B. J.; Gorla, R. S. R.

    2017-03-01

    The three-dimensional mixed convection boundary layer flow of a nanofluid induced by an exponentially stretching sheet is numerically investigated in the presence of thermal radiation, heat source/sink and first-order chemical reaction effects. The adopted nanofluid model incorporates the effects of Brownian motion and thermophoresis into the mathematical model. The first-order velocity slip boundary conditions are also taken into account. The governing boundary layer equations are transformed into a set of nonlinear ordinary differential equations by employing suitable similarity variables. The resultant equations are solved numerically using the Runge-Kutta-Fehlberg method. Obtained solutions are compared with previous results in a limiting sense from the literature, demonstrating an excellent agreement. To show the typical trend of the solutions, a parametric study is conducted. The axial velocity, transverse velocity, temperature and nanoparticle volume fraction profiles as well as the skin-friction coefficient, Nusselt and Sherwood numbers are demonstrated graphically as a representative set of numerical results and discussed comprehensively.

  8. Two component-three dimensional catalysis

    DOEpatents

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2002-01-01

    This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.

  9. Three-dimensional singular points in aerodynamics

    NASA Technical Reports Server (NTRS)

    Unal, Aynur

    1988-01-01

    When three-dimensional separation occurs on a body immersed in a flow governed by the incompressible Navier-Stokes equations, the geometrical surfaces formed by the three vector fields (velocity, vorticity and the skin-friction) and a scalar field (pressure) become interrelated through topological maps containing their respective singular points and extremal points. A mathematically consistent description of these singular points becomes inevitable when we want to study the geometry of the separation. A separated stream surface requires, for example, the existence of a saddle-type singular point on the skin-friction surface. This singular point is actually, in the proper language of mathematics, a saddle of index two. The index is a measure of the dimension of the outset (set leaving the singular point). Hence, when a saddle of index two is specified, a two dimensional surface that becomes separated from the osculating plane of the saddle is implied. The three-dimensional singular point is interpreted mathematically and the most common aerodynamical singular points are discussed through this perspective.

  10. High resolution three-dimensional doping profiler

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  11. Three-dimensional display technologies.

    PubMed

    Geng, Jason

    2013-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain's power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.

  12. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  13. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  14. Three-dimensional vortex methods

    NASA Astrophysics Data System (ADS)

    Greengard, C. A.

    1984-08-01

    Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms. The method of Anderson in which vorticity is evaluated by the exact differentiation of the approximate velocity field is discussed. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed.

  15. Toward an automated low-cost three-dimensional crop surface monitoring system using oblique stereo imagery from consumer-grade smart cameras

    NASA Astrophysics Data System (ADS)

    Brocks, Sebastian; Bendig, Juliane; Bareth, Georg

    2016-10-01

    Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on a set of smart cameras for image acquisition and transmission and a set of Python scripts automating the structure-from-motion (SfM) software package Agisoft Photoscan and ArcGIS. Only ground-control-point (GCP) marking was performed manually. This system was set up on a barley field experiment with nine different barley cultivars in the growing period of 2014. Images were acquired three times a day for a period of two months. CSMs were successfully generated for 95 out of 98 acquisitions between May 2 and June 30. The best linear regressions of the CSM-derived plot-wise averaged plant-heights compared to manual plant height measurements taken at four dates resulted in a coefficient of determination R2 of 0.87 and a root-mean-square error (RMSE) of 0.08 m, with Willmott's refined index of model performance dr equaling 0.78. In total, 103 mean plot heights were used in the regression based on the noon acquisition time. The presented system succeeded in semiautomatedly monitoring crop height on a plot scale to field scale.

  16. Analysis of three-dimensional-cavity-backed aperture antennas using a Combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.

  17. A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation

    NASA Astrophysics Data System (ADS)

    Ahn, SeungHyun; Koh, Young Ho; Kim, GeunHyung

    2010-06-01

    Collagen has the advantage of being very similar to macromolecular substances that can be recognized and metabolized in the biological environment. Although the natural material has superior property for this purpose, its use to fabricate reproducible and pore-structure-controlled 3D structures, which are designed to allow the entry of sufficient cells and the easy diffusion of nutrients, has been limited due to its low processability. Here, we propose a hybrid technology that combines a cryogenic plotting system with an electrospinning process. Using this technique, an easily pore-size-controllable hierarchical 3D scaffold consisting of micro-sized highly porous collagen strands and micro/nano-sized collagen fibers was fabricated. The pore structure of the collagen scaffold was controlled by the collagen micro/nanofibers, which were layered in the scaffold. The hierarchical scaffolds were characterized with respect to initial cell attachment and proliferation of bone marrow-derived mesenchymal stem cells within the scaffolds. The hierarchical scaffold exhibited incredibly enhanced initial cell attachment and cell compactness between pores of the plotted scaffold relative to the normally designed 3D collagen scaffold.

  18. Different combinations of growth factors for the tenogenic differentiation of bone marrow mesenchymal stem cells in monolayer culture and in fibrin-based three-dimensional constructs.

    PubMed

    Bottagisio, Marta; Lopa, Silvia; Granata, Valentina; Talò, Giuseppe; Bazzocchi, Chiara; Moretti, Matteo; Barbara Lovati, Arianna

    2017-03-16

    Tendon injuries are severe burdens in clinics. The poor tendon healing is related to an ineffective response of resident cells and inadequate vascularization. Thanks to the high proliferation and multi-lineage differentiation capability, bone marrow-derived mesenchymal stem cells (BMSCs) are a promising cell source to support the tendon repair. To date, the association of various growth factors to induce the in vitro tenogenic differentiation of multipotent progenitor cells is poorly investigated. This study aimed to investigate the tenogenic differentiation of rabbit BMSCs by testing the combination of bone morphogenetic proteins (BMP-12 and 14) with transforming growth factor beta (TGF-β) and vascular endothelial growth factor (VEGF) both in 2D and 3D cultures within fibrin-based constructs. After 7 and 14 days, the tenogenic differentiation was assessed by analyzing cell metabolism and collagen content, the gene expression of tenogenic markers and the histological cell distribution and collagen deposition within 3D constructs. Our results demonstrated that the association of BMP-14 with TGF-β3 and VEGF enhanced the BMSC tenogenic differentiation both in 2D and 3D cultures. This study supports the use of fibrin as hydrogel-based matrix to generate spheroids loaded with tenogenic differentiated BMSCs that could be used to treat tendon lesions in the future.

  19. Phase II Trial of Full-Dose Gemcitabine and Bevacizumab in Combination With Attenuated Three-Dimensional Conformal Radiotherapy in Patients With Localized Pancreatic Cancer

    SciTech Connect

    Small, William; Mulcahy, Mary F.; Rademaker, Alfred; Bentrem, David J.; Benson, Al B.; Weitner, Bing Bing; Talamonti, Mark S.

    2011-06-01

    Purpose: To evaluate response rate, survival, and toxicity in patients with nonmetastatic pancreatic cancer treated with gemcitabine, bevacizumab, and radiotherapy. Methods and Materials: Patients received three cycles of therapy over 10 weeks. In total, treatment consisted of intravenous (IV) gemcitabine, 1,000 mg/m{sup 2}, every 1 to 2 weeks (7 doses), IV bevacizumab, 10 mg/kg every 2 weeks (5 doses), and 36 Gy of radiotherapy (2.4-Gy fractions during cycle two). Response was assessed by cross-sectional imaging and carbohydrate antigen 19-9 (CA 19-9) levels. Patients with resectable tumors underwent surgery 6 to 8 weeks after the last dose of bevacizumab. Maintenance gemcitabine and bevacizumab doses were delivered to patients who had unresected tumors and no progression. Results: Twenty-eight of the 32 enrolled patients completed all three cycles. The median follow-up was 11.07 months. Most grade 3 or 4 toxicities occurred in the initial treatment phase; the most frequent toxicities were leukopenia (21%), neutropenia (17%), and nausea (17%). At week 10, 1 patient (4%) had a complete response, 2 patients (7%) had partial responses, 21 patients (75%) had stable disease, and 4 patients (14%) had progressive disease. The median pretreatment and posttreatment CA 19-9 levels (25 patients) were 184.3 and 57.9 U/ml, respectively (p = 0.0006). One of 10 patients proceeding to surgery experienced a major complication. Two of 6 patients undergoing resection had complete pathologic responses. The median progression-free and overall survival durations were 9.9 months and 11.8 months, respectively. Conclusions: The combination of full-dose gemcitabine, bevacizumab, and radiotherapy was active and was not associated with a high rate of major surgical complications.

  20. Three-dimensional segmentation of the left ventricle in late gadolinium enhanced MR images of chronic infarction combining long- and short-axis information.

    PubMed

    Wei, Dong; Sun, Ying; Ong, Sim-Heng; Chai, Ping; Teo, Lynette L; Low, Adrian F

    2013-08-01

    Automatic segmentation of the left ventricle (LV) in late gadolinium enhanced (LGE) cardiac MR (CMR) images is difficult due to the intensity heterogeneity arising from accumulation of contrast agent in infarcted myocardium. In this paper, we present a comprehensive framework for automatic 3D segmentation of the LV in LGE CMR images. Given myocardial contours in cine images as a priori knowledge, the framework initially propagates the a priori segmentation from cine to LGE images via 2D translational registration. Two meshes representing respectively endocardial and epicardial surfaces are then constructed with the propagated contours. After construction, the two meshes are deformed towards the myocardial edge points detected in both short-axis and long-axis LGE images in a unified 3D coordinate system. Taking into account the intensity characteristics of the LV in LGE images, we propose a novel parametric model of the LV for consistent myocardial edge points detection regardless of pathological status of the myocardium (infarcted or healthy) and of the type of the LGE images (short-axis or long-axis). We have evaluated the proposed framework with 21 sets of real patient and four sets of simulated phantom data. Both distance- and region-based performance metrics confirm the observation that the framework can generate accurate and reliable results for myocardial segmentation of LGE images. We have also tested the robustness of the framework with respect to varied a priori segmentation in both practical and simulated settings. Experimental results show that the proposed framework can greatly compensate variations in the given a priori knowledge and consistently produce accurate segmentations.

  1. Venus - Three-Dimensional Perspective View of Alpha Regio

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A portion of Alpha Regio is displayed in this three-dimensional perspective view of the surface of Venus. Alpha Regio, a topographic upland approximately 1300 kilometers across, is centered on 25 degrees south latitude, 4 degrees east longitude. In 1963, Alpha Regio was the first feature on Venus to be identified from Earth-based radar. The radar-bright area of Alpha Regio is characterized by multiple sets of intersecting trends of structural features such as ridges, troughs, and flat-floored fault valleys that, together, form a polygonal outline. Directly south of the complex ridged terrain is a large ovoid-shaped feature named Eve. The radar-bright spot located centrally within Eve marks the location of the prime meridian of Venus. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. Ray tracing is used to generate a perspective view from this map. The vertical scale is exaggerated approximately 23 times. Simulated color and a digital elevation map developed by the U. S. Geological Survey are used to enhance small scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory by Eric De Jong, Jeff Hall, and Myche McAuley, and is a single frame from the movie released at the March 5, 1991, press conference.

  2. The clinical effects of low-dose splenic irradiation combined with chest three-dimensional conformal radiotherapy on patients with locally advanced non-small-cell lung cancer: a randomized clinical trial

    PubMed Central

    Yu, Hongsheng; Qu, Yong; Shang, Qingjun; Yan, Chao; Jiang, Peng; Wang, Xiang; Liang, Donghai; Jiang, Tao

    2016-01-01

    Objective The objective of this study was to explore the clinical effects of low-dose splenic irradiation on locally advanced non-small-cell lung cancer (NSCLC) patients. Methods Thirty-eight patients with stage III NSCLC were randomly divided into a control group and a combined treatment group. The control group only received chest three-dimensional conformal radiotherapy, while the combined treatment group received low-dose splenic irradiation followed by chest three-dimensional conformal radiotherapy after 6 hours. T lymphocyte subsets of the blood cells were tested before, during, and after treatment once a week. The side effects induced by radiation were observed, and a follow-up was done to observe the survival statistics. Results The ratio differences in CD4+ cells, CD8+ cells, and CD4+/CD8+ before and after treatment were not statistically significant (P>0.05) in both the groups. The immune indexes were also not statistically significant (P>0.05) before and after radiotherapy in the combined treatment group. However, the numbers of CD4+ cells and CD4+/CD8+ ratios before radiotherapy were higher than after radiotherapy in the control group. There were no differences in the incidence of radiation toxicities between the two groups; however, the incidence of grade III or IV radiation toxicities was lower, and the dose at which the radiation toxicities appeared was higher in the combined treatment group. The total response rate was 63.16% (12/19) in the combined treatment group vs 42.11% (8/19) in the control group. The median 2-year progression-free survival (15 months in the combined treatment group vs 10 months in the control group) was statistically significant (P<0.05). The median 2-year overall survival (17.1 months in the combined treatment group vs 15.8 months in the control group) was not statistically significant (P>0.05). Conclusion Low-dose radiation can alleviate the radiation toxicities, improve the short-term efficacy of radiotherapy, and improve

  3. Uniform Deterministic Discrete Method for three dimensional systems

    NASA Astrophysics Data System (ADS)

    Li, Ben-Wen; Tao, Wen-Quan; Nie, Yu-Hong

    1997-06-01

    For radiative direct exchange areas in three dimensional system, the Uniform Deterministic Discrete Method (UDDM) was adopted. The spherical surface dividing method for sending area element and the regular icosahedron for sending volume element can meet with the direct exchange area computation of any kind of zone pairs. The numerical examples of direct exchange area in three dimensional system with nonhomogeneous attenuation coefficients indicated that the UDDM can give very high numerical accuracy.

  4. Three dimensional magnetic abacus memory

    PubMed Central

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A.; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered ‘quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338

  5. Three-dimensional colloidal lithography.

    PubMed

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao

    2017-03-24

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  6. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.

  7. Three-Dimensional Laser Microvision

    NASA Astrophysics Data System (ADS)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo

    2001-04-01

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  8. Three-dimensional colloidal lithography

    NASA Astrophysics Data System (ADS)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao

    2017-03-01

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle–light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  9. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  10. Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics.

    PubMed

    Hyde, G Kevin; Park, Kie Jin; Stewart, S Michael; Hinestroza, Juan P; Parsons, Gregory N

    2007-09-11

    Atomic-scale material deposition is utilized to achieve uniform coverage and modification of the surface properties of natural fiber and woven fabric materials, where irregular nanoscale features are embedded in a macroscale interpenetrating fiber network. The complex surface topology of the woven fabric results in significantly different film-growth thickness per ALD cycle as compared to planar surfaces coated using the same process conditions, likely due to reactant adsorption within the fiber starting material, as well as impeded reactant transport out of the fabric system during the purge cycle. Cotton textiles modified with conformal nanoscale Al2O3 are found to show extreme hydrophobic effects, distinctly different from planar surfaces that receive the same coatings. The results highlight key concerns for achieving controlled conformal coatings on complex surfaces and open the possibility for new textile finishing approaches to create novel fabric-based materials with specialized function and performance.

  11. Wave diffraction around three-dimensional bodies in a current

    SciTech Connect

    Cheung, K.F.; Isaacson, M.; Lee, J.W.

    1996-11-01

    The effects of a collinear current on the diffraction of regular waves around three-dimensional surface-piercing bodies are examined. With the current speed assumed to be small, the boundary-value problem is separated into a steady current problem with a rigid wall condition applied at the still water level and a linear wave propagation problem in the resulting current field. The boundary conditions of the wave propagation problem are satisfied by a time-stepping procedure and the field solution is obtained by an integral equation method. Free surface profiles, runup, and wave forces are described for a vertical circular cylinder in combined waves and a current. The current is shown to affect significantly the steady drift force and runup predictions. Comparisons of the computed wave forces are made with a previous numerical solution involving a semi-immersed sphere in deep water, and indicate good agreement.

  12. Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation

    NASA Astrophysics Data System (ADS)

    Duan, Bin; Wang, Min; Li, Zhao Yang; Chan, Wai Chun; Lu, William W.

    2011-03-01

    The properties of bone tissue engineering scaffolds such as architecture, porosity, mechanical properties and surface properties have significant effects on cellular response and play an important role in bone regeneration. In this study, threedimensional nanocomposite scaffolds consisting of calcium phosphate (Ca-P) nanoparticles and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) copolymer with controlled external and internal architectures were successfully produced via selective laser sintering (SLS), one of the versatile rapid prototyping techniques. The Ca-P/PHBV nanocomposite scaffolds had a porosity of (61.75±1.24)%, compressive strength of (2.16±0.21) MPa and Young's modulus of (26.98±2.29) MPa. The surface modification of scaffolds by gelatin was achieved through physical entrapment. The amount of entrapped gelatin could be controlled by varying the solvent composition and reaction time. The surface modification improved the hydrophilicity of scaffolds but did not significantly affect the surface morphology and mechanical properties. Osteoblast-like cells (SaOS-2) were cultured on scaffolds with and without gelatin surface modification. The majority of SaOS-2 cells were viable and proliferated in both types of scaffolds for up to 14 d in culture, as indicated by MTT assay and live and dead assay. Surface modification significantly increased cell proliferation for surface modified scaffolds, which could be due to the improvement in hydrophilicity of the scaffolds.

  13. Software system for three-dimensional visualization of micro-object surfaces for scanning probe microscopy using OpenGL graphics library

    NASA Astrophysics Data System (ADS)

    Vakuliuk, Nickolay V.

    2002-07-01

    The software system for 3D visualization of micro objects surfaces for scanning probe microscopy is developed. The system is used as a software part of software/hardware complex of scanning probe microscope (SPM) and its kinds. The system represent the results of microscope work in 3D- view. System has convenient GUI and high level of functionality in modes of visualization and in saving result images. Program allows to operate with image of surface in real time by performing scaling, rotation, moving, setting of lighting and color values, setting level of detail for surface in real time by performing scaling, rotation, moving, setting of lighting and color values, setting level of detail for surface rendering. This viewer works together with another part of software system that is responsible for controlling the SPM. The program also can be used as an independent view of scanning probe microscope files.

  14. Is the Maxillary Sinus Really Suitable in Sex Determination? A Three-Dimensional Analysis of Maxillary Sinus Volume and Surface Depending on Sex and Dentition.

    PubMed

    Möhlhenrich, Stephan Christian; Heussen, Nicole; Peters, Florian; Steiner, Timm; Hölzle, Frank; Modabber, Ali

    2015-11-01

    The morphometric analysis of maxillary sinus was recently presented as a helpful instrument for sex determination. The aim of the present study was to examine the volume and surface of the fully dentate, partial, and complete edentulous maxillary sinus depending on the sex. Computed tomography data from 276 patients were imported in DICOM format via special virtual planning software, and surfaces (mm) and volumes (mm) of maxillary sinuses were measured. In sex-specific comparisons (women vs men), statistically significant differences for the mean maxillary sinus volume and surface were found between fully dentate (volume, 13,267.77 mm vs 16,623.17 mm, P < 0.0001; surface, 3480.05 mm vs 4100.83 mm, P < 0.0001) and partially edentulous (volume, 10,577.35 mm vs 14,608.10 mm, P = 0.0002; surface, 2980.11 mm vs 3797.42 mm, P < 0.0001) or complete edentulous sinuses (volume, 11,200.99 mm vs 15,382.29 mm, P < 0.0001; surface, 3118.32 mm vs 3877.25 mm, P < 0.0001). For males, the statistically different mean values were calculated between fully dentate and partially edentulous (volume, P = 0.0022; surface, P = 0.0048) maxillary sinuses. Between the sexes, no differences were only measured for female and male partially dentate fully edentulous sinuses (2 teeth missing) and between partially edentulous sinuses in women and men (1 teeth vs 2 teeth missing). With a corresponding software program, it is possible to analyze the maxillary sinus precisely. The dentition influences the volume and surface of the pneumatic maxillary sinus. Therefore, sex determination is possible by analysis of the maxillary sinus event through the increase in pneumatization.

  15. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii

    USGS Publications Warehouse

    Baum, R.L.; Messerich, J.; Fleming, R.W.

    1998-01-01

    Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.

  16. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  17. AAOGlimpse: Three-dimensional Data Viewer

    NASA Astrophysics Data System (ADS)

    Shortridge, Keith

    2011-10-01

    AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.

  18. A fusion algorithm for building three-dimensional maps

    NASA Astrophysics Data System (ADS)

    Vokhmintsev, A.; Makovetskii, A.; Kober, V.; Sochenkov, I.; Kuznetsov, V.

    2015-09-01

    Recently various algorithms for building of three-dimensional maps of indoor environments have been proposed. In this work we use a Kinect camera that captures RGB images along with depth information for building three-dimensional dense maps of indoor environments. Commonly mapping systems consist of three components; that is, first, spatial alignment of consecutive data frames; second, detection of loop-closures, and finally, globally consistent alignment of the data sequence. It is known that three-dimensional point clouds are well suited for frame-to-frame alignment and for three-dimensional dense reconstruction without the use of valuable visual RGB information. A new fusion algorithm combining visual features and depth information for loop-closure detection followed by pose optimization to build global consistent maps is proposed. The performance of the proposed system in real indoor environments is presented and discussed.

  19. Amplitude interpretation and visualization of three-dimensional reflection data

    SciTech Connect

    Enachescu, M.E. )

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements not obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.

  20. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  1. An ancient Roman bowl embedded in a soil sample: surface shaded three dimensional display using data from a multi-detector CT.

    PubMed

    De Maeseneer, M; Buls, N; Cleeren, N; Lenchik, L; De Mey, J

    2006-01-01

    We present an unusual application of multidetector CT and shaded surface rendering in the investigation of a soil sample, containing an ancient Roman bronze bowl. The CT findings were of fundamental importance in helping the archaeologists study the bronze bowl from the soil sample.

  2. An investigation of three-dimensional scanning of human body surfaces and its use in the design and manufacture of prostheses.

    PubMed

    Bibb, R; Freeman, P; Brown, R; Sugar, A; Evans, P; Bocca, A

    2000-01-01

    The capture of highly accurate data describing the complex surfaces of the human body may prove extremely useful in many medical situations. The data provide a method of measuring and recording changes to the surface of a patient's soft tissue. The data may be applied to computer-controlled manufacturing techniques, such as rapid prototyping (RP). This enables accurate physical replicas of the patient topography to be produced. Such models may be used as an aid in the design and manufacture of prostheses. This paper describes an investigation aimed at identifying problems that may be encountered when scanning patients and describes the application of the resulting data in the design and manufacture of facial prostheses. The results of the experiment are presented together with a discussion of the accuracy and potential advantages afforded by this approach.

  3. Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Badea, Cristian T.; Johnson, G. Allan

    2009-11-01

    We present a 3-D image reconstruction method for free-space fluorescence tomography of mice using hybrid anatomical prior information. Specifically, we use an optically reconstructed surface of the experimental animal and a digital mouse atlas to approximate the anatomy of the animal as structural priors to assist image reconstruction. Experiments are carried out on a cadaver of a nude mouse with a fluorescent inclusion (2.4-mm-diam cylinder) implanted in the chest cavity. Tomographic fluorescence images are reconstructed using an iterative algorithm based on a finite element method. Coregistration of the fluorescence reconstruction and micro-CT (computed tomography) data acquired afterward show good localization accuracy (localization error 1.2+/-0.6 mm). Using the optically reconstructed surface, but without the atlas anatomy, image reconstruction fails to show the fluorescent inclusion correctly. The method demonstrates the utility of anatomical priors in support of free-space fluorescence tomography.

  4. Real-time two- and three-dimensional imaging of monocyte motility and navigation on planar surfaces and in collagen matrices: roles of Rho

    PubMed Central

    Bzymek, Robert; Horsthemke, Markus; Isfort, Katrin; Mohr, Simon; Tjaden, Kerstin; Müller-Tidow, Carsten; Thomann, Marlies; Schwerdtle, Tanja; Bähler, Martin; Schwab, Albrecht; Hanley, Peter J.

    2016-01-01

    We recently found that macrophages from RhoA/RhoB double knockout mice had increased motility of the cell body, but severely impaired retraction of the tail and membrane extensions, whereas RhoA- or RhoB-deficient cells exhibited mild phenotypes. Here we extended this work and investigated the roles of Rho signaling in primary human blood monocytes migrating in chemotactic gradients and in various settings. Monocyte velocity, but not chemotactic navigation, was modestly dependent on Rho-ROCK-myosin II signaling on a 2D substrate or in a loose collagen type I matrix. Viewed by time-lapse epi-fluorescence microscopy, monocytes appeared to flutter rather than crawl, such that the 3D surface topology of individual cells was difficult to predict. Spinning disk confocal microscopy and 3D reconstruction revealed that cells move on planar surfaces and in a loose collagen matrix using prominent, curved planar protrusions, which are rapidly remodeled and reoriented, as well as resorbed. In a dense collagen type I matrix, there is insufficient space for this mode and cells adopt a highly Rho-dependent, lobular mode of motility. Thus, in addition to its role in tail retraction on 2D surfaces, Rho is critical for movement in confined spaces, but is largely redundant for motility and chemotaxis in loose matrices. PMID:27122054

  5. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.

    PubMed

    Roh, Hee-Sang; Lee, Chang-Min; Hwang, Young-Hyoun; Kook, Min-Suk; Yang, Seong-Won; Lee, Donghun; Kim, Byung-Hoon

    2017-05-01

    Magnesium (Mg) plays an important role in the body in mediating cell-extracellular matrix interactions and controlling bone apatite structure and density. Hydroxyapatite (HAp) has been used for osteoconductive bone replacement because of its good compressive strength and biocompatibility. The object of this study is to investigate the effects of adding Magnesium oxide (MgO) nanoparticles to polycaprolactone (PCL)/HAp composites and treating PCL/HAp/MgO scaffolds with oxygen and nitrogen plasma. The 3D PCL/HAp/MgO scaffolds were fabricated using a 3D bioextruder. PCL was mixed with 1-15wt% of MgO and HAp. The scaffolds were treated with oxygen and nitrogen plasma under anisotropic etching conditions to improve the bioactivity. The plasma-treated surfaces were analyzed by X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. In addition, the proliferation and differentiation of pre-osteoblast (MC3T3-E1) cells were examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and alkaline phosphatase activity. Cell mineralization within the produced scaffolds was analyzed by the quantification of alizarin stainings. The addition of MgO/HAp nanoparticles and plasma treatment enhanced the adhesion, proliferation, and differentiation of MC3T3-E1 cells in the PCL scaffolds. Hence, changes in physical surface morphology and surface chemical properties of the 3D scaffold by plasma treatment can affect the behavior of MC3T3-E1 cells.

  6. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.

    PubMed

    Abdulkarim, Muthanna; Agulló, Nuria; Cattoz, Beatrice; Griffiths, Peter; Bernkop-Schnürch, Andreas; Borros, Salvador Gómez; Gumbleton, Mark

    2015-11-01

    Multiple particle tracking (MPT) methodology was used to dissect the impact of nanoparticle surface charge and size upon particle diffusion through freshly harvested porcine jejunum mucus. The mucus was characterised rheologically and by atomic force microscopy. To vary nanoparticle surface charge we used a series of self-assembly polyelectrolyte particles composed of varying ratios of the negatively charged polyacrylic acid polymer and the positively charged chitosan polymer. This series included a neutral or near-neutral particle to correspond to highly charged but near-neutral viral particles that appear to effectively permeate mucus. In order to negate the confounding issue of self-aggregation of such neutral synthetic particles a sonication step effectively reduced particle size (to less than 340 nm) for a sufficient period to conduct the tracking experiments. Across the polyelectrolyte particles a broad and meaningful relationship was observed between particle diffusion in mucus (×1000 difference between slowest and fastest particle types), particle size (104-373 nm) and particle surface charge (-29 mV to +19.5 mV), where the beneficial characteristic promoting diffusion was a neutral or near-neutral charge. The diffusion of the neutral polyelectrolyte particle (0.02887 cm S(-1)×10(-9)) compared favourably with that of a highly diffusive PEGylated-PLGA particle (0.03182 cm(2) S(-1)×10(-9)), despite the size of the latter (54 nm diameter) accommodating a reduced steric hindrance with the mucin network. Heterogeneity of particle diffusion within a given particle type revealed the most diffusive 10% sub-population for the neutral polyelectrolyte formulation (5.809 cm(2) S(-1)×10(-9)) to be faster than that of the most diffusive 10% sub-populations obtained either for the PEGylated-PLGA particle (4.061 cm(2) S(-1)×10(-9)) or for a capsid adenovirus particle (1.922 cm(2) S(-1)×10(-9)). While this study has used a simple self-assembly polyelectrolyte system

  7. Time-Domain Method for Computing Forces and Moments Acting on Three Dimensional Surface-Piercing Ship Hulls with Forward Speed.

    DTIC Science & Technology

    1980-09-01

    coefficients for a fairly coarse representation of the hull and free surface. ii INTRODUCTION This report describes a computational method designed to...acceleration boundary condition. This deter- mines the time-derivative of the body-induced component of the flow, 4BD (as well as OBD through integration...earlier, Fkj(IMP) = -PffdSB Cj(X*, 0+) nk(X*) For later time steps the time-domain force t Fkj(t) = f Kkj()d, t > 0+ 27 II was computed using the method

  8. The three-dimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment.

    PubMed Central

    Green, Daniel; Pace, Suzi; Curtis, Suzanne M; Sakowska, Magdalena; Lamb, Graham D; Dulhunty, Angela F; Casarotto, Marco G

    2003-01-01

    An alpha-helical II-III loop segment of the dihydropyridine receptor activates the ryanodine receptor calcium-release channel. We describe a novel manipulation in which this agonist's activity is increased by modifying its surface structure to resemble that of a toxin molecule. In a unique system, native beta-sheet scorpion toxins have been reported to activate skeletal muscle ryanodine receptor calcium channels with high affinity by binding to the same site as the lower-affinity alpha-helical dihydropyridine receptor segment. We increased the alignment of basic residues in the alpha-helical peptide to mimic the spatial orientation of active residues in the scorpion toxin, with a consequent 2-20-fold increase in the activity of the alpha-helical peptide. We hypothesized that, like the native peptide, the modified peptide and the scorpion toxin may bind to a common site. This was supported by (i) similar changes in ryanodine receptor channel gating induced by the native or modified alpha-helical peptide and the beta-sheet toxin, a 10-100-fold reduction in channel closed time, with a < or = 2-fold increase in open dwell time and (ii) a failure of the toxin to further activate channels activated by the peptides. These results suggest that diverse structural scaffolds can present similar conformational surface properties to target common receptor sites. PMID:12429019

  9. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  10. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  11. Dynamic compression combined with SOX-9 overexpression in rabbit adipose-derived mesenchymal stem cells cultured in a three-dimensional gradual porous PLGA composite scaffold upregulates HIF-1α expression.

    PubMed

    Chen, Xu; Li, Jianjun; Wang, Enbo; Zhao, Qun; Kong, Zhan; Yuan, Xiangnan

    2015-12-01

    There is considerable interest in how the fate of adipose-derived stem cells is determined. Physical stimuli play a crucial role in skeletogenesis and in cartilage repair and regeneration. In the present study, we investigated the comparative and interactive effects of dynamic compression and SRY-related high-mobility group box gene-9 (SOX-9) on chondrogenesis of rabbit adipose-derived stem cells in three-dimensional gradual porous PLGA (polylactic-co-glycolic acid) composite scaffolds. Articular cartilage is stratified into zones delineated by characteristic changes in cellular, matrix, and nutritive components. As a consequence, biochemical and biomechanical properties vary greatly between the different zones, giving the tissue its unique structure and, thus, the ability to cope with extreme loading. The effects on development of the cartilage were examined using a combination of computational modeling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations. In addition, early chondrogenic differentiation was assessed via real-time PCR of mRNA expression levels for bone- and cartilage-specific gene markers. Our findings define the important role of dynamic compression combined with SOX-9 overexpression during in vitro generation of tissue-engineering cartilage and suggest that a 3D gradual porous PLGA composite scaffold may benefit articular cartilage tissue engineering in cartilage regeneration for better force distribution.

  12. Three-dimensional elastic lidar winds

    SciTech Connect

    Buttler, W.T.

    1996-07-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three- dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain following winds in the Rio Grande valley.

  13. Three dimensional identification card and applications

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao

    2016-10-01

    Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...

  14. RESEARCH PAPERS : Wave-theoretical inversion of teleseismic surface waves in a regional network: phase-velocity maps and a three-dimensional upper-mantle shear-wave-velocity model for southern Germany

    NASA Astrophysics Data System (ADS)

    Friederich, Wolfgang

    1998-01-01

    Using teleseimic surface-wave data from 110 selected earthquakes recorded at 10broad-band stations in southern Germany we construct phase-velocity maps of Rayleigh waves for southern Germany. In a further step these maps are inverted for a three-dimensional model of the SV velocity of the upper 200 km of the mantle. We attempt to take into account the effect of heterogeneous structure outside the study region by jointly inverting the data for heterogeneous phase velocity inside the study region and the distortion of the incoming wavefields by the surrounding structure. The total wavefield in the study region is computed with a scattering formalism which includes multiple forward scattering and single backscattering. Since, in principle, the data can be perfectly fit by the incoming wavefields without any heterogeneous structure inside the study area, we impose additional constraints on the incoming wavefields to reduce the non-uniqueness. The most important constraint is an energy criterion which states that the energy of the modelled wavefield in the study area, averaged over many events, should be equal to the energy sampled by the stations. We demonstrate that enforcing this criterion generates phase-velocity maps with heterogeneous structure. Nevertheless, we are able to satisfy the energy criterion without any heterogeneous structure at the price of an only slightly increased data misfit. Hence, it must be concluded that a seismic network of size and station density such as the one used in this study is still insufficient to demonstrate convincingly the existence of heterogeneities in the network area using teleseismic surface waves. Any reasonable structure combined with the appropriate incoming wavefields would allow an acceptable fit of our data. This frustrating conclusion, of course, applies to all other comparable studies which use teleseismic surface waves. Although we cannot convincingly show that any phase-velocity map we find should be preferred over

  15. Microinterferometry: Three-Dimensional Reconstruction of Surface Microtopography for Thin-Film and Wetting Studies by Reflection Interference Contrast Microscopy (RICM).

    PubMed

    Wiegand, G; Neumaier, K R; Sackmann, E

    1998-10-10

    We present an improved theory of image formation by reflection interference contrast microscopy (RICM) for structural studies of stratified films on planar substrates and propose a new theoretical approach to analyzing the surface profile of nonplanar films. We demonstrate the validity of the new approach by analyzing the fringe patterns of RICM images from wedge-shaped liquid films and spherical probes. By simulation of various scenarios, we study the effect of finite-aperture illumination and the shape of the nonplanar interface on the interference fringe pattern of RICM images. We show how the reconstruction of the microscopic topography of the sample from the fringe spacing is corrected by angular and curvature correction terms. We discuss the variation of the mean intensity of the fringe patterns and the decay in the fringe amplitude with increasing fringe order that is caused by nonplanar interfaces of different slope.

  16. Visualization of the sensitivity of the magnetoencephalographic sensor array based on the three-dimensional modeling of cortical surface and volume conductor

    NASA Astrophysics Data System (ADS)

    Iwaki, Sunao; Sutani, Kouichi

    2010-05-01

    Here, we present a system to visualize (i) the distribution of magnetoencephalographic (MEG) signal strength in the subject-specific measurement settings predicted by a realistic MEG signal generation model (forward model) and previously published results that are typically presented in the standardized brain coordinates, and (ii) the distribution of the sensitivity of arbitrary selected group of MEG sensors on the subject-specific cortical surface. The current results suggest that (a) our methods to predict MEG field distribution from a priori information about the possible "active" cortical regions obtained from standardized functional magnetic resonance imaging results are useful for determining the sensor sets of interest in the MEG studies for a specific subject under specific measurement condition, and that (b) visualization of the sensitivity of sensor groups could provide the approximate distribution of the MEG sources without solving the MEG inverse problem.

  17. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    PubMed Central

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  18. Three-dimensional reconstruction for high-speed volume measurement

    NASA Astrophysics Data System (ADS)

    Lee, Dah-Jye; Lane, Robert M.; Chang, Guang-Hwa

    2001-02-01

    Volume measurement is an important process for various industries such as food processing, fruit and vegetable grading, etc. Value or price is often determined by the size of product. In seafood industry, for example, oyster meat is separated into four grades before being packaged. Large size grade means higher selling price than small size. More consistent packaging size is also an indication of high quality. Product size can be measured optically with machine vision technology for on-line inspection and grading systems. Most optical grading techniques use a two-dimensional area projection or the weight of the product to estimate the actual product volume. These methods are subject to measurement inaccuracy because of the missing thickness information. An algorithm combines laser triangulation technique with two-dimensional measurement to reconstruct a three-dimensional surface for volume measurement is introduced in this paper. The result of this technique shows a significant accuracy improvement from the area-projection method

  19. Three dimensional MOF-sponge for fast dynamic adsorption.

    PubMed

    Li, Huizeng; Li, Mingzhu; Li, Wenbo; Yang, Qiang; Li, Yanan; Gu, Zhenkun; Song, Yanlin

    2017-02-22

    Nowadays, environmental pollution is a big problem. Metal organic frameworks (MOFs) provide a novel strategy for exhaust gases adsorption and toxic pollutants removal. We proposed a facile and versatile method to prepare a highly efficient three dimensional MOF-sponge by coating MOF crystals on polyurethane sponge surface, mimicking the porous structure of the marine animal, sponge. Owing to combination of the spatial structure of the commercial sponge and the excellent adsorption capacity of MOF coatings, the MOF-sponge possessed good permeability and high dynamic adsorption capacity. Dynamic adsorption ability of the prepared Cu3(BTC)2-sponge was demonstrated by flowing gas-mixtures of NH3/N2 and an aquatic solution of Rhodamine B through it, with a capacity of 101.6 mg g(-1) and 8.8 mg g(-1) for NH3 and Rhodamine B, respectively.

  20. Three-dimensional THz lumped-circuit resonators.

    PubMed

    Todorov, Yanko; Desfond, Pascal; Belacel, Cherif; Becerra, Loïc; Sirtori, Carlo

    2015-06-29

    Our work describes a novel three dimensional meta-material resonator design for optoelectronic applications in the THz spectral range. In our resonant circuits, the capacitors are formed by double-metal regions cladding a dielectric core. Unlike conventional planar metamaterials, the electric field is perpendicular to the surface and totally confined in the dielectric core. Furthermore, the magnetic field, confined in the inductive part, is parallel to the electric field, ruling out coupling through propagation effects. Our geometry thus combines the benefit of double-metal structures that provide parallel plate capacitors, while maintaining the ability of meta-material resonators to adjust independently the capacitive and inductive parts. Furthermore, in our geometry, a constant bias can be applied across the dielectric, making these resonators very suitable for applications such as ultra-low dark current THz quantum detectors and amplifiers based on quantum cascade gain medium.

  1. Three-dimensional map construction.

    PubMed

    Jenks, G F; Brown, D A

    1966-11-18

    Three-dimensional maps are useful tools which have been neglected for some time. They shouldbe more commonly used, and familiarity with the techniques discussed in this article should dispel any qualms anyone might ve about needing artistic talent to nstruct them. The saving in time esulting from the use of an anamorphoser provides a further incentive. The anamorphoser transformations discussed above were all prepared by using straight slits, oriented at right angles to each other and placed so that all planes of the elements were parallel to each other. It is possible to vary these conditions in an infinite number of ways and thereby produce nonparallel tranceformations. Some of these variations are illustrated in Fig. 10. All the illustrations in Fig. 10 are transformations of the planimetric weather map shown in Fig. 8A. The variations used for the maps of Fig. 10 are as follows. (A) All planes parallel, with a curved rear slit; (B) all planes parallel, with curved slits front and rear; ( C) all planes parallel, with S-shaped rear slit; (D) all planes parallel, with an undulating rear slit; (E) all planes parallel, with curved front and undulating rear slit; (F) plane of the original rotated on the horizontal axis-both slits curved; (G) plane of the original rotated on thevertical axis- both slits curved; (H) plane of the original rotated on the horizontal axis -both slits straight. These are only a few of the many transformations which can be made with an anamorphoser, butthey do point toward some interesting possibilities. For example, it appears that maps based onone projection might be altered to satisfy the coordinates of a completely different projection. Note, for example, the change of parallels from concave to convex curves (Figs. 8A and 10A) and the change from converging meridians to diverging meridians (Figs. 8A and l0G). Similarly, the grids of maps B, F, and H of Fig. 10 approximate projections which are quite different from the original. Other

  2. Semiautomated hybrid algorithm for estimation of three-dimensional liver surface in CT using dynamic cellular automata and level-sets.

    PubMed

    Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla

    2015-04-01

    Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method.

  3. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    PubMed

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  4. COMBINED MEASUREMENTS WITH THREE-DIMENSIONAL DESIGN INFORMATION VERIFICATION SYSTEM AND GAMMA RAY IMAGING - A COLLABORATIVE EFFORT BETWEEN OAK RIDGE NATIONAL LABORATORY, LAWRENCE LIVERMORE NATIONAL LABORATORY, AND THE JOINT RESEARCH CENTER AT ISPRA

    SciTech Connect

    Mihailescu, L; Vetter, K; Ruhter, W; Chivers, D; Dreicer, M; Coates, C; Smith, S; Hines, J; Caiado, A R; Sequeira, V; Fiocco, M; Goncalves, J G

    2006-06-14

    Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL) have jointly performed tests to demonstrate combined measurements with a three-dimensional (3D) design information verification (DIV) system and a gamma-ray imager for potential safeguard applications. The 3D DIV system was made available by the European Commission's Joint Research Center to ORNL under a collaborative project between the U.S. Department of Energy and the European Atomic Energy Community (EURATOM). The system is able to create 3D maps of rooms and objects and of identifying changes in positions and modifications with a precision on the order of millimeters. The gamma ray imaging system consists of a 4{pi} field-of-view Compton imaging system which has two fully operational DSSD (Double-Sided Segment Detector) High-Purity Germanium (HPGe) detectors developed at LLNL. The Compton imaging instrument not only provides imaging capabilities, but provides excellent energy resolution which enables the identification of radioisotopes and nuclear materials. Joint Research Center was responsible to merge gamma-ray images with the 3D range maps. The results of preliminary first measurements performed at LLNL demonstrate, for the first time, mapping of panoramic gamma-ray images into 3D range data.

  5. View Factor Calculation for Three-Dimensional Geometries.

    SciTech Connect

    1989-06-20

    Version 00 MCVIEW calculates the radiation geometric view factor between surfaces for three dimensional geometries with and without interposed third surface obstructions. It was developed to calculate view factors for input data to heat transfer analysis programs such as SCA-03/TRUMP, SCA-01/HEATING-5 and PSR-199/HEATING-6.

  6. Three-dimensional structure of the greater Los Angeles basin: Insights from transects and models that integrate industry seismic reflection profiles, well logs, surface geology, and relocated earthquake catalogs

    NASA Astrophysics Data System (ADS)

    Shaw, J. H.; Plesch, A.; Suess, M. P.; Rivero, C. A.

    2001-12-01

    We describe the geometry and activity of major, seismogenic fault systems in the Los Angeles basin and adjacent offshore areas using regional seismic reflection transects and three-dimensional structural and velocity models. The seismic transects, which integrates relocated earthquakes, focal mechanisms, and well control, image several active fault systems (Palos Verdes, Newport-Inglewood, Compton, Las Cienegas, Elysian Park, Puente Hills, Whittier, Oceanside, etc.) that threaten the Los Angeles metropolitan region. The models describe the three dimensional geometry and kinematic interaction of these faults systems, and incorporate 35,000 km of industry seismic reflection data, more than 1,000 well logs, surface geology, and re-located earthquake catalogs. The Los Angeles basin lies at the juncture of the Transverse and Peninsular Ranges, and thus contains fault systems that belong to both of these tectonic provinces. The southern basin and Inner California Borderlands are dominated by northwest-southeast trending strike-slip and blind-thrust systems, parallel to the grain of the Peninsular Ranges, that partition oblique convergence. Many of these structures are reactivated normal faults that formed during Neogene rifting of the southern California margin. In contrast, the northern Los Angeles basin is dominated by east-west trending thrust and strike-slip systems that accommodate north-south shortening. These faults are part of the Transverse Ranges province, and locally dissect older Peninsular Range trends that are carried northward by motion along the San Andreas and related strike-slip fault systems. We consider the implications of these tectonic models for regional earthquake hazards assessment.

  7. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    SciTech Connect

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert

    2014-05-28

    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  8. Three-dimensional external flow computations using prismatic grid

    NASA Astrophysics Data System (ADS)

    Nakahashi, Kazuhiro

    1992-12-01

    A new approach to compute external viscous flows around three dimensional configurations is proposed. A prismatic grid is used where the three dimensional surface is covered by triangles similar to the unstructured grid. The direction away from the body surface is structured so as to achieve efficient and accurate computations for high Reynolds number viscous flows. The prismatic grid is generated by a newly developed marching-type procedure in which grid spacings are controlled by a variational method. The capability of the method is demonstrated by applying it to a viscous flow computation around a complete aircraft configuration.

  9. The three-dimensional nonadiabatic dynamics calculation of DH{sub 2}{sup +} and HD{sub 2}{sup +} systems by using the trajectory surface