A Radiation Solver for the National Combustion Code
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
2015-01-01
A methodology is given that converts an existing finite volume radiative transfer method that requires input of local absorption coefficients to one that can treat a mixture of combustion gases and compute the coefficients on the fly from the local mixture properties. The Full-spectrum k-distribution method is used to transform the radiative transfer equation (RTE) to an alternate wave number variable, g . The coefficients in the transformed equation are calculated at discrete temperatures and participating species mole fractions that span the values of the problem for each value of g. These results are stored in a table and interpolation is used to find the coefficients at every cell in the field. Finally, the transformed RTE is solved for each g and Gaussian quadrature is used to find the radiant heat flux throughout the field. The present implementation is in an existing cartesian/cylindrical grid radiative transfer code and the local mixture properties are given by a solution of the National Combustion Code (NCC) on the same grid. Based on this work the intention is to apply this method to an existing unstructured grid radiation code which can then be coupled directly to NCC.
A model of transverse fuel injection applied to the computation of supersonic combustor flow
NASA Technical Reports Server (NTRS)
Rogers, R. C.
1979-01-01
A two-dimensional, nonreacting flow model of the aerodynamic interaction of a transverse hydrogen jet within a supersonic mainstream has been developed. The model assumes profile shapes of mass flux, pressure, flow angle, and hydrogen concentration and produces downstream profiles of the other flow parameters under the constraints of the integrated conservation equations. These profiles are used as starting conditions for an existing finite difference parabolic computer code for the turbulent supersonic combustion of hydrogen. Integrated mixing and flow profile results obtained from the computer code compare favorably with existing data for the supersonic combustion of hydrogen.
Verification of low-Mach number combustion codes using the method of manufactured solutions
NASA Astrophysics Data System (ADS)
Shunn, Lee; Ham, Frank; Knupp, Patrick; Moin, Parviz
2007-11-01
Many computational combustion models rely on tabulated constitutive relations to close the system of equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications on the convergence and accuracy of simulation codes are not well understood. In this presentation, the effects of tabulated state-relationships on the computational performance of low-Mach number combustion codes are explored using the method of manufactured solutions (MMS). Several MMS examples are developed and applied, progressing from simple one-dimensional configurations to problems involving higher dimensionality and solution-complexity. The manufactured solutions are implemented in two multi-physics hydrodynamics codes: CDP developed at Stanford University and FUEGO developed at Sandia National Laboratories. In addition to verifying the order-of-accuracy of the codes, the MMS problems help highlight certain robustness issues in existing variable-density flow-solvers. Strategies to overcome these issues are briefly discussed.
EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual
NASA Technical Reports Server (NTRS)
Raju, M. S.
1998-01-01
EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.
Simulation of Combustion Systems with Realistic g-jitter
NASA Technical Reports Server (NTRS)
Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.
2003-01-01
In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.
Optimizing a liquid propellant rocket engine with an automated combustor design code (AUTOCOM)
NASA Technical Reports Server (NTRS)
Hague, D. S.; Reichel, R. H.; Jones, R. T.; Glatt, C. R.
1972-01-01
A procedure for automatically designing a liquid propellant rocket engine combustion chamber in an optimal fashion is outlined. The procedure is contained in a digital computer code, AUTOCOM. The code is applied to an existing engine, and design modifications are generated which provide a substantial potential payload improvement over the existing design. Computer time requirements for this payload improvement were small, approximately four minutes in the CDC 6600 computer.
NASA Technical Reports Server (NTRS)
Pratt, D. T.
1984-01-01
An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.
CFD propels NASP propulsion progress
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Dwoyer, Douglas L.; Green, Michael J.
1990-01-01
The most complex aerothermodynamics encountered in the National Aerospace Plane (NASP) propulsion system are associated with the fuel-mixing and combustion-reaction flows of its combustor section; adequate CFD tools must be developed to model shock-wave systems, turbulent hydrogen/air mixing, flow separation, and combustion. Improvements to existing CFD codes have involved extension from two dimensions to three, as well as the addition of finite-rate hydrogen-air chemistry. A novel CFD code for the treatment of reacting flows throughout the NASP, designated GASP, uses the most advanced upwind-differencing technology.
CFD propels NASP propulsion progress
NASA Astrophysics Data System (ADS)
Povinelli, Louis A.; Dwoyer, Douglas L.; Green, Michael J.
1990-07-01
The most complex aerothermodynamics encountered in the National Aerospace Plane (NASP) propulsion system are associated with the fuel-mixing and combustion-reaction flows of its combustor section; adequate CFD tools must be developed to model shock-wave systems, turbulent hydrogen/air mixing, flow separation, and combustion. Improvements to existing CFD codes have involved extension from two dimensions to three, as well as the addition of finite-rate hydrogen-air chemistry. A novel CFD code for the treatment of reacting flows throughout the NASP, designated GASP, uses the most advanced upwind-differencing technology.
Computer code for the prediction of nozzle admittance
NASA Technical Reports Server (NTRS)
Nguyen, Thong V.
1988-01-01
A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.
Computational experience with a three-dimensional rotary engine combustion model
NASA Astrophysics Data System (ADS)
Raju, M. S.; Willis, E. A.
1990-04-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Computational experience with a three-dimensional rotary engine combustion model
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual
NASA Technical Reports Server (NTRS)
Raju, M. S.; Liu, Nan-Suey (Technical Monitor)
2004-01-01
EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.
An Experiment in Scientific Code Semantic Analysis
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1998-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, distributed expert parsers. These semantic parser are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. The parsers will automatically recognize and document some static, semantic concepts and locate some program semantic errors. Results are shown for a subroutine test case and a collection of combustion code routines. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
Combustion: Structural interaction in a viscoelastic material
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Chang, J. P.; Kumar, M.; Kuo, K. K.
1980-01-01
The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code.
Boundary layer simulator improvement
NASA Technical Reports Server (NTRS)
Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.
1984-01-01
High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.
National Combustion Code Parallel Performance Enhancements
NASA Technical Reports Server (NTRS)
Quealy, Angela; Benyo, Theresa (Technical Monitor)
2002-01-01
The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.
NASA Astrophysics Data System (ADS)
Banica, M. C.; Chun, J.; Scheuermann, T.; Weigand, B.; Wolfersdorf, J. v.
2009-01-01
Scramjet powered vehicles can decrease costs for access to space but substantial obstacles still exist in their realization. For example, experiments in the relevant Mach number regime are difficult to perform and flight testing is expensive. Therefore, numerical methods are often employed for system layout but they require validation against experimental data. Here, we validate the commercial code CFD++ against experimental results for hydrogen combustion in the supersonic combustion facility of the Institute of Aerospace Thermodynamics (ITLR) at the Universität Stuttgart. Fuel is injected through a lobed a strut injector, which provides rapid mixing. Our numerical data shows reasonable agreement with experiments. We further investigate effects of varying equivalence ratios on several important performance parameters.
National Combustion Code: Parallel Performance
NASA Technical Reports Server (NTRS)
Babrauckas, Theresa
2001-01-01
This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.
Thermodynamic Analysis of the Combustion of Metallic Materials
NASA Technical Reports Server (NTRS)
Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
Two types of computer codes are available to assist in the thermodynamic analysis of metallic materials combustion. One type of code calculates phase equilibrium data and is represented by CALPHAD. The other type of code calculates chemical reaction by the Gordon-McBride code. The first has seen significant application for alloy-phase diagrams, but only recently has it been considered for oxidation systems. The Gordon-McBride code has been applied to the combustion of metallic materials. Both codes are limited by their treatment of non-ideal solutions and the fact they are limited to treating volatile and gaseous species as ideal. This paper examines the significance of these limitations for combustion of metallic materials. In addition, the applicability of linear-free energy relationships for solid-phase oxidation and their possible extension to liquid-phase systems is examined.
The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad
2008-01-01
The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).
Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I
NASA Technical Reports Server (NTRS)
Wey, Thomas Changju; Liu, Nan-suey
2011-01-01
This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.
Study of shock-induced combustion using an implicit TVD scheme
NASA Technical Reports Server (NTRS)
Yungster, Shayne
1992-01-01
The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.
ON UPGRADING THE NUMERICS IN COMBUSTION CHEMISTRY CODES. (R824970)
A method of updating and reusing legacy FORTRAN codes for combustion simulations is presented using the DAEPACK software package. The procedure is demonstrated on two codes that come with the CHEMKIN-II package, CONP and SENKIN, for the constant-pressure batch reactor simulati...
Fuel-Air Mixing and Combustion in Scramjets
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.
2002-01-01
Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.
NASA Technical Reports Server (NTRS)
Wey, Changju Thomas; Liu, Nan-Suey
2014-01-01
This paper summarizes the procedures of inserting a thin-layer mesh to existing inviscid polyhedral mesh either with or without hanging-node elements as well as presents sample results from its applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2014-01-01
This paper summarizes the procedures of inserting a thin-layer mesh to existing inviscid polyhedral mesh either with or without hanging-node elements as well as presents sample results from its applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
Assessment of Literature Related to Combustion Appliance Venting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, V. H.; Less, B. D.; Singer, B. C.
In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents theirmore » technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.« less
Industrial Facility Combustion Energy Use
McMillan, Colin
2016-08-01
Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Lin, Jeff; West, Jeff; Tucker, Kevin
2006-01-01
This document is a viewgraph presentation of a paper that documents a continuing effort at Marshall Space Flight Center (MSFC) to use, assess, and continually improve CFD codes to the point of material utility in the design of rocket engine combustion devices. This paper describes how the code is presently being used to simulate combustion in a single element combustion chamber with shear coaxial injectors using gaseous oxygen and gaseous hydrogen propellants. The ultimate purpose of the efforts documented is to assess and further improve the Loci-CHEM code and the implementation of it. Single element shear coaxial injectors were tested as part of the Staged Combustion Injector Technology (SCIT) program, where detailed chamber wall heat fluxes were measured. Data was taken over a range of chamber pressures for propellants injected at both ambient and elevated temperatures. Several test cases are simulated as part of the effort to demonstrate use of the Loci-CHEM CFD code and to enable us to make improvements in the code as needed. The simulations presented also include a grid independence study on hybrid grids. Several two-equation eddy viscosity low Reynolds number turbulence models are also evaluated as part of the study. All calculations are presented with a comparison to the experimental data. Weaknesses of the code relative to test data are discussed and continuing efforts to improve the code are presented.
A two-phase restricted equilibrium model for combustion of metalized solid propellants
NASA Technical Reports Server (NTRS)
Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.
1992-01-01
An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.
Assessment of the National Combustion Code
NASA Technical Reports Server (NTRS)
Liu, nan-Suey; Iannetti, Anthony; Shih, Tsan-Hsing
2007-01-01
The advancements made during the last decade in the areas of combustion modeling, numerical simulation, and computing platform have greatly facilitated the use of CFD based tools in the development of combustion technology. Further development of verification, validation and uncertainty quantification will have profound impact on the reliability and utility of these CFD based tools. The objectives of the present effort are to establish baseline for the National Combustion Code (NCC) and experimental data, as well as to document current capabilities and identify gaps for further improvements.
Modeling of High Speed Reacting Flows: Established Practices and Future Challenges
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2004-01-01
Computational fluid dynamics (CFD) has proven to be an invaluable tool for the design and analysis of high- speed propulsion devices. Massively parallel computing, together with the maturation of robust CFD codes, has made it possible to perform simulations of complete engine flowpaths. Steady-state Reynolds-Averaged Navier-Stokes simulations are now routinely used in the scramjet engine development cycle to determine optimal fuel injector arrangements, investigate trends noted during testing, and extract various measures of engine efficiency. Unfortunately, the turbulence and combustion models used in these codes have not changed significantly over the past decade. Hence, the CFD practitioner must often rely heavily on existing measurements (at similar flow conditions) to calibrate model coefficients on a case- by-case basis. This paper provides an overview of the modeled equations typically employed by commercial- quality CFD codes for high-speed combustion applications. Careful attention is given to the approximations employed for each of the unclosed terms in the averaged equation set. The salient features (and shortcomings) of common models used to close these terms are covered in detail, and several academic efforts aimed at addressing these shortcomings are discussed.
CFD Simulation of Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)
2001-01-01
Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.
Tabulated Combustion Model Development For Non-Premixed Flames
NASA Astrophysics Data System (ADS)
Kundu, Prithwish
Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1D diffusion flame solver. The proposed model did not use progress variables like the traditional chemistry tabulation methods. The resulting model demonstrated an order of magnitude computational speed up over the RIF model. The results were validated across a wide range of operating conditions for diesel injections and the results were in close agreement to those of the experimental data. History of scalar dissipation rates plays a very important role in non premixed flames. However, tabulated methods have not been able to incorporate this physics in their models. A comparative approach is developed that can quantify these effects and find correlations with flow variables. A new model is proposed to include these effects in tabulated combustion models. The model is initially validated for 1D counterflow diffusion flame problems at engine conditions. The model is further implemented and validated in a 3D RANS code across a range of operating conditions for spray flames.
Development of Tripropellant CFD Design Code
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.
1998-01-01
A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.
National Combustion Code: Parallel Implementation and Performance
NASA Technical Reports Server (NTRS)
Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.
2000-01-01
The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.
NASA Technical Reports Server (NTRS)
Norris, Andrew
2003-01-01
The goal was to perform 3D simulation of GE90 combustor, as part of full turbofan engine simulation. Requirements of high fidelity as well as fast turn-around time require massively parallel code. National Combustion Code (NCC) was chosen for this task as supports up to 999 processors and includes state-of-the-art combustion models. Also required is ability to take inlet conditions from compressor code and give exit conditions to turbine code.
Detailed model for practical pulverized coal furnaces and gasifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Smoot, L.D.
1989-08-01
This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report:more » (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.« less
Noise induced phenomena in combustion
NASA Astrophysics Data System (ADS)
Liu, Hongliang
Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.
NASA Technical Reports Server (NTRS)
Chen, C. P.
1990-01-01
An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.
Computational fluid dynamics combustion analysis evaluation
NASA Technical Reports Server (NTRS)
Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.
1992-01-01
This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.
An assumed pdf approach for the calculation of supersonic mixing layers
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Drummond, J. P.; Hassan, H. A.
1992-01-01
In an effort to predict the effect that turbulent mixing has on the extent of combustion, a one-equation turbulence model is added to an existing Navier-Stokes solver with finite-rate chemistry. To average the chemical-source terms appearing in the species-continuity equations, an assumed pdf approach is also used. This code was used to analyze the mixing and combustion caused by the mixing layer formed by supersonic coaxial H2-air streams. The chemistry model employed allows for the formation of H2O2 and HO2. Comparisons are made with recent measurements using laser Raman diagnostics. Comparisons include temperature and its rms, and concentrations of H2, O2, N2, H2O, and OH. In general, good agreement with experiment was noted.
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Sockol, Peter M.
1990-01-01
Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.
Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows
NASA Technical Reports Server (NTRS)
Yungster, Shaye
1991-01-01
A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.
Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows
NASA Technical Reports Server (NTRS)
Yungster, Shaye
1990-01-01
A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.
NASA Technical Reports Server (NTRS)
Radhadrishnan, Krishnan
1993-01-01
A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, K.-H.
2001-01-01
The objective of this research is to develop an efficient numerical algorithm with unstructured grids for the computation of three-dimensional chemical reacting flows that are known to occur in combustion components of propulsion systems. During the grant period (1996 to 1999), two companion codes have been developed and various numerical and physical models were implemented into the two codes.
Numerical study of combustion processes in afterburners
NASA Technical Reports Server (NTRS)
Zhou, Xiaoqing; Zhang, Xiaochun
1986-01-01
Mathematical models and numerical methods are presented for computer modeling of aeroengine afterburners. A computer code GEMCHIP is described briefly. The algorithms SIMPLER, for gas flow predictions, and DROPLET, for droplet flow calculations, are incorporated in this code. The block correction technique is adopted to facilitate convergence. The method of handling irregular shapes of combustors and flameholders is described. The predicted results for a low-bypass-ratio turbofan afterburner in the cases of gaseous combustion and multiphase spray combustion are provided and analyzed, and engineering guides for afterburner optimization are presented.
NASA Technical Reports Server (NTRS)
Raju, M. S.
1998-01-01
The success of any solution methodology used in the study of gas-turbine combustor flows depends a great deal on how well it can model the various complex and rate controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as convective and radiative heat transfer and other phenomena. The phenomena to be modeled, which are controlled by these processes, often strongly interact with each other at different times and locations. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. The influence of turbulence in a diffusion flame manifests itself in several forms, ranging from the so-called wrinkled, or stretched, flamelets regime to the distributed combustion regime, depending upon how turbulence interacts with various flame scales. Conventional turbulence models have difficulty treating highly nonlinear reaction rates. A solution procedure based on the composition joint probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices (such as extinction, blowoff limits, and emissions predictions) because it can account for nonlinear chemical reaction rates without making approximations. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on the PDF method to unstructured grids, parallel computing, and sprays. EUPDF, which was developed by M.S. Raju of Nyma, Inc., was designed to be massively parallel and could easily be coupled with any existing gas-phase and/or spray solvers. EUPDF can use an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements. The application of the PDF method showed favorable results when applied to several supersonic-diffusion flames and spray flames. The EUPDF source code will be available with the National Combustion Code (NCC) as a complete package.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Liquid rocket combustor computer code development
NASA Technical Reports Server (NTRS)
Liang, P. Y.
1985-01-01
The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.
Spherical combustion clouds in explosions
NASA Astrophysics Data System (ADS)
Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.
2013-05-01
This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the pressure field. Turbulent kinetic energy of the combustion cloud decayed due to enstrophy overline{ω 2} and dilatation overline{Δ 2}.
Subgrid Combustion Modeling for the Next Generation National Combustion Code
NASA Technical Reports Server (NTRS)
Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher
2003-01-01
In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiveland, W.A.; Oberjohn, W.J.; Cornelius, D.K.
1985-12-01
This report summarizes the work conducted during a 30-month contract with the United States Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). The general objective is to develop and verify a computer code capable of modeling the major aspects of pulverized coal combustion. Achieving this objective will lead to design methods applicable to industrial and utility furnaces. The combustion model (COMO) is based mainly on an existing Babcock and Wilcox (B and W) computer program. The model consists of a number of relatively independent modules that represent the major processes involved in pulverized coal combustion: flow, heterogeneous and homogeneousmore » chemical reaction, and heat transfer. As models are improved or as new ones are developed, this modular structure allows portions of the COMO model to be updated with minimal impact on the remainder of the program. The report consists of two volumes. This volume (Volume 1) contains a technical summary of the COMO model, results of predictions for gas phase combustion, pulverized coal combustion, and a detailed description of the COMO model. Volume 2 is the Users Guide for COMO and contains detailed instructions for preparing the input data and a description of the program output. Several example cases have been included to aid the user in usage of the computer program for pulverized coal applications. 66 refs., 41 figs., 21 tabs.« less
NASA Astrophysics Data System (ADS)
Hartley, M. D.; Jaques, R. E.
1986-11-01
The Canadian Electrical Code and the National Building Code in Canada recognize only two designations in regards to fire resistance of cables; cables for use in combustible (residential) buildings and cables for use in non-combustible buildings. The Test standard for cables for non-combustible buildings resembles IEEE-383. However, it is more severe; particularly for small nonarmoured cables such as Inside Wiring Cable. This forthcoming requirement has necessitated material and product development. Although an Inside Wiring cable modification of both insulation and jacket was undertaken, the large volume fraction of combustible material in the jacket vis a vis the insulation made it the area of greatest impact. The paper outlines the development and its effect on cable performance.
Combustion performance and scale effect from N2O/HTPB hybrid rocket motor simulations
NASA Astrophysics Data System (ADS)
Shan, Fanli; Hou, Lingyun; Piao, Ying
2013-04-01
HRM code for the simulation of N2O/HTPB hybrid rocket motor operation and scale effect analysis has been developed. This code can be used to calculate motor thrust and distributions of physical properties inside the combustion chamber and nozzle during the operational phase by solving the unsteady Navier-Stokes equations using a corrected compressible difference scheme and a two-step, five species combustion model. A dynamic fuel surface regression technique and a two-step calculation method together with the gas-solid coupling are applied in the calculation of fuel regression and the determination of combustion chamber wall profile as fuel regresses. Both the calculated motor thrust from start-up to shut-down mode and the combustion chamber wall profile after motor operation are in good agreements with experimental data. The fuel regression rate equation and the relation between fuel regression rate and axial distance have been derived. Analysis of results suggests improvements in combustion performance to the current hybrid rocket motor design and explains scale effects in the variation of fuel regression rate with combustion chamber diameter.
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
NASA Technical Reports Server (NTRS)
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
A Study of Cavitation-Ignition Bubble Combustion
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Jacqmin, David A.
2005-01-01
We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.
Propellant Chemistry for CFD Applications
NASA Technical Reports Server (NTRS)
Farmer, R. C.; Anderson, P. G.; Cheng, Gary C.
1996-01-01
Current concepts for reusable launch vehicle design have created renewed interest in the use of RP-1 fuels for high pressure and tri-propellant propulsion systems. Such designs require the use of an analytical technology that accurately accounts for the effects of real fluid properties, combustion of large hydrocarbon fuel modules, and the possibility of soot formation. These effects are inadequately treated in current computational fluid dynamic (CFD) codes used for propulsion system analyses. The objective of this investigation is to provide an accurate analytical description of hydrocarbon combustion thermodynamics and kinetics that is sufficiently computationally efficient to be a practical design tool when used with CFD codes such as the FDNS code. A rigorous description of real fluid properties for RP-1 and its combustion products will be derived from the literature and from experiments conducted in this investigation. Upon the establishment of such a description, the fluid description will be simplified by using the minimum of empiricism necessary to maintain accurate combustion analyses and including such empirical models into an appropriate CFD code. An additional benefit of this approach is that the real fluid properties analysis simplifies the introduction of the effects of droplet sprays into the combustion model. Typical species compositions of RP-1 have been identified, surrogate fuels have been established for analyses, and combustion and sooting reaction kinetics models have been developed. Methods for predicting the necessary real fluid properties have been developed and essential experiments have been designed. Verification studies are in progress, and preliminary results from these studies will be presented. The approach has been determined to be feasible, and upon its completion the required methodology for accurate performance and heat transfer CFD analyses for high pressure, tri-propellant propulsion systems will be available.
Summary of Pressure Gain Combustion Research at NASA
NASA Technical Reports Server (NTRS)
Perkins, H. Douglas; Paxson, Daniel E.
2018-01-01
NASA has undertaken a systematic exploration of many different facets of pressure gain combustion over the last 25 years in an effort to exploit the inherent thermodynamic advantage of pressure gain combustion over the constant pressure combustion process used in most aerospace propulsion systems. Applications as varied as small-scale UAV's, rotorcraft, subsonic transports, hypersonics and launch vehicles have been considered. In addition to studying pressure gain combustor concepts such as wave rotors, pulse detonation engines, pulsejets, and rotating detonation engines, NASA has studied inlets, nozzles, ejectors and turbines which must also process unsteady flow in an integrated propulsion system. Other design considerations such as acoustic signature, combustor material life and heat transfer that are unique to pressure gain combustors have also been addressed in NASA research projects. In addition to a wide range of experimental studies, a number of computer codes, from 0-D up through 3-D, have been developed or modified to specifically address the analysis of unsteady flow fields. Loss models have also been developed and incorporated into these codes that improve the accuracy of performance predictions and decrease computational time. These codes have been validated numerous times across a broad range of operating conditions, and it has been found that once validated for one particular pressure gain combustion configuration, these codes are readily adaptable to the others. All in all, the documentation of this work has encompassed approximately 170 NASA technical reports, conference papers and journal articles to date. These publications are very briefly summarized herein, providing a single point of reference for all of NASA's pressure gain combustion research efforts. This documentation does not include the significant contributions made by NASA research staff to the programs of other agencies, universities, industrial partners and professional society committees through serving as technical advisors, technical reviewers and research consultants.
Laser Schlieren and ultraviolet diagnostics of rocket combustion
NASA Technical Reports Server (NTRS)
Fisher, S. C.
1985-01-01
A low pressure oxygen/hydrogen turbine drive combustor hot-fire test series was conducted on the Turbine Drive Combustor Technology Program. The first objective was to gather data on an axisymmetric combustion system to support anchoring of a new combustion/fluid dynamics computer code under development on the same contract. The second objective was to gain insight into low mixture ratio combustion characteristics of coaxial injector elements.
TABULATED EQUIVALENT SDR FLAMELET (TESF) MODEFL
DOE Office of Scientific and Technical Information (OSTI.GOV)
KUNDU, PRITHWISH; AMEEN, mUHSIN MOHAMMED; UNNIKRISHNAN, UMESH
The code consists of an implementation of a novel tabulated combustion model for non-premixed flames in CFD solvers. This novel technique/model is used to implement an unsteady flamelet tabulation without using progress variables for non-premixed flames. It also has the capability to include history effects which is unique within tabulated flamelet models. The flamelet table generation code can be run in parallel to generate tables with large chemistry mechanisms in relatively short wall clock times. The combustion model/code reads these tables. This framework can be coupled with any CFD solver with RANS as well as LES turbulence models. This frameworkmore » enables CFD solvers to run large chemistry mechanisms with large number of grids at relatively lower computational costs. Currently it has been coupled with the Converge CFD code and validated against available experimental data. This model can be used to simulate non-premixed combustion in a variety of applications like reciprocating engines, gas turbines and industrial burners operating over a wide range of fuels.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Computation of H2/air reacting flowfields in drag-reduction external combustion
NASA Technical Reports Server (NTRS)
Lai, H. T.
1992-01-01
Numerical simulation and analysis of the solution are presented for a laminar reacting flowfield of air and hydrogen in the case of external combustion employed to reduce base drag in hypersonic vehicles operating at transonic speeds. The flowfield consists of a transonic air stream at a Mach number of 1.26 and a sonic transverse hydrogen injection along a row of 26 orifices. Self-sustained combustion is computed over an expansion ramp downstream of the injection and a flameholder, using the recently developed RPLUS code. Measured data is available only for surface pressure distributions and is used for validation of the code in practical 3D reacting flowfields. Pressure comparison shows generally good agreements, and the main effects of combustion are also qualitatively consistent with experiment.
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, Kuo-Huey
1997-01-01
The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, C.; Hughes, E. D.; Niederauer, G. F.
1998-10-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the wallsmore » and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK« less
Droplet breakup in accelerating gas flows. Part 2: Secondary atomization
NASA Technical Reports Server (NTRS)
Zajac, L. J.
1973-01-01
An experimental investigation to determine the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax and the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The results of this study, indicate that a significant amount of droplet breakup will occur as a result of the action of the gas on the liquid droplets. Empirical correlations are presented in terms of parameters that were found to affect the mass median dropsize most significantly, the orifice diameter, the liquid injection velocity, and the maximum gas velocity. An empirical correlation for the normalized dropsize distribution is also presented. These correlations are in a form that may be incorporated readily into existing combustion model computer codes for the purpose of calculating rocket engine combustion performance.
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit
1992-01-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Astrophysics Data System (ADS)
Chitsomboon, Tawit
1992-02-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Units a b c Municipal waste combustion technology Limits for class I municipal...
National Combustion Code Validated Against Lean Direct Injection Flow Field Data
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.
2003-01-01
Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.
CFD code evaluation for internal flow modeling
NASA Technical Reports Server (NTRS)
Chung, T. J.
1990-01-01
Research on the computational fluid dynamics (CFD) code evaluation with emphasis on supercomputing in reacting flows is discussed. Advantages of unstructured grids, multigrids, adaptive methods, improved flow solvers, vector processing, parallel processing, and reduction of memory requirements are discussed. As examples, researchers include applications of supercomputing to reacting flow Navier-Stokes equations including shock waves and turbulence and combustion instability problems associated with solid and liquid propellants. Evaluation of codes developed by other organizations are not included. Instead, the basic criteria for accuracy and efficiency have been established, and some applications on rocket combustion have been made. Research toward an ultimate goal, the most accurate and efficient CFD code, is in progress and will continue for years to come.
Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.
2014-04-01
This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is formore » inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.« less
Combustion Safety for Appliances Using Indoor Air (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-05-01
This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is formore » inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.« less
40 CFR 75.53 - Monitoring plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... are pre-combustion, post-combustion, or integral to the combustion process; control equipment code... fuel flow-to-load test in section 2.1.7 of appendix D to this part is used: (A) The upper and lower... and applied to the hourly flow rate data: (A) Stack or duct width at the test location, ft; (B) Stack...
Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.; Willis, Edward A.
1993-01-01
This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.
A Nonlinear Model for Fuel Atomization in Spray Combustion
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave
2003-01-01
Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Sockol, Peter M.
1987-01-01
Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
One-Dimensional Modelling of Internal Ballistics
NASA Astrophysics Data System (ADS)
Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.
2017-10-01
A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
The efficiency and accuracy of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations are compared. The methods examined include two general-purpose codes, EPISODE and LSODE, and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an interactive solution of the algebraic energy conservation equation to compute the temperature does not result in significant errors. In addition, this method is more efficient than evaluating the temperature by integrating its time derivative. Significant reductions in computational work are realized by updating the rate constants (k = at(supra N) N exp(-E/RT) only when the temperature change exceeds an amount delta T that is problem dependent. An approximate expression for the automatic evaluation of delta T is derived and is shown to result in increased efficiency.
NASA Technical Reports Server (NTRS)
Combs, L. P.
1974-01-01
A computer program for analyzing rocket engine performance was developed. The program is concerned with the formation, distribution, flow, and combustion of liquid sprays and combustion product gases in conventional rocket combustion chambers. The capabilities of the program to determine the combustion characteristics of the rocket engine are described. Sample data code sheets show the correct sequence and formats for variable values and include notes concerning options to bypass the input of certain data. A seperate list defines the variables and indicates their required dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, M.H.; Lederman, S.; Sforza, P.
1980-01-01
This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limitmore » of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.« less
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
1999-01-01
The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.
CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar
2000-10-24
The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Ordermore » has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Units a b c ER31JA03.008 ...
Three-Dimensional Analysis and Modeling of a Wankel Engine
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1991-01-01
A new computer code, AGNI-3D, has been developed for the modeling of combustion, spray, and flow properties in a stratified-charge rotary engine (SCRE). The mathematical and numerical details of the new code are described by the first author in a separate NASA publication. The solution procedure is based on an Eulerian-Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas-mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite-volume, Steger-Warming flux vector splitting scheme. The liquid-phase equations are solved in Lagrangian coordinates. The engine configuration studied was similar to existing rotary engine flow-visualization and hot-firing test rigs. The results of limited test cases indicate a good degree of qualitative agreement between the predicted and measured pressures. It is conjectured that the impulsive nature of the torque generated by the observed pressure nonuniformity may be one of the mechanisms responsible for the excessive wear of the timing gears observed during the early stages of the rotary combustion engine (RCE) development. It was identified that the turbulence intensities near top-dead-center were dominated by the compression process and only slightly influenced by the intake and exhaust processes. Slow mixing resulting from small turbulence intensities within the rotor pocket and also from a lack of formation of any significant recirculation regions within the rotor pocket were identified as the major factors leading to incomplete combustion. Detailed flowfield results during exhaust and intake, fuel injection, fuel vaporization, combustion, mixing and expansion processes are also presented. The numerical procedure is very efficient as it takes 7 to 10 CPU hours on a CRAY Y-MP for one entire engine cycle when the computations are performed over a 31 x16 x 20 grid.
NASA Technical Reports Server (NTRS)
Sozen, Mehmet
2003-01-01
In what follows, the model used for combustion of liquid hydrogen (LH2) with liquid oxygen (LOX) using chemical equilibrium assumption, and the novel computational method developed for determining the equilibrium composition and temperature of the combustion products by application of the first and second laws of thermodynamics will be described. The modular FORTRAN code developed as a subroutine that can be incorporated into any flow network code with little effort has been successfully implemented in GFSSP as the preliminary runs indicate. The code provides capability of modeling the heat transfer rate to the coolants for parametric analysis in system design.
Investigation on the effect of diaphragm on the combustion characteristics of solid-fuel ramjet
NASA Astrophysics Data System (ADS)
Gong, Lunkun; Chen, Xiong; Yang, Haitao; Li, Weixuan; Zhou, Changsheng
2017-10-01
The flow field characteristics and the regression rate distribution of solid-fuel ramjet with three-hole diaphragm were investigated by numerical and experimental methods. The experimental data were obtained by burning high-density polyethylene using a connected-pipe facility to validate the numerical model and analyze the combustion efficiency of the solid-fuel ramjet. The three-dimensional code developed in the present study adopted three-order MUSCL and central difference schemes, AUSMPW + flux vector splitting method, and second-order moment turbulence-chemistry model, together with k-ω shear stress transport (SST) turbulence model. The solid fuel surface temperature was calculated with fluid-solid heat coupling method. The numerical results show that strong circumferential flow exists in the region upstream of the diaphragm. The diaphragm can enhance the regression rate of the solid fuel in the region downstream of the diaphragm significantly, which mainly results from the increase of turbulent viscosity. As the diaphragm port area decreases, the regression rate of the solid fuel downstream of the diaphragm increases. The diaphragm can result in more sufficient mixing between the incoming air and fuel pyrolysis gases, while inevitably producing some pressure loss. The experimental results indicate that the effect of the diaphragm on the combustion efficiency of hydrocarbon fuels is slightly negative. It is conjectured that the diaphragm may have some positive effects on the combustion efficiency of the solid fuel with metal particles.
NASA Technical Reports Server (NTRS)
Muss, J. A.; Nguyen, T. V.; Johnson, C. W.
1991-01-01
The user's manual for the rocket combustor interactive design (ROCCID) computer program is presented. The program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial, and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can easily be added. The analysis model in ROCCID can account for the influence of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Fundamental modeling of pulverized coal and coal-water slurry combustion in a gas turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatwani, A.; Turan, A.; Hals, F.
1988-01-01
This work describes the essential features of a coal combustion model which is incorporated into a three-dimensional, steady-state, two-phase, turbulent, reactive flow code. The code is a modified and advanced version of INTERN code originally developed at Imperial College which has gone through many stages of development and validation. Swithenbank et al have reported spray combustion model results for an experimental can combustor. The code has since then been modified by and made public under a US Army program. A number of code modifications and improvements have been made at ARL. The earlier version of code was written for amore » small CDC machine which relied on frequent disk/memory transfer and overlay features to carry the computations resulting in loss of computational speed. These limitations have now been removed. For spray applications, the fuel droplet vaporization generates gaseous fuel of uniform composition; hence the earlier formulation relied upon the use of conserved scalar approximation to reduce the number of species equations to be solved. In applications related to coal fuel, coal pyrolysis leads to the formation of at least two different gaseous fuels and a solid fuel of different composition. The authors have therefore removed the conserved scalar formulation for the sake of generality and easy adaptability to complex fuel situations.« less
1980-12-01
Detachment, White Oak Laboratory, Silver Spring Code 240, Sigmund Jacobs (1) G. B. Wilmot (1) 1 Naval Underwater Systems Center, Newport (Code 5B331...Models by Kenneth K. Kuo and Mridul Kumar Systems Associates DTIC Pennsylvanir State University ELECTE for the APR 8 1981 Research Department B...ACTIVTY OF THE NAVAL MATERIAL COMMAND FOREWORD This is the final report for a research program conducted by Systems Associates, Pennsylvania State
Notes on the KIVA-2 software and chemically reactive fluid mechanics
NASA Astrophysics Data System (ADS)
Holst, M. J.
1992-09-01
Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.
Combustion system CFD modeling at GE Aircraft Engines
NASA Technical Reports Server (NTRS)
Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.
1995-01-01
This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.
Combustion system CFD modeling at GE Aircraft Engines
NASA Astrophysics Data System (ADS)
Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.
1995-03-01
This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.
Spray combustion model improvement study, 1
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
1998-01-01
Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.
The large-amplitude combustion oscillation in a single-side expansion scramjet combustor
NASA Astrophysics Data System (ADS)
Ouyang, Hao; Liu, Weidong; Sun, Mingbo
2015-12-01
The combustion oscillation in scramjet combustor is believed not existing and ignored for a long time. Compared with the flame pulsation, the large-amplitude combustion oscillation in scramjet combustor is indeed unfamiliar and difficult to be observed. In this study, the specifically designed experiments are carried out to investigate this unusual phenomenon in a single-side expansion scramjet combustor. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The obtained results show that the large-amplitude combustion oscillation can exist in scramjet combustor, which is not occasional and can be reproduced. Under the given conditions of this study, moreover, the large-amplitude combustion oscillation is regular and periodic, whose principal frequency is about 126 Hz. The proceeding of the combustion oscillation is accompanied by the transformation of the flame-holding pattern and combustion mode transition between scramjet mode combustion and ramjet mode combustion.
Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1993-01-01
A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.
Mathematical description of complex chemical kinetics and application to CFD modeling codes
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1993-01-01
A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.
Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace
NASA Astrophysics Data System (ADS)
Karim, Md. Rezwanul; Naser, Jamal
2017-06-01
Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applicationsmore » and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.« less
NASA Technical Reports Server (NTRS)
Shen, Hayley H.
1991-01-01
Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.
29 CFR Appendix A to Subpart S of... - References for Further Information
Code of Federal Regulations, 2014 CFR
2014-07-01
... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...
29 CFR Appendix A to Subpart S of... - References for Further Information
Code of Federal Regulations, 2011 CFR
2011-07-01
... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...
29 CFR Appendix A to Subpart S of... - References for Further Information
Code of Federal Regulations, 2012 CFR
2012-07-01
... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...
29 CFR Appendix A to Subpart S of... - References for Further Information
Code of Federal Regulations, 2013 CFR
2013-07-01
... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...
Thermodynamic Model of Aluminum Combustion in SDF Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, . L
2006-06-19
Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.
Computational analysis of Variable Thrust Engine (VTE) performance
NASA Technical Reports Server (NTRS)
Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.
1993-01-01
The Variable Thrust Engine (VTE) of the Orbital Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The performance of the VTE depends on a number of complex interacting phenomena such as atomization, spray dynamics, vaporization, turbulent mixing, convective/radiative heat transfer, and hypergolic combustion. This study involved the development of a comprehensive numerical methodology to facilitate detailed analysis of the VTE. An existing Computational Fluid Dynamics (CFD) code was extensively modified to include the following models: a two-liquid, two-phase Eulerian-Lagrangian spray model; a chemical equilibrium model; and a discrete ordinate radiation heat transfer model. The modified code was used to conduct a series of simulations to assess the effects of various physical phenomena and boundary conditions on the VTE performance. The details of the models and the results of the simulations are presented.
The present state and future directions of PDF methods
NASA Technical Reports Server (NTRS)
Pope, S. B.
1992-01-01
The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.
NASA Technical Reports Server (NTRS)
Muss, J. A.; Nguyen, T. V.; Johnson, C. W.
1991-01-01
The appendices A-K to the user's manual for the rocket combustor interactive design (ROCCID) computer program are presented. This includes installation instructions, flow charts, subroutine model documentation, and sample output files. The ROCCID program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can be easily added. The analysis models in ROCCID can account for the influences of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.
An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels
NASA Technical Reports Server (NTRS)
Jachimowski, Casimir J.
1992-01-01
The effect of initial nonequilibrium dissociated air constituents on the combustion of hydrogen in high-speed flows for a simulated Mach 17 flight condition was investigated by analyzing the results of comparative combustion experiments performed in a reflected shock tunnel test gas and in a shock expansion tunnel test gas. The results were analyzed and interpreted with a one-dimensional quasi-three-stream combustor code that includes finite rate combustion chemistry. The results of this study indicate that the combustion process is kinetically controlled in the experiments in both tunnels and the presence of the nonequilibrium partially dissociated oxygen in the reflected shock tunnel enhances the combustion. Methods of compensating for the effect of dissociated oxygen are discussed.
Simulation of Turbulent Combustion Fields of Shock-Dispersed Aluminum Using the AMR Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Bell, J B; Beckner, V E
2006-11-02
We present a Model for simulating experiments of combustion in Shock-Dispersed-Fuel (SDF) explosions. The SDF charge consisted of a 0.5-g spherical PETN booster, surrounded by 1-g of fuel powder (flake Aluminum). Detonation of the booster charge creates a high-temperature, high-pressure source (PETN detonation products gases) that both disperses the fuel and heats it. Combustion ensues when the fuel mixes with air. The gas phase is governed by the gas-dynamic conservation laws, while the particle phase obeys the continuum mechanics laws for heterogeneous media. The two phases exchange mass, momentum and energy according to inter-phase interaction terms. The kinetics model usedmore » an empirical particle burn relation. The thermodynamic model considers the air, fuel and booster products to be of frozen composition, while the Al combustion products are assumed to be in equilibrium. The thermodynamic states were calculated by the Cheetah code; resulting state points were fit with analytic functions suitable for numerical simulations. Numerical simulations of combustion of an Aluminum SDF charge in a 6.4-liter chamber were performed. Computed pressure histories agree with measurements.« less
An Upwind Solver for the National Combustion Code
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
2011-01-01
An upwind solver is presented for the unstructured grid National Combustion Code (NCC). The compressible Navier-Stokes equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. First order derivatives are computed on cell faces and used to evaluate the shear stresses and heat fluxes. A new flux limiter uses these same first order derivatives in the evaluation of left and right states used in the flux-difference splitting. The k-epsilon turbulence equations are solved with the same second-order method. The new solver has been installed in a recent version of NCC and the resulting code has been tested successfully in 2D on two laminar cases with known solutions and one turbulent case with experimental data.
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Moder, Jeffery P.
2010-01-01
Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results
Spray combustion experiments and numerical predictions
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey
1993-01-01
The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation
NASA Technical Reports Server (NTRS)
Holt, James B.; Ruf, Joe
1999-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
Algorithmic Enhancements for Unsteady Aerodynamics and Combustion Applications
NASA Technical Reports Server (NTRS)
Venkateswaran, Sankaran; Olsen, Michael (Technical Monitor)
2001-01-01
Research in the FY01 focused on the analysis and development of enhanced algorithms for unsteady aerodynamics and chemically reacting flowfields. The research was performed in support of NASA Ames' efforts to improve the capabilities of the in-house computational fluid dynamics code, OVERFLOW. Specifically, the research was focused on the four areas: (1) investigation of stagnation region effects; (2) unsteady preconditioning dual-time procedures; (3) dissipation formulation for combustion; and (4) time-stepping methods for combustion.
Jet-A reaction mechanism study for combustion application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo
1991-01-01
Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel was studied. Initially, 40 reacting species and 118 elementary chemical reactions were chosen based on a literature review. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with the available shock tube data, then it is validated by comparison of calculated emissions from the plug flow reactor code with in-house flame tube data.
HSR combustion analytical research
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee
1992-01-01
Increasing the pressure and temperature of the engines of a new generation of supersonic airliners increases the emissions of nitrogen oxides (NO(x)) to a level that would have an adverse impact on the Earth's protective ozone layer. In the process of evolving and implementing low emissions combustor technologies, NASA LeRC has pursued a combustion analysis code program to guide combustor design processes, to identify potential concepts of the greatest promise, and to optimize them at low cost, with short turnaround time. The computational analyses are evaluated at actual engine operating conditions. The approach is to upgrade and apply advanced computer programs for gas turbine applications. Efforts were made in further improving the code capabilities for modeling the physics and the numerical methods of solution. Then test cases and measurements from experiments are used for code validation.
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Jones, G. W.
2010-01-01
Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations. This paper summarizes the analyses of combustion and performance as a follow-up to a paper published in the 2008 JANNAF/LPS meeting. Combustion stability analyses are presented in a separate paper. The current paper includes test and analysis results of coaxial element injectors using liquid oxygen and liquid methane or gaseous methane propellants. Several thrust chamber configurations have been modeled, including thrust chambers with multi-element swirl coax element injectors tested at the NASA MSFC, and a uni-element chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods
Analysis of Apex Seal Friction Power Loss in Rotary Engines
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Owen, A. Karl
2010-01-01
An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
Performance and Stability Analyses of Rocket Thrust Chambers with Oxygen/Methane Propellants
NASA Technical Reports Server (NTRS)
Hulka, James R.; Jones, Gregg W.
2010-01-01
Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for future in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems developed by NASA, so limited test data and analysis results are available at this stage of early development. As part of activities for the Propulsion and Cryogenic Advanced Development (PCAD) project funded under the Exploration Technology Development Program, the NASA Marshall Space Flight Center (MSFC) has been evaluating capability to model combustion performance and stability for oxygen and methane propellants. This activity has been proceeding for about two years and this paper is a summary of results to date. Hot-fire test results of oxygen/methane propellant rocket engine combustion devices for the modeling investigations have come from several sources, including multi-element injector tests with gaseous methane from the 1980s, single element tests with gaseous methane funded through the Constellation University Institutes Program, and multi-element injector tests with both gaseous and liquid methane conducted at the NASA MSFC funded by PCAD. For the latter, test results of both impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interactive Design and Analysis code and the Coaxial Injector Combustion Model. Special effort was focused on how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied, improved or developed in the future. Low frequency combustion instability (chug) occurred, with frequencies ranging from 150 to 250 Hz, with several multi-element injectors with liquid/liquid propellants, and was modeled using techniques from Wenzel and Szuch. High-frequency combustion instability also occurred at the first tangential (1T) mode, at about 4500 Hz, with several multi-element injectors with liquid/liquid propellants. Analyses of the transverse mode instability were conducted by evaluating injector resonances and empirical methods developed by Hewitt.
A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S M; Flowers, D L; Martinez-Frias, J
2000-11-29
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. Thismore » procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also shows a numerical study on how parameters such as swirl rate, crevices and ceramic walls could help in reducing HC and CO emissions from HCCI engines.« less
A combustion model for studying the effects of ideal gas properties on jet noise
NASA Astrophysics Data System (ADS)
Jacobs, Jerin; Tinney, Charles
2016-11-01
A theoretical combustion model is developed to simulate the influence of ideal gas effects on various aeroacoustic parameters over a range of equivalence ratios. The motivation is to narrow the gap between laboratory and full-scale jet noise testing. The combustion model is used to model propane combustion in air and kerosene combustion in air. Gas properties from the combustion model are compared to real lab data acquired at the National Center for Physical Acoustics at the University of Mississippi as well as outputs from NASA's Chemical Equilibrium Analysis code. Different jet properties are then studied over a range of equivalence ratios and pressure ratios for propane combustion in air, kerosene combustion in air and heated air. The findings reveal negligible differences between the three constituents where the density and sound speed ratios are concerned. Albeit, the area ratio required for perfectly expanded flow is shown to be more sensitive to gas properties, relative to changes in the temperature ratio.
Pulse Detonation Engine Test Bed Developed
NASA Technical Reports Server (NTRS)
Breisacher, Kevin J.
2002-01-01
A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.
LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Colucci, P. J.; Jaberi, F. A.; Givi, P.
1996-01-01
A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
Holland, Troy; Fletcher, Thomas H.
2017-02-22
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Troy; Fletcher, Thomas H.
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
Fundamental modelling of pulverized coal and coal-water slurry combustion in a gas turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatwani, A.; Turan, A.; Hals, F.
1988-06-01
A large portion of world energy resources is in the form of low grade coal. There is need to utilize these resources in an efficient and environmentally clean way. The specific approach under development by us is direct combustion in a multistage slagging combustor, incorrporating control of NO/sub x/, SO/sub x/, and particulates. The toroidal vortex combustor is currently under development through a DOE contract to Westinghouse and subcontract to ARL. This subscale, coal-fired, 6MW combustor will be built and become operational in 1988. The coal fuel is mixed with preheated air, injected through a number of circumferentially-located jets orientedmore » in the radius axis planes. The jets merge at the centerline, forming a vertically directed jet which curves around the combustor dome wall and gives rise to a toroidal shaped vortex. This vortex helps to push the particles radially outward, hit the walls through inertial separation and promote slagging. It also provides a high intensity flow mixing zone to enhance combustion product uniformity, and a primary mechanism for heat feed back to the incoming flow for flame stabilization. The paper describes the essential features of a coal combustion model which is incorporated into a three-dimensional, steady-state, two-phase, turbulent, reactive flow code. The code is a modified and advanced version of INTERN code originally developed at Imperial College which has gone through many stages of development and validation.« less
Building Codes and Regulations.
ERIC Educational Resources Information Center
Fisher, John L.
The hazard of fire is of great concern to libraries due to combustible books and new plastics used in construction and interiors. Building codes and standards can offer architects and planners guidelines to follow but these standards should be closely monitored, updated, and researched for fire prevention. (DS)
2006-02-01
UNICORN (Unsteady Ignition and Combustion with Reactions) code10. Flame propagation in a tube that is 50-mm wide and 1000-mm long (similar to that...turbine engine manufacturers, estimating the primary zone space heating rate. Both combustion systems, from Company A and Company B, required a much...MBTU/atm-hr-ft3) Te m pe ra tu re R is e (K ) dP/P = 2% dP/P = 2.5% dP/P = 3% dP/P = 3.5% dP/P = 4% Company A Company B Figure 13: Heat Release Rate
Oxy Coal Combustion at the US EPA
Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...
[Effect of combustion devices on the quality of indoor air].
Ulbrich, G
1982-01-01
Combustion devices and the equipment conducting their effluent gases such as ducts and chimneys are factors which might have an unreasonable or even dangerous impact on the quality of air inside buildings. There is a danger of flue gases entering the indoor environment during the heating process (a) if the air-circulation associated with the operation of a combustion device is disturbed or even interrupted, (b) if the air stream - as far as flue gases are involved - flows under elevated pressure, and (c) if the combustion device and the flue gas conducting equipment are not leak-proof. These three cases and their influence on indoor air quality are extensively discussed. In the German Combustion Device Code from 1980 care is taken to minimize the pollutant concentrations in rooms with combustion devices by setting special requirements for the room in which the device is located, and by prescribing the standardization of the technical characteristics of chimneys and combustion devices.
Desensitizing Flame Structure and Exhaust Emissions to Flow Parameters in an Ultra-Compact Combustor
2012-03-22
fuel .... 9 Figure 2.4: UNICORN model of hydrogen in air flame front propagation under the loading condition (a) 10 g’s and (b) 500 g’s...Lean Blowout ...................................................................................8 UNICORN Unsteady Ignition and Combustion with...computationally recreate Lewis’ experimental results. Using the Unsteady Ignition and 9 Combustion with Reactions ( UNICORN ) code, flame propagation
EPA ASSESSMENT OF TECHNOLOGIES FOR CONTROLLING EMISSIONS FROM MUNICIPAL WASTE COMBUSTION
The article examines EPA technical activities relating to the development of regulations pertaining to the control of both new and existing municipal waste combustion facilities (MWCs). The activities include: (1) assessing combustion and flue gas cleaning technologies, (2) colle...
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee; Wey, Ming-Jyh
1990-01-01
Two-dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee; Wey, Ming-Jyh
1990-01-01
Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.
Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems
NASA Astrophysics Data System (ADS)
Chalet, David; Chesse, Pascal
2010-10-01
The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.
Computations of spray, fuel-air mixing, and combustion in a lean-premixed-prevaporized combustor
NASA Technical Reports Server (NTRS)
Dasgupta, A.; Li, Z.; Shih, T. I.-P.; Kundu, K.; Deur, J. M.
1993-01-01
A code was developed for computing the multidimensional flow, spray, combustion, and pollutant formation inside gas turbine combustors. The code developed is based on a Lagrangian-Eulerian formulation and utilizes an implicit finite-volume method. The focus of this paper is on the spray part of the code (both formulation and algorithm), and a number of issues related to the computation of sprays and fuel-air mixing in a lean-premixed-prevaporized combustor. The issues addressed include: (1) how grid spacings affect the diffusion of evaporated fuel, and (2) how spurious modes can arise through modelling of the spray in the Lagrangian computations. An upwind interpolation scheme is proposed to account for some effects of grid spacing on the artificial diffusion of the evaporated fuel. Also, some guidelines are presented to minimize errors associated with the spurious modes.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2008-01-01
This paper describes an approach which aims at bridging the gap between the traditional Reynolds-averaged Navier-Stokes (RANS) approach and the traditional large eddy simulation (LES) approach. It has the characteristics of the very large eddy simulation (VLES) and we call this approach the partially-resolved numerical simulation (PRNS). Systematic simulations using the National Combustion Code (NCC) have been carried out for fully developed turbulent pipe flows at different Reynolds numbers to evaluate the PRNS approach. Also presented are the sample results of two demonstration cases: nonreacting flow in a single injector flame tube and reacting flow in a Lean Direct Injection (LDI) hydrogen combustor.
NASA Astrophysics Data System (ADS)
Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper
2015-05-01
In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.
Li-SF(6) Combustion in Stored Chemical Energy Propulsion Systems
1990-07-01
S 3. STRUCTURE OF SF6 3ETS IN MOLTEN LI ........... ................. 8 3.1 Mathematical Model ...ill - ABSTRACT Appropriate thermodynamic models and thermo-chemical data for multicompo- nents and immiscible phases have been Incorporated into a code...by a simplified integral model which was improved9 by the use of the local homogeneous flow approximation, equilibrium combustion model and Kc-C-g
A Summary of the Naval Postgraduate School Research Program.
1986-09-30
a Helmholtz mode involving the head section plenum. An experimental investigation was conducted to examine fuel regresion rate control methods other...Directed: Regression Rate Control in Solid Fuel Ramjets", Master’s Thesis, September, 1985. D. C. Rigterink, "An Experimental Investigation of Combustion...Space Systems Academic Group , Code 72 1 EW Academic Group , Code 73 1 Command, Control & Communications Group , Code 74 1 Curricular Officer of
Radiation Effects on Flow Characteristics in Combustion Chambers
NASA Technical Reports Server (NTRS)
Brewster, M. Q.; Gross, Klaus W.
1989-01-01
A JANNAF sponsored workshop was held to discuss the importance and role of radiative heat transfer in rocket combustion chambers. The potential impact of radiative transfer on hardware design, reliability, and performance was discussed. The current state of radiative transfer prediction capability in CFD modeling was reviewed and concluded to be substantially lacking in both the physical models used and the radiative property data available. There is a clear need to begin to establish a data base for making radiation calculations in rocket combustion chambers. A natural starting point for this effort would be the NASA thermochemical equilibrium code (CEC).
Combustion-acoustic stability analysis for premixed gas turbine combustors
NASA Technical Reports Server (NTRS)
Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth
1995-01-01
Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.
Multi scale modeling of ignition and combustion of micro and nano aluminum particles
NASA Astrophysics Data System (ADS)
Puri, Puneesh
With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a phenomenological theory for ignition and combustion of aluminum particles was proposed. The whole time history from ignition till particle burnout was divided into five stages. An attempt was made to explore different modes of ignition based on the effect of pressure, temperature, oxidizer, oxide thickness and particle diameter and was investigated using length and time scales involved during ignition and combustion.
Computer model of catalytic combustion/Stirling engine heater head
NASA Technical Reports Server (NTRS)
Chu, E. K.; Chang, R. L.; Tong, H.
1981-01-01
The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.
Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel
NASA Technical Reports Server (NTRS)
Molnar, Melissa; Marek, C. John
2003-01-01
Simplified kinetic schemes for Jet-A and methane fuels were developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) that is being developed at Glenn. These kinetic schemes presented here result in a correlation that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, pressure, and temperature. The correlations would then be used with the turbulent mixing times to determine the limiting properties and progress of the reaction. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentration of carbon monoxide as a function of fuel air ratio, pressure, and temperature. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates and the values obtained from the equilibrium correlations were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide, and NOx were obtained for both Jet-A fuel and methane.
High-speed reacting flow simulation using USA-series codes
NASA Astrophysics Data System (ADS)
Chakravarthy, S. R.; Palaniswamy, S.
In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.
Remote control flare stack igniter for combustible gases
NASA Technical Reports Server (NTRS)
Ray, W. L.
1972-01-01
Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... oxides of nitrogen from the stationary reciprocating, diesel fuel fired, internal combustion engines..., diesel fuel fired, internal combustion engines--one existing and one new engine. B. Why is EPA proposing... both engines. In addition, the Conditions of Approval specify the NO X emissions limits, combustion...
OCONUS Compliance Assessment Protocols -- OEBGD (Air Force and Marine Corps Version)
2010-06-01
new and existing perchloroethylene (PCE) dry -cleaning machines must be controlled. • Electroplating and anodizing tanks must comply with one of...and other contaminants from the surfaces of the parts or to dry the parts. Cleaning machines that contain and use heated, nonboiling solvent to clean...cement kilns that combust MSW, internal combustion engines, gas turbines, or other combustion devices that combust landfill gases collected by
Numerical simulations of the superdetonative ram accelerator combusting flow field
NASA Technical Reports Server (NTRS)
Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.
1993-01-01
The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.
AFRL Combustion Science Branch Research Activities and Capabilities
2003-03-01
a wide variety of partners that include other DoD organizations, NASA, DoE, . engine companies , universities, small businesses, and on-site...Dynamics with Chemistry (CFDC) code (Katta et aI., 1994) known as UNICORN (UNsteady Ignition and COmbustion with ReactioNs). UNICORN is a time- dependent...simulate a variety of dynamic flames (Roquemore and Katta, 1998). From its conception, the development of UNICORN has been strongly coupled with
NASA 9-Point LDI Code Validation Experiment
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.
2007-01-01
This presentation highlights the experimental work to date to obtain validation data using a 9-point lean direct injector (LDI) in support of the National Combustion Code. The LDI is designed to supply fuel lean, Jet-A and air directly into the combustor such that the liquid fuel atomizes and mixes rapidly to produce short flame zones and produce low levels of oxides of nitrogen and CO. We present NOx and CO emission results from gas sample data that support that aspect of the design concept. We describe this injector and show high speed movies of selected operating points. We present image-based species maps of OH, fuel, CH and NO obtained using planar laser induced fluorescence and chemiluminescence. We also present preliminary 2-component, axial and vertical, velocity vectors of the air flow obtained using particle image velocimetry and of the fuel drops in a combusting case. For the same combusting case, we show preliminary 3-component velocity vectors obtained using a phase Doppler anemometer. For the fueled, combusting cases especially, we found optical density is a technical concern that must be addressed, but that in general, these preliminary results are promising. All optical-based results confirm that this injector produces short flames, typically on the order of 5- to-7-mm long at typical cruise and high power engine cycle conditions.
Progress in Advanced Spray Combustion Code Integration
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan
1993-01-01
A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.
NASA Technical Reports Server (NTRS)
Hulka, James R.; Jones, G. W.
2010-01-01
Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented programs with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations on these programs. This paper summarizes these analyses. Test and analysis results of impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Several cases with gaseous methane are included for reference. Several different thrust chamber configurations have been modeled, including thrust chambers with multi-element like-on-like and swirl coax element injectors tested at NASA MSFC, and a unielement chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods.
Combustion Stability Analyses for J-2X Gas Generator Development
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners
NASA Technical Reports Server (NTRS)
Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.
2016-01-01
As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.
Sensitivity Analysis to Turbulent Combustion Models for Combustor-Turbine Interactions
NASA Astrophysics Data System (ADS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2017-11-01
The recently-updated Open National CombustionCode (Open NCC) equipped with alarge-eddy simulation (LES) is applied to model the flow field inside the Energy Efficient Engine (EEE) in conjunction with sensitivity analysis to turbulent combustion models. In this study, we consider three different turbulence-combustion interaction models, the Eddy-Breakup model (EBU), the Linear-Eddy Model (LEM) and the Probability Density Function (PDF)model as well as the laminar chemistry model. Acomprehensive comparison of the flow field and the flame structure will be provided. One of our main interests isto understand how a different model predicts thermal variation on the surface of the first stage vane. Considering that these models are often used in combustor/turbine communities, this study should provide some guidelines on numerical modeling of combustor-turbine interactions.
Numerical study of shock-induced combustion in methane-air mixtures
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Rabinowitz, Martin J.
1993-01-01
The shock-induced combustion of methane-air mixtures in hypersonic flows is investigated using a new reaction mechanism consisting of 19 reacting species and 52 elementary reactions. This reduced model is derived from a full kinetic mechanism via the Detailed Reduction technique. Zero-dimensional computations of several shock-tube experiments are presented first. The reaction mechanism is then combined with a fully implicit Navier-Stokes computational fluid dynamics (CFD) code to conduct numerical simulations of two-dimensional and axisymmetric shock-induced combustion experiments of stoichiometric methane-air mixtures at a Mach number of M = 6.61. Applications to the ram accelerator concept are also presented.
Analysis of Lean Premixed/Prevaporized Combustion with KIVA-2
NASA Technical Reports Server (NTRS)
Deur, J. M.; Kundu, K. P.; Darling, D. D.; Cline, M. C.; Micklow, G. J.; Harper, M. R.; Simons, T. A.
1994-01-01
Requirements to reduce the emissions of pollutants from gas turbines used in aircraft propulsion and ground based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concept. This paper describes some of the LPP flame tube analyses performed at the NASA Research Center with KIVA-2, a well-known multi-dimensional CFD code for problems including sprays, turbulence, and combustion. Modifications to KIVA-2's boundary condition and chemistry treatments have been made to meet the needs of the present study. The study itself focuses on two key aspects of the LPP concept, low emissions and flame stability (including flashback and lean blowoff.
CREKID: A computer code for transient, gas-phase combustion of kinetics
NASA Technical Reports Server (NTRS)
Pratt, D. T.; Radhakrishnan, K.
1984-01-01
A new algorithm was developed for fast, automatic integration of chemical kinetic rate equations describing homogeneous, gas-phase combustion at constant pressure. Particular attention is paid to the distinguishing physical and computational characteristics of the induction, heat-release and equilibration regimes. The two-part predictor-corrector algorithm, based on an exponentially-fitted trapezoidal rule, includes filtering of ill-posed initial conditions, automatic selection of Newton-Jacobi or Newton iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm was found to compare favorably with LSODE on two representative test problems drawn from combustion kinetics.
A Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state of the art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the H2-O2 coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One dimensional equilibrium chemistry was used in the energy release analysis of the combustion chamber. A 3-D conduction and/or 1-D advection analysis is used to predict heat transfer and coolant channel wall temperature distributions, in addition to coolant temperature and pressure drop. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
A rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state-of-the-art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the hydrogen-oxygen coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One-dimensional equilibrium chemistry was employed in the energy release analysis of the combustion chamber and three-dimensional finite-difference analysis of the regenerative cooling channels was used to calculate the pressure drop along the channels and the coolant temperature as it exits the coolant circuit. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
Application of Detailed Chemical Kinetics to Combustion Instability Modeling
2016-01-04
the stability characteristics. 15. SUBJECT TERMS N /A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...include area code) N /A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Application of Detailed Chemical Kinetics to Combustion...Frenklach, M., Moriarty, N ., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., W. Gardiner, J., Lissianski, V., and Qin, Z., “GRI-Mech 3.0
Compressible cavitation with stochastic field method
NASA Astrophysics Data System (ADS)
Class, Andreas; Dumond, Julien
2012-11-01
Non-linear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrange particles or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic field method solving pdf transport based on Euler fields has been proposed which eliminates the necessity to mix Euler and Lagrange techniques or prescribed pdf assumptions. In the present work, part of the PhD Design and analysis of a Passive Outflow Reducer relying on cavitation, a first application of the stochastic field method to multi-phase flow and in particular to cavitating flow is presented. The application considered is a nozzle subjected to high velocity flow so that sheet cavitation is observed near the nozzle surface in the divergent section. It is demonstrated that the stochastic field formulation captures the wide range of pdf shapes present at different locations. The method is compatible with finite-volume codes where all existing physical models available for Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic field formulation.
Internal combustion engine using premixed combustion of stratified charges
Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI
2003-12-30
During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.
Spontaneously Combustible Solids -- A Literature Search
1975-05-01
Wasahizeon, D.* C. It. K(EY WORDS (Continue on reviers side It necesary and Identify by block number) Pyrophoric Materials Hazardous Materials...and Identify by block number) Existing information on spontaneously combustible solids including pyrophoric - air hazardous materials and water... pyrophoric -air hazardous and water reactive materials. All available hazard classification systems and test methods releting to spontaneous combustion have
Numerical simulation of the baking of porous anode carbon in a vertical flue ring furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M.; Melaaen, M.C.
The interaction of pitch pyrolysis in porous anode carbon during heating and volatiles combustion in the flue gas channel has been analyzed to gain insight in the anode baking process. A two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke, and an anode was used for studying the effect of heating rate on temperature gradients and internal gas pressure in the anodes. The mathematical model included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation, and turbulent channel flow. The mathematical model was developed through source code modification of the computationalmore » fluid dynamics code FLUENT. The model was useful for studying the effects of heating rate, geometry, and anode properties.« less
Metalloid Aluminum Clusters with Fluorine
2016-12-01
molecular dynamics, binding energy , siesta code, density of states, projected density of states 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY...high energy density compared to explosives, but typically release this energy slowly via diffusion-limited combustion. There is recent interest in using...examine the cluster binding energy and electronic structure. Partial fluorine substitution in a prototypical aluminum-cyclopentadienyl cluster results
Three-Dimensional, Primitive-Variable Model for Solid-Fuel Ramjet Combustion.
1984-02-01
INITIAL DISTRIBUTION LIST ,jo. of Copies 1. Library, Code 0212 2 Dean of Research, Code 012 2 Naval Postgraduate School Monterey, CA 93943 2...Dunlap I G. Jensen I P. Willoughby I P. LaForce 7. Chemical Propulsion Information Agency 2 APL-JHU Johns Hopkins Road Laurel, MD 20810 8. AFAPL 2 Wright-Patterson AFB, OH 45433 R. 0. Stull 19
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, K.K.; Williams, D.C.; Griffith, R.O.
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Rosa, M.I.; Litton, C.D.
1990-01-01
Combustible materials, when burned, produce toxic gases and smoke, which may vary dramatically from one material to another, with resultant different total toxicity and smoke obscuration levels. The U.S. Bureau of Mines report presents smoke property data acquired for a variety of mine combustibles and shows that there exists a correlation between the smoke properties, the relative toxicity, and the smoke obscuration levels of those combustibles tested. These correlations can be used to devise simple, standard tests for determining the toxic and smoke obscuration hazards of mine materials during fire.
NASA Technical Reports Server (NTRS)
Hshieh, Fu-Yu; Beeson, Harold D.
2004-01-01
One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.
National Combustion Code Used To Study the Hydrogen Injector Design for Gas Turbines
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Norris, Andrew T.; Shih, Tsan-Hsing
2005-01-01
Hydrogen, in the gas state, has been proposed to replace Jet-A (the fuel used for commercial jet engines) as a fuel for gas turbine combustion. For the combustion of hydrogen and oxygen only, water is the only product and the main greenhouse gas, carbon dioxide, is not produced. This is an obvious benefit of using hydrogen as a fuel. The situation is not as simple when air replaces oxygen in the combustion process. (Air is mainly a mixture of oxygen, nitrogen, and argon. Other components comprise a very small part of air and will not be mentioned.) At the high temperatures found in the combustion process, oxygen reacts with nitrogen, and this produces nitrogen oxide compounds, or NOx--the main component of atmospheric smog. The production of NOx depends mainly on two variables: the temperature at which combustion occurs, and the length of time that the products of combustion stay, or reside, in the combustor. Starting from a lean (excess air) air-to-fuel ratio, the goal of this research was to minimize hot zones caused by incomplete premixing and to keep the residence time short while producing a stable flame. The minimization of these two parameters will result in low- NOx hydrogen combustion.
NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Quealy, Angela
1999-01-01
A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.
Internal and surface phenomena in metal combustion
NASA Technical Reports Server (NTRS)
Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.
1995-01-01
Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, C.E.; Yousefian, V.; Wormhoudt, J.
1978-01-30
Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGEmore » code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented and discussed.« less
Performance of a supercharged direct-injection stratified-charge rotary combustion engine
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.; Willis, Edward A.
1990-01-01
A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.
Direct numerical simulation of a combusting droplet with convection
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan
1992-01-01
The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... combustible coal dust and explosive methane gas are present. This information collection request (ICR) was... underground coal mine where combustible coal dust and explosive methane gas are present. This information...
Thermo-chemical modelling of a village cookstove for design improvement
NASA Astrophysics Data System (ADS)
Honkalaskar, Vijay H.; Sohoni, Milind; Bhandarkar, Upendra V.
2014-05-01
Cookstove operation comprises three basic processes, namely combustion of firewood, natural air draft due to the buoyancy induced by the temperature difference between the hearth and its surroundings, and heat transfer to the pot, stove body and surrounding atmosphere. Owing to the heterogenous and unsteady burning of solid fuel, there exist nonlinear and dynamic interrelationships among these process parameters. A steady-state analytical model of the cookstove operation is developed for its design improvement by splitting the hearth into three zones to study char combustion, volatile combustion and heat transfer to the pot bottom separately. It comprises a total of seven relations corresponding to a thorough analysis of the three basic processes. A novel method is proposed to model the combustion of wood to mimic the realities closely. Combustion space above the fuel bed is split into 1000 discrete parts to study the combustion of volatiles by considering a set of representative volatile gases. Model results are validated by comparing them with a set of water boiling tests carried on a traditional cookstove in the laboratory. It is found that the major thrust areas to improve the thermal performance are combustion of volatiles and the heat transfer to the pot. It is revealed that the existing design dimensions of the traditional cookstove are close to their optimal values. Addition of twisted-tape inserts in the hearth of the cookstove shows an improvement in the thermal performance due to increase in the heat transfer coefficient to the pot bottom and improved combustion of volatiles.
Radiative Augmented Combustion
1988-03-01
PbLFICE SY 7a NAME OF MONITORING ORGANIZATION M.L. ENERGIA , Inc. AFOSR/NA 6r. ADDRESS (City. State. anW ZIP Code) 7b. ADDRESS (City State, and ZIPCode...27 -00 N ’fPECTED 0 6I FOREWORD This is the Final Report on research on Radiative Augmented Combustion conducted at M. L. ENERGIA , Inc. It was a...the first two annual reports prior to this one. The entire research program was performed at ENERGIA , Inc., Princeton, New Jersey, with Dr. Moshe Lavid
National Combustion Code: A Multidisciplinary Combustor Design System
NASA Technical Reports Server (NTRS)
Stubbs, Robert M.; Liu, Nan-Suey
1997-01-01
The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.
Ignition and combustion characteristics of metallized propellants
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, Stephen R.
1992-01-01
During this reporting period, theoretical work on the secondary atomization process was continued and the experimental apparatus was improved. A one-dimensional model of a rocket combustor, incorporating multiple droplet size classes, slurry combustion, secondary atomization, radiation heat transfer, and two-phase slip between slurry droplets and the gas flow was derived and a computer code was written to implement this model. The STANJAN chemical equilibrium solver was coupled with this code to yield gas temperature, density, and composition as functions of axial location. Preliminary results indicate that the model is performing correctly, given current model assumptions. Radiation heat transfer in the combustion chamber is treated as an optically-thick participating media problem requiring a solution of the radiative transfer equation. A cylindrical P sub 1 approximation was employed to yield an analytical expression for chamber-wall heat flux at each axial location. The code exercised to determine the effects of secondary atomization intensity, defined as the number of secondary drops produced per initial drop, on chamber burnout distance and final Al2O3 agglomerate diameter. These results indicate that only weak secondary atomization is required to significantly reduce these two parameters. Stronger atomization intensities were found to yield decreasing marginal benefits. The experimental apparatus was improved to reduce building vibration effects on the optical system alignment. This was accomplished by mounting the burner and the transmitting/receiving optics on a single frame supported by vibration-isolation legs. Calibration and shakedown tests indicate that vibration problems were eliminated and that the system is performing correctly.
A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance
NASA Technical Reports Server (NTRS)
Mueller, Donn C.; Turns, Stephen R.
1993-01-01
A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.
Dual-Pump CARS Development and Application to Supersonic Combustion
NASA Technical Reports Server (NTRS)
Magnotti, Gaetano; Cutler, Andrew D.
2012-01-01
A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.
NASA Technical Reports Server (NTRS)
Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo
1995-01-01
Premixed combustors, which are being considered for low NOx engines, are susceptible to instabilities due to feedback between pressure perturbations and combustion. This feedback can cause damaging mechanical vibrations of the system as well as degrade the emissions characteristics and combustion efficiency. In a lean combustor instabilities can also lead to blowout. A model was developed to perform linear combustion-acoustic stability analysis using detailed chemical kinetic mechanisms. The Lewis Kinetics and Sensitivity Analysis Code, LSENS, was used to calculate the sensitivities of the heat release rate to perturbations in density and temperature. In the present work, an assumption was made that the mean flow velocity was small relative to the speed of sound. Results of this model showed the regions of growth of perturbations to be most sensitive to the reflectivity of the boundary when reflectivities were close to unity.
Laser Ionization Studies of Hydrocarbon Flames.
NASA Astrophysics Data System (ADS)
Bernstein, Jeffrey Scott
Resonance-enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) are applied as laser based flame diagnostics for studies of hydrocarbon combustion chemistry. rm CH_4/O_2, C _2H_4/O_2, and rm C_2H_6/O_2 low pressure ( ~20 Torr), stoichiometric burner stabilized flat flames are studied. Density profiles of intermediate flame species, existing at ppm concentrations, are mapped out as a function of distance from the burner head. Profiles resulting from REMPI and LIF detection are obtained for HCO, CH_3, H, O, OH, CH, and CO flame radicals. The above flame systems are computer modeled against currently accepted combustion mechanisms using the Chemkin and Premix flame codes developed at Sandia National Laboratories. The modeled profile densities show good agreement with the experimental results of the CH_4/O_2 flame system, thus confirming the current C1 kinetic flame mechanism. Discrepancies between experimental and modeled results are found with the C2 flames. These discrepancies are partially amended by modifying the rate constant of the rm C_2H_3+rm O_2 to H_2CO + HCO reaction. The modeled results computed with the modified rate constant strongly suggest that the kinetics of several or possibly many reactions in the C2 mechanism need refinement.
Some Factors Affecting Combustion in an Internal-Combustion Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Cohn, Mildred
1936-01-01
An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.
TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION
The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert
2009-01-01
A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
Multi-User Hardware Solutions to Combustion Science ISS Research
NASA Technical Reports Server (NTRS)
Otero, Angel M.
2001-01-01
In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time required to go from selection to space flight.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Widodo, T. I.; Nasution, D. M.
2017-01-01
In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.
Multifunctional Fuel Additives for Reduced Jet Particulate Emissions
2006-06-01
additives, turbine engine emissions, particulates, chemical kinetics, combustion, JP-8 chemistry 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism ...................114 Figure 64. Comparison of...calculated jet flame benzene mole fraction contours from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism
Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Fischer, David G.; Kojima, Jun
2011-01-01
Accurate experimental measurement of spatially and temporally resolved variations in chemical composition (species concentrations) and temperature in turbulent flames is vital for characterizing the complex phenomena occurring in most practical combustion systems. These diagnostic measurements are called multiscalar because they are capable of acquiring multiple scalar quantities simultaneously. Multiscalar diagnostics also play a critical role in the area of computational code validation. In order to improve the design of combustion devices, computational codes for modeling turbulent combustion are often used to speed up and optimize the development process. The experimental validation of these codes is a critical step in accepting their predictions for engine performance in the absence of cost-prohibitive testing. One of the most critical aspects of setting up a time-resolved stimulated Raman scattering (SRS) diagnostic system is the temporal optical gating scheme. A short optical gate is necessary in order for weak SRS signals to be detected with a good signal- to-noise ratio (SNR) in the presence of strong background optical emissions. This time-synchronized optical gating is a classical problem even to other spectroscopic techniques such as laser-induced fluorescence (LIF) or laser-induced breakdown spectroscopy (LIBS). Traditionally, experimenters have had basically two options for gating: (1) an electronic means of gating using an image intensifier before the charge-coupled-device (CCD), or (2) a mechanical optical shutter (a rotary chopper/mechanical shutter combination). A new diagnostic technology has been developed at the NASA Glenn Research Center that utilizes a frame-transfer CCD sensor, in conjunction with a pulsed laser and multiplex optical fiber collection, to realize time-resolved Raman spectroscopy of turbulent flames that is free from optical background noise (interference). The technology permits not only shorter temporal optical gating (down to <1 s, in principle), but also higher optical throughput, thus resulting in a substantial increase in measurement SNR.
Real gas CFD simulations of hydrogen/oxygen supercritical combustion
NASA Astrophysics Data System (ADS)
Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.
2013-03-01
A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.
Combustion of interacting droplet arrays in a microgravity environment
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.
1995-01-01
This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Throughout the course of the work, a number of related aspects of isolated droplet combustion have also been investigated. This paper will review our progress in microgravity droplet array combustion, advanced diagnostics (specifically L2) applied to isolated droplet combustion, and radiative extinction large droplet flames. A small-scale droplet combustion experiment being developed for the Space Shuttle will also be described.
Active Combustion Control for Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.
2000-01-01
Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.
Beta Testing of CFD Code for the Analysis of Combustion Systems
NASA Technical Reports Server (NTRS)
Yee, Emma; Wey, Thomas
2015-01-01
A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.
Modelling and simulation of wood chip combustion in a hot air generator system.
Rajika, J K A T; Narayana, Mahinsasa
2016-01-01
This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.
Parallelization of Lower-Upper Symmetric Gauss-Seidel Method for Chemically Reacting Flow
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Jost, Gabriele; Chang, Sherry
2005-01-01
Development of technologies for exploration of the solar system has revived an interest in computational simulation of chemically reacting flows since planetary probe vehicles exhibit non-equilibrium phenomena during the atmospheric entry of a planet or a moon as well as the reentry to the Earth. Stability in combustion is essential for new propulsion systems. Numerical solution of real-gas flows often increases computational work by an order-of-magnitude compared to perfect gas flow partly because of the increased complexity of equations to solve. Recently, as part of Project Columbia, NASA has integrated a cluster of interconnected SGI Altix systems to provide a ten-fold increase in current supercomputing capacity that includes an SGI Origin system. Both the new and existing machines are based on cache coherent non-uniform memory access architecture. Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation method has been implemented into both perfect and real gas flow codes including Real-Gas Aerodynamic Simulator (RGAS). However, the vectorized RGAS code runs inefficiently on cache-based shared-memory machines such as SGI system. Parallelization of a Gauss-Seidel method is nontrivial due to its sequential nature. The LU-SGS method has been vectorized on an oblique plane in INS3D-LU code that has been one of the base codes for NAS Parallel benchmarks. The oblique plane has been called a hyperplane by computer scientists. It is straightforward to parallelize a Gauss-Seidel method by partitioning the hyperplanes once they are formed. Another way of parallelization is to schedule processors like a pipeline using software. Both hyperplane and pipeline methods have been implemented using openMP directives. The present paper reports the performance of the parallelized RGAS code on SGI Origin and Altix systems.
CFD Code Development for Combustor Flows
NASA Technical Reports Server (NTRS)
Norris, Andrew
2003-01-01
During the lifetime of this grant, work has been performed in the areas of model development, code development, code validation and code application. For model development, this has included the PDF combustion module, chemical kinetics based on thermodynamics, neural network storage of chemical kinetics, ILDM chemical kinetics and assumed PDF work. Many of these models were then implemented in the code, and in addition many improvements were made to the code, including the addition of new chemistry integrators, property evaluation schemes, new chemistry models and turbulence-chemistry interaction methodology. Validation of all new models and code improvements were also performed, while application of the code to the ZCET program and also the NPSS GEW combustor program were also performed. Several important items remain under development, including the NOx post processing, assumed PDF model development and chemical kinetic development. It is expected that this work will continue under the new grant.
Co-combustion of pellets from Soma lignite and waste dusts of furniture works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, N.D.; Yilgin, M.; Pehlivan, D.
2008-07-01
In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a promptmore » effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.« less
NASA Technical Reports Server (NTRS)
Cramer, J. M.; Pal, S.; Marshall, W. M.; Santoro, R. J.
2003-01-01
Contents include the folloving: 1. Motivation. Support NASA's 3d generation launch vehicle technology program. RBCC is promising candidate for 3d generation propulsion system. 2. Approach. Focus on ejector mode p3erformance (Mach 0-3). Perform testing on established flowpath geometry. Use conventional propulsion measurement techniques. Use advanced optical diagnostic techniques to measure local combustion gas properties. 3. Objectives. Gain physical understanding of detailing mixing and combustion phenomena. Establish an experimental data set for CFD code development and validation.
Quantifying Instability Sources in Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.
2000-01-01
Computational fluid dynamics methodology to predict the effects of combusting flows on acoustic pressure oscillations in liquid rocket engines (LREs) is under development. 'Me intent of the investigation is to develop the causal physics of combustion driven acoustic resonances in LREs. The crux of the analysis is the accurate simulation of pressure/density/sound speed in a combustor which when used by the FDNS-RFV CFD code will produce realistic flow phenomena. An analysis of a gas generator considered for the Fastrac engine will be used as a test validation case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modest, Michael
The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particlesmore » scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.« less
Current and Future Critical Issues in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.; Dix, Jeff C.
1998-01-01
The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).
78 FR 15011 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
..., Final EIS, DOE, TX, W.A. Parish Post-Combustion CO 2 Capture and Sequestration Project, Review Period.... 20130055, Final EIS, NPS, IA, Effigy Mounds National Monument Final General Management Plan, Review Period...] BILLING CODE 6560-50-P ...
Numerical Simulation of Wall Heat Load in Combustor Flow
NASA Astrophysics Data System (ADS)
Panara, D.; Hase, M.; Krebs, W.; Noll, B.
2007-09-01
Due to the major mechanism of NOx generation, there is generally a temperature trade off between improved cycle efficiency, material constraints and low NOx emission. The cycle efficiency is proportional to the highest cycle temperature, but unfortunately also the NOx production increases with increasing combustion temperature. For this reason, the modern combustion chamber design has been oriented towards lean premixed combustion system and more and more attention must be focused on the cooling air management. The challenge is to ensure sufficiently low temperature of the combustion liner with very low amount of film or effusion cooling air. Correct numerical prediction of temperature fields and wall heat load are therefore of critical interest in the modern combustion chamber design. Moreover, lean combustion technology has shown the appearance of thermo-acoustic instabilities which have to be taken into account in the simulation and, more in general, in the design of reliable combustion systems. In this framework, the present investigation addresses the capability of a commercial multiphysics code (ANSYS CFX) to correctly predict the wall heat load and the core flow temperature field in a scaled power generation combustion chamber with a simplified ceramic liner. Comparison are made with the experimental results from the ITS test rig at the University of Karlsruhe [1] and with a previous numerical campaign from [2]. In addition the effect of flow unsteadyness on the wall heat load is discussed showing some limitations of the traditional steady state flow thermal design.
1997-11-01
The goal of the ELF investigation is to improve our fundamental understanding of the effects of the flow environment on flame stability. The flame's stability refers to the position of its base and ultimately its continued existence. Combustion research focuses on understanding the important hidden processes of ignitions, flame spreading, and flame extinction. Understanding these processes will directly affect the efficiency of combustion operations in converting chemical energy to heat and will create a more balanced ecology and healthy environment by reducing pollutants emitted during combustion.
Three-dimensional modeling of diesel engine intake flow, combustion and emissions
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1992-01-01
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.
Biomedically relevant chemical and physical properties of coal combustion products.
Fisher, G L
1983-01-01
The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824
Combustion Of Metals In Reduced Gravity And Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Abbud-Madrid, A.; Modak, A.; Branch, M. C.
2003-01-01
The recent focus of this research project has been to model the combustion of isolated metal droplets and, in particular, to couple the existing theories and formulations of phenomena such as condensation, reaction kinetics, radiation, and surface reactions to formulate a more complete combustion model. A fully transient, one-dimensional (spherical symmetry) numerical model that uses detailed chemical kinetics, multi-component molecular transport mechanisms, condensation kinetics, and gas phase radiation heat transfer was developed. A coagulation model was used to simulate the particulate formation of MgO. The model was used to simulate the combustion of an Mg droplet in pure O2 and CO2. Methanol droplet combustion is considered as a test case for the solution method for both quasi-steady and fully transient simulations. Although some important processes unique to methanol combustion, such as water absorption at the surface, are not included in the model, the results are in sufficient agreement with the published data. Since the major part of the heat released in combustion of Mg, and in combustion of metals in general, is due to the condensation of the metal oxide, it is very important to capture the condensation processes correctly. Using the modified nucleation theory, an Arrhenius type rate expression is derived to calculate the condensation rate of MgO. This expression can be easily included in the CHEMKIN reaction mechanism format. Although very little property data is available for MgO, the condensation rate expression derived using the existing data is able to capture the condensation of MgO. An appropriate choice of the reference temperature to calculate the rate coefficients allows the model to correctly predict the subsequent heat release and hence the flame temperature.
Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Grout, Ray W
This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1991-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1990-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation
NASA Astrophysics Data System (ADS)
Funami, Yuki; Shimada, Toru
The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.
NASA Technical Reports Server (NTRS)
Williams, Powtawche N.
1998-01-01
To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.
Combustion chamber analysis code
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.
1993-01-01
A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.
Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1993-01-01
A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2007-01-01
In support of NASA ARMD's code validation project, we have made significant progress by providing the first quantitative single-shot multi-scalar data from a turbulent elevated-pressure (5 atm), swirl-stabilized, lean direct injection (LDI) type research burner operating on CH4-air using a spatially-resolved pulsed-laser spontaneous Raman diagnostic technique. The Raman diagnostics apparatus and data analysis that we present here were developed over the past 6 years at Glenn Research Center. From the Raman scattering data, we produce spatially-mapped probability density functions (PDFs) of the instantaneous temperature, determined using a newly developed low-resolution effective rotational bandwidth (ERB) technique. The measured 3-scalar (triplet) correlations, between temperature, CH4, and O2 concentrations, as well as their PDF s, also provide a high-level of detail into the nature and extent of the turbulent mixing process and its impact on chemical reactions in a realistic gas turbine injector flame at elevated pressures. The multi-scalar triplet data set presented here provides a good validation case for CFD combustion codes to simulate by providing both average and statistical values for the 3 measured scalars.
21 CFR 177.2400 - Perfluorocarbon cured elastomers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... as are provided: Substances Limitations Carbon black (channel process of furnace combustion process... Park, MD 20740, or available for inspection at the National Archives and Records Administration (NARA....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Thermogravimetry...
40 CFR 62.1115 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.1115 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction... 51451, Sept. 23, 1999] Emissions From Small Existing Municipal Waste Combustion Units ...
Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.
2012-01-01
Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-engine test data to determine the turbine transfer function for the currently subdominant combustion noise. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program s Reduced-Perceived-Noise Technical Challenge.
Terascale direct numerical simulations of turbulent combustion using S3D
NASA Astrophysics Data System (ADS)
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.
Combustion of interacting droplet arrays in a microgravity environment
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.; Haggard, John B.
1993-01-01
This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. The emphasis of the present investigation is experimental, although comparison will be made to existing theoretical and numerical treatments when appropriate. Both normal gravity and low gravity testing will be employed, and the results compared. The work to date will be summarized in the next section, followed by a section detailing the future plans.
Analysis of Flow Migration in an Ultra-Compact Combustor
2011-03-01
Computational Fluid Dynamics . . . . . . . . . . . . . . . 6 UNICORN Unsteady Ignition and Combustion with Reactions . . . . 8 LBO Lean Blowout...the magnitude of enhanced flame speeds due to g- loading using the UNICORN CFD code. The study examined flame propagation for a hydrogen-air mixture in
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.
2016-01-01
As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Smoot, L.D.; Brewster, B.S.
1987-12-01
A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along withmore » a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.« less
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
NASA Technical Reports Server (NTRS)
Pratt, B. S.; Pratt, D. T.
1984-01-01
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P.J.
1996-07-01
A new reactive flow model for highly non-ideal explosives and propellants is presented. These compositions, which contain large amounts of metal, upon explosion have reaction kinetics that are characteristic of both fast detonation and slow metal combustion chemistry. A reaction model for these systems was incorporated into the two-dimensional, finite element, Lagrangian hydrodynamic code, DYNA2D. A description of how to determine the model parameters is given. The use of the model and variations are applied to AP, Al, and nitramine underwater explosive and propellant systems.
NASA Astrophysics Data System (ADS)
Choi, Soojin; Yoh, Jack J.
2017-08-01
The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.
Supersonic reacting internal flowfields
NASA Astrophysics Data System (ADS)
Drummond, J. P.
The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flowfields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.
NASA Technical Reports Server (NTRS)
Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)
1999-01-01
Volume 1, the first of three volumes is a compilation of 16 unclassified/unlimited-technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee held jointly with the 181 Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include overviews of RBCC and PDE hypersonic technology, Hyper-X propulsion ground testing, development of JP-8 for hypersonic vehicle applications, numerical simulation of dual-mode SJ combustion, V&V of M&S computer codes, MHD SJ and Rocket Based Combined Cycle (RBCC) launch vehicle concepts, and Pulse Detonation Engine (PDE) propulsion technology development including fundamental investigations, modeling, aerodynamics, operation and performance.
Supersonic reacting internal flow fields
NASA Technical Reports Server (NTRS)
Drummond, J. Philip
1989-01-01
The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.
An Analysis of Elliptic Grid Generation Techniques Using an Implicit Euler Solver.
1986-06-09
automatic determination of the control fu.nction, . elements of covariant metric tensor in the elliptic grid generation system , from the Cm = 1,2,3...computational fluid d’nan1-cs code. Tne code Inclues a tnree-dimensional current research is aimed primaril: at algebraic generation system based on transfinite...start the iterative solution of the f. ow, nea, transfer, and combustion proble:s. elliptic generation system . Tn13 feature also .:ven-.ts :.t be made
Application of CARS to scramjet combustion
NASA Technical Reports Server (NTRS)
Antcliff, R. R.
1987-01-01
A coherent anti-Stokes Raman spectroscopic (CARS) instrument has been developed for measuring simultaneously temperature and N2 - O2 species concentration in hostile flame environments. A folded BOXCARS arrangement was employed to obtain high spatial resolution. Polarization discrimination against the nonresonant background decreased the lower limits of O2 detectivity. The instrument has been primarily employed for validation of computational fluid-dynamics computer-model codes. Comparisons have been made to both the CHARNAL and TEACH codes on a hydrogen diffusion flame with good results.
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.; Jones, Scott M.
1991-01-01
This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subclassification within a test group which is based on engine code, transmission type and gear ratios, final drive... the non-combustion reaction of a consumable fuel, typically hydrogen. Fuel cell electric vehicle means...-groups in each regulatory category to which fuel consumption requirements apply, and are defined as...
Coolant Design System for Liquid Propellant Aerospike Engines
NASA Astrophysics Data System (ADS)
McConnell, Miranda; Branam, Richard
2015-11-01
Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2008-01-01
This paper at first describes the fluid network approach recently implemented into the National Combustion Code (NCC) for the simulation of transport of aerosols (volatile particles and soot) in the particulate sampling systems. This network-based approach complements the other two approaches already in the NCC, namely, the lower-order temporal approach and the CFD-based approach. The accuracy and the computational costs of these three approaches are then investigated in terms of their application to the prediction of particle losses through sample transmission and distribution lines. Their predictive capabilities are assessed by comparing the computed results with the experimental data. The present work will help establish standard methodologies for measuring the size and concentration of particles in high-temperature, high-velocity jet engine exhaust. Furthermore, the present work also represents the first step of a long term effort of validating physics-based tools for the prediction of aircraft particulate emissions.
NASA Technical Reports Server (NTRS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2016-01-01
In this paper, we present the recent enhancement of the Open National Combustion Code (OpenNCC) and apply the OpenNCC to model a realistic combustor configuration (Energy Efficient Engine (E3)). First, we perform a series of validation tests for the newly-implemented advection upstream splitting method (AUSM) and the extended version of the AUSM-family schemes (AUSM+-up). Compared with the analytical/experimental data of the validation tests, we achieved good agreement. In the steady-state E3 cold flow results using the Reynolds-averaged Navier-Stokes(RANS), we find a noticeable difference in the flow fields calculated by the two different numerical schemes, the standard Jameson- Schmidt-Turkel (JST) scheme and the AUSM scheme. The main differences are that the AUSM scheme is less numerical dissipative and it predicts much stronger reverse flow in the recirculation zone. This study indicates that two schemes could show different flame-holding predictions and overall flame structures.
Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.
Liber, Alex C; Drope, Jeffrey M; Stoklosa, Michal
2017-03-01
Some scholars suggest that price differences between combustible cigarettes and e-cigarettes could be effective in moving current combustible smokers to e-cigarettes, which could reduce tobacco-related death and disease. Currently, in most jurisdictions, e-cigarettes are not subject to the same excise taxes as combustible cigarettes, potentially providing the category with a price advantage over combustible cigarettes. This paper tests whether e-cigarettes tax advantage has translated into a price advantage. In a sample of 45 countries, the price of combustible cigarettes, disposable e-cigarettes and rechargeable cigarettes were compared. Comparable units of combustible cigarettes cost less than disposable e-cigarettes in almost every country in the sample. While the e-liquids consumed in rechargeable e-cigarettes might cost less per comparable unit than combustible cigarettes, the initial cost to purchase a rechargeable e-cigarette presents a significant cost barrier to switching from smoking to vaping. Existing prices of e-cigarettes are generally much higher than of combustible cigarettes. If policymakers wish to tax e-cigarettes less than combustibles, forceful policy action-almost certainly through excise taxation-must raise the price of combustible cigarettes beyond the price of using e-cigarettes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Technical Reports Server (NTRS)
Joachim, William F; Rothrock, A M
1930-01-01
This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.
Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud
NASA Astrophysics Data System (ADS)
Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei
2017-12-01
The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NEW STATIONARY SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration... own or operate an existing commercial or industrial combustion unit that combusted a fuel or non-waste... internal and external corrosion. (3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... NEW STATIONARY SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration... own or operate an existing commercial or industrial combustion unit that combusted a fuel or non-waste... external corrosion. (3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of water or a...
Computational study of generic hypersonic vehicle flow fields
NASA Technical Reports Server (NTRS)
Narayan, Johnny R.
1994-01-01
The geometric data of the generic hypersonic vehicle configuration included body definitions and preliminary grids for the forebody (nose cone excluded), midsection (propulsion system excluded), and afterbody sections. This data was to be augmented by the nose section geometry (blunt conical section mated with the noncircular cross section of the forebody initial plane) along with a grid and a detailed supersonic combustion ramjet (scramjet) geometry (inlet and combustor) which should be merged with the nozzle portion of the afterbody geometry. The solutions were to be obtained by using a Navier-Stokes (NS) code such as TUFF for the nose portion, a parabolized Navier-Stokes (PNS) solver such as the UPS and STUFF codes for the forebody, a NS solver with finite rate hydrogen-air chemistry capability such as TUFF and SPARK for the scramjet and a suitable solver (NS or PNS) for the afterbody and external nozzle flows. The numerical simulation of the hypersonic propulsion system for the generic hypersonic vehicle is the major focus of this entire work. Supersonic combustion ramjet is such a propulsion system, hence the main thrust of the present task has been to establish a solution procedure for the scramjet flow. The scramjet flow is compressible, turbulent, and reacting. The fuel used is hydrogen and the combustion process proceeds at a finite rate. As a result, the solution procedure must be capable of addressing such flows.
21 CFR 177.2490 - Polyphenylene sulfide resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... titled “Oxygen Flask Combustion-Gravimetric Method for Determination of Sulfur in Organic Compounds... Park, MD 20740, or available for inspection at the National Archives and Records Administration (NARA....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (1) Sulfur content: 28.2-29.1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... approved materials are also available for inspection at the National Archives and Records Administration...://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. In addition, these... Bomb Method), IBR approved for § 761.71. (3) ASTM D240-87, Standard Test Method for Heat of Combustion...
Code of Federal Regulations, 2012 CFR
2012-07-01
... approved materials are also available for inspection at the National Archives and Records Administration...://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. In addition, these... Bomb Method), IBR approved for § 761.71. (3) ASTM D240-87, Standard Test Method for Heat of Combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... approved materials are also available for inspection at the National Archives and Records Administration...://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. In addition, these... Bomb Method), IBR approved for § 761.71. (3) ASTM D240-87, Standard Test Method for Heat of Combustion...
40 CFR 94.5 - Reference materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Washington, DC 20460 or at the National Archives and Records Administration (NARA). For information on the.../code_of_federal_regulations/ibr_locations.html. (a) ASTM material. Table 1 of § 94.5 lists material... internal combustion engines—Exhaust emission measurement—Part 1: Test-bed measurement of gaseous and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... incorporated by reference, and is available for inspection at the National Archives and Records Administration...://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. These incorporations... Products (General Bomb Method) § 761.71(b)(2)(vi) ASTM D 240-87 Standard Test Method for Heat of Combustion...
NASA Astrophysics Data System (ADS)
Seleznev, R. K.
2017-02-01
In the paper two-dimensional and quasi-one dimensional models for scramjet combustion chamber are described. Comparison of the results of calculations for the two-dimensional and quasi-one dimensional code by the example of VAG experiment are presented.
Discrete model of gas-free spin combustion of a powder mixture
NASA Astrophysics Data System (ADS)
Klimenok, Kirill L.; Rashkovskiy, Sergey A.
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
Discrete model of gas-free spin combustion of a powder mixture.
Klimenok, Kirill L; Rashkovskiy, Sergey A
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite.
Liu, Zhengang; Balasubramanian, Rajasekhar
2013-10-01
In this study, thermal characteristics of raw biomass, corresponding pyrolytic biochars and their blends with lignite were investigated. The results showed that pyrolytic biochars had better fuel qualities than their parent biomass. In comparison to raw biomass, the combustion of the biochars shifted towards higher temperature and occurred at continuous temperature zones. The biochar addition in lignite increased the reactivities of the blends. Obvious interactions were observed between biomass/biochar and lignite and resulted in increased total burnout, shortened combustion time and increased maximum weight loss rate, indicating increased combustion efficiencies than that of lignite combustion alone. Regarding ash-related problems, the tendency to form slagging and fouling increased, when pyrolytic biochars were co-combusted with coal. This present study demonstrated that the pyrolytic biochars were more suitable than raw biomass to be co-combusted with lignite for energy generation in existing coal-fired power plants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simulation of Combustion Systems with Realistic g-Jitter
NASA Technical Reports Server (NTRS)
Mell, W. E.; McGrattan, K. B.; Nakamura, Y.; Baum, H. R.
2001-01-01
A number of facilities are available for microgravity combustion experiments: aircraft, drop towers, sounding rockets, the space shuttle, and, in the future, the International Space Station (ISS). Acceleration disturbances or g-jitter about the background level of reduced gravity exist in all these microgravity facilities. While g-jitter is routinely measured, a quantitative comparison of the quality of g-jitter among the different microgravity facilities, in terms of its affects on combustion experiments, has not been compiled. Low frequency g-jitter (< 1 Hz) has been repeatedly observed to disturb a number of combustion systems. Guidelines regarding tolerable levels of acceleration disturbances for combustion experiments have been developed for use in the design of ISS experiments. The validity of these guidelines, however, remains unknown. In this project a transient, 3-D numerical model is under development to simulate the effects of realistic g-jitter on a number of combustion systems. The measured acceleration vector or some representation of it can be used as input to the simulation.
Combustion of Biofuel as a Renewable Energy Source in Sandia Flame Geometry
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen
Energy security and climate change are two important key causes of wide spread employment of biofuel notwithstanding of problems associated with its usage. In this research, combustion of biofuel as a renewable energy source was numerically investigated in the well-known and practical Sandia flame geometry. Combustion performance of the flame has been simulated by burning biodiesel (methyl decanoate, methyl 9-decenoate, and n-heptane) oxidation with 118 species reduced/skeletal mechanism. The open-source code OpenFoam was used for simulating turbulent biodiesel-air combustion in the cylindrical chamber using the standard k-epsilon model. To check the accuracy of numerical results, the system was initially validated with methane-air Sandia national laboratories flame D experimental results. Excellent agreements between numerical and experimental results were observed at different cross sections. After ignition, temperature distributions at different distances of axial and radial directions as well as species mass fraction were investigated. It is concluded that biofuel has the capability of implementation in the turbulent jet flame that is a step forward in promotion of sustainable energy technologies and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-12-01
An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Closemore » control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.« less
NASA Astrophysics Data System (ADS)
Musa, Omer; Xiong, Chen; Changsheng, Zhou
2017-08-01
The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new design of swirler is proposed and used in this work. Experiments on connected pipes test facility were performed for SFRJ with and without swirl. An in-house code has been developed to simulate unsteady, turbulent, reacting, swirling flow in the SFRJ. Four different swirl intensities are utilized to study experimentally and numerically the effect of swirl number on the transient regression, ignition of the solid fuel in a hot-oxidizing flow and combustion phenomenon in the SFRJ. The results showed that using swirl flow decreases the ignition time delay, recirculation zone length, and the distance between the flame and the wall, meanwhile, increases the residence time, heat transfer, regression rate and mixing degree, thus, improving the combustion efficiency and stability.
Investigation of the feasibility of CARS measurements in scramjet combustion
NASA Technical Reports Server (NTRS)
Shirley, J. A.; Hall, R. J.; Eckbreth, A. C.
1980-01-01
Results are presented of analytical and experimental investigations to determine the feasibility of using coherent anti-Stokes Raman Spectroscopy (CARS) to measure temperature and species concentration in supersonic combustion experiments. The CARS spectra of H2O, O2 and H2 were measured in laboratory flames. Computer code calculated spectra agree very well with the measured spectra. Temperature, and O2 and H2 concentration profiles have been determined from CARS spectra in a laboratory H2 air flat diffusion flame. Temperature measurements agree with radiation corrected thermocouple measurements within 5 to 10 percent, depending on species concentration. The feasibility of measuring O2 concentrations up to 10 percent, from the spectral shape was demonstrated. H2 concentrations determined from CARS intensities agree with spontaneous Raman measurements within a factor of two. Finally, a conceptual design was formulated for diagnostics in the Langley Research Center scramjet combustion facility.
NASA Astrophysics Data System (ADS)
Elwina; Yunardi; Bindar, Yazid
2018-04-01
this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.
Holographic aids for internal combustion engine flow studies
NASA Technical Reports Server (NTRS)
Regan, C.
1984-01-01
Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.
Dual-Mode Combustion of Hydrogen in a Mach 5, Continuous-Flow Facility
NASA Technical Reports Server (NTRS)
Goyne, C. P.; McDaniel, J. C.; Quagliaroli, T. M.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.
2001-01-01
Results of an experimental and numerical study of a dual-mode scramjet combustor are reported. The experiment consisted of a direct-connect test of a Mach 2 hydrogen-air combustor with a single unswept-ramp fuel injector. The flow stagnation enthalpy simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and a particle-imaging laser diagnostic technique. The particle imaging was enabled through the development of a new apparatus for seeding fine silicon dioxide particles into the combustor fuel stream. Numerical simulations of the combustor were performed using the GASP code. The modeling, and much of the experimental work, focused on the supersonic combustion mode. Reasonable agreement was observed between experimental and numerical wall pressure distributions. However, the numerical model was unable to predict accurately the effects of combustion on the fuel plume size, penetration, shape, and axial growth.
Reaction path of energetic materials using THOR code
NASA Astrophysics Data System (ADS)
Durães, L.; Campos, J.; Portugal, A.
1998-07-01
The method of predicting reaction path, using THOR code, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using HL EoS. The code allows the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, calculated and discussed—pure Ammonium Nitrate and its based explosive ANFO, and Nitromethane—because their equivalence ratio is respectively lower, near and greater than the stoicheiometry. Predictions of reaction path are in good correlation with experimental values, proving the validity of proposed method.
NASA Technical Reports Server (NTRS)
Doane, George B., III; Armstrong, W. C.
1990-01-01
Research on propulsion stability (chugging and acoustic modes), and propellant valve control was investigated. As part of the activation of the new liquid propulsion test facilities, it is necessary to analyze total propulsion system stability. To accomplish this, several codes were built to run on desktop 386 machines. These codes enable one to analyze the stability question associated with the propellant feed systems. In addition, further work was adapted to this computing environment and furnished along with other codes. This latter inclusion furnishes those interested in high frequency oscillatory combustion behavior (that does not couple to the feed system) a set of codes for study of proposed liquid rocket engines.
Combustion research for gas turbine engines
NASA Technical Reports Server (NTRS)
Mularz, E. J.; Claus, R. W.
1985-01-01
Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.
Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Chen, Kuo-Huey
1997-01-01
A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.
Analytical Studies of Three-Dimensional Combustion Processes
1989-05-01
Include Area Code) 22c OFFICE SYMBOL Raghunath S. Boray 513-255-9991 WRDC/POPT DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY...enthalpy, and momentum are calculated for each finite volume by summing the contributions from all groups of droplets. Thus, ( Sm )i,J N ((PpM-p)in
40 CFR 65.13 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... all are available for inspection or at the National Archives and Records Administration (NARA). For.../federal_register/code_of_federal_regulations/ibr_locations.html; at the Air and Radiation Docket and...)(3)(ii). (2) ASTM D2382-76, Standard Test Method for Heat of Combustion of Hydrocarbon Fuels by Bomb...
75 FR 2538 - Agency Information Collection Activities OMB Responses
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... Municipal Waste Combustion Units Constructed on or before August 30, 1999; 40 CFR part 60, subpart A and 40...; expires on 12/31/2012; Approved with change. EPA ICR Number 2076.03; EPA's National Partnership for.... 2010-733 Filed 1-14-10; 8:45 am] BILLING CODE 6560-50-P ...
40 CFR 1036.810 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to http://www.archives.gov/federal_register/code_of... D 240-09 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter...
40 CFR 1036.810 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to http://www.archives.gov/federal_register/code_of... D 240-09 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter...
40 CFR 1036.810 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to http://www.archives.gov/federal_register/code_of... D 240-09 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter...
40 CFR 65.13 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... all are available for inspection or at the National Archives and Records Administration (NARA). For.../federal_register/code_of_federal_regulations/ibr_locations.html; at the Air and Radiation Docket and...)(3)(ii). (2) ASTM D2382-76, Standard Test Method for Heat of Combustion of Hydrocarbon Fuels by Bomb...
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.
1988-01-01
During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.
Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory
Gavin R. McMeeking; Sonia M. Kreidenweis; Stephen Baker; Christian M. Carrico; Judith C. Chow; Jeffrey L. Collett; Wei Min Hao; Amanda S. Holden; Thomas W. Kirchstetter; William C. Malm; Hans Moosmuller; Amy P. Sullivan; Cyle E. Wold
2009-01-01
We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission...
FY06 L2C2 HE program report Zaug et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Crowhurst, J C; Howard, W M
2008-08-01
The purpose of this project is to advance the improvement of LLNL thermochemical computational models that form the underlying basis or input for laboratory hydrodynamic simulations. Our general work approach utilizes, by design, tight experimental-theoretical research interactions that allow us to not empirically, but rather more scientifically improve LLNL computational results. The ultimate goal here is to confidently predict through computer models, the performance and safety parameters of currently maintained, modified, and newly designed stockpile systems. To attain our goal we make relevant experimental measurements on candidate detonation products constrained under static high-pressure and temperature conditions. The reduced information frommore » these measurements is then used to construct analytical forms that describe the potential surface (repulsive energy as a function of interatomic separation distance) of single and mixed fluid or detonation product species. These potential surface shapes are also constructed using input from well-trusted shock wave physics and assorted thermodynamic data available in the open literature. Our potential surfaces permit one to determine the equations of state (P,V,T), the equilibrium chemistry, phase, and chemical interactions of detonation products under a very wide range of extreme pressure temperature conditions. Using our foundation of experimentally refined potential surfaces we are in a position to calculate, with confidence, the energetic output and chemical speciation occurring from a specific combustion and/or detonation reaction. The thermochemical model we developed and use for calculating the equilibrium chemistry, kinetics, and energy from ultrafast processes is named 'Cheetah'. Computational results from our Cheetah code are coupled to laboratory ALE3D hydrodynamic simulation codes where the complete response behavior of an existing or proposed system is ultimately predicted. The Cheetah thermochemical code is also used by well over 500 U.S. government DoD and DOE community users who calculate the chemical properties of detonated high explosives, propellants, and pyrotechnics. To satisfy the growing needs of LLNL and the general user community we continue to improve the robustness of our Cheetah code. The P-T range of current speed of sound experiments will soon be extended by a factor of four and our recently developed technological advancements permit us to, for the first time, study any chemical specie or fluid mixture. New experiments will focus on determining the miscibility or coexistence curves of detonation product mixtures. Our newly constructed ultrafast laser diagnostics will permit us to determine what chemical species exist under conditions approaching Chapman-Jouguet (CJ) detonation states. Furthermore we will measure the time evolution of candidate species and use our chemical kinetics data to develop new and validate existing rate laws employed in future versions of our Cheetah thermochemical code.« less
Benchmarking of Improved DPAC Transient Deflagration Analysis Code
Laurinat, James E.; Hensel, Steve J.
2017-09-27
The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less
Benchmarking of Improved DPAC Transient Deflagration Analysis Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, James E.; Hensel, Steve J.
The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less
CFD simulation of coaxial injectors
NASA Technical Reports Server (NTRS)
Landrum, D. Brian
1993-01-01
The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial injectors. The following sections will discuss the physical aspects of injectors, the CFD code employed, and preliminary results of a simulation of a single coaxial injector for which experimental data is available. It is hoped that this work will lay the foundation for the development of a unique and useful tool to support the SSME program.
An Idealized, Single Radial Swirler, Lean-Direct-Injection (LDI) Concept Meshing Script
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Thompson, Daniel
2008-01-01
To easily study combustor design parameters using computational fluid dynamics codes (CFD), a Gridgen Glyph-based macro (based on the Tcl scripting language) dubbed BladeMaker has been developed for the meshing of an idealized, single radial swirler, lean-direct-injection (LDI) combustor. BladeMaker is capable of taking in a number of parameters, such as blade width, blade tilt with respect to the perpendicular, swirler cup radius, and grid densities, and producing a three-dimensional meshed radial swirler with a can-annular (canned) combustor. This complex script produces a data format suitable for but not specific to the National Combustion Code (NCC), a state-of-the-art CFD code developed for reacting flow processes.
Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines
NASA Technical Reports Server (NTRS)
Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.
2002-01-01
This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.
NASA Astrophysics Data System (ADS)
1982-07-01
Serious reservations about the entire classification procedure of chemical compounds present in electrical equipment environments and the precepts on which it is based are discussed. Although some tests were conducted on selected key compounds, the committee primarily considered the chemical similarity of compounds and other known flammability properties and relied heavily on the experience and intuition of its members. The committee also recommended that the NEC grouping of dusts be changed in some ways and has reclassified dusts according to the modified version of the code.
Scaling Techniques for Combustion Device Random Vibration Predictions
NASA Technical Reports Server (NTRS)
Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.
2016-01-01
This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.
Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels
NASA Astrophysics Data System (ADS)
Singh, Bhupinder
The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have been presented showing comparative trends in pollutant emissions generation, flame blowout stability, and combustion efficiency. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
A CFD model for biomass combustion in a packed bed furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Md. Rezwanul; Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704; Ovi, Ifat Rabbil Qudrat
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is themore » most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.« less
Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Bradley; Davis, Kevin; Senior, Constance
Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent inmore » the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.« less
Combustion Limits and Efficiency of Turbojet Engines
NASA Technical Reports Server (NTRS)
Barnett, H. C.; Jonash, E. R.
1956-01-01
Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.
The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study
NASA Technical Reports Server (NTRS)
Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)
2003-01-01
Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.
Vaporization of irradiated droplets
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; O'Rourke, P. J.; Zardecki, A.
1986-11-01
The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid-gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (``CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous-fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian-Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor.
Current Status of Superheat Spray Modeling With NCC
NASA Technical Reports Server (NTRS)
Raju, M. S.; Bulzan, Dan L.
2012-01-01
An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.
75 FR 54626 - Agency Information Collection Activities OMB Responses
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... 2243.06; Procedures for Implementing the National Environmental Policy Act (NEPA) and Assessing the... Internal Combustion Engines; 40 CFR part 63, subparts A and ZZZZ; was approved on 08/23/2010; OMB Number..., Collections Strategies Division. [FR Doc. 2010-22326 Filed 9-7-10; 8:45 am] BILLING CODE 6560-50-P ...
21 CFR 177.2400 - Perfluorocarbon cured elastomers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (channel process of furnace combustion process) (CAS Reg. No. 1333-86-4) Not to exceed 15 parts per 100... Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National..., call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr...
21 CFR 177.2400 - Perfluorocarbon cured elastomers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (channel process of furnace combustion process) (CAS Reg. No. 1333-86-4) Not to exceed 15 parts per 100... Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National..., call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr...
Aerothermal environment induced by mismatch at the SSME main combustion chamber-nozzle joint
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.; O'Farrell, J. M.; Olive, T. A.; Brown, G. B.; Holt, J. B.
1990-01-01
The computational study reported here is motivated by a Space Shuttle main engine hardware problem detected in post-flight and post-test inspections. Of interest are the potential for hot gas ingestion into the joint (G15) at the main combustion chamber-to-nozzle interface and the effect of particular goemetric nonuniformities on that gas ingestion. The flowfield in the G15 region involves supersonic flow past a rounded forward facing step preceded by a deep narrow cavity. This paper describes the physical problem associated with joint G15 and computational investigations of the G15 aerothermal environment. The associated flowfield was simulated in two and three space dimensions using the United Solutions Algorithm (USA) computational fluid dynamics code series. A benchmark calculation of experimentally measured supersonic flow over of a square cavity was performed to demonstrate the accuracy of the USA code in analyzing flows similar to the G15 computational flowfield. The G15 results demonstrate the mechanism for hot gas ingestion into the joint and reveal the sensitivity to salient geometric nonuniformities.
Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi
2017-11-01
Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.
Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1975-01-01
Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.
Experimental/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.
2000-01-01
The experimental/analytical research work described here addresses the rocket-ejector mode (Mach 0-2 operational range) of the RBCC engine. The experimental phase of the program includes studying the mixing and combustion characteristics of the rocket-ejector system utilizing state-of-the-art diagnostic techniques. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was utilized as the experimental platform. The goals of the experimental phase of the research being conducted at Penn State are to: (a) systematically increase the range of rocket-ejector understanding over a wide range of flow/geometry parameters and (b) provide a comprehensive data base for evaluating and anchoring CFD codes. Concurrent with the experimental activities, a CFD code benchmarking effort at Marshall Space Flight Center is also being used to further investigate the RBCC rocket-ejector mode. Experiments involving the single rocket based optically-accessible rocket-ejector system have been conducted for Diffusion and Afterburning (DAB) as well as Simultaneous Mixing and Combustion configurations. For the DAB configuration, air is introduced (direct-connect) or ejected (sea-level static) into a constant area mixer section with a centrally located gaseous oxygen (GO2)/gaseous hydrogen (GH2) rocket combustor. The downstream flowpath for this configuration includes a diffuser, an afterburner and a final converging nozzle. For the SMC configuration, the rocket is centrally located in a slightly divergent duct. For all tested configurations, global measurements of the axial pressure and heat transfer profiles as well as the overall engine thrust were made. Detailed measurements include major species concentration (H2 O2 N2 and H2O) profiles at various mixer locations made using Raman spectroscopy. Complementary CFD calculations of the flowfield at the experimental conditions also provide additional information on the physics of the problem. These calculations are being conducted at Marshall Space Flight Center to benchmark the FDNS code for RBCC engine operations for such configurations. The primary fluid physics of interests are the mixing and interaction of the rocket plume and secondary flow, subsequent combustion of the fuel rich rocket exhaust with the secondary flow and combustion of the injected afterburner flow. The CFD results are compared to static pressure along the RBCC duct walls, Raman Spectroscopy specie distribution data at several axial locations, net engine thrust and entrained air for the SLS cases. The CFD results compare reasonably well with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, E.J.; McNeilly, G.S.
The existing National Center for Atmospheric Research (NCAR) code in the Hamburg Oceanic Carbon Cycle Circulation Model and the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was modernized and reduced in size while still producing an equivalent end result. A reduction in the size of the existing code from more than 50,000 lines to approximately 7,500 lines in the new code has made the new code much easier to maintain. The existing code in Hamburg model uses legacy NCAR (including even emulated CALCOMP subrountines) graphics to display graphical output. The new code uses only current (version 3.1) NCAR subrountines.
Estimating Equivalency of Explosives Through A Thermochemical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L
2002-07-08
The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less
Study of flame combustion of off-design binary coal blends in steam boilers
NASA Astrophysics Data System (ADS)
Kapustyanskii, A. A.
2017-07-01
Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which proves the existence of the synergetic effect in the processes of cocombustion of coals of various grades.
Ignition and combustion characteristics of metallized propellants, phase 2
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, S. R.
1994-01-01
Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine Isp efficiencies, accounting for radiation and two phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of five.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey
2001-01-01
A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.
Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge.
Xiao, Zhihua; Yuan, Xingzhong; Leng, Lijian; Jiang, Longbo; Chen, Xiaohong; Zhibin, Wu; Xin, Peng; Jiachao, Zhang; Zeng, Guangming
2016-02-01
Fly ash and slag are important by-products obtained from combustion of municipal sewage sludge (MSS) after pelletization. The quantitative environmental impact assessment of heavy metals in fly ash and slag, compared to MSS, were performed in accordance with bioavailability and eco-toxicity, geo-accumulation index (GAI), risk assessment code (RAC), and potential ecological risk index (PERI). The results demonstrated that not only direct but also long-term bioavailability and eco-toxicity of heavy metals in fly ash and slag decreased except direct bioavailability and eco-toxicity of Pb in fly ash. The GAI demonstrated that combustion significantly weakened (P < 0.05) the pollution levels of heavy metals. PERI indicated that all risks attributed to heavy metals were significantly lowered (P < 0.05) from 777.07 (very high risk) in MSS to 288.72 (moderate risk) and 64.55 (low risk) in fly ash and slag, respectively. In terms of the RAC, seven heavy metals had low even no risk to the environments after combustion besides As in slag. The environmental risk of heavy metals in fly ash and slag was decreased compared with MSS. However, the results of PERI showed that fly ash had a moderate risk.
NASA Astrophysics Data System (ADS)
Moon, Hokyu; Kim, Kyung Min; Park, Jun Su; Kim, Beom Seok; Cho, Hyung Hee
2015-12-01
The after-shell section, which is part of the gas turbine combustion liner, is exposed to the hottest combustion gas. Various cooling schemes have been applied to protect against severe thermal load. However, there is a significant discrepancy in the thermal expansion with large temperature differences, resulting in thermo-mechanical crack formation. In this study, to reduce combustion liner damage, thermo-mechanical analysis was conducted on three after-shell section configurations: inline-discrete divider wall, staggered divider wall, and swirler wall arrays. These array components are well-known heat-transfer enhancement structures in the duct. In the numerical analyses, the heat transfer characteristics, temperature and thermo-mechanical stress distribution were evaluated using finite volume method and finite element method commercial codes. As a result, we demonstrated that the temperature and the thermo-mechanical stress distribution were readily dependent on the structural array for cooling effectiveness and structural support in each modified cooling system. Compared with the reference model, the swirler wall array was most effective in diminishing the thermo-mechanical stress concentration, especially on the inner ring that is vulnerable to crack formation.
NASA Astrophysics Data System (ADS)
Choubey, Gautam; Pandey, K. M.
2017-04-01
Numerical analysis of the supersonic combustion and flow structure through a scramjet engine at Mach 7 with alternating wedge fuel injection and with three angle of attack (α=-3°, α=0°, α=3°) have been studied in the present research article. The configuration used here is slight modification of the Rabadan et al. scramjet model. Steady two dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) simulation and Shear stress transport (SST) based on k-ω turbulent model is used to predict the shock structure and combustion phenomenon inside the scramjet combustor. All the simulations are done by using Ansys 14-Fluent code. The combustion model used here is the combination of eddy dissipation and finite rate chemistry models since this model avoids Arrhenius calculations in which reaction rates are controlled by turbulence. Present results show that the geometry with negative angle of attack (α=-3°) have lowest ignition delay and it improves the performance of scramjet combustor as compared to geometry with α=0°, α=3°. The combustion phenomena and efficiency is also found to be stronger and highest in case of α=-3°.
Deflagration of thermite - ammonium nitrate based propellant mixture
NASA Astrophysics Data System (ADS)
Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose
2001-06-01
Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.
Compact Hybrid Automotive Propulsion System
NASA Technical Reports Server (NTRS)
Lupo, G.
1986-01-01
Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.
Smoke-free home and vehicle rules by tobacco use status among US adults.
Kruger, Judy; Jama, Amal; Homa, David M; Babb, Stephen D; King, Brian A
2015-09-01
To assess the prevalence and characteristics of smoke-free home and vehicle rules by tobacco use. Data came from the 2012-2013 National Adult Tobacco Survey, a telephone survey of adults aged ≥18. Respondents who reported smoking is 'never allowed' inside their home or any family vehicle were considered to have smoke-free home and vehicle rules, respectively. Prevalence and characteristics of smoke-free rules were assessed overall and by current tobacco use (combustible only, noncombustible only, combustible and noncombustible, no current tobacco use). Assessed characteristics included: sex, age, race/ethnicity, education, marital status, income, region, and sexual orientation. Nationally, 83.7% of adults (n=48,871) had smoke-free home rules and 78.1% (n=46,183) had smoke-free vehicle rules. By tobacco use, prevalence was highest among nonusers of tobacco (homes: 90.8%; vehicles: 88.9%) and lowest among combustible-only users (homes: 53.7%; vehicles: 34.2%). Prevalence of smoke-free home and vehicle rules was higher among males, adults with a graduate degree, and adults living in the West. Most adults have smoke-free home and vehicle rules, but differences exist by tobacco use. Opportunities exist to educate adults about the dangers of secondhand smoke and the benefits of smoke-free environments, particularly among combustible tobacco users. Published by Elsevier Inc.
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
Novel Active Combustion Control Valve
NASA Technical Reports Server (NTRS)
Caspermeyer, Matt
2014-01-01
This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.
Features of Ignition and Stable Combustion in Supersonic Combustor
NASA Astrophysics Data System (ADS)
Goldfeld, M.; Starov, A.; Timofeev, K.
2009-01-01
Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.
Simulation of Unsteady Hypersonic Combustion Around Projectiles in an Expansion Tube
NASA Technical Reports Server (NTRS)
Yungster, S.; Radhakrishnan, K.
1999-01-01
The temporal evolution of combustion flowfields established by the interaction between wedge-shaped bodies and explosive hydrogen-oxygen-nitrogen mixtures accelerated to hypersonic speeds in an expansion tube is investigated. The analysis is carried out using a fully implicit, time-accurate, computational fluid dynamics code that we developed recently for solving the Navier-Stokes equations for a chemically reacting gas mixture. The numerical results are compared with experimental data from the Stanford University expansion tube for two different gas mixtures at Mach numbers of 4.2 and 5.2. The experimental work showed that flow unstart occurred for the Mach 4.2 cases. These results are reproduced by our numerical simulations and, more significantly, the causes for unstart are explained. For the Mach 5.2 mixtures, the experiments and numerical simulations both produced stable combustion. However, the computations indicate that in one case the experimental data were obtained during the transient phase of the flow; that is, before steady state had been attained.
NASA Astrophysics Data System (ADS)
Belhi, Memdouh; Im, Hong; Computational Reacting Flows Laboratory, Clean Combustion Research Center Team
2017-11-01
The effects of an electric field on the combustion kinetics in nonpremixed counterflow methane/air flames were investigated via one-dimensional numerical simulations. A classical fluid model coupling Poison's equation with transport equations for combustion species and electric field-induced particles was used. A methane-air reaction mechanism accounting for the natural ionization in flames was combined with a set of reactions that describe the formation of active particles induced by the electric field. Kinetic parameters for electron-impact reactions and transport coefficients of electrons were modeled as functions of reduced electric field via solutions to the Boltzmann kinetic equation using the BOLSIG code. Mobility of ions was computed based on the (n,6,4) and coulomb interaction potentials, while the diffusion coefficient was approximated from the mobility using Einstein relation. Contributions of electron dissociation, excitation and ionization processes were characterized quantitatively. An analysis to identify the plasma regime where the electric field can alter the combustion kinetic was proposed.
NASA Astrophysics Data System (ADS)
Ben Sik Ali, Ahlem; Kriaa, Wassim; Mhiri, Hatem; Bournot, Philippe
2012-05-01
Numerical simulations in a gas turbine Swirl stabilized combustor were conducted to investigate the effectiveness of a cooling system in the protection of combustor walls. The studied combustion chamber has a high degree of geometrical complexity related to the injection system as well as the cooling system based on a big distribution of small holes (about 3,390 holes) bored on the flame tube walls. Two cases were considered respectively the flame tube without and with its cooling system. The calculations were carried out using the industrial CFD code FLUENT 6.2. The various simulations made it possible to highlight the role of cooling holes in the protection of the flame tube walls against the high temperatures of the combustion products. In fact, the comparison between the results of the two studied cases demonstrated that the walls temperature can be reduced by about 800°C by the mean of cooling holes technique.
Numerical investigation of combustion field of hypervelocity scramjet engine
NASA Astrophysics Data System (ADS)
Zhang, Shikong; Li, Jiang; Qin, Fei; Huang, Zhiwei; Xue, Rui
2016-12-01
A numerical study of the ground testing of a hydrogen-fueled scramjet engine was undertaken using the commercial computational-fluid-dynamics code CFD++. The simulated Mach number was 12. A 7-species, 9-reaction-step hydrogen-air chemistry kinetics system was adopted for the Reynolds-averaged Navier-Stokes simulation. The two-equation SST turbulence model, which takes into account the wall functions, was used to handle the turbulence-chemistry interactions. The results were validated by experimentally measuring the wall pressure distribution, and the values obtained proved to be in good agreement. The flow pattern at non-reaction/reaction is presented, as are the results of analyzing the supersonic premix/non-premix flame structure, the reaction heat release distribution in different modes, and the change in the equivalence ratio. In this study, we realize the working mode of a hypervelocity engine and provide some suggestions for the combustion organization of the engine as well as offer insight into the potential for exploiting the processes of combustion and flow.
Assessment, development, and application of combustor aerothermal models
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Mongia, H. C.; Mularz, E. J.
1989-01-01
The gas turbine combustion system design and development effort is an engineering exercise to obtain an acceptable solution to the conflicting design trade-offs between combustion efficiency, gaseous emissions, smoke, ignition, restart, lean blowout, burner exit temperature quality, structural durability, and life cycle cost. For many years, these combustor design trade-offs have been carried out with the help of fundamental reasoning and extensive component and bench testing, backed by empirical and experience correlations. Recent advances in the capability of computational fluid dynamics codes have led to their application to complex 3-D flows such as those in the gas turbine combustor. A number of U.S. Government and industry sponsored programs have made significant contributions to the formulation, development, and verification of an analytical combustor design methodology which will better define the aerothermal loads in a combustor, and be a valuable tool for design of future combustion systems. The contributions made by NASA Hot Section Technology (HOST) sponsored Aerothermal Modeling and supporting programs are described.
Combustion Devices CFD Team Analyses Review
NASA Technical Reports Server (NTRS)
Rocker, Marvin
2008-01-01
A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.
Combustion Safety Simplified Test Protocol Field Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L; Cautley, D.; Bohac, D.
2015-11-05
"9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies onmore » combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.« less
AMR Code Simulations of Turbulent Combustion in Confined and Unconfined SDF Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Bell, J B; Beckner, V
2009-05-29
A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takesmore » into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a vented two-room structure and in an unconfined height-of-burst explosion. Computed pressure histories are in reasonable (but not perfect) agreement with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.« less
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.
2005-09-01
A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1992-01-01
Presented is a collection of papers on research activities carried out during the funding period of October 1991 to March 1992. Topics covered include: blunt body flows in thermochemical equilibrium; thermochemical relaxation in high enthalpy nozzle flow; single expansion ramp nozzle simulations; lunar return aerobraking; line boundary problem for three dimensional grids; and unsteady shock induced combustion.
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2013-01-01
This paper summarizes the procedures of generating a polyhedral mesh derived from hanging-node elements as well as presents sample results from its application to the numerical solution of a single element lean direct injection (LDI) combustor using an open-source version of the National Combustion Code (NCC).
40 CFR 147.2200 - State-administered program-Class I, III, IV, and V wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the in situ combustion of coal are regulated by the Rail Road Commission of Texas under a separate UIC... National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal...
40 CFR 147.2200 - State-administered program-Class I, III, IV, and V wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the in situ combustion of coal are regulated by the Rail Road Commission of Texas under a separate UIC... National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal...
40 CFR 147.2200 - State-administered program-Class I, III, IV, and V wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the in situ combustion of coal are regulated by the Rail Road Commission of Texas under a separate UIC... National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal...
1993-12-01
2 3 9 V List of Fi-ures Figure 1 - Functional...Block Diagram of a Scramjet ........................................ 9 Figure 2 - ’Corrected’ Specific Impulse of Hydrogen-Oxygen Rocket ............. 35...38 Figure 8 - Schematic of Northam/Anderson Mixing Model ............................ 39 Figure 9 - Pressure-Area
40 CFR 62.1985 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Delaware Emissions from Existing Commercial/industrial Solid Waste Incineration Units § 62.1985... solid waste incineration units within the State of Delaware that are subject to 40 CFR part 60, subpart DDDD. [68 FR 49, Jan. 2, 2003] Emissions From Existing Other Solid Waste Combustion Units ...
40 CFR 62.1985 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Delaware Emissions from Existing Commercial/industrial Solid Waste Incineration Units § 62.1985... solid waste incineration units within the State of Delaware that are subject to 40 CFR part 60, subpart DDDD. [68 FR 49, Jan. 2, 2003] Emissions From Existing Other Solid Waste Combustion Units ...
Chang, N B; Lin, K S; Sun, Y P; Wang, H P
2001-12-01
This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.
Analysis of internal flows relative to the space shuttle main engine
NASA Technical Reports Server (NTRS)
1987-01-01
Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.
CFD Analysis of the 24-inch JIRAD Hybrid Rocket Motor
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan; Ungewitter, Ronald; Claflin, Scott
1996-01-01
A series of multispecies, multiphase computational fluid dynamics (CFD) analyses of the 24-inch diameter joint government industry industrial research and development (JIRAD) hybrid rocket motor is described. The 24-inch JIRAD hybrid motor operates by injection of liquid oxygen (LOX) into a vaporization plenum chamber upstream of ports in the hydroxyl-terminated polybutadiene (HTPB) solid fuel. The injector spray pattern had a strong influence on combustion stability of the JIRAD motor so a CFD study was initiated to define the injector end flow field under different oxidizer spray patterns and operating conditions. By using CFD to gain a clear picture of the flow field and temperature distribution within the JIRAD motor, it is hoped that the fundamental mechanisms of hybrid combustion instability may be identified and then suppressed by simple alterations to the oxidizer injection parameters such as injection angle and velocity. The simulations in this study were carried out using the General Algorithm for Analysis of Combustion SYstems (GALACSY) multiphase combustion codes. GALACSY consists of a comprehensive set of droplet dynamic submodels (atomization, evaporation, etc.) and a computationally efficient hydrocarbon chemistry package built around a robust Navier-Stokes solver optimized for low Mach number flows. Lagrangian tracking of dispersed particles describes a closely coupled spray phase. The CFD cases described in this paper represent various levels of simplification of the problem. They include: (A) gaseous oxygen with combusting fuel vapor blowing off the walls at various oxidizer injection angles and velocities, (B) gaseous oxygen with combusting fuel vapor blowing off the walls, and (C) liquid oxygen with combusting fuel vapor blowing off the walls. The study used an axisymmetric model and the results indicate that the injector design significantly effects the flow field in the injector end of the motor. Markedly different recirculation patterns are observed in the vaporization chamber as the oxygen velocity and/or spray pattern is varied. The ability of these recirculation patterns to stabilize the diffusion flame above the surface of the solid fuel gives a plausible explanation for the experimentally determined combustion stability characteristics of the JIRAD motor, and suggests how combustion stability can be assured by modifications to the injector design.
Modeling of vortex generated sound in solid propellant rocket motors
NASA Technical Reports Server (NTRS)
Flandro, G. A.
1980-01-01
There is considerable evidence based on both full scale firings and cold flow simulations that hydrodynamically unstable shear flows in solid propellant rocket motors can lead to acoustic pressure fluctuations of significant amplitude. Although a comprehensive theoretical understanding of this problem does not yet exist, procedures were explored for generating useful analytical models describing the vortex shedding phenomenon and the mechanisms of coupling to the acoustic field in a rocket combustion chamber. Since combustion stability prediction procedures cannot be successful without incorporation of all acoustic gains and losses, it is clear that a vortex driving model comparable in quality to the analytical models currently employed to represent linear combustion instability must be formulated.
Abundant evidence of the existence of a light-absorbing component of organic particles emitted by biomass combustion now exists in the scientific literature. The light absorbing properties of this material, commonly called "brown" carbon (BrC), make it a matter of int...
Validation of numerical simulations for nano-aluminum composite solid propellants
NASA Astrophysics Data System (ADS)
Yan, Allen H.
2011-12-01
Nano-aluminum is of interest as an energetic additive in composite solid propellant formulations for its demonstrated ability to increase combustion efficiency and burning rate. However, due to the current cost of nano-aluminum and the associated safety risks associated with propellant testing, it may not always be practical to spend the time and effort to mix, cast, and thoroughly evaluate the burning rate of a new formulation. To provide an alternative method of determining this parameter, numerical methods have been developed to predict the performance of nano-aluminum composite propellants, but these codes still require thorough validation before application. For this purpose, six propellant compositions were formulated, fully characterized, and burn rates were measured at several pressures between 34.0 and 129.3 atmospheres at room temperature, 20°C, and at an elevated temperature of 71.1°C in order to test the code's ability to predict pressure dependent burn rate and temperature sensitivity. To ensure the most accurate model possible, special emphasis was placed on characterizing the size distribution of the constituent nano-aluminum and ammonium perchlorate powders through optical diffraction or optical imaging techniques. Experimental burn rate is compared to the propellant combustion model and shows excellent agreement within 5% for a range of formulations and pressures, however under other conditions the model deviates by as much as 21%. An analysis of the results suggests that the current framework of the numerical model is unable to accurately simulate all the combustion physics of high aluminum content propellants, and suggestions for improvements are identified.
NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Manthey, Lri
2001-01-01
Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1989-01-01
A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Supersonic Combustion Research at NASA
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
Thermodynamic consequences of hydrogen combustion within a containment of pressurized water reactor
NASA Astrophysics Data System (ADS)
Bury, Tomasz
2011-12-01
Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.; Jachimowski, C. J.; Wilson, C. H.
1978-01-01
A jet-stirred combustor, constructed of castable zirconia and with an Inconel injector, was used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equivalence ratios varying from 0.7 to 1.4. Measurements were made of combustor operating temperature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. A finite-rate chemical kinetic mechanism for propane combustion and nitric oxide formation was assembled by coupling an existing propane oxidation mechanism with the Zeldovich reactions and reactions of molecular nitrogen with hydrocarbon fragments. Analytical studies using this mechanism in a computer simulation of the experimental conditions revealed that the hydrocarbon-fragment-nitrogen reactions play a significant role in nitric oxide formation during fuel-rich combustion.
A Fundamental Study of Smoldering with Emphasis on Experimental Design for Zero-G
NASA Technical Reports Server (NTRS)
Pagni, P. J.; Fernandez-Pello, A. C.
1985-01-01
The objective of this section of the microgravity project is to identify key sets of low-gravity experiments which would critically compliment a larger set of more easily performed normal-gravity experiments to explain the phenomena found in smoldering combustion. It is planned to follow through on the conceptual design of these experiments by participating in the future in the fabrication of the refined apparatus and in the data collection and interpretation. Low-gravity experiments are appropriate for smoldering combustion because of the complexity of smoldering which requires every means possible to discriminate among the many chemical and physical mechanisms active in most smoldering combustion scenarios. Efforts will be primarily analytical, attempting to identify appropriate approximations and dominant dimensionless groups based on existing data and state-of-the-art combustion modelling. Transient stability questions such as ignition, extinction and the choices among charring, tarring, or flaming modes will be included.
NASA Technical Reports Server (NTRS)
Perkins, Hugh Douglas
2010-01-01
In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.
Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review
NASA Astrophysics Data System (ADS)
Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar
2017-05-01
The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.
The adaption of coal quality to furnace structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Shun, X.
1996-12-31
This paper gives the research result of coal quality adaption to furnace structure. The designing of a furnace is based on the coal quality that the furnace would fire. If the coal fired in the furnace differs from the design coal, there would be a lot of problems such as flame stability, coal burn-out rate and slagging problem for the furnace during its operation. In order to know the adaptional range of coal quality for an existing furnace the authors had chosen three different furnaces and 18 kinds of coals in their research work. To understand the coal combustion characteristicsmore » they introduce different indexes to show different processes of coal combustion. These indexes include Fz index which demonstrates the coal combustion based on its utility analyzed result, flame stability index, combustion characteristic index and char burn-out index which are based on the analyzed result of thermogravimetric characteristic. As a furnace is built up and set into operation its flame stability, burn-out rate and ash deposition are definite. If a furnace`s fuel changes its structure characteristics and operation condition will change. A relation between coal quality to furnace structure is based on a lot of regressional analysis results of existing furnaces and their fuels. Based on this relation the adaption of coal quality for a furnace are defined and the kinds of coal furnace fired are optimized to its design fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
"9Combustion safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies onmore » combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.« less
Laser Optics/Combustion Diagnostics.
1986-07-01
of Blackbody at Various Temperatures (K). . . 153 21 Transmission Attenuation of Quartz Fiber ... ............ .. 155 22 Schematic Diagram of Receiver...transfer pro- time-multiplexed via different lengths of fiber -optic cable to gram (machine code) of the TN- 1710 controls the handshak- a single...linewidths depend upon temperature, pressure, and , composition of the medium as well as the J value of the line. Collisional effects, as demonstrated for
Worldwide Environmental Compliance Assessment System (ECAS)
1993-03-01
and other Pickling liquor and other corrosive alkalies corrosive acids Lime wastewater Spent acid Lime and water Spent mixed acid Spent caustic Spent ...labeling. packag- ing. and spill response for hazardous materials? 4. Does the installation store: * a. acids? b. caustics ? c. flammables? d. combustibles...USEPA Hazardous Waste Hazard Waste Code No. FOOl The following spent halokenated solvents used in degreasing: tetra- (T) chloroethylene, trichloroethylene
System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets
NASA Technical Reports Server (NTRS)
Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann
2003-01-01
A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.
Transatmospheric vehicle research
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Cambier, Jean-Luc
1990-01-01
Research was conducted into the alternatives to the supersonic combustion ramjet (scramjet) engine for hypersonic flight. A new engine concept, the Oblique Detonation Wave Engine (ODWE) was proposed and explored analytically and experimentally. Codes were developed which can couple the fluid dynamics of supersonic flow with strong shock waves, with the finite rate chemistry necessary to model the detonation process. An additional study was conducted which compared the performance of a hypersonic vehicle powered by a scramjet or an ODWE. Engineering models of the overall performances of the two engines are included. This information was fed into a trajectory program which optimized the flight path to orbit. A third code calculated the vehicle size, weight, and aerodynamic characteristics. The experimental work was carried out in the Ames 20MW arc-jet wind tunnel, focusing on mixing and combustion of fuel injected into a supersonic airstream. Several injector designs were evaluated by sampling the stream behind the injectors and analyzing the mixture with an on-line mass spectrometer. In addition, an attempt was made to create a standing oblique detonation wave in the wind tunnel using hydrogen fuel. It appeared that the conditions in the test chamber were marginal for the generation of oblique detonation waves.
Modeling of SSME fuel preburner ASI
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan
1992-01-01
The Augmented Spark Ignitor (ASI) is a LOX/H2/electrical spark system that functions as an ignition source and sustainer for stable combustion. It is used in the Space Shuttle Main Engine (SSME) preburner combustor, the SMME main combustion chamber, the J-1 and J-2 engines, as well as proposed designs of the Space Transportation Main Engine (STME) main combustor and gas generators. An undertaking to characterize the flow of the ASI is documented. The code consists of a marriage of the Implicit-Continuous Eulerian/Arbitrary Lagrangian Code (ICE-ALE) Navier-Stokes solver with the Volume-of-Fluid (VOF) Methodology for tracking of two immiscible fluids with sharp discontinuities. Spray droplets are represented by discrete numerical parcels tracked in a Lagrangian fashion. Numerous physical sub-models are also incorporated to describe the processes of atomization, droplet collision, droplet breakup, evaporation, and droplet and gas phase turbulence. An equilibrium chemistry model accounting for 8 active gaseous species is also used. Taking advantage of this symmetry plane, half of the actual ASI is modeled with a 3-D grid that geometrically resolves the LOX ports, the spark plug locations, and the hydrogen injection slots.
NASA Astrophysics Data System (ADS)
Taghavifar, Hadi; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid
2016-08-01
A multidimensional computational fluid dynamic code was developed and integrated with probability density function combustion model to give the detailed account of multiphase fluid flow. The vapor phase within injector domain is treated with Reynolds-averaged Navier-Stokes technique. A new parameter is proposed which is an index of plane-cut spray propagation and takes into account two parameters of spray penetration length and cone angle at the same time. It was found that spray propagation factor (SPI) tends to increase at lower r/ d ratios, although the spray penetration tends to decrease. The results of SPI obtained by empirical correlation of Hay and Jones were compared with the simulation computation as a function of respective r/ d ratio. Based on the results of this study, the spray distribution on plane area has proportional correlation with heat release amount, NO x emission mass fraction, and soot concentration reduction. Higher cavitation is attributed to the sharp edge of nozzle entrance, yielding better liquid jet disintegration and smaller spray droplet that reduces soot mass fraction of late combustion process. In order to have better insight of cavitation phenomenon, turbulence magnitude in nozzle and combustion chamber was acquired and depicted along with spray velocity.
Powdered Magnesium-Carbon Dioxide Rocket Combustion Technology for In Situ Mars Propulsion
NASA Technical Reports Server (NTRS)
Foote, J. P.; Litchford, R. J.
2007-01-01
Powdered magnesium (Mg) carbon dioxide (CO2) combustion is examined as a potential in situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bipropellants, it remains attractive as a potential basis for future martian mobility systems, since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from Earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multiphase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.
"Powdered Magnesium: Carbon Dioxide Combustion for Mars Propulsion"
NASA Technical Reports Server (NTRS)
Foote, John P.; Litchford, Ron J.
2005-01-01
Powdered magnesium - carbon dioxide combustion is examined as a potential in-situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bi-propellants, it remains attractive as a potential basis for future Martian mobility systems since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in-situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multi-phase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
Ganesh, D; Nagarajan, G; Ganesan, S
2014-01-01
In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.
NASA Technical Reports Server (NTRS)
Powers, John; Netzer, David
1987-01-01
Particle behavior in combustion processes is an active research area at NPS. Currently, four research efforts are being conducted: (1) There is a long standing need to better understand the soot production and combustion processes in gas turbine combustors, both from a concern for improved engine life and to minimize exhaust particulates. Soot emissions are strongly effected by fuel composition and additives; (2) A more recent need for particle sizing/behavior measurements is in the combustor of a solid fuel ramjet which uses a metallized fuel. High speed motion pictures are being used to study rather large burning particles; (3) In solid propellant rocket motors, metals are used to improve specific impulse and/or to provide damping for combustion pressure oscillations. Particle sizing experiments are being conducted using diode arrays to measure the light intensity as a function of scattering angle; (4) Once a good quality hologram is attained, a need exists for obtaining the particle distributions from hologram in a short period of time. A Quantimet 720 Image Analyzer is being used to reconstruct images.
Analyses of Longitudinal Mode Combustion Instability in J-2X Gas Generator Development
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.
2011-01-01
The National Aeronautics and Space Administration (NASA) and Pratt & Whitney Rocketdyne are developing a liquid oxygen/liquid hydrogen rocket engine for future upper stage and trans-lunar applications. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. The contract for development was let to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations on the component test stand at the NASA Marshall Space Flight Center (MSFC). Several of the initial configurations resulted in combustion instability of the workhorse gas generator assembly at a frequency near the first longitudinal mode of the combustion chamber. In this paper, several aspects of these combustion instabilities are discussed, including injector, combustion chamber, feed system, and nozzle influences. To ensure elimination of the instabilities at the engine level, and to understand the stability margin, the gas generator system has been modeled at the NASA MSFC with two techniques, the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a lumped-parameter MATLAB(TradeMark) model created as an alternative calculation to the ROCCID methodology. To correctly predict the instability characteristics of all the chamber and injector geometries and test conditions as a whole, several inputs to the submodels in ROCCID and the MATLAB(TradeMark) model were modified. Extensive sensitivity calculations were conducted to determine how to model and anchor a lumped-parameter injector response, and finite-element and acoustic analyses were conducted on several complicated combustion chamber geometries to determine how to model and anchor the chamber response. These modifications and their ramification for future stability analyses of this type are discussed.
Investigation of combustion characteristics of methane-hydrogen fuels
NASA Astrophysics Data System (ADS)
Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.
2015-01-01
Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.
NASA Astrophysics Data System (ADS)
Égüez, Natalia; Mallol, Carolina; Mangado, Xavier; Tejero, José Miguel; Fullola, Josep Maria
2014-05-01
We present preliminary data from ongoing microstratigraphic investigations of Cova del Parco (Lleida, Spain), a Magdalenian karstic cave site in North western Catalonia. Excavations of the Upper Magdalenian levels are currently underway, with radiometric dates between 15,690 and 16,390 cal BP. This period has yielded a complex anthropogenic sedimentary deposit including combustion features and local accumulations of anthropogenic debris near the cave walls. On of the working hypothesis is that the Magdalenian hunter-gatherers who occupied the site did so for short periods, possibly seasonally. Support of this hypothesis comes the presence of overlapping, very thin flat combustion structures, which appear to have been short-lived and close to each other in time. In order to investigate this issue, we carried out micromorphological analysis of some of the mentioned combustion features. Preliminary results show significant microstratification and presence of unburned spherulites mixed in with reprecipitated calcitic wood ash, both of which point towards the existence of hiatuses between combustion events. This is supported by the observation of scattered, lightly burned microscopic flint and bone fragments in the sediment between ash layers, which could represent renewed occupation floor debris. Our case study adds to the growing number of combustion feature microstratigraphic investigations contributing to a correct characterization of anthropogenic palimpsest deposits. Key words: Microstratigraphy; Micromorphology; Magdalenian; Combustion features; Wood ash; Palimpsest; Iberian Peninsula.
Determination of combustion parameters using engine crankshaft speed
NASA Astrophysics Data System (ADS)
Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.
2013-07-01
Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.
NASA Astrophysics Data System (ADS)
Ouyang, Hao; Liu, Weidong; Sun, Mingbo
2017-08-01
Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.
Grain Propellant Optimization Using Real Code Genetic Algorithm (RCGA)
NASA Astrophysics Data System (ADS)
Farizi, Muhammad Farraz Al; Oktovianus Bura, Romie; Fajar Junjunan, Soleh; Jihad, Bagus H.
2018-04-01
Grain propellant design is important in rocket motor design. The total impulse and ISP of the rocket motor is influenced by the grain propellant design. One way to get a grain propellant shape that generates the maximum total impulse value is to use the Real Code Genetic Algorithm (RCGA) method. In this paper RCGA is applied to star grain Rx-450. To find burn area of propellant used analytical method. While the combustion chamber pressures are sought with zero-dimensional equations. The optimization result can reach the desired target and increase the total impulse value by 3.3% from the initial design of Rx-450.
Modeling Turbulent Combustion for Variable Prandtl and Schmidt Number
NASA Technical Reports Server (NTRS)
Hassan, H. A.
2004-01-01
This report consists of two abstracts submitted for possible presentation at the AIAA Aerospace Science Meeting to be held in January 2005. Since the submittal of these abstracts we are continuing refinement of the model coefficients derived for the case of a variable Turbulent Prandtl number. The test cases being investigated are a Mach 9.2 flow over a degree ramp and a Mach 8.2 3-D calculation of crossing shocks. We have developed an axisymmetric code for treating axisymmetric flows. In addition the variable Schmidt number formulation was incorporated in the code and we are in the process of determining the model constants.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... Guidelines (EGs) applicable to existing Large Municipal Waste Combustors (LMWCs). These EGs apply to municipal waste combustors with a capacity to combust more than 250 tons per day of municipal solid waste... Municipal Waste Combustor (LMWC) Emissions From Existing Facilities AGENCY: Environmental Protection Agency...
Definition of smolder experiments for Spacelab
NASA Technical Reports Server (NTRS)
Summerfield, M.; Messina, N. A.; Ingram, L. S.
1979-01-01
The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities.
Diesel engine emissions reduction by multiple injections having increasing pressure
Reitz, Rolf D.; Thiel, Matthew P.
2003-01-01
Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).
2013-07-02
in streamer discharge afterglow in a variety of fueVair mixtures in order to account for the 0 reaction pathways in transient plasma ignition. It is... plasma ignition (TPI), the use of streamers for ignition in combustion engines, holds great promise for improving performance. TPI has been tested...standard spark gap or arc ignition methods [1-4]. These improvements to combustion allow increasing power and efficiency in existing engines such as
1998-01-09
The Direct Gain Solar Thermal Engine was designed with no moving parts. The concept of Solar Thermal Propulsion Research uses focused solar energy from an inflatable concentrator (a giant magnifying glass) to heat a propellant (hydrogen) and allows thermal expansion through the nozzle for low thrust without chemical combustion. Energy limitations and propellant weight associated with traditional combustion engines are non-existant with this concept. The Direct Gain Solar Thermal Engine would be used for moving from a lower orbit to an upper synchronous orbit.
The Interdependence of Various Types of Autoignition and Knock
NASA Technical Reports Server (NTRS)
Olsen, H Lowell; Miller, Cearcy D
1948-01-01
A study of the relations existing among pin-point autoignition, homogeneous autoignition, and knock has been made by means of the NACA high-speed camera and the full-view combustion apparatus. High-speed photographic records of combustion, together with corresponding pressure-time traces, of benzene, 2,2,3-trimethylbutane, S-4, and M-4 fuels at various engine conditions have shown the engine conditions under which each of these phenomena occur and the relation of these phenomena to one another.
Combustion of Solid Propellants (La Combustion des Propergols Solides)
1991-07-01
cin~tiques initiales. Il relatives A Ia granulom ~trie ct la surface eat s~me possible dWaller plus loin et sp~cifique des catalyseurs existent, il est...grand nombro do vari~t~s granulom ~triques des proporgols. On pout ainsi observer uno mont donc utilis~es induatriellemont pour notte influence du temps...et do la ajuster la vitosso des vari~tds do tempdrature do laminage sur la diminution granulom ~trie moyenno 400, 200, 100, 10, 3 de l’exposant do
Laboratory test methods for combustion stability properties of solid propellants
NASA Technical Reports Server (NTRS)
Strand, L. D.; Brown, R. S.
1992-01-01
An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.
Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich
2016-04-15
The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Numerical solutions of the Jet-A spray combustion were obtained by means of the KIVA-II computer code after Jet-A properties were added to the 12 chemical species the program had initially contained. Three different reaction mechanism models are considered. The first model consists of 131 reactions and 45 species; it is evaluated by comparing calculated ignition delay times with available shock tube data, and it is used in the evaluation of the other two simplified models. The simplified mechanisms consider 45 reactions and 27 species and 5 reactions and 12 species, respectively. In the prediction of pollutants NOx and CO, the full mechanism of 131 reactions is considered to be more reliable. The numerical results indicate that the variation of the maximum flame temperature is within 20 percent as compared with that of the full mechanism of 131 reactions. The chemical compositions of major components such as C3H8, H2O, O2, CO2, and N2 are of the same order of magnitude. However, the concentrations of pollutants are quite different.
NASA Technical Reports Server (NTRS)
2004-01-01
In early 1995, NASA s Glenn Research Center (then Lewis Research Center) formed an industry-government team with several jet engine companies to develop the National Combustion Code (NCC), which would help aerospace engineers solve complex aerodynamics and combustion problems in gas turbine, rocket, and hypersonic engines. The original development team consisted of Allison Engine Company (now Rolls-Royce Allison), CFD Research Corporation, GE Aircraft Engines, Pratt and Whitney, and NASA. After the baseline beta version was established in July 1998, the team focused its efforts on consolidation, streamlining, and integration, as well as enhancement, evaluation, validation, and application. These activities, mainly conducted at NASA Glenn, led to the completion of NCC version 1.0 in October 2000. NCC version 1.0 features high-fidelity representation of complex geometry, advanced models for two-phase turbulent combustion, and massively parallel computing. Researchers and engineers at Glenn have been using NCC to provide analysis and design support for various aerospace propulsion technology development projects. NASA transfers NCC technology to external customers using non- exclusive Space Act Agreements. Glenn researchers also communicate research and development results derived from NCC's further development through publications and special sessions at technical conferences.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.
2009-01-01
This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1990-01-01
Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1991-01-01
Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Rhode, D. L.
1982-01-01
A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.
Numerical Analysis of Convection/Transpiration Cooling
NASA Technical Reports Server (NTRS)
Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale
1999-01-01
An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.
Modeling Combustion in Supersonic Flows
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
NASA Astrophysics Data System (ADS)
Mather, Daniel Kelly
1998-11-01
The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.
Updating the conceptual model for fine particle mass emissions from combustion systems.
Robinson, Allen L; Grieshop, Andrew P; Donahue, Neil M; Hunt, Sherri W
2010-10-01
Atmospheric transformations determine the contribution of emissions from combustion systems to fine particulate matter (PM) mass. For example, combustion systems emit vapors that condense onto existing particles or form new particles as the emissions are cooled and diluted. Upon entering the atmosphere, emissions are exposed to atmospheric oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary PM. This review discusses these transformations, focusing on organic PM. Organic PM emissions are semi-volatile at atmospheric conditions and thus their partitioning varies continuously with changing temperature and concentration. Because organics contribute a large portion of the PM mass emitted by most combustion sources, these emissions cannot be represented using a traditional, static emission factor. Instead, knowledge of the volatility distribution of emissions is required to explicitly account for changes in gas-particle partitioning. This requires updating how PM emissions from combustion systems are measured and simulated from combustion systems. Secondary PM production often greatly exceeds the direct or primary PM emissions; therefore, secondary PM must be included in any assessment of the contribution of combustion systems to ambient PM concentrations. Low-volatility organic vapors emitted by combustion systems appear to be very important secondary PM precursors that are poorly accounted for in inventories and models. The review concludes by discussing the implications that the dynamic nature of these PM emissions have on source testing for emission inventory development and regulatory purposes. This discussion highlights important linkages between primary and secondary PM, which could lead to simplified certification test procedures while capturing the emission components that contribute most to atmospheric PM mass.
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
Robinson, Allen L; Grieshop, Andrew P; Donahue, Neil M; Hunt, Sherri W
2010-10-01
Atmospheric transformations determine the contribution of emissions from combustion systems to fine particulate matter (PM) mass. For example, combustion systems emit vapors that condense onto existing particles or form new particles as the emissions are cooled and diluted. Upon entering the atmosphere, emissions are exposed to atmospheric oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary PM. This review discusses these transformations, focusing on organic PM. Organic PM emissions are semi -volatile at atmospheric conditions and thus their partitioning varies continuously with changing temperature and concentration. Because organics contribute a large portion of the PM mass emitted by most combustion sources, these emissions cannot be represented using a traditional, static emission factor. Instead, knowledge of the volatility distribution of emissions is required to explicitly account for changes in gas-particle partitioning. This requires updating how PM emissions from combustion systems are measured and simulated from combustion systems. Secondary PM production often greatly exceeds the direct or primary PM emissions; therefore, secondary PM must be included in any assessment of the contribution of combustion systems to ambient PM concentrations. Low-volatility organic vapors emitted by combustion systems appear to be very important secondary PM precursors that are poorly accounted for in inventories and models. The review concludes by discussing the implications that the dynamic nature of these PM emissions have on source testing for emission inventory development and regulatory purposes. This discussion highlights important linkages between primary and secondary PM, which could lead to simplified certification test procedures while capturing the emission components that contribute most to atmospheric PM mass.
Transient Heat Transfer Properties in a Pulse Detonation Combustor
2011-03-01
strategies for future systems. 15. NUMBER OF PAGES 89 14. SUBJECT TERMS Pulse Detonation Engines, PDE , Heat Transfer 16. PRICE CODE 17. SECURITY...GUI Graphical User Interface NPS Naval Postgraduate School PDC Pulse Detonation Combustion PDE Pulse Detonation Engine RPL Rocket...a tactical missile with a Pulse Detonation Engine ( PDE ) and provide greater range for the same amount of fuel as compared to other current
ERIC Educational Resources Information Center
Kern, Anne L.; Wood, Nathan B.; Roehrig, Gillian H.; Nyachwaya, James
2010-01-01
We report the findings of a large-scale (n = 1,337) qualitative descriptive analysis of U.S. high schools students' particulate representations of a chemical reaction, specifically, the combustion of methane. Data were collected as part of an end of course exam. Student representations were coded into 17 distinct subcategories under one of five…
Environmental Compliance Assessment Army Reserve (ECAAR)
1993-09-01
and water Spent mixed acid Spent caustic Spent sulfuric acid Potential Consequences: Heat generation, violent reaction. Group 2-A Group 2-B Aluminum Any...methane reforming furnaces, pulping liquor recovery furnaces, combustion devices used in the recovery of sulfur values from spent sulfuric acid...Industry and USEPA Hazardous Waste Hazard No. Hazardous Waste Code* Generic FOO1 The spent halogenated solvents used in degreasing: Trichloroethylene, (t
Wright Research and Development Center Test Facilities Handbook
1990-01-01
Variable Temperature (2-400K) and Field (0-5 Tesla) Squid Susceptometer Variable Temperature (10-80K) and Field (0-10 Tesla) Transport Current...determine products of combustion using extraction type probes INSTRUMENTATION: Mini computer/data acquisiton system Networking provides access to larger...data recorder, Masscomp MC-500 computer with acquisition digitizer, laser and ink -jet printers,lo-pass filters, pulse code modulation AVAILABILITY
Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations
2017-05-08
NUMBER (Include area code) 08 May 2017 Briefing Charts 05 April 2017 - 08 May 2017 Using Kokkos for Performant Cross-Platform Acceleration of Liquid ...ERC Incorporated RQRC AFRL-West Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations 2DISTRIBUTION A: Approved for... Liquid Rocket Combustion Simulation SPACE simulation of rotating detonation engine (courtesy of Dr. Christopher Lietz) 3DISTRIBUTION A: Approved
Adding kinetics and hydrodynamics to the CHEETAH thermochemical code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L.E., Howard, W.M., Souers, P.C.
1997-01-15
In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. Wemore » have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.« less
NCC: A Physics-Based Design and Analysis Tool for Combustion Systems
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Quealy, Angela
2000-01-01
The National Combustion Code (NCC) is an integrated system of computer codes for physics-based design and analysis of combustion systems. It uses unstructured meshes and runs on parallel computing platforms. The NCC is composed of a set of distinct yet closely related modules. They are: (1) a gaseous flow module solving 3-D Navier-Stokes equations; (2) a turbulence module containing the non-linear k-epsilon models; (3) a chemistry module using either the conventional reduced kinetics approach of solving species equations or the Intrinsic Low Dimensional Manifold (ILDM) kinetics approach of table looking up in conjunction with solving the equations of the progressive variables; (4) a turbulence-chemistry interaction module including the option of solving the joint probability density function (PDF) for species and enthalpy; and (5) a spray module for solving the liquid phase equations. In early 1995, an industry-government team was formed to develop the NCC. In July 1998, the baseline beta version was completed and presented in two NCC sessions at the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 1998. An overview of this baseline beta version was presented at the NASA HPCCP/CAS Workshop 98, August 1998. Since then, the effort has been focused on the streamlining, validation, and enhancement of the th baseline beta version. The progress is presented in two NCC sessions at the AIAA 38 Aerospace Sciences Meeting & Exhibit, January 2000. At this NASA HPCCP/CAS Workshop 2000, an overview of the NCC papers presented at the AIAA 38 th Aerospace Sciences Meeting & Exhibit is presented, with emphasis on the reduction of analysis time of simulating the (gaseous) reacting flows in full combustors. In addition, results of NCC simulation of a modern turbofan combustor will also be reported.
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects
NASA Technical Reports Server (NTRS)
West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.
Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1998-12-02
In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plantsmore » in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.« less
The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.
1997-01-01
Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.
NASA Astrophysics Data System (ADS)
Musa, Omer; Weixuan, Li; Xiong, Chen; Lunkun, Gong; Wenhe, Liao
2018-07-01
Solid-fuel ramjet converts thermal energy of combustion products to a forward thrust without using any moving parts. Normally, it uses air intake system to compress the incoming air without swirler. A new design of swirler has been proposed and used in the current work. In this paper, a series of firing tests have been carried out to investigate the impact of using swirl flow on regression rate, combustion characteristics, and performance of solid-fuel ramjet engines. The influences of swirl intensity, solid fuel port diameter, and combustor length were studied and varied independently. A new technique for determining the time and space averaged regression rate of high-density polyethylene solid fuel surface after experiments has been proposed based on the laser scan technique. A code has been developed to reconstruct the data from the scanner and then used to obtain the three-dimensional distribution of the regression rate. It is shown that increasing swirl number increases regression rate, thrust, and characteristic velocity, and, decreases air-fuel ratio, corner recirculation zone length, and specific impulse. Using swirl flow enhances the flame stability meanwhile negatively affected on ignition process and specific impulse. Although a significant reduction of combustion chamber length can be achieved when swirl flow is used. Power fitting correlation for average regression rate was developed taking into account the influence of swirl number. Furthermore, varying port diameter and combustor length were found to have influences on regression rate, combustion characteristics and performance of solid-fuel ramjet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.
Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogatemore » fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.« less
NASA Astrophysics Data System (ADS)
Abani, Neerav; Reitz, Rolf D.
2010-09-01
An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.
NASA Astrophysics Data System (ADS)
Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.
2017-12-01
Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model standards, policies, regulatory instruments, or fiscal approaches that could reduce cryosphere impacts. There has been little coordination between the cookstove and heating stove communities; better communication and success sharing could harmonize efforts and lead to greater mitigation of cryosphere-relevant emissions.
An investigation of plasma enhanced combustion
NASA Astrophysics Data System (ADS)
Kim, Woo Kyung
This study examines the use of plasma discharges in flame stabilization. Three different types of plasma discharges are applied to a lifted jet diffusion flame in coflow, and evaluated for their abilities to enhance flame stabilization. A single electrode corona discharge (SECD) is found to maintain the flame at a 20 % higher coflow speed than that without the discharge. A dielectric barrier discharge (DBD) results in flame stabilization at up to 50 % higher coflow speed. Finally, an ultra short-pulsed repetitive discharge (USRD) is found to increase the stability limit by nearly ten-fold. The stabilization process is sensitive to the positioning of the discharge in the flow field, and the optimal position of the discharge is mapped into mixture fraction space. The result shows that the local mixture fraction at the optimal position is much leaner than that of a conventional lifted jet flame. Parametric studies are conducted in a plasma-assisted methane/air premixed flame system using USRD. Criteria for optimal electrode selection are suggested. Platinum provides the best result at low frequency operation (< 20 kHz) but tungsten shows better performance at high frequency operation (> 20 kHz). The increase in the flame stability limit is also investigated. The flame stability limit extends from an equivalence ratio of 0.7 to 0.47. Nitric oxide (NO) concentration in the premixed flame is measured. The discharge is a potential source of NO. Under certain conditions, we observed the presence of a cold pre-flame, located between the discharge and the main flame. It is found that the pre-flame partially consumes some NO. The flame kernel structure and ignition mechanism of plasma-assisted premixed combustion are discussed. It is observed that the pre-flame has an abundance of OH radicals. The key physics of the flame ignition is the diffusion of an OH stream (from the pre-flame) into the surrounding combustible mixture to form the main flame. Lastly, the proposed flame kernel structure is numerically validated using the OPPDIF code. The simulation shows that possibly three reaction zones, one pre-flame and two main flames, exist in this flame configuration.
Effect of Fuel Particle Size on the Stability of Swirl Stabilized Flame in a Gas Turbine Combustor
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil
2015-05-01
Combustion stability is examined in a swirl stabilized aero gas turbine combustor using computational fluid dynamics. A 22.5° sector of an annular combustor is modeled for the study. Unstructured tetrahedral meshes comprising 1.2 × 106 elements are employed in the model where the governing equations are solved using CFD flow solver CFX using eddy dissipation combustion model. The effect of fuel particle size on the combustion and its stability has been studied at steady state and transient conditions. The time for complete evaporation is increased exponentially when drop size increases. It delays heating up the mixture and subsequent ignition. This strongly affects the stability of the combustion flame as the incoming fresh mixture will have a quenching effect on the existing temperature field. Transient analysis at low fuel-air ratio and high particle size shows that there is a series of flame extinction and re-ignition prior to complete extinction which is observed from the fluctuation of gas temperature in the primary zone.
Tomographic data fusion with CFD simulations associated with a planar sensor
NASA Astrophysics Data System (ADS)
Liu, J.; Liu, S.; Sun, S.; Zhou, W.; Schlaberg, I. H. I.; Wang, M.; Yan, Y.
2017-04-01
Tomographic techniques have great abilities to interrogate the combustion processes, especially when it is combined with the physical models of the combustion itself. In this study, a data fusion algorithm is developed to investigate the flame distribution of a swirl-induced environmental (EV) burner, a new type of burner for low NOx combustion. An electric capacitance tomography (ECT) system is used to acquire 3D flame images and computational fluid dynamics (CFD) is applied to calculate an initial distribution of the temperature profile for the EV burner. Experiments were also carried out to visualize flames at a series of locations above the burner. While the ECT images essentially agree with the CFD temperature distribution, discrepancies exist at a certain height. When data fusion is applied, the discrepancy is visibly reduced and the ECT images are improved. The methods used in this study can lead to a new route where combustion visualization can be much improved and applied to clean energy conversion and new burner development.
Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder
NASA Astrophysics Data System (ADS)
Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.
2017-09-01
Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.
Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane-air jet flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, Jean-Baptiste; Colin, Olivier; Angelberger, Christian
2009-07-15
Two formulations of a turbulent combustion model based on the approximated diffusion flame presumed conditional moment (ADF-PCM) approach [J.-B. Michel, O. Colin, D. Veynante, Combust. Flame 152 (2008) 80-99] are presented. The aim is to describe autoignition and combustion in nonpremixed and partially premixed turbulent flames, while accounting for complex chemistry effects at a low computational cost. The starting point is the computation of approximate diffusion flames by solving the flamelet equation for the progress variable only, reading all chemical terms such as reaction rates or mass fractions from an FPI-type look-up table built from autoigniting PSR calculations using complexmore » chemistry. These flamelets are then used to generate a turbulent look-up table where mean values are estimated by integration over presumed probability density functions. Two different versions of ADF-PCM are presented, differing by the probability density functions used to describe the evolution of the stoichiometric scalar dissipation rate: a Dirac function centered on the mean value for the basic ADF-PCM formulation, and a lognormal function for the improved formulation referenced ADF-PCM{chi}. The turbulent look-up table is read in the CFD code in the same manner as for PCM models. The developed models have been implemented into the compressible RANS CFD code IFP-C3D and applied to the simulation of the Cabra et al. experiment of a lifted methane jet flame [R. Cabra, J. Chen, R. Dibble, A. Karpetis, R. Barlow, Combust. Flame 143 (2005) 491-506]. The ADF-PCM{chi} model accurately reproduces the experimental lift-off height, while it is underpredicted by the basic ADF-PCM model. The ADF-PCM{chi} model shows a very satisfactory reproduction of the experimental mean and fluctuating values of major species mass fractions and temperature, while ADF-PCM yields noticeable deviations. Finally, a comparison of the experimental conditional probability densities of the progress variable for a given mixture fraction with model predictions is performed, showing that ADF-PCM{chi} reproduces the experimentally observed bimodal shape and its dependency on the mixture fraction, whereas ADF-PCM cannot retrieve this shape. (author)« less
Low thrust chemical rocket technology
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1992-01-01
An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher performance propellants were evaluated: Space storable propellants, including liquid oxygen (LOX) as the oxidizer with nitrogen hydrides or hydrocarbon as fuels. Specifically, a LOX/hydrazine engine was designed, fabricated, and shown to have a 95 pct theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1. Further performance improvment can be obtained by the use of LOX/hydrogen propellants, especially for manned spacecraft applications, and specific designs must be developed and advanced through flight qualification.
Dynamical and statistical behavior of discrete combustion waves: a theoretical and numerical study.
Bharath, Naine Tarun; Rashkovskiy, Sergey A; Tewari, Surya P; Gundawar, Manoj Kumar
2013-04-01
We present a detailed theoretical and numerical study of combustion waves in a discrete one-dimensional disordered system. The distances between neighboring reaction cells were modeled with a gamma distribution. The results show that the random structure of the microheterogeneous system plays a crucial role in the dynamical and statistical behavior of the system. This is a consequence of the nonlinear interaction of the random structure of the system with the thermal wave. An analysis of the experimental data on the combustion of a gasless system (Ti + xSi) and a wide range of thermite systems was performed in view of the developed model. We have shown that the burning rate of the powder system sensitively depends on its internal structure. The present model allows for reproducing theoretically the experimental data for a wide range of pyrotechnic mixtures. We show that Arrhenius' macrokinetics at combustion of disperse systems can take place even in the absence of Arrhenius' microkinetics; it can have a purely thermal nature and be related to their heterogeneity and to the existence of threshold temperature. It is also observed that the combustion of disperse systems always occurs in the microheterogeneous mode according to the relay-race mechanism.
Dynamical and statistical behavior of discrete combustion waves: A theoretical and numerical study
NASA Astrophysics Data System (ADS)
Bharath, Naine Tarun; Rashkovskiy, Sergey A.; Tewari, Surya P.; Gundawar, Manoj Kumar
2013-04-01
We present a detailed theoretical and numerical study of combustion waves in a discrete one-dimensional disordered system. The distances between neighboring reaction cells were modeled with a gamma distribution. The results show that the random structure of the microheterogeneous system plays a crucial role in the dynamical and statistical behavior of the system. This is a consequence of the nonlinear interaction of the random structure of the system with the thermal wave. An analysis of the experimental data on the combustion of a gasless system (Ti + xSi) and a wide range of thermite systems was performed in view of the developed model. We have shown that the burning rate of the powder system sensitively depends on its internal structure. The present model allows for reproducing theoretically the experimental data for a wide range of pyrotechnic mixtures. We show that Arrhenius’ macrokinetics at combustion of disperse systems can take place even in the absence of Arrhenius’ microkinetics; it can have a purely thermal nature and be related to their heterogeneity and to the existence of threshold temperature. It is also observed that the combustion of disperse systems always occurs in the microheterogeneous mode according to the relay-race mechanism.
40 CFR 62.7120 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Nevada Division of Environmental Protection submitted March 26, 1997 certifying that there are no... this chapter. [65 FR 33467, May 24, 2000] Emissions From Small Existing Municipal Waste Combustion...
40 CFR 63.866 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...
40 CFR 63.866 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...
40 CFR 62.7860 - Identification of sources-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mexico Emissions from Existing Large Municipal Waste Combustion Units § 62.7860 Identification of sources... lands under the jurisdiction of the Albuquerque/Bernalillo county Air Quality Control Board subject to...
40 CFR 62.7860 - Identification of sources-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mexico Emissions from Existing Large Municipal Waste Combustion Units § 62.7860 Identification of sources... lands under the jurisdiction of the Albuquerque/Bernalillo county Air Quality Control Board subject to...
40 CFR 63.866 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...
40 CFR 63.866 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...
40 CFR 63.866 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...; (3) Records of parameter monitoring data required under § 63.864, including any period when the... existing semichemical combustion units at their Big Island, VA facility. [66 FR 3193, Jan. 12, 2001, as...
Control Techtronics International
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.
1995-12-31
Polish graded coal can be burned in existing stoker boilers and meet the 1998 Air Quality standard. This is accomplished with the Control Techtronics microprocessor-based combustion controller accurately and repeatedly: (a) matching the combustion air to the coal firing rate, with continuous stack sensor feedback; (b) continuously varying the boiler`s firing rate based on output water temperature or steam pressure; (c) continuously varying the exhaust fan`s speed to maintain minimum negative pressure in the boiler`s combustion chamber; and recirculating a portion of the flue gas, at varying amounts throughout the boiler`s firing rate. Systems for five boilers have been installedmore » and are operating on MPEC`s Balicka plant in Krakow. Control Techtronics International has $10 million of U.S. Export-Import Bank funds available for similar projects throughout Poland.« less
A Photographic Study of Combustion and Knock in a Spark-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1938-01-01
Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, S. R.
1994-01-01
A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.
Circular codes revisited: a statistical approach.
Gonzalez, D L; Giannerini, S; Rosa, R
2011-04-21
In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.
1989-03-03
address global parameter space mapping issues for first order differential equations. The rigorous criteria for the existence of exact lumping by linear projective transformations was also established.
Review of biosolids management options and co-incineration of a biosolid-derived fuel.
Roy, Murari Mohon; Dutta, Animesh; Corscadden, Kenny; Havard, Peter; Dickie, Lucas
2011-11-01
This paper reviews current biosolids management options, and identifies incineration as a promising technology. Incineration is attractive both for volume reduction and energy recovery. Reported emissions from the incineration of biosolids were compared to various regulations to identify the challenges and future direction of biosolids incineration research. Most of the gaseous and metal emissions were lower than existing regulations, or could be met by existing technologies. This paper also presents the results of an experimental study to investigate the potential use of biosolids for co-incineration with wood pellets in a conventional wood pellet stove. Pilot scale combustion tests revealed that co-incineration of 10% biosolids with 90% premium grade wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyarshinov, B. F.
2018-01-01
Experimental data on the flow structure and mass transfer near the boundaries of the region existence of the laminar and turbulent boundary layers with combustion are considered. These data include the results of in-vestigation on reacting flow stability at mixed convection, mass transfer during ethanol evaporation "on the floor" and "on the ceiling", when the flame surface curves to form the large-scale cellular structures. It is shown with the help of the PIV equipment that when Rayleigh-Taylor instability manifests, the mushroom-like structures are formed, where the motion from the flame front to the wall and back alternates. The cellular flame exists in a narrow range of velocities from 0.55 to 0.65 m/s, and mass transfer is three times higher than its level in the standard laminar boundary layer.
Numerical Performance Prediction of a Miniature Ramjet at Mach 4
2012-09-01
with the computational fluids dynamic (CFD) code from ANSYS - CFX . The nozzle-throat area was varied to increase the backpressure and this pushed the...normal shock that was sitting within the inlet, out to the lip of the inlet cowl. Using the eddy dissipation combustion model in ANSYS - CFX , a...improved accuracy in turbulence modeling. 14. SUBJECT TERMS Mach 4, Ramjet, Drag, Turbulence Modeling, Simulation, ANSYS CFX 15. NUMBER
Applied analytical combustion/emissions research at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Deur, J. M.; Kundu, K. P.; Nguyen, H. L.
1992-01-01
Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.
NASA Technical Reports Server (NTRS)
Deur, J. M.; Kundu, K. P.; Nguyen, H. L.
1992-01-01
Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2015-01-01
This paper summarizes the procedures of (1) generating control volumes anchored at the nodes of a mesh; and (2) generating staggered control volumes via mesh reconstructions, in terms of either mesh realignment or mesh refinement, as well as presents sample results from their applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
NASA Technical Reports Server (NTRS)
Venkateswaran, S.; Hunt, L. Roane; Prabhu, Ramadas K.
1992-01-01
The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans.
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, K.
1974-12-06
An installation is described for the catalytic afterburning of exhaust gases in an internal combustion engine. The system includes a line by-passing the installation for the catalytic afterburning, in which is arranged a throttle valve actuated in dependence on the temperature of the installation. The throttle valve also can be actuated independently of the temperature of the installation, but in dependence of the oil pressure which continues to exist for a short period of time after turning off the engine.
1992-05-01
combustion of most of the propellants, with the possible exception of JA2; scanning electron microcope examination shows the existence of a liquid layer but... compounds are similar (Fifer et Sl. 1985; Hoffsommer, Glover, and Elban 1985), the relative Intensities In Table 2 should provide rough, order-of...top of the liquid layer. In addition, the HPLC chromatograms contained a number of very weak, unknown peaks apparently corresponding to compounds
Oxygen index: An approximate value for the evaluation of combustion characteristics
NASA Technical Reports Server (NTRS)
Zartmann, I.; Reinwardt, D.; Franke, A.
1986-01-01
The oxygen index has gained international recognition for the determination of combustion characteristics of plastic material. The amounts of oxygen and nitrogen were more accurately determined for existing test equipment in order to specify the oxygen index as precisely and as reproducible as possible. Parameters are outlined such as the size of the ignition flame, ignition of test pieces, test piece sizes and test temperature. The minimum oxygen index was determined by the dimension and duration of the fire. The results are sufficiently accurate for factory operating conditions and are also reproducible.